WO2012124525A1 - 非水電解質二次電池及びその製造方法 - Google Patents

非水電解質二次電池及びその製造方法 Download PDF

Info

Publication number
WO2012124525A1
WO2012124525A1 PCT/JP2012/055568 JP2012055568W WO2012124525A1 WO 2012124525 A1 WO2012124525 A1 WO 2012124525A1 JP 2012055568 W JP2012055568 W JP 2012055568W WO 2012124525 A1 WO2012124525 A1 WO 2012124525A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
silicon
secondary battery
aqueous electrolyte
Prior art date
Application number
PCT/JP2012/055568
Other languages
English (en)
French (fr)
Inventor
麻衣 横井
田中 忠佳
博之 南
井町 直希
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US14/002,515 priority Critical patent/US20130337324A1/en
Priority to JP2013504664A priority patent/JPWO2012124525A1/ja
Priority to CN2012800135953A priority patent/CN103443970A/zh
Publication of WO2012124525A1 publication Critical patent/WO2012124525A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery and a method for producing the same.
  • non-aqueous electrolyte secondary batteries that use non-aqueous electrolyte and charge and discharge by moving lithium ions between the positive and negative electrodes have been used as power sources for portable electronic devices and power storage.
  • a graphite material is widely used as a negative electrode active material in the negative electrode.
  • the discharge potential is flat and the lithium ions are inserted and desorbed between the graphite crystal layers and charged and discharged, so the generation of needle-like metallic lithium is suppressed and the volume change due to charge and discharge is also reduced. There is an advantage of less.
  • silicon, tin, aluminum, or the like that forms an alloy with lithium ions as a high-capacity negative electrode active material.
  • the theoretical capacity per unit weight is about 4200 mAh. Since it is very large as / g, various studies have been made for practical use.
  • silicon or the like that forms an alloy with lithium ions has a large volume change due to the insertion and extraction of lithium ions, and the expansion and contraction of the negative electrode active material is increased. Due to the reaction between the new surface generated by the peeling between the electrolyte and the electrolytic solution, there is a problem that the capacity is intermittently reduced and the cycle characteristics of the nonaqueous electrolyte secondary battery are deteriorated.
  • Patent Documents 1 to 3 a composite carbonaceous material in which silicon, aluminum, or the like that forms an alloy with lithium ions is supported on the surface of carbon particles, and the surface of the carbon particles is coated with a carbon material.
  • a change in volume of silicon, aluminum, or the like that accompanies occlusion / release of lithium ions is absorbed.
  • Patent Document 4 a negative electrode active material particle containing silicon and a negative electrode mixture layer containing a negative electrode binder such as polyimide resin, polyvinylidene fluoride, and polytetrafluoroethylene are formed on the surface of the negative electrode current collector at 200 to A lithium secondary battery using a negative electrode sintered at a temperature of 500 ° C. has been proposed.
  • a negative electrode active material particle containing silicon and a negative electrode mixture layer containing a negative electrode binder such as polyimide resin, polyvinylidene fluoride, and polytetrafluoroethylene
  • Patent Document 4 when polyimide is used as a binder, when a mixture of graphite and silicon or a silicon compound is used as a negative electrode active material, the slurry property of the negative electrode mixture slurry is lowered and applied. There is a problem that can not be. Accordingly, when a mixture of graphite material and silicon or silicon compound is used as the negative electrode active material, there is a problem that polyimide cannot be used as a binder.
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery excellent in cycle characteristics in a non-aqueous electrolyte secondary battery using a mixture of a graphite material and silicon or a silicon compound as a negative electrode active material.
  • a nonaqueous electrolyte secondary battery of the present invention is a nonaqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a nonaqueous electrolyte, wherein the negative electrode includes a negative electrode active material and A negative electrode binder, a negative electrode active material is a mixture of graphite material and silicon and / or silicon compound having a lower content than the graphite material, and the negative electrode binder is heat-treated polyacrylonitrile or a modified product thereof. It is a feature.
  • a nonaqueous electrolyte secondary battery having excellent cycle characteristics can be obtained.
  • the content of the negative electrode binder in the negative electrode is preferably in the range of 2.0 to 10.0 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the adhesiveness of the negative electrode active material layer with respect to a negative electrode collector will fall, and there exists a possibility that a negative electrode active material layer may fall out from a negative electrode collector.
  • the content of the negative electrode binder is more preferably in the range of 2.0 to 5.0 parts by mass.
  • the content of silicon and silicon compound in the negative electrode is preferably less than 20% by mass, more preferably in the range of 2.0 to 12.0% by mass with respect to the entire negative electrode active material.
  • the content of silicon and silicon compound is too small, it is difficult to obtain the effect of increasing the capacity of the battery, which is an effect expected by using silicon and / or silicon compound as the negative electrode active material.
  • the influence of the volume change of silicon becomes large.
  • the production method of the present invention is a method by which the nonaqueous electrolyte secondary battery of the present invention can be produced, and includes a mixture of a graphite material and silicon and / or a silicon compound as a negative electrode active material, and a negative electrode binder.
  • a step of preparing a negative electrode mixture slurry containing acrylonitrile or a modified product thereof, a step of applying a negative electrode mixture slurry on a negative electrode current collector to prepare a negative electrode precursor, and heat-treating the negative electrode precursor It comprises a step of producing a negative electrode by heat-treating acrylonitrile or a modified product thereof, a step of producing a non-aqueous electrolyte secondary battery containing a negative electrode, a positive electrode, and a non-aqueous electrolyte.
  • the negative electrode precursor is heat-treated to heat-treat the polyacrylonitrile as a negative electrode binder or a modified product thereof.
  • the heat treatment is performed in an inert atmosphere.
  • the inert atmosphere include a vacuum atmosphere and an inert gas atmosphere.
  • the inert gas atmosphere include an inert gas such as argon and a gas atmosphere such as nitrogen.
  • the heat treatment temperature is preferably 10 ° C. or more higher than the glass transition temperature of the negative electrode binder and lower than the melting point of the negative electrode binder.
  • the temperature is preferably within the range of 130 to 200 ° C. When the heat treatment temperature is less than 130 ° C., the effect of the heat treatment may not be sufficiently obtained. If the temperature of the heat treatment exceeds 200 ° C., the strength of the current collector such as copper foil may not be obtained.
  • the heat treatment temperature is more preferably in the range of 150 to 190 ° C.
  • the negative electrode active material in the present invention is a mixture of a graphite material and silicon and / or a silicon compound.
  • a mixture include a composite in which silicon and / or a silicon compound is supported on the surface of a graphite material, and a composite in which a graphite material is supported on the surface of silicon or a silicon compound.
  • the graphite material include artificial graphite and natural graphite.
  • silicon include polycrystalline silicon and amorphous silicon.
  • Examples of the silicon compound include SiO and SiO 2 .
  • the average particle diameter of silicon or a silicon compound is preferably in the range of 1 ⁇ m to 6 ⁇ m.
  • the average particle size is less than 1 ⁇ m, the specific surface area of the negative electrode active material increases, and the negative electrode active material and the electrolytic solution may easily react.
  • the average particle diameter exceeds 6 ⁇ m, the silicon or silicon compound in the slurry is heavily precipitated, which may make it difficult to apply.
  • the positive electrode active material can be used without any limitation as long as it can occlude and release lithium and has a noble potential.
  • a lithium transition metal composite oxide having a layered structure, a spinel structure, or an olivine structure can be used. Can be used. Of these, from the viewpoint of high energy density, lithium transition metal composite oxides having a layered structure are preferable. Examples of such lithium transition metal composite oxides include lithium-nickel composite oxides and lithium-nickel-cobalt composite oxides. And lithium-nickel-cobalt-aluminum composite oxide, lithium-nickel-cobalt-manganese composite oxide, and lithium-cobalt composite oxide.
  • binder used for the positive electrode examples include polyvinylidene fluoride (PVDF), a modified PVDF, a fluororesin having a vinylidene fluoride unit, and the like.
  • PVDF polyvinylidene fluoride
  • modified PVDF a fluororesin having a vinylidene fluoride unit
  • the solvent for the non-aqueous electrolyte for example, a solvent conventionally used for non-aqueous electrolyte secondary batteries can be used.
  • a mixed solvent of a cyclic carbonate and a chain carbonate is particularly preferably used.
  • the mixing ratio of cyclic carbonate and chain carbonate is preferably in the range of 1: 9 to 5: 5.
  • Examples of the cyclic carbonate include ethylene carbonate, fluoroethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinyl ethylene carbonate, and the like.
  • Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and the like.
  • Solutes of the non-aqueous electrolyte include LiPF 6, LiBF 4, LiCF 3 SO 3, LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3) 3, LiC ( SO 2 C 2 F 5) 3, LiClO 4 , etc. and mixtures thereof are exemplified.
  • electrolyte a gel polymer electrolyte obtained by impregnating a polymer such as polyethylene oxide or polyacrylonitrile with an electrolytic solution may be used.
  • FIG. 1 is a schematic diagram showing a tripolar test cell used in the examples.
  • FIG. 2 is a schematic view showing an electrode body in the triode test cell used in the examples.
  • Example 1 [Production of silicon active material] First, a polycrystalline silicon lump was produced by a thermal reduction method. Specifically, the silicon core installed in the metal reaction furnace (reduction furnace) is heated by heating to 800 ° C., and purified with the purified high purity monosilane (SiH 4 ) gas vapor. By flowing a gas mixed with hydrogen, polycrystalline silicon was deposited on the surface of the silicon core. Thereby, a polycrystalline silicon lump produced in a thick rod shape was produced.
  • SiH 4 purified high purity monosilane
  • polycrystalline silicon particles (silicon active material) having a purity of 99% were produced by pulverizing and classifying the polycrystalline silicon lump.
  • the crystallite size was 32 nm, and the median diameter was 10 ⁇ m.
  • the crystallite size was calculated by the Scherrer equation using the half width of the (111) peak of silicon in powder X-ray diffraction.
  • the median diameter was defined as the diameter at which the cumulative volume reached 50% in the particle size distribution measurement by the laser diffraction method.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode mixture slurry was applied on the surface of a copper foil as a current collector, dried at 105 ° C. in the air, and then rolled to obtain a negative electrode precursor.
  • the negative electrode precursor was heat-treated in a vacuum atmosphere at 150 ° C. for 10 hours to produce a negative electrode.
  • the packing density of the negative electrode mixture layer was 1.70 g / cm 3 .
  • Example 2 A negative electrode was produced in the same manner as in Example 1, except that the mass ratio of carbon material (graphite): silicon: polyacrylonitrile was 92: 8: 2.
  • Example 3 A negative electrode was produced in the same manner as in Example 1 except that the mass ratio of carbon material (graphite): silicon: polyacrylonitrile was 92: 8: 5.
  • Example 4 A negative electrode was produced in the same manner as in Example 1 except that the mass ratio of carbon material (graphite): silicon: polyacrylonitrile was 92: 8: 10.
  • Example 5 A negative electrode was produced in the same manner as in Example 1 except that the mass ratio of carbon material (graphite): silicon: polyacrylonitrile was 92: 8: 1.
  • tripolar test cell Using the negative electrodes of Examples 1 to 5, tripolar test cells were produced.
  • FIG. 1 is a schematic diagram showing the triode test cell.
  • An electrolytic solution 2 is placed in the container 1, and the electrode body 3 and the reference electrode 4 are provided in contact with the electrolytic solution 2.
  • FIG. 2 is a schematic view showing the electrode body 3.
  • the nickel tab 6 was attached to the negative electrode 5 by stacking the negative electrode 5 and the nickel tab 6 having a thickness of 0.05 mm and a width of 4 mm, punching out with a pin, and press-bonding.
  • As the counter electrode 8 a lithium metal plate having a size of 25 mm ⁇ 25 mm ⁇ 0.4 mm to which the tab 7 was attached was used.
  • the tabbed negative electrode 5 and the tabbed counter electrode 8 were overlapped with each other through a polypropylene porous film 9 and sandwiched between two glass plates 10 to be clamped to form an electrode body 3.
  • a lithium metal plate was used as the reference electrode 4.
  • the reference electrode 4 and the electrode body 3 were put in a container 1 (glass cell), and the electrolyte solution 2 was injected and then sealed to prepare a three-electrode test cell.
  • the tab and reference electrode of each electrode were fixed to a clip connected to the outside.
  • As the electrolytic solution a solution obtained by dissolving lithium hexafluorophosphate at a ratio of 1 mol / liter in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 3: 7 was used.
  • Constant current charging was performed up to 0.0 V with a current of 0.1 It (1.5 mA).
  • Electrodes obtained in Examples 1 to 5 were evaluated for adhesion. Specifically, the negative electrode after charging / discharging in a three-electrode test cell is taken out, wound around a round bar jig with a diameter of 5 mm, and checked for cracks and peeling on the surface of the active material, Evaluation based on the criteria.
  • Table 1 shows the adhesion and discharge capacity.
  • the content of the negative electrode binder in the negative electrode is preferably in the range of 2.0 to 10.0 parts by mass, more preferably 2.0 to 5.0 parts by mass with respect to 100 parts by mass of the negative electrode active material. It turns out that it is the range of a part.
  • Example 6 Using the negative electrode produced in Example 1, a test battery for a non-aqueous electrolyte secondary battery was produced as follows.
  • Lithium cobaltate as a positive electrode active material, acetylene black as a carbon conductive agent, and polyvinylidene fluoride (PVDF) as a binder are 95: 2.5: 2.5 in a mass ratio of lithium cobaltate: acetylene black: PVDF. It added to NMP so that it might become, and mixed, and the positive mix slurry was prepared.
  • the obtained positive electrode mixture slurry was applied to both surfaces of an aluminum foil, dried and then rolled to prepare a positive electrode.
  • the packing density of the positive electrode active material in the positive electrode was 3.6 g / cm 3 .
  • Electrolysis was performed by adding lithium hexafluorophosphate (LiPF 6 ) to a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 so as to be 2.0 mol / liter. A liquid was prepared.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • This electrode body is put in a battery outer package made of aluminum laminate, vacuum-dried at 105 ° C. for 2 hours, then injected with the non-aqueous electrolyte, and then the battery outer body is sealed to form a non-aqueous electrolyte secondary battery.
  • a test battery was prepared. The design capacity of this battery is 800 mAh.
  • Example 7 A negative electrode was produced in the same manner as in Example 1 except that the heat treatment condition was 190 ° C. for 10 hours, and a test battery was produced in the same manner as in Example 6 using this negative electrode.
  • Example 8 A test battery was produced in the same manner as in Example 7, except that silicon particles having a particle diameter of 1.1 ⁇ m were used as the negative electrode active material.
  • Comparative Example 1 Water is used as a dispersion medium when preparing a negative electrode mixture slurry, carboxymethylcellulose sodium salt (CMC) and styrene butadiene rubber emulsion (SBR) are used as binders, and a mass ratio of carbon material (graphite): silicon: CMC: SBR
  • CMC carboxymethylcellulose sodium salt
  • SBR styrene butadiene rubber emulsion
  • Comparative Example 2 A test battery was produced in the same manner as in Comparative Example 1 except that the negative electrode precursor was heat-treated at 190 ° C. for 10 hours and the heat-treated one was used as the negative electrode.
  • Example 3 A test battery was produced in the same manner as in Example 6 except that the negative electrode precursor was used as it was without being heat-treated.
  • Example 4 A test battery was produced in the same manner as in Example 8 except that the negative electrode precursor was used as it was without being heat-treated.
  • Example 5 A test battery was prepared in the same manner as in Example 6 except that a negative electrode precursor was prepared using polyvinylidene fluoride instead of polyacrylonitrile as the negative electrode binder, and the negative electrode precursor was used as it was without being heat-treated. Was made.
  • Comparative Example 6 A test battery was produced in the same manner as in Comparative Example 5, except that the negative electrode precursor was heat-treated at 130 ° C. for 10 hours to produce a negative electrode.
  • Capacity retention rate at 100 cycles (%) (discharge capacity at 100 cycles / discharge capacity at 1 cycle) ⁇ 100
  • the battery was charged at a constant current of 1 It (800 mA) to 4.2 V and charged at a constant voltage of 4.2 V until the current was 1/20 It (40 mA).
  • the effect of the heat treatment in the present invention is an effect obtained when polyacrylonitrile or a modified product thereof is used as the negative electrode binder.
  • the heat absorption of polyacrylonitrile or a modified product thereof may be reduced by reducing the liquid absorbency of the non-aqueous electrolyte. This is probably because the side reaction between the non-aqueous electrolyte and the negative electrode active material can be suppressed.
  • Liquid content (%) (weight after impregnation-weight after drying) / weight after impregnation
  • Reference Example 2 The liquid content was measured in the same manner as in Reference Example 1 except that the heat treatment was performed at 150 ° C. for 10 hours in a vacuum atmosphere instead of drying at 105 ° C. for 2 hours.
  • deCN is generated by heat treatment of polyacrylonitrile and its modified product. Such de-CNification is thought to reduce the liquid content of the non-aqueous electrolyte.

Abstract

 負極活物質に対して、黒鉛材料とケイ素またはケイ素化合物との混合物を用いた非水電解質二次電池において、サイクル特性に優れた非水電解質二次電池を得る。 正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備える非水電解質二次電池であって、負極が、負極活物質及び負極バインダーを含み、負極活物質が、黒鉛材料と、黒鉛材料より少ない含有量のケイ素及び/またはケイ素化合物との混合物であり、負極バインダーが、熱処理されたポリアクリロニトリルもしくはその変性体であること特徴としている。

Description

非水電解質二次電池及びその製造方法
 本発明は、リチウムイオン二次電池などの非水電解質二次電池及びその製造方法に関するものである。
 近年、携帯電子機器や電力貯蔵用等の電源として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて、充放電を行うようにした非水電解質二次電池が利用されている。このような非水電解質二次電池においては、その負極における負極活物質として黒鉛材料が広く利用されている。
 黒鉛材料の場合、放電電位が平坦であると共に、リチウムイオンが黒鉛の結晶層間に挿入・脱離されて充放電されるため、針状の金属リチウムの発生が抑制され、充放電による体積変化も少ないという利点がある。
 一方、近年においては、携帯電子機器等の多機能化・高性能化に対応させるために、さらに高容量の非水電解質二次電池が要望されている。上記の黒鉛材料の場合、層間化合物のLiC6の理論容量は372mAh/gと小さく、上記のような要望に十分に対応する
ことができないという問題があった。
 このため、近年においては、高容量の負極活物質として、リチウムイオンと合金を形成するケイ素、スズ、アルミニウム等を用いることが検討され、特に、ケイ素の場合、単位重量あたりの理論容量が約4200mAh/gと非常に大きいため、実用化に向けて種々の検討がなされている。
 しかし、リチウムイオンと合金を形成するケイ素等は、リチウムイオンの吸蔵・放出に伴う体積変化が大きく、負極活物質における膨張・収縮が大きくなり、負極活物質間や負極活物質と集電体の間の剥離により発生した新生面と電解液との反応によって、断続的に容量が低下し、非水電解質二次電池のサイクル特性が悪くなるという問題があった。
 このため、特許文献1~3に示されるように、炭素粒子の表面にリチウムイオンと合金を形成するケイ素やアルミニウム等を担持させ、さらにこの炭素粒子の表面を炭素材で被覆した複合炭素質材料を用い、リチウムイオンの吸蔵・放出に伴うケイ素やアルミニウム等の体積変化を吸収させて、非水電解質二次電池のサイクル特性を向上させるようにしたものが提案されている。
 また、特許文献4においては、ケイ素を含む負極活物質粒子と、ポリイミド樹脂、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどの負極バインダーを含む負極合剤層を負極集電体の表面上で、200~500℃の温度で焼結した負極を用いるリチウム二次電池が提案されている。
特開平5-286763号公報 特開2007-87956号公報 特開2008-27897号公報 特開2007-213875号公報
 しかしながら、上記特許文献1~3に提案された非水電解質二次電池においても、サイクル特性を充分に向上させることができないという問題があった。
 また、特許文献4に記載されているように、バインダーとしてポリイミドを用いると、黒鉛とケイ素またはケイ素化合物の混合物を負極活物質として用いた場合、負極合剤スラリーのスラリー性状が低下し、塗布することができないという問題がある。従って、黒鉛材料とケイ素またはケイ素化合物の混合物を負極活物質として用いる場合、ポリイミドをバインダーとして用いることができないという問題がある。
 本発明の目的は、負極活物質として、黒鉛材料とケイ素またはケイ素化合物との混合物を用いた非水電解質二次電池において、サイクル特性に優れた非水電解質二次電池を提供することにある。
 本発明の非水電解質二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備える非水電解質二次電池であって、負極が、負極活物質及び負極バインダーを含み、負極活物質が、黒鉛材料と、黒鉛材料より少ない含有量のケイ素及び/またはケイ素化合物との混合物であり、負極バインダーが、熱処理されたポリアクリロニトリルもしくはその変性体であることを特徴としている。
 本発明によれば、サイクル特性に優れた非水電解質二次電池とすることができる。
 本発明において、負極中における負極バインダーの含有量は、負極活物質100質量部に対し、2.0~10.0質量部の範囲であることが好ましい。負極バインダーの含有量が少なすぎると、負極集電体に対する負極活物質層の密着性が低下し、負極集電体より負極活物質層が脱落するおそれがある。また、負極バインダーの含有量が多すぎると、バインダーによって充放電反応が妨げられ、設計通りの容量が得られない場合がある。負極バインダーの含有量は、さらに好ましく、2.0~5.0質量部の範囲である。
 本発明において、負極中におけるケイ素及びケイ素化合物の含有量は、負極活物質全体に対し、20質量%未満であることが好ましく、より好ましくは、2.0~12.0質量%の範囲である。ケイ素及びケイ素化合物の含有量が少なすぎると、ケイ素及び/またはケイ素化合物を負極活物質として用いることにより期待される効果である、電池の高容量化の効果が得難くなる。また、ケイ素及びケイ素化合物の含有量が多すぎると、ケイ素の体積変化の影響が大きくなると考えられる。
 本発明の製造方法は、上記本発明の非水電解質二次電池を製造することができる方法であり、黒鉛材料とケイ素及び/またはケイ素化合物との混合物を負極活物質として含み、負極バインダーとしてポリアクリロニトリルもしくはその変性体を含む負極合剤スラリーを調製する工程と、負極合剤スラリーを負極集電体上に塗布して負極前駆体を作製する工程と、負極前駆体を熱処理することにより、ポリアクリロニトリルもしくはその変性体を熱処理して負極を作製する工程と、負極と、正極と、非水電解質を含む非水電解質二次電池を作製する工程とを備えることを特徴としている。
 本発明の製造方法によれば、サイクル特性に優れた非水電解質二次電池を効率良く製造することができる。
 本発明の製造方法においては、負極前駆体を熱処理することにより、負極バインダーであるポリアクリロニトリルもしくはその変性体を熱処理している。熱処理は、不活性雰囲気下で行われる。不活性雰囲気としては、例えば、真空雰囲気下、及び不活性ガス雰囲気下が挙げられる。不活性ガス雰囲気下としては、アルゴンなどの不活性ガスや、窒素などのガス雰囲気下が挙げられる。熱処理温度は、負極バインダーのガラス転移温度よりも10℃以上高く、かつ負極バインダーの融点未満の温度であることが好ましい。さらには、130~200℃の範囲内の温度であることが好ましい。熱処理温度が130℃未満になると、熱処理による効果が充分に得られない場合がある。熱処理の温度が200℃を超えると、銅箔などの集電体の強度が得られなくなる場合がある。熱処理温度はさらに好ましくは、150~190℃の範囲内である。
 本発明における負極活物質は、上述のように、黒鉛材料とケイ素及び/またはケイ素化合物との混合物である。このような混合物としては、黒鉛材料の表面にケイ素及び/またはケイ素化合物を担持させた複合物や、ケイ素またはケイ素化合物の表面に黒鉛材料を担持させた複合物なども含まれる。黒鉛材料としては、例えば、人造黒鉛や天然黒鉛などが挙げられる。ケイ素としては、多結晶シリコンやアモルファスシリコンなどが挙げられる。ケイ素化合物としては、SiOやSiOなどが挙げられる。
 本発明において、ケイ素またはケイ素化合物の平均粒子径は、1μm~6μmの範囲内であることが好ましい。平均粒子径が1μm未満になると、負極活物質の比表面積が大きくなり、負極活物質と電解液とが反応しやすくなる場合がある。一方、平均粒子径が6μmを超えると、スラリー中のケイ素またはケイ素化合物の沈降が激しく、塗布を行いにくくなる場合がある。
 正極活物質は、リチウムを吸蔵・放出でき、その電位が貴な材料であれば特に制限なく用いることができ、例えば、層状構造やスピネル型構造、オリビン型構造を有するリチウム遷移金属複合酸化物を使用することができる。中でも、高エネルギー密度の観点から、層状構造を有するリチウム遷移金属複合酸化物が好ましく、このようなリチウム遷移金属複合酸化物としては、リチウム-ニッケルの複合酸化物、リチウム-ニッケル-コバルトの複合酸化物、リチウム-ニッケル-コバルト-アルミニウムの複合酸化物、リチウム-ニッケル-コバルト-マンガンの複合酸化物、リチウム-コバルトの複合酸化物等が挙げられる。
 正極に用いるバインダーとしては、ポリフッ化ビニリデン(PVDF)やPVDFの変性体等、フッ化ビニリデン単位を有するフッ素樹脂などが挙げられる。
 非水電解質の溶媒としては、例えば、非水電解質二次電池に従来から用いられてきた溶媒を使用することができる。これらの中でも、環状カーボネートと鎖状カーボネートの混合溶媒が特に好ましく用いられる。具体的には、環状カーボネートと鎖状カーボネートの混合比(環状カーボネート:鎖状カーボネート)を、1:9~5:5の範囲内とすることが好ましい。
 環状カーボネートとしては、エチレンカーボネート、フルオロエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート等が挙げられる。鎖状カーボネートとしては、ジメチルカーボーネート、メチルエチルカーボネート、ジエチルカーボネート等が挙げられる。
 非水電解質の溶質としては、LiPF6、LiBF4、LiCFSO3、LiN(SOF)、LiN(SOCF、LiN(SO、LiC(SOCF、LiC(SO、LiClO等及びそれらの混合物が例示される。
 また、電解質として、ポリエチレンオキシドやポリアクリロニトリル等のポリマーに、電解液を含浸したゲル状ポリマー電解質を用いてもよい。
 本発明によれば、黒鉛材料とケイ素及び/またはケイ素化合物との混合物を用いた非水電解質二次電池において、優れた充放電サイクル特性を得ることができる。
図1は、実施例において用いた三極式試験セルを示す模式図である。 図2は、実施例において用いた三極式試験セルにおける電極体を示す模式図である。
 <実験1>
 (実施例1)
 〔ケイ素活物質の作製〕
 先ず、熱還元法により、多結晶ケイ素塊を作製した。具体的には、金属反応炉(還元炉)内に設置されたケイ素芯を通電加熱して800℃まで上昇させておき、これに精製された高純度モノシラン(SiH)ガスの蒸気と精製された水素とを混合したガスを流すことで、ケイ素芯の表面に多結晶ケイ素を析出させた。これにより、太い棒状に生成された多結晶ケイ素塊を作製した。
 次に、この多結晶ケイ素塊を粉砕分級することで、純度99%の多結晶ケイ素粒子(ケイ素活物質)を作製した。この多結晶ケイ素粒子においては、結晶子サイズは32nmであり、メディアン径は10μmであった。なお、結晶子サイズは、粉末X線回折のケイ素の(111)ピークの半値幅を用いて、scherrerの式により算出した。また、メディアン径は、レーザー回折法による粒度分布測定において、累積体積が50%となった径と規定した。
 〔負極の作製〕
 分散媒としてのN-メチル-2-ピロリドン(NMP)に、炭素材料としての黒鉛と、上記ケイ素粒子と、負極バインダーとしてのポリアクリロニトリルとを、炭素材料(黒鉛):ケイ素:ポリアクリロニトリルの質量比が92:8:3となるように添加して混合し、負極合剤スラリーを調製した。
 上記負極合剤スラリーを、集電体としての銅箔の表面上に塗布し、大気中105℃で乾燥した後圧延することにより、負極前駆体を得た。この負極前駆体を、真空雰囲気下で、150℃、10時間熱処理することにより、負極を作製した。負極合剤層の充填密度は、1.70g/cmとした。
 (実施例2)
 炭素材料(黒鉛):ケイ素:ポリアクリロニトリルの質量比を、92:8:2となるように混合したこと以外は、実施例1と同様にして負極を作製した。
 (実施例3)
 炭素材料(黒鉛):ケイ素:ポリアクリロニトリルの質量比を、92:8:5となるように混合したこと以外は、実施例1と同様にして負極を作製した。
 (実施例4)
 炭素材料(黒鉛):ケイ素:ポリアクリロニトリルの質量比を、92:8:10となるように混合したこと以外は、実施例1と同様にして負極を作製した。
 (実施例5)
 炭素材料(黒鉛):ケイ素:ポリアクリロニトリルの質量比を、92:8:1となるように混合したこと以外は、実施例1と同様にして負極を作製した。
 〔三極式試験セルの作製〕
 実施例1~5の負極を用いて、三極式試験セルを作製した。
 図1は、上記三極式試験セルを示す模式図である。容器1内に、電解液2が入れられており、電解液2に、電極体3、参照極4が接触するように設けられている。図2は、上記電極体3を示す模式図である。
 負極5と、厚み0.05mm及び幅4mmのニッケルタブ6を重ねてピンで打ち抜き、圧着することによって、負極5にニッケルタブ6を取り付けた。対極8としては、タブ7が取り付けられた25mm×25mm×0.4mmの大きさのリチウム金属板を用いた。タブ付けされた負極5と、タブ付けされた対極8とを、ポリプロピレン製多孔質膜9を介して重ね、2枚のガラス板10で挟み、クリップでとめて電極体3とした。
 参照極4としては、リチウム金属板を用いた。
 参照極4と、電極体3を容器1(ガラスセル)に入れ、電解液2を注入した後密閉し、三極式試験セルを作製した。各電極のタブ及び参照極は、外部と接続されたクリップに固定した。電解液としては、エチレンカーボネートとジエチルカーボネートを3:7の割合で混合した混合溶媒に、六フッ化リン酸リチウムを1モル/リットルの割合で溶解したものを用いた。
 〔放電容量の測定〕
 上記のようにして作製した三極式試験セルを用いて、以下の充電条件及び放電条件で充放電試験を行い、放電容量を測定した。放電容量は、初期サイクルの容量を測定した。
 ・充電条件
  0.1It(1.5mA)の電流で0.0Vまで定電流充電を行った。
 ・放電条件
  0.1It(1.5mA)の電流で1.0Vまで定電流放電を行った。
 ・休止
  充電と放電の間は、10分間休止させた。
 〔密着性の評価〕
 実施例1~5において得られた電極について、密着性を評価した。具体的には、三極式試験セルで充放電を行った後の負極を取り出し、直径が5mmの丸棒治具に電極を巻いて活物質の表面のひび割れと剥がれの有無を確認し、以下の基準で評価した。
  ○:ひび割れと剥がれがない
  △:一部にひび割れと剥がれを確認
 密着性及び放電容量を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなように、負極バインダーの含有量が、負極活物質100質量部に対し、2質量部未満になると、密着性が低下する。また、負極バインダーの含有量が増加すると、放電容量が低下する傾向が認められる。これは、バインダーによって充放電反応が妨げられることによるものと思われる。従って、負極中における負極バインダーの含有量は、負極活物質100質量部に対し、2.0~10.0質量部の範囲であることが好ましく、さらに好ましくは、2.0~5.0質量部の範囲であることがわかる。
 <実験2>
 (実施例6)
 実施例1で作製した負極を用い、以下のようにして非水電解質二次電池の試験用電池を作製した。
 〔正極の作製〕
 正極活物質であるコバルト酸リチウム、炭素導電剤であるアセチレンブラック、バインダーであるポリフッ化ビニリデン(PVDF)を、コバルト酸リチウム:アセチレンブラック:PVDFの質量比で、95:2.5:2.5となるようにNMP中に添加し、混合して正極合剤スラリーを調製した。
 得られた正極合剤スラリーを、アルミニウム箔の両面に塗布し、乾燥した後圧延して、正極を作製した。正極における正極活物質の充填密度は3.6g/cmとした。
 〔非水電解液の調製〕
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)を3:7の容積比で混合した混合溶媒に、六フッ化リン酸リチウム(LiPF)を2.0モル/リットルとなるように添加して電解液を調製した。
 〔電池の組み立て〕
 上記正極と、上記負極と、ポリエチレン製セパレータを用いて、正極と負極とをセパレータを介して対向させた。次に、正極タブ及び負極タブが共に、各電極内における最外周部に位置するように配置して渦巻き状に巻回した。その後、巻芯を引き抜いて渦巻き状の電極体を作製した。さらにこの渦巻き状の電極体を押し潰して、扁平型の電極体を作製した。
 この電極体を、アルミニウムラミネートからなる電池外装体内に入れ、105℃で2時間真空乾燥した後、上記非水電解液を注入し、その後電池外装体を封止して、非水電解質二次電池の試験用電池を作製した。なお、本電池の設計容量は800mAhである。
 (実施例7)
 熱処理条件を、190℃10時間とする以外は、実施例1と同様にして、負極を作製し、この負極を用いて実施例6と同様にして試験用電池を作製した。
 (実施例8)
 粒子径が1.1μmであるケイ素粒子を負極活物質として用いる以外は、実施例7と同様にして、試験用電池を作製した。
 (比較例1)
 負極合剤スラリーを作製する際の分散媒として水を用い、バインダーとしてカルボキシメチルセルロースナトリウム塩(CMC)及びスチレンブタジエンゴムエマルション(SBR)を用い、炭素材料(黒鉛):ケイ素:CMC:SBRの質量比が、92:8:1:1となるように混合して負極前駆体を作製し、負極前駆体に対し熱処理を行わずに、そのまま負極として用いる以外は、実施例6と同様にして試験用電池を作製した。
 (比較例2)
 負極前駆体に対し、190℃で10時間熱処理し、熱処理後のものを負極として用いる以外は、比較例1と同様にして試験用電池を作製した。
 (比較例3)
 負極前駆体を熱処理せずに、そのまま負極として用いる以外は、実施例6と同様にして試験用電池を作製した。
 (比較例4)
 負極前駆体を熱処理せずに、そのまま負極として用いる以外は、実施例8と同様にして試験用電池を作製した。
 (比較例5)
 負極用バインダーとしてポリアクリロニトリルに代えて、ポリフッ化ビニリデンを用いて負極前駆体を作製し、負極前駆体に対し熱処理せずに、そのまま負極として用いる以外は、実施例6と同様にして試験用電池を作製した。
 (比較例6)
 負極前駆体に対し、130℃で10時間熱処理して負極を作製する以外は、比較例5と同様にして試験用電池を作製した。
 〔電池性能の評価〕
 実施例6~8及び比較例1~6の試験用電池を用いて、以下の充放電条件で充放電試験を行い、100サイクル時の容量維持率を測定した。100サイクル時の容量維持率は、以下のようにして算出した。
  100サイクル時の容量維持率(%)=(100サイクル時の放電容量/1サイクル時の放電容量)×100
 ・充電条件
  1It(800mA)の電流で4.2Vまで定電流充電を行い、4.2V定電圧で電流1/20It(40mA)になるまで充電した。
 ・放電条件
  1It(800mA)の電流で2.75Vまで定電流放電を行った。
 ・休止
  充電と放電の間、10分間休止した。
 測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から明らかなように、本発明に従い、負極バインダーとしてポリアクリロニトリルを用い、かつポリアクリロニトリルを熱処理した実施例6~8は、熱処理をしていない比較例3及び4に比べ、高い充放電サイクル特性が得られている。
 また、比較例1及び2から明らかなように、バインダーとしてCMC及びSBRを用いた場合には、負極バインダーの熱処理によっても、ほとんど充放電サイクル特性の向上は認められない。
 また、比較例5及び6から明らかなように、負極バインダーとしてPVDFを用いた場合、熱処理することにより、若干充放電サイクル特性の向上は認められているが、その効果はポリアクリロニトリルの場合に比べ大きくないことがわかる。
 従って、本発明における熱処理の効果は、負極バインダーとしてポリアクリロニトリルもしくはその変性体を用いた場合に得られる効果であることがわかる。
 本発明に従い、熱処理することにより、充放電サイクル特性が向上する理由の詳細は明らかではないが、ポリアクリロニトリルもしくはその変性体を熱処理することにより、非水電解液の吸液性を低下させることができ、非水電解液と負極活物質との間での副反応を抑制することができることによるものと思われる。
 <参考実験>
 (参考例1)
 上記実施例において、負極バインダーとして用いたポリアクリロニトリルのNMP溶液を用い、ポリアクリロニトリルをシート状に成型し、室温で乾燥した後、2cm×5cmの大きさに切り抜いた。切り抜いたシートを、真空雰囲気下で105℃2時間乾燥した後、重量を測定した。
 その後、シートを上記電解液に60℃、2日間含浸した。含浸後、シートを電解液から取り出し、重量を測定した。以下の式により、含液率を測定し、測定結果を表1に示す。
  含液率(%)=(含浸後の重量-乾燥後の重量)/含浸後の重量
 (参考例2)
 105℃2時間の乾燥に代えて、真空雰囲気下で150℃10時間熱処理したこと以外は、参考例1と同様にして、含液率を測定した。
 (参考例3)
 105℃2時間の乾燥に代えて、真空雰囲気下で190℃10時間熱処理したこと以外は、参考例1と同様にして、含液率を測定した。
 測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から明らかなように、ポリアクリロニトリルの熱処理が高い程、含液率が低くなっていることがわかる。従って、負極活物質を被覆したバインダーの吸液性も、熱処理することで低くなると考えられる。このため、本発明に従いバインダーを熱処理することにより、非水電解液と負極活物質の接触が制限され、非水電解液と負極活物質との間の副反応が抑制されるため、サイクル特性が向上するものと考えられる。
 なお、ポリアクリロニトリル及びその変性体の熱処理により、脱CN化が生じているものと思われる。このような脱CN化により、非水電解液の含液率が低下するものと思われる。
 1…容器
 2…電解液
 3…電極体
 4…参照極
 5…負極
 6…ニッケルタブ
 7…タブ
 8…対極
 9…ポリプロピレン製多孔質膜
 10…ガラス板

Claims (5)

  1.  正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備える非水電解質二次電池であって、
     前記負極が、前記負極活物質及び負極バインダーを含み、前記負極活物質が、黒鉛材料と、前記黒鉛材料より少ない含有量のケイ素及び/またはケイ素化合物との混合物であり、前記負極バインダーが、熱処理されたポリアクリロニトリルもしくはその変性体であること特徴とする非水電解質二次電池。
  2.  前記負極中における前記負極バインダーの含有量が、前記負極活物質100質量部に対し、2.0~10.0質量部の範囲であることを特徴とする請求項1に記載の非水電解質二次電池。
  3.  前記負極中における前記ケイ素及びケイ素化合物の含有量が、前記負極活物質全体に対し、20質量%未満であることを特徴とする請求項1または2に記載の非水電解質二次電池。
  4.  黒鉛材料とケイ素及び/またはケイ素化合物との混合物を負極活物質として含み、負極バインダーとしてポリアクリロニトリルもしくはその変性体を含む負極合剤スラリーを調製する工程と、
     前記負極合剤スラリーを負極集電体上に塗布して負極前駆体を作製する工程と、
     前記負極前駆体を熱処理することにより、前記ポリアクリロニトリルもしくはその変性体を熱処理して負極を作製する工程と、
     前記負極と、正極と、非水電解質を含む非水電解質二次電池を作製する工程とを備えることを特徴とする非水電解質二次電池の製造方法。
  5.  前記熱処理が、不活性雰囲気下、130~200℃の範囲内の温度で行われることを特徴とする請求項4に記載の非水電解質二次電池の製造方法。
PCT/JP2012/055568 2011-03-16 2012-03-05 非水電解質二次電池及びその製造方法 WO2012124525A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/002,515 US20130337324A1 (en) 2011-03-16 2012-03-05 Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2013504664A JPWO2012124525A1 (ja) 2011-03-16 2012-03-05 非水電解質二次電池及びその製造方法
CN2012800135953A CN103443970A (zh) 2011-03-16 2012-03-05 非水电解质二次电池及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-057541 2011-03-16
JP2011057541 2011-03-16

Publications (1)

Publication Number Publication Date
WO2012124525A1 true WO2012124525A1 (ja) 2012-09-20

Family

ID=46830600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055568 WO2012124525A1 (ja) 2011-03-16 2012-03-05 非水電解質二次電池及びその製造方法

Country Status (4)

Country Link
US (1) US20130337324A1 (ja)
JP (1) JPWO2012124525A1 (ja)
CN (1) CN103443970A (ja)
WO (1) WO2012124525A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601766B2 (en) 2014-09-26 2017-03-21 Samsung Electronics Co., Ltd. Negative active material, lithium battery including the negative active material, and method of preparing the negative active material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393238B (zh) * 2014-11-27 2017-01-11 江西先材纳米纤维科技有限公司 一步法热处理硅电极
JPWO2016136226A1 (ja) * 2015-02-27 2017-12-28 三洋電機株式会社 非水電解質二次電池の製造方法
CN104766964B (zh) * 2015-04-24 2017-01-25 深圳市玖创科技有限公司 天然石墨细粉掺杂处理用作负极材料的方法
EP3742532B1 (en) * 2018-01-19 2023-07-19 Panasonic Energy Co., Ltd. Non-aqueous electrolyte secondary battery
US20210091373A1 (en) * 2018-03-28 2021-03-25 Hitachi Chemical Company, Ltd. Method for manufacturing negative electrode material for lithium-ion secondary battery, and method for manufacturing lithium-ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185140A (ja) * 1999-12-22 2001-07-06 Sony Corp 負極材料の製造方法及び負極の製造方法並びに非水電解質電池の製造方法
JP2003223892A (ja) * 2002-01-31 2003-08-08 Osaka Gas Co Ltd リチウム二次電池用負極材の製造方法とリチウム二次電池
JP2008027897A (ja) * 2006-06-20 2008-02-07 Osaka Gas Chem Kk リチウムイオン二次電池用負極活物質
WO2009128589A1 (en) * 2008-04-16 2009-10-22 Lg Chem. Ltd. Anode composition comprising acrylonitrile-acrylic acid copolymer as binder, method for preparing the anode composition and lithium secondary battery using the anode composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5844048B2 (ja) * 2011-02-01 2016-01-13 三洋電機株式会社 非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185140A (ja) * 1999-12-22 2001-07-06 Sony Corp 負極材料の製造方法及び負極の製造方法並びに非水電解質電池の製造方法
JP2003223892A (ja) * 2002-01-31 2003-08-08 Osaka Gas Co Ltd リチウム二次電池用負極材の製造方法とリチウム二次電池
JP2008027897A (ja) * 2006-06-20 2008-02-07 Osaka Gas Chem Kk リチウムイオン二次電池用負極活物質
WO2009128589A1 (en) * 2008-04-16 2009-10-22 Lg Chem. Ltd. Anode composition comprising acrylonitrile-acrylic acid copolymer as binder, method for preparing the anode composition and lithium secondary battery using the anode composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601766B2 (en) 2014-09-26 2017-03-21 Samsung Electronics Co., Ltd. Negative active material, lithium battery including the negative active material, and method of preparing the negative active material

Also Published As

Publication number Publication date
JPWO2012124525A1 (ja) 2014-07-24
CN103443970A (zh) 2013-12-11
US20130337324A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
KR102633418B1 (ko) 비수전해질 이차 전지용 부극 활물질 및 비수전해질 이차 전지, 그리고 비수전해질 이차 전지용 부극재의 제조 방법
JP6181590B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
TWI697148B (zh) 非水電解質二次電池用負極活性物質及非水電解質二次電池、以及非水電解質二次電池用負極材料之製造方法
TWI691115B (zh) 非水電解質二次電池用負極活性物質及其製造方法、以及使用該負極活性物質的非水電解質二次電池及非水電解質二次電池用負極材料之製造方法
JP6353329B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2015107581A1 (ja) 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
WO2013018486A1 (ja) 非水電解質二次電池用活物質及びその製造方法並びにそれを用いた負極
JP6523609B2 (ja) 非水電解質電池用電極、非水電解質二次電池及び電池パック
JP6239476B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
US20080241647A1 (en) Cylindrical lithium secondary battery
JP2018078114A (ja) 非水電解質二次電池用負極材
TWI705603B (zh) 負極活性物質、混合負極活性物質材料、非水電解質二次電池用負極、鋰離子二次電池、以及負極活性物質的製造方法
JP6535581B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池
JP2009099523A (ja) リチウム二次電池
JP5844048B2 (ja) 非水電解質二次電池
JP2009224307A (ja) 非水電解質二次電池及びその製造方法
JP6297991B2 (ja) 非水電解質二次電池
JP6523608B2 (ja) 非水電解質二次電池用電極、非水電解質二次電池及び電池パック
JP6448462B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池並びに非水電解質二次電池用負極活物質の製造方法
EP3447829A1 (en) Negative electrode active substance, mixed negative electrode active substance material, and method for producing negative electrode active substance
WO2012124525A1 (ja) 非水電解質二次電池及びその製造方法
TW201801379A (zh) 負極活性物質、混合負極活性物質材料、非水電解質二次電池、負極活性物質的製造方法及非水電解質二次電池的製造方法
JP2023015403A (ja) 非水電解質二次電池
JP2017059410A (ja) 非水電解質二次電池用負極活物質の製造方法、及び非水電解質二次電池の製造方法
JP2022121582A (ja) 非水電解質二次電池用負極及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504664

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14002515

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757962

Country of ref document: EP

Kind code of ref document: A1