WO2018181243A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2018181243A1
WO2018181243A1 PCT/JP2018/012290 JP2018012290W WO2018181243A1 WO 2018181243 A1 WO2018181243 A1 WO 2018181243A1 JP 2018012290 W JP2018012290 W JP 2018012290W WO 2018181243 A1 WO2018181243 A1 WO 2018181243A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium ion
melting point
ion secondary
positive electrode
Prior art date
Application number
PCT/JP2018/012290
Other languages
English (en)
French (fr)
Inventor
山本 伸司
悠 水野
裕理 遠藤
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2019509848A priority Critical patent/JP6989095B2/ja
Priority to EP18778257.8A priority patent/EP3605713B1/en
Priority to CN201880021244.4A priority patent/CN110495044A/zh
Publication of WO2018181243A1 publication Critical patent/WO2018181243A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery having a porous insulating layer between an electrode and a separator.
  • lithium ion secondary batteries have been widely used as electronic devices such as mobile phones and notebook computers, electric vehicles, and power sources for power storage.
  • This lithium ion secondary battery has the advantage of high energy density, but uses lithium metal and a non-aqueous electrolyte, so a sufficient countermeasure for safety is required.
  • the non-aqueous electrolyte secondary battery disclosed in Patent Document 1 includes a negative electrode in which a negative electrode active material layer is formed on a current collector, and a positive electrode in which a positive electrode active material layer is formed on a current collector.
  • a porous protective film having a thickness of 0.1 to 200 ⁇ m is formed on the surface of either the negative electrode active material layer or the positive electrode active material layer.
  • the protective film formed on the surface of the active material layer prevents the active material from dropping and reattaching after the active material layer is formed and before the electrode is housed in the battery can. Thereby, the internal short circuit of the battery induced by the active material reattached to the electrode surface can be prevented, and a non-aqueous electrolyte secondary battery having high reliability and safety can be obtained.
  • Patent Document 2 includes a step of applying a positive electrode paste containing a positive electrode active material and water to the surface of a positive electrode current collector to form a positive electrode mixture layer, and an insulating paste containing an inorganic oxide filler and an organic solvent. Forming a porous insulating film by applying to the surface of the positive electrode mixture layer, wherein the positive electrode active material contains a composite oxide containing lithium and nickel, and the molar ratio of Ni in the composite oxide to Li Discloses a method for producing a lithium ion secondary battery in which is 60 mol% or less.
  • the porous protective film described in Patent Document 1 can prevent the active material from falling off the electrode during production and prevent the occurrence of an internal short circuit, it can be used for nail penetration test, crush test, and overcharge test. There is no description of the effect of suppressing heat generation when an internal short circuit occurs.
  • the production method described in Patent Document 2 also provides a high-output and high-capacity lithium ion secondary battery that suppresses problems in the case of forming a porous insulating film on the surface of the positive electrode mixture layer. It is not clear about the heat suppression effect at the time of internal short circuit of the battery.
  • the subject of this invention is suppressing the heat_generation
  • a lithium ion secondary battery includes a current collector, an electrode including a positive electrode or a negative electrode on at least one surface of the current collector, a separator separating the positive electrode and the negative electrode, and between the electrode and the separator. And a non-aqueous electrolyte.
  • the porous insulating layer is made of a binder containing a mixture of polyvinylidene fluoride (PVDF) and a melting point depressant, and this melting point depressant is measured by differential scanning calorimetry in the presence of a nonaqueous electrolyte. The melting start temperature and / or melting peak temperature of the binder is reduced as compared with the case of only polyvinylidene fluoride.
  • the binder may be a copolymer of a vinylidene fluoride monomer and another fluorine-containing monomer or an oxygen-containing monomer, instead of a mixture of PVDF and a melting point depressant.
  • the lithium ion secondary battery of the present invention can suppress heat generation during an internal short circuit of the battery by forming a porous insulating layer between the electrode and the separator.
  • the lithium ion secondary battery of the present invention will be described.
  • the structure of the electrode layer composed of the positive electrode, the negative electrode, and the separator constituting the electrode element will be described based on the drawings, and then each component of the battery will be described in detail.
  • FIG. 1 is a schematic cross-sectional view showing an electrode layer of a lithium ion secondary battery according to an embodiment of the present invention.
  • the electrode layer 10 of this embodiment includes a positive electrode mixture layer 15 applied to one surface of a positive electrode current collector 16, a separator 13, and a negative electrode applied to the surface of a negative electrode current collector 11. And a mixture layer 12.
  • a porous insulating layer 14 is formed between the separator 13 and the positive electrode mixture layer 15 so as to cover the surface of the separator on the positive electrode mixture layer side.
  • This porous insulating layer 14 is made of a binder or polyvinylidene fluoride (PVDF) as a binder component and a melting point depressant, or a vinylidene fluoride monomer and another fluorine-containing monomer or oxygen-containing monomer. And a copolymer (hereinafter sometimes referred to as “PVDF copolymer”), and may further contain an inorganic oxide filler and / or a gas generating agent.
  • PVDF copolymer a copolymer
  • the melting temperature of the binder may be lower than the melting temperature of the separator, and for example, it is preferable to start melting in a temperature range of about 70 ° C. to about 100 ° C.
  • the porous insulating layer 14 is a pressure detection type current interrupt device (CID: Current Interrupt Device) when a predetermined battery voltage is exceeded (for example, when an overcharge state of 4.5 V or more is reached). It is preferable to promote gas generation in order to ensure that (not shown) operates.
  • CID Current Interrupt Device
  • the porous insulating layer contains an inorganic oxide filler, depending on the type and physical properties (specific surface area and particle diameter), the carbonate solvent may be decomposed during storage at high temperature or under high voltage conditions to generate gas.
  • a non-aqueous electrolyte (carbonate ester) is used. Decomposes and generates gas.
  • the gas generating compound is preferably hydrogen (H 2 ) and carbon dioxide.
  • a gas generating agent by adding a gas generating agent to the porous insulating layer 14, when a predetermined battery voltage is exceeded (for example, when an overcharged state of 4.8 V to 5.0 V is reached), The gas generating agent is decomposed to generate gas.
  • the gas generating agent is preferably a compound that generates carbon dioxide (CO 2 ).
  • a gas generating compound by adding a gas generating compound to the non-aqueous electrolyte, when a predetermined battery voltage is exceeded (for example, when an overcharged state of 4.5 V or more is reached), it decomposes and generates gas.
  • the gas generating compound is preferably hydrogen (H 2 ) and carbon dioxide.
  • the thickness of the porous insulating layer 14 is not limited as long as it can inhibit the permeation of lithium ions during melting, and is, for example, 0.1 ⁇ m to 10 ⁇ m, preferably 5 ⁇ m or less. If the thickness is less than 0.1 ⁇ m, the permeation of lithium ions may not be sufficiently inhibited during abnormal heat generation, and the heat generation suppression function cannot be exhibited reliably. When the thickness exceeds 10 ⁇ m, the resistance at normal time is increased, and the performance at the high rate as the battery characteristic is lowered.
  • the thickness of the porous insulating layer 14 may be, for example, 0.1, 0.3, 0.5, 1, 2, 5, 10 ⁇ m.
  • FIG. 2 is a cross-sectional view showing the configuration of the electrode layer 20 according to another embodiment.
  • the porous insulating layer 24 interposed between the positive electrode mixture layer 25 and the separator 23 is different from the structure shown in FIG. That is, in this embodiment, the porous insulating layer 24 is formed so as to cover the surface of the positive electrode mixture layer 25 in contact with the separator 23, but the other configuration is the same as that of the electrode layer shown in FIG. 1. .
  • the porous insulating layer may be formed between the separator and the negative electrode mixture layer (not shown), but effectively suppresses lithium ion permeation during an internal short circuit.
  • the porous insulating layer is preferably present between the positive electrode mixture layer and the separator.
  • this porous insulating layer suppresses lithium ion permeation at the time of melting, and further, when a predetermined battery voltage is exceeded, the gas generating agent is decomposed to generate gas.
  • a conductive aid or the like may be included.
  • this when providing a porous insulating layer on the surface of a positive mix layer, this may be called an overcoat layer.
  • the binder in the porous insulating layer melts below the melting temperature of the separator
  • the binder contains a melting point depressant or / and PVDF copolymer as the main component of the binder. It is considered that the melting point of PVDF is lowering.
  • the gas generating agent is decomposed to generate gas when a predetermined battery voltage is exceeded by including the gas generating agent in the porous insulating layer. It is considered based.
  • the inclusion of the inorganic filler in the porous insulating layer is based on the fact that the carbonate solvent decomposes and generates gas when a predetermined battery voltage is exceeded.
  • each component which comprises the electrode layer (10 and 20) of FIG. 1 and 2 is demonstrated in order.
  • separators 13 and 23 examples include a microporous film made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide, a porous flat plate, and a nonwoven fabric.
  • a porous resin sheet having a single-layer or multi-layer structure mainly composed of one or more polyolefin resins.
  • the thickness of the separator can be, for example, 15 ⁇ m to 30 ⁇ m.
  • a single-layer or multi-layer separator is used that has a porous resin layer that exhibits a shutdown function (when the temperature reaches a predetermined temperature, the resin melts and clogs the pores to block current). .
  • the porous insulating layers 14 and 24 are made of a binder or PVDF copolymer containing polyvinylidene fluoride (PVDF) as a binder component and a melting point depressant.
  • PVDF polyvinylidene fluoride
  • the melting start temperature and / or melting peak temperature of the binder or PVDF copolymer measured by differential scanning calorimetry in the presence of a nonaqueous electrolyte is lower than that of PVDF alone, Therefore, the porous insulating layer melts when the temperature rises and inhibits the transmission of lithium ions.
  • the porous insulating layer generates a gas to promote the operation of the pressure detection type current interrupting device when a predetermined battery voltage is exceeded (for example, when an overcharged state of 4.5 V or more). Promote.
  • Binder As a binder, polyvinylidene fluoride (PVDF) as a binder component and its melting point depressant and / or PVDF copolymer are included.
  • PVDF polyvinylidene fluoride
  • the binder component needs to be sticky to the current collector metal, which is achieved by the presence of polar groups in the binder component. Also, the binder component must be able to handle sufficient flexibility to handle the electrode and dimensional changes of the active material during the charge / discharge cycle.
  • the binder component must have specific electrochemical properties and must be compatible with the non-aqueous electrolyte solution used.
  • the mechanical and electrochemical properties of PVDF are suitable for the many purposes described above required for the binder component. Although it has been reported that the melting point of PVDF alone is about 180 ° C., it is considered that the melting point of the nonaqueous electrolyte secondary battery is slightly lowered because it is in contact with the nonaqueous electrolyte. Furthermore, by including a melting point depressant, the binder of the present embodiment melts when the temperature of the nonaqueous electrolyte secondary battery rises, increases the resistance of the conductive layer, and suppresses thermal runaway of the nonaqueous electrolyte secondary battery. be able to.
  • the melting start temperature of the binder is preferably low, but too low is not preferable because the function as the binder is hindered.
  • the melting start temperature of the binder is preferably about 50 ° C. to about 150 ° C., more preferably about 60 ° C. to about 130 ° C., and further preferably about 70 ° C. to about 110 ° C.
  • the melting peak temperature may also decrease.
  • the melting peak temperature of the binder is 70 ° C to 130 ° C.
  • the melting peak temperature of the binder is preferably 70 ° C. or higher from the viewpoint of thermal stability.
  • the melting point of the binder is preferably 130 ° C. or lower. More preferably, it is less than 130 degreeC, It is more preferable that it is 120 degrees C or less, It is still more preferable that it is 110 degrees C or less.
  • the “melting point depressant” and / or “PVDF copolymer” in the present embodiment melts the porous insulating layer at a temperature lower than that of the separator by lowering the melting start temperature and / or the melting peak temperature of the PVDF.
  • Ingredients when a porous insulating layer contains an inorganic oxide filler and a gas generating agent, it is thought that the gas generating function by them is promoted.
  • alumina used as an inorganic oxide filler may promote oxidative decomposition of carbonates contained as an electrolyte, and further promote oxidative decomposition when lithium carbonate or the like as a gas generating agent is used. It is thought that.
  • the porous insulating layer of the present embodiment has a positive electrode mixture layer and a separator. Located at the interface, an increase in battery potential can be quickly detected. Since such a function is preferably exhibited by lowering the melting start temperature and / or the melting peak temperature of the binding material, the binding material of the present embodiment has the melting start temperature of normal PVDF alone and / or Alternatively, the temperature is lower than the melting peak temperature.
  • the binder contained in the porous insulating layer of the present embodiment is a mixture of PVDF as a binder component and a melting point depressant or / and a PVDF copolymer, and the mixture is coexistent with a non-aqueous electrolyte.
  • the melting start temperature and / or the melting peak temperature when measured by the differential scanning calorimetry method can be selected as compared with the case of only PVDF measured under the same conditions.
  • the melting start temperature means the temperature at which the endotherm analyzed by differential scanning calorimetry (hereinafter also referred to as DSC) rises from the baseline, and is generally JIS7121 (plastic The transition temperature can be measured in accordance with the transition temperature measurement method.
  • the endothermic amount due to melting of the binder may be calculated from the peak area of the DSC curve, and the temperature when reaching about one-half of the total endothermic amount may be used as an index. This is because when the melting start temperature of the binder decreases, the heat absorption starts from a lower temperature and the binder melts when a certain amount of heat absorption is reached.
  • the nonaqueous electrolyte to be added to the sample is preferably an electrolytic solution in which a lithium salt containing at least LiPF 6 as an electrolyte is dissolved in a solvent mixture in which an organic solvent selected from cyclic carbonates and chain carbonates is used alone or in combination. .
  • a non-aqueous electrolyte in which 1M lithium hexafluorophosphate (LiPF 6 ) is dissolved in a 3: 7 mixed solution of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) is used.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the temperature is raised from room temperature to about 200 ° C. at a rate of 5 ° C./min. It can obtain
  • the melting point depressant is not particularly limited as long as it is a substance that can lower the melting start temperature and the melting peak temperature of PVDF used as a binder component, but is compatible with PVDF which is a crystalline polymer (compatible) ), Preferably a crystalline or non-crystalline polymer compound.
  • the term “compatible” refers to a state in which two different substances, particularly polymers, are uniformly mixed. These are completely compatible or partially compatible. May be. It can be determined that the mixed sample is transparent or has a film-forming ability so as to be uniformly mixed. For example, it is a compound containing a carbonyl group or a cyano group.
  • the carbonyl group has a structure of —C ( ⁇ O) —, and the oxygen atom has a much higher electronegativity than the carbon atom, the electron of the C ⁇ O bond is an electron positive carbon atom. It exists in the vicinity of oxygen atoms having a higher electronegativity than in the vicinity.
  • the cyano group is a strong electron-withdrawing group having a triple structure between a carbon atom and a nitrogen atom, with electrons biased on the nitrogen atom.
  • One or a plurality of carbonyl groups and cyano groups may be contained.
  • thermodynamic parameter ⁇ 12 value representing the strength of the interaction between the two polymers, and is derived by the Flory-Huggins theory. Based on this theory, it is said that a melting point drop occurs in a compatible crystalline / amorphous polymer blend system when the ⁇ 12 value shows a negative value.
  • the compatible substance includes a carboxyl group (—COOH), a carboxylic acid ester (—COO—R), a carbonate group (R—O— (C ⁇ O) —O—R ′), an imide group ( R—CONHCO—R ′), or a crystalline or non-crystalline polymer containing an amide group (R—C ⁇ ONH—R ′).
  • the specific reason why the melting point depressant composed of such a compatible material lowers the melting point of PVDF is not clear, but the electrical properties of these additives derived from a carbonyl group or a cyano group ( It is presumed that having a polarity) enhances the interaction with PDVF and exerts its melting point lowering effect.
  • the melting point depressant is acrylic acid (AAc), methacrylic acid (MAc), acetylacetone, polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinyl acetate (PVAc), phthalate.
  • methacrylic acid ester having good compatibility with PVDF examples include the following compounds. Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, hexyl methacrylate, octyl methacrylate, dodecyl methacrylate, stearyl methacrylate, 2-ethylhexyl methacrylate, phenyl methacrylate, benzyl methacrylate, methoxyethyl methacrylate, ethoxyethyl methacrylate, n-butoxyethyl methacrylate, isobutoxyethyl methacrylate, t-butoxyethyl methacrylate, phenoxyethyl methacrylate, methacryl Nonylphenoxyethyl
  • methacrylic acid esters the following are preferably used from the viewpoint of easy availability and compatibility with PVDF.
  • a vinyl monomer may be used individually by 1 type, and may use 2 or more types together.
  • the fluorinated alkyl methacrylate the following compounds can be preferably used. 2,2,2-trifluoroethyl methacrylate, 2,2,3,3-tetrafluoropropyl methacrylate, 2,2,3,3,3-pentafluoropropyl methacrylate, 2,2,3,4,4,4 -Hexafluorobutyl methacrylate, 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate, 2,2,2-trifluoroethyl ⁇ -fluoroacrylate, 2,2,3,3-tetra Fluoropropyl ⁇ -fluoroacrylate, 2,2,3,3,3-pentafluoropropyl ⁇ -fluoroacrylate, 2,2,3,3,4,4,5,5-octafluoropentyl ⁇ -fluoroacrylate, and the like.
  • the melting point depressant includes amide, imide, maleimide and the like.
  • a primary amide is particularly preferable, and examples thereof include N-vinylamide, divinylamide, silyl (vinyl) amide, glyoxylated vinylamide and the like.
  • the imide include divinylimide such as N-vinylimide, N-vinylphthalimide, and vinylacetamide.
  • maleimides include monomaleimide, bismaleimide, trismaleimide, and polymaleimide.
  • bismaleimide examples include, for example, N, N′-bismaleimide-4,4′-diphenylmethane, 1,1 ′-(methylenedi-4,1-phenylene) bismaleimide, N, N ′-(1, 1′-biphenyl-4,4′-diyl) bismaleimide, N, N ′-(4-methyl-1,3-phenylene) bismaleimide, 1,1 ′-(3,3′-dimethyl-1,1 '-Biphenyl-4,4'-diyl) bismaleimide, N, N'-ethylenedimaleimide, N, N'-(1,2-phenylene) dimaleimide, N, N '-(1,3-phenylene) dimaleimide N, N'-thiodimaleimide, N, N'-dithiodimaleimide, N, N'-ketone dimaleimide, N, N'-methylenebismaleimide, bismaleimide methyl methyl
  • the melting point depressant includes amide, imide, maleimide and the like.
  • the content of these melting point depressants and / or PVDF copolymers contained in the binder is preferably 1 to 50% by mass, more preferably 2 to 40% by mass, and still more preferably. Is 5-30% by mass. If the content of the melting point depressant is less than 1% by mass, the melting point depressing action of the binder component is small.
  • the binder of this embodiment is obtained by dissolving polyvinylidene fluoride (PVDF) as a binder component and a melting point depressant or / and PVDF copolymer in a common solvent that dissolves them together, followed by solvent replacement. It is preferred to prepare as a precipitated mixture. This is because the binder prepared by this method exists in a state where the binder component and the melting point depressant are uniformly mixed at the molecular level.
  • PVDF polyvinylidene fluoride
  • a powder mixture of polyvinylidene fluoride (PVDF) and a melting point depressant or / and a PVDF copolymer is mixed with a powder mixer such as a ball mill or a rocking mixer or a known crusher. May be prepared. This is because it is easily uniformized in a solvent for preparing the electrolytic solution or electrode mixture layer to become a binder.
  • PVDF polyvinylidene fluoride
  • the melting point depressant may be a copolymer (PVDF copolymer) of a vinylidene fluoride monomer and another fluorine-containing monomer or oxygen-containing monomer.
  • fluorine-containing monomers include vinyl fluoride, 3-fluorinated propylene, and fluoroalkyl vinyl ether
  • oxygen-containing monomers include ethylene glycol.
  • PVDF-HFP poly (vinylidene fluoride-hexafluoropropylene)
  • PVDF-PEO poly (vinylidene fluoride-oxyethylene)
  • PVDF polyvinylidene fluoride
  • a polyvinylidene fluoride (PVDF) copolymer containing PVDF as a binding component and a melting point depressant in the molecule may be used as the binder.
  • PVDF polyvinylidene fluoride
  • the melting start temperature and / or the melting peak temperature of the PVDF copolymer is lower than that of PVDF, which is a vinylidene fluoride single polymer.
  • PVDF which is a vinylidene fluoride single polymer.
  • it has a melting start temperature and / or a melting peak temperature at 45 ° C. to 110 ° C., more preferably 50 ° C. to 100 ° C.
  • PVDF-HFP hexafluoropropylene
  • PVDF-PEO polyoxyethylene
  • the melting start temperature and / or the melting peak temperature can be adjusted to a desired temperature and used.
  • the porous insulating layer preferably further contains an inorganic oxide filler.
  • an inorganic oxide filler aluminum oxide ( ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 ), aluminum hydroxide (Al (OH) 3 ), boehmite (AlOOH)), magnesia (magnesium oxide: MgO) , Magnesium hydroxide (Mg (OH) 2 ), zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), silicon dioxide (SiO 2 ), silicon carbide (SiC), aluminum nitride (AlN) or nitride Boron (BN) or the like is used.
  • the shape of the inorganic oxide filler is not limited, and various shapes such as a spherical shape, a needle shape, an ellipsoid shape, a plate shape, and a scale shape can be used.
  • the average particle size is not particularly limited, but is preferably 0.01 to 5 ⁇ m.
  • the “average particle diameter” means a cumulative 50 volume% from the fine particle side in the volume-based particle size distribution measured by a particle size distribution measuring apparatus based on a general laser diffraction / light scattering method. corresponding particle size (D 50 particle size, median diameter) to refer to.
  • the content of the inorganic oxide filler in the porous insulating layer is 0 to 99% by mass, preferably about 80 to 90% by mass. Increasing the added amount of the inorganic oxide filler contributes to the heat resistance of the separator, and if the added amount of the inorganic oxide filler is reduced as much as possible, it becomes a porous insulating layer that adheres to the separator and becomes a binder during internal short circuit. Melts and contributes to improved safety. Furthermore, by selecting the type and physical properties of the inorganic oxide filler, it is possible to decompose the electrolyte and generate gas when the battery is overcharged.
  • the gas generating agent in the present embodiment is a compound that can decompose and generate gas when a predetermined battery voltage is exceeded (for example, when an overcharged state of 4.8 to 5.0 V is reached). Not limited. Preferably, it is a compound that decomposes to generate carbon dioxide gas, and is lithium carbonate (Li 2 CO 3 ), lithium hydrogen carbonate (LiHCO 3 ), sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, sodium bicarbonate, carbonate One or more selected from potassium hydrogen, magnesium hydrogen carbonate, calcium hydrogen carbonate, 4,4′-oxybis (benzenesulfonylhydrazide) (OBSH), azodicarbonamide (ADCA) and the like can be used.
  • OBSH 4,4′-oxybis (benzenesulfonylhydrazide)
  • ADCA azodicarbonamide
  • the content of the gas generating agent in the porous insulating layer is 0 to 10% by mass, preferably about 0.5 to 5% by mass. Further, when the porous insulating layer contains both the inorganic oxide filler and the gas generating agent, the content ratio of the gas generating agent to the inorganic oxide filler is preferably 90:10 to 99: 1.
  • the above binder and, if desired, an inorganic oxide filler and a gas generating agent are represented by water, N-methylpyrrolidone, dimethyl sulfoxide, propylene carbonate, dimethylformamide, ⁇ -butyrolactone, or the like.
  • the aprotic polar solvent or a slurry obtained by dissolving or dispersing in the mixed solution can be applied to the electrode mixture layer or the surface of the separator and dried. By drying after slurry application, the dispersion solvent (water or organic solvent) volatilizes and opens to form a porous layer. The size of the pores at this time can be increased by adding a small amount of an inorganic oxide filler.
  • CHB and BP mixed in the porous layer are eluted when they come into contact with the carbonate-based electrolytic solution, they exhibit the same effect as when these gas generating agents are added to the electrolytic solution.
  • the size and amount of the pores can be adjusted by the slurry solid content concentration and the drying speed.
  • a slurry in which an inorganic oxide filler, a gas generating agent, and a binder are mixed in a ratio of 76: 4: 20 to 94: 5: 1 is applied to the surface of the positive electrode mixture layer and dried to obtain a positive electrode composite. It can be produced by forming a porous insulating layer on the surface of the agent layer and compressing it to a predetermined thickness by a roll press.
  • the positive electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium, and may be a positive electrode active material usually used in lithium ion secondary batteries.
  • a positive electrode active material usually used in lithium ion secondary batteries.
  • at least one metal element other than lithium and nickel that is, a transition metal element other than Li and Ni and (Or a typical metal element) is also meant to include an oxide containing a constituent metal element in a proportion equivalent to or less than nickel in terms of the number of atoms.
  • metal element other than Li and Ni examples include, for example, Co, Mn, Al, Cr, Fe, V, Mg, Ca, Na, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, It may be one or more metal elements selected from the group consisting of La and Ce. These positive electrode active materials may be used alone or in combination.
  • the positive electrode active material includes, for example, the general formula (1): Li t Ni 1-xy Co x Al y O 2 (wherein 0.95 ⁇ t ⁇ 1.15, 0 ⁇ x ⁇ 0.3, 0.1 ⁇ y ⁇ 0.2, and x + y ⁇ 0.5 are satisfied.) Lithium nickel cobalt aluminum-based oxide (NCA).
  • NCA Lithium nickel cobalt aluminum-based oxide
  • a specific example of NCA is LiNi 0.8 Co 0.15 Al 0.05 O 2 .
  • a lithium nickel cobalt manganese-based oxide (NCM) is given.
  • NCM has a high energy density per volume and excellent thermal stability.
  • the content of the positive electrode active material in the electrode mixture layer is usually 10% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more, and particularly preferably 70% by mass or more. Moreover, it is 99.9 mass% or less normally, Preferably it is 99 mass% or less.
  • Negative electrode active materials include metallic lithium, lithium-containing alloys, metals or alloys that can be alloyed with lithium, oxides that can be doped / undoped with lithium ions, and transition metals that can be doped / undoped with lithium ions At least one selected from the group consisting of nitrides and carbon materials capable of doping and undoping lithium ions (may be used alone or a mixture containing two or more of these may be used) Can be used.
  • Examples of metals or alloys that can be alloyed with lithium (or lithium ions) include silicon, silicon alloys, tin, and tin alloys. Further, lithium titanate may be used. Among these, carbon materials that can be doped / undoped with lithium ions are preferable. Examples of such carbon materials include carbon black, activated carbon, graphite materials (artificial graphite, natural graphite), amorphous carbon materials, and the like. The form of the carbon material may be any of a fibrous form, a spherical form, a potato form, and a flake form.
  • amorphous carbon material examples include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500 ° C. or less, and mesophase pitch carbon fiber (MCF).
  • MCMB mesocarbon microbeads
  • MCF mesophase pitch carbon fiber
  • Examples of the graphite material include natural graphite and artificial graphite.
  • artificial graphite graphitized MCMB, graphitized MCF, and the like are used.
  • a material containing boron can be used.
  • the graphite material those coated with a metal such as gold, platinum, silver, copper and tin, those coated with amorphous carbon, and those obtained by mixing amorphous carbon and graphite can be used. These carbon materials may be used alone or in combination of two or more.
  • an electrode mixture layer contains a conductive support agent.
  • a known conductive auxiliary agent can be used as the conductive auxiliary agent used in the present invention.
  • the known conductive aid is not particularly limited as long as it is a carbon material having conductivity, but graphite, carbon black, conductive carbon fiber (carbon nanotube, carbon nanofiber, carbon fiber), fullerene, etc. It can be used alone or in combination of two or more.
  • Examples of commercially available carbon black include Toka Black # 4300, # 4400, # 4500, # 5500 (Tokai Carbon Co., Furnace Black), Printex L and the like (Degussa Co., Furnace Black), Raven 7000, 5750, 5250, 5000 ULTRA III, 5000 ULTRA, etc., Conductex SC ULTRA, Conductex 975 ULTRA, etc., PUER BLACK100, 115, 205, etc. (manufactured by Colombian, Furnace Black), # 2350, # 2400B, # 2600B, # 30050B, # 3030B, # 3030B, # 3030B 3350B, # 3400B, # 5400B, etc.
  • the content of the conductive additive contained in the electrode mixture layer is preferably 1% by mass or more, and is preferably about 1 to 10% by mass, for example, natural graphite such as artificial graphite, flake graphite, lump graphite, and earth graphite However, it is not limited to these.
  • the content of the conductive additive contained in the electrode mixture layer is preferably 1% by mass or more, and is preferably about 1 to 10% by mass, for example, natural graphite such as artificial graphite, flake graphite, lump graphite, and earth graphite However, it is not limited to these.
  • the content of the conductive additive contained in the electrode mixture layer is preferably 1% by mass or more, and is preferably about 1 to 10% by mass, for example, natural graphite such as artificial graphite, flake graphite, lump graphite, and earth graphite However, it is not limited to these.
  • the content of the conductive additive contained in the electrode mixture layer is preferably 1% by mass or more, and is preferably about 1
  • Examples of the positive electrode current collector (16 or 26) include aluminum, nickel, and SUS, and examples of the negative electrode current collector (11 or 21) include copper, nickel, and SUS. .
  • aluminum and copper are preferable from the balance between high conductivity and cost.
  • Aluminum means aluminum and aluminum alloy
  • copper means pure copper and copper alloy.
  • the aluminum foil can be used on the secondary battery positive electrode side, the secondary battery negative electrode side, and the copper foil on the secondary battery negative electrode side.
  • A1085 material which is a pure aluminum type, and A3003 material, can be used.
  • it is the same also as copper foil Although it does not specifically limit, Rolled copper foil and electrolytic copper foil are used preferably.
  • the electrode layer included in the lithium ion secondary battery of the present embodiment is obtained by applying the electrode mixture slurry containing the electrode active material, the conductive auxiliary agent, and the binder described above to the surface of the current collector and drying it.
  • the binder for binding the electrode active material a fluorine resin typified by PVDF, a polysaccharide polymer, SBR, or the like can be used, but is not limited thereto.
  • the binder contained in the said porous insulating layer can also be used. In this case, it is preferable to form an electrode mixture slurry by dispersing the electrode active material and the conductive additive in a solution obtained by dissolving the binder described above in a solvent.
  • the solvent contained in the mixture slurry also serves as a common solvent for preparing the above binder, and is a non-proton represented by N-methylpyrrolidone, dimethyl sulfoxide, propylene carbonate, dimethylformamide, ⁇ -butyrolactone, etc. Polar solvent or a mixture thereof can be selected.
  • the application and drying method is not particularly limited.
  • methods such as slot die coating, slide coating, curtain coating, or gravure coating may be used.
  • the drying method include drying with warm air, hot air, low-humidity air, vacuum drying, and (far) infrared rays.
  • the drying time and drying temperature are not particularly limited, but the drying time is usually 1 minute to 30 minutes, and the drying temperature is usually 40 ° C. to 180 ° C.
  • the method for producing a mixture layer has a step of reducing the porosity of the active material layer by pressure treatment using a die press or a roll press after applying and drying the above mixture slurry on a current collector. Is preferred.
  • the electrolyte solution is preferably one that is usually used in a lithium ion secondary battery, and specifically has a form in which a supporting salt (lithium salt) is dissolved in an organic solvent.
  • a supporting salt lithium salt
  • the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), six Inorganic acid anion salts such as lithium fluorotantalate (LiTaF 6 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium decachlorodecaborate (Li 2 B 10 Cl 10 ), lithium trifluoromethanesulfonate (LiCF 3) Organic acids such as SO 3 ), lithium bis (trifluoromethanesulfonyl) imide (Li (CF 3 SO 2 )
  • organic solvent examples include cyclic carbonates, fluorine-containing cyclic carbonates, chain carbonates, fluorine-containing chain carbonates, aliphatic carboxylic acid esters, fluorine-containing aliphatic carboxylic acid esters, and ⁇ -lactone.
  • Fluorine-containing ⁇ -lactones, cyclic ethers, fluorine-containing cyclic ethers, chain ethers, and at least one organic solvent selected from the group consisting of fluorine-containing chain ethers can be used.
  • cyclic carbonates examples include propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate (BC).
  • fluorine-containing cyclic carbonate fluoroethylene carbonate (FEC) can be mentioned, for example.
  • chain carbonates include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), and dipropyl carbonate (DPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • MPC methyl propyl carbonate
  • EPC ethyl propyl carbonate
  • DPC dipropyl carbonate
  • aliphatic carboxylic acid esters examples include methyl formate, methyl acetate, and ethyl propionate.
  • examples of ⁇ -lactones include ⁇ -butyrolactone.
  • examples of cyclic ethers include tetrahydrofuran, 2-methyltetrahydrofuran, and 1,4-dioxane.
  • examples of the chain ethers include 1,2-ethoxyethane (DEE), ethoxymethoxyethane (EME), diethyl ether, 1,2-dimethoxyethane, and 1,2-dibutoxyethane.
  • Other examples include nitriles such as acetonitrile and amides such as dimethylformamide. These can be used alone or in combination of two or more.
  • the electrolyte may further contain a gas generating compound.
  • This gas generating compound may be added directly to the electrolytic solution, or may be eluted from the porous insulating layer into the electrolytic solution inside the battery.
  • the gas generating compound contained in the electrolytic solution is a compound that can decompose and generate gas when a predetermined battery voltage is exceeded (for example, when an overcharged state of 4.5 V or more is reached).
  • the gas generating compound is preferably a compound that generates hydrogen, and is selected from the group consisting of cycloalkylbenzene compounds (for example, cyclohexylbenzene (CHB)), alkylbenzene compounds, biphenyl compounds (for example, biphenyl (BP)), and alkylbiphenyl compounds. One or more of these can be added.
  • the amount of the gas generating compound added to the electrolytic solution is not particularly limited as long as a predetermined amount of gas is generated under a predetermined condition. For example, it is about 0.05 to 5.0% by mass, preferably 0.1 to It is 4.0 mass%.
  • the binder in the porous insulating layer formed between the electrode and the separator melts and the lithium ion secondary there is an effect of inhibiting the permeation, thereby suppressing the heat generation at the time of internal short circuit of the battery.
  • a gas such as hydrogen (H 2 ) or carbon dioxide (CO 2 ) is generated from the porous insulating layer formed between the electrode and the separator against a gradual temperature increase during overcharge. This is advantageous in that it promotes the operation of a pressure-sensitive current interrupting device (CID: CURRENT Interrupt Device).
  • Example preparation> PVDF and various melting point depressants (powder) were mixed at a predetermined ratio for about 15 minutes using an agate mortar.
  • a mixing ratio of PVDF (powder) and melting point depressant (powder) was 1: 1
  • 0.1 g was weighed and mixed.
  • This mixed powder was vacuum dried at room temperature (25 ° C.) for 10 hours or more.
  • 3 mg of the above sample was weighed into a SUS-PAN for DSC measurement that had been weighed in advance.
  • the lid (weighed in advance) was quickly set (weighed) and hermetically sealed with a dedicated press.
  • Table 2 shows the PVDF manufacturer name and product name, and the melting temperature of PVDF alone.
  • Table 3 shows the melting start temperature and peak temperature (melting point) when 75% by mass of the binder component (PVDF) and 25% by mass of the melting point depressant or 50% by mass of each were mixed.
  • FIG. 3 shows a PVDFW # 7200 powder sample (solid line) shown in Table 2 or a sample in which an electrolyte coexists with this (dotted line), and a sample obtained by adding 25% PMMA to PVDFW # 7200 (Table 3).
  • the first line from the top) shows a DSC chart. From the results shown in FIG. 3, it can be seen that the melting start temperature and melting point of PVDF, which is a binder component, are clearly reduced by the addition of a melting point depressant.
  • Seikyokusaku made 1. Preparation of positive electrode mixture layer slurry A 5 L planetary dispa was used for slurry preparation. 920 g of NCM523 (commercial formula LiNi 0.5 Co 0.2 Mn 0.3 O 2 , manufactured by Umicore), 20 g Super-P (conductive carbon manufactured by TIMCAL), KS-6 (flaky graphite manufactured by TIMREX) After mixing 20 g for 10 minutes, 100 g of N-methylpyrrolidone (NMP) was added and further mixed for 20 minutes.
  • NMP N-methylpyrrolidone
  • Coating / Drying A die coater was used for slurry coating. The slurry was applied to one side of an aluminum foil (thickness 20 ⁇ m, width 200 mm) so that the coating weight after drying was 19.0 mg / cm 2 and dried. Next, the slurry was applied to an aluminum foil on the opposite surface (uncoated surface) in the same manner so that the coating weight was 19.0 mg / cm 2 and dried. A positive electrode with a double-sided coating (38.0 mg / cm 2 ) thus obtained was prepared (CA-1).
  • Overcoat layer slurry preparation A 5 L planetary dispa was used for slurry preparation. 860 g of lithium carbonate, 100 g of Super-P (conductive carbon manufactured by TIMCAL), 250 g of 8% -PVDF solution (PVDFW # 7200 manufactured by Kureha dissolved in NMP), 20 g of polymethyl methacrylate (PMMA), N-methylpyrrolidone (PMMA) NMP) 540 g was added and mixed for 30 minutes. Next, 1125 g of NMP was added and the mixture was further mixed for 60 minutes, and then vacuum defoaming was performed for 30 minutes to prepare a slurry having a solid content concentration of 32%.
  • Coating / Drying As with the positive electrode mixture layer, a die coater was used for slurry coating. The slurry was applied to one side of an aluminum foil (thickness 20 ⁇ m, width 200 mm) coated with the positive electrode mixture layer so that the coating weight after drying was 2.0 mg / cm 2 and dried. Furthermore, it was applied to the other side and dried. In this way, a positive electrode CB-1 coated with an overcoat layer (OC-1) was obtained.
  • the electrode was slit to obtain a positive electrode C-1 so that an electrode application area (surface: 56 mm ⁇ 334 mm, back: 56 mm ⁇ 408 mm) and a tab welding margin were obtained.
  • Coating / Drying A die coater was used for slurry coating. The slurry was applied to one side of a copper foil (thickness 10 ⁇ m) and dried so that the coating weight after drying was 11.0 mg / cm 2 . Next, the slurry was applied to a copper foil on the opposite surface (uncoated surface) in the same manner so that the coating weight was 11.0 mg / cm 2 and dried. The double-sided coated (22.0 mg / cm 2 ) negative electrode roll thus obtained was dried at 120 ° C. for 12 hours in a vacuum drying oven.
  • the electrode was slit to obtain an electrode application area (front surface: 58 mm ⁇ 372 mm, back surface: 58 mm ⁇ 431 mm) and a tab welding margin, and negative electrode A-1 was obtained.
  • Example 2 A positive electrode and a negative electrode were produced in the same manner as in Example 1 except for the preparation of the overcoat layer slurry.
  • Overcoat layer slurry was prepared by adding 250 g of an 8% -PVDF-HFP solution (ARKEMA FLEX2751 dissolved in NMP) instead of PMMA used in Example 1 to prepare an overcoat layer slurry (OC-2). Coating and drying were performed in the same manner as in Example 1 to obtain positive electrode CB-2 coated with an overcoat layer (OC-2).
  • Example 3 A positive electrode and a negative electrode were produced according to Example 1 except for the preparation of the overcoat layer slurry.
  • the overcoat layer slurry was prepared using a 5 L planetary dispa. 430 g of ⁇ -alumina (Al 2 O 3 ) having a particle size of 2 ⁇ m and a specific surface area of 2 m 2 / g, 430 g of lithium carbonate, 100 g of Super-P (conductive carbon manufactured by TIMCAL), 8% -PVDF solution (PVDFW # 7200 manufactured by Kureha) Was dissolved in NMP), 250 g of 8% -PVDF-HFP solution (ARKEMA FLEX2751 dissolved in NMP) was added to 540 g of N-methylpyrrolidone (NMP) and mixed for 30 minutes. Next, 1125 g of N-methylpyrrolidone (NMP) was added and mixed for another 60 minutes, followed by vacuum defoaming for 30 minutes to prepare a slurry (OC-
  • Example 3 In the same manner as in Example 1, a die coater was used for slurry coating. The slurry was applied to one side of an aluminum foil (thickness 20 ⁇ m, width 200 mm) coated with the positive electrode mixture layer so that the coating weight after drying was 2.0 mg / cm 2 and dried. Furthermore, it was applied to the other side and dried. In this way, a positive electrode CB-3 coated with an overcoat layer (OC-3) was obtained.
  • Example preparation Aluminum tabs in the margin of the positive electrode for testing (single-sided coating, electrode surface 30 mm x 30 mm) with various specifications for the overcoat layer shown in Table 5 on the positive electrode (C-1) consisting of the positive electrode specifications shown in Table 4 Were joined by an ultrasonic joining machine (CK1). A nickel tab was joined to an 2.8 cm ⁇ 2.8 cm negative electrode Cu foil having the negative electrode specification (A-1) shown in Table 4 with an ultrasonic bonding machine (AK1). AK1 was brought into contact with the coated surface of CK1 with a PE separator in between, and sandwiched between 5 cm ⁇ 5 cm laminate sheets, and the three sides were heat-sealed.
  • CK1 ultrasonic joining machine
  • the prepared sample cell (K1) is sandwiched between heat blocks at a restraining pressure of 0.2 kgf / cm 2 , and the measurement conditions are, for example, that the temperature is raised from room temperature to about 200 ° C. at 5 ° C./min. At this time, an AC resistance value ( ⁇ ) at each frequency (eg, 1 kHz, 10 kHz, 100 kHz) can be obtained. An example of the result is shown below. Table 6 shows the resistance increase start temperature and the maximum resistance value measured for the sample.
  • Reference Example 1 is a test result obtained using a positive electrode without an overcoat layer.
  • a 5 L planetary dispa was used for slurry preparation.
  • ⁇ -Alumina (Al 2 O 3 ), PVDF (Solef 5130 from Solvay), lithium carbonate, cyclohexylbenzene (CHB) and biphenyl (BP) having a particle size of 2 ⁇ m and a specific surface area of 2 m 2 / g are shown in Table 7 below.
  • a slurry for porous insulating layer was prepared by dispersing in water or N-methylpyrrolidone (NMP) at a ratio.
  • NMP N-methylpyrrolidone
  • a separator base material (50% porosity and 16 ⁇ m thickness) was prepared by laminating a PP layer, a PE layer, and a PP layer in order.
  • the slurry for porous insulation layers was apply
  • a separator having a porous insulating layer (having a thickness of 4 to 5 ⁇ m) on one surface of the porous substrate was obtained.
  • the prepared sample cell (K1) is sandwiched between heat blocks at a restraining pressure of 0.2 kgf / cm 2 , and the measurement conditions are, for example, that the temperature is raised from room temperature to about 200 ° C. at 5 ° C./min. At this time, an AC resistance value ( ⁇ ) at each frequency (eg, 1 kHz, 10 kHz, 100 kHz) can be obtained. An example of the result is shown below. Table 8 shows the resistance increase start temperature and the maximum resistance value measured for the sample. Reference Example 2 shows the results of a test conducted using a separator without a porous insulating layer.
  • Winding type battery (design capacity 1Ah) 1. Winding Using the overcoat layer shown in Table 5 or the separator with a porous heat-resistant layer shown in Table 7 (60.5 mm ⁇ 450 mm), a wound battery (design capacity 1 Ah) was produced. Negative electrode A-1 (front surface / back surface), separator (positioned so that the porous insulating layer is in contact with positive electrode C-1), positive electrode C-1 (back surface / front surface), separator (the porous insulating layer is positive electrode C-1) The sheet was placed in contact with each other, wound up, and press-molded.
  • an aluminum tab was joined to the blank portion of the positive electrode C-1 with an ultrasonic bonding machine, and a nickel tab was joined to the blank portion of the negative electrode A-1 with an ultrasonic bonding machine. This was sandwiched between laminate sheets and heat-sealed on the three sides.
  • overcoat layer batteries manufactured with the same specifications as in Example 1 (batteries having positive electrodes with overcoat specifications OC-2 to OC-11 shown in Table 5 are shown in Examples 2 to 11. )
  • separator-type batteries (batteries having separators with OC-101 and OC102 insulating layer specifications in Table 7 are referred to as Reference Examples 101 and 102).
  • a wound battery (design capacity 1 Ah) was manufactured using a separator having no overcoat layer in the same specifications as in Reference Example 101 (Comparative Example 2). When the same crushing test was performed 5 times, the heat generation suppressing effect could not be confirmed in all cases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

電極とセパレーターとの間に多孔質絶縁層を形成することにより、電池の温度上昇時に多孔質絶縁層が溶融してリチウムイオンの透過を阻害し、それによって電池の内部短絡時の発熱を抑制する。本発明のリチウムイオン二次電池は、集電体と、集電体の少なくとも片面に正極又は負極を備える電極と、正極及び負極を隔離するセパレーターと、電極とセパレーターとの間に形成された多孔質絶縁層と、非水電解質とを備える。多孔質絶縁層は、ポリフッ化ビニリデン(PVDF)と融点降下剤とを含む結着材からなり、融点降下剤は、非水電解質の共存下に示差走査熱量測定法で測定される結着材の溶融開始温度及び/又は溶融ピーク温度を、PVDFのみの場合に比べて低下させる。

Description

リチウムイオン二次電池 クロスリファレンス
 本出願は、2017年3月30日に日本国において出願された特願2017-66794号に基づく優先権を主張するものであり、当該出願に記載された内容は全て、参照によりそのまま本明細書に援用される。また、本願において引用した全ての特許、特許出願及び文献に記載された内容は全て、参照によりそのまま本明細書に援用される。
 本発明は、電極とセパレーターとの間に多孔質絶縁層を備えたリチウムイオン二次電池に関するものである。
 近年、リチウムイオン二次電池は、携帯電話やノート型パソコンなどの電子機器、或いは電気自動車や電力貯蔵用の電源として広く使用されている。特に最近では、ハイブリッド自動車や電気自動車に搭載可能な、高容量で高出力かつエネルギー密度の高い電池の要望が急拡大している。このリチウムイオン二次電池は、エネルギー密度が高いという利点の反面、リチウム金属及び非水電解質を使用することから安全性に対する十分な対応策が必要となる。
 例えば、特許文献1に開示された非水電解質二次電池は、集電体に負極活物質層が形成されてなる負極と、集電体に正極活物質層が形成されてなる正極を有する非水電解液二次電池において、負極活物質層、正極活物質層のいずれかの表面に厚さ0.1~200μmの多孔性保護膜を形成している。この活物質層表面に形成した保護膜によって、活物質層を形成した後、電極が電池缶内に収納されるまでの間に発生する活物質の脱落、再付着を防止する。これにより、電極表面に再付着した活物質によって誘発される電池の内部ショートが防止でき、高い信頼性,安全性を有する非水電解液二次電池が得られる。
 また、特許文献2には、正極活物質および水を含む正極ペーストを正極集電体の表面に塗布して正極合剤層を形成する工程と、無機酸化物フィラーおよび有機溶媒を含む絶縁ペーストを正極合剤層の表面に塗布して多孔質絶縁膜を形成する工程とを含み、正極活物質が、リチウムおよびニッケルを含む複合酸化物を含み、複合酸化物に含まれるNiのLiに対するモル比が60モル%以下であるリチウムイオン二次電池の製造法が開示されている。
特許第3371301号公報 特開2010-21113号公報
 しかしながら、特許文献1に記載の多孔性保護膜は、製造に際する電極からの活物質の脱落を抑え、内部ショートの発生が防止できるものの、釘刺試験、圧壊試験及び過充電試験のような内部短絡が起きた場合の発熱抑制効果については記載がない。また、特許文献2に記載の製造法についても、正極合剤層の表面に多孔質絶縁膜を形成する場合の不具合を抑制し、高出力かつ高容量のリチウムイオン二次電池を提供するが、電池の内部短絡時の発熱抑制効果については明らかではない。
  本発明の課題は、電極とセパレーターとの間に多孔質絶縁層を形成することにより、電池の内部短絡時の発熱を抑制することである。
 本発明の一実施形態に係るリチウムイオン二次電池は、集電体と、集電体の少なくとも片面に正極又は負極を備える電極と、正極及び負極を隔離するセパレーターと、電極とセパレーターとの間に形成された多孔質絶縁層と、非水電解質とを備える。多孔質絶縁層は、ポリフッ化ビニリデン(PVDF)と、融点降下剤との混合物とを含む結着材からなり、この融点降下剤は、非水電解質の共存下に示差走査熱量測定法で測定される結着材の溶融開始温度及び/又は溶融ピーク温度を、ポリフッ化ビニリデンのみの場合に比べて低下させることを特徴とする。上記結着材は、PVDFと融点降下剤との混合物に代えて、フッ化ビニリデン単量体と他の含フッ素単量体又は含酸素単量体との共重合体であってもよい。
 本発明のリチウムイオン二次電池は、電極とセパレーターとの間に多孔質絶縁層を形成することにより、電池の内部短絡時の発熱を抑制することができる。
本発明の一実施形態に係る電極層の断面図である。 本発明の他の実施形態に係る電極層の断面図である。 PVDF単独及びPMMAを共存させた試料の典型的なDSC曲線を示す。
 以下、本発明のリチウムイオン二次電池について説明する。最初に、電極素子を構成する正極、負極及びセパレーターからなる電極層の構造を図面に基づいて説明し、その後、電池の各構成部材について詳細に説明する。
 [電極層の構成]
  図1は、本発明の一実施形態に係るリチウムイオン二次電池の電極層を示す概略断面図である。図1に示すように、本実施形態の電極層10は、正極集電体16の片面に塗布された正極合剤層15と、セパレーター13と、負極集電体11の表面に塗布された負極合剤層12とを有する。そして、セパレーター13と正極合剤層15との間に、セパレーターの正極合剤層側の表面を被覆するように多孔質絶縁層14が形成されている。
 この多孔質絶縁層14は、結着成分としてのポリフッ化ビニリデン(PVDF)と、融点降下剤とを含む結着材又はフッ化ビニリデン単量体と他の含フッ素単量体若しくは含酸素単量体との共重合体(以下、「PVDF共重合体」と称する場合がある。)からなり、場合によりさらに無機酸化物フィラー及び/又はガス発生剤を含んでもよい。多孔質絶縁層14は、セパレーター13と正極合剤層15とを接着するが、セパレーター13を介したリチウムイオンの透過を阻害することはない。ところが、内部短絡などにより電池の温度が急に上昇したときは、セパレーター13の溶融温度以下で、多孔質絶縁層14が溶融することによって多孔質形状の少なくとも一部が閉鎖し、電解液中のリチウムイオンの透過を阻害する。結着材の溶融温度は、セパレーターの溶融温度よりも低温であればよく、例えば、約70℃~約100℃の温度範囲で溶融開始することが好ましい。
 さらに、この多孔質絶縁層14は、所定の電池電圧を超えた際(例えば、4.5V以上の過充電状態となった場合)に、圧力検知式の電流遮断装置(CID:Current Interrupt Device)(図示せず)を確実に作動させるため、ガス発生を促進することが好ましい。多孔質絶縁層が無機酸化物フィラーを含む場合、その種類や物性(比表面積や粒子径)によって、高温保存時や高電圧条件下でカーボネート溶媒が分解し、ガスが発生する場合がある。例えば、多孔質絶縁層14に含有される無機フィラーは、所定の電池電圧を超えた際(例えば、4.5V以上の過充電状態となった場合)に、非水電解液(炭酸エステル)を分解してガスを発生する。該ガス発生化合物が、水素(H)及び二酸化炭素であることが好ましい。
 さらに好ましい実施形態において、多孔質絶縁層14にガス発生剤を添加することにより、所定の電池電圧を超えた際(例えば、4.8V~5.0Vの過充電状態となった場合)に、当該ガス発生剤が分解してガスを発生する。該ガス発生剤が、二酸化炭素(CO)を発生する化合物であることが好ましい。また、非水電解液にガス発生化合物を添加することにより、所定の電池電圧を超えた際(例えば、4.5V以上の過充電状態となった場合)に、分解してガスを発生する。該ガス発生化合物が、水素(H)及び二酸化炭素であることが好ましい。
 多孔質絶縁層14の厚さは、溶融時にリチウムイオンの透過を阻害できる程度であればよく、例えば、0.1μm~10μm、好ましくは5μm以下である。0.1μm未満では異常発熱時にリチウムイオンの透過を十分阻害できない場合があり、発熱抑制機能が確実に発揮されない。10μmを超えると、正常時の抵抗までもが高くなり、電池特性としてのハイレート時の性能が低下する。多孔質絶縁層14の厚さは、例えば、0.1、0.3、0.5、1、2、5、10μmであってもよい。
 図2は、他の実施形態に係る電極層20の構成を示す断面図である。図2に示す電極層20では、正極合剤層25とセパレーター23との間に介在する多孔質絶縁層24の構成のみが図1に示す構成と異なる。すなわち、本実施形態では、多孔質絶縁層24は、セパレーター23と接する正極合剤層25の表面を被覆するように形成されているが、その他の構成は図1に示す電極層と同様である。
 他の実施形態では、多孔質絶縁層は、セパレーターと負極合剤層との間に形成されていてもよいが(図示せず)、内部短絡時のリチウムイオンの透過を効果的に抑制する点で、多孔質絶縁層は正極合剤層とセパレーターとの間に存在することが好ましい。また、この多孔質絶縁層は、溶融時にリチウムイオンの透過を抑制し、さらに、所定の電池電圧を超えた際にガス発生剤が分解してガスを発生するものであるから、正極活物質を含む必要はないが、通常作動時の電池特性を向上させるために、正極表面に塗布する場合は導電助剤等を含んでもよい。本明細書において、多孔質絶縁層を正極合剤層の表面に設ける場合は、これをオーバーコート層と称する場合がある。
 セパレーターの溶融温度以下で、多孔質絶縁層中の結着材が溶融するメカニズムについては、結着材の中に融点降下剤あるいは/及びPVDF共重合体を含むことによって、結着材の主成分であるPVDFの融点が降下することに基づくと考えられる。
 多孔質絶縁層からガスが発生するメカニズムについては、多孔質絶縁層の中にガス発生剤を含むことによって、所定の電池電圧を超えた際にガス発生剤が分解してガスを発生することに基づくと考えられる。
 さらに、多孔質絶縁層の中に無機フィラーを含むことによって、所定の電池電圧を超えた際にカーボネート溶媒が分解してガスを発生することに基づくと考えられる。
  以下、図1及び2の電極層(10及び20)を構成する各構成要素について順に説明する。
 [セパレーター]
  セパレーター13、23としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる微多孔膜や多孔質の平板、更には不織布を挙げることができる。好適例として、一種または二種以上のポリオレフィン樹脂を主体に構成された単層または多層構造の多孔性樹脂シートが挙げられる。セパレーターの厚みは、例えば15μm~30μmとすることができる。好ましい一態様では、シャットダウン機能を発揮する(所定温度になると樹脂が融解して細孔が目詰まりすることにより電流を遮断する)多孔性樹脂層を備えた、単層または多層のセパレーターを使用する。
 [多孔質絶縁層]
  多孔質絶縁層14、24は、結着成分としてのポリフッ化ビニリデン(PVDF)と、融点降下剤とを含む結着材又はPVDF共重合体からなる。非水電解質の共存下に示差走査熱量測定法で測定される前記結着材又はPVDF共重合体の溶融開始温度及び/又は溶融ピーク温度は、PVDFのみの場合に比べて低下しており、それによって前記多孔質絶縁層が、温度上昇時に溶融してリチウムイオンの透過を阻害する。
 さらに、多孔質絶縁層は、所定の電池電圧を超えた際(例えば、4.5V以上の過充電状態となった場合)に、圧力検知式の電流遮断装置の作動を促進するため、ガス発生を促進する。
 (結着材)
  結着材としては、結着成分としてのポリフッ化ビニリデン(PVDF)と、その融点降下剤及び/又はPVDF共重合体とを含む。結着成分は集電体金属に対する粘着性を有する必要があり、これは結着成分中の極性基の存在によって達成される。また、結着成分は、電極を扱うための十分な可撓性と、充放電サイクル中の活物質の寸法変化に対応できなければならない。結着成分は、特定の電気化学的特性を備えていなければならず、使用される非水電解質液と相溶性でなければならない。
 PVDFの機械的特性および電気化学的特性は、結着成分に必要な上記多数の目的に適している。PVDF単独の融点は約180℃であることが報告されているが、非水電解質二次電池の中では非水電解質と接触しているためにその融点が若干低下していると考えられる。さらに融点降下剤を含むことによって、本実施形態の結着材は非水電解質二次電池の温度上昇時に溶融して導電層の抵抗を増大させ、非水電解質二次電池の熱暴走を抑制することができる。熱暴走を抑制するという観点からは、結着材の溶融開始温度は低いことが好ましいが、あまりに低すぎると結着材としての機能を阻害するため好ましくない。このため、結着材の溶融開始温度としては約50℃から約150℃が好ましく、約60℃から約130℃がより好ましく、約70℃から約110℃がさらに好ましい。
 結着材の溶融開始温度が低下することに伴って、その溶融ピーク温度(融点)も低下する場合があり、上記測定条件下において、結着材の溶融ピーク温度が、70℃~130℃であることが好ましい。結着材の溶融ピーク温度は、70℃以上であることが熱安定性の点で好ましい。一方、安全性の観点からは、結着材の融点が130℃以下であることが好ましい。さらに好ましくは130℃未満であり、120℃以下であることがより好ましく、110℃以下であることがさらになお好ましい。
 本実施形態における「融点降下剤」あるいは/及び「PVDF共重合体」は、上記PVDFの溶融開始温度及び/又は溶融ピーク温度を低下させることによってセパレーターよりも低温で上記多孔質絶縁層を溶融させる成分をいう。また、多孔質絶縁層が無機酸化物フィラーやガス発生剤を含む場合には、それらによるガス発生機能を促進すると考えられる。例えば、無機酸化物フィラーとして用いられるアルミナには、電解液として含まれるカーボネート類の酸化分解を促進する場合があり、さらにガス発生剤としての炭酸リチウムなどが用いられる場合にはその酸化分解を促進すると考えられる。これらの作用は、電池電圧が所定の値を超えた場合(例えば、4.8V~5.0Vの過充電状態)になったときに発揮される。ところが、正極合剤層の電位分布は一様ではなく、正極合剤層の厚み方向で異なり、表面側ほど高くなることから、本実施形態の多孔質絶縁層は正極合剤層とセパレーターとの界面に位置し、電池電位の上昇を速やかに検出することができる。このような機能は、結着材の溶融開始温度及び/又は溶融ピーク温度が低下することによって好ましく発揮されることから、本実施形態の結着材は、通常のPVDF単独の溶融開始温度及び/又は溶融ピーク温度よりも低下していることを特徴とする。
 したがって、本実施形態の多孔質絶縁層に含まれる結着材は、結着成分であるPVDFと、融点降下剤あるいは/及びPVDF共重合体とを混合し、当該混合物を、非水電解質の共存下に、示差走査熱量測定法で測定したときの溶融開始温度及び/又は溶融ピーク温度が、同一条件で測定したPVDFのみの場合に比べて低下しているものを選択することができる。なお、本実施形態において、溶融開始温度とは、示差走査熱量分析法(以下、DSCともいう)によって分析される吸熱がベースラインから立ち上がるときの温度を意味し、一般的には、JIS7121(プラスチックの転移温度測定法)に準拠して測定することができる。より明確化のためには吸熱ピークのピークトップに対して10%若しくは20%程度又は50%程度の吸熱が認められる温度であってもよい。あるいは、結着材が溶融することによる吸熱量をDSCカーブのピーク面積から計算し、総吸熱量の約2分の1に達したときの温度を指標としてもよい。結着材の溶融開始温度が低下することによって、より低い温度から吸熱が始まり、ある一定の吸熱量に達したときに結着材が溶融するからである。
 (融点及び溶融開始温度の測定方法)
  例えば、日立ハイテクサイエンス製高感度型示差走査熱量計DSC7000X装置等を用い、PVDFと融点降下剤とを有機溶媒に溶解するか、または粉体のまま乳鉢等で混合した後、乾燥した粉体約5mgをアルミパンに詰め、これに非水電解質を加えて試料とする。試料に添加する非水電解質は、環状カーボネート及び鎖状カーボネートから選ばれる有機溶媒が単独あるいは複数種を組み合せた溶媒混合物中に、電解質として少なくともLiPFを含むリチウム塩を溶解させた電解液が好ましい。本実施形態では、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との、3:7の混合溶液中、1Mの六フッ化リン酸リチウム(LiPF)を溶解した非水電解質を用いる。測定条件は、例えば、室温から約200℃まで、5℃/分で昇温する。このとき得られる吸熱曲線より求めることができる。
 融点降下剤としては、結着成分として用いられるPVDFの溶融開始温度及び溶融ピーク温度を降下させうる物質であれば特に限定されるものではないが、結晶性高分子であるPVDFと相溶(適合)する化合物、好ましくは結晶性又は非結晶性の高分子化合物を用いることができる。本明細書において、用語「相溶」とは、2種類の異なる物質、特に、高分子が均一に混和する状態をいい、これらは、完全に相溶しても、また一部が相溶してもよい。混合後の試料が透明になるか、又はフィルム形成能を有することによって均一に混和したことを判定することができる。例えば、カルボニル基又はシアノ基を含有する化合物である。カルボニル基は、-C(=O)-なる構造を有し、酸素原子は、炭素原子よりもはるかに電気陰性度が大きいので、C=O結合の電子は、電気的に陽性な炭素原子の近傍よりも、電気陰性度の大きい酸素原子の近傍に偏って存在する。同様に、シアノ基は、炭素原子と窒素原子間の三重構造を有し、窒素原子上に電子が偏っており、強い電子吸引基である。カルボニル基及びシアノ基は1又は複数個含まれていてもよい。
 一般に、結晶性高分子と非結晶性高分子に相溶性がある場合には、結晶性高分子の融点降下が生じることが知られている。融点降下に最も影響を与える因子は、両高分子間の相互作用の強さを表す熱力学的パラメータχ12値であり、フローリー-ハギンス(Flory-Huggins)理論により導き出される。この理論に基づくと、相溶する結晶性/非結晶性高分子ブレンド系においては、χ12値が負の値を示す場合に融点降下が生じるといわれている。好ましい実施形態では、前記相溶性物質が、カルボキシル基(-COOH)、カルボン酸エステル(-COO-R)、カーボネート基(R-O-(C=O)-O-R')、イミド基(R-CONHCO-R')、又はアミド基(R-C=ONH-R')を含有する結晶性又は非結晶性高分子である。
 本実施形態において、このような相溶性物質からなる融点降下剤が、PVDFの融点を降下させる具体的理由は明らかではないが、これらの添加剤がカルボニル基やシアノ基に由来する電気的性質(極性)を有することが、PDVFとの相互作用を強め、その融点降下作用を発揮するものと推察される。
 したがって、好ましい実施形態では前記融点降下剤が、アクリル酸(AAc)、メタクリル酸(MAc)、アセチルアセトン、ポリアクリル酸メチル(PMA)、ポリメタクリル酸メチル(PMMA)、ポリ酢酸ビニル(PVAc)、フタル酸ジ-2-エチルヘキシル(DEHP)、ポリブチレンサクシネート(PBS)、ポリカーボネート(PC)、ポリアクリロニトリル(PAN)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、及びそれらの誘導体(共重合体)からなる群より選ばれる1種以上である。
 PVDFと相溶性の良いメタクリル酸エステルとしては、例えば、以下の化合物を挙げることができる。メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸ヘキシル、メタクリル酸オクチル、メタクリル酸ドデシル、メタクリル酸ステアリル、メタクリル酸2-エチルヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸メトキシエチル、メタクリル酸エトキシエチル、メタクリル酸n-ブトキシエチル、メタクリル酸イソブトキシエチル、メタクリル酸t-ブトキシエチル、メタクリル酸フェノキシエチル、メタクリル酸ノニルフェノキシエチル、メタクリル酸3-メトキシブチル、ブレンマーPME-100(商品名、日本油脂(株)製)、ブレンマーPME-200(商品名、日本油脂(株)製)。
前記メタクリル酸エステルの中では、入手のし易さやPVDFとの相溶性などの観点から、以下のものが好ましく用いられる。メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸ドデシル、メタクリル酸ステアリル、メタクリル酸2-エチルヘキシルが好ましく、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸t-ブチルがより好ましい。ビニル単量体は、1種を単独で用いてもよく2種以上を併用してもよい。
 また、フッ素化アルキルメタクリレートとしては、以下の化合物が好適に使用可能である。2,2,2-トリフルオロエチルメタクリレート、2,2,3,3-テトラフルオロプロピルメタクリレート、2,2,3,3,3-ペンタフルオロプロピルメタクリレート、2,2,3,4,4,4-ヘキサフルオロブチルメタクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレート、2,2,2-トリフロオロエチルαフルオロアクリレート、2,2,3,3-テトラフルオロプロピルαフルオロアクリレート、2,2,3,3,3-ペンタフルオロプロピルαフルオロアクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチルαフルオロアクリレート等。
 本発明の一実施形態として、上記融点降下剤は、アミド、イミド、マレイミドなどが含まれる。
  アミドとしては、 第1級アミドが特に好ましく、例えば、N-ビニルアミド、ジビニルアミド、シリル(ビニル)アミド、グリオキシル化ビニルアミドなどを挙げることができる。
  イミドの具体例としては、例えば、N-ビニルイミド、N-ビニルフタルイミド、ビニルアセトアミドなどのジビニルイミドを挙げることができる。
  マレイミドとしては、例えば、モノマレイミド、ビスマレイミド、トリスマレイミド、ポリマレイミドなどを挙げることができる。
 ビスマレイミドの具体例としては、例えば、N,N'-ビスマレイミド-4,4'-ジフェニルメタン、1,1'-(メチレンジ-4,1-フェニレン)ビスマレイミド、N,N'-(1,1'-ビフェニル-4,4'-ジイル)ビスマレイミド、N,N'-(4-メチル-1,3-フェニレン)ビスマレイミド、1,1'-(3,3'-ジメチル-1,1'-ビフェニル-4,4'-ジイル)ビスマレイミド、N,N'-エチレンジマレイミド、N,N'-(1,2-フェニレン)ジマレイミド、N,N'-(1,3-フェニレン)ジマレイミド、N,N'-チオジマレイミド、N,N'-ジチオジマレイミド、N,N'-ケトンジマレイミド、N,N'-メチレンビスマレインイミド、ビスマレインイミドメチル-エーテル、1,2-ビスマレイミド-1,2-エタンジオール、N,N'-4,4'-ジフェニルエーテル-ビスマレイミド、4,4'-ビスマレイミド-ジフェニルスルホンなどを挙げることができる。
 本発明の一実施形態として、上記融点降下剤は、アミド、イミド、マレイミドなどが含まれる。
 前記結着材中に含まれるこれらの融点降下剤あるいは/及びPVDF共重合体の含有率は、1~50質量%であることが好ましく、より好ましくは、2~40質量%であり、さらに好ましくは5~30質量%である。融点降下剤の含有量が1質量%より少ないと、結着成分の融点降下作用が小さく、また50質量%より多いと、結着材として電極活物質との結合力が低下するおそれがある。
 本実施形態の結着材は、結着成分としてのポリフッ化ビニリデン(PVDF)と、融点降下剤あるいは/及びPVDF共重合体とを、これらを共に溶解する共通溶媒に溶解した後、溶媒置換して沈殿させた混合物として調製することが好ましい。この方法により調製された結着材は、結着成分と融点降下剤とが分子レベルで均一に混合した状態で存在するからである。
 他の実施形態では、ポリフッ化ビニリデン(PVDF)と、融点降下剤あるいは/及びPVDF共重合体との粉体混合物を、ボールミルやロッキングミキサーなどの粉体混合機又は公知の解砕機などにて混合して調製してもよい。電解液若しくは電極合剤層を調製する際の溶媒中で容易に均一化して結着材となるからである。
 (PVDF共重合体)
  融点降下剤としては、フッ化ビニリデン単量体と他の含フッ素単量体又は含酸素単量体との共重合体(PVDF共重合体)であってもよい。他の含フッ素単量体としては、例えば、フッ化ビニル、3-フッ化プロピレン、フルオロアルキルビニルエーテル等が挙げられ、含酸素単量体としては、エチレングリコール等が挙げられる。好ましくはPVDF-HFP(ポリ(ビニリデンフルオリド-ヘキサフルオロプロピレン))又はPVDF-PEO(ポリ(ビニリデンフルオリド-オキシエチレン))である。融点降下剤が、これらの共重合体である場合は、結着材中に含まれる当該共重合体の含有率は50質量%を超えてもよく、好ましくは1~75質量%である。
 あるいは、他の一実施形態として、結着成分であるPVDFと、融点降下剤とを分子内に含むポリフッ化ビニリデン(PVDF)共重合体を結着材として用いてもよい。この場合には、非水電解質の存在下に、PVDF共重合体の溶融開始温度及び/又は溶融ピーク温度が、フッ化ビニリデン単独のポリマーであるPVDFの場合に比べて低下していることが好ましく、例えば、45℃~110℃、より好ましくは、50℃~100℃に溶融開始温度及び/又は溶融ピーク温度を有するものである。このようなPVDF共重合体としては、PVDF-HFP(ヘキサフルオロプロピレン)及びPVDF-PEO(ポリオキシエチレン)等を用いることができる。
 さらに、ポリフッ化ビニリデン(PVDF)とPVDF共重合体とを混合することで、溶融開始温度及び/又は溶融ピーク温度を所望の温度に調整して用いることができる。
 (無機酸化物フィラー)
  多孔質絶縁層には、さらに無機酸化物フィラーを含むことが好ましい。この無機酸化物フィラーとしては、酸化アルミニウム(α-Al、γ-Al)、水酸化アルミニウム(Al(OH))、ベーマイト(AlOOH))、マグネシア(酸化マグネシウム:MgO)、水酸化マグネシウム(Mg(OH))、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、二酸化ケイ素(SiO)、炭化ケイ素(SiC)、窒化アルミニウム(AlN)または窒化ホウ素(BN)などが用いられる。これらは1種で用いても2種以上を混合して用いてもよい。無機酸化物フィラーの形状は、限定されるものではなく、例えば、球形状、針状、楕円体状、板状、鱗片状などの種々の形状のものを用いることができる。また、その平均粒径も特に限定されないが、0.01~5μmであることが好ましい。本明細書において、「平均粒径」とは、特記しない場合、一般的なレーザー回折・光散乱法に基づく粒度分布測定装置によって測定した体積基準の粒度分布において、微粒子側からの累積50体積%に相当する粒径(D50粒径、メジアン径)をいう。
 多孔質絶縁層における無機酸化物フィラーの含有量は、0~99質量%であり、80~90質量%程度が好ましい。無機酸化物フィラーの添加量を多くすれば、セパレーターの耐熱性に寄与し、無機酸化物フィラーの添加量を極力少なくすればセパレーターに密着する多孔質絶縁層となって、内部短絡時に結着材が溶融し安全性向上に寄与する。さらに、無機酸化物フィラーの種類や物性を選択することにより、電池の過充電時に電解液を分解しガスを発生させることもできる。
 (ガス発生剤)
  本実施形態におけるガス発生剤としては、所定の電池電圧を超えた際(例えば、4.8~5.0Vの過充電状態となった場合)に分解してガスを発生しうる化合物であれば制限されない。好ましくは、分解して炭酸ガスを発生する化合物であって、炭酸リチウム(LiCO)、炭酸水素リチウム(LiHCO)、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素マグネシウム、炭酸水素カルシウム、4,4'-オキシビス(ベンゼンスルホニルヒドラジド)(OBSH)及びアゾジカルボンアミド(ADCA)などから選択される1種又はそれ以上を用いることができる。多孔質絶縁層におけるガス発生剤の含有量は、0~10質量%であり、0.5~5質量%程度が好ましい。また、多孔質絶縁層に無機酸化物フィラーとガス発生剤がともに含まれる場合、無機酸化物フィラーに対するガス発生剤の含有比率は、90:10~99:1が好ましい。
 多孔質絶縁層の製造方法としては、上記結着材並びに所望により無機酸化物フィラー及びガス発生剤を、水、又はN-メチルピロリドン、ジメチルスルホキシド、プロピレンカーボネート、ジメチルホルムアミド、γ-ブチロラクトンなどに代表される非プロトン性極性溶剤もしくはこれらの混合液に溶解又は分散してなるスラリーを、電極合剤層又はセパレーターの表面に塗布して、乾燥することによって製造することができる。スラリー塗布後に乾燥することにより、分散溶媒(水又は有機溶媒)が揮発して開孔し多孔質層が形成される。このときの孔の大きさは、無機酸化物フィラーを少量添加することにより増加させることができる。
 水系結着材(例えば、水分散系PVDFと水分散系PMMAなど)を使用した場合は、ガス発生剤としての炭酸リチウムと共に、水に不溶又は難溶なシクロヘキシルベンゼン(CHB)やビフェニル(BP)を混ぜ込むこともできる。この場合も、溶媒が揮発する際に孔が開き、多孔質層を形成することができる。多孔質層に混ぜ込んだCHBやBPは、カーボネート系の電解液に接触すれば溶出するため、これらのガス発生剤を電解液に添加する場合と同様の作用を発揮する。
  孔の大きさや量はスラリー固形分濃度や乾燥速度によって調節することができる。好ましくは、無機酸化物フィラー、ガス発生剤及び結着材を、76:4:20~94:5:1の比率で混合したスラリーを正極合剤層の表面に塗布し乾燥させて、正極合剤層の表面に多孔質絶縁層を形成し、これをロールプレスによって所定の厚みに圧縮して作製することができる。
 [電極層]
(正極活物質)
  正極活物質は、リチウムの吸蔵放出が可能な材料であれば特に限定されず、リチウムイオン二次電池に通常用いられる正極活物質でありうる。具体的には、リチウム(Li)とニッケル(Ni)とを構成金属元素とする酸化物のほか、リチウム及びニッケル以外に他の少なくとも一種の金属元素(すなわち、LiとNi以外の遷移金属元素及び/又は典型金属元素)を、原子数換算でニッケルと同程度またはニッケルよりも少ない割合で構成金属元素として含む酸化物をも包含する意味である。上記LiおよびNi以外の金属元素は、例えば、Co,Mn,Al,Cr,Fe,V,Mg,Ca,Na,Ti,Zr,Nb,Mo,W,Cu,Zn,Ga,In,Sn,LaおよびCeからなる群から選択される一種または二種以上の金属元素であり得る。これらの正極活物質は、単独で用いても複数を混合して用いてもよい。
 好ましい実施形態において、上記正極活物質は、例えば、一般式(1):LiNi1-x-yCoAl(但し、式中において、0.95≦t≦1.15、0≦x≦0.3、0.1≦y≦0.2、x+y<0.5を満たす。)で表されるリチウムニッケルコバルトアルミニウム系酸化物(NCA)が挙げられる。NCAの具体例としては、LiNi0.8Co0.15Al0.05があげられる。
 他の好ましい実施形態において、上記正極活物質は、例えば、一般式(2):LiNiCoMn(ただし式中、0<a<1、0<b<1、0<c<1であり、a+b+c=1を満たす)で表されるリチウムニッケルコバルトマンガン系酸化物(NCM)が挙げられる。NCMは体積当たりのエネルギー密度が高く、熱安定性にも優れている。
  電極合剤層中の正極活物質の含有量は、通常10質量%以上、好ましくは30質量%以上、更に好ましくは50質量%以上であり、特に好ましくは70質量%以上である。また、通常99.9質量%以下、好ましくは99質量%以下である。
 (負極活物質)
  負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属もしくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、および、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種(単独で用いてもよいし、これらの2種以上を含む混合物を用いてもよい)を用いることができる。
 リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。また、チタン酸リチウムでもよい。
  これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。前記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状いずれの形態であってもよい。
 前記非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソフェーズピッチカーボンファイバー(MCF)などが例示される。
 前記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
  これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。
 (導電助剤)
  電極合剤層は、導電助剤を含むことが好ましい。本発明で用いる導電助剤としては、公知の導電助剤を使用することができる。公知の導電助剤としては、導電性を有する炭素材料であれば特に限定されるものではないが、グラファイト、カーボンブラック、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー)、フラーレン等を単独で、もしくは2種類以上を併せて使用することができる。市販のカーボンブラックとしては、例えば、トーカブラック#4300、#4400、#4500、#5500等(東海カーボン社製、ファーネスブラック)、プリンテックスL等(デグサ社製、ファーネスブラック)、Raven7000、5750、5250、5000ULTRAIII、5000ULTRA等、Conductex SC ULTRA、Conductex 975ULTRA等、PUER BLACK100、115、205等(コロンビヤン社製、ファーネスブラック)、#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、#5400B等(三菱化学社製、ファーネスブラック)、MONARCH1400、1300、900、VulcanXC-72R、BlackPearls2000、LITX-50、LITX-200等(キャボット社製、ファーネスブラック)、Ensaco250G、Ensaco260G、Ensaco350G、SuperP-Li(TIMCAL社製)、ケッチェンブラックEC-300J、EC-600JD(アクゾ社製)、デンカブラック、デンカブラックHS-100、FX-35(電気化学工業社製、アセチレンブラック)等、グラファイトとしては例えば人造黒鉛や燐片状黒鉛、塊状黒鉛、土状黒鉛などの天然黒鉛が挙げられるが、これらに限定されるものではない。電極合剤層中に含まれる導電助剤の含有量は、好ましくは1質量%以上であり、例えば1~10質量%程度とすることが好ましい。
 [集電体]
  本実施形態における集電体としては、各種のものを使用することができるが、通常は金属や合金が用いられる。図1又は図2において、正極集電体(16又は26)としては、アルミニウムやニッケル、SUS等が挙げられ、負極集電体(11又は21)としては、銅やニッケル、SUS等が挙げられる。その中でも導電性の高さとコストのバランスからアルミニウム、銅が好ましい。なお、アルミニウムは、アルミニウム及びアルミニウム合金を意味し、銅は純銅および銅合金を意味する。本実施形態において、アルミニウム箔は二次電池正極側、二次電池負極側、銅箔は二次電池負極側に用いることができる。アルミニウム箔としては、特に限定されないが、純アルミ系であるA1085材や、A3003材など種々のものが使用できる。また、銅箔としても同様であり、特に限定されないが、圧延銅箔や電解銅箔が好んで用いられる。
 (電極層の形成方法)
  本実施形態のリチウムイオン二次電池が備える電極層は、上述した電極活物質、導電助剤、及び結着剤を含む電極合剤スラリーを集電体の表面に塗布して、乾燥することによって製造することができる。電極活物質を結着させる結着剤は、PVDFに代表されるフッ素系樹脂、多糖類高分子、SBRなどを用いることができるが、これに限定されるものではない。また、上記多孔質絶縁層に含まれる結着材を使用することもできる。この場合、上述した結着材を溶媒に溶解させた溶液に、前記電極活物質及び導電助剤を分散させで電極合剤スラリーを形成することが好ましい。
 合剤スラリーに含まれる溶剤は、上記結着材を調製する際の共通溶媒と兼ねるものであり、N-メチルピロリドン、ジメチルスルホキシド、プロピレンカーボネート、ジメチルホルムアミド、γ-ブチロラクトンなどに代表される非プロトン性極性溶剤もしくはこれらの混合液を選択できる。
 集電体へ合剤スラリーを塗布・乾燥する上で、塗布・乾燥方法は特に限定されない。例えば、スロット・ダイコーティング、スライドコーティング、カーテンコーティング、又はグラビアコーティングなどの方法が挙げられる。乾燥方法としては、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線などの乾燥法が挙げられる。乾燥時間や乾燥温度については、特に限定されないが、乾燥時間は通常1分~30分であり、乾燥温度は通常40℃~180℃である。
  合剤層の製造方法においては、集電体上に上記合剤スラリーを塗布乾燥後、金型プレスやロールプレスなどを用い、加圧処理により活物質層の空隙率を低くする工程を有することが好ましい。
 [電解液]
  電解液としては、例えば、通常リチウムイオン二次電池で用いられるものであることが好ましく、具体的には、有機溶媒に支持塩(リチウム塩)が溶解した形態を有する。リチウム塩としては、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、六フッ化タンタル酸リチウム(LiTaF)、四塩化アルミニウム酸リチウム(LiAlCl)、リチウムデカクロロデカホウ素酸(Li10Cl10)等の無機酸陰イオン塩、トリフルオロメタンスルホン酸リチウム(LiCFSO)、リチウムビス(トリフルオロメタンスルホニル)イミド(Li(CFSON)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(Li(CSON)等の有機酸陰イオン塩の中から選ばれる、少なくとも1種類のリチウム塩等を挙げることができる。その中でも、六フッ化リン酸リチウム(LiPF)が好ましい。
 また、有機溶媒としては、例えば、環状カーボネート類、含フッ素環状カーボネート類、鎖状カーボネート類、含フッ素鎖状カーボネート類、脂肪族カルボン酸エステル類、含フッ素脂肪族カルボン酸エステル類、γ-ラクトン類、含フッ素γ-ラクトン類、環状エーテル類、含フッ素環状エーテル類、鎖状エーテル類及び含フッ素鎖状エーテル類からなる群より選ばれる少なくとも1種の有機溶媒を用いることができる。
 環状カーボネート類としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)を挙げることができる。また、含フッ素環状カーボネート類としては、例えば、フルオロエチレンカーボネート(FEC)を挙げることができる。更に、鎖状カーボネート類としては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)、ジプロピルカーボネート(DPC)を挙げることができる。また、脂肪族カルボン酸エステル類としては、例えば、ギ酸メチル、酢酸メチル、プロピオン酸エチルを挙げることができる。更に、γ-ラクトン類としては、例えば、γ-ブチロラクトンを挙げることができる。また、環状エーテル類としては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサンを挙げることができる。更に、鎖状エーテル類としては、例えば、1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)、ジエチルエーテル、1,2-ジメトキシエタン、1,2-ジブトキシエタンを挙げることができる。その他としては、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類を挙げることができる。これらは、1種を単独で、2種以上を組み合わせて用いることができる。
 (ガス発生化合物)
  電解液にはさらにガス発生化合物を含むことができる。このガス発生化合物は、電解液に直接添加してもよく、あるいは、電池内部において多孔質絶縁層から電解液に溶出させてもよい。電解液に含有されるガス発生化合物は、所定の電池電圧を超えた際(例えば、4.5V以上の過充電状態となった場合)に、分解してガスを発生し得る化合物である。このガス発生化合物としては、水素を発生する化合物が好ましく、シクロアルキルベンゼン化合物(例えば、シクロヘキシルベンゼン(CHB))、アルキルベンゼン化合物、ビフェニル化合物(例えば、ビフェニル(BP))、アルキルビフェニル化合物からなる群より選ばれた1種以上を添加することができる。電解液に対するガス発生化合物の添加量は、あらかじめ定めた条件で所定量のガスが発生する限り特に限定されないが、例えば、約0.05~5.0質量%であり、好ましくは0.1~4.0質量%である。
 [作用・効果]
 本実施形態のリチウムイオン二次電池は、内部短絡時の瞬間的な温度上昇に対して、電極とセパレーターとの間に形成された多孔質絶縁層内の結着材が溶融してリチウムイオンの透過を阻害し、それによって電池の内部短絡時の発熱を抑制するという作用効果を奏する。さらに、好ましい実施形態では、過充電時の緩やかな温度上昇に対して、電極とセパレーターとの間に形成された多孔質絶縁層から水素(H)や二酸化炭素(CO)などのガスが発生し、圧力検知式の電流遮断装置(CID:CURRENT Interrupt Device)の作動を促進するという利点がある。
  本発明に係るリチウムイオン二次電池が、内部短絡時等に発揮する発熱抑制作用は多孔質絶縁層に含まれる融点降下剤の融点降下作用に起因すると考えられる。そこで、以下にその典型的な具体例を挙げて説明する。
 [DSCによる非水電解質共存下での結着材の融点測定]
<融点降下剤一覧表>
  融点降下剤として用いた化合物の一覧表を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <サンプル調製>
  PVDFと種々の融点降下剤(粉末)とを、所定の割合にてメノウ乳鉢を用いて約15分混合した。例えば、PVDF(粉末)と融点降下剤(粉末)との混合比が1:1の場合、それぞれ0.1gを秤量して混合した。この混合粉末を常温(25℃)で10時間以上真空乾燥した。
  予め秤量しておいたDSC測定用のSUS-PANに、上記試料3mgを秤量し投入した。続いて、電解液(1M-LiPF/3EC7EMC)6mgを、上記SUS-PANへ追加した(重量比で粉:電解液=1:2)。その際、目視で粉体がほぼ全て液に浸漬している状態になっていることを確認した。素早く蓋(予め秤量)をセット(秤量)し、専用プレスで密閉シールした。
 <測定>
  日立ハイテクサイエンス製高感度型示差走査熱量計DSC7000X装置を用い、走査速度5℃/分、室温→210℃の条件で融解温度を測定した。
 <結果>
  表2に、PVDFのメーカー名及び商品名と、PVDF単独の溶融温度を示す。
Figure JPOXMLDOC01-appb-T000002
 表3に、結着成分(PVDF)75質量%と融点降下剤25質量%、又はそれぞれ50質量%ずつを混合した時の融解開始温度及びピーク温度(融点)を表に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2及び3に示したように、上記PVDFと融点降下剤との混合物は、約70℃から融解が始まり、90℃~130℃付近にピーク温度を有することが分かった。
  また、図3には、表2に示したPVDFW#7200の粉体試料(実線)若しくはこれに電解質を共存させた試料(点線)と、PVDFW#7200にPMMAを25%添加した試料(表3の上から1行目)のDSCチャートを示す。図3に示した結果から、融点降下剤の添加によって、結着成分であるPVDFの溶融開始温度及び融点が明らかに低下していることが分かる。
 [実施例1]
正極作
1.正極合剤層スラリー調製
  スラリー調製は5Lのプラネタリーディスパを用いた。
  NCM523(Umicore社製、組成式 LiNi0.5Co0.2Mn0.3)920gと、Super-P(TIMCAL社製導電性カーボン)20g、KS-6(TIMREX社製鱗片状黒鉛)20gを10分間混合した後、N-メチルピロリドン(NMP)を100g加え更に20分間混合した。
  次いで、8%-PVDF溶液(クレハ製PVDFW#7200をNMPに溶解)200gを加えて、30分間混練した後、更に8%-PVDF溶液200gを加えて30分間混練した。次いで、8%-PVDF溶液100g加えて30分間混練した。その後、粘度調整のためNMP52gを加えて30分間混合した後、真空脱泡30分間を行った。こうして固形分濃度62%のスラリーを調製した。このようにして作製した正極の組成は、質量比で、NCM523:Super-P:KS-6:PVDF=92:2:2:4である。
 2.塗工・乾燥
  スラリー塗工にはダイコーターを用いた。乾燥後の塗布重量が19.0mg/cmになるように、上記スラリーをアルミ箔(厚み20μm、幅200mm)の片面に塗布し乾燥した。次いで、反対面(未塗工面)に、同様に塗布重量が19.0mg/cmになるように、上記スラリーをアルミ箔に塗布し乾燥した。こうして得た両面塗工(38.0mg/cm)した正極を作製した(CA-1)。
 3.オーバーコート層スラリー調製
  スラリー調製は5Lのプラネタリーディスパを用いた。
 炭酸リチウム860g、Super-P(TIMCAL社製導電性カーボン)100g、8%-PVDF溶液(クレハ製PVDFW#7200をNMPに溶解)250g、ポリメタクリル酸メチル(PMMA)20gに、N-メチルピロリドン(NMP)540gを加えて30分間混合した。
  次いで、NMP1125gを加え更に60分間混合した後、真空脱泡30分間を行い、固形分濃度32%のスラリーを調製した。
 4.塗工・乾燥
 正極合剤層と同様にして、スラリー塗工にはダイコーターを用いた。乾燥後の塗布重量が2.0mg/cmになるように、上記スラリーを正極合剤層が塗布されたアルミ箔(厚み20μm、幅200mm)の片面に塗布し乾燥した。さらに、もう一面にも塗布し乾燥した。こうしてオーバーコート層(OC-1)を塗布した正極CB-1を得た。
 5.プレス
  35トンプレス機を用いた。上下ロールのギャップ(隙間)を調整し、上記正極をプレス密度が2.95±0.05g/cmになるように圧縮した。
 6.スリット
  電極塗布面積(表面:56mm×334mm、裏:56mm×408mm)とタブ溶接余白が得られるように電極をスリットし正極C-1を得た。
 負極作製
1.スラリー調製
  スラリー調製は5Lのプラネタリーディスパを用いた。
  天然黒鉛930gと、Super-P10gを10分間混合した後、NMPを500g加え更に20分間混合した。次いで、8%-PVDF溶液(PVDFをNMPに溶解)500gを加えて30分間混練した後、更に8%-PVDF溶液250gを加えて30分間混練した。その後、粘度調整のためNMP32gを加えて30分間混合した後、真空脱泡30分間を行った。こうして固形分濃度45%のスラリーを調製した。このようにして作製した負極の組成は、質量比で、天然黒鉛:Super-P:PVDF=93:1:6である。
 2.塗工・乾燥
  スラリー塗工にはダイコーターを用いた。
  乾燥後の塗布重量が11.0mg/cmになるように、上記スラリーを銅箔(厚み10μm)の片面に塗布し乾燥した。次いで、反対面(未塗工面)に、同様に塗布重量が11.0mg/cmになるように、上記スラリーを銅箔に塗布し乾燥した。こうして得た両面塗工(22.0mg/cm)した負極ロールを、真空乾燥オーブンで120℃、12時間乾燥した。
 3.プレス
  小型プレス機を用いた。
  上下ロールのギャップ(隙間)を調整し、上記負極をプレス密度が1.45±0.05g/cmになるように圧縮した。
 4.スリット
  電極塗布面積(表面:58mm×372mm、裏面:58mm×431mm)とタブ溶接余白が得られるように電極をスリットし、負極A-1を得た。
 [実施例2]
 オーバーコート層スラリーの調製以外は実施例1と同様に正極及び負極を作製した。オーバーコート層スラリーは、実施例1で用いたPMMAの代わりに8%-PVDF-HFP溶液(ARKEMA製FLEX2751をNMPに溶解)250gを添加してオーバーコート層スラリー(OC-2)を調製し実施例1と同様の方法にて塗工・乾燥を行い、オーバーコート層(OC-2)を塗布した正極CB-2を得た。
 [実施例3]
  オーバーコート層スラリーの調製以外は実施例1に準じて正極及び負極を作製した。オーバーコート層スラリーの調製は、5Lのプラネタリーディスパを用いて行った。粒径2μm、比表面積2m/gのα-アルミナ(Al)430g、炭酸リチウム430g、Super-P(TIMCAL社製導電性カーボン)100g、8%-PVDF溶液(クレハ製PVDFW#7200をNMPに溶解)250g、8%-PVDF-HFP溶液(ARKEMA製FLEX2751をNMPに溶解)250gに、N-メチルピロリドン(NMP)540gを加えて30分間混合した。次いで、N-メチルピロリドン(NMP)を1125g加え更に60分間混合した後、真空脱泡30分間を行い、固形分濃度32%のスラリー(OC-3)を調製した。
 実施例1と同様にして、スラリー塗工にはダイコーターを用いた。乾燥後の塗布重量が2.0mg/cmになるように、上記スラリーを正極合剤層が塗布されたアルミ箔(厚み20μm、幅200mm)の片面に塗布し乾燥した。さらに、もう一面にも塗布し乾燥した。こうしてオーバーコート層(OC-3)を塗布した正極CB-3を得た。
 [試料作製]
  表4に示した正極仕様からなる正極(C-1)に、表5のオーバーコート層の各種仕様を配した試験用正極(片面塗工、電極面30mm×30mm)の余白部分にアルミニウム製タブを超音波接合機で接合した(CK1)。表4の負極仕様(A-1)を配した試験用負極のCu箔2.8cm×2.8cmにニッケル製タブを超音波接合機で接合した(AK1)。CK1の塗布面にPEセパレーターを挟んでAK1を接触させ、5cm×5cmのラミネートシートで挟み込み、3辺を加熱シールした。電解液注液前に、上記を真空乾燥機にて、70℃×12h減圧乾燥した。電解液(1mol-LiPF、EC/DEC=3/7(vol.比))300μLを注液した後、真空引きしながら加熱シールした(K1)。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 [加熱抵抗測定]
  作製した試料セル(K1)を拘束圧力0.2kgf/cmにてヒートブロックで挟み込み、測定条件は、例えば、室温から約200℃まで、5℃/分で昇温する。このとき各周波数(例えば、1kHz、10kHz、100kHz)での交流抵抗値(Ω)を得ることができる。その結果の一例を以下に示した。表6は上記試料について測定した抵抗増大開始温度と最大抵抗値の値である。なお、参考例1はオーバーコート層なしの正極を用いて行った試験結果である。
Figure JPOXMLDOC01-appb-T000007
 多孔質絶縁層付セパレーターの作製
1.スラリー調製
  スラリー調製は5Lのプラネタリーディスパを用いた。
  粒径2μm、比表面積2m/gのα-アルミナ(Al)、PVDF(Solvay製Solef5130)、炭酸リチウム及びシクロヘキシルベンゼン(CHB)及びビフェニル(BP)を、以下の表7に記載した割合で、水又はN-メチルピロリドン(NMP)中に分散し、多孔質絶縁層用スラリーを調製した。
Figure JPOXMLDOC01-appb-T000008
 PP層とPE層とPP層とが順に積層されて構成されたセパレーター基材(空隙率50%、厚さが16μm)を準備した。グラビア塗工装置を用いて、セパレーター基材に多孔質絶縁層用スラリーを塗布した。このようにして多孔質な基材の片側の表面に多孔質絶縁層(厚さが4~5μm)を有するセパレーターを得た。
 [試料作製]
  表4に示した正極仕様(C-1)及び負極仕様(A-1)と、表7に示した多孔質絶縁層付セパレーターとを用いて、上記と同じ方法にて加熱抵抗測定用の試料(K-1)を作製した。
 [加熱抵抗測定]
  作製した試料セル(K1)を拘束圧力0.2kgf/cmにてヒートブロックで挟み込み、測定条件は、例えば、室温から約200℃まで、5℃/分で昇温する。このとき各周波数(例えば、1kHz、10kHz、100kHz)での交流抵抗値(Ω)を得ることができる。その結果の一例を以下に示した。表8は上記試料について測定した抵抗増大開始温度と最大抵抗値の値である。なお、参考例2は、多孔質絶縁層なしのセパレーターを用いて行った試験結果を示す。
Figure JPOXMLDOC01-appb-T000009
 電池作製
捲回型電池(設計容量1Ah)
1.捲回
  表5に示したオーバーコート層又は表7に示した多孔質耐熱層付セパレータ(60.5mm×450mm)を用いて捲回型電池(設計容量1Ah)を作製した。
  負極A-1(表面/裏面)とセパレーター(多孔質絶縁層が正極C-1と接するように配置)と正極C-1(裏面/表面)とセパレーター(多孔質絶縁層が正極C-1と接するように配置)を重ねて捲回した後プレス成型した。次いで、正極C-1の余白部分にアルミニウム製タブを超音波接合機で接合し、負極A-1の余白部分にニッケル製タブを超音波接合機で接合した。これをラミネートシートで挟み込み、3辺を加熱シールした。
 2.電解液注液
  電解液注液前に、上記を真空乾燥機にて、70℃×12h減圧乾燥した。電解液(1mol-LiPF6、EC/DEC=3/7(vol.比)、添加剤VC 1.0質量%)4.7±0.1gを注液した後、真空引きしながら加熱シールした。
 3.活性化処理
  電解液注液後の電池を24h保持した。次いで、0.05Cで4h定電流充電(0.05C-CC)した後12h休止した。その後、0.1Cで4.2Vまで定電流定電圧充電(0.1C-CCCV)し、30分間休止した後、2.8Vまで0.1Cで定電流放電(0.1C-CC)した。更に、充放電サイクル(0.1C-CCCVで4.2Vの充電と、0.1C-CCで2.8Vの放電)を5回繰り返した後、4.2V(SOC100%)の満充電にした状態で、25℃、5日間保存した。こうして電池D-1を得た。
 [試験例及び比較例]
  [圧壊試験]
  実施例1で作製した正極及び負極を有する捲回型電池(設計容量1Ah)を用いて圧壊試験を行った。直径10mmのシリンダーで、速度1mm/秒で電池(セル)の中央部を圧迫し、電池厚みの50%深さまで圧壊し、電池容器の内部において正極と負極とを短絡させた。同一仕様で作製した電池を用いて行った5回の圧壊試験の結果、うち4回で発熱抑制効果を確認できた。
  比較例としては、実施例1の仕様においてオーバーコート層を設けない正極を用いて捲回型電池(設計容量1Ah)を作製した(比較例1)。同様の圧壊試験を5回行ったところ、全てで発熱抑制効果が確認できなかった。
 以下に、実施例1と同様の仕様で作製したその他のオーバーコート層仕様の電池(表5に示したOC-2~OC-11のオーバーコート仕様の正極を有する電池を実施例2~11とする)及びセパレーター仕様の電池(表7のOC-101及びOC102の絶縁層仕様のセパレーターを有する電池を参考例101及び102とする)を用いて行った圧壊試験結果(表9)をまとめて示す。なお、比較例としては、参考例101と同様の仕様においてオーバーコート層を設けないセパレーターを用いて捲回型電池(設計容量1Ah)を作製した(比較例2)。同様の圧壊試験を5回行ったところ、全てで発熱抑制効果が確認できなかった。
Figure JPOXMLDOC01-appb-T000010
 また、上記実施例1~11並びに参考例101及び102で作製したそれぞれ5個の電池を用いて、1CでSOC200%(1Cで2hr)充電後、CID機構の付いた筐体に捲回体を挿入して過充電試験を行い、電流遮断機構が作動する頻度を調べたところ、比較例として、オーバーコート層の無い正極を用いて作成した電池(比較例1)及び多孔質絶縁層が無いセパレーター(空隙率45%、厚さが20μm)を用いて作製した電池(比較例2)と比較して、有意な差が認められた。その結果を以下の表10に示す。
Figure JPOXMLDOC01-appb-T000011
 また、上記実施例1~11並びに参考例101及び102で作製したそれぞれ5個の電池を用いて、1CでSOC200%(1Cで2hr)充電後、CID機構の付いた筐体に捲回体を挿入して過充電試験を行い、電流遮断機構が作動する頻度を調べたところ、比較例として、オーバーコート層の無い正極を用いて作成した電池(比較例1)及び多孔質絶縁層が無いセパレーター(空隙率45%、厚さが20μm)を用いて作製した電池(比較例2)と比較して、有意な差が認められた。その結果を以下の表11に示す。
Figure JPOXMLDOC01-appb-T000012
 10、20   電極層
  11、21   負極集電体
  12、22   負極合剤層
  13、23   セパレーター
  14、24   多孔質絶縁層
  15、25   正極合剤層
  16、26   正極集電体

Claims (12)

  1.  集電体と、前記集電体の少なくとも片面に正極又は負極を備える電極と、前記正極及び負極を隔離するセパレーターと、前記電極とセパレーターとの間に形成された多孔質絶縁層と、非水電解質と、を備えたリチウムイオン二次電池であって、
     前記多孔質絶縁層は、ポリフッ化ビニリデンと、融点降下剤とを含む結着材からなり、前記融点降下剤は、非水電解質の共存下に示差走査熱量測定法で測定される前記結着材の溶融開始温度及び/又は溶融ピーク温度を、ポリフッ化ビニリデンのみの場合に比べて低下させることを特徴とするリチウムイオン二次電池。
  2.  前記多孔質絶縁層が、さらに無機酸化物フィラー及び/又はガス発生剤を含む請求項1に記載のリチウムイオン二次電池。
  3.  前記多孔質絶縁層が、正極とセパレーターとの間に形成される請求項1又は2に記載のリチウムイオン二次電池。
  4.  前記融点降下剤が、カルボニル基又はシアノ基を含有する化合物である請求項1~3何れか一項に記載のリチウムイオン二次電池。
  5.  前記融点降下剤が、ポリフッ化ビニリデンと相溶性の非結晶性高分子である請求項1~3の何れか一項に記載のリチウムイオン二次電池。
  6.  前記結着材中に含まれる前記融点降下剤の含有率が、1~50質量%である請求項1~5の何れか一項に記載のリチウムイオン二次電池。
  7.  前記融点降下剤が、フッ化ビニリデン単量体と他の含フッ素単量体又は含酸素単量体との共重合体である請求項1~3の何れか一項に記載のリチウムイオン二次電池。
  8.  前記結着材が、ポリフッ化ビニリデンと融点降下剤との混合物に代えて、フッ化ビニリデン単量体と他の含フッ素単量体又は含酸素単量体との共重合体のみからなる請求項1~3の何れか一項に記載のリチウム二次電池。
  9.  前記共重合体が、ポリ(ビニリデンフルオリド-ヘキサフルオロプロピレン)又はポリ(ビニリデンフルオリド-オキシエチレン)である請求項7又は8に記載の非水電解質二次電池。
  10.  前記無機酸化物フィラーが、酸化アルミニウム、水酸化アルミニウム、ベーマイト、マグネシア、水酸化マグネシウム、ジルコニア、チタニア、シリカ、二酸化ケイ素、炭化ケイ素、窒化アルミニウム又は窒化ホウ素からなる群より選ばれた1種以上であり、該無機フィラーの平均粒径は、0.01~5μmである請求項2~9何れか一項に記載のリチウムイオン二次電池。
  11.  前記ガス発生剤が、炭酸リチウム、炭酸水素リチウム、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素マグネシウム及び炭酸水素カルシウムからなる群より選ばれた1種以上である請求項2~10何れか一項に記載のリチウムイオン二次電池。
  12.  前記非水電解質が、シクロアルキルベンゼン化合物、アルキルベンゼン化合物、ビフェニル化合物、アルキルビフェニル化合物からなる群より選ばれた1種以上のガス発生化合物を含有する請求項1~11何れか一項に記載のリチウムイオン二次電池。
PCT/JP2018/012290 2017-03-30 2018-03-27 リチウムイオン二次電池 WO2018181243A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019509848A JP6989095B2 (ja) 2017-03-30 2018-03-27 リチウムイオン二次電池
EP18778257.8A EP3605713B1 (en) 2017-03-30 2018-03-27 Lithium ion secondary battery
CN201880021244.4A CN110495044A (zh) 2017-03-30 2018-03-27 锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-066794 2017-03-30
JP2017066794 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181243A1 true WO2018181243A1 (ja) 2018-10-04

Family

ID=63675859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012290 WO2018181243A1 (ja) 2017-03-30 2018-03-27 リチウムイオン二次電池

Country Status (5)

Country Link
EP (1) EP3605713B1 (ja)
JP (1) JP6989095B2 (ja)
CN (1) CN110495044A (ja)
TW (1) TW201841423A (ja)
WO (1) WO2018181243A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077614A (ja) * 2018-09-13 2020-05-21 株式会社Gsユアサ 電極及び電極の製造方法
CN113540568A (zh) * 2021-07-12 2021-10-22 吉安谊盛电子材料有限公司 一种电解液及高容量锂离子电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7252479B2 (ja) * 2019-01-31 2023-04-05 ダイキン工業株式会社 構造体、複合体、電池、及び、複合体の製造方法
CN109904374B (zh) * 2019-03-19 2022-07-12 北京卫蓝新能源科技有限公司 一种防过充隔膜及其制备方法和应用
CN111710828B (zh) * 2020-07-24 2020-12-01 苏州清陶新能源科技有限公司 一种锂离子固态电池正极及其制备工艺和锂离子固态电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371301B2 (ja) 1994-01-31 2003-01-27 ソニー株式会社 非水電解液二次電池
JP2005019157A (ja) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd 電子部品用セパレータおよび電子部品
WO2005078828A1 (ja) * 2004-02-18 2005-08-25 Matsushita Electric Industrial Co., Ltd. 二次電池
JP2010021113A (ja) 2008-07-14 2010-01-28 Panasonic Corp リチウムイオン二次電池の製造法
WO2010134501A1 (ja) * 2009-05-18 2010-11-25 日本ゼオン株式会社 多孔膜及び二次電池
JP2013157219A (ja) * 2012-01-30 2013-08-15 Toyota Motor Corp 非水電解質二次電池
WO2013136441A1 (ja) * 2012-03-13 2013-09-19 株式会社日立製作所 非水電解質二次電池
JP2014013693A (ja) * 2012-07-04 2014-01-23 Mitsubishi Electric Corp リチウムイオン二次電池およびその製造方法
JP2016131127A (ja) * 2015-01-14 2016-07-21 トヨタ自動車株式会社 非水電解質二次電池
JP2016225261A (ja) * 2015-06-04 2016-12-28 トヨタ自動車株式会社 リチウム二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050100794A1 (en) * 2003-11-06 2005-05-12 Tiax, Llc Separator for electrochemical devices and methods
KR20060107318A (ko) * 2005-04-05 2006-10-13 마쯔시다덴기산교 가부시키가이샤 비수전해질 이차전지
JP5181430B2 (ja) * 2005-05-26 2013-04-10 ソニー株式会社 二次電池
JP2008276995A (ja) * 2007-04-26 2008-11-13 Hitachi Maxell Ltd 非水電解液一次電池
JP2011060481A (ja) * 2009-09-08 2011-03-24 Panasonic Corp 非水電解質二次電池
KR101933993B1 (ko) * 2013-10-31 2018-12-31 주식회사 엘지화학 전기화학소자용 세퍼레이터 및 그를 포함하는 전기화학소자
JP6343468B2 (ja) * 2014-03-19 2018-06-13 マクセルホールディングス株式会社 電気化学素子用セパレータおよび電気化学素子
CN105449263B (zh) * 2014-08-22 2018-05-22 宁德时代新能源科技股份有限公司 锂离子二次电池
CN106163806B (zh) * 2014-08-29 2018-01-16 住友化学株式会社 层叠体、间隔件和非水二次电池
JP6156398B2 (ja) * 2015-01-16 2017-07-05 トヨタ自動車株式会社 非水電解質二次電池の製造方法および非水電解質二次電池
US10211442B2 (en) * 2015-11-27 2019-02-19 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery insulating porous layer and nonaqueous electrolyte secondary battery laminated separator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371301B2 (ja) 1994-01-31 2003-01-27 ソニー株式会社 非水電解液二次電池
JP2005019157A (ja) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd 電子部品用セパレータおよび電子部品
WO2005078828A1 (ja) * 2004-02-18 2005-08-25 Matsushita Electric Industrial Co., Ltd. 二次電池
JP2010021113A (ja) 2008-07-14 2010-01-28 Panasonic Corp リチウムイオン二次電池の製造法
WO2010134501A1 (ja) * 2009-05-18 2010-11-25 日本ゼオン株式会社 多孔膜及び二次電池
JP2013157219A (ja) * 2012-01-30 2013-08-15 Toyota Motor Corp 非水電解質二次電池
WO2013136441A1 (ja) * 2012-03-13 2013-09-19 株式会社日立製作所 非水電解質二次電池
JP2014013693A (ja) * 2012-07-04 2014-01-23 Mitsubishi Electric Corp リチウムイオン二次電池およびその製造方法
JP2016131127A (ja) * 2015-01-14 2016-07-21 トヨタ自動車株式会社 非水電解質二次電池
JP2016225261A (ja) * 2015-06-04 2016-12-28 トヨタ自動車株式会社 リチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605713A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077614A (ja) * 2018-09-13 2020-05-21 株式会社Gsユアサ 電極及び電極の製造方法
JP7419714B2 (ja) 2018-09-13 2024-01-23 株式会社Gsユアサ 電極及び電極の製造方法
CN113540568A (zh) * 2021-07-12 2021-10-22 吉安谊盛电子材料有限公司 一种电解液及高容量锂离子电池

Also Published As

Publication number Publication date
JPWO2018181243A1 (ja) 2020-02-06
EP3605713A4 (en) 2020-12-23
TW201841423A (zh) 2018-11-16
EP3605713A1 (en) 2020-02-05
JP6989095B2 (ja) 2022-01-05
CN110495044A (zh) 2019-11-22
EP3605713B1 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
JP7074284B2 (ja) 正極及び非水電解質二次電池
CN110140245B (zh) 非水电解质二次电池及其中使用的材料
JP5768359B2 (ja) 耐熱性微多孔膜、電池用セパレータ及びリチウムイオン二次電池
JP5798954B2 (ja) 非水二次電池用電解液及び二次電池
JP6989095B2 (ja) リチウムイオン二次電池
JP5426763B2 (ja) 二次電池用非水電解質および非水電解質二次電池
JP2018156876A (ja) リチウムイオン二次電池用正極
JP5109359B2 (ja) 非水電解質二次電池
JP2006286599A (ja) 非水二次電池用負極
JPWO2019189866A1 (ja) マイクロカプセルを含むアンダーコート層を備えた正極及びリチウムイオン二次電池
JP2019036490A (ja) アンダーコート層を備えた集電体、電極及び非水電解質二次電池
JP4713886B2 (ja) 非水電解質二次電池
WO2013183673A1 (ja) 非水電解液二次電池および非水電解液
US10749167B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP2011181386A (ja) 非水電解質二次電池
JP2018206734A (ja) リチウムイオン二次電池及びその製造方法
JP5582573B2 (ja) 二次電池およびそれに用いる二次電池用電解液
JP4834284B2 (ja) 非水電解質二次電池
JP2020155378A (ja) リチウムイオン二次電池用電解液、及びリチウムイオン二次電池
JP2020057476A (ja) 電解質層、電極複合体及びリチウムイオン二次電池
JP6702345B2 (ja) リチウムイオン二次電池
TW202206419A (zh) 非水電解液用添加劑、非水電解液及蓄電器件
WO2015141546A1 (ja) 非水二次電池
JP2019179624A (ja) 非水電解質二次電池
JP2000133270A (ja) 非水電解質電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509848

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018778257

Country of ref document: EP

Effective date: 20191030