WO2013125007A1 - 非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池 - Google Patents

非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池 Download PDF

Info

Publication number
WO2013125007A1
WO2013125007A1 PCT/JP2012/054413 JP2012054413W WO2013125007A1 WO 2013125007 A1 WO2013125007 A1 WO 2013125007A1 JP 2012054413 W JP2012054413 W JP 2012054413W WO 2013125007 A1 WO2013125007 A1 WO 2013125007A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
electrolyte secondary
resin
secondary battery
nonaqueous electrolyte
Prior art date
Application number
PCT/JP2012/054413
Other languages
English (en)
French (fr)
Inventor
古谷隆博
児島映理
渡辺利幸
小山邦彦
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to KR1020127032136A priority Critical patent/KR101421157B1/ko
Priority to US13/702,985 priority patent/US20130224559A1/en
Priority to JP2012524004A priority patent/JP5099938B1/ja
Priority to PCT/JP2012/054413 priority patent/WO2013125007A1/ja
Priority to CN2012800016225A priority patent/CN103384928A/zh
Publication of WO2013125007A1 publication Critical patent/WO2013125007A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery excellent in load characteristics and charge / discharge cycle characteristics, a separator that can constitute the non-aqueous electrolyte secondary battery, and a method for manufacturing the same.
  • Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density. Therefore, improvement of various battery characteristics and safety is an important issue.
  • a polyolefin-based porous film having a thickness of about 20 to 30 ⁇ m is used as a separator interposed between a positive electrode and a negative electrode.
  • a complicated process such as biaxial stretching or extraction of a pore opening agent is used in order to open fine and uniform holes, and the cost is high.
  • separators are expensive.
  • the constituent resin of the separator is melted below the thermal runaway temperature of the battery to close the pores, thereby increasing the internal resistance of the battery and improving the safety of the battery in the event of a short circuit.
  • polyethylene having a melting point of about 120 to 140 ° C. is used.
  • meltdown may occur in which the separator breaks down.
  • the positive and negative electrodes are in direct contact with each other, and the temperature rises. In the worst case, there is a risk of ignition.
  • Patent Literature 1 proposes a non-aqueous electrolyte secondary battery that includes a positive electrode or a negative electrode that includes a cross-linking structure and has a separator on the surface that functions as a separator. According to the technique described in Patent Document 1, the safety and reliability of the nonaqueous electrolyte secondary battery at high temperatures can be improved.
  • the present invention has been made in view of the above circumstances, and its purpose is a non-aqueous electrolyte secondary battery excellent in load characteristics and charge / discharge cycle characteristics, a separator that can constitute the non-aqueous electrolyte secondary battery, and production thereof It is to provide a method.
  • the separator for a nonaqueous electrolyte secondary battery of the present invention contains at least the resin (A) having a crosslinked structure, and the resin (A) having the crosslinked structure is at least an energy beam.
  • the above is less than 590 sec / 100 ml, and the thermal shrinkage at 175 ° C. is less than 2%.
  • the separator for a non-aqueous electrolyte secondary battery of the present invention is a step of applying a separator-forming composition containing at least an oligomer that can be polymerized by irradiation with energy rays and two or more solvents having different polarities to a substrate. And a step of irradiating the coating film of the separator-forming composition applied to the substrate with energy rays to form a resin (A) having a crosslinked structure, and the separator-forming composition after irradiation with energy rays. And a step of forming pores by drying the coating film, and can be produced by the production method of the present invention.
  • the nonaqueous electrolyte secondary battery of the present invention includes at least a positive electrode having a positive electrode mixture layer formed on the surface of a current collector, a negative electrode having a negative electrode mixture layer formed on the surface of the current collector,
  • the separator is a non-aqueous electrolyte secondary battery separator according to the present invention.
  • the present invention it is possible to provide a non-aqueous electrolyte secondary battery excellent in load characteristics and charge / discharge cycle characteristics, a separator that can constitute the non-aqueous electrolyte secondary battery, and a method for manufacturing the separator.
  • FIG. 2 It is a figure which shows typically an example of the nonaqueous electrolyte secondary battery of this invention, (a) is the top view, (b) is the fragmentary longitudinal cross-sectional view. It is a perspective view of the nonaqueous electrolyte secondary battery shown in FIG. 2 is a scanning electron micrograph of a cross section of a separator according to the nonaqueous electrolyte secondary battery of Example 1.
  • FIG. 2 is a scanning electron micrograph of a cross section of a separator according to the nonaqueous electrolyte secondary battery of Example 1.
  • the non-aqueous electrolyte secondary battery separator of the present invention contains at least a resin (A) having a crosslinked structure.
  • the resin (A) according to the separator of the present invention is a resin (crosslinked resin) having a crosslinked structure in at least a part thereof. For this reason, even if the temperature of the nonaqueous electrolyte secondary battery having the separator of the present invention (nonaqueous electrolyte secondary battery of the present invention) is high, the separator is unlikely to shrink or deform due to melting of the resin (A). Since the shape is maintained well, occurrence of a short circuit between the positive electrode and the negative electrode is suppressed. Therefore, the nonaqueous electrolyte secondary battery of the present invention having the separator of the present invention has good safety at high temperatures.
  • the separator of the present invention containing the resin (A) has a thermal shrinkage rate of less than 2% at 175 ° C., and the thermal deformation is extremely suppressed.
  • a separator for a non-aqueous electrolyte secondary battery is generally manufactured through a stretching process, and the pores of such a separator are not so deep in the thickness direction of the separator.
  • the separator of the present invention can be produced without going through the stretching process as described above, and has a plurality of three-dimensional and non-anisotropic pores with an average pore diameter of 0.01 ⁇ m. It is 0.5 ⁇ m or less.
  • the separator of the present invention has a large number of pores having such a fine and relatively uniform shape, and can ensure stable lithium ion permeability throughout the separator. Therefore, the non-aqueous electrolyte secondary battery using the separator of the present invention (that is, the non-aqueous electrolyte secondary battery of the present invention) has good battery characteristics such as load characteristics.
  • the shape of the pores according to the separator of the present invention (three-dimensional shape without anisotropy) can be represented by, for example, the circularity of the pores.
  • the circularity of the pores according to the separator of the present invention is preferably 0.5 or more, more preferably less than 0.8, and even more preferably 0.75 or less. .
  • the pores having the above average pore diameter can be formed by producing a separator containing the resin (A) by the method of the present invention described later in detail.
  • the air permeability represented by the Gurley value can be 45 sec / 100 ml or more and less than 590 sec / 100 ml, and the lithium ion permeability is high. It is good. Therefore, in the non-aqueous electrolyte secondary battery using the separator of the present invention (non-aqueous electrolyte secondary battery of the present invention), it is difficult to form lithium dendrite even when charging and discharging are repeated, and the capacity due to the occurrence of a micro short circuit is caused thereby. Since it is hard for a fall to occur, it has high charge / discharge cycle characteristics.
  • the heat shrinkage rate, average pore diameter, circularity, and air permeability at 175 ° C. of the separator referred to in the present specification are values obtained by the methods described in Examples described later.
  • the resin (A) according to the separator of the present invention is obtained by polymerizing the oligomer by irradiating the oligomer that can be polymerized by irradiation with energy rays.
  • the separator is highly flexible, for example, when it is integrated with an electrode or a porous substrate (details will be described later), it is possible to constitute a separator that does not easily peel off, Moreover, it becomes easy to adjust Tg of resin (A) to the value of a postscript.
  • the glass transition temperature (Tg) of the resin (A) is preferably higher than 0 ° C, more preferably 10 ° C or higher, preferably lower than 80 ° C, and lower than 60 ° C. More preferred. If the resin (A) has such a Tg, it has the above average pore diameter, preferably the above shape (a three-dimensional shape having no anisotropy as represented by the circularity). It is possible to more easily form pores having. That is, if the Tg of the resin (A) is too low, the pores are likely to be filled, which may make it difficult to adjust the pores and the shape of the average pore diameter of the separator. Further, if the Tg of the resin (A) is too high, curing shrinkage may occur during the production of the separator, so that it may be difficult to adjust the average pore diameter and pore shape of the separator.
  • the Tg of the resin (A) referred to in this specification is a differential scanning calorimeter (for a sheet (separator) containing the resin (A) obtained by the method described in the examples described later, according to JIS K 7121. DSC).
  • the resin (A) it is preferable to use a monomer that can be polymerized by irradiation with energy rays together with the oligomer.
  • the separator containing the resin (A) is prepared by preparing a separator-forming composition containing an oligomer or the like for forming the resin (A) and a solvent, and applying this to a substrate. It is preferable to manufacture through a step of forming a resin (A) by irradiating the coating with energy rays.
  • a separator-forming composition containing an oligomer or the like for forming the resin (A) and a solvent
  • the separator containing the resin (A) is prepared by preparing a separator-forming composition containing an oligomer or the like for forming the resin (A) and a solvent, and applying this to a substrate. It is preferable to manufacture through a step of forming a resin (A) by irradiating the coating with energy rays.
  • the monomer together with the oligomer to the composition for forming a separator, it becomes easy to adjust the viscosity of the composition for forming a separator, thereby improving the coating
  • the resin (A) include, for example, acrylic resin monomers [alkyl (meth) acrylates such as methyl methacrylate and methyl acrylate and derivatives thereof] and oligomers thereof, and an acrylic resin formed from a crosslinking agent; urethane acrylate And a crosslinking resin formed from an epoxy acrylate and a crosslinking agent; a crosslinking resin formed from a polyester acrylate and a crosslinking agent; and the like.
  • the cross-linking agent may be tripropylene glycol diacrylate, 1,6-hexanediol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, dioxane glycol diacrylate, tricyclodecane dimethanol dimer.
  • Divalent or multivalent such as acrylate, dimethylol tricyclodecane diacrylate, ethylene oxide modified trimethylolpropane triacrylate, dipentaerythritol pentaacrylate, caprolactone modified dipentaerythritol hexaacrylate, ⁇ -caprolactone modified dipentaerythritol hexaacrylate
  • Acrylic monomer bifunctional acrylate, trifunctional acrylate, tetrafunctional acrylate, 5-functional acrylate) Rate, etc. hexafunctional acrylate
  • hexafunctional acrylate can be used.
  • an oligomer of the acrylic resin monomer exemplified above can be used as an oligomer that can be polymerized by irradiation with energy rays (hereinafter simply referred to as “oligomer”).
  • oligomer the monomer that can be polymerized by irradiation with energy rays
  • the acrylic resin monomers exemplified above and a crosslinking agent can be used.
  • the resin (A) is a cross-linked resin formed from the urethane acrylate and a cross-linking agent
  • urethane acrylate can be used for the oligomer
  • cross-linking agents exemplified above can be used for the monomer.
  • the resin (A) is a cross-linked resin formed from the epoxy acrylate and a cross-linking agent
  • an epoxy acrylate can be used for the oligomer
  • the cross-linking agent exemplified above can be used for the monomer.
  • polyester acrylate can be used for the oligomer, and the cross-linking agents exemplified above can be used for the monomer.
  • the urethane acrylate, the epoxy acrylate, and the polyester acrylate may be used as the oligomer, and the crosslinking agent (monomer) may be used as the oligomer.
  • the bifunctional acrylate, the trifunctional acrylate, the tetrafunctional acrylate, the pentafunctional acrylate, and the hexafunctional acrylate may be used.
  • the resin (A) includes a crosslinked resin derived from an unsaturated polyester resin formed from a mixture of an ester composition produced by condensation polymerization of a divalent or polyvalent alcohol and a dicarboxylic acid and a styrene monomer;
  • Various polyurethane resins produced by the reaction of isocyanate and polyol can also be used.
  • the ester composition can be used as the oligomer and the styrene monomer can be used as the monomer.
  • the resin (A) is various polyurethane resins produced by reaction of polyisocyanate and polyol
  • examples of the polyisocyanate include hexamethylene diisocyanate, phenylene diisocyanate, toluene diisocyanate (TDI), and 4.4′-diphenylmethane diisocyanate. (MDI), isophorone diisocyanate (IPDI), bis- (4-isocyanatocyclohexyl) methane, and the like.
  • the polyol include polyether polyol, polycarbonate polyol, and polyester polyol.
  • the resin (A) is various polyurethane resins produced by the reaction of polyisocyanate and polyol
  • the above-exemplified polyol can be used as the oligomer
  • the above-mentioned polyisocyanate can be used as the monomer.
  • each of the exemplified resins (A) monofunctional monomers such as isobornyl acrylate, methoxypolyethylene glycol acrylate, and phenoxypolyethylene glycol acrylate can be used in combination. Therefore, when the resin (A) has a structural portion derived from these monofunctional monomers, the above-described monofunctional monomers can be used as monomers together with the exemplified oligomers and other monomers. it can.
  • the monofunctional monomer tends to remain as an unreacted substance in the formed resin (A), and the unreacted substance remaining in the resin (A) elutes in the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery. Battery reaction may be hindered. Therefore, the oligomer and monomer used for forming the resin (A) are preferably bifunctional or higher. Moreover, it is preferable that the oligomer and monomer used for formation of resin (A) are 6 functional or less.
  • the ratio of the oligomer to the monomer used is 20:80 to 95: 5 in terms of mass ratio from the viewpoint of facilitating the adjustment of Tg. And more preferably 65:35 to 90:10. That is, in the resin (A) formed using the oligomer and the monomer, the ratio of the unit derived from the oligomer and the unit derived from the monomer is preferably 20:80 to 95: 5 by mass ratio, More preferably, the ratio is 65:35 to 90:10.
  • the separator of the present invention can be formed of only the resin (A), but may contain inorganic particles (B) together with the resin (A). By containing the inorganic particles (B), the strength and dimensional stability (particularly dimensional stability against heat) of the separator can be further increased.
  • the inorganic particles (B) include inorganic oxide particles such as iron oxide, silica (SiO 2 ), alumina (Al 2 O 3 ), MgO (magnesium oxide), TiO 2 (titania), BaTiO 3 ; water Inorganic hydroxide particles such as aluminum oxide and magnesium hydroxide; Inorganic nitride particles such as aluminum nitride and silicon nitride; Slightly soluble ionic crystal particles such as calcium fluoride, barium fluoride and barium sulfate; Covalent crystal particles; clay fine particles such as montmorillonite;
  • the inorganic oxide particles may be fine materials such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or other mineral resource-derived substances or artificial products thereof.
  • a conductive material exemplified by a metal a conductive oxide such as SnO 2 , tin-indium oxide (ITO), a carbonaceous material such as carbon black, graphite, or the like is used as a material having electrical insulation (
  • covering with the said inorganic oxide etc. may be sufficient.
  • the inorganic particles those exemplified above may be used alone or in combination of two or more.
  • inorganic oxide particles and inorganic hydroxide particles are preferable, inorganic oxide particles are more preferable, and alumina, titania, silica, and boehmite are further preferable.
  • the average particle size of the inorganic particles (B) is preferably 0.001 ⁇ m or more, more preferably 0.1 ⁇ m or more, and preferably 15 ⁇ m or less, and 1 ⁇ m or less. It is more preferable.
  • the average particle size of the inorganic particles (B) was measured by, for example, using a laser scattering particle size distribution meter (for example, “LA-920” manufactured by HORIBA) and dispersing the inorganic particles (B) in an undissolved medium. It can be defined as the number average particle diameter [[the average particle diameter of the inorganic particles (B) in Examples described later is a value measured by this method].
  • the inorganic particles (B) may have a shape close to a sphere, or may have a plate shape or a fiber shape. Is preferably a plate-like particle or a particle having a secondary particle structure in which primary particles are aggregated. In particular, from the viewpoint of improving the porosity of the separator, particles having a secondary particle structure in which primary particles are aggregated are more preferable.
  • the plate-like particles and secondary particles include plate-like alumina, plate-like boehmite, secondary particle-like alumina, and secondary particle-like boehmite.
  • the volume V A of resin (A), the the ratio V A / V B the volume V B of the inorganic particles (B), 0.6 or higher It is preferable that it is 3 or more.
  • V A / V B is at the above value, for example, a wound electrode group (especially a cross-section used for a prismatic battery or the like has a flat shape by the action of the flexible resin (A). Even when it is bent as in the case of the wound body electrode group), the occurrence of defects such as cracks can be suppressed more satisfactorily, and a separator with superior short circuit resistance can be obtained.
  • the V A / V B is preferably 9 or less, and more preferably 8 or less.
  • V A / V B is in the above-described value, the effect of improving the strength and dimensional stability of the separator by containing the inorganic particles (B) can be exhibited better.
  • the separator is the main component.
  • the total volume (V A + V B ) of the resin (A) and the inorganic particles (B) is the total volume of the constituent components of the separator (the void portion is determined).
  • the volume excluded is the same for the volume ratio of the constituent components of the separator), and is preferably 50% by volume or more, more preferably 70% by volume or more (may be 100% by volume).
  • the separator of the present invention when a porous substrate made of a fibrous material (C) described later is used for the separator of the present invention, the total volume (V A + V B ) of the resin (A) and the inorganic particles (B) is The separator is preferably 20% by volume or more and more preferably 40% by volume or more in the total volume of the constituent components.
  • the V A / V B satisfies the above value
  • the V A + V B satisfies the above value. It is desirable to adjust the addition amount of the inorganic particles (B) so as to satisfy.
  • the ratio of the total amount of the oligomer and the monomer and the amount of the inorganic particles is 40:60 to 5:95 by volume. Is preferred.
  • the separator of the present invention may contain a fibrous material (C).
  • the strength and dimensional stability of the separator can be further increased by including the fibrous material (C).
  • the fibrous material (C) has a heat-resistant temperature (a temperature at which no deformation is observed during visual observation) of 150 ° C. or more, has an electrical insulating property, is electrochemically stable, and is non-aqueous.
  • the material is not particularly limited as long as it is stable to the non-aqueous electrolyte of the electrolyte secondary battery and the solvent used in the production of the separator.
  • the “fibrous material” in the present invention means an aspect ratio [length in the long direction / width in the direction perpendicular to the long direction (diameter)] of 4 or more, and the aspect ratio Is preferably 10 or more.
  • constituent materials of the fibrous material (C) include, for example, cellulose and its modified products (carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), etc.), polyolefin (polypropylene (PP), and a copolymer of propylene. Etc.), polyester (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), etc.), polyacrylonitrile (PAN), polyaramid, polyamideimide, polyimide and other resins, glass, alumina, zirconia, silica Inorganic oxides such as these can be used, and these constituent materials may contain two or more kinds. Further, the fibrous material (C) may contain various known additives (for example, an antioxidant in the case of a resin) as necessary.
  • CMC carboxymethyl cellulose
  • HPC hydroxypropyl cellulose
  • PP polypropylene
  • Etc. polyester
  • PET polyethylene terephthal
  • the diameter of the fibrous material (C) may be equal to or less than the thickness of the separator, but is preferably 0.01 to 5 ⁇ m, for example.
  • the diameter is too large, the entanglement between the fibrous materials is insufficient, and when the sheet substrate is formed to constitute the base of the separator, the strength may be reduced and handling may be difficult.
  • the diameter is too small, the pores of the separator become too small and the effect of improving lithium ion permeability may be reduced.
  • the state of the fibrous material (C) in the separator is, for example, that the angle of the long axis (long axis) with respect to the separator surface is preferably 30 ° or less on average, and 20 ° or less. Is more preferable.
  • the content of the fibrous material (C) in the separator is, for example, preferably 10% by volume or more, and more preferably 20% by volume or more, among all the constituent components.
  • the content of the fibrous material (C) in the separator is preferably 70% by volume or less, and preferably 60% by volume or less, but when used as a porous substrate described later, 90% by volume. % Or less, more preferably 80% by volume or less.
  • the fibrous material (C) is used so that the content of the fibrous material (C) satisfies the above value in the separator after production. It is desirable to adjust the amount of the composition for forming a separator applied to the surface of the porous substrate made of the fibrous material (C).
  • the separator of the present invention preferably has a shutdown function from the viewpoint of further improving the safety of the nonaqueous electrolyte secondary battery to be used.
  • a thermoplastic resin having a melting point of 80 ° C. or higher and 140 ° C. or lower [hereinafter referred to as “thermomeltable resin (D)]” is contained, or liquid non-liquidity is formed by heating.
  • Resin that absorbs a water electrolyte non-aqueous electrolyte; hereinafter may be abbreviated as “electrolyte”
  • electrolyte non-aqueous electrolyte
  • thermoally swellable resin (E) thermoally swellable resin
  • the hot-melt resin (D) melts to close the pores of the separator, or the heat-swellable resin ( E) absorbs the non-aqueous electrolyte (liquid non-aqueous electrolyte) in the non-aqueous electrolyte secondary battery and causes a shutdown that suppresses the progress of the electrochemical reaction.
  • a heat-meltable resin (D) or a heat-swellable resin (E) is added to the separator-forming composition. May be contained.
  • the heat-meltable resin (D) is a resin having a melting point, that is, a melting temperature measured using DSC of 80 ° C. or higher and 140 ° C. or lower according to JIS K 7121. It is stable against non-aqueous electrolytes in non-aqueous electrolyte secondary batteries and solvents used in the manufacture of separators, and is not easily oxidized or reduced in the operating voltage range of non-aqueous electrolyte secondary batteries. Stable materials are preferred. Specific examples include polyethylene (PE), polypropylene (PP), copolymerized polyolefin, polyolefin derivatives (such as chlorinated polyethylene), polyolefin wax, petroleum wax, and carnauba wax.
  • copolymer polyolefin examples include ethylene-vinyl monomer copolymers, more specifically, ethylene-acrylic copolymers such as ethylene-propylene copolymers, EVA, ethylene-methyl acrylate copolymers, and ethylene-ethyl acrylate copolymers.
  • An acid copolymer can be illustrated.
  • the structural unit derived from ethylene in the copolymerized polyolefin is desirably 85 mol% or more.
  • polycycloolefin etc. can also be used.
  • the heat-meltable resin (D) the above-exemplified resins may be used alone or in combination of two or more.
  • the heat-meltable resin (D) among the materials exemplified above, PE, polyolefin wax, PP, or EVA having a structural unit derived from ethylene of 85 mol% or more is suitably used. Moreover, the heat-meltable resin (D) may contain various known additives (for example, antioxidants) added to the resin as necessary.
  • the heat-swellable resin (E) in the temperature range (approximately 70 ° C. or lower) where the battery is normally used, the electrolyte solution is not absorbed or the amount of absorption is limited. However, when heated to the required temperature (Tc), a resin is used that absorbs the electrolyte and swells greatly, and the degree of swelling increases with increasing temperature. In a non-aqueous electrolyte secondary battery using a separator containing a heat-swellable resin (E), a flowable electrolyte that is not absorbed by the heat-swellable resin (E) is present in the pores of the separator at a temperature lower than Tc.
  • thermo swelling the degree of swelling increases with increasing temperature (hereinafter referred to as “thermal swelling”).
  • the heat-swellable resin (E) When the heat-swellable resin (E) is heated above the temperature at which it appears), the heat-swellable resin (E) absorbs the electrolyte solution in the device and swells greatly, and the swollen heat-swellable resin (E)
  • the non-aqueous electrolyte secondary battery suppresses the reactivity between the electrolytic solution and the active material by closing the pores of the separator and reducing the flowable electrolyte solution and causing the non-aqueous electrolyte secondary battery to be in a liquid withdrawn state. The safety of this is further increased.
  • the temperature when the temperature is higher than Tc, the liquid withering further proceeds due to thermal swellability, and the reaction of the battery is further suppressed, so that safety at high temperatures can be further enhanced.
  • the temperature at which the heat-swellable resin (E) starts to show heat-swellability is preferably 75 ° C. or higher.
  • the temperature (Tc) at which the internal resistance of the device increases due to a significant decrease in Li ion conductivity is about 80 ° C. This is because it can be set as described above.
  • the temperature at which the heat swellable resin (E) starts to exhibit the heat swellability is set to set Tc to about 130 ° C. or less. 125 ° C.
  • the temperature exhibiting thermal swellability is too high, the thermal runaway reaction of the active material in the element cannot be sufficiently suppressed, and the safety improvement effect of the nonaqueous electrolyte secondary battery may not be sufficiently secured, If the temperature exhibiting swellability is too low, the conductivity of lithium ions in the operating temperature range (approximately 70 ° C. or lower) of a normal nonaqueous electrolyte secondary battery may be too low.
  • the heat swellable resin (E) does not absorb the electrolyte solution as much as possible and has less swelling. This is because, in the operating temperature range of the non-aqueous electrolyte secondary battery, for example, room temperature, the electrolytic solution should be held in a state where it can flow into the pores of the separator rather than being taken into the heat-swellable resin (E). This is because characteristics such as load characteristics of the nonaqueous electrolyte secondary battery are improved.
  • the form of the heat-meltable resin (D) or the heat-swellable resin (E) is particularly Although not limited, it is preferable to use particles having a fine particle shape.
  • the size of the particles should be smaller than the thickness of the separator when dried, and the average particle size is 1/100 to 1/3 of the thickness of the separator. Specifically, it is preferable that the average particle size is 0.1 to 20 ⁇ m.
  • the average particle diameter of the shutdown resin particles is determined by, for example, using a laser scattering particle size distribution analyzer (for example, “LA-920” manufactured by HORIBA) and dispersing the fine particles in a medium that does not swell the shutdown resin (for example, water). It can prescribe
  • the shutdown resin may be in a form other than the above, and may be present in a state of being laminated and integrated on the surface of another component, for example, inorganic particles or a fibrous material. Specifically, it may exist as core-shell structured particles having inorganic particles as a core and a shutdown resin as a shell, or may be a multi-layered fiber having a shutdown resin on the surface of a core material.
  • the content of the shutdown resin in the separator is preferably as follows, for example, in order to make it easier to obtain the shutdown effect.
  • the volume of the shutdown resin in the total volume of the constituent components of the separator is preferably 10% by volume or more, and more preferably 20% by volume or more.
  • the volume of the shutdown resin in the total volume of the constituent components of the separator is preferably 50% by volume or less, and more preferably 40% by volume or less. .
  • the separator of the present invention is composed of a single porous layer containing a resin (A) and, if necessary, inorganic particles (B), a fibrous material (C), a shutdown resin, etc., and this exists as an independent film.
  • the porous layer may be integrated with electrodes (positive electrode and negative electrode) and a porous substrate (described later in detail) of a non-aqueous electrolyte secondary battery.
  • the separator of the present invention includes, for example, a step (1) of applying a separator-forming composition containing at least an oligomer and a solvent to a base material, and a coating film of the separator-forming composition applied to the base material.
  • the composition for forming a separator includes an oligomer, a monomer, a polymerization initiator, and further, if necessary, inorganic particles (B), fibrous materials (C), shutdown resin particles, and the like contained in the separator.
  • a composition (slurry or the like) dispersed in a solvent is used.
  • a phase of a solvent (a) having better compatibility with an oligomer or a monomer and a resin (A) formed in the step (2) than the solvent It is preferable to use in combination with a solvent (b) having poor solubility.
  • the solvent (a) can dissolve the oligomers and monomers well, the uniformity of the coating film formed by applying the separator-forming composition to the substrate is improved, and the uniformity of the separator is also improved.
  • the solvent (b) is dispersed as fine droplets in the coating film after the formation of the resin (A).
  • the separator produced by the method of the present invention using two or more kinds of solvents having different polarities has a large number of pores having the above-mentioned shape and average pore diameter, and has the above air permeability.
  • the lithium ion permeability is excellent, and the non-aqueous electrolyte secondary battery is also excellent in short circuit resistance during charging.
  • the solubility parameter (hereinafter referred to as “SP value”) of the solvent (a) is preferably ⁇ 1.5 or less of the SP value of the oligomer for forming the resin (A), and ⁇ 1 More preferably, it is 0.0 or less.
  • the SP value of the solvent (a) is more preferably ⁇ 1.5 or less of the monomer SP value, and ⁇ 1.0 or less. It is particularly preferred.
  • the SP value of the solvent (b) is equal to the SP value of the oligomer. It is preferably ⁇ 1.55 or more, and more preferably ⁇ 2.0 or more. Moreover, when using a monomer together for formation of resin (A), it is more preferable that SP value of a solvent (b) is more than +/- 1.55 of SP value of a monomer, and more than +/- 2.0. It is particularly preferred.
  • the SP value of the solvent (b) is preferably ⁇ 15 or less, more preferably ⁇ 10.0 or less of the SP value of the oligomer used for the formation of the resin (A).
  • the SP value of the monomer is more preferably ⁇ 15 or less, and particularly preferably ⁇ 10.0 or less.
  • the solvent (a) include, for example, toluene (SP value: 8.9), butyraldehyde (SP value: 9.0), ethyl acetate (SP value: 9.0), ethyl acetate (SP value: 9.1), tetrahydrofuran (SP value: 9.1), benzene (SP value: 9.2), methyl ethyl ketone (SP value: 9.3), benzaldehyde (SP value: 9.4), chlorobenzene (SP value: 9.5), ethylene glycol monobutyl ether (SP value: 9.5), 2-ethylhexanol (SP value: 9.5), methyl acetate (SP value: 9.6), dichloroethyl ether (SP value: 9) .8), 1,2-dichloroethane (SP value: 9.8), acetone (SP value: 9.8), cyclohexanone (SP value: 9.9), and the like.
  • SP value: 8.9 tolu
  • the solvent (b) has an SP value of 7 or more and 8 or less (hereinafter referred to as solvent (b-1)), or an SP value of 10 or more and 15 or less [hereinafter referred to as solvent (b- 2)] is preferably used.
  • the solvent (b-1) include, for example, 1-nitrooctane (SP value: 7.0), pentane (SP value: 7.0), diethyl ether (SP value: 7.4), octane ( SP value: 7.6), isoamyl acetate (SP value: 7.8), diisobutyl ketone (SP value: 7.8), methyl decanoate (SP value: 8.0), diethylamine (SP value: 8.0) ) And the like.
  • 1-nitrooctane SP value: 7.0
  • pentane SP value: 7.0
  • diethyl ether SP value: 7.4
  • octane SP value: 7.6
  • isoamyl acetate SP value: 7.8
  • diisobutyl ketone SP value: 7.8
  • methyl decanoate SP value: 8.0
  • diethylamine SP value: 8.0
  • the ratio V sa / the volume V sa of the solvent (a) to the volume V sb of the solvent (b-1) V sb is preferably 0.05 to 0.7.
  • the solvent (b-2) include, for example, acetic acid (SP value: 10.1), m-cresol (SP value: 10.2), aniline (SP value: 10.3), i-octanol ( SP value: 10.3), cyclopentanone (SP value: 10.4), ethylene glycol monoethyl ether (SP value: 10.5), t-butyl alcohol (SP value: 10.6), pyridine (SP Value: 10.7), propylonitrile (SP value: 10.8), N, N-dimethylacetamide (SP value: 10.8), 1-pentanol (SP value: 10.9), nitroethane (SP Value: 11.1), furfural (SP value: 11.2), 1-butanol (SP value: 11.4), cyclohexanol (SP value: 11.4), isopropanol (SP value: 11.5), Acetonitrile (S Value: 11.9), N, N-dimethylformamide (SP value: 11.9), benzyl alcohol (SP value:
  • a solvent (a) having a volume V sa and solvent (b-2) having a volume V sc and the ratio V sc / V sa is preferably 0.04 to 0.2.
  • the solvent (a) and the solvent (b) are used in combination as the solvent for the separator-forming composition, it is preferable to select a solvent (b) having a boiling point higher than that of the solvent (a).
  • the pores formed in the separator are finer and more uniform.
  • the separator-forming composition usually contains an energy ray-sensitive polymerization initiator.
  • the polymerization initiator include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, and the like. Can be mentioned.
  • the amount of the polymerization initiator used is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of oligomer and monomer (in the case of using only oligomer).
  • the solid content including oligomers, monomers, polymerization initiators, and inorganic particles (B) used as necessary is preferably 10 to 50% by mass, for example.
  • an electrode for a non-aqueous electrolyte secondary battery positive electrode or negative electrode
  • a porous substrate a substrate such as a film or metal foil, and the like
  • a substrate such as a film or metal foil, and the like
  • a separator integrated with the electrode can be manufactured.
  • a porous substrate is used as the base material
  • a multilayer separator having a layer formed from the separator-forming composition and the porous substrate can be produced.
  • the formed separator can be peeled from the substrate to produce an independent membrane separator.
  • porous substrate used for the base material examples include a woven fabric composed of at least one fibrous material containing the above-mentioned exemplified materials as constituent components, and a nonwoven fabric having a structure in which these fibrous materials are entangled with each other. And a porous sheet. More specifically, non-woven fabrics such as paper, PP non-woven fabric, polyester non-woven fabric (PET non-woven fabric, PEN non-woven fabric, PBT non-woven fabric, etc.) and PAN non-woven fabric can be exemplified.
  • non-woven fabrics such as paper, PP non-woven fabric, polyester non-woven fabric (PET non-woven fabric, PEN non-woven fabric, PBT non-woven fabric, etc.) and PAN non-woven fabric can be exemplified.
  • a microporous membrane for example, a microporous membrane made of polyolefin such as PE or PP
  • the shutdown function can be imparted to the separator also by using such a porous substrate.
  • a porous substrate generally has low heat resistance, and may cause a short circuit due to contact between the positive electrode and the negative electrode, for example, by shrinking due to an increase in temperature in the nonaqueous electrolyte secondary battery.
  • a layer containing the resin (A) having excellent heat resistance is formed on the surface of such a porous substrate. Since the shrinkage can be suppressed, the separator can constitute a non-aqueous electrolyte secondary battery excellent in safety.
  • the separator-forming composition When applying the separator-forming composition to the substrate, various known application methods can be employed. Moreover, when using the electrode for nonaqueous electrolyte secondary batteries, or a porous base material for a base material, you may impregnate the base material in the composition for separator formation.
  • step (2) of the method of the present invention the resin (A) is formed by irradiating the coating film of the composition for forming a separator applied to the substrate with energy rays.
  • Examples of the energy rays applied to the coating film of the separator-forming composition include visible light, ultraviolet light, radiation, and electron beam. However, since safety is higher, it is more preferable to use visible light or ultraviolet light. preferable.
  • the wavelength of the energy beam can be 320 to 390 nm
  • the irradiation intensity can be 623 to 1081 mJ / cm 2 .
  • the energy beam irradiation conditions are not limited to the above-described conditions.
  • step (3) of the method of the present invention the coating film of the separator-forming composition after irradiation with energy rays is dried to remove the solvent and form pores.
  • the drying conditions may be appropriately selected according to the type of the solvent used in the separator-forming composition so that it can be removed satisfactorily. Specific examples include, for example, a drying temperature of 20 to 80 ° C. and a drying time of 30 minutes to 24 hours.
  • the drying method includes a thermostatic bath, a dryer, a hot plate ( A method using a method in which a separator is directly formed on the electrode surface can be employed.
  • the drying conditions in the step (3) are not limited to the above conditions.
  • the separator formed through the step (3) is peeled off from the base material and used for manufacturing a non-aqueous electrolyte secondary battery.
  • the formed separator (or layer) may be used for the production of a nonaqueous electrolyte secondary battery without peeling off from the base material.
  • a layer containing the shutdown resin (a layer formed only with the shutdown resin, a layer containing the shutdown resin and the binder, or the like) is formed on one side or both sides of the manufactured separator, so that the shutdown resin is formed on the separator. May be provided.
  • the separator of the present invention In manufacturing the separator of the present invention, methods other than the method of the present invention can be employed. For example, using the above-mentioned composition for forming a separator to which a material that can be dissolved in a specific solvent (a solvent other than the solvent used for the composition for forming a separator) is added, the above-mentioned step (1) and step The separator of the present invention can also be produced by a method of carrying out (2), further drying as necessary, and then extracting the material using the specific solvent to form holes.
  • a specific solvent a solvent other than the solvent used for the composition for forming a separator
  • a material that can be dissolved in the specific solvent for example, a polyolefin resin, a polyurethane resin, an acrylic resin, or the like can be used. These materials are preferably used in the form of particles, for example, but the size and amount of use can be adjusted according to the porosity and pore size required for the separator.
  • the average particle diameter of the material [average particle diameter measured by the same method as the average particle diameter of the inorganic particles (B)] is preferably 0.1 to 20 ⁇ m, and the amount used is the separator formation
  • the total solid content in the composition is preferably 1 to 10% by mass.
  • the separator of the present invention has a porosity of 10% or more in order to ensure a sufficient amount of electrolyte solution and improve lithium ion permeability in a dry state.
  • the separator porosity is preferably 70% or less in a dry state.
  • the porosity of the separator in a dry state: P (%) is obtained by calculating the sum of each component i from the thickness of the separator, the mass per area, and the density of the constituent components using the following formula (1). Can be calculated.
  • a i ratio of component i when the total mass is 1
  • ⁇ i density of component i (g / cm 3 )
  • m mass per unit area of the separator (g / cm 2 )
  • t thickness of separator (cm).
  • the strength of the separator of the present invention is desirably 50 g or more in terms of piercing strength using a needle having a diameter of 1 mm. If the piercing strength is too low, a short circuit may occur due to the breakthrough of the separator when lithium dendrite is generated.
  • adopting the said structure it can be set as the separator which has the said piercing strength.
  • the thickness of the separator of the present invention is preferably 6 ⁇ m or more and more preferably 10 ⁇ m or more from the viewpoint of more reliably separating the positive electrode and the negative electrode. On the other hand, if the separator is too thick, the energy density of the battery may be reduced. Therefore, the thickness is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the non-aqueous electrolyte secondary battery of the present invention has a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the separator only needs to be the separator of the present invention.
  • non-aqueous electrolyte secondary battery examples include a cylindrical shape (such as a square cylindrical shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
  • the positive electrode is not particularly limited as long as it is a positive electrode used in conventionally known nonaqueous electrolyte secondary batteries, that is, a positive electrode containing an active material capable of occluding and releasing Li ions.
  • an active material a lithium-containing transition metal oxide having a layered structure represented by Li 1 + x MO 2 ( ⁇ 0.1 ⁇ x ⁇ 0.1, M: Co, Ni, Mn, Al, Mg, etc.), LiMn
  • spinel lithium manganese oxide in which 2 O 4 or a part of the element is substituted with another element, or an olivine type compound represented by LiMPO 4 (M: Co, Ni, Mn, Fe, etc.) It is.
  • lithium-containing transition metal oxide having a layered structure examples include LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ⁇ x ⁇ 0.3, 0.01 ⁇ y ⁇ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiMn 3 / 5 Ni 1/5 Co 1/5 O 2 etc.).
  • a carbon material such as carbon black is used as the conductive auxiliary agent, and a fluorine resin such as PVDF is used as the binder.
  • the positive electrode active material-containing layer is formed by a positive electrode mixture in which these materials and an active material are mixed. For example, it is formed on a current collector.
  • a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used.
  • an aluminum foil having a thickness of 10 to 30 ⁇ m is preferably used.
  • the lead portion on the positive electrode side is usually provided by leaving the exposed portion of the current collector without forming the positive electrode active material-containing layer on a part of the current collector and forming the lead portion at the time of producing the positive electrode.
  • the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.
  • the negative electrode is not particularly limited as long as it is a negative electrode used in a conventionally known non-aqueous electrolyte secondary battery, that is, a negative electrode containing an active material capable of occluding and releasing Li ions.
  • an active material capable of occluding and releasing Li ions.
  • carbon that can occlude and release lithium such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers as active materials
  • MCMB mesocarbon microbeads
  • a compound that can be charged and discharged at a low voltage close to lithium metal such as Si, S compound, or lithium metal or lithium / aluminum alloy can also be used as the negative electrode active material.
  • a negative electrode mixture obtained by appropriately adding a conductive additive (carbon material such as carbon black) or a binder such as PVDF to these negative electrode active materials is formed into a molded body (negative electrode active material-containing layer) using a current collector as a core material.
  • a finished product, or one obtained by laminating the above-mentioned various alloys or lithium metal foils alone or on a current collector is used.
  • the current collector When a current collector is used for the negative electrode, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used as the current collector, but a copper foil is usually used.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit is preferably 5 ⁇ m.
  • the lead portion on the negative electrode side may be formed in the same manner as the lead portion on the positive electrode side.
  • the electrode can be used in the form of a stacked electrode group in which the positive electrode and the negative electrode are stacked via the separator of the present invention, or a wound electrode group in which the electrode is wound.
  • the separator of this invention is excellent also in the short circuit resistance at the time of bending by the effect
  • non-aqueous electrolyte a solution (non-aqueous electrolyte) in which a lithium salt is dissolved in an organic solvent is used.
  • the lithium salt is not particularly limited as long as it dissociates in a solvent to form Li + ions and hardly causes side reactions such as decomposition in a voltage range used as a battery.
  • LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 and other inorganic lithium salts LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] and the like can be used. .
  • the organic solvent used for the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate
  • chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate
  • chain esters such as methyl propionate
  • cyclic esters such as ⁇ -butyrolactone
  • Chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme
  • cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran
  • nitriles such as acetonitrile, propionitrile and methoxypropionitrile Sulf
  • the concentration of this lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, more preferably 0.9 to 1.3 mol / L.
  • the non-aqueous electrolyte may be used as a gel (gel electrolyte) by adding a known gelling agent such as a polymer.
  • Example 1 ⁇ Preparation of separator forming slurry> Urethane acrylate as an oligomer ("EBECRYL284" manufactured by Daicel Cytex): 80 parts by mass, tripropylene glycol diacrylate as a monomer: 20 parts by mass, bis (2,4,6-trimethylbenzoyl) as a photopolymerization initiator -Phenylphosphine oxide: 2 parts by mass, boehmite as an inorganic particle (B) (average particle size: 1 ⁇ m): 300 parts by mass, and a volume ratio of methyl ethyl ketone as a solvent (a) to ethylene glycol as a solvent (c) 9 : 1 mixed solvent: Add 600 parts by weight of zirconia beads 5mm (both on a mass basis) of ⁇ 1mm to boehmite, stir uniformly for 15 hours using a ball mill, and filter to prepare a slurry for separator formation did.
  • EBECRYL284" manufactured by Da
  • a negative electrode active material-containing paste was prepared by mixing 95 parts by mass of graphite, which is a negative electrode active material, and 5 parts by mass of PVDF, using N-methyl-2-pyrrolidone (NMP) as a solvent in a uniform manner.
  • NMP N-methyl-2-pyrrolidone
  • This paste is intermittently applied to both sides of a 10 ⁇ m thick collector made of copper foil so that the coating length is 290 mm on the front and 230 mm on the back, dried, and then calendered to a total thickness of 142 ⁇ m.
  • the thickness of the negative electrode active material-containing layer was adjusted and cut to a width of 45 mm to produce a negative electrode. Then, tab attachment was performed to the exposed part of the copper foil in a negative electrode.
  • the separator-forming slurry is applied to both sides of the negative electrode, and ultraviolet rays having a wavelength of 365 nm are irradiated for 10 seconds at an illuminance of 1000 mW / cm 2 , and then dried at 60 ° C. for 1 hour to form a separator having a thickness of 20 ⁇ m on both sides of the negative electrode. Formed.
  • the ratio V A / V B the volume V B of the volume V A and the inorganic particles of the resin (A) in the separator (B) was 0.8.
  • LiCoO 2 as a positive electrode active material 90 parts by mass, acetylene black as a conductive additive: 7 parts by mass, and PVDF as a binder: 3 parts by mass are mixed so as to be uniform using NMP as a solvent, and a positive electrode mixture A paste containing was prepared.
  • This paste is intermittently applied on both sides of an aluminum foil having a thickness of 15 ⁇ m as a current collector so that the coating length is 280 mm on the front surface and 210 mm on the back surface, dried, and then calendered so that the total thickness becomes 150 ⁇ m.
  • the thickness of the positive electrode active material-containing layer was adjusted and cut to a width of 43 mm to produce a positive electrode. Then, tab attachment was performed to the exposed part of the aluminum foil in a positive electrode.
  • ⁇ Battery assembly> The integrated product of the separator and the negative electrode and the positive electrode were overlapped and wound in a spiral shape to produce a wound electrode group.
  • the obtained wound body electrode group is crushed into a flat shape, put into an aluminum outer can having a thickness of 4 mm, a height of 50 mm, and a width of 34 mm, and an electrolytic solution (ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 2).
  • Injecting LiPF 6 into the prepared solvent at a concentration of 1.2 mol / L) was sealed, and a rectangular non-aqueous electrolyte secondary battery having the structure shown in FIG. 1 and the appearance shown in FIG. 2 was produced. .
  • FIG. 1A is a plan view of a nonaqueous electrolyte secondary battery
  • FIG. 1B is a partial longitudinal sectional view thereof.
  • a positive electrode 1 and the negative electrode 2 are accommodated in a rectangular outer can 4 together with a non-aqueous electrolyte as a wound electrode group 6 wound in a spiral shape with the separator 3 interposed therebetween.
  • a metal foil, an electrolytic solution, and the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 are not illustrated.
  • the outer can 4 is made of an aluminum alloy and constitutes the outer casing of the battery.
  • the outer can 4 also serves as a positive electrode terminal.
  • the insulator 5 which consists of a polyethylene sheet is arrange
  • a stainless steel terminal 11 is attached to an aluminum alloy cover plate 9 that seals the opening of the outer can 4 via a polypropylene insulating packing 10, and an insulator 12 is connected to the terminal 11.
  • a stainless steel lead plate (electrode terminal current collecting mechanism) 13 is attached.
  • the cover plate 9 is inserted into the opening of the outer can 4 and welded to join the opening of the outer can 4 so that the inside of the battery is sealed.
  • the lid plate 9 is provided with a liquid injection hole (14 in the figure). When the battery is assembled, the electrolyte is injected into the battery from the liquid injection hole, and then the liquid injection hole is sealed. Stopped.
  • the cover plate 9 is provided with an explosion-proof safety valve 15.
  • the outer can 4 and the lid plate 9 function as positive terminals by directly welding the positive electrode current collector plate 7 to the lid plate 9, and the negative electrode current collector plate 8 is welded to the lead plate 13.
  • the terminal 11 functions as a negative electrode terminal by connecting the negative electrode current collector plate 8 and the terminal 11 through the lead plate 13.
  • the sign may be reversed. Sometimes it becomes.
  • FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1.
  • FIG. 2 is shown for the purpose of showing that the battery is a square battery.
  • FIG. 1 schematically shows a battery, and only specific ones of the constituent members of the battery are shown. Also in FIG. 1, the inner peripheral portion of the electrode group is not cross-sectional.
  • Example 2 Except that the urethane acrylate oligomer is changed to “EBECRYL8402” manufactured by Daicel Cytex, the monomer is changed to 1,6-hexanediol diacrylate, and the boehmite is changed to an average particle size of 0.7 ⁇ m.
  • a separator-forming slurry was prepared in the same manner as in Example 1, and an integrated product of the separator and the negative electrode was produced in the same manner as in Example 1 except that this separator-forming slurry was used.
  • the ratio V A / V B the volume V B of the volume V A and the inorganic particles of the resin (A) in the separator (B) was 0.8.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the integrated product of the separator and the negative electrode was used.
  • Example 3 A slurry for forming a separator was prepared in the same manner as in Example 1 except that the oligomer urethane acrylate was changed to “EBECRYL8402” manufactured by Daicel Cytex and the monomer was changed to polyethylene glycol diacrylate. An integrated product of the separator and the negative electrode was produced in the same manner as in Example 1 except that was used. The ratio V A / V B the volume V B of the volume V A and the inorganic particles of the resin (A) in the separator (B) was 0.8.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the integrated product of the separator and the negative electrode was used.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the integrated product of the separator and the negative electrode was used.
  • Comparative Example 2 A separator forming slurry was prepared in the same manner as in Example 2 except that no oligomer was used and the monomer was changed to dipentaerythritol pentaacrylate: 100 parts by mass. In the same manner as in Example 1, an integrated product of the separator and the negative electrode was produced. The ratio V A / V B the volume V B of the volume V A and the inorganic particles in the crosslinked resin separator (B) was 0.8.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the integrated product of the separator and the negative electrode was used.
  • Comparative Example 3 A separator forming slurry was prepared in the same manner as in Example 2 except that no oligomer was used and the monomer was changed to 100 parts by mass of polyethylene glycol diacrylate. In the same manner as in Example 1, an integrated product of a separator and a negative electrode was produced. The ratio V A / V B the volume V B of the volume V A and the inorganic particles in the crosslinked resin separator (B), it was 0.8.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the integrated product of the separator and the negative electrode was used.
  • Comparative Example 4 A separator-forming slurry was prepared in the same manner as in Example 2 except that the solvent for the separator-forming composition was changed to 600 parts by mass of methyl ethyl ketone, and Example 1 except that this separator-forming slurry was used. Similarly, an integrated product of the separator and the negative electrode was produced. The ratio V A / V B the volume V B of the volume V A and the inorganic particles in the crosslinked resin separator (B), it was 0.8.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the integrated product of the separator and the negative electrode was used.
  • Comparative Example 5 A separator forming slurry was prepared in the same manner as in Example 2 except that the solvent for the separator forming composition was changed to 600 parts by mass of ethylene glycol. However, since the oligomer was not dissolved in the solvent, the separator was formed. Slurry could not be prepared.
  • Comparative Example 6 Using a commercially available polyolefin microporous membrane (thickness 20 ⁇ m) as a separator, the same positive electrode as that produced in Example 1 and the same negative electrode as that produced in Example 1 (negative electrode not forming a separator) The laminated body electrode group was produced by stacking the separators and winding them in a spiral shape. And the nonaqueous electrolyte secondary battery was produced like Example 1 except having used this winding body electrode group.
  • ⁇ Tg measurement of crosslinked resin> The composition for forming a separator prepared in Examples 1 to 3 and Comparative Examples 1 to 4 was applied on a polytetrafluoroethylene sheet, and irradiated with ultraviolet rays having a wavelength of 365 nm for 10 seconds at an illuminance of 1000 mW / cm 2. The film was dried at 0 ° C. for 1 hour to form a porous film containing a crosslinked resin such as a resin (A) having a thickness of 20 ⁇ m. And using this porous membrane, Tg of the crosslinked resin which comprises a separator by the said method was measured.
  • a crosslinked resin such as a resin (A) having a thickness of 20 ⁇ m.
  • the separators according to Examples 1 to 3 and Comparative Examples 1 to 4 and 6 are represented by the number of seconds that 100 ml of air permeates through the membrane under a pressure of 0.879 g / mm 2 by the method according to JIS P 8117. A Gurley value was determined, and this value was defined as the air permeability of each separator.
  • the air permeability of the separators according to Examples 1 to 3 and Comparative Examples 1 to 4 was measured using each porous membrane prepared at the time of measuring Tg of the crosslinked resin.
  • the evaluation results for the separator are shown in Table 1, and the evaluation results for the nonaqueous electrolyte secondary battery are shown in Table 2. Moreover, the SEM photograph of the cross section of the separator which concerns on FIG. 3 at Example 1 is shown. Note that the separator according to Comparative Example 6 has a very large degree of shrinkage in the measurement of the heat shrinkage rate at 175 ° C., and the shrinkage rate could not be measured.
  • Examples 1 to 2 provided with separators obtained by polymerizing at least an oligomer by energy beam irradiation and having an appropriate average pore diameter, air permeability, and heat shrinkage at 175 ° C.
  • No. 3 non-aqueous electrolyte secondary battery was compared with the non-aqueous electrolyte secondary battery of Comparative Example 6 using a normal polyolefin microporous membrane separator, capacity retention rate and charge / discharge cycle characteristic evaluation during load characteristic evaluation Each of the capacity retention rates at the time is high, and has excellent load characteristics and charge / discharge cycle characteristics. As is clear from FIG.
  • the separator according to the nonaqueous electrolyte secondary battery of Example 1 has many three-dimensional pores having no anisotropy.
  • the separator related to the nonaqueous electrolyte secondary battery was also found to have the same shape as the separator related to the nonaqueous electrolyte secondary battery of Example 1.
  • the separator voltage was reduced by the 175 ° C. standing test, and the battery voltage was greatly reduced.
  • the non-aqueous electrolyte secondary battery No. 3 has a high voltage even after a 175 ° C. standing test, has a good reliability, has no significant change in the separator, and has an excellent safety.
  • the batteries of Comparative Examples 1 and 2 provided with a separator containing a crosslinked resin obtained by polymerizing only monomers with energy rays were used for the capacity retention rate during load characteristic evaluation and during charge / discharge cycle characteristic evaluation.
  • Each of the capacity retention ratios of the separators was low, and peeling from the negative electrode was also observed in the separator after the 175 ° C. standing test.
  • the separators according to the batteries of Comparative Examples 1 and 2 had an average pore diameter that was too large, and the SEM observation of the cross section showed low homogeneity of the pores, and peeling of the separator from the negative electrode was also observed. It is thought that the characteristics and charge / discharge cycle characteristics were impaired.
  • the battery of Comparative Example 3 is also provided with a separator containing a crosslinked resin obtained by polymerizing only the monomer with energy rays, but the air permeability is too high and the lithium ion permeability is low. Both the capacity maintenance ratio at the time of evaluation and the capacity maintenance ratio at the time of charge / discharge cycle characteristics evaluation are low.
  • the battery of Comparative Example 4 includes a separator formed using a separator-forming composition using only methyl ethyl ketone as a solvent. This is because the air permeability is too high and the lithium ion permeability is low, Both the capacity maintenance ratio at the time of load characteristic evaluation and the capacity maintenance ratio at the time of charge / discharge cycle characteristic evaluation are low.
  • the non-aqueous electrolyte secondary battery of the present invention can be used in the same applications as conventionally known non-aqueous electrolyte secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

【課題】 負荷特性および充放電サイクル特性に優れた非水電解質二次電池、該非水電解質二次電池を構成し得るセパレータおよびその製造方法を提供する。 【解決手段】 本発明の非水電解質二次電池用セパレータは、少なくとも、エネルギー線の照射により重合可能なオリゴマーに、エネルギー線を照射することで得られた架橋構造を有する樹脂(A)を含有し、平均細孔径が0.005~0.5μmであり、ガーレー値で表される透気度が50sec/100ml以上500sec/100ml未満であり、175℃における熱収縮率が2%未満であることを特徴とするものである。本発明の非水電解質二次電池用セパレータは、前記オリゴマーと、極性の異なる2種以上の溶媒などとを含むセパレータ形成用組成物を基材に塗布し、エネルギー線を照射した後に乾燥する工程を有する本発明の製造方法により製造できる。

Description

非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池
 本発明は、負荷特性および充放電サイクル特性に優れた非水電解質二次電池、該非水電解質二次電池を構成し得るセパレータおよびその製造方法に関するものである。
 リチウム二次電池などの非水電解質二次電池は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられており、携帯機器の高性能化に伴って、各種の電池特性や安全性の向上が重要な課題となっている。
 現行のリチウム二次電池では、正極と負極の間に介在させるセパレータとして、例えば厚みが20~30μm程度のポリオレフィン系の多孔性フィルムが使用されている。しかし、このようなポリオレフィン系の多孔性フィルムを製造する際には、微細且つ均一な孔を開けるために、二軸延伸または開孔剤の抽出などの複雑な工程が用いられ、コストが高く、セパレータが高価になっていることが現状である。
 また、セパレータの素材としては、電池の熱暴走温度以下でセパレータの構成樹脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて短絡の際などに電池の安全性を向上させる所謂シャットダウン効果を確保するため、融点が120~140℃程度のポリエチレンが用いられている。しかし、シャットダウン後電池の温度が更に上昇した場合など、溶融したポリエチレンが流れやすくなり、セパレータが破膜する所謂メルトダウンが生じることがある。そのような場合には、正負極が直接接触し、更に温度が上昇して、最悪の場合発火の危険性がある。
 このようなメルトダウンによる短絡を防ぐために、耐熱性の樹脂を用いて構成したセパレータを用いる方法が提案されている。例えば特許文献1には、架橋構造を含有し、セパレータとして機能する隔離材を表面に有する正極や負極を用いて構成した非水電解質二次電池が提案されている。特許文献1に記載の技術によれば、非水電解質二次電池の高温での安全性や信頼性を高めることができる。
特開2010-170770号公報
 ところで、前記のように安全性や信頼性(特に高温での安全性や信頼性)を高めた非水電解質二次電池においても、将来の適用機器の高性能化などに伴って、負荷特性や充放電サイクル特性の更なる向上が要求されることも予想され、特許文献1に記載の技術は、このような点において、未だ改善の余地を残している。
 本発明は、前記事情に鑑みてなされたものであり、その目的は、負荷特性および充放電サイクル特性に優れた非水電解質二次電池、該非水電解質二次電池を構成し得るセパレータおよびその製造方法を提供することにある。
 前記目的を達成し得た本発明の非水電解質二次電池用セパレータは、架橋構造を有する樹脂(A)を少なくとも含有しており、前記架橋構造を有する樹脂(A)は、少なくとも、エネルギー線の照射により重合可能なオリゴマーに、エネルギー線を照射することで得られたものであり、平均細孔径が0.01~0.5μmであり、ガーレー値で表される透気度が45sec/100ml以上590sec/100ml未満であり、175℃における熱収縮率が2%未満であることを特徴とするものである。
 本発明の非水電解質二次電池用セパレータは、エネルギー線の照射により重合可能なオリゴマーと、極性が異なる2種以上の溶媒とを少なくとも含有するセパレータ形成用組成物を、基材に塗布する工程と、前記基材に塗布した前記セパレータ形成用組成物の塗膜にエネルギー線を照射して、架橋構造を有する樹脂(A)を形成する工程と、エネルギー線照射後の前記セパレータ形成用組成物の塗膜を乾燥して、孔を形成する工程とを有することを特徴とする本発明の製造方法により製造することができる。
 また、本発明の非水電解質二次電池は、少なくとも、集電体の表面に正極合剤層が形成された正極と、集電体の表面に負極合剤層が形成された負極と、多孔性のセパレータとを構成要素とし、前記セパレータが、本発明の非水電解質二次電池用セパレータであることを特徴とするものである。
 本発明によれば、負荷特性および充放電サイクル特性に優れた非水電解質二次電池、該非水電解質二次電池を構成し得るセパレータおよびその製造方法を提供することができる。
本発明の非水電解質二次電池の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。 図1に示す非水電解質二次電池の斜視図である。 実施例1の非水電解質二次電池に係るセパレータの断面の走査型電子顕微鏡写真である。
 本発明の非水電解質二次電池用セパレータ(以下、単に「セパレータ」という場合がある)は、架橋構造を有する樹脂(A)を少なくとも含有するものである。
 本発明のセパレータに係る樹脂(A)は、その少なくとも一部に架橋構造を有する樹脂(架橋樹脂)である。そのため、本発明のセパレータを有する非水電解質二次電池(本発明の非水電解質二次電池)内が高温となっても、セパレータにおいて収縮や樹脂(A)の溶融による変形が生じ難く、その形状が良好に維持されることから、正極と負極との短絡の発生が抑制される。よって、本発明のセパレータを有する本発明の非水電解質二次電池は、高温下における安全性が良好となる。
 具体的には、樹脂(A)を含有する本発明のセパレータは、175℃における熱収縮率が2%未満と、熱変形が非常に抑えられている。
 また、非水電解質二次電池用のセパレータは、前記の通り、延伸工程を経て製造されたものが一般的であり、このようなセパレータの有する細孔は、セパレータの厚み方向にあまり奥行きがなく(すなわち平面的であり)、かつセパレータ面側から見たときに、特定の方向(セパレータの製造方向)の径が非常に長く、この方向に直交する方向の径が非常に短いといった異方性がある。
 これに対し、本発明のセパレータは、前記のような延伸工程を経ずに製造し得るもので3次元的で異方性がない細孔を複数有しており、平均細孔径が0.01μm以上0.5μm以下である。本発明のセパレータは、このように微細であり、かつ比較的均質な形状の細孔を多数有しており、セパレータの全体にわたって、安定したリチウムイオン透過性を確保できる。よって、本発明のセパレータを用いた非水電解質二次電池(すなわち、本発明の非水電解質二次電池)は、負荷特性などの電池特性が良好となる。
 本発明のセパレータに係る細孔の形状(3次元的で異方性がない形状)は、例えば、細孔の円形度によって表すことができる。具体的には、本発明のセパレータに係る細孔の円形度は、0.5以上であることが好ましく、また、0.8未満であることが好ましく、0.75以下であることがより好ましい。
 本発明のセパレータにおいて、前記の平均細孔径を有する細孔は、詳細を後述する本発明法によって樹脂(A)を含有するセパレータを製造することで、形成することができる。
 また、本発明のセパレータは、平均細孔径を前記の値とすることで、ガーレー値で表される透気度を、45sec/100ml以上590sec/100ml未満とすることができ、リチウムイオン透過性が良好である。よって、本発明のセパレータを用いた非水電解質二次電池(本発明の非水電解質二次電池)では、充放電を繰り返しても、リチウムデンドライトが形成し難く、それによる微短絡の発生による容量低下が生じ難いことから、高い充放電サイクル特性を備えたものとなる。
 本明細書でいうセパレータの175℃における熱収縮率、平均細孔径、円形度および透気度は、それぞれ後述する実施例に記載の方法により求められる値である。
 本発明のセパレータに係る樹脂(A)は、エネルギー線の照射により重合可能なオリゴマーにエネルギー線を照射して、前記オリゴマーを重合することにより得られるものである。オリゴマーの重合によって樹脂(A)を形成することで、柔軟性が高く、例えば電極や多孔質基体と一体化した場合に(詳しくは後述する)、剥離が生じ難いセパレータを構成することができ、また、樹脂(A)のTgを後記の値に調整することが容易となる。
 樹脂(A)は、ガラス転移温度(Tg)が、0℃より大きいことが好ましく、10℃以上であることがより好ましく、また、80℃未満であることが好ましく、60℃以下であることがより好ましい。このようなTgを有する樹脂(A)であれば、前記の平均細孔径を有し、好ましくは前記の形状(前記円形度で表されるように、3次元的で異方性がない形状)を有する細孔を、より容易に形成することができる。すなわち、樹脂(A)のTgが低すぎると細孔が埋まりやすくなるため セパレータの平均細孔径の細孔や形状を調整し難くなる虞がある。また、樹脂(A)のTgが高すぎると、セパレータの製造時に硬化収縮が生じる虞があるため、やはりセパレータの平均細孔径や細孔の形状を調整し難くなる虞がある。
 本明細書でいう樹脂(A)のTgは、後述する実施例に記載の方法により得られる樹脂(A)を含むシート(セパレータ)について、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される値である。
 樹脂(A)の形成には、エネルギー線の照射により重合可能なモノマーを、前記オリゴマーと共に使用することが好ましい。
 詳しくは後述するが、樹脂(A)を含むセパレータは、樹脂(A)を形成するためのオリゴマーなどと、溶剤などとを含むセパレータ形成用組成物を調製し、これを基材に塗布して塗膜とし、この塗膜にエネルギー線を照射して樹脂(A)を形成する工程を経て製造することが好ましい。ここで、セパレータ形成用組成物に、前記オリゴマーと共に前記モノマーを加えることで、セパレータ形成用組成物の粘度調整が容易となり、基材への塗布性を高めて、より良好な性状のセパレータを得ることが可能となる。また、前記モノマーの使用によって、樹脂(A)の架橋密度の制御が容易になるため、樹脂(A)のTgの調整もより容易となる。
 樹脂(A)の具体例としては、例えば、アクリル樹脂モノマー[メチルメタクリレート、メチルアクリレートなどのアルキル(メタ)アクリレートおよびその誘導体]およびこれらのオリゴマーと、架橋剤とから形成されるアクリル樹脂;ウレタンアクリレートと架橋剤とから形成される架橋樹脂;エポキシアクリレートと架橋剤とから形成される架橋樹脂;ポリエステルアクリレートと架橋剤とから形成される架橋樹脂;などが挙げられる。前記のいずれの樹脂においても、架橋剤としては、トリプロピレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ジオキサングリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、ジメチロールトリシクロデカンジアクリレート、エチレンオキサイド変性トリメチロールプロパントリアクリレート、ジペンタエリスリトールペンタアクリレート、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ε-カプロラクトン変性ジペンタエリスリトールヘキサアクリレートなどの、2価または多価のアクリルモノマー(2官能アクリレート、3官能アクリレート、4官能アクリレート、5官能アクリレート、6官能アクリレートなど)を用いることができる。
 よって、樹脂(A)が前記のアクリル樹脂である場合には、エネルギー線の照射により重合可能なオリゴマー(以下、単に「オリゴマー」という)には、前記例示のアクリル樹脂モノマーのオリゴマーなどが使用でき、エネルギー線の照射により重合可能なモノマー(以下、単に「モノマー」という)には、前記例示のアクリル樹脂モノマーおよび架橋剤などが使用できる。
 更に、樹脂(A)が前記のウレタンアクリレートと架橋剤とから形成される架橋樹脂である場合には、オリゴマーにはウレタンアクリレートが使用でき、モノマーには前記例示の架橋剤などが使用できる。
 他方、樹脂(A)が前記のエポキシアクリレートと架橋剤とから形成される架橋樹脂である場合には、オリゴマーにはエポキシアクリレートが使用でき、モノマーには前記例示の架橋剤などが使用できる。
 更に、樹脂(A)が前記のポリエステルアクリレートと架橋剤とから形成される架橋樹脂である場合には、オリゴマーにはポリエステルアクリレートが使用でき、モノマーには前記例示の架橋剤などが使用できる。
 また、樹脂(A)の合成に当たっては、オリゴマーには、前記のウレタンアクリレート、前記のエポキシアクリレートおよび前記のポリエステルアクリレートのうちの2種以上を用いてもよく、また、架橋剤(モノマー)には、前記の2官能アクリレート、前記の3官能アクリレート、前記の4官能アクリレート、前記の5官能アクリレートおよび前記の6官能アクリレートのうちの2種以上を用いてもよい。
 また、樹脂(A)には、2価または多価のアルコールとジカルボン酸とを縮重合によって製造されたエステル組成物とスチレンモノマーの混合物とから形成される不飽和ポリエステル樹脂由来の架橋樹脂;ポリイソシアネートとポリオールとの反応によって生成する各種ポリウレタン樹脂;なども使用することができる。
 よって、樹脂(A)が前記の不飽和ポリエステル樹脂由来の架橋樹脂である場合には、オリゴマーには前記のエステル組成物が使用でき、モノマーにはスチレンモノマーが使用できる。
 樹脂(A)が、ポリイソシアネートとポリオールとの反応によって生成する各種ポリウレタン樹脂である場合、ポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、フェニレンジイソシアネート、トルエンジイソシアネート(TDI)、4.4’-ジフェニルメタンジイソシアネート(MDI)、イソホロンジイソシアネート(IPDI)またはビス-(4-イソシアナトシクロヘキシル)メタンなどが挙げられ、また、ポリオールとしては、例えば、ポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリオールなどが挙げられる。
 よって、樹脂(A)が、ポリイソシアネートとポリオールとの反応によって生成する各種ポリウレタン樹脂である場合には、オリゴマーには前記例示のポリオールが使用でき、モノマーには前記例示のポリイソシアネートが使用できる。
 また、前記例示の各樹脂(A)の形成に際しては、イソボルニルアクリレート、メトキシポリエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレートなど単官能モノマーを併用することもできる。よって、樹脂(A)が、これらの単官能モノマー由来の構造部分を有するものである場合には、モノマーとして、前記例示の単官能モノマーを、前記例示のオリゴマーや他のモノマーと共に使用することができる。
 ただし、単官能モノマーは形成後の樹脂(A)中で未反応物として残存しやすく、樹脂(A)中に残存した未反応物は、非水電解質二次電池の非水電解質中に溶出して電池反応を阻害する虞がある。よって、樹脂(A)の形成に使用するオリゴマーおよびモノマーは、2官能以上のものであることが好ましい。また、樹脂(A)の形成に使用するオリゴマーおよびモノマーは、6官能以下であることが好ましい。
 樹脂(A)の形成にオリゴマーとモノマーとを併用する場合には、Tgの調整をより容易にする観点から、使用するオリゴマーとモノマーとの比率を、質量比で、20:80~95:5とすることが好ましく、65:35~90:10とすることがより好ましい。すなわち、オリゴマーおよびモノマーを使用して形成された樹脂(A)は、オリゴマー由来のユニットと、モノマー由来のユニットとの比率が、質量比で、20:80~95:5であることが好ましく、65:35~90:10とすることがより好ましい。
 本発明のセパレータは、樹脂(A)だけで形成することもできるが、樹脂(A)と共に無機粒子(B)を含有していてもよい。無機粒子(B)を含有させることで、セパレータの強度や寸法安定性(特に熱に対する寸法安定性)をより高めることができる。
 無機粒子(B)の具体例としては、酸化鉄、シリカ(SiO)、アルミナ(Al)、MgO(酸化マグネシウム)、TiO(チタニア)、BaTiOなどの無機酸化物粒子;水酸化アルミニウム、水酸化マグネシウムなどの無機水酸化物粒子;窒化アルミニウム、窒化ケイ素などの無機窒化物粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶粒子;シリコン、ダイヤモンドなどの共有結合性結晶粒子;モンモリロナイトなどの粘土微粒子;などが挙げられる。ここで、前記無機酸化物粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などの微粒子であってもよい。また、金属、SnO、スズ-インジウム酸化物(ITO)などの導電性酸化物、カーボンブラック、グラファイトなどの炭素質材料などで例示される導電性材料の表面を、電気絶縁性を有する材料(例えば、前記の無機酸化物など)で被覆することにより電気絶縁性を持たせた粒子であってもよい。無機粒子は、前記例示のものを1種単独で使用してもよく、2種以上を併用してもよい。前記例示の無機粒子の中でも、無機酸化物粒子および無機水酸化物粒子が好ましく、無機酸化物粒子がより好ましく、アルミナ、チタニア、シリカ、ベーマイトが更に好ましい。
 無機粒子(B)の粒径は、平均粒径で、0.001μm以上であることが好ましく、0.1μm以上であることがより好ましく、また、15μm以下であることが好ましく、1μm以下であることがより好ましい。なお、無機粒子(B)の平均粒径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA-920」)を用い、無機粒子(B)を溶解しない媒体に分散させて測定した数平均粒子径として規定することができる〔[後述する実施例における無機粒子(B)の平均粒径は、この方法により測定した値である〕。
 また、無機粒子(B)の形態としては、例えば、球状に近い形状を有していてもよく、板状または繊維状の形状を有していてもよいが、セパレータの耐短絡性を高める観点からは、板状の粒子や、一次粒子が凝集した二次粒子構造の粒子であることが好ましい。特に、セパレータの空孔率の向上の点からは、一次粒子が凝集した二次粒子構造の粒子であることがより好ましい。前記の板状粒子や二次粒子の代表的なものとしては、板状のアルミナや板状のベーマイト、二次粒子状のアルミナや二次粒子状のベーマイトなどが挙げられる。
 本発明のセパレータにおいて無機粒子(B)を含有させる場合には、樹脂(A)の体積Vと、無機粒子(B)の体積Vとの比V/Vが、0.6以上であることが好ましく、3以上であることがより好ましい。前記V/Vが前記の値にある場合には、柔軟性に富む樹脂(A)の作用によって、例えば、巻回体電極群(特に角形電池などに使用される横断面が扁平状の巻回体電極群)を構成する場合のように折り曲げた場合にも、ひび割れなどの欠陥の発生をより良好に抑えることができ、耐短絡性により優れたセパレータとすることができる。
 また、本発明のセパレータにおいて無機粒子(B)を含有させる場合には、前記V/Vが、9以下であることが好ましく、8以下であることがより好ましい。前記V/Vが前記の値にある場合には、無機粒子(B)を含有させることによるセパレータの強度向上作用や寸法安定性向上作用を、より良好に発揮させることができる。
 更に、本発明のセパレータにおいて無機粒子(B)を含有させる場合、樹脂(A)と無機粒子(B)とは、後述する繊維状物(C)からなる多孔質基体を使用しないときには、これらがセパレータの主体をなしていることが好ましく、具体的には、樹脂(A)と無機粒子(B)との合計体積(V+V)が、セパレータの構成成分の全体積(空孔部分を除いた体積。セパレータの構成成分の体積比率に関して、以下同じ。)中、50体積%以上であることが好ましく、70体積%以上であることがより好ましい(100体積%であってもよい)。他方、本発明のセパレータに、後述する繊維状物(C)からなる多孔質基体を使用する場合には、樹脂(A)と無機粒子(B)との合計体積(V+V)が、セパレータを構成成分の全体積中、20体積%以上であることが好ましく、40体積%以上であることがより好ましい。
 よって、セパレータ形成用組成物に無機粒子(B)を含有させる場合には、製造後のセパレータにおいて、前記V/Vが前記の値を満たし、かつ前記V+Vが前記の値を満たすように、無機粒子(B)の添加量を調整することが望ましい。
 例えば、オリゴマーおよびモノマーを用いてセパレータ形成用組成物を調製する場合、オリゴマーとモノマーとの合計量と、無機粒子の量との比率を、体積比で、40:60~5:95とすることが好ましい。
 更に、本発明のセパレータには、繊維状物(C)を含有させることもできる。繊維状物(C)を含有させることによっても、セパレータの強度や寸法安定性をより高めることができる。
 繊維状物(C)としては、耐熱温度(目視観察の際に変形が認められない温度)が150℃以上であって、電気絶縁性を有しており、電気化学的に安定で、非水電解質二次電池の有する非水電解質やセパレータ製造の際に使用する溶剤に安定であれば、特に材質に制限はない。なお、本発明でいう「繊維状物」とは、アスペクト比[長尺方向の長さ/長尺方向に直交する方向の幅(直径)]が4以上のものを意味しており、アスペクト比は10以上であることが好ましい。
 繊維状物(C)の具体的な構成材料としては、例えば、セルロースおよびその変成体(カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース(HPC)など)、ポリオレフィン(ポリプロピレン(PP)、プロピレンの共重合体など)、ポリエステル(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)など)、ポリアクリロニトリル(PAN)、ポリアラミド、ポリアミドイミド、ポリイミドなどの樹脂、ガラス、アルミナ、ジルコニア、シリカなどの無機酸化物などを挙げることができ、これらの構成材料は2種以上を含有していても構わない。また、繊維状物(C)は、必要に応じて、公知の各種添加剤(例えば、樹脂である場合には酸化防止剤など)を含有していても構わない。
 また、繊維状物(C)の直径は、セパレータの厚み以下であればよいが、例えば、0.01~5μmであることが好ましい。径が大きすぎると、繊維状物同士の絡み合いが不足して、シート状物を形成してセパレータの基体を構成する場合に、その強度が小さくなって取り扱いが困難となることがある。また、径が小さすぎると、セパレータの空孔が小さくなりすぎて、リチウムイオン透過性の向上効果を小さくしてしまう虞がある。
 セパレータ中での繊維状物(C)の存在状態は、例えば、長軸(長尺方向の軸)の、セパレータ面に対する角度が平均で30°以下であることが好ましく、20°以下であることがより好ましい。
 セパレータにおける繊維状物(C)の含有量は、全構成成分中、例えば、10体積%以上であることが好ましく、20体積%以上であることがより好ましい。なお、セパレータにおける繊維状物(C)の含有量は、70体積%以下であることが好ましく、60体積%以下であることが好ましいが、後述する多孔質基体として使用する場合には、90体積%以下であることが好ましく、80体積%以下であることがより好ましい。
 よって、セパレータ形成用組成物に繊維状物(C)を含有させる場合には、製造後のセパレータにおいて、繊維状物(C)の含有量が前記の値を満たすように、繊維状物(C)の添加量を調整したり、繊維状物(C)からなる多孔質基体の表面に塗布するセパレータ形成用組成物の量を調整したりすることが望ましい。
 また、本発明のセパレータは、使用される非水電解質二次電池の安全性を更に高める観点から、シャットダウン機能を有していることが好ましい。セパレータにシャットダウン機能を付与するには、例えば、融点が80℃以上140℃以下の熱可塑性樹脂[以下、「熱溶融性樹脂(D)」という]を含有させるか、または、加熱によって液状の非水電解質(非水電解液。以下「電解液」と省略する場合がある。)を吸収して膨潤し且つ温度上昇とともに膨潤度が増大する樹脂[以下、「熱膨潤性樹脂(E)」という]を含有させることが挙げられる。前記の方法によりシャットダウン機能を持たせたセパレータでは、非水電解質二次電池内が発熱した際に、熱溶融性樹脂(D)が溶融してセパレータの空孔を塞いだり、熱膨潤性樹脂(E)が非水電解質二次電池内の非水電解質(液状の非水電解質)を吸収したりして、電気化学反応の進行を抑制するシャットダウンを生じる。
 本発明法によって熱溶融性樹脂(D)や熱膨潤性樹脂(E)を含有するセパレータを製造するには、セパレータ形成用組成物に熱溶融性樹脂(D)や熱膨潤性樹脂(E)を含有させればよい。
 熱溶融性樹脂(D)としては、融点、すなわちJIS K 7121の規定に準じて、DSCを用いて測定される融解温度が80℃以上140℃以下の樹脂であるが、電気絶縁性を有しており、非水電解質二次電池の有する非水電解質やセパレータ製造の際に使用する溶剤に対して安定であり、更に、非水電解質二次電池の作動電圧範囲において酸化還元されにくい電気化学的に安定な材料が好ましい。具体的には、ポリエチレン(PE)、ポリプロピレン(PP)、共重合ポリオレフィン、ポリオレフィン誘導体(塩素化ポリエチレンなど)、ポリオレフィンワックス、石油ワックス、カルナバワックスなどが挙げられる。前記共重合ポリオレフィンとしては、エチレン-ビニルモノマー共重合体、より具体的には、エチレン-プロピレン共重合体、EVA、エチレン-メチルアクリレート共重合体やエチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体が例示できる。前記共重合ポリオレフィンにおけるエチレン由来の構造単位は、85モル%以上であることが望ましい。また、ポリシクロオレフィンなどを用いることもできる。熱溶融性樹脂(D)には、前記例示の樹脂を1種単独で用いてもよく、2種以上を用いても構わない。
 熱溶融性樹脂(D)としては、前記例示の材料の中でも、PE、ポリオレフィンワックス、PP、またはエチレン由来の構造単位が85モル%以上のEVAが好適に用いられる。また、熱溶融性樹脂(D)は、必要に応じて、樹脂に添加される公知の各種添加剤(例えば、酸化防止剤など)を含有していても構わない。
 熱膨潤性樹脂(E)としては、通常、電池が使用される温度領域(およそ70℃以下)では、電解液を吸収しないかまたは吸収量が限られており、従って膨潤の度合いが一定以下であるが、必要となる温度(Tc)まで加熱されたときには、電解液を吸収して大きく膨潤し且つ温度上昇と共に膨潤度が増大するような性質を有する樹脂が用いられる。熱膨潤性樹脂(E)を含有するセパレータを用いた非水電解質二次電池では、Tcより低温側においては、熱膨潤性樹脂(E)に吸収されない流動可能な電解液がセパレータの空孔内に存在するため、セパレータ内部のリチウムイオンの伝導性が高くなり、良好な負荷特性を有する非水電解質二次電池となるが、温度上昇に伴って膨潤度が増大する性質(以下、「熱膨潤性」という場合がある)が現れる温度以上に加熱された場合には、熱膨潤性樹脂(E)は素子内の電解液を吸収して大きく膨潤し、膨潤した熱膨潤性樹脂(E)がセパレータの空孔を塞ぐと共に、流動可能な電解液が減少して非水電解質二次電池が液枯れ状態となることにより、電解液と活物質との反応性を抑制し非水電解質二次電池の安全性がより高められる。しかも、Tcを超える高温となった場合、熱膨潤性により前記液枯れが更に進行し、電池の反応が更に抑制されることになるため、高温での安全性を更に高めることもできる。
 熱膨潤性樹脂(E)が熱膨潤性を示し始める温度は、75℃以上であることが好ましい。熱膨潤性樹脂(E)が熱膨潤性を示し始める温度を75℃以上とすることにより、Liイオンの伝導性が著しく減少して素子の内部抵抗が上昇する温度(Tc)を、およそ80℃以上に設定することができるからである。一方、熱膨潤性を示す温度の下限が高くなるほど、セパレータのTcが高くなるので、Tcをおよそ130℃以下に設定するために、熱膨潤性樹脂(E)の熱膨潤性を示し始める温度は、125℃以下とすることが好ましく、115℃以下とすることがより好ましい。熱膨潤性を示す温度が高すぎると、素子内の活物質の熱暴走反応を十分に抑制できず、非水電解質二次電池の安全性向上効果が十分に確保できないことがあり、また、熱膨潤性を示す温度が低すぎると、通常の非水電解質二次電池の使用温度域(およそ70℃以下)におけるリチウムイオンの伝導性が低くなりすぎることがある。
 また、熱膨潤性を示す温度より低い温度では、熱膨潤性樹脂(E)は電解液をできるだけ吸収せず、膨潤が少ない方が望ましい。これは、非水電解質二次電池の使用温度領域、例えば室温では、電解液は、熱膨潤性樹脂(E)に取り込まれるよりもセパレータの空孔内に流動可能な状態で保持される方が、非水電解質二次電池の負荷特性などの特性が良好になるからである。
 熱溶融性樹脂(D)や熱膨潤性樹脂(E)[以下、熱溶融性樹脂(D)と熱膨潤性樹脂(E)とを纏めて「シャットダウン樹脂」という場合がある]の形態は特に限定はされないが、微粒子の形状のものを用いることが好ましく、その大きさは、乾燥時における粒径がセパレータの厚みより小さければよく、セパレータの厚みの1/100~1/3の平均粒径を有することが好ましく、具体的には、平均粒径が0.1~20μmであることが好ましい。シャットダウン樹脂粒子の粒径が小さすぎる場合は、粒子同士の隙間が小さくなり、イオンの伝導パスが長くなって非水電解質二次電池の特性が低下する虞がある。また、シャットダウン樹脂粒子の粒径が大きすぎると、隙間が大きくなってリチウムデンドライトなどに起因する短絡に対する耐性の向上効果が小さくなる虞がある。なお、シャットダウン樹脂粒子の平均粒径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA-920」)を用い、シャットダウン樹脂を膨潤させない媒体(例えば水)に当該微粒子を分散させて測定した数平均粒子径として規定することができる。
 また、シャットダウン樹脂は、前記以外の形態であってもよく、他の構成要素、例えば、無機粒子や繊維状物の表面に積層され一体化された状態で存在していてもよい。具体的に、無機粒子をコアとしシャットダウン樹脂をシェルとするコアシェル構造の粒子として存在してもよく、また、芯材の表面にシャットダウン樹脂を有する複層構造の繊維であってもよい。
 セパレータにおけるシャットダウン樹脂の含有量は、シャットダウンの効果をより得やすくするために、例えば、下記のようであることが好ましい。セパレータの構成成分の全体積中におけるシャットダウン樹脂の体積は、10体積%以上であることが好ましく、20体積%以上であることがより好ましい。一方、セパレータの高温時における形状安定性確保の点から、セパレータの構成成分の全体積中におけるシャットダウン樹脂の体積は、50体積%以下であることが好ましく、40体積%以下であることがより好ましい。
 本発明のセパレータは、樹脂(A)や、必要に応じて無機粒子(B)、繊維状物(C)、シャットダウン樹脂などを含む単一の多孔質層で構成され、これが独立膜として存在する形態とすることができる他、前記の多孔質層が、非水電解質二次電池の電極(正極および負極)や多孔質基体(詳しくは後述する)と一体化した形態とすることもできる。
 本発明のセパレータは、例えば、オリゴマーと溶媒とを少なくとも含有するセパレータ形成用組成物を、基材に塗布する工程(1)と、前記基材に塗布した前記セパレータ形成用組成物の塗膜にエネルギー線を照射して、架橋構造を有する樹脂(A)を形成する工程(2)と、エネルギー線照射後の前記セパレータ形成用組成物の塗膜を乾燥して、孔を形成する工程(3)とを有する本発明法により製造することができる。
 セパレータ形成用組成物には、オリゴマーやモノマー、重合開始剤、更には、必要に応じてセパレータに含有させる無機粒子(B)、繊維状物(C)、シャットダウン樹脂の粒子などを含み、これらを溶媒に分散させた組成物(スラリーなど)が使用される。
 セパレータ形成用組成物の溶媒には、極性の異なる2種以上の溶媒を併用することが好ましい。
 よって、例えば、セパレータ形成用組成物に係る溶媒として、オリゴマーやモノマーとの相溶性がより良好な溶媒(a)と、前記溶媒よりも工程(2)において形成される樹脂(A)との相溶性がより乏しい溶媒(b)とを組み合わせて用いることが好ましい。この場合、溶媒(a)がオリゴマーやモノマーを良好に溶解させ得ることから、セパレータ形成用組成物を基材に塗布して形成される塗膜の均質性が良好となり、セパレータの均質性も向上する。一方、溶媒(b)は、樹脂(A)の形成後に塗膜中で微細な液滴として分散する。そのため、その後の工程(3)における乾燥によって溶媒(a)とともに溶媒(b)を除去すると、セパレータ中に微細かつ均質な細孔が多数形成される。よって、このような極性の異なる2種以上の溶媒を併用する本発明法によって製造されるセパレータは、前記の形状および平均細孔径を有する細孔を多数備え、前記の透気度を有しており、リチウムイオン透過性に優れ、かつ非水電解質二次電池の充電時における耐短絡性にも優れたものとなる。
 具体的には、溶媒(a)の溶解度パラメータ(以下、「SP値」という)は、樹脂(A)を形成するためのオリゴマーのSP値の±1.5以下であることが好ましく、±1.0以下であることがより好ましい。すなわち、溶媒(a)のSP値は、オリゴマーのSP値との差が小さい程、オリゴマーとの相溶性が良好であるので好ましい。また、樹脂(A)の形成にモノマーを併用する場合には、溶媒(a)のSP値は、モノマーのSP値の±1.5以下であることが更に好ましく、±1.0以下であることが特に好ましい。
 また、樹脂(A)のSP値は、樹脂(A)の形成に使用するオリゴマー(更にはモノマー)のSP値に近い値となるため、溶媒(b)のSP値は、オリゴマーのSP値の±1.55以上であることが好ましく、±2.0以上であることがより好ましい。また、樹脂(A)の形成にモノマーを併用する場合には、溶媒(b)のSP値は、モノマーのSP値の±1.55以上であることが更に好ましく、±2.0以上であることが特に好ましい。ただし、樹脂(A)の形成に使用するオリゴマーやモノマーのSP値と、溶媒(b)のSP値との差が大きすぎると、セパレータ形成用組成物が多層に分離して不均一になりやすくなる。よって、溶媒(b)のSP値は、樹脂(A)の形成に使用するオリゴマーのSP値の±15以下であることが好ましく、±10.0以下であることがより好ましく、また、樹脂(A)の形成にモノマーも併用する場合には、モノマーのSP値の±15以下であることが更に好ましく、±10.0以下であることが特に好ましい。
 溶媒(a)には、SP値が8.9以上9.9以下のものを使用することが好ましい。
 溶媒(a)の具体例としては、例えば、トルエン(SP値:8.9)、ブチルアルデヒド(SP値:9.0)、エチルアセテート(SP値:9.0)、酢酸エチル(SP値:9.1)、テトラヒドロフラン(SP値:9.1)、ベンゼン(SP値:9.2)、メチルエチルケトン(SP値:9.3)、ベンズアルデヒド(SP値:9.4)、クロロベンゼン(SP値:9.5)、エチレングリコールモノブチルエーテル(SP値:9.5)、2-エチルヘキサノール(SP値:9.5)、メチルアセテート(SP値:9.6)、ジクロロエチルエーテル(SP値:9.8)、1,2-ジクロロエタン(SP値:9.8)、アセトン(SP値:9.8)、シクロヘキサノン(SP値:9.9)などが挙げられる。
 また、溶媒(b)には、SP値が7以上8以下のもの〔以下、溶媒(b-1)と記載する〕、またはSP値が10より大きく15以下のもの〔以下、溶媒(b-2)と記載する〕を使用することが好ましい。
 溶媒(b-1)の具体例としては、例えば、1-ニトロオクタン(SP値:7.0)、ペンタン(SP値:7.0)、ジエチルエーテル(SP値:7.4)、オクタン(SP値:7.6)、イソアミルアセテート(SP値:7.8)、ジイソブチルケトン(SP値:7.8)、デカン酸メチル(SP値:8.0)、ジエチルアミン(SP値:8.0)などが挙げられる。
 セパレータ形成用組成物の溶媒に溶媒(a)と溶媒(b-1)とを併用する場合、溶媒(a)の体積Vsaと溶媒(b-1)の体積Vsbとの比Vsa/Vsbは、0.05~0.7とすることが好ましい。
 溶媒(b-2)の具体例としては、例えば、酢酸(SP値:10.1)、m-クレゾール(SP値:10.2)、アニリン(SP値:10.3)、i-オクタノール(SP値:10.3)、シクロペンタノン(SP値:10.4)、エチレングリコールモノエチルエーテル(SP値:10.5)、t-ブチルアルコール(SP値:10.6)、ピリジン(SP値:10.7)、プロピロニトリル(SP値:10.8)、N,N-ジメチルアセトアミド(SP値:10.8)、1-ペンタノール(SP値:10.9)、ニトロエタン(SP値:11.1)、フルフラール(SP値:11.2)、1-ブタノール(SP値:11.4)、シクロヘキサノール(SP値:11.4)、イソプロパノール(SP値:11.5)、アセトニトリル(SP値:11.9)、N,N-ジメチルホルムアミド(SP値:11.9)、ベンジルアルコール(SP値:12.1)、ジエチレングリコール(SP値:12.1)、エタノール(SP値:12.7)、ジメチルスルホキシド(SP値:12.9)1,2-プロピレン炭素酸(SP値:13.3)、N-エチルホルムアミド(SP値:13.9)、エチレングリコール(SP値:14.1)、メタノール(SP値:14.5)などが挙げられる。
 セパレータ形成用組成物の溶媒に溶媒(a)と溶媒(b-2)とを併用する場合、溶媒(a)の体積Vsaと溶媒(b-2)の体積Vscとの比Vsc/Vsaは、0.04~0.2であることが好ましい。
 セパレータ形成用組成物の溶媒に溶媒(a)と溶媒(b)とを併用する場合、溶媒(b)には、溶媒(a)よりも沸点が高いものを選択することが好ましく、この場合には、セパレータに形成する細孔がより微細かつ均質なものとなる。
 オリゴマーおよびモノマーのSP値については、各種の文献などによって、構造部分(官能基)ごとのSP値が提供されており、加成性が成り立つものと仮定して、オリゴマーやモノマーの有する各構造部分のSP値を合計することによって求めることができる。
 セパレータ形成用組成物には、通常、エネルギー線感応型の重合開始剤を含有させる。重合開始剤の具体例としては、例えば、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノンなどが挙げられる。重合開始剤の使用量は、オリゴマーおよびモノマーの合計量(オリゴマーのみを使用する場合には、その量)100質量部に対し、1~10質量部とすることが好ましい。
 セパレータ形成用組成物においては、オリゴマーやモノマー、重合開始剤、更には必要に応じて使用される無機粒子(B)などを含む固形分含量を、例えば10~50質量%とすることが好ましい。
 セパレータ形成用組成物を塗布する基材には、例えば、非水電解質二次電池用の電極(正極または負極)、多孔質基体、フィルムや金属箔などの基板などが使用できる。
 基材に非水電解質二次電池用の電極を用いる場合には、電極と一体化したセパレータを製造することができる。また、基材に多孔質基体を用いる場合には、セパレータ形成用組成物により形成される層と多孔質基体とからなる多層構造のセパレータを製造することができる。更に、基材にフィルムや金属箔などの基板を用いる場合には、形成後のセパレータを基板から剥離して、独立膜のセパレータを製造することができる。
 基材に用いる多孔質基体としては、例えば、前記例示の各材料を構成成分に含む繊維状物の少なくとも1種で構成される織布や、これら繊維状物同士が絡み合った構造を有する不織布などの多孔質シートなどが挙げられる。より具体的には、紙、PP不織布、ポリエステル不織布(PET不織布、PEN不織布、PBT不織布など)、PAN不織布などの不織布を例示できる。
 また、多孔質基体には、非水電解質二次電池のセパレータとして汎用されている微多孔膜(例えば、PE、PPなどのポリオレフィン製の微多孔膜)を用いることもできる。こうした多孔質基体を用いることによっても、セパレータにシャットダウン機能を付与することができる。なお、このような多孔質基体は一般に耐熱性が低く、例えば、非水電解質二次電池内の温度が上昇することで収縮するなどして、正極と負極との接触による短絡を引き起こすことがある。しかし、本発明法により製造されるセパレータの場合には、このような多孔質基体の表面に、耐熱性に優れる樹脂(A)を含む層が形成されるため、かかる層によって多孔質基体の熱収縮を抑制できることから、安全性に優れた非水電解質二次電池を構成可能なセパレータとなる。
 セパレータ形成用組成物を基材に塗布する際には、公知の各種塗布方法が採用できる。また、非水電解質二次電池用電極や多孔質基体を基材に用いる場合には、セパレータ形成用組成物をこれらの基材内に含浸させてもよい。
 本発明法の工程(2)では、基材に塗布したセパレータ形成用組成物の塗膜にエネルギー線を照射して、樹脂(A)を形成する。
 セパレータ形成用組成物の塗膜に照射するエネルギー線としては、例えば、可視光線、紫外線、放射線、電子線などが挙げられるが、より安全性が高いことから、可視光線または紫外線を用いることがより好ましい。
 エネルギー線の照射に際しては、波長や照射強度、照射時間などを、樹脂(A)を良好に形成できるように適宜調整することが好ましい。具体例を挙げると、例えば、エネルギー線の波長を320~390nmとし、照射強度を623~1081mJ/cmとすることができる。ただし、エネルギー線の照射条件は、前記の条件に限定される訳ではない。
 本発明法の工程(3)では、エネルギー線照射後の前記セパレータ形成用組成物の塗膜を乾燥して溶媒を除去し、孔を形成する。乾燥の条件(温度、時間、乾燥方法)については、セパレータ形成用組成物に使用する溶媒の種類に応じて、これが良好に除去できる条件を適宜選択すればよい。具体例を挙げると、例えば、乾燥温度を20~80℃とし、乾燥時間を30分~24時間とすることができ、また、乾燥方法には、風乾の他、恒温槽、ドライヤー、ホットプレート(電極表面にセパレータを直接形成する場合)などを用いた方法を採用することができる。ただし、工程(3)での乾燥条件は、前記の条件に限定される訳ではない。
 フィルムや金属箔などの基板を基材に用いた場合には、前記の通り、工程(3)を経て形成されたセパレータを基材から剥離して、非水電解質二次電池の製造に供する。他方、電極や多孔質基体を基材に用いた場合には、形成されたセパレータ(または層)を基材から剥離することなく、非水電解質二次電池の製造に供すればよい。
 また、製造後のセパレータの片面または両面に、前記のシャットダウン樹脂を含む層(シャットダウン樹脂のみで形成された層や、シャットダウン樹脂とバインダとを含む層など)を形成することで、セパレータにシャットダウン樹脂を持たせてもよい。
 なお、本発明のセパレータを製造するに当たっては、本発明法以外の方法を採用することもできる。例えば、前記のセパレータ形成用組成物に、特定の溶媒(セパレータ形成用組成物に使用する溶媒以外の溶媒)に溶解し得る材料を添加したものを使用して、前記の工程(1)および工程(2)を実施し、更に必要に応じて乾燥し、その後、前記特定の溶媒を用いて前記材料を抽出して孔を形成する方法によって、本発明のセパレータを製造することもできる。
 前記の特定の溶剤に溶解し得る材料としては、例えば、ポリオレフィン樹脂、ポリウレタン樹脂、アクリル樹脂などを用いることができる。これらの材料は、例えば粒子状のものを用いることが好ましいが、そのサイズや使用量は、セパレータに要求される空孔率や孔径に応じて調整することができる。通常は、前記材料の平均粒径[無機粒子(B)の平均粒径と同じ方法で測定される平均粒径]が0.1~20μmであることが好ましく、また、使用量は、セパレータ形成用組成物における全固形分のうち、1~10質量%とすることが好ましい。
 本発明のセパレータは、その空孔率が、乾燥した状態で、電解液の保液量を確保してリチウムイオン透過性を良好にするために、10%以上であることが好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましい。乾燥した状態でのセパレータの空孔率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記(1)式を用いて各成分iについての総和を求めることにより計算できる。
  P ={1-(m/t)/(Σa・ρ)}×100   (1)
ここで、前記式中、a:全体の質量を1としたときの成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)である。
 また、本発明のセパレータの強度としては、直径1mmのニードルを用いた突き刺し強度で50g以上であることが望ましい。かかる突き刺し強度が小さすぎると、リチウムデンドライトが発生した場合に、セパレータの突き破れによる短絡が発生する場合がある。前記の構成を採用することにより、前記の突き刺し強度を有するセパレータとすることができる。
 本発明のセパレータの厚みは、正極と負極とをより確実に隔離する観点から、6μm以上であることが好ましく、10μm以上であることがより好ましい。他方、セパレータが厚すぎると、電池としたときのエネルギー密度が低下してしまうことがあるため、その厚みは、50μm以下であることが好ましく、30μm以下であることがより好ましい。
 本発明の非水電解質二次電池は、正極、負極、セパレータおよび非水電解質を有しており、セパレータが本発明のセパレータであればよく、その他の構成および構造については特に制限はなく、従来から知られている非水電解質二次電池で採用されている各種構成および構造を適用することができる。
 非水電解質二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
 正極としては、従来から知られている非水電解質二次電池に用いられている正極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する正極であれば特に制限はない。例えば、活物質として、Li1+xMO(-0.1<x<0.1、M:Co、Ni、Mn、Al、Mgなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMnやその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などを用いることが可能である。前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOやLiNi1-xCox-yAl(0.1≦x≦0.3、0.01≦y≦0.2)などのほか、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiMn3/5Ni1/5Co1/5など)などを例示することができる。
 導電助剤としては、カーボンブラックなどの炭素材料が用いられ、バインダとしては、PVDFなどのフッ素樹脂が用いられ、これらの材料と活物質とが混合された正極合剤により正極活物質含有層が、例えば集電体上に形成される。
 また、正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10~30μmのアルミニウム箔が好適に用いられる。
 正極側のリード部は、通常、正極作製時に、集電体の一部に正極活物質含有層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。
 負極としては、従来から知られている非水電解質二次電池に用いられている負極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する負極であれば特に制限はない。例えば、活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si,S化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどのバインダなどを適宜添加した負極合剤を、集電体を芯材として成形体(負極活物質含有層)に仕上げたもの、または、前記の各種合金やリチウム金属の箔を単独、もしくは集電体上に積層したものなどが用いられる。
 負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。また、負極側のリード部は、正極側のリード部と同様にして形成すればよい。
 電極は、前記の正極と前記の負極とを、本発明のセパレータを介して積層した積層型の電極群や、更にこれを巻回した巻回体電極群の形態で用いることができる。なお、本発明のセパレータは、柔軟性に富む樹脂(A)の作用によって、折り曲げ時の耐短絡性も優れていることから、かかるセパレータを使用した本発明の非水電解質二次電池では、セパレータに変形を加える巻回体電極群を用いた場合に、その効果がより顕著となり、セパレータを強く屈曲させる扁平状の巻回体電極群(横断面が扁平状の巻回体電極群)を用いた場合に、その効果が特に顕著となる。
 非水電解質としては、リチウム塩を有機溶媒に溶解した溶液(非水電解液)が用いられる。リチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限は無い。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。
 非水電解質に用いる有機溶媒としては、前記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ-ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類などが挙げられ、これらは2種以上混合して用いることもできる。なお、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。また、これらの非水電解質に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3-プロパンサルトン、ジフェニルジスルフィド、シクロヘキサン、ビフェニル、フルオロベンゼン、t-ブチルベンゼンなどの添加剤を適宜加えることもできる。
 このリチウム塩の非水電解質中の濃度としては、0.5~1.5mol/Lとすることが好ましく、0.9~1.3mol/Lとすることがより好ましい。
 また、前記の非水電解液は、ポリマーなどの公知のゲル化剤を加えてゲル状(ゲル状電解質)として用いてもよい。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
実施例1
<セパレータ形成用スラリーの調製>
 オリゴマーであるウレタンアクリレート(ダイセルサイテックス社製「EBECRYL284」):80質量部、モノマーであるトリプロピレングリコールジアクリレート:20質量部、光重合開始剤であるビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド:2質量部、無機粒子(B)であるベーマイト(平均粒径1μm):300質量部、並びに溶媒(a)であるメチルエチルケトンと溶媒(c)であるエチレングリコールとの体積比9:1の混合溶媒:600質量部に、ベーマイトに対して5倍量(質量基準)のφ1mmのジルコニアビーズを加え、ボールミルを用いて15時間均一に攪拌後、ろ過してセパレータ形成用スラリーを調製した。
<負極の作製>
 負極活物質である黒鉛:95質量部とPVDF:5質量部とを、N-メチル-2-ピロリドン(NMP)を溶剤として均一になるように混合して負極合剤含有ペーストを調製した。このペーストを銅箔からなる厚み10μmの集電体の両面に、塗布長が表290mm、裏面230mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が142μmになるように負極活物質含有層の厚みを調整し、幅45mmになるように切断して負極を作製した。その後、負極における銅箔の露出部にタブ付けを行った。
<セパレータと負極との一体化物の作製>
 前記負極の両面に前記セパレータ形成用スラリーを塗布し、波長365nmの紫外線を照度1000mW/cmで10秒間照射し、その後60℃で1時間乾燥して、厚みが20μmのセパレータを前記負極の両面に形成した。このセパレータにおける樹脂(A)の体積Vと無機粒子(B)の体積Vとの比V/Vは、0.8であった。
<正極の作製>
 正極活物質であるLiCoO:90質量部、導電助剤であるアセチレンブラック:7質量部、およびバインダであるPVDF:3質量部を、NMPを溶剤として均一になるように混合し、正極合剤含有ペーストを調製した。このペーストを集電体となる厚み15μmのアルミニウム箔の両面に、塗布長が表面280mm、裏面210mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が150μmになるように正極活物質含有層の厚みを調整し、幅43mmになるように切断して正極を作製した。その後、正極におけるアルミニウム箔の露出部にタブ付けを行った。
<電池の組み立て>
 前記のセパレータと負極との一体化物と前記の正極とを重ね、渦巻状に巻回して巻回体電極群を作製した。得られた巻回体電極群を押しつぶして扁平状にし、厚み4mm、高さ50mm、幅34mmのアルミニウム製外装缶に入れ、電解液(エチレンカーボネートとエチルメチルカーボネートを体積比で1:2に混合した溶媒にLiPFを濃度1.2mol/Lで溶解したもの)を注入した後に封止を行って、図1に示す構造で、図2に示す外観の角形非水電解質二次電池を作製した。
 ここで図1および図2について説明すると、図1の(a)は非水電解質二次電池の平面図、(b)はその部分縦断面図であり、非水電解質二次電池においては、正極1と負極2は前記のようにセパレータ3を介して渦巻状に巻回した巻回体電極群6として、角形の外装缶4に非水電解液とともに収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や電解液などは図示していない。
 外装缶4はアルミニウム合金製で電池の外装材を構成するものであり、この外装缶4は正極端子を兼ねている。そして、外装缶4の底部にはポリエチレンシートからなる絶縁体5が配置され、前記正極1、負極2およびセパレータ3からなる電極群6からは、正極1および負極2のそれぞれ一端に接続された正極集電板7と負極集電板8が引き出されている。また、外装缶4の開口部を封口するアルミニウム合金製の蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板(電極端子集電機構)13が取り付けられている。
 そして、この蓋板9は前記外装缶4の開口部に挿入され、両者の接合部を溶接することによって、外装缶4の開口部が封口され、電池内部が密閉されている。
 なお、蓋板9には注液孔が設けられており(図中、14)、電池組み立ての際には、この注液孔から電池内に電解液が注入され、その後、注液孔は封止される。また、蓋板9には、防爆用の安全弁15が設けられている。
 この実施例1の電池では、正極集電板7を蓋板9に直接溶接することによって外装缶4と蓋板9とが正極端子として機能し、負極集電板8をリード板13に溶接し、そのリード板13を介して負極集電板8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、外装缶4の材質などによっては、その正負が逆になる場合もある。
 図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図2では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極群の内周側の部分は断面にしていない。
実施例2
 オリゴマーであるウレタンアクリレートをダイセルサイテックス社製「EBECRYL8402」に変更し、モノマーを1,6-ヘキサンジオールジアクリレートに変更し、ベーマイトを平均粒径が0.7μmのものに変更した以外は、実施例1と同様にしてセパレータ形成用スラリーを調製し、このセパレータ形成用スラリーを用いた以外は、実施例1と同様にしてセパレータと負極との一体化物を作製した。このセパレータにおける樹脂(A)の体積Vと無機粒子(B)の体積Vとの比V/Vは、0.8であった。
 そして、前記のセパレータと負極との一体化物を用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
実施例3
 オリゴマーであるウレタンアクリレートをダイセルサイテックス社製「EBECRYL8402」に変更し、モノマーをポリエチレングリコールジアクリレートに変更した以外は、実施例1と同様にしてセパレータ形成用スラリーを調製し、このセパレータ形成用スラリーを用いた以外は、実施例1と同様にしてセパレータと負極との一体化物を作製した。このセパレータにおける樹脂(A)の体積Vと無機粒子(B)の体積Vとの比V/Vは、0.8であった。
 そして、前記のセパレータと負極との一体化物を用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
比較例1
 モノマーであるジペンタエリスリトールペンタアクリレート:100質量部、光重合開始剤であるビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド:1質量部、および無機粒子(B)であるアルミナ(平均粒径0.4μm):200質量部を均一に混合し、ろ過してセパレータ形成用スラリーを調製した。そして、このセパレータ形成用スラリーを用いた以外は実施例1と同様にしてセパレータと負極との一体化物を作製した。このセパレータにおける架橋樹脂の体積Vと無機粒子(B)の体積Vとの比V/Vは、1.3であった。
 更に、前記のセパレータと負極との一体化物を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。
比較例2
 オリゴマーを使用せず、モノマーをジペンタエリスリトールペンタアクリレート:100質量部に変更した以外は、実施例2と同様にしてセパレータ形成用スラリーを調製し、このセパレータ形成用スラリーを用いた以外は、実施例1と同様にしてセパレータと負極との一体化物を作製した。このセパレータにおける架橋樹脂の体積Vと無機粒子(B)の体積Vとの比V/Vは、0.8であった。
 そして、前記のセパレータと負極との一体化物を用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
比較例3
 オリゴマーを使用せず、モノマーをポリエチレングリコールジアクリレート:100質量部に変更した以外は、実施例2と同様にしてセパレータ形成用スラリーを調製し、このセパレータ形成用スラリーを用いた以外は、実施例1と同様にしてセパレータと負極との一体化物を作製した。このセパレータにおける架橋樹脂の体積Vと無機粒子(B)の体積Vとの比V/Vは、0.8あった。
 そして、前記のセパレータと負極との一体化物を用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
比較例4
 セパレータ形成用組成物の溶媒を、メチルエチルケトン:600質量部に変更した以外は、実施例2と同様にしてセパレータ形成用スラリーを調製し、このセパレータ形成用スラリーを用いた以外は、実施例1と同様にしてセパレータと負極との一体化物を作製した。このセパレータにおける架橋樹脂の体積Vと無機粒子(B)の体積Vとの比V/Vは、0.8あった。
 そして、前記のセパレータと負極との一体化物を用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
比較例5
 セパレータ形成用組成物の溶媒を、エチレングリコール:600質量部に変更した以外は、実施例2と同様にしてセパレータ形成用スラリーを調製しようとしたが、オリゴマーが溶媒に溶解しなかったため、セパレータ形成用スラリーを調製することができなかった。
比較例6
 市販のポリオレフィン製微多孔膜(厚み20μm)をセパレータに使用し、実施例1で作製したものと同じ正極と、実施例1で作製したものと同じ負極(セパレータを形成していない負極)とを、前記セパレータを介して重ね、渦巻状に巻回して巻回体電極群を作製した。そして、この巻回体電極群を用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
 実施例および比較例の非水電解質二次電池のセパレータについて、以下の各評価を行った。
<架橋樹脂のTg測定>
 実施例1~3および比較例1~4で調製したセパレータ形成用組成物を、それぞれポリテトラフルオロエチレンシート上に塗布し、波長365nmの紫外線を照度1000mW/cmで10秒間照射し、その後60℃で1時間乾燥して、厚みが20μmの樹脂(A)などの架橋樹脂を含有する多孔質膜を形成した。そして、この多孔質膜を用いて、前記の方法でセパレータを構成する架橋樹脂のTgを測定した。
<セパレータの透気度測定>
 実施例1~3および比較例1~4、6に係るセパレータについて、JIS P 8117に準拠した方法で、0.879g/mmの圧力下で100mlの空気が膜を透過する秒数で示されるガーレー値を求め、この値を各セパレータの透気度とした。なお、実施例1~3および比較例1~4に係るセパレータの透気度は、架橋樹脂のTg測定の際に作製した各多孔質膜を用いて測定した。
<セパレータの平均細孔径測定>
 実施例1~3および比較例1~4に係るセパレータの平均細孔径を、JIS K 3832に規定のバブルポイント法に基づいて測定した。なお、これらの平均細孔径は、架橋樹脂のTg測定の際に作製した各多孔質膜を用いて測定した。
<セパレータに係る細孔の形状および円形度測定>
 実施例1~3および比較例1~4、6の各セパレータの断面を走査型電子顕微鏡(SEM)で観察し、細孔の形状を目視で評価した。また、SEMで観察した断面から130個の細孔について、面積S(mm)と周囲長L(mm)とを求め、下記式を用いて各細孔の円形度を算出し、これらの円形度の合計値を測定した細孔の個数で除して求められる平均値を、各セパレータの円形度とした。
 円形度 = (4×π×S)/L
<セパレータの熱収縮率測定>
 実施例1~3および比較例1~4、6に係るセパレータを縦5cm、横10cmの長方形に切り取り、黒インクで縦方向に平行に3cm、横方向に平行に3cmの十字線を描いた。なお、セパレータを長方形に切り取るにあたっては、その縦方向が、セパレータを構成する樹脂多孔質膜の機械方向(MD)となるようにし、前記十字線は、その交点が、セパレータ片の中心となるようにした。その後、セパレータ片を、内部を175℃に設定した恒温槽内に吊るした。そして、1時間後にセパレータ片を恒温槽から取り出して冷却した後、十字線のうちのより短い方の長さd(mm)を計測し、下記式によって熱収縮率(%)を算出した。
 熱収縮率 = 100×(30-d)/30
 なお、実施例1~3および比較例1~4に係るセパレータの透気度は、架橋樹脂のTg測定の際に作製した各多孔質膜を用いて測定した。
 また、実施例1~3および比較例1~4、6の非水電解質二次電池について、以下の各評価を行った。
<175℃放置試験>
 実施例および比較例の各非水電解質二次電池について、0.2Cの電流値で4.2Vまで定電流充電し、その後4.2Vでの定電圧充電を行った。なお、定電流充電開始から定電圧充電終了までの総充電時間は10時間とした。充電後の各電池を175℃に設定した恒温槽中に60分放置し、その後、恒温槽から取り出して放冷してから、各電池の電圧を測定した。また、電圧測定後の各電池を分解して、セパレータの様子を目視で観察した。
<充放電試験(負荷特性の評価)>
 実施例および比較例の各非水電解質二次電池(175℃放置試験を実施したものとは別の電池)について、175℃放置試験の場合と同じ条件で定電流-定電圧充電を行い、0.2Cの電流値で2.5Vまで定電流放電を行って、放電容量(0.2C放電容量)を測定した。その後、各電池について、前記と同じ条件で定電流-定電圧充電を行い、2Cの電流値で2.5Vまで定電流放電を行って、放電容量(2C放電容量)を測定した。そして、各電池の2C放電容量を0.2C放電容量で除した値を百分率で表して、各電池の容量維持率を求めた。この容量維持率が高いほど、電池の負荷特性が良好であることを意味している。
<充放電サイクル特性評価>
 実施例および比較例の各非水電解質二次電池(175℃放置試験および充放電試験を実施したものとは別の電池)について、1Cの電流値で4.2Vまで定電流充電し、その後4.2Vでの定電圧充電を行った。なお、定電流充電開始から定電圧充電終了までの総充電時間は3時間とした。充電後の各電池について、1Cの電流値で2.5Vまで定電流放電を行った。これらの一連の操作を1サイクルとして、各電池について300サイクルの充放電を行い、300サイクル目の放電容量を1サイクル目の放電容量で除した値を百分率で表して、各電池の容量維持率を求めた。この容量維持率が高いほど、電池の充放電サイクル特性が良好であることを意味している。
 セパレータに関する前記の評価結果を表1に示し、非水電解質二次電池に関する前記の評価結果を表2に示す。また、図3に、実施例1に係るセパレータの断面のSEM写真を示す。なお、比較例6に係るセパレータは、175℃熱収縮率測定において、収縮の程度が非常に大きく、収縮率を測定することができなかったために、表1では「測定不能」と記載する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示す通り、少なくともオリゴマーをエネルギー線照射重合することにより得られ、かつ適正な平均細孔径、透気度および175℃での熱収縮率を有するセパレータを備えた実施例1~3の非水電解質二次電池は、通常のポリオレフィン製微多孔膜セパレータを使用した比較例6の非水電解質二次電池と比べても、負荷特性評価時の容量維持率および充放電サイクル特性評価時の容量維持率のいずれもが高く、優れた負荷特性および充放電サイクル特性を有している。なお、図3から明らかなように、実施例1の非水電解質二次電池に係るセパレータは、3次元的で異方性がない細孔を多数有しているが、実施例2、3の非水電解質二次電池に係るセパレータも、SEM観察の結果、実施例1の非水電解質二次電池に係るセパレータと同様の形状を有していることが判明した。
 また、通常のポリオレフィン製微多孔膜セパレータを使用した比較例6の非水電解質二次電池では、175℃放置試験によってセパレータの収縮が生じて電池電圧が大きく低下しているが、実施例1~3の非水電解質二次電池は、175℃放置試験後においても電圧が高く維持されていて信頼性が良好であり、また、セパレータに大きな変化が認められず、安全性も優れている。
 これに対し、モノマーのみをエネルギー線照射重合することにより得られた架橋樹脂を含有するセパレータを備えた比較例1、2の電池は、負荷特性評価時の容量維持率および充放電サイクル特性評価時の容量維持率のいずれもが低く、また、175℃放置試験後において、セパレータに負極からの剥がれも認められる。比較例1、2の電池に係るセパレータは、平均細孔径が大きすぎ、断面のSEM観察では細孔の均質性が低く、また、セパレータの負極からの剥離も認められ、これらの理由から、負荷特性や充放電サイクル特性が損なわれたと考えられる。
 比較例3の電池も、モノマーのみをエネルギー線照射重合することにより得られた架橋樹脂を含有するセパレータを備えているが、透気度が高すぎてリチウムイオン透過性が低いためか、負荷特性評価時の容量維持率および充放電サイクル特性評価時の容量維持率のいずれもが低い。
 また、比較例4の電池は、メチルエチルケトンのみを溶媒とするセパレータ形成用組成物を用いて形成したセパレータを備えているが、これも透気度が高すぎてリチウムイオン透過性が低いためか、負荷特性評価時の容量維持率および充放電サイクル特性評価時の容量維持率のいずれもが低い。
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。
 本発明の非水電解質二次電池は、従来から知られている非水電解質二次電池と同様の用途に用いることができる。
 1  正極
 2  負極
 3  セパレータ

Claims (9)

  1.  非水電解質二次電池に使用されるセパレータであって、
     架橋構造を有する樹脂(A)を少なくとも含有しており、
     前記架橋構造を有する樹脂(A)は、少なくとも、エネルギー線の照射により重合可能なオリゴマーに、エネルギー線を照射することで得られたものであり、
     平均細孔径が0.01~0.5μmであり、
     ガーレー値で表される透気度が45sec/100ml以上590sec/100ml未満であり、
     175℃における熱収縮率が2%未満であることを特徴とする非水電解質二次電池用セパレータ。
  2.  架橋構造を有する樹脂(A)のガラス転移温度が、0℃より高く80℃未満である請求項1に記載の非水電解質二次電池用セパレータ。
  3.  無機粒子(B)を更に含有する請求項1または2に記載の非水電解質二次電池用セパレータ。
  4.  架橋構造を有する樹脂(A)の体積Vと無機粒子(B)の体積Vとの比率V/Vが、0.6~9である請求項3に記載の非水電解質二次電池用セパレータ。
  5.  架橋構造を有する樹脂(A)は、エネルギー線の照射により重合可能なオリゴマーおよびモノマーに、エネルギー線を照射することで得られたものであり、前記架橋構造を有する樹脂(A)を形成する前記オリゴマーと前記モノマーとの比率が、質量比で、65:35~90:10である請求項1~4のいずれかに記載の非水電解質二次電池用セパレータ。
  6.  細孔の円形度が0.5以上0.8未満である請求項1~5のいずれかに記載の非水電解質二次電池用セパレータ。
  7.  少なくとも、集電体の表面に正極合剤層が形成された正極と、集電体の表面に負極合剤層が形成された負極と、多孔性のセパレータとを構成要素とする非水電解質二次電池であって、
     前記セパレータが、請求項1~6のいずれかに記載の非水電解質二次電池用セパレータであることを特徴とする非水電解質二次電池。
  8.  セパレータが、正極および負極の少なくとも一方と一体化している請求項7に記載の非水電解質二次電池。
  9.  請求項1~6のいずれかに記載の非水電解質二次電池用セパレータを製造する方法であって、
     エネルギー線の照射により重合可能なオリゴマーと、前記オリゴマーとの溶解度パラメータの差が±1.5以下の溶媒(a)と、前記オリゴマーとの溶解度パラメータの差が±1.55以上±15以下の溶媒(b)とを少なくとも含有するセパレータ形成用組成物を、基材に塗布する工程と、
     前記基材に塗布した前記セパレータ形成用組成物の塗膜にエネルギー線を照射して、架橋構造を有する樹脂(A)を形成する工程と、
     エネルギー線照射後の前記セパレータ形成用組成物の塗膜を乾燥して、孔を形成する工程とを有することを特徴とする非水電解質二次電池用セパレータの製造方法。
PCT/JP2012/054413 2012-02-23 2012-02-23 非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池 WO2013125007A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127032136A KR101421157B1 (ko) 2012-02-23 2012-02-23 비수 전해질 이차 전지용 세퍼레이터, 그 제조 방법 및 비수 전해질 이차 전지
US13/702,985 US20130224559A1 (en) 2012-02-23 2012-02-23 Separator for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2012524004A JP5099938B1 (ja) 2012-02-23 2012-02-23 非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池
PCT/JP2012/054413 WO2013125007A1 (ja) 2012-02-23 2012-02-23 非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池
CN2012800016225A CN103384928A (zh) 2012-02-23 2012-02-23 非水电解质二次电池用隔膜、其制造方法及非水电解质二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054413 WO2013125007A1 (ja) 2012-02-23 2012-02-23 非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池

Publications (1)

Publication Number Publication Date
WO2013125007A1 true WO2013125007A1 (ja) 2013-08-29

Family

ID=47528464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054413 WO2013125007A1 (ja) 2012-02-23 2012-02-23 非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池

Country Status (5)

Country Link
US (1) US20130224559A1 (ja)
JP (1) JP5099938B1 (ja)
KR (1) KR101421157B1 (ja)
CN (1) CN103384928A (ja)
WO (1) WO2013125007A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029939A1 (ja) * 2013-08-27 2015-03-05 日本ゼオン株式会社 二次電池用多孔膜スラリー組成物、二次電池用セパレータ、二次電池用電極及び二次電池
JP2017191777A (ja) * 2016-04-14 2017-10-19 三星エスディアイ株式会社Samsung SDI Co., Ltd. 多孔性耐熱層組成物、多孔性耐熱層を含む分離膜、および該分離膜を用いた電気化学電池
JP2019087523A (ja) * 2017-11-08 2019-06-06 三星エスディアイ株式会社Samsung SDI Co., Ltd. 多孔質絶縁層形成用組成物、非水電解質二次電池用電極、非水電解質二次電池及び非水電解質二次電池用電極の製造方法
JP2020136187A (ja) * 2019-02-22 2020-08-31 富士ゼロックス株式会社 全固体電池
JP7558166B2 (ja) 2018-11-30 2024-09-30 アルケマ フランス 多孔質フルオロポリマーフィルムの調製方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101536062B1 (ko) * 2013-12-18 2015-07-10 한화토탈 주식회사 수지 조성물과, 이를 이용하여 제조된 이차전지용 분리막 및 상기 분리막을 적용한 이차전지
KR102219691B1 (ko) * 2014-01-13 2021-02-24 에스케이이노베이션 주식회사 내열성 및 전기화학적 안정성이 우수한 세라믹 코팅 세퍼레이터 및 이의 제조방법
KR101618681B1 (ko) * 2014-12-30 2016-05-11 삼성에스디아이 주식회사 다공성 내열층 조성물, 다공성 내열층을 포함하는 분리막, 상기 분리막을 이용한 전기 화학 전지, 및 상기 분리막의 제조 방법
KR101709697B1 (ko) * 2014-12-30 2017-02-23 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
KR101551757B1 (ko) * 2014-12-30 2015-09-10 삼성에스디아이 주식회사 다공성 내열층 조성물, 다공성 내열층을 포함하는 분리막, 상기 분리막을 이용한 전기 화학 전지, 및 상기 분리막의 제조 방법
WO2016152266A1 (ja) 2015-03-23 2016-09-29 Necエナジーデバイス株式会社 リチウムイオン二次電池
KR20160115599A (ko) * 2015-03-27 2016-10-06 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
KR102501467B1 (ko) * 2017-11-16 2023-02-20 삼성전자주식회사 복합분리막, 그 제조방법 및 이를 포함하는 이차전지
WO2020111027A1 (ja) * 2018-11-26 2020-06-04 株式会社日本触媒 電気化学素子用セパレータ
JP7234654B2 (ja) * 2019-01-28 2023-03-08 株式会社リコー 電極及びその製造方法、電極素子、非水電解液蓄電素子
WO2020158545A1 (en) 2019-01-28 2020-08-06 Ricoh Company, Ltd. Liquid composition
JP2020119888A (ja) * 2019-01-28 2020-08-06 株式会社リコー 液体組成物
KR20240007938A (ko) * 2021-05-14 2024-01-17 알케마 인코포레이티드 음극용 결합제 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220761A (ja) * 1993-10-07 1995-08-18 Matsushita Electric Ind Co Ltd 有機電解液リチウム二次電池およびそのセパレータの製造法
JP2001151834A (ja) * 1999-06-07 2001-06-05 Toshiba Corp パターン形成材料、多孔質構造体の製造方法、パターン形成方法、電気化学セル、中空糸フィルター、多孔質カーボン構造体の製造方法、キャパシタの製造方法、および燃料電池の触媒層の製造方法
JP2003059479A (ja) * 2001-08-10 2003-02-28 Nitto Denko Corp 電解質成分担持セパレータとその利用とその製造
JP2003510784A (ja) * 1999-09-30 2003-03-18 エヴァレディー バッテリー カンパニー インコーポレイテッド 超薄セパレータを有する電気化学電池及びその製造法
JP2009227923A (ja) * 2008-03-25 2009-10-08 Kyoritsu Kagaku Sangyo Kk ネガパターンを有する物品を製造する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3961569B2 (ja) * 1995-11-15 2007-08-22 旭化成エレクトロニクス株式会社 複合高分子固体電解質およびそれを用いた非水系電気化学装置
JP2002298820A (ja) * 2001-03-29 2002-10-11 Yuasa Corp 電池用セパレータおよびそれを用いた電池
JP2008204858A (ja) * 2007-02-21 2008-09-04 Nitto Denko Corp 電極一体型高分子電解質膜とこれを用いた電気化学素子
KR101281568B1 (ko) * 2007-03-15 2013-07-03 히다치 막셀 가부시키가이샤 전기 화학 소자용 세퍼레이터, 전기 화학 소자용 전극 및 전기 화학 소자
CN101679668B (zh) * 2007-05-24 2012-02-22 日东电工株式会社 多孔膜的制造方法及多孔膜、以及非水电解质电池用隔膜及使用该隔膜的非水电解质电池
KR101125013B1 (ko) * 2009-07-29 2012-03-27 한양대학교 산학협력단 이온성 고분자를 포함하는 가교형 세라믹 코팅 분리막의 제조 방법, 이로부터 제조된 세라믹 코팅 분리막 및 이를 채용한 리튬이차전지
JP5463817B2 (ja) * 2009-09-16 2014-04-09 日産自動車株式会社 非水電解質二次電池およびこの製造方法
JP5329454B2 (ja) * 2010-01-28 2013-10-30 三洋電機株式会社 リチウムイオンポリマー電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220761A (ja) * 1993-10-07 1995-08-18 Matsushita Electric Ind Co Ltd 有機電解液リチウム二次電池およびそのセパレータの製造法
JP2001151834A (ja) * 1999-06-07 2001-06-05 Toshiba Corp パターン形成材料、多孔質構造体の製造方法、パターン形成方法、電気化学セル、中空糸フィルター、多孔質カーボン構造体の製造方法、キャパシタの製造方法、および燃料電池の触媒層の製造方法
JP2003510784A (ja) * 1999-09-30 2003-03-18 エヴァレディー バッテリー カンパニー インコーポレイテッド 超薄セパレータを有する電気化学電池及びその製造法
JP2003059479A (ja) * 2001-08-10 2003-02-28 Nitto Denko Corp 電解質成分担持セパレータとその利用とその製造
JP2009227923A (ja) * 2008-03-25 2009-10-08 Kyoritsu Kagaku Sangyo Kk ネガパターンを有する物品を製造する方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029939A1 (ja) * 2013-08-27 2015-03-05 日本ゼオン株式会社 二次電池用多孔膜スラリー組成物、二次電池用セパレータ、二次電池用電極及び二次電池
JPWO2015029939A1 (ja) * 2013-08-27 2017-03-02 日本ゼオン株式会社 二次電池用多孔膜スラリー組成物、二次電池用セパレータ、二次電池用電極及び二次電池
JP2017191777A (ja) * 2016-04-14 2017-10-19 三星エスディアイ株式会社Samsung SDI Co., Ltd. 多孔性耐熱層組成物、多孔性耐熱層を含む分離膜、および該分離膜を用いた電気化学電池
JP2019087523A (ja) * 2017-11-08 2019-06-06 三星エスディアイ株式会社Samsung SDI Co., Ltd. 多孔質絶縁層形成用組成物、非水電解質二次電池用電極、非水電解質二次電池及び非水電解質二次電池用電極の製造方法
JP7221592B2 (ja) 2017-11-08 2023-02-14 三星エスディアイ株式会社 多孔質絶縁層形成用組成物、非水電解質二次電池用電極、非水電解質二次電池及び非水電解質二次電池用電極の製造方法
JP7558166B2 (ja) 2018-11-30 2024-09-30 アルケマ フランス 多孔質フルオロポリマーフィルムの調製方法
JP2020136187A (ja) * 2019-02-22 2020-08-31 富士ゼロックス株式会社 全固体電池
JP7358745B2 (ja) 2019-02-22 2023-10-11 富士フイルムビジネスイノベーション株式会社 全固体電池

Also Published As

Publication number Publication date
KR101421157B1 (ko) 2014-07-18
US20130224559A1 (en) 2013-08-29
KR20130118207A (ko) 2013-10-29
CN103384928A (zh) 2013-11-06
JP5099938B1 (ja) 2012-12-19
JPWO2013125007A1 (ja) 2015-05-21

Similar Documents

Publication Publication Date Title
JP5099938B1 (ja) 非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池
JP5210461B1 (ja) 非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池
JP5525630B2 (ja) 非水電解質二次電池用電極、非水電解質二次電池及びその製造方法
JP5165158B1 (ja) 非水電解質二次電池及びその製造方法
KR101105748B1 (ko) 전기화학소자용 세퍼레이터와 그 제조방법, 및전기화학소자와 그 제조방법
JP5268673B2 (ja) 非水電解質二次電池の製造方法
JP5191022B1 (ja) 電気化学素子用セパレータ、その製造方法および電気化学素子
WO2013080946A1 (ja) 非水電解液電池用セパレータおよびそれを用いた非水電解液電池
KR101277612B1 (ko) 전기 화학 소자용 세퍼레이터, 그 제조 방법 및 전기 화학 소자
JP2008123996A (ja) 非水電解質電池用セパレータおよび非水電解質電池
JP2008027839A (ja) ライナー付き多孔質膜、多孔質膜の製造方法、およびリチウム二次電池の製造方法
JP2012033498A (ja) 電気化学素子
WO2012053286A1 (ja) 電気化学素子用セパレータとその製造方法、電気化学素子用電極および電気化学素子
JP2008066094A (ja) 電池用セパレータおよびリチウム二次電池
JP5113944B1 (ja) 電気化学素子用セパレータ、その製造方法および電気化学素子
JP2008004440A (ja) リチウム二次電池、およびその使用方法
JP2013196838A (ja) 非水系二次電池用セパレータ、及びそれを用いた非水系二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012524004

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127032136

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13702985

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869121

Country of ref document: EP

Kind code of ref document: A1