KR102334085B1 - 정극 활물질, 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템 - Google Patents

정극 활물질, 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템 Download PDF

Info

Publication number
KR102334085B1
KR102334085B1 KR1020177000991A KR20177000991A KR102334085B1 KR 102334085 B1 KR102334085 B1 KR 102334085B1 KR 1020177000991 A KR1020177000991 A KR 1020177000991A KR 20177000991 A KR20177000991 A KR 20177000991A KR 102334085 B1 KR102334085 B1 KR 102334085B1
Authority
KR
South Korea
Prior art keywords
positive electrode
particles
layer
active material
electrode active
Prior art date
Application number
KR1020177000991A
Other languages
English (en)
Other versions
KR20170038787A (ko
Inventor
아스키 야나기하라
신고 나카사토
유키 니와타
요스케 호소야
Original Assignee
가부시키가이샤 무라타 세이사쿠쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 무라타 세이사쿠쇼 filed Critical 가부시키가이샤 무라타 세이사쿠쇼
Publication of KR20170038787A publication Critical patent/KR20170038787A/ko
Application granted granted Critical
Publication of KR102334085B1 publication Critical patent/KR102334085B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/12Oxides of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/1027Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/26Magnesium halides
    • C01F5/28Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

정극 활물질은, 리튬 복합 산화물을 포함하는 입자와, 입자의 표면에 형성되고, 리튬 복합 산화물을 포함하는 제1층과, 제1층의 표면에 형성된 제2층을 구비한다. 입자에 포함되는 리튬 복합 산화물과 제1층에 포함되는 리튬 복합 산화물은 동일 조성 또는 거의 동일 조성이다. 제2층은, 산화물 또는 불화물을 포함하고 있다. 제1층에 포함되는 리튬 복합 산화물은, 입자에 포함되는 리튬 복합 산화물보다 결정성이 낮다.

Description

정극 활물질, 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템 {POSITIVE-ELECTRODE ACTIVE MATERIAL, POSITIVE ELECTRODE, BATTERY, BATTERY PACK, ELECTRONIC DEVICE, ELECTRIC VEHICLE, ELECTRICITY STORAGE APPARATUS, AND POWER SYSTEM}
본 기술은 정극 활물질, 그것을 구비하는 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템에 관한 것이다. 상세하게는, 리튬 복합 산화물을 포함하는 정극 활물질에 관한 것이다.
코발트산리튬이나 니켈산리튬 등의 α-NaFeO2 구조를 갖는 정극 활물질은, 충전 전압을 높임으로써 충방전 가능한 용량을 증가시킬 수 있다. 그러나, 고충전 전압 영역에서 전지를 사용한 경우, 국소적으로 보다 고전위 상태로 되어, 의도하지 않은 정극 활물질의 Li 삽입 탈리 반응이 발생한다.
비특허문헌 1에 따르면, 고전위로 충방전을 행한 경우, 결정상 전이를 수반하는 Li 삽입 탈리를 사용하게 된다. 상기 상전이를 수반하는 Li 삽입 탈리 반응은 가역적인 반응이 어렵고 불안정하며, 국소적인 전위 분포에 의해 정극의 일부가 고전위에 노출된 경우, 용량 열화의 원인으로 된다.
특허문헌 1에서는, 정극 활물질을 아몰퍼스 LiCoO2로 함으로써, 사이클 특성을 향상시키는 기술이 공개되어 있다. 그러나, 이 방법에서는, 결정상 전이로부터 유래하는 Li 삽입 탈리를 이용할 수 없고, 용량이 현저하게 저하된다. 또한, 고전위에서의 부반응도 많고, 특히 Co 등의 금속의 용출이 많다.
특허문헌 2, 3에서는, 분말 본체의 표면의 적어도 일부에 아몰퍼스의 리튬 전이 금속 산화물을 피복함으로써, 정극 분말 간의 리튬 이온의 이동 저항을 저감하여 사이클 특성을 향상시키는 기술이 공개되어 있다. 그러나, 이 방법에서는, 리튬 이온의 이동 저항을 저감할 수는 있지만, 결정상 전이의 가역성을 담보할 수는 없기 때문에, 고전위로 사용한 경우, 용량이 열화된다. 또한, 고전위에서의 부반응도 많고, 특히 Co 등의 금속의 용출이 많다.
일본 특허 공개 평05-021066호 공보 일본 특허 공개 제2010-177042호 공보 일본 특허 공표 제2005-524204호 공보
Journal of The Electrochemical Society, 149(12) A1604-A1609(2002)
따라서, 본 기술의 목적은, 고용량이고, 또한 사이클 특성이 우수한 정극 활물질, 그것을 구비하는 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템을 제공하는 데 있다.
상술한 과제를 해결하기 위해, 제1 기술은,
리튬 복합 산화물을 포함하는 입자와,
입자의 표면에 형성되고, 리튬 복합 산화물을 포함하는 제1층과,
제1층의 표면에 형성된 제2층을 구비하고,
입자에 포함되는 리튬 복합 산화물과 제1층에 포함되는 리튬 복합 산화물은 동일 조성 또는 거의 동일 조성이고,
제2층은, 산화물 또는 불화물을 포함하고 있고,
제1층에 포함되는 리튬 복합 산화물은, 입자에 포함되는 리튬 복합 산화물보다 결정성이 낮은 정극 활물질이다.
제2 기술은,
리튬 복합 산화물을 포함하는 입자와,
입자의 표면에 형성되고, 리튬 복합 산화물을 포함하는 제1층과,
제1층의 표면에 형성된 제2층을 구비하는 정극 활물질을 포함하고,
입자에 포함되는 리튬 복합 산화물과 제1층에 포함되는 리튬 복합 산화물은 동일 조성 또는 거의 동일 조성이고,
제2층은, 산화물 또는 불화물을 포함하고 있고,
제1층에 포함되는 리튬 복합 산화물은, 입자에 포함되는 리튬 복합 산화물보다 결정성이 낮은 정극이다.
제3 기술은,
정극 활물질을 포함하는 정극과, 부극과, 전해질을 구비하고,
정극 활물질은,
리튬 복합 산화물을 포함하는 입자와,
입자의 표면에 형성되고, 리튬 복합 산화물을 포함하는 제1층과,
제1층의 표면에 형성된 제2층을 구비하고,
입자에 포함되는 리튬 복합 산화물과 제1층에 포함되는 리튬 복합 산화물은 동일 조성 또는 거의 동일 조성이고,
제2층은, 산화물 또는 불화물을 포함하고 있고,
제1층에 포함되는 리튬 복합 산화물은, 입자에 포함되는 리튬 복합 산화물보다 결정성이 낮은 전지이다.
제4 기술은, 제3 기술의 전지를 구비하는 전지 팩이다.
제5 기술은, 제3 기술의 전지를 구비하고, 전지로부터 전력의 공급을 받는 전자 기기이다.
제6 기술은, 제3 기술의 전지와, 전지로부터 전력의 공급을 받아 차량의 구동력으로 변환하는 변환 장치와, 전지에 관한 정보에 기초하여 차량 제어에 관한 정보 처리를 행하는 제어 장치를 구비하는 전동 차량이다.
제7 기술은, 제3 기술의 전지를 구비하고, 전지에 접속되는 전자 기기에 전력을 공급하는 축전 장치이다.
제8 기술은, 제3 기술의 전지를 구비하고, 전지로부터 전력의 공급을 받거나, 또는 발전 장치 혹은 전력망으로부터 전지에 전력이 공급되는 전력 시스템이다.
이상 설명한 바와 같이, 본 기술에 따르면, 고용량이고, 또한 우수한 사이클 특성을 실현할 수 있다.
도 1은 본 기술의 제1 실시 형태에 관한 정극 활물질의 일 구성예를 도시하는 모식도이다.
도 2의 A는, 본 기술의 제1 실시 형태의 제1 변형예에 관한 정극 활물질의 일 구성예를 도시하는 모식도이다. 도 2의 B는, 본 기술의 제1 실시 형태의 제2 변형예에 관한 정극 활물질의 일 구성예를 도시하는 모식도이다.
도 3은 본 기술의 제2 실시 형태에 관한 비수전해질 이차 전지의 일 구성예를 도시하는 단면도이다.
도 4는 도 3에 도시한 권회 전극체의 일부를 확대하여 도시하는 단면도이다.
도 5는 본 기술의 제3 실시 형태에 관한 비수전해질 이차 전지의 일 구성예를 도시하는 분해 사시도이다.
도 6은 도 5의 VI-VI선을 따른 권회 전극체의 단면도이다.
도 7은 본 기술의 제4 실시 형태에 관한 비수전해질 이차 전지의 일 구성예를 도시하는 분해 사시도이다.
도 8은 도 7에 도시한 전지 소자의 외관의 일례를 도시하는 사시도이다.
도 9는 도 7에 도시한 전지 소자의 일 구성예를 도시하는 단면도이다.
도 10은 정극의 일 구성예를 도시하는 평면도이다.
도 11은 부극의 일 구성예를 도시하는 평면도이다.
도 12는 세퍼레이터의 일 구성예를 도시하는 평면도이다.
도 13은 본 기술의 제4 실시 형태의 변형예에 관한 비수전해질 이차 전지에 사용되는 전지 소자의 일 구성예를 도시하는 단면도이다.
도 14는 본 기술의 제5 실시 형태에 관한 전지 팩 및 전자 기기의 일 구성예를 도시하는 블록도이다.
도 15는 본 기술의 제6 실시 형태에 관한 축전 시스템의 일 구성예를 도시하는 개략도이다.
도 16은 본 기술의 제7 실시 형태에 관한 전동 차량의 일 구성을 도시하는 개략도이다.
도 17은 실시예 44, 비교예 3의 정극 활물질의 라만 스펙트럼을 도시하는 도면이다.
본 기술의 실시 형태에 대하여 이하의 순서로 설명한다.
1. 제1 실시 형태(정극 활물질의 예)
2. 제2 실시 형태(원통형 전지의 예)
3. 제3 실시 형태(편평형 전지의 예)
4. 제4 실시 형태(스택형 전지의 예)
5. 제5 실시 형태(전지 팩 및 전자 기기의 예)
6. 제6 실시 형태(축전 시스템의 예)
7. 제7 실시 형태(전동 차량의 예)
<1. 제1 실시 형태>
[정극 활물질의 구성]
제1 실시 형태에 관한 정극 활물질은, 2층 피복형 복합 입자의 분말을 포함하고 있다. 정극 활물질은, 필요에 따라, 2층 피복형 복합 입자의 분말 외에, 그 이외의 입자의 분말을 더 포함하고 있어도 된다. 도 1에 도시하는 바와 같이, 2층 피복형 복합 입자는, 코어 입자(1)와, 코어 입자(1)의 표면에 형성된 제1 피복층(2)과, 제1 피복층(2)의 표면에 형성된 제2 피복층(3)을 구비한다.
(코어 입자)
코어 입자(1)는, 예를 들어 구형, 타원체형, 침형, 판형, 비늘 조각형, 튜브형, 와이어형, 막대형(로드형), 부정 형상 등을 들 수 있지만, 특히 이들에 한정되는 것은 아니다. 또한, 2종 이상의 형상의 입자를 조합하여 사용해도 된다. 여기서, 구형에는, 진구형뿐만 아니라, 진구형이 약간 편평 또는 일그러진 형상, 진구형의 표면에 요철이 형성된 형상, 또는 이들의 형상이 조합된 형상 등도 포함된다. 타원체형에는, 엄밀한 타원체형뿐만 아니라, 엄밀한 타원체형이 약간 편평 또는 일그러진 형상, 엄밀한 타원체형의 표면에 요철이 형성된 형상, 또는 이들의 형상이 조합된 형상 등도 포함된다.
코어 입자(1)는, 리튬 복합 산화물을 포함하고 있다. 리튬 복합 산화물은, 결정성이 높은 것이 바람직하다. 이러한 상태의 복합 산화물은, 예를 들어 결정질, 또는 결정질과 비정질의 혼합체이다. 여기서, 결정질에는, 단결정뿐만 아니라, 다수의 결정립이 집합된 다결정도 포함하는 것으로 한다. 리튬 복합 산화물은, 리튬을 흡장 및 방출하는 것이 가능한 정극 재료이다. 이러한 정극 재료로서는, 에너지 밀도를 높게 한다는 관점에서, 리튬과 1종 또는 2종 이상의 전이 금속 원소와 산소(O)를 포함하는 리튬 전이 금속 복합 산화물이 바람직하다. 이러한 리튬 전이 금속 복합 산화물로서는, 결정상 전이로부터 유래하는 Li 삽입 탈리 반응을 이용하는 것이 바람직하다. 사이클 특성을 개선하는 효과의 발현이 특히 현저하게 나타나기 때문이다. Li 삽입 탈리 반응을 이용하는 리튬 전이 금속 복합 산화물로서는, 층상 암염형 구조를 갖는 리튬 복합 산화물, 올리빈형 구조를 갖는 리튬 복합 인산염, 스피넬형 구조를 갖는 리튬망간 복합 산화물 등을 사용할 수 있다. 그들 리튬 전이 금속 복합 산화물 중에서도, 층상 암염형 구조를 갖는 리튬 복합 산화물을 사용하는 것이 특히 바람직하다. 충전 전압을 높임으로써 충방전 가능한 용량을 증가시킬 수 있기 때문이다.
층상 암염형 구조를 갖는 리튬 복합 산화물로서는, 예를 들어 이하의 식 (A) 또는 식 (B)로 평균 조성이 표시되는 것이 사용된다.
Figure 112017003899999-pct00001
(단, w는 0.8<w<1.2, x+y는 0.9<x+y<1.1, y는 0≤y<0.1, z는 0≤z<0.05임. M은 Ti, V, Cr, Mn, Fe, Co, Ni, Mn 및 Cu 중 적어도 1종임. N은 Na, Mg, Al, Si, K, Ca, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ba, La, W 및 Bi 중 적어도 1종임. X는 F, Cl 및 S 중 적어도 1종임. 또한, 리튬의 조성은 충방전의 상태에 따라 상이하며, w의 값은 완전 방전 상태에 있어서의 값을 나타내고 있음)
Figure 112017003899999-pct00002
(단, x는 0.8<x<1.2, y는 0≤y<0.15, z는 0≤z<0.05임. M은 Ti, V, Cr, Mn, Fe, Ni, Mn, Cu, Na, Mg, Al, Si, K, Ca, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ba, La 및 W 중 적어도 1종임. X는 F, Cl 및 S 중 적어도 1종임. 또한, 리튬의 조성은 충방전의 상태에 따라 상이하며, x의 값은 완전 방전 상태에 있어서의 값을 나타내고 있음)
올리빈형 구조를 갖는 리튬 복합 인산염으로서는, 예를 들어 이하의 식 (C) 또는 식 (D)로 평균 조성이 표시되는 것이 사용된다.
Figure 112017003899999-pct00003
(단, M1은, 2족 내지 15족으로부터 선택되는 원소 중 적어도 1종임. a, b는 0≤a≤2.0, 0.5≤b≤2.0의 범위 내의 값임. 또한, 리튬의 조성은 충방전의 상태에 따라 상이하며, a의 값은 완전 방전 상태에 있어서의 값을 나타내고 있음)
Figure 112017003899999-pct00004
(단, M2는, Co, Mn, Fe, Ni, Mg, Al, B, Ti, V, Nb, Cu, Zn, Mo, Ca, Sr, W 및 Zr 중 적어도 1종임. z는 0.9≤z≤1.1의 범위 내의 값임. 또한, 리튬의 조성은 충방전의 상태에 따라 상이하며, z의 값은 완전 방전 상태에 있어서의 값을 나타내고 있음)
스피넬형 구조를 갖는 리튬망간 복합 산화물로서는, 예를 들어 이하의 식 (E)로 평균 조성이 표시되는 것이 사용된다.
Figure 112017003899999-pct00005
(단, M3은, Co, Ni, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Mo, Sn, Ca, Sr 및 W 중 적어도 1종임. v, w, x 및 y는 0.9≤v≤1.1, 0≤w≤0.6, 3.7≤x≤4.1, 0≤y≤0.1의 범위 내의 값임. 또한, 리튬의 조성은 충방전의 상태에 따라 상이하며, v의 값은 완전 방전 상태에 있어서의 값을 나타내고 있음)
(제1 피복층)
제1 피복층(2)은, 코어 입자(1)의 표면의 적어도 일부를 피복하고 있다. 구체적으로는, 제1 피복층(2)은, 코어 입자(1)의 표면을 부분적으로 피복하고 있어도 되고, 코어 입자(1)의 표면 전체를 피복하고 있어도 되지만, 사이클 특성의 향상의 관점에서 보면, 코어 입자(1)의 표면 전체를 피복하고 있는 것이 바람직하다. 코어 입자(1)와 제1 피복층(2)의 계면에 있어서, 양자의 조성이나 상태 등이 불연속적으로 변화하고 있어도 되고, 연속적으로 변화하고 있어도 된다.
제1 피복층(2)은, 리튬 복합 산화물을 포함하고 있다. 리튬 복합 산화물은, 결정성이 낮은 것이 바람직하다. 이러한 상태의 복합 산화물은, 예를 들어 결정질과 비정질의 혼합체, 또는 비정질이다. 여기서, 결정질에는, 단결정뿐만 아니라, 다수의 결정립이 집합된 다결정도 포함하는 것으로 한다. 코어 입자(1)에 포함되는 리튬 복합 산화물과 제1 피복층(2)에 포함되는 리튬 복합 산화물은, 동일 조성 또는 거의 동일 조성이다. 여기서, 동일 조성이란, 코어 입자(1)와 제1 피복층(2)에 포함되는 리튬 복합 산화물의 구성 원소가 동일하고, 또한 코어 입자(1)와 제1 피복층(2)에 있어서 각 구성 원소의 원자 비율이 동일한 것을 말한다. 또한, 거의 동일 조성이란, 코어 입자(1)와 제1 피복층(2)에 포함되는 리튬 복합 산화물의 구성 원소가 동일하고, 또한 코어 입자(1)와 제1 피복층(2)에 있어서 각 구성 원소의 원자 비율이, 코어 입자(1)와 제1 피복층(2)에 포함되는 리튬 복합 산화물의 Li 삽입 탈리 반응 시의 결정상 전이 반응이 동일하게 되는 범위에서 상이한 것을 말한다. 코어 입자(1)와 제1 피복층(2)에 포함되는 리튬 복합 산화물의 Li 삽입 탈리 반응 시의 상전이 반응을 동일하게 한다는 관점에서 보면, 코어 입자(1)와 제1 피복층(2)에 있어서의 각 구성 원소의 원자 비율의 차이는, 바람직하게는 10원자% 이내, 보다 바람직하게는 3원자% 이내이다.
제1 피복층(2)에 포함되는 리튬 복합 산화물의 결정성은, 코어 입자(1)에 포함되는 리튬 복합 산화물의 결정성보다 낮다. 이 경우, 코어 입자(1)와 제1 피복층(2)에 포함되는 리튬 복합 산화물은, 구체적으로는, 이하의 상태인 것이 바람직하다. 즉, (a) 코어 입자(1)에 포함되는 리튬 복합 산화물은 결정질이고, 제1 피복층(2)에 포함되는 리튬 복합 산화물은 비정질이거나, (b) 코어 입자(1)에 포함되는 리튬 복합 산화물은 결정질이고, 제1 피복층(2)에 포함되는 리튬 복합 산화물은 결정질과 비정질의 혼합체이거나, 혹은 (c) 코어 입자(1)에 포함되는 리튬 복합 산화물과 제1 피복층(2)에 포함되는 리튬 복합 산화물은, 결정질과 비정질의 혼합체이고, 코어 입자(1)에 포함되는 결정질의 양이, 제1 피복층(2)에 포함되는 결정질의 양보다 많은 것이 바람직하다. 여기서, 결정질에는, 단결정뿐만 아니라, 다수의 결정립이 집합된 다결정도 포함하는 것으로 한다.
제1 피복층(2)에 포함되는 리튬 복합 산화물이, 코어 입자(1)에 포함되는 리튬 복합 산화물보다 낮은 결정성을 갖고 있는지 여부는, 예를 들어 2층 피복형 복합 입자의 단면 TEM(Transmission Electron Microscope)상에 의해 확인할 수 있다. 또한, 라만 분광법에 의해 확인할 수도 있다. 구체적으로는, 정극 활물질의 라만 스펙트럼에 있어서, 550㎝-1 이상 650cm-1 이하의 범위에 있는 피크의 강도 A와 450cm-1 이상 500cm-1 이하의 범위에 있는 피크의 강도 E의 피크 강도비 E/A를 해석함으로써 확인할 수 있다.
라만 스펙트럼에 있어서의 피크 강도 A는 c축에 평행한 방향의 Co-O의 진동에 의한 것이며, 피크 강도 E는 Li층에 평행한 방향의 진동에 의한 것이다. 피크 강도 A에 대하여 피크 강도 E가 작다고 하는 것은, 라만 분광법으로 검출 가능한 표면의 결정성이 낮다는 것을 나타내고 있다고 생각된다(C. Julien/Solid State Ionics 157(2003) 57_71 참조).
정극 활물질의 라만 스펙트럼에 있어서, 550㎝-1 이상 650cm-1 이하의 범위에 있는 피크의 강도 A와 450cm-1 이상 500cm-1 이하의 범위에 있는 피크의 강도 E의 피크 강도비 E/A가, 이하의 식 (1)로 표시되는 관계를 만족하고 있는 것이 바람직하다.
Figure 112017003899999-pct00006
E/A<0.1이면, 코어 입자(1)의 결정성이 낮기 때문에, 고체 내 확산에 의해 코어 입자(1)로부터의 금속 용출이 증가하고, 사이클 특성이 저하된다. 한편, 0.35<E/A이면, 제1 피복층(2)의 결정성이 높기 때문에, 상전이를 수반하는 Li 삽입 탈리 반응에 의해 발생하는 코어 입자(1) 내의 격자나 결정자의 변형을 완화할 수 없게 되고, 사이클 특성이 저하된다.
코어 입자(1)와 제1 피복층(2)에 포함되는 리튬 복합 산화물이 거의 동일 조성인 경우에는, 제1 피복층(2)에 포함되는 리튬 복합 산화물의 리튬 함유량은, 코어 입자(1)에 포함되는 리튬 복합 산화물의 리튬 함유량보다 적은 것이 바람직하다. 제1 피복층(2)에 포함되는 리튬 복합 산화물을, 코어 입자(1)에 포함되는 리튬 복합 산화물보다 낮은 결정성으로 하는 것이 용이해지기 때문이다.
상술한 바와 같이, 코어 입자(1)와 제1 피복층(2)에 포함되는 리튬 복합 산화물을 동일 조성 또는 거의 동일 조성으로 하고, 또한 제1 피복층(2)에 포함되는 리튬 복합 산화물을, 코어 입자(1)에 포함되는 리튬 복합 산화물보다 저결정성으로 함으로써, 이하의 이점이 얻어진다. 즉, 상전이를 수반하는 Li 삽입 탈리 반응에 의해 발생하는 코어 입자(1) 내의 격자나 결정자의 변형을 제1 피복층(2)에 의해 완화할 수 있다. 따라서, 코어 입자(1) 내의 상전이 반응의 가역성을 향상시키고, 양호한 사이클 특성을 얻을 수 있다.
제1 피복층(2)의 평균 막 두께는, 1nm 이상 50nm 이하인 것이 바람직하다. 평균 막 두께가 1nm 이상이면, 제1 피복층(2)의 막 두께의 균일성을 높일 수 있고, 상전이의 가역성을 보다 향상시킬 수 있다. 따라서, 사이클 특성을 더 향상시킬 수 있다. 평균 막 두께가 50nm 이하이면, 저결정성을 갖는 리튬 복합 산화물을 포함하는 제1 피복층(2)의 피복량을 저감할 수 있으므로, 제1 피복층(2)으로부터 전해액으로의 금속의 용출량을 저감할 수 있다. 따라서, 사이클 특성을 더 향상시킬 수 있다.
(제2 피복층)
제2 피복층(3)은, 제1 피복층(2)의 표면의 적어도 일부를 피복하고 있다. 구체적으로는, 제2 피복층(3)은, 제1 피복층(2)의 표면을 부분적으로 피복하고 있어도 되고, 제1 피복층(2)의 표면 전체를 피복하고 있어도 되지만, 사이클 특성의 향상의 관점에서 보면, 제1 피복층(2)의 표면 전체를 피복하고 있는 것이 바람직하다. 제1 피복층(2)과 제2 피복층(3)의 계면에 있어서, 양층의 조성이나 상태 등이 불연속적으로 변화하고 있어도 되고, 연속적으로 변화하고 있어도 된다. 코어 입자(1)의 표면이 제1 피복층(2)에 피복되지 않고 노출되어 있는 부분이 있는 경우에는, 그 노출 부분을 제2 피복층(3)이 직접 피복하고 있어도 된다.
제2 피복층(3)에 의해 제1 피복층(2)의 표면의 적어도 일부를 피복함으로써, 제1 피복층(2)과 전해액의 접촉을 억제할 수 있다. 이에 의해, 2층 피복형 복합 입자로부터 전해액으로의 금속 용출을 억제하고, 사이클 특성을 향상시킬 수 있다.
제2 피복층(3)은, 예를 들어 산화물 또는 불화물을 포함하고 있다. 산화물 및 불화물은, 결정성을 갖고 있는 것이 바람직하다. 산화물은, 예를 들어 코어 입자(1)에 포함되는 리튬 복합 산화물과는 상이한 산화물이어도 되고, 동일한 산화물이어도 된다. 산화물은, 예를 들어 Li, Ti, V, Cr, Mn, Fe, Co, Ni, Mn, Cu, Na, Mg, Al, Si, K, Ca, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ba, La, W, Bi, P 및 B 중 적어도 1종을 포함하고 있다.
산화물은, 예를 들어 단일 산화물, 리튬 복합 산화물 등의 복합 산화물, 또는 불소로 치환된 복합 산화물이다. 단일 산화물로서는, 예를 들어 상기 재료 중 1종을 포함하는 것을 들 수 있다. 복합 산화물로서는, 예를 들어 상기 재료 중 2종 이상을 포함하는 것을 들 수 있다. 불소로 치환된 복합 산화물로서는, 예를 들어 상기 재료 중 2종 이상을 포함하는 복합 산화물을 불소로 치환한 것을 들 수 있다.
제2 피복층(3)에 포함되는 리튬 복합 산화물로서는, 예를 들어 리튬과 1종 또는 2종 이상의 전이 금속 원소와 산소(O)를 포함하는 리튬 전이 금속 복합 산화물을 사용할 수 있다. 이 리튬 전이 금속 복합 산화물로서는, 예를 들어 이하의 식 (F)로 평균 조성이 표시되는 것이 사용된다.
Figure 112017003899999-pct00007
(단, w는 0.8<w<1.2, x+y는 0.9<x+y<1.1, y는 0≤y<0.1, z는 0≤z<0.05임. M은 Ti, V, Cr, Mn, Fe, Co, Ni, Mn 및 Cu 중 적어도 1종임. N은 Na, Mg, Al, Si, K, Ca, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ba, La, W 및 Bi 중 적어도 1종임. X는 F, Cl 및 S 중 적어도 1종임)
불화물은, 예를 들어 Li, Ti, V, Cr, Mn, Fe, Co, Ni, Mn, Cu, Na, Mg, Al, Si, K, Ca, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ba, La, W, Bi, P 및 B 중 적어도 1종을 포함하고 있다. 불화물은, 예를 들어 복합 불화물이어도 된다. 복합 불화물은, 예를 들어 상기 재료 중 2종 이상을 포함하는 것을 들 수 있다.
코어 입자(1), 제1 피복층(2) 및 제2 피복층(3)의 총량에 대한 제2 피복층(3)의 비율은, 0.1mol% 이상 10mol% 이하인 것이 바람직하다. 제2 피복층(3)의 비율이 0.1mol 이상이면, 제2 피복층(3)에 덮이지 않고 제1 피복층(2)의 표면이 노출되는 부분이 발생하는 것을 억제할 수 있다. 이에 의해, 제1 피복층(2)과 전해액의 접촉을 억제할 수 있으므로, 사이클 특성을 더 향상시킬 수 있다. 제2 피복층(3)의 비율이 10mol%를 초과하면, 피복 형태에 따라서는 충방전 용량이 저하될 우려가 있다. 또한, 충방전에 기여하는 피복 형태라도 충방전 커브 형상에 큰 차이가 발생하는 등의 점에서 바람직하지 않다.
제2 피복층(3)이 리튬 전이 금속 복합 산화물 등의 전이 금속 산화물을 포함하고 있는 경우에는, 그 전이 금속 산화물은, 결정성이 높은 것이 바람직하다. 이러한 상태의 전이 금속 산화물은, 예를 들어 결정질, 또는 결정질과 비정질의 혼합체이다. 전이 금속 산화물의 결정성이 높은 경우에는, 전이 금속 산화물의 결정성이 낮은 경우에 비하여 제2 피복층(3)으로부터 전해액으로의 금속 용출을 억제할 수 있다. 제1, 제2 피복층(2, 3)이 모두 리튬 전이 금속 복합 산화물 등의 전이 금속 산화물을 포함하고 있는 경우에는, 전해액에 대한 금속 용출의 억제의 관점에서, 제2 피복층(3)에 포함되는 전이 금속 산화물이, 제1 피복층(2)에 포함되는 전이 금속 산화물보다 결정성이 높은 것이 바람직하다. 제2 피복층(3)이 전이 금속 산화물 이외의 산화물 또는 불화물을 포함하고 있는 경우에는, 그의 산화물 또는 불화물의 결정성의 고저에 따르지 않고, 양호한 금속 용출의 억제 효과가 얻어진다.
[정극 활물질의 제조 방법]
(단층 피복형 복합 입자의 분말의 제작 공정)
우선, 고결정성을 갖는 코어 입자의 분말과, 저결정성을 갖는 제1 피복재의 분말을 배합하고, 이 배합물에 대하여 메커니컬 알로잉 등의 기계적인 복합화 처리를 실시하고, 제1 피복재로 코어 입자(1)의 표면을 피복한다. 이에 의해, 코어 입자(1)와 제1 피복층(2)을 구비하는 단층 피복형 복합 입자가 얻어진다.
(2층 피복형 복합 입자의 분말의 제작 공정)
이어서, 얻어진 단층 피복형 복합 입자의 분말과 제2 피복재의 분말을 배합하고, 이 배합물에 대하여 메커니컬 알로잉 등의 기계적인 복합화 처리를 실시하고, 제2 피복재로 제1 피복층(2)의 표면을 피복한다. 이에 의해, 코어 입자(1)와 제1 피복층(2)과 제2 피복층(3)을 구비하는 2층 피복형 복합 입자가 얻어진다. 이상에 의해, 목적으로 하는 정극 활물질이 얻어진다.
[효과]
제1 실시 형태에 관한 정극 활물질에 따르면, 코어 입자(1)의 표면에 제1 피복층(2)을 형성하고, 코어 입자(1)와 제1 피복층(2)에 포함되는 리튬 복합 산화물을 동일 조성 또는 거의 동일 조성으로 하고 있다. 또한, 제1 피복층(2)에 포함되는 리튬 복합 산화물의 결정성을, 코어 입자(1)에 포함되는 리튬 복합 산화물의 결정성보다 낮게 하고 있다. 이에 의해, 상전이를 수반하는 Li 삽입 탈리 반응에 의해 발생하는 코어 입자(1) 내의 격자나 결정자의 변형을, 저결정성의 제1 피복층(2)으로 완화할 수 있다. 따라서, 코어 입자(1) 내의 상전이 반응의 가역성을 향상시킬 수 있다.
또한, 제1 피복층(2)의 표면을 제2 피복층(3)에 의해 보호함으로써, 저결정성의 리튬 복합 산화물을 포함하는 제1 피복층(2)과 전해액의 접촉을 억제할 수 있다. 이에 의해, 2층 피복형 피복 입자로부터 전해액으로의 금속 용출을 억제할 수 있다. 따라서, 사이클 특성이 우수한 전지를 제작하는 것이 가능하게 된다.
[변형예]
제1 실시 형태에서는, 정극 활물질이, 2층 피복형 복합 입자(복합 일차 입자)의 분말을 포함하는 예에 대하여 설명하였지만, 정극 활물질의 구성은 이 예에 한정되는 것은 아니다. 예를 들어, 정극 활물질이, 2층 피복형 복합 입자의 분말 대신에 피복형 복합 이차 입자를 포함하도록 해도 되고, 2층 피복형 복합 입자의 분말과 함께 피복형 복합 이차 입자를 포함하도록 해도 된다.
도 2의 A에 도시하는 바와 같이, 이 피복형 복합 이차 입자는, 이차 입자(4)와, 이 이차 입자(4)의 표면에 형성된 피복층(5)을 구비한다. 또한, 이 변형예에 있어서, 제1 실시 형태와 마찬가지의 지점에는 동일한 부호를 부여하여 설명을 생략한다.
이차 입자(4)는, 응집된 복수의 단층 피복형 복합 입자(6)에 의해 구성되어 있다. 피복층(5)은, 이차 입자(4)의 표면을 부분적으로 피복하고 있어도 되고, 이차 입자(4)의 표면 전체를 피복하고 있어도 되지만, 사이클 특성의 향상의 관점에서 보면, 이차 입자(4)의 표면 전체를 피복하고 있는 것이 바람직하다. 피복층(5)의 재료는, 상술한 제1 실시 형태에서의 제2 피복층(3)의 것과 마찬가지이다.
또한, 정극 활물질이, 2층 피복형 복합 입자의 분말 대신에 분산형 복합 입자의 분말을 포함하도록 해도 되고, 2층 피복형 복합 입자의 분말과 함께 분산형 복합 입자의 분말을 포함하도록 해도 된다.
도 2의 B에 도시하는 바와 같이, 이 분산형 복합 입자는, 모재(7)와, 이 모재(7)에 분산된 복수의 단층 피복형 복합 입자(6)를 구비한다. 또한, 이 변형예에 있어서, 제1 실시 형태와 마찬가지의 지점에는 동일한 부호를 부여하여 설명을 생략한다. 모재(7)의 재료는, 상술한 제1 실시 형태에서의 제2 피복층(3)의 것과 마찬가지이다.
또한, 상술한 제1 실시 형태에서는, 메커니컬 알로잉 등의 기계적인 복합화 처리로, 제1 피복층 및 제2 피복층을 코어 입자의 표면에 형성하는 예에 대하여 설명하였지만, 피복의 방법은 이것에 한정되는 것은 아니다. 예를 들어, 졸-겔법, CVD법(Chemical Vapor Deposition(화학 증착법)), PVD법(Physical Vapor Deposition(물리 증착법)) 등을 사용해도 된다.
<2. 제2 실시 형태>
[전지의 구성]
이하, 도 3을 참조하면서, 본 기술의 제2 실시 형태에 관한 비수전해질 이차 전지의 일 구성예에 대하여 설명한다. 이 비수전해질 이차 전지는, 예를 들어 부극의 용량이, 전극 반응 물질인 리튬(Li)의 흡장 및 방출에 의한 용량 성분에 의해 표시되는 소위 리튬 이온 이차 전지이다. 이 비수전해질 이차 전지는 소위 원통형이라고 불리는 것이며, 거의 중공 원기둥형의 전지 캔(11)의 내부에, 한 쌍의 띠형의 정극(21)과 띠형의 부극(22)이 세퍼레이터(23)를 개재하여 적층되고 권회된 권회 전극체(20)를 갖고 있다. 전지 캔(11)은, 니켈(Ni)의 도금이 이루어진 철(Fe)에 의해 구성되어 있고, 일단부가 폐쇄되고 타단부가 개방되어 있다. 전지 캔(11)의 내부에는, 전해질로서의 전해액이 주입되어, 정극(21), 부극(22) 및 세퍼레이터(23)에 함침되어 있다. 또한, 권회 전극체(20)를 사이에 끼우도록 권회 둘레면에 대하여 수직으로 한 쌍의 절연판(12, 13)이 각각 배치되어 있다.
전지 캔(11)의 개방 단부에는, 전지 덮개(14)와, 이 전지 덮개(14)의 내측에 설치된 안전 밸브 기구(15) 및 열감 저항 소자(Positive Temperature Coefficient; PTC 소자)(16)가, 밀봉 가스킷(17)을 통하여 코킹됨으로써 설치되어 있다. 이에 의해, 전지 캔(11)의 내부는 밀폐되어 있다. 전지 덮개(14)는, 예를 들어 전지 캔(11)과 마찬가지의 재료에 의해 구성되어 있다. 안전 밸브 기구(15)는, 전지 덮개(14)와 전기적으로 접속되어 있고, 내부 단락 혹은 외부로부터의 가열 등에 의해 전지의 내압이 일정 이상으로 된 경우에, 디스크판(15A)이 반전하여 전지 덮개(14)와 권회 전극체(20)의 전기적 접속을 절단하도록 되어 있다. 밀봉 가스킷(17)은, 예를 들어 절연 재료에 의해 구성되어 있고, 표면에는 아스팔트가 도포되어 있다.
권회 전극체(20)의 중심에는, 예를 들어 센터 핀(24)이 삽입되어 있다. 권회 전극체(20)의 정극(21)에는 알루미늄(Al) 등을 포함하는 정극 리드(25)가 접속되어 있고, 부극(22)에는 니켈 등을 포함하는 부극 리드(26)가 접속되어 있다. 정극 리드(25)는 안전 밸브 기구(15)에 용접됨으로써 전지 덮개(14)와 전기적으로 접속되어 있고, 부극 리드(26)는 전지 캔(11)에 용접되어 전기적으로 접속되어 있다.
제2 실시 형태에 관한 비수전해질 이차 전지에서는, 한 쌍의 정극(21) 및 부극(22)당 완전 충전 상태에 있어서의 개회로 전압(즉 전지 전압)은, 4.2V 이하여도 되지만, 4.2V보다 높게, 바람직하게는 4.3V 이상 5.0V 이하, 보다 바람직하게는 4.35V 이상 4.60V 이하의 범위 내로 되도록 설계되어 있어도 된다. 이러한 전지 전압의 범위로 함으로써, 높은 에너지 밀도를 얻을 수 있음과 함께, 사이클 특성 향상의 효과가 현저하게 발현된다.
이하, 도 4를 참조하면서, 비수전해질 이차 전지를 구성하는 정극(21), 부극(22), 세퍼레이터(23) 및 전해액에 대하여 순차적으로 설명한다.
(정극)
정극(21)은, 예를 들어 정극 집전체(21A)의 양면에 정극 활물질층(21B)이 형성된 구조를 갖고 있다. 또한, 도시는 하지 않았지만, 정극 집전체(21A)의 편면에만 정극 활물질층(21B)을 형성하도록 해도 된다. 정극 집전체(21A)는, 예를 들어 알루미늄박, 니켈박 혹은 스테인리스박 등의 금속박에 의해 구성되어 있다. 정극 활물질층(21B)은, 예를 들어 전극 반응 물질인 리튬(Li)을 흡장 및 방출하는 것이 가능한 정극 활물질을 포함하고 있다. 정극 활물질층(21B)은, 필요에 따라 첨가제를 더 포함하고 있어도 된다. 첨가제로서는, 예를 들어 도전제 및 결착제 중 적어도 1종을 사용할 수 있다.
(정극 활물질)
정극 활물질은, 상술한 제1 실시 형태 또는 그의 변형예에 관한 정극 활물질이다.
(결착제)
결착재로서는, 예를 들어 폴리불화비닐리덴(PVdF), 폴리테트라플루오로에틸렌(PTFE), 폴리아크릴로니트릴(PAN), 스티렌부타디엔 고무(SBR) 및 카르복시메틸셀룰로오스(CMC) 등의 수지 재료, 그리고 이들 수지 재료를 주체로 하는 공중합체 등으로부터 선택되는 적어도 1종이 사용된다.
(도전제)
도전제로서는, 예를 들어 흑연, 카본 블랙 혹은 케첸 블랙 등의 탄소 재료를 들 수 있으며, 그들 중 1종 또는 2종 이상이 혼합되어 사용된다. 또한, 탄소 재료 외에도, 도전성을 갖는 재료라면 금속 재료 혹은 도전성 고분자 재료 등을 사용하도록 해도 된다.
(부극)
부극(22)은, 예를 들어 부극 집전체(22A)의 양면에 부극 활물질층(22B)이 형성된 구조를 갖고 있다. 또한, 도시는 하지 않았지만, 부극 집전체(22A)의 편면에만 부극 활물질층(22B)을 형성하도록 해도 된다. 부극 집전체(22A)는, 예를 들어 구리박, 니켈박 혹은 스테인리스박 등의 금속박에 의해 구성되어 있다.
부극 활물질층(22B)은, 부극 활물질로서, 리튬을 흡장 및 방출하는 것이 가능한 1종 또는 2종 이상의 부극 활물질을 포함하고 있다. 부극 활물질층(22B)은, 필요에 따라 결착제 등의 첨가제를 더 포함하고 있어도 된다.
또한, 제2 실시 형태에 관한 비수전해질 이차 전지에서는, 리튬을 흡장 및 방출하는 것이 가능한 부극 재료의 전기 화학 당량이, 정극(21)의 전기 화학 당량보다 크게 되어 있고, 충전 도중에 있어서 부극(22)에 리튬 금속이 석출되지 않도록 되어 있다.
리튬을 흡장 및 방출하는 것이 가능한 부극 재료로서는, 예를 들어 리튬을 흡장 및 방출하는 것이 가능하고, 금속 원소 및 반금속 원소 중 적어도 1종을 구성 원소로서 포함하는 재료를 들 수 있다. 여기서는, 이러한 부극 재료를 포함하는 부극(22)을 합금계 부극이라고 칭한다. 이러한 재료를 사용하면, 높은 에너지 밀도를 얻을 수 있기 때문이다. 특히, 탄소 재료와 함께 사용하도록 하면, 고에너지 밀도를 얻을 수 있음과 함께, 우수한 사이클 특성을 얻을 수 있으므로 보다 바람직하다. 이 부극 재료는 금속 원소 혹은 반금속 원소의 단체여도, 합금이어도, 화합물이어도 되며, 또한 이들 중 1종 또는 2종 이상의 상을 적어도 일부에 갖는 것이어도 된다. 또한, 본 기술에 있어서, 합금에는 2종 이상의 금속 원소를 포함하는 것 외에, 1종 이상의 금속 원소와 1종 이상의 반금속 원소를 포함하는 것도 포함시킨다. 또한, 비금속 원소를 포함하고 있어도 된다. 그 조직에는 고용체, 공정(공융 혼합물), 금속간 화합물 혹은 그들 중 2종 이상이 공존하는 것이 있다.
이 부극 재료를 구성하는 금속 원소 혹은 반금속 원소로서는, 예를 들어 마그네슘(Mg), 붕소(B), 알루미늄(Al), 갈륨(Ga), 인듐(In), 규소(Si), 게르마늄(Ge), 주석(Sn), 납(Pb), 비스무트(Bi), 카드뮴(Cd), 은(Ag), 아연(Zn), 하프늄(Hf), 지르코늄(Zr), 이트륨(Y), 팔라듐(Pd) 혹은 백금(Pt)을 들 수 있다. 이들은 결정질인 것이어도 되고, 아몰퍼스인 것이어도 된다.
그 중에서도, 이 부극 재료로서는, 단주기형 주기율표에서의 4B족 금속 원소 혹은 반금속 원소를 구성 원소로서 포함하는 것이 바람직하며, 특히 바람직한 것은 규소(Si) 및 주석(Sn) 중 적어도 하나를 구성 원소로서 포함하는 것이다. 규소(Si) 및 주석(Sn)은, 리튬(Li)을 흡장 및 방출하는 능력이 크고, 높은 에너지 밀도를 얻을 수 있기 때문이다.
주석(Sn)의 합금으로서는, 예를 들어 주석(Sn) 이외의 제2 구성 원소로서, 규소(Si), 니켈(Ni), 구리(Cu), 철(Fe), 코발트(Co), 망간(Mn), 아연(Zn), 인듐(In), 은(Ag), 티타늄(Ti), 게르마늄(Ge), 비스무트(Bi), 안티몬(Sb) 및 크롬(Cr)으로 이루어지는 군 중 적어도 1종을 포함하는 것을 들 수 있다. 규소(Si)의 합금으로서는, 예를 들어 규소(Si) 이외의 제2 구성 원소로서, 주석(Sn), 니켈(Ni), 구리(Cu), 철(Fe), 코발트(Co), 망간(Mn), 아연(Zn), 인듐(In), 은(Ag), 티타늄(Ti), 게르마늄(Ge), 비스무트(Bi), 안티몬(Sb) 및 크롬(Cr)으로 이루어지는 군 중 적어도 1종을 포함하는 것을 들 수 있다.
주석(Sn)의 화합물 혹은 규소(Si)의 화합물로서는, 예를 들어 산소(O) 혹은 탄소(C)를 포함하는 것을 들 수 있으며, 주석(Sn) 또는 규소(Si) 외에, 상술한 제2 구성 원소를 포함하고 있어도 된다. 주석(Sn)의 화합물의 구체예로서는, SiOv(0.2<v<1.4)로 표시되는 산화규소를 들 수 있다.
리튬을 흡장 및 방출하는 것이 가능한 부극 재료로서는, 예를 들어 난흑연화성 탄소, 이흑연화성 탄소, 흑연, 열분해 탄소류, 코크스류, 유리상 탄소류, 유기 고분자 화합물 소성체, 탄소 섬유 혹은 활성탄 등의 탄소 재료도 들 수 있다. 흑연으로서는, 구형화 처리 등을 실시한 천연 흑연, 대략 구형의 인조 흑연을 사용하는 것이 바람직하다. 인조 흑연으로서는, 메소 카본 마이크로비즈(MCMB)를 흑연화한 인조 흑연, 또는 코크스 원료를 흑연화, 분쇄한 인조 흑연이 바람직하다. 코크스류에는 피치 코크스, 니들 코크스 혹은 석유 코크스 등이 있다. 유기 고분자 화합물 소성체라고 하는 것은, 페놀 수지나 푸란 수지 등의 고분자 재료를 적당한 온도로 소성하여 탄소화한 것을 말하며, 일부에는 난흑연화성 탄소 또는 이흑연화성 탄소로 분류되는 것도 있다. 또한, 고분자 재료로서는 폴리아세틸렌 혹은 폴리피롤 등이 있다. 이들 탄소 재료는, 충방전 시에 발생하는 결정 구조의 변화가 매우 적고, 높은 충방전 용량을 얻을 수 있음과 함께, 양호한 사이클 특성을 얻을 수 있으므로 바람직하다. 특히 흑연은, 전기 화학 당량이 크고, 높은 에너지 밀도를 얻을 수 있어 바람직하다. 또한, 난흑연화성 탄소는, 우수한 특성이 얻어지므로 바람직하다. 또한, 충방전 전위가 낮은 것, 구체적으로는 충방전 전위가 리튬 금속에 가까운 것이, 전지의 고에너지 밀도화를 용이하게 실현할 수 있으므로 바람직하다.
리튬을 흡장 및 방출하는 것이 가능한 부극 재료로서는, 또한, 다른 금속 화합물 혹은 고분자 재료를 들 수 있다. 다른 금속 화합물로서는, MnO2, V2O5, V6O13 등의 산화물, NiS, MoS 등의 황화물, 혹은 LiN3 등의 리튬 질화물을 들 수 있고, 고분자 재료로서는 폴리아세틸렌, 폴리아닐린 혹은 폴리피롤 등을 들 수 있다.
리튬 이온 이차 전지의 부극 활물질에는, 일반적으로는 탄소 재료가 사용되고 있다. 최근의 전자 기기의 다기능화에 수반하여 그 소비 전력이 현저하게 증가하고 있으며, 대용량의 이차 전지가 점점 필요해지고 있지만, 탄소 재료를 사용하고 있는 한, 가까운 장래에 그 요구에 부응하는 것은 곤란하다. 따라서, 탄소 재료보다 고용량의 재료인 Sn계 재료나 Si계 재료를 포함하는 부극 활물질의 개발이 활발하게 이루어지고 있다. 그러나, Sn계 재료나 Si계 재료를 포함하는 부극 활물질은, 일반적으로 첫회 충전 시의 불가역 용량이 크다. 따라서, 이들 부극 활물질이 갖는 고용량의 특성을 활용하기 위해서는, 이들 부극 활물질을, 고용량이고, 또한 적절한 불가역 용량을 갖는 정극 활물질과 조합하여 사용하는 것이 바람직하다. 이러한 정극 활물질로서는, 상술한 제1 정극 활물질 및 제2 정극 활물질을 포함하는 정극 활물질이 적합하다. 즉, 규소(Si) 및 주석(Sn) 중 적어도 한쪽을 포함하는 부극 활물질과, 상술한 제1 정극 활물질 및 제2 정극 활물질을 포함하는 정극 활물질을 조합하여 사용하는 것이 바람직하다.
(결착제)
결착제로서는, 예를 들어 폴리불화비닐리덴(PVdF), 폴리테트라플루오로에틸렌(PTFE), 폴리아크릴로니트릴(PAN), 스티렌부타디엔 고무(SBR) 및 카르복시메틸셀룰로오스(CMC) 등의 수지 재료, 그리고 이들 수지 재료를 주체로 하는 공중합체 등으로부터 선택되는 적어도 1종이 사용된다.
(세퍼레이터)
세퍼레이터(23)는, 정극(21)과 부극(22)을 격리하고, 양극의 접촉에 의한 전류의 단락을 방지하면서, 리튬 이온을 통과시키는 것이다. 세퍼레이터(23)는, 예를 들어 폴리테트라플루오로에틸렌, 폴리프로필렌 혹은 폴리에틸렌 등을 포함하는 합성 수지제 다공질막, 또는 세라믹제 다공질막에 의해 구성되어 있고, 이들 2종 이상의 다공질막을 적층한 구조로 되어 있어도 된다. 그 중에서도, 폴리올레핀제 다공질막은 단락 방지 효과가 우수하고, 또한 셧 다운 효과에 의한 전지의 안전성 향상을 도모할 수 있으므로 바람직하다. 특히 폴리에틸렌은, 100℃ 이상 160℃ 이하의 범위 내에 있어서 셧 다운 효과를 얻을 수 있고, 또한 전기 화학적 안정성도 우수하므로, 세퍼레이터(23)를 구성하는 재료로서 바람직하다. 또한, 폴리프로필렌도 바람직하며, 그 밖에도 화학적 안정성을 구비한 수지라면 폴리에틸렌 혹은 폴리프로필렌과 공중합시키거나, 또는 블렌드화함으로써 사용할 수 있다.
(전해액)
세퍼레이터(23)에는, 액상의 전해질인 전해액이 함침되어 있다. 전해액은, 용매와, 이 용매에 용해된 전해질염을 포함하고 있다. 전해액이, 전지 특성을 향상시키기 위해, 공지된 첨가제를 포함하고 있어도 된다.
용매로서는, 탄산에틸렌 혹은 탄산프로필렌 등의 환상의 탄산에스테르를 사용할 수 있으며, 탄산에틸렌 및 탄산프로필렌 중 한쪽, 특히 양쪽을 혼합하여 사용하는 것이 바람직하다. 사이클 특성을 향상시킬 수 있기 때문이다.
용매로서는, 또한 이들 환상의 탄산에스테르 외에, 탄산디에틸, 탄산디메틸, 탄산에틸메틸 혹은 탄산메틸프로필 등의 쇄상의 탄산에스테르를 혼합하여 사용하는 것이 바람직하다. 높은 이온 전도성을 얻을 수 있기 때문이다.
용매로서는, 또한 2,4-디플루오로아니솔 혹은 탄산비닐렌을 포함하는 것이 바람직하다. 2,4-디플루오로아니솔은 방전 용량을 향상시킬 수 있고, 또한 탄산비닐렌은 사이클 특성을 향상시킬 수 있기 때문이다. 따라서, 이들을 혼합하여 사용하면, 방전 용량 및 사이클 특성을 향상시킬 수 있으므로 바람직하다.
이들 외에도, 용매로서는, 탄산부틸렌, γ-부티로락톤, γ-발레로락톤, 1,2-디메톡시에탄, 테트라히드로푸란, 2-메틸테트라히드로푸란, 1,3-디옥솔란, 4-메틸-1,3-디옥솔란, 아세트산메틸, 프로피온산메틸, 아세토니트릴, 글루타로니트릴, 아디포니트릴, 메톡시아세토니트릴, 3-메톡시프로피오니트릴, N,N-디메틸포름아미드, N-메틸피롤리디논, N-메틸옥사졸리디논, N,N-디메틸이미다졸리디논, 니트로메탄, 니트로에탄, 술포란, 디메틸술폭시드 혹은 인산트리메틸 등을 들 수 있다.
또한, 이들 비수용매의 적어도 일부의 수소를 불소로 치환한 화합물은, 조합하는 전극의 종류에 따라서는, 전극 반응의 가역성을 향상시킬 수 있는 경우가 있으므로, 바람직한 경우도 있다.
전해질염으로서는, 예를 들어 리튬염을 들 수 있으며, 1종을 단독으로 사용해도 되고, 2종 이상을 혼합하여 사용해도 된다. 리튬염으로서는, LiPF6, LiBF4, LiAsF6, LiClO4, LiB(C6H5)4, LiCH3SO3, LiCF3SO3, LiN(SO2CF3)2, LiC(SO2CF3)3, LiAlCl4, LiSiF6, LiCl, 디플루오로[옥살라토-O,O']붕산리튬, 리튬비스옥살레이토보레이트, 혹은 LiBr 등을 들 수 있다. 그 중에서도, LiPF6은 높은 이온 전도성을 얻을 수 있음과 함께, 사이클 특성을 향상시킬 수 있으므로 바람직하다.
상술한 구성을 갖는 비수전해질 이차 전지에서는, 충전을 행하면, 예를 들어 정극 활물질층(21B)으로부터 리튬 이온이 방출되고, 전해액을 통하여 부극 활물질층(22B)에 흡장된다. 또한, 방전을 행하면, 예를 들어 부극 활물질층(22B)으로부터 리튬 이온이 방출되고, 전해액을 통하여 정극 활물질층(21B)에 흡장된다.
[전지의 제조 방법]
이어서, 본 기술의 제2 실시 형태에 관한 비수전해질 이차 전지의 제조 방법의 일례에 대하여 설명한다.
우선, 예를 들어 정극 활물질과, 도전제와, 결착제를 혼합하여 정극 합제를 조제하고, 이 정극 합제를 N-메틸-2-피롤리돈(NMP) 등의 용제에 분산시켜 페이스트상의 정극 합제 슬러리를 제작한다. 이어서, 이 정극 합제 슬러리를 정극 집전체(21A)에 도포하여 용제를 건조시키고, 롤 프레스기 등에 의해 압축 성형함으로써 정극 활물질층(21B)을 형성하고, 정극(21)을 형성한다.
또한, 예를 들어 부극 활물질과 결착제를 혼합하여 부극 합제를 조제하고, 이 부극 합제를 N-메틸-2-피롤리돈 등의 용제에 분산시켜 페이스트상의 부극 합제 슬러리를 제작한다. 이어서, 이 부극 합제 슬러리를 부극 집전체(22A)에 도포하여 용제를 건조시키고, 롤 프레스기 등에 의해 압축 성형함으로써 부극 활물질층(22B)을 형성하고, 부극(22)을 제작한다.
이어서, 정극 집전체(21A)에 정극 리드(25)를 용접 등에 의해 설치함과 함께, 부극 집전체(22A)에 부극 리드(26)를 용접 등에 의해 설치한다. 이어서, 정극(21)과 부극(22)을 세퍼레이터(23)를 개재하여 권회한다. 이어서, 정극 리드(25)의 선단부를 안전 밸브 기구(15)에 용접함과 함께, 부극 리드(26)의 선단부를 전지 캔(11)에 용접하여, 권회한 정극(21) 및 부극(22)을 한 쌍의 절연판(12, 13) 사이에 끼워 전지 캔(11)의 내부에 수납한다. 이어서, 정극(21) 및 부극(22)을 전지 캔(11)의 내부에 수납한 후, 전해액을 전지 캔(11)의 내부에 주입하고, 세퍼레이터(23)에 함침시킨다. 이어서, 전지 캔(11)의 개구 단부에 전지 덮개(14), 안전 밸브 기구(15) 및 열감 저항 소자(16)를 밀봉 가스킷(17)을 통하여 코오킹함으로써 고정한다. 이에 의해, 도 3에 도시한 이차 전지가 얻어진다.
<3. 제3 실시 형태>
[전지의 구성]
도 5는, 본 기술의 제3 실시 형태에 관한 비수전해질 이차 전지의 일 구성예를 도시하는 분해 사시도이다. 이 비수전해질 이차 전지는 소위 편평형이라고 불리는 것이며, 정극 리드(31) 및 부극 리드(32)가 설치된 권회 전극체(30)를 필름형의 외장 부재(40)의 내부에 수용한 것이며, 소형화, 경량화 및 박형화가 가능하게 되어 있다.
정극 리드(31) 및 부극 리드(32)는, 각각 외장 부재(40)의 내부로부터 외부를 향하여 예를 들어 동일 방향으로 도출되어 있다. 정극 리드(31) 및 부극 리드(32)는, 예를 들어 알루미늄, 구리, 니켈 혹은 스테인리스 등의 금속 재료에 의해 각각 구성되어 있고, 각각 박판형 또는 그물눈형으로 되어 있다.
외장 부재(40)는, 예를 들어 나일론 필름, 알루미늄박 및 폴리에틸렌 필름을 이 순서대로 접합한 직사각 형상의 알루미늄 라미네이트 필름에 의해 구성되어 있다. 외장 부재(40)는, 예를 들어 폴리에틸렌 필름측과 권회 전극체(30)가 대향하도록 배치되어 있고, 각 외측 테두리부가 융착 혹은 접착제에 의해 서로 밀착되어 있다. 외장 부재(40)와 정극 리드(31) 및 부극 리드(32)의 사이에는, 외기의 침입을 방지하기 위한 밀착 필름(41)이 삽입되어 있다. 밀착 필름(41)은, 정극 리드(31) 및 부극 리드(32)에 대하여 밀착성을 갖는 재료, 예를 들어 폴리에틸렌, 폴리프로필렌, 변성 폴리에틸렌 또는 변성 폴리프로필렌 등의 폴리올레핀 수지에 의해 구성되어 있다.
또한, 외장 부재(40)는, 상술한 알루미늄 라미네이트 필름 대신에, 다른 구조를 갖는 라미네이트 필름, 폴리프로필렌 등의 고분자 필름 또는 금속 필름에 의해 구성하도록 해도 된다.
도 6은, 도 5에 도시한 권회 전극체(30)의 VI-VI선을 따른 단면도이다. 권회 전극체(30)는, 정극(33)과 부극(34)을 세퍼레이터(35) 및 전해질층(36)을 개재하여 적층하고, 권회한 것이며, 최외주부는 보호 테이프(37)에 의해 보호되어 있다.
정극(33)은, 정극 집전체(33A)의 편면 혹은 양면에 정극 활물질층(33B)이 형성된 구조를 갖고 있다. 부극(34)은, 부극 집전체(34A)의 편면 혹은 양면에 부극 활물질층(34B)이 형성된 구조를 갖고 있으며, 부극 활물질층(34B)과 정극 활물질층(33B)이 대향하도록 배치되어 있다. 정극 집전체(33A), 정극 활물질층(33B), 부극 집전체(34A), 부극 활물질층(34B) 및 세퍼레이터(35)의 구성은, 각각 제2 실시 형태에서의 정극 집전체(21A), 정극 활물질층(21B), 부극 집전체(22A), 부극 활물질층(22B) 및 세퍼레이터(23)와 마찬가지이다.
전해질층(36)은, 전해액과, 이 전해액을 유지하는 유지체로 되는 고분자 화합물을 포함하고, 소위 겔상으로 되어 있다. 겔상의 전해질층(36)은 높은 이온 전도율을 얻을 수 있음과 함께, 전지의 누액을 방지할 수 있으므로 바람직하다. 전해액의 조성은, 제2 실시 형태에 관한 이차 전지와 마찬가지이다. 고분자 화합물로서는, 예를 들어 폴리아크릴로니트릴, 폴리불화비닐리덴, 불화비닐리덴과 헥사플루오로프로필렌의 공중합체, 폴리테트라플루오로에틸렌, 폴리헥사플루오로프로필렌, 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리포스파젠, 폴리실록산, 폴리아세트산비닐, 폴리비닐알코올, 폴리메타크릴산메틸, 폴리아크릴산, 폴리메타크릴산, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 폴리스티렌 또는 폴리카르보네이트를 들 수 있다. 특히 전기 화학적인 안정성의 점에서는 폴리아크릴로니트릴, 폴리불화비닐리덴, 폴리헥사플루오로프로필렌 혹은 폴리에틸렌옥사이드가 바람직하다.
[전지의 제조 방법]
이어서, 본 기술의 제3 실시 형태에 관한 비수전해질 이차 전지의 제조 방법의 일례에 대하여 설명한다.
우선, 정극(33) 및 부극(34)의 각각에, 용매와, 전해질염과, 고분자 화합물과, 혼합 용제를 포함하는 전구 용액을 도포하고, 혼합 용제를 휘발시켜 전해질층(36)을 형성한다. 이어서, 정극 집전체(33A)의 단부에 정극 리드(31)를 용접에 의해 설치함과 함께, 부극 집전체(34A)의 단부에 부극 리드(32)를 용접에 의해 설치한다. 이어서, 전해질층(36)이 형성된 정극(33)과 부극(34)을 세퍼레이터(35)를 개재하여 적층하여 적층체로 한 후, 이 적층체를 그 길이 방향으로 권회하고, 최외주부에 보호 테이프(37)를 접착하여 권회 전극체(30)를 형성한다. 마지막으로, 예를 들어 외장 부재(40)의 사이에 권회 전극체(30)를 끼워 넣고, 외장 부재(40)의 외측 테두리부끼리를 열융착 등에 의해 밀착시켜 봉입한다. 그 때, 정극 리드(31) 및 부극 리드(32)와 외장 부재(40)의 사이에는 밀착 필름(41)을 삽입한다. 이에 의해, 도 5 및 도 6에 도시한 이차 전지가 얻어진다.
또한, 이 이차 전지는, 다음과 같이 하여 제작해도 된다. 우선, 상술한 바와 같이 하여 정극(33) 및 부극(34)을 제작하고, 정극(33) 및 부극(34)에 정극 리드(31) 및 부극 리드(32)를 설치한다. 이어서, 정극(33)과 부극(34)을 세퍼레이터(35)를 개재하여 적층하여 권회하고, 최외주부에 보호 테이프(37)를 접착하여, 권회 전극체(30)의 전구체인 권회체를 형성한다. 이어서, 이 권회체를 외장 부재(40) 사이에 끼우고, 한 변을 제외한 외주연부를 열융착하여 주머니형으로 하고, 외장 부재(40)의 내부에 수납한다. 이어서, 용매와, 전해질염과, 고분자 화합물의 원료인 단량체와, 중합 개시제와, 필요에 따라 중합 금지제 등의 다른 재료를 포함하는 전해질용 조성물을 준비하고, 외장 부재(40)의 내부에 주입한다.
이어서, 전해질용 조성물을 외장 부재(40) 내에 주입한 후, 외장 부재(40)의 개구부를 진공 분위기 하에서 열융착하여 밀봉한다. 이어서, 열을 가하여 단량체를 중합시켜 고분자 화합물로 함으로써 겔상의 전해질층(36)을 형성한다. 이상에 의해, 도 6에 도시한 이차 전지가 얻어진다.
<4. 제4 실시 형태>
[전지의 구성]
도 7은, 본 기술의 제4 실시 형태에 따른 비수전해질 이차 전지의 일 구성예를 도시하는 분해 사시도이다. 도 7에 도시하는 바와 같이, 이 비수전해질 이차 전지는, 정극 리드(73) 및 부극 리드(74)가 설치된 전지 소자(71)를 필름형의 외장 부재(72)의 내부에 수용한 것이며, 소형화, 경량화 및 박형화가 가능하게 되어 있다.
정극 리드(73) 및 부극 리드(74)는, 각각 외장 부재(72)의 내부로부터 외부를 향하여 예를 들어 동일 방향으로 도출되어 있다.
도 8은, 전지 소자(71)의 외관의 일례를 도시하는 사시도이다. 도 9는, 전지 소자(71)의 일 구성예를 도시하는 단면도이다. 도 8 및 도 9에 도시하는 바와 같이, 이 전지 소자(71)는, 정극(81)과 부극(82)을 세퍼레이터(83)를 개재하여 적층한 적층 전극체이며, 전지 소자(71)에는, 제2 실시 형태와 마찬가지의 전해액이 함침되어 있다.
정극(81)은, 예를 들어 한 쌍의 면을 갖는 정극 집전체(81A)의 양면에 정극 활물질층(81B)이 형성된 구조를 갖고 있다. 정극(81)은, 도 10에 도시하는 바와 같이, 직사각 형상의 전극 부분과, 그 전극 부분의 한 변으로부터 연장된 집전체 노출 부분(81C)을 갖는다. 이 집전체 노출 부분(81C)에는 정극 활물질층(81B)이 형성되지 않고, 정극 집전체(81A)가 노출된 상태로 되어 있다. 집전체 노출부(81C)는, 정극 리드(73)와 전기적으로 접속된다. 또한, 도시는 하지 않았지만, 정극 집전체(81A)의 편면에만 정극 활물질층(81B)이 존재하는 영역을 설정하도록 해도 된다.
부극(82)은, 예를 들어 한 쌍의 면을 갖는 부극 집전체(82A)의 양면에 부극 활물질층(82B)이 형성된 구조를 갖고 있다. 부극(82)은, 도 11에 도시하는 바와 같이, 직사각 형상의 전극 부분과, 그 전극 부분의 한 변으로부터 연장된 집전체 노출 부분(82C)을 갖는다. 이 집전체 노출 부분(82C)에는 부극 활물질층(82B)이 형성되지 않고, 부극 집전체(82A)가 노출된 상태로 되어 있다. 집전체 노출부(82C)는, 부극 리드(74)와 전기적으로 접속된다. 또한, 도시는 하지 않았지만, 부극 집전체(82A)의 편면에만 부극 활물질층(82B)이 존재하는 영역을 설정하도록 해도 된다.
세퍼레이터(83)는, 도 12에 도시하는 바와 같이, 직사각 형상 등의 형상을 갖는다.
정극 집전체(81A), 정극 활물질층(81B), 부극 집전체(82A), 부극 활물질층(82B), 세퍼레이터(83)를 구성하는 재료는, 각각, 상술한 제2 실시 형태에서의 정극 집전체(21A), 정극 활물질층(21B), 부극 집전체(22A), 부극 활물질층(22B) 및 세퍼레이터(23)와 마찬가지이다.
[전지의 제조 방법]
상술한 바와 같이 구성된 비수전해질 이차 전지는, 예를 들어 이하와 같이 하여 제조할 수 있다.
(정극의 제작)
정극(81)은 이하와 같이 하여 제작한다. 우선, 예를 들어 정극 활물질과, 바인더와, 도전 보조제를 혼합하여 정극 합제를 조제하고, 이 정극 합제를 N-메틸피롤리돈 등의 유기 용제에 분산시켜 페이스트상의 정극 합제 슬러리를 제작한다. 이어서, 이것을 정극 집전체(81A)의 양면에 도포, 건조한 후, 프레스함으로써 정극 활물질층(81B)을 형성한다. 그 후, 이것을 도 10에 도시하는 형상 등으로 절단하여, 정극(81)을 얻는다.
(부극의 제작)
부극(82)은 이하와 같이 하여 제작한다. 우선, 예를 들어 부극 활물질과, 바인더와, 도전 보조제를 혼합하여 부극 합제를 조제하고, 이 부극 합제를 N-메틸피롤리돈 등의 유기 용제에 분산시켜 페이스트상의 부극 합제 슬러리를 제작한다. 이어서, 이것을 부극 집전체(82A)의 양면에 도포, 건조한 후, 프레스함으로써 부극 활물질층(82B)을 형성한다. 그 후, 이것을 도 11에 도시하는 형상 등으로 절단하여, 부극(82)을 얻는다.
(전지 소자의 제작)
전지 소자(71)를 이하와 같이 하여 제작한다. 우선, 폴리프로필렌제 미다공 필름 등을 도 12에 도시하는 형상으로 절단하여, 세퍼레이터(83)를 제작한다. 이어서, 상술한 바와 같이 하여 얻어진 복수매의 부극(82), 정극(81) 및 세퍼레이터(83)를, 예를 들어 도 9에 도시하는 바와 같이, 부극(82), 세퍼레이터(83), 정극(81), …, 정극(81), 세퍼레이터(83), 부극(82)의 순으로 적층하여 전지 소자(71)를 제작한다.
이어서, 정극(81)의 집전체 노출부(82C)를 정극 리드(73)에 용접한다. 마찬가지로 하여, 부극(82)의 집전체 노출부(82C)를 부극 리드(74)에 용접한다. 이어서, 전해액을 전지 소자(71)에 함침시킨 후, 외장 부재(72)의 사이에 전지 소자(71)를 끼워 넣고, 외장 부재(72)의 외측 테두리부끼리를 열용착 등에 의해 밀착시켜 봉입한다. 그 때, 정극 리드(73), 부극 리드(74)가 열융착부를 통하여 외장 부재(72)의 외부로 나오도록 하여, 이것들을 정부극 단자로 한다. 이상에 의해, 목적으로 하는 비수전해질 이차 전지가 얻어진다.
[변형예]
이어서, 본 기술의 제4 실시 형태의 변형예에 대하여 설명한다. 이 변형예에 관한 비수전해질 이차 전지는, 전해액 대신에, 겔상의 전해질층을 사용하고 있는 점에 있어서 제4 실시 형태에 관한 것과는 상이하다. 또한, 상술한 제4 실시 형태와 마찬가지의 부분에는 동일한 부호를 부여하여 그 설명을 생략한다.
[전지의 구성]
도 13은, 본 기술의 제5 실시 형태의 변형예에 관한 비수전해질 이차 전지에 사용되는 전지 소자의 일 구성예를 도시하는 단면도이다. 전지 소자(85)는, 정극(81)과 부극(82)을 세퍼레이터(83) 및 전해질층(84)을 개재하여 적층한 것이다.
전해질층(84)은, 제1 실시 형태에 따른 전해액과, 이 전해액을 유지하는 유지체로 되는 고분자 화합물을 포함하고, 소위 겔상으로 되어 있다. 겔상의 전해질층(84)은 높은 이온 전도율을 얻을 수 있음과 함께, 전지의 누액을 방지할 수 있으므로 바람직하다. 고분자 화합물의 구성은, 제3 실시 형태에 따른 비수전해질 이차 전지와 마찬가지이다.
[전지의 제조 방법]
상술한 바와 같이 구성된 비수전해질 이차 전지는, 예를 들어, 다음과 같이 하여 제조할 수 있다.
우선, 정극(81) 및 부극(82)의 각각에, 용매와, 전해질염과, 고분자 화합물과, 혼합 용제를 포함하는 전구 용액을 도포하고, 혼합 용제를 휘발시켜 전해질층(84)을 형성한다. 그 후의 공정은, 전해질층(84)이 형성된 정극(81) 및 부극(82)을 사용하는 것 이외의 것은 상술한 제4 실시 형태와 마찬가지로 하여, 비수전해질 이차 전지를 얻을 수 있다.
<5. 제5 실시 형태>
제5 실시 형태에서는, 제2 내지 제4 실시 형태 중 어느 하나에 관한 비수전해질 이차 전지를 구비하는 전지 팩 및 전자 기기에 대하여 설명한다.
이하, 도 14를 참조하여, 본 기술의 제5 실시 형태에 관한 전지 팩(300) 및 전자 기기(400)의 일 구성예에 대하여 설명한다. 전자 기기(400)는, 전자 기기 본체의 전자 회로(401)와, 전지 팩(300)을 구비한다. 전지 팩(300)은, 정극 단자(331a) 및 부극 단자(331b)를 통하여 전자 회로(401)에 대하여 전기적으로 접속되어 있다. 전자 기기(400)는, 예를 들어 유저에 의해 전지 팩(300)을 착탈 가능한 구성을 갖고 있다. 또한, 전자 기기(400)의 구성은 이것에 한정되는 것은 아니며, 유저에 의해 전지 팩(300)을 전자 기기(400)로부터 떼어낼 수 없도록, 전지 팩(300)이 전자 기기(400) 내에 내장되어 있는 구성을 가져도 된다.
전지 팩(300)의 충전 시에는, 전지 팩(300)의 정극 단자(331a), 부극 단자(331b)가, 각각, 충전기(도시하지 않음)의 정극 단자, 부극 단자에 접속된다. 한편, 전지 팩(300)의 방전 시(전자 기기(400)의 사용 시)에는, 전지 팩(300)의 정극 단자(331a), 부극 단자(331b)가, 각각, 전자 회로(401)의 정극 단자, 부극 단자에 접속된다.
전자 기기(400)로서는, 예를 들어 노트북형 퍼스널 컴퓨터, 태블릿형 컴퓨터, 휴대 전화(예를 들어 스마트폰 등), 휴대 정보 단말기(Personal Digital Assistants: PDA), 촬상 장치(예를 들어 디지털 스틸 카메라, 디지털 비디오 카메라 등), 오디오 기기(예를 들어 포터블 오디오 플레이어), 게임 기기, 무선 전화기 핸드셋, 전자 서적, 전자 사전, 라디오, 헤드폰, 내비게이션 시스템, 메모리 카드, 페이스메이커, 보청기, 전동 공구, 전기 면도기, 냉장고, 에어컨, 텔레비전, 스테레오, 온수기, 전자 레인지, 식기 세척기, 세탁기, 건조기, 조명 기기, 완구, 의료 기기, 로봇, 로드 컨디셔너, 신호기 등을 들 수 있지만, 이것에 한정되는 것은 아니다.
(전자 회로)
전자 회로(401)는, 예를 들어 CPU, 주변 로직부, 인터페이스부 및 기억부 등을 구비하며, 전자 기기(400)의 전체를 제어한다.
(전지 팩)
전지 팩(300)은, 조전지(301)와 충방전 회로(302)를 구비한다. 조전지(301)는, 복수의 이차 전지(301a)를 직렬 및/또는 병렬로 접속하여 구성되어 있다. 복수의 이차 전지(301a)는, 예를 들어 n 병렬 m 직렬(n, m은 양의 정수)로 접속된다. 또한, 도 14에서는, 6개의 이차 전지(301a)가 2 병렬 3 직렬(2P3S)로 접속된 예가 도시되어 있다. 이차 전지(301a)로서는, 제2 내지 제4 실시 형태 중 어느 하나에 관한 비수전해질 이차 전지가 사용된다.
충전 시에는, 충방전 회로(302)는, 조전지(301)에 대한 충전을 제어한다. 한편, 방전 시(즉 전자 기기(400)의 사용 시)에는, 충방전 회로(302)는, 전자 기기(400)에 대한 방전을 제어한다.
<6. 제6 실시 형태>
제6 실시 형태에서는, 제2 내지 제4 실시 형태 중 어느 하나에 관한 비수전해질 이차 전지를 축전 장치에 구비하는 축전 시스템에 대하여 설명한다. 이 축전 시스템은, 대략 전력을 사용하는 것인 한, 어떠한 것이어도 되며, 단순한 전력 장치도 포함한다. 이 전력 시스템은, 예를 들어 스마트 그리드, 가정용 에너지 관리 시스템(HEMS), 차량 등을 포함하며, 축전도 가능하다.
[축전 시스템의 구성]
이하, 도 15를 참조하여, 제6 실시 형태에 관한 축전 시스템(전력 시스템)(100)의 구성예에 대하여 설명한다. 이 축전 시스템(100)은, 주택용 축전 시스템이며, 화력 발전(102a), 원자력 발전(102b), 수력 발전(102c) 등의 집중형 전력 계통(102)으로부터 전력망(109), 정보망(112), 스마트 미터(107), 파워 허브(108) 등을 통하여, 전력이 축전 장치(103)에 공급된다. 이와 함께, 가정 내 발전 장치(104) 등의 독립 전원으로부터 전력이 축전 장치(103)에 공급된다. 축전 장치(103)에 공급된 전력이 축전된다. 축전 장치(103)를 사용하여, 주택(101)에서 사용하는 전력이 급전된다. 주택(101)에 한하지 않고 빌딩에 관해서도 마찬가지의 축전 시스템을 사용할 수 있다.
주택(101)에는, 가정 내 발전 장치(104), 전력 소비 장치(105), 축전 장치(103), 각 장치를 제어하는 제어 장치(110), 스마트 미터(107), 파워 허브(108), 각종 정보를 취득하는 센서(111)가 설치되어 있다. 각 장치는, 전력망(109) 및 정보망(112)에 의해 접속되어 있다. 가정 내 발전 장치(104)로서, 태양 전지, 연료 전지 등이 이용되며, 발전된 전력이 전력 소비 장치(105) 및/또는 축전 장치(103)에 공급된다. 전력 소비 장치(105)는, 냉장고(105a), 공조 장치(105b), 텔레비전 수신기(105c), 욕조(105d) 등이다. 또한, 전력 소비 장치(105)에는, 전동 차량(106)이 포함된다. 전동 차량(106)은, 전기 자동차(106a), 하이브리드카(106b), 전기 바이크(106c)이다.
축전 장치(103)는, 제2 내지 제4 실시 형태 중 어느 하나에 관한 비수전해질 이차 전지를 구비하고 있다. 스마트 미터(107)는, 상용 전력의 사용량을 측정하고, 측정된 사용량을, 전력 회사에 송신하는 기능을 구비하고 있다. 전력망(109)은, 직류 급전, 교류 급전, 비접촉 급전 중 어느 하나 또는 복수의 조합이어도 된다.
각종 센서(111)는, 예를 들어 인체 감지 센서, 조도 센서, 물체 검지 센서, 소비 전력 센서, 진동 센서, 접촉 센서, 온도 센서, 적외선 센서 등이다. 각종 센서(111)에 의해 취득된 정보는, 제어 장치(110)에 송신된다. 센서(111)로부터의 정보에 의해, 기상 상태, 사람 상태 등이 파악되어 전력 소비 장치(105)를 자동적으로 제어하여 에너지 소비를 최소로 할 수 있다. 또한, 제어 장치(110)는, 주택(101)에 관한 정보를 인터넷을 통하여 외부의 전력 회사 등에 송신할 수 있다.
파워 허브(108)에 의해, 전력선의 분지, 직류 교류 변환 등의 처리가 이루어진다. 제어 장치(110)와 접속되는 정보망(112)의 통신 방식으로서는, UART(Universal Asynchronous Receiver-Transceiver: 비동기 시리얼 통신용 송수신 회로) 등의 통신 인터페이스를 사용하는 방법, Bluetooth(등록 상표), ZigBee, Wi-Fi 등의 무선 통신 규격에 의한 센서 네트워크를 이용하는 방법이 있다. Bluetooth(등록 상표) 방식은, 멀티미디어 통신에 적용되고, 1대다 접속의 통신을 행할 수 있다. ZigBee는, IEEE(Institute of Electrical and Electronics Engineers) 802.15.4의 물리층을 사용하는 것이다. IEEE802.15.4는, PAN(Personal Area Network) 또는 W(Wireless)PAN이라고 불리는 단거리 무선 네트워크 규격의 명칭이다.
제어 장치(110)는, 외부의 서버(113)와 접속되어 있다. 이 서버(113)는, 주택(101), 전력 회사 및 서비스 프로바이더 중 어느 하나에 의해 관리되어도 된다. 서버(113)가 송수신하는 정보는, 예를 들어 소비 전력 정보, 생활 패턴 정보, 전력 요금, 날씨 정보, 천재 정보, 전력 거래에 관한 정보이다. 이들 정보는, 가정 내의 전력 소비 장치(예를 들어 텔레비전 수신기)로부터 송수신해도 되지만, 가정 밖의 장치(예를 들어, 휴대 전화기 등)로부터 송수신해도 된다. 이들 정보는, 표시 기능을 갖는 기기, 예를 들어 텔레비전 수신기, 휴대 전화기, PDA(Personal Digital Assistants) 등에 표시되어도 된다.
각 부를 제어하는 제어 장치(110)는, CPU(Central Processing Unit), RAM(Random Access Memory), ROM(Read Only Memory) 등으로 구성되며, 이 예에서는 축전 장치(103)에 저장되어 있다. 제어 장치(110)는, 축전 장치(103), 가정 내 발전 장치(104), 전력 소비 장치(105), 각종 센서(111), 서버(113)와 정보망(112)에 의해 접속되고, 예를 들어 상용 전력의 사용량과 발전량을 조정하는 기능을 갖고 있다. 또한, 그 밖에도 전력 시장에서 전력 거래를 행하는 기능 등을 구비하고 있어도 된다.
이상과 같이, 전력이 화력 발전(102a), 원자력 발전(102b), 수력 발전(102c) 등의 집중형 전력 계통(102)뿐만 아니라, 가정 내 발전 장치(104)(태양광 발전, 풍력 발전)의 발전 전력을 축전 장치(103)에 축적할 수 있다. 따라서, 가정 내 발전 장치(104)의 발전 전력이 변동되어도, 외부에 송출하는 전력량을 일정하게 하거나, 또는 필요한 만큼 방전하는 등의 제어를 행할 수 있다. 예를 들어, 태양광 발전에서 얻어진 전력을 축전 장치(103)에 축적함과 함께, 야간은 요금이 싼 심야 전력을 축전 장치(103)에 축적하고, 주간의 요금이 비싼 시간대에 축전 장치(103)에 의해 축전한 전력을 방전하여 이용하는 등의 사용법도 가능하다.
또한, 이 예에서는, 제어 장치(110)가 축전 장치(103) 내에 저장되는 예를 설명하였지만, 스마트 미터(107) 내에 저장되어도 되고, 단독으로 구성되어도 된다. 또한, 축전 시스템(100)은, 집합 주택에서의 복수의 가정을 대상으로 하여 사용되어도 되고, 복수의 단독 주택을 대상으로 하여 사용되어도 된다.
<7. 제7 실시 형태>
제7 실시 형태에서는, 제2 내지 제4 실시 형태 중 어느 하나에 관한 비수전해질 이차 전지를 구비하는 전동 차량에 대하여 설명한다.
도 16을 참조하여, 본 기술의 제7 실시 형태에 관한 전동 차량의 일 구성에 대하여 설명한다. 이 하이브리드 차량(200)은, 시리즈 하이브리드 시스템을 채용하는 하이브리드 차량이다. 시리즈 하이브리드 시스템은, 엔진으로 움직이는 발전기로 발전된 전력, 혹은 그것을 배터리에 일단 모아 둔 전력을 사용하여, 전력 구동력 변환 장치(203)로 주행하는 차이다.
이 하이브리드 차량(200)에는, 엔진(201), 발전기(202), 전력 구동력 변환 장치(203), 구동륜(204a), 구동륜(204b), 차륜(205a), 차륜(205b), 배터리(208), 차량 제어 장치(209), 각종 센서(210), 충전구(211)가 탑재되어 있다. 배터리(208)로서는, 제2 내지 제4 실시 형태 중 어느 하나에 관한 비수전해질 이차 전지가 사용된다.
하이브리드 차량(200)은, 전력 구동력 변환 장치(203)를 동력원으로 하여 주행한다. 전력 구동력 변환 장치(203)의 일례는, 모터이다. 배터리(208)의 전력에 의해 전력 구동력 변환 장치(203)가 작동하고, 이 전력 구동력 변환 장치(203)의 회전력이 구동륜(204a, 204b)에 전달된다. 또한, 필요한 지점에 직류-교류(DC-AC) 혹은 역변환(AC-DC 변환)을 사용함으로써, 전력 구동력 변환 장치(203)가 교류 모터에서도 직류 모터에서도 적용 가능하다. 각종 센서(210)는, 차량 제어 장치(209)를 통하여 엔진 회전수를 제어하거나, 도시하지 않은 스로틀 밸브의 개방도(스로틀 개방도)를 제어하거나 한다. 각종 센서(210)에는, 속도 센서, 가속도 센서, 엔진 회전수 센서 등이 포함된다.
엔진(201)의 회전력은 발전기(202)에 전달되고, 그 회전력에 의해 발전기(202)에 의해 생성된 전력을 배터리(208)에 축적하는 것이 가능하다.
도시하지 않은 제동 기구에 의해 하이브리드 차량(200)이 감속하면, 그 감속 시의 저항력이 전력 구동력 변환 장치(203)에 회전력으로서 가해져, 이 회전력에 의해 전력 구동력 변환 장치(203)에 의해 생성된 회생 전력이 배터리(208)에 축적된다.
배터리(208)는, 충전구(211)를 통하여 하이브리드 차량(200)의 외부 전원에 접속됨으로써, 그 외부 전원으로부터 충전구(211)를 입력구로 하여 전력 공급을 받고, 받은 전력을 축적하는 것도 가능하다.
도시하지 않았지만, 비수전해질 이차 전지에 관한 정보에 기초하여 차량 제어에 관한 정보 처리를 행하는 정보 처리 장치를 구비하고 있어도 된다. 이러한 정보 처리 장치로서는, 예를 들어 비수전해질 이차 전지의 잔량에 관한 정보에 기초하여, 전지 잔량 표시를 행하는 정보 처리 장치 등이 있다.
또한, 이상은, 엔진으로 움직이는 발전기로 발전된 전력, 또는 그것을 배터리에 일단 모아 둔 전력을 사용하여, 모터로 주행하는 시리즈 하이브리드차를 예로 들어 설명하였다. 그러나, 엔진과 모터의 출력을 모두 구동원으로 하여, 엔진만으로 주행, 모터만으로 주행, 엔진과 모터 주행이라고 하는 3가지 방식을 적절히 전환하여 사용하는 패러렐 하이브리드차에 대해서도 본 기술은 유효하게 적용 가능하다. 또한, 엔진을 사용하지 않고 구동 모터에 의한 구동만으로 주행하는 소위, 전동 차량에 대해서도 본 기술은 유효하게 적용 가능하다.
<실시예>
이하, 실시예에 의해 본 기술을 구체적으로 설명하지만, 본 기술은 이들 실시예에만 한정되는 것은 아니다.
본 기술의 실시예에 대하여 이하의 순서로 설명한다.
i. 복합 입자의 구성에 대하여
ii. 제2 피복재에 대하여
iii. 제2 피복재의 피복량에 대하여
iv. 코어 입자 및 제1 피복재에 대하여
v. 이차 입자화에 대하여
(실시예 1)
<i. 복합 입자의 구성에 대하여>
[코어 입자의 분말의 제작 공정]
산화코발트와 탄산리튬을 Li량과 Co량의 몰비(Li:Co)가 1:1로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 서냉함으로써, 고결정성의 LiCoO2 입자의 분말을 얻었다.
[제1 피복재의 제작 공정]
산화코발트와 탄산리튬을 Li량과 Co량의 몰비(Li:Co)가 1:1로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 실온에서 ??칭을 행함으로써, 저결정성의 LiCoO2 입자의 분말을 얻었다.
[제2 피복재의 제작 공정]
Ni, Mn, Co의 복합 수산화물과 탄산리튬을 Li량과 Ni량과 Co량과 Mn량의 몰비(Li:Ni:Co:Mn)가 10:5:2:3으로 되도록 혼합하고, 공기 중 900℃ 6h 소성함으로써, LiNi0.5Co0.2Mn0.3O2 입자의 분말을 얻었다.
[단층 피복형 복합 입자의 분말의 제작 공정]
얻어진 고결정성의 LiCoO2 입자의 분말 97중량%와 저결정성의 LiCoO2 입자의 분말 3중량%를 배합하고, 고속 회전식 충격 분쇄기의 1종인 고속 교반 혼합기(호소카와 마이크론 가부시키가이샤제, 노빌타)에 투입하였다. 회전 날개를 1000rpm에서 회전시켜, 10분간의 처리를 실시하고, 고결정성의 LiCoO2 입자의 표면에 저결정성의 LiCoO2 입자를 피착시킴으로써, 단층 피복형 복합 입자의 분말을 얻었다.
[2층 피복형 복합 입자의 분말의 제작 공정]
얻어진 단층 피복형 복합 입자의 분말 97중량%와 LiNi0 . 5Co0 . 2Mn0 . 3O2 입자의 분말 3중량%를 배합하고, 고속 회전식 충격 분쇄기의 1종인 고속 교반 혼합기(호소카와 마이크론 가부시키가이샤제, 노빌타)에 투입하였다. 회전 날개를 1000rpm에서 회전시켜, 10분간의 처리를 실시하고, 단층 피복형 복합 입자의 표면에 고결정성의 LiNi0 . 5Co0 . 2Mn0 . 3O2 입자를 피착시킴으로써, 2층 피복형 복합 입자의 분말을 제작하였다. 이상에 의해, 목적으로 하는 정극 활물질이 얻어졌다.
(실시예 2)
고결정성의 LiCoO2 입자의 분말 99중량%와 저결정성의 LiCoO2 입자의 분말 1중량%를 배합한 것 이외에는, 실시예 1과 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 3)
고결정성의 LiCoO2 입자의 분말 99.5중량%와 저결정성의 LiCoO2 입자의 분말 0.5중량%를 배합한 것 이외에는, 실시예 1과 마찬가지로 하여 정극 활물질을 얻었다.
(비교예 1)
코어 입자의 분말의 제작 공정, 제1 피복재의 제작 공정 및 단층 피복형 복합 입자의 제작 공정을 실시예 2와 마찬가지로 하여 행함으로써, 정극 활물질로서의 단층 피복형 복합 입자의 분말을 얻었다.
(비교예 2)
코어 입자의 분말로서 저결정성의 LiCoO2 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다. 또한, 그 코어 입자의 분말은 이하와 같이 하여 제작되었다.
[코어 입자의 분말의 제작 공정]
우선, 산화코발트와 탄산리튬을 Li량과 Co량의 몰비(Li:Co)가 1:1로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 실온에서 ??칭을 행함으로써, 저결정성의 LiCoO2 입자의 분말을 얻었다.
(비교예 3)
제1 피복재로서 고결정성의 LiCoO2 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다. 또한, 그 제1 피복재는 이하와 같이 하여 제작되었다.
[제1 피복재의 제작 공정]
산화코발트와 탄산리튬을 Li량과 Co량의 몰비(Li:Co)가 1:1로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 서냉함으로써 고결정성의 LiCoO2 입자의 분말을 얻었다.
(비교예 4)
제1 피복재로서 저결정성의 LiNi0 . 5Co0 . 2Mn0 . 3O2 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다. 또한, 그 제1 피복재는 이하와 같이 하여 제작되었다.
[제1 피복재의 제작 공정]
Ni, Mn, Co의 복합 수산화물과 탄산리튬을 Li량, Ni량, Co량, Mn량의 몰비(Li:Ni:Co:Mn)가 10:5:2:3으로 되도록 혼합하고, 공기 중 900℃ 6h 소성하고, 실온에서 ??칭을 행함으로써, 저결정성의 LiNi0.5Co0.2Mn0.3O2 입자의 분말을 얻었다.
(정극 활물질의 평가)
상술한 바와 같이 하여 얻어진 실시예 1 내지 3, 비교예 1 내지 4의 정극 활물질에 대하여, 이하의 평가를 행하였다.
(라만 스펙트럼의 피크 강도비)
우선, 상술한 바와 같이 하여 얻어진 정극 활물질의 라만 스펙트럼을 얻었다. 라만 분광 장치로서는, 나노포톤사제, RAMAN-11을 사용하였다. 분석 조건은, 레이저 파장 532nm에서 1200gr/mm의 분광기를 사용하여, 분해능 내지 2.0㎝-1로 되는 조건으로 하였다. 이어서, 얻어진 라만 스펙트럼에 대하여 베이스 라인 보정을 행한 후에, 가우스 함수를 사용하여 피팅을 행하여, 550㎝-1 이상 650cm-1 이하의 범위에 있는 피크의 강도 A와 450cm-1 이상 500cm-1 이하의 범위에 있는 피크의 강도 E를 구하였다. 이어서, 구한 피크의 강도 A, E를 사용하여 피크 강도비 E/A를 구하였다.
또한, 실시예 1 내지 3의 정극 활물질의 제작에 사용한 코어 입자 단체의 피크 강도비 E/A를 상기 정극 활물질과 마찬가지로 하여 구하였다.
(사이클 특성)
상술한 바와 같이 하여 얻어진 정극 활물질을 사용하여, 용량 500mAh의 라미네이트형 리튬 이온 이차 전지를 이하와 같이 하여 제작하였다.
(정극의 제작)
정극은 이하와 같이 하여 제작하였다. 우선, 정극 활물질 분말 90중량부와, 폴리불화비닐리덴(PVdF) 5중량부와, 카본 블랙 5중량부와, 분량 외의 N-메틸피롤리돈(NMP)을 믹서로 혼련하고, 또한 원하는 점도로 되도록 N-메틸피롤리돈(NMP)을 첨가하여 분산시켜, 정극 합제 슬러리를 얻었다. 이것을 두께 15㎛의 알루미늄박의 양면에 도포, 건조한 후, 프레스함으로써 정극 합제층을 형성하였다. 이때 알루미늄박의 양면에 노출된 부분을 약 30mm 남겼다. 그 때, 양면의 도포 단부가 대략 동일 선상으로 되도록 하였다. 그 후, 이것을 도 10에 도시하는 형상으로 절단하여, 정극을 얻었다.
(부극의 제작)
부극은 이하와 같이 하여 제작하였다. 우선, 인조 흑연 90중량부와, 폴리불화비닐리덴(PVdF) 5중량부와, 카본 블랙 5중량부와, 분량 외의 N-메틸피롤리돈(NMP)을 혼련하여, 부극 합제 슬러리를 얻었다. 이어서, 이것을 두께 15㎛의 구리박의 양면에 도포, 건조한 후, 프레스함으로써 부극 합제층을 형성하였다. 이때 구리박이 노출된 부분을 약 30mm 남겼다. 그 때, 양면의 도포 단부가 대략 동일 선상으로 되도록 하였다. 그 후, 이것을 도 11에 도시하는 형상으로 절단하여, 부극을 얻었다.
또한, 부극 합제층, 정극 합제층을 각각 집전체에 도포 형성하기 전에, 미리 부극 합제의 중량당 리튬 흡장 능력, 정극 합제의 중량당 리튬 방출 능력을 측정해 두고, 부극 합제층의 단위 면적당 리튬 흡장 능력이, 정극 합제층의 단위 면적당 리튬 방출 능력을 초과하는 일이 없도록 하였다.
(전지 소자의 제작)
전지 소자는 이하와 같이 하여 제작하였다. 우선, 두께 25㎛의 폴리프로필렌제 미다공 필름을 도 12에 도시하는 형상으로 절단하여, 이것을 세퍼레이터로 하였다. 이어서, 상술한 바와 같이 하여 얻어진 부극 9매, 정극 8매, 세퍼레이터 16매를, 도 9에 도시하는 바와 같이, 부극, 세퍼레이터, 정극, …, 정극, 세퍼레이터, 부극의 순으로 적층하였다. 이에 의해, 정극 합제층, 세퍼레이터 및 부극 합제층을 포함하는 기본 적층 단위를 16층분 내포하는 전지 소자가 얻어졌다. 또한, 전지 소자의 상하 최외층은 부극 합제층으로 되지만, 이들 부분은 정극과 대향하고 있지 않기 때문에 전지 반응에는 기여하는 것이 아니다. 또한, 이 적층 시에는, 적층 방향에서 보아, 정극 합제층의 투영면이 부극 합제층의 투영면의 내측에 들어가도록, 부극과 정극의 상대 위치를 조정하였다.
이어서, 도 8에 도시하는 바와 같이 정극의 집전체 노출부 8매를 동시에 알루미늄제 정극 리드에 초음파 용접하였다. 마찬가지로 하여, 부극의 집전체 노출부 9매를 동시에 니켈제 부극 리드에 초음파 용접하였다. 이어서, 비수전해액으로서, 에틸렌카르보네이트(EC)와 디메틸카르보네이트(DMC)의 등용량 혼합 용매에 LiPF6을 1mol/ℓ 용해시킨 것을 준비하고, 이 비수전해액을 전지 소자에 함침시킨 후, 수지층, 알루미늄층, 수지층을 포함하는 알루미늄 라미네이트 필름을 포함하는 외장재를 사용하여, 감압 하에서 개구부를 열융착함으로써 전지 소자를 밀봉하였다. 그 때, 정부극 리드가 열융착부를 통하여 외장 부재의 외부로 나오도록 하여, 이것들을 정부극 단자로 하였다. 이상에 의해, 목적으로 하는 리튬 이온 이차 전지를 얻었다.
제작한 이차 전지의 사이클 특성을 이하와 같이 하여 평가하였다. 우선, 고온 환경 중(45℃)에 있어서 이차 전지를 1 사이클 충방전시킨 후, 동일 환경 중에 있어서 이차 전지를 1 사이클 더 충방전시켜 방전 용량을 측정하였다. 계속해서, 동일 환경 중에 있어서 사이클수의 합계가 100 사이클로 될 때까지 충방전을 반복하여 방전 용량을 측정하였다. 이 결과로부터, 사이클 유지율(%)=(100 사이클째 방전 용량/2 사이클째 방전 용량)×100을 산출하였다.
충전 시에는, 1C의 전류로 상한 전압이 4.45V에 도달할 때까지 정전류 충전한 후, 4.45V의 전압으로 전류가 0.05C에 도달할 때까지 정전압 충전하였다. 방전 시에는, 1C의 전류로 시종 전압 3.0V에 도달할 때까지 정전류 방전하였다. 또한, 「1C」란, 전지 용량(이론 용량)을 1시간만에 완전히 방전하는 전류값이고, 「0.05C」란, 전지 용량을 20시간만에 완전히 방전하는 전류값이다.
(초기 용량, 4.55V 충방전 효율)
상술한 "사이클 특성"의 평가에서 사용한 정극에 대하여, 대향 전극 Li의 코인 셀을 제작하고, 단극의 4.55V 충방전 효율을 이하와 같이 하여 평가하였다. 실온 환경 중(23℃)에 있어서 이차 전지를 1 사이클 충방전시켜 충방전 용량을 측정하였다. 이 결과로부터, 4.55V 충방전 효율(%)=(1 사이클째 방전 용량/1 사이클째 충전 용량)×100을 산출하였다.
충전 시에는, 0.1C의 전류로 상한 전압이 4.55V에 도달할 때까지 정전류 충전한 후, 4.55V의 전압으로 전류가 0.01C에 도달할 때까지 정전압 충전하였다. 방전 시에는, 0.1C의 전류로 시종 전압 3.0V에 도달할 때까지 정전류 방전하였다. 얻어진 첫회 충방전 용량을, 사용한 전극에 포함되는 활물질 중량으로 나눔으로써, 활물질 중량당 첫회 충방전 용량을 얻었다.
표 1은, 실시예 1 내지 3, 비교예 1 내지 4의 정극 활물질의 구성 및 평가 결과를 나타낸다.
Figure 112017003899999-pct00008
상기 평가 결과로부터 이하의 것을 알 수 있다.
실시예 1 내지 3에서는, 코어 입자와 제1 피복층에 포함되는 리튬 복합 산화물은 동일 조성이며, 코어 입자가 고결정성을 갖고, 제1 피복층이 저결정성을 갖고 있다. 또한, 저결정성의 제1 피복층의 표면은, 제2 피복층에 의해 피복되어 있다. 이에 의해, 고용량이고, 또한 양호한 사이클 특성이 얻어지고 있다.
비교예 1에서는, 제1 피복층의 표면이 제2 피복층에 의해 피복되어 있지 않기 때문에, 저결정성의 제1 피복층이 전해액과 접촉하고, 단층 피복형 복합 입자로부터 전해액으로의 금속 용출이 발생하고 있다. 이에 의해, 사이클 특성이 저하되어 있다.
비교예 2에서는, 코어 입자의 결정성이 낮기 때문에, 제1 피복층의 표면이 제2 피복층에 의해 피복되어 있음에도 불구하고, 고체 내 확산에 의해 코어 입자 내부로부터 전해액으로의 금속 용출이 발생한다. 이에 의해, 사이클 특성이 저하되어 있다.
비교예 3에서는, 제1 피복층의 결정성이 높기 때문에, 상전이를 수반하는 Li 삽입 탈리 반응에 의해 발생하는 코어 입자 내의 격자나 결정자의 변형을 완화할 수 없다. 이에 의해, 사이클 특성이 저하되어 있다.
비교예 4에서는, 코어 입자와 제1 피복층의 구성 재료가 상이하기 때문에, 상전이를 수반하는 Li 삽입 탈리 반응에 의해 발생하는 코어 입자 내의 격자나 결정자의 변형을 완화할 수 없다. 이에 의해, 사이클 특성이 저하되어 있다.
코어 입자가 고결정성을 갖고, 제1 피복층이 저결정성을 갖고 있는 실시예 1 내지 3에서는, 정극 활물질의 라만 스펙트럼의 피크 강도비 E/A가 0.1≤E/A≤0.35의 관계를 만족하고 있다. 이에 비해, 코어 입자 및 제1 피복층이 모두 저결정성을 갖는 비교예 2에서는, 라만 스펙트럼의 피크 강도비 E/A가 E/A<0.1로 되어 있다. 또한, 코어 입자 및 제1 피복층의 결정성이 모두 고결정성을 갖고 있는 비교예 3에서는, 라만 스펙트럼의 피크 강도비 E/A가 0.35<E/A로 되어 있다.
실시예 1 내지 3에서는, 정극 활물질(이차 입자의 분말)의 피크 강도비 E/A가, 코어 입자 단체의 피크 강도비 E/A에 비하여 저하되어 있다. 이것은, 고결정성을 갖는 코어 입자의 표면을, 저결정성을 갖는 피복층에 의해 덮고 있기 때문이다.
<ii. 제2 피복재에 대하여>
(실시예 4)
제2 피복재로서 Al2O3 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 5)
제2 피복재로서 MgO 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 6)
제2 피복재로서 NiO 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 7)
제2 피복재로서 Mn2O3 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 8)
제2 피복재로서 ZrO2 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 9)
제2 피복재로서 TiO2 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 10)
제2 피복재로서 B2O3 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 11)
제2 피복재로서 WO3 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 12)
제2 피복재로서 Bi2O3 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 13)
제2 피복재로서 P2O5 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 14)
제2 피복재로서 LiF 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 15)
제2 피복재로서 LiMn2O4 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 16)
제2 피복재로서 LiNi0 . 8Co0 . 15Al0 . 05O2 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 17)
제2 피복재로서 LiNi0 . 33Co0 . 33Mn0 . 33O2 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 18)
제2 피복재로서 LiFePO4 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 19)
제2 피복재로서 LiMn0 . 7Fe0 . 3PO4 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 20)
제2 피복재로서 Li4Ti5O12 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 21)
제2 피복재로서 Li3PO4 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 22)
제2 피복재로서 MgF2 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(정극 활물질의 평가)
상술한 바와 같이 하여 얻어진 실시예 4 내지 22의 정극 활물질에 대하여, 라만 스펙트럼의 피크 강도비 및 사이클 특성을 실시예 1 내지 3, 비교예 1 내지 4와 마찬가지로 하여 평가하였다.
표 2는, 실시예 2, 4 내지 22의 정극 활물질의 구성 및 평가 결과를 나타낸다.
Figure 112017003899999-pct00009
상기 평가 결과로부터 이하의 것을 알 수 있다.
제2 피복층의 재료로서 LiNi0 . 5Co0 . 2Mn0 . 3O2 입자의 분말 이외의 산화물 입자의 분말, 또는 불화물 입자의 분말을 사용한 경우에도, 제2 피복층의 재료로서LiNi0.5Co0.2Mn0.3O2 입자의 분말을 사용한 경우와 마찬가지로, 양호한 사이클 특성을 얻을 수 있다.
또한, 표 2에서는, 구체적인 초기 충방전 용량의 기재를 생략하였지만, 실시예 4 내지 22에서도 실시예 1 내지 3과 마찬가지로 높은 초기 충방전 용량이 얻어졌다.
<iii. 제2 피복재의 피복량에 대하여>
(실시예 23)
단층 피복형 복합 입자의 분말 99.5중량%와 LiNi0 . 5Co0 . 2Mn0 . 3O2 입자의 분말 0.5중량%를 배합한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 24)
단층 피복형 복합 입자의 분말 95중량%와 LiNi0 . 5Co0 . 2Mn0 . 3O2 입자의 분말 5중량%를 배합한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 25)
단층 피복형 복합 입자의 분말 99.95중량%와 LiNi0 . 5Co0 . 2Mn0 . 3O2 입자의 분말 0.05중량%를 배합한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 26)
단층 피복형 복합 입자의 분말 89중량%와 LiNi0 . 5Co0 . 2Mn0 . 3O2 입자의 분말 11중량%를 배합한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 27)
단층 피복형 복합 입자의 분말 99.8중량%와 Al2O3 입자의 분말 0.2중량%를 배합한 것 이외에는, 실시예 4와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 28)
단층 피복형 복합 입자의 분말 95중량%와 Al2O3 입자의 분말 5중량%를 배합한 것 이외에는, 실시예 4와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 29)
단층 피복형 복합 입자의 분말 99.95중량%와 Al2O3 입자의 분말 0.05중량%를 배합한 것 이외에는, 실시예 4와 마찬가지로 하여 정극 활물질을 얻었다.
(실시예 30)
단층 피복형 복합 입자의 분말 89중량%와 Al2O3 입자의 분말 11중량%를 배합한 것 이외에는, 실시예 4와 마찬가지로 하여 정극 활물질을 얻었다.
(정극 활물질의 평가)
상술한 바와 같이 하여 얻어진 실시예 23 내지 30의 정극 활물질에 대하여, 사이클 특성을 실시예 1 내지 3, 비교예 1 내지 4와 마찬가지로 하여 평가하였다.
표 3은, 실시예 2, 4, 23 내지 30의 정극 활물질의 구성 및 평가 결과를 나타낸다.
Figure 112017003899999-pct00010
상기 평가 결과로부터 이하의 것을 알 수 있다.
코어 입자, 제1 피복재 및 제2 피복재의 총량에 대한 제2 피복재의 비율을 0.1mol% 이상 10mol% 이하로 함으로써, 특히 양호한 사이클 특성을 얻을 수 있다.
또한, 표 2에서는, 구체적인 초기 충방전 용량의 기재를 생략하였지만, 실시예 23 내지 30에서도 실시예 1 내지 3과 마찬가지로 높은 초기 충방전 용량이 얻어졌다.
<iv. 코어 입자 및 제1 피복재에 대하여>
(실시예 31)
제1 피복재로서 Li0 . 9CoO2 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다. 또한, 그 제1 피복재는, 이하와 같이 하여 제작되었다.
[제1 피복재의 제작 공정]
산화코발트와 탄산리튬을 Li량과 Co량의 몰비(Li:Co)가 0.9:1로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 실온에서 ??칭을 행함으로써, 저결정성의 Li0.9CoO2 입자의 분말을 얻었다.
(실시예 32)
제1 피복재로서 Li1 . 1CoO2 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다. 또한, 그 제1 피복재는, 이하와 같이 하여 제작되었다.
[제1 피복재의 제작 공정]
산화코발트와 탄산리튬을 Li량과 Co량의 몰비(Li:Co)가 1.1:1로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 실온에서 ??칭을 행함으로써, 저결정성의 Li1.1CoO2 입자의 분말을 얻었다.
(실시예 33)
코어 입자의 분말로서 고결정성의 Li0 . 9CoO2 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다. 또한, 그 코어 입자의 분말은, 이하와 같이 하여 제작되었다.
[코어 입자의 분말의 제작 공정]
산화코발트와 탄산리튬을 Li량과 Co량의 몰비(Li:Co)가 0.9:1로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 서냉함으로써, 고결정성의 Li0 . 9CoO2 입자의 분말을 얻었다.
(실시예 34)
코어 입자의 분말로서 고결정성의 Li1 . 1CoO2 입자의 분말을 사용한 것 이외에는, 실시예 2와 마찬가지로 하여 정극 활물질을 얻었다. 또한, 그 코어 입자의 분말은, 이하와 같이 하여 제작되었다.
[코어 입자의 분말의 제작 공정]
산화코발트와 탄산리튬을 Li량과 Co량의 몰비(Li:Co)가 1.1:1로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 서냉함으로써, 고결정성의 Li1 . 1CoO2 입자의 분말을 얻었다.
(실시예 35)
코어 입자의 분말로서 고결정성의 LiCoO1 .97F0.03 입자의 분말을 사용한 것, 제1 피복재로서 저결정성의 LiCoO1 .97F0.03 입자의 분말을 사용한 것 이외에는 실시예 2와 마찬가지로 하여, 정극 활물질을 얻었다. 또한, 그들 코어 입자의 분말 및 제1 피복재는, 이하와 같이 하여 제작되었다.
[코어 입자의 분말의 제작 공정]
산화코발트와 탄산리튬과 불화리튬을 Li량과 Co량과 F량의 몰비(Li:Co:F)가 1:1:0.03으로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 서냉함으로써, 고결정성의 LiCoO1.97F0.03 입자의 분말을 얻었다.
[제1 피복재의 제작 공정]
산화코발트와 탄산리튬과 불화리튬을 Li량과 Co량과 F량의 몰비(Li:Co:F)가 1:1:0.03으로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 실온에서 ??칭을 행함으로써, 저결정성의 LiCoO1.97F0.03 입자의 분말을 얻었다.
(실시예 36)
코어 입자의 분말로서 고결정성의 LiCo0 . 95Mg0 . 05O2 입자의 분말을 사용한 것, 제1 피복재로서 저결정성의 LiCo0 . 95Mg0 . 05O2 입자의 분말을 사용한 것 이외에는 실시예 2와 마찬가지로 하여, 정극 활물질을 얻었다. 또한, 그들 코어 입자의 분말 및 제1 피복재는, 이하와 같이 하여 제작되었다.
[코어 입자의 분말의 제작 공정]
산화코발트와 탄산리튬과 산화마그네슘을 Li량과 Co량과 Mg량의 몰비(Li:Co:Mg)가 1:0.95:0.05로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 서냉함으로써, 고결정성의 LiCo0.95Mg0.05O2 입자의 분말을 얻었다.
[제1 피복재의 제작 공정]
산화코발트와 탄산리튬과 산화마그네슘을 Li량과 Co량과 Mg량의 몰비(Li:Co:Mg)가 1:0.95:0.05로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 실온에서 ??칭을 행함으로써, 저결정성의 LiCo0.95Mg0.05O2 입자의 분말을 얻었다.
(실시예 37)
코어 입자의 분말로서 고결정성의 LiCo0 . 95Al0 . 05O2 입자의 분말을 사용한 것, 제1 피복재로서 저결정성의 LiCo0 . 95Al0 . 05O2 입자의 분말을 사용한 것 이외에는 실시예 2와 마찬가지로 하여, 정극 활물질을 얻었다. 또한, 그들 코어 입자의 분말 및 제1 피복재는, 이하와 같이 하여 제작되었다.
[코어 입자의 분말의 제작 공정]
산화코발트와 탄산리튬과 산화알루미늄을 Li량과 Co량과 Al량의 몰비(Li:Co:Al)가 1:0.95:0.05로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 서냉함으로써, 고결정성의 LiCo0.95Al0.05O2 입자의 분말을 얻었다.
[제1 피복재의 제작 공정]
산화코발트, 탄산리튬, 산화알루미늄을 Li량과 Co량과 Al량의 몰비(Li:Co:Al)가 1:0.95:0.05로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 실온에서 ??칭을 행함으로써 저결정성의 LiCo0.95Al0.05O2 입자의 분말을 얻었다.
(실시예 38)
코어 입자의 분말로서 고결정성의 LiCo0 . 95Mn0 . 05O2 입자의 분말을 사용한 것, 제1 피복재로서 저결정성의 LiCo0 . 95Mn0 . 05O2 입자의 분말을 사용한 것 이외에는 실시예 2와 마찬가지로 하여, 정극 활물질을 얻었다. 또한, 그들 코어 입자의 분말 및 제1 피복재는, 이하와 같이 하여 제작되었다.
[코어 입자의 분말의 제작 공정]
산화코발트와 탄산리튬과 산화망간을 Li량과 Co량과 Mn량의 몰비(Li:Co:Mn)가 1:0.95:0.05로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 서냉함으로써, 고결정성의 LiCo0.95Mn0.05O2 입자의 분말을 얻었다.
[제1 피복재의 제작 공정]
산화코발트와 탄산리튬과 산화망간을 Li량과 Co량과 Mn량의 몰비(Li:Co:Mn)가 1:0.95:0.05로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 실온에서 ??칭을 행함으로써, 저결정성의 LiCo0.95Mn0.05O2 입자의 분말을 얻었다.
(실시예 39)
코어 입자의 분말로서 고결정성의 LiCo0 . 95Ni0 . 05O2 입자의 분말을 사용한 것, 제1 피복재로서 저결정성의 LiCo0 . 95Ni0 . 05O2 입자의 분말을 사용한 것 이외에는 실시예 2와 마찬가지로 하여, 정극 활물질을 얻었다. 또한, 그들 코어 입자의 분말 및 제1 피복재는, 이하와 같이 하여 제작되었다.
[코어 입자의 분말의 제작 공정]
산화코발트와 탄산리튬과 수산화니켈을 Li량과 Co량과 Ni량의 몰비(Li:Co:Ni)가 1:0.95:0.05로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 서냉함으로써, 고결정성의 LiCo0.95Ni0.05O2 입자의 분말을 얻었다.
[제1 피복재의 제작 공정]
산화코발트와 탄산리튬과 수산화니켈을 Li량과 Co량과 Ni량의 몰비(Li:Co:Ni)가 1:0.95:0.05로 되도록 혼합하고, 공기 중 1000℃ 6h 소성하고, 실온에서 ??칭을 행함으로써, 저결정성의 LiCo0.95Ni0.05O2 입자의 분말을 얻었다.
(실시예 40)
코어 입자의 분말로서 고결정성의 LiNi0 . 5Co0 . 2Mn0 . 3O2 입자의 분말을 사용한 것, 제1 피복재로서 저결정성의 LiNi0 . 5Co0 . 2Mn0 . 3O2 입자의 분말을 사용한 것 이외에는 실시예 2와 마찬가지로 하여, 정극 활물질을 얻었다. 또한, 그들 코어 입자의 분말 및 제1 피복재는, 이하와 같이 하여 제작되었다.
[코어 입자의 분말의 제작 공정]
Ni, Mn, Co의 복합 수산화물과 탄산리튬을 Li량, Ni량, Co량, Mn량의 몰비(Li:Ni:Co:Mn)가 10:5:2:3으로 되도록 혼합하고, 공기 중 900℃ 6h 소성하고, 서냉함으로써, 고결정성의 LiNi0.5Co0.2Mn0.3O2 입자의 분말을 얻었다.
[제1 피복재의 제작 공정]
Ni, Mn, Co의 복합 수산화물 및 탄산리튬을 Li량, Ni량, Co량, Mn량의 몰비(Li:Ni:Co:Mn)가 10:5:2:3으로 되도록 혼합하고, 공기 중 900℃ 6h 소성하고, 실온에서 ??칭을 행함으로써, 저결정성의 LiNi0.5Co0.2Mn0.3O2 입자의 분말을 얻었다.
(실시예 41)
코어 입자의 분말로서 고결정성의 LiNi0 . 33Co0 . 33Mn0 . 33O2 입자의 분말을 사용한 것, 제1 피복재로서 저결정성의 LiNi0 . 33Co0 . 33Mn0 . 33O2 입자의 분말을 사용한 것 이외에는 실시예 2와 마찬가지로 하여, 정극 활물질을 얻었다. 또한, 그들 코어 입자의 분말 및 제1 피복재는, 이하와 같이 하여 제작되었다.
[코어 입자의 분말의 제작 공정]
Ni, Mn, Co의 복합 수산화물 및 탄산리튬을 Li량, Ni량, Co량, Mn량의 몰비(Li:Ni:Co:Mn)가 10:3.3:3.3:3.3으로 되도록 혼합하고, 공기 중 900℃ 6h 소성하고, 서냉함으로써, 고결정성의 LiNi0.33Co0.33Mn0.33O2 입자의 분말을 얻었다.
[제1 피복재의 제작 공정]
Ni, Mn, Co의 복합 수산화물 및 탄산리튬을 Li량, Ni량, Co량, Mn량의 몰비(Li:Ni:Co:Mn)가 10:3.3:3.3:3.3으로 되도록 혼합하고, 공기 중 900℃ 6h 소성하고, 실온에서 ??칭을 행함으로써, 저결정성의 LiNi0 . 33Co0 . 33Mn0 . 33O2 입자의 분말을 얻었다.
(실시예 42)
코어 입자의 분말로서 고결정성의 LiNi0 . 8Co0 . 15Al0 . 05O2 입자의 분말을 사용한 것, 제1 피복재로서 저결정성의 LiNi0 . 8Co0 . 15Al0 . 05O2 입자의 분말을 사용한 것 이외에는 실시예 2와 마찬가지로 하여, 정극 활물질을 얻었다. 또한, 그들 코어 입자의 분말 및 제1 피복재는, 이하와 같이 하여 제작되었다.
[코어 입자의 분말의 제작 공정]
Ni, Co, Al의 복합 수산화물과 탄산리튬을 Li량, Ni량, Co량, Al량의 몰비(Li:Ni:Co:Al)가 10:8.0:1.5:0.5로 되도록 혼합하고, 산소 분위기 중 900℃ 6h 소성하고, 서냉함으로써, 고결정성의 LiNi0 . 8Co0 . 15Al0 . 05O2 입자의 분말을 얻었다.
[제1 피복재의 제작 공정]
Ni, Co, Al의 복합 수산화물과 탄산리튬을 Li량, Ni량, Co량, Al량의 몰비(Li:Ni:Co:Al)가 10:8.0:1.5:0.5로 되도록 혼합하고, 산소 분위기 중 900℃ 6h 소성하고, 실온에서 ??칭을 행함으로써, 저결정성의 LiNi0 . 8Co0 . 15Al0 . 05O2 입자의 분말을 얻었다.
(실시예 43)
코어 입자의 분말로서 고결정성의 LiMn2O4 입자의 분말을 사용한 것, 제1 피복재로서 저결정성의 LiMn2O4 입자의 분말을 사용한 것 이외에는 실시예 2와 마찬가지로 하여, 정극 활물질을 얻었다. 또한, 그들 코어 입자의 분말 및 제1 피복재는, 이하와 같이 하여 제작되었다.
[코어 입자의 분말의 제작 공정]
망간 수산화물과 탄산리튬을 Li량과 Mn량의 몰비(Li:Mn)가 1:2로 되도록 혼합하고, 공기 중 900℃ 6h 소성하고, 서냉함으로써, 고결정성의 LiMn2O4 입자의 분말을 얻었다.
[제1 피복재의 제작 공정]
망간 수산화물과 탄산리튬을 Li량과 Mn량의 몰비(Li:Mn)가 1:2로 되도록 혼합하고, 공기 중 900℃ 6h 소성하고, 실온에서 ??칭을 행함으로써, 저결정성의 LiMn2O4 입자의 분말을 얻었다.
(정극 활물질의 평가)
상술한 바와 같이 하여 얻어진 실시예 31 내지 43의 정극 활물질에 대하여, 사이클 특성을 실시예 1 내지 3, 비교예 1 내지 4와 마찬가지로 하여 평가하였다.
표 4는, 실시예 2, 31 내지 43의 정극 활물질의 구성 및 평가 결과를 나타낸다.
Figure 112017003899999-pct00011
상기 평가 결과로부터 이하의 것을 알 수 있다.
코어 입자의 분말 및 제1 피복재로서 LiCoO2 입자의 분말 이외의 리튬 복합 산화물 입자의 분말을 사용한 경우에도, 코어 입자의 분말 및 제1 피복재로서 LiCoO2 입자의 분말을 사용한 경우와 마찬가지로, 양호한 사이클 특성을 얻을 수 있다.
또한, 표 4에서는, 구체적인 초기 충방전 용량의 기재를 생략하였지만, 실시예 31 내지 43에서도 실시예 1 내지 3과 마찬가지로 높은 초기 충방전 용량이 얻어졌다.
<v. 이차 입자화에 대하여>
(실시예 44)
코어 입자의 분말의 제작 공정, 제1 피복재의 제작 공정 및 단층 피복형 복합 입자의 제작 공정을 실시예 2와 마찬가지로 하여 행함으로써, 단층 피복형 복합 입자의 분말을 얻은 후, 그 복합 입자의 분말을 조립하여, 복수의 복합 입자를 포함하는 이차 입자의 분말을 얻었다. 또한, 제2 피복재의 제작 공정을 실시예 2와 마찬가지로 하여 행함으로써, LiNi0.5Co0.2Mn0.3O2 입자의 분말을 얻었다.
얻어진 이차 입자의 분말 97중량%와 LiNi0 . 5Co0 . 2Mn0 . 3O2 입자의 분말 3중량%를 배합하고, 고속 회전식 충격 분쇄기의 1종인 고속 교반 혼합기(호소카와 마이크론사제, 노빌타)에 투입하였다. 회전 날개를 1000rpm에서 회전시켜, 10분간의 처리를 실시하고, 이차 입자의 표면에 LiNi0 . 5Co0 . 2Mn0 . 3O2 입자를 피착시킴으로써, 단층 피복형 복합 이차 입자의 분말을 얻었다. 이상에 의해, 목적으로 하는 정극 활물질이 얻어졌다.
(비교예 5)
코어 입자의 분말의 제작 공정, 제1 피복재의 제작 공정 및 단층 피복형 복합 입자의 제작 공정을 실시예 2와 마찬가지로 하여 행함으로써, 단층 피복형 복합 입자의 분말을 얻은 후, 그 복합 입자의 분말을 조립하여, 복수의 복합 입자를 포함하는 표면 노출형 복합 이차 입자의 분말을 얻었다. 이상에 의해, 목적으로 하는 정극 활물질이 얻어졌다.
(정극 활물질의 평가)
상술한 바와 같이 하여 얻어진 실시예 44, 비교예 5의 정극 활물질에 대하여, 사이클 특성을 실시예 1 내지 3, 비교예 1 내지 4와 마찬가지로 하여 평가하였다.
표 5는, 실시예 2, 44, 비교예 5의 정극 활물질의 구성 및 평가 결과를 나타낸다.
Figure 112017003899999-pct00012
상기 평가 결과로부터 이하의 것을 알 수 있다. 정극 활물질로서 표면 피복형 복합 이차 입자의 분말을 사용한 경우에는, 정극 활물질로서 2층 피복형 복합 일차 입자의 분말을 사용한 경우에 비하여, 사이클 특성을 향상시킬 수 있다. 한편, 정극 활물질로서 표면 노출형 복합 이차 입자를 사용한 경우에는, 정극 활물질로서 2층 피복형 복합 일차 입자의 분말을 사용한 경우에 비하여, 사이클 특성이 저하된다.
또한, 표 5에서는, 구체적인 초기 충방전 용량의 기재를 생략하였지만, 실시예 44에서도 실시예 1 내지 3과 마찬가지로 높은 초기 충방전 용량이 얻어졌다.
도 17에, 비교예 3 및 실시예 44의 정극 활물질의 라만 스펙트럼을 도시한다. 비교예 3에서는, 코어 입자와 제1 피복층의 양쪽이 높은 결정성을 갖고 있기 때문에, 450㎝-1 이상 500cm-1 이하의 범위에 있는 피크의 강도 E가 크게 되어 있다. 한편, 실시예 44에서는, 이차 입자의 피복층이 높은 결정성을 갖고 있지만, 제1 피복층이 저결정성을 갖기 때문에, 450㎝-1 이상 500cm-1 이하의 범위에 있는 피크의 강도 E가 작게 되어 있다.
이상, 본 기술의 실시 형태 및 그의 변형예, 그리고 실시예에 대하여 구체적으로 설명하였지만, 본 기술은, 상술한 실시 형태 및 그의 변형예, 그리고 실시예에 한정되는 것은 아니며, 본 기술의 기술적 사상에 기초한 각종 변형이 가능하다.
예를 들어, 상술한 실시 형태 및 그의 변형예, 그리고 실시예에 있어서 예시한 구성, 방법, 공정, 형상, 재료 및 수치 등은 어디까지나 예시에 지나지 않으며, 필요에 따라 이것과 상이한 구성, 방법, 공정, 형상, 재료 및 수치 등을 사용해도 된다.
또한, 상술한 실시 형태 및 그의 변형예, 그리고 실시예의 구성, 방법, 공정, 형상, 재료 및 수치 등은, 본 기술의 주지를 일탈하지 않는 한, 서로 조합하는 것이 가능하다.
또한, 본 기술은 이하의 구성을 채용할 수도 있다.
(1) 리튬 복합 산화물을 포함하는 입자와,
상기 입자의 표면에 형성되고, 리튬 복합 산화물을 포함하는 제1층과,
상기 제1층의 표면에 형성된 제2층을 구비하고,
상기 입자에 포함되는 상기 리튬 복합 산화물과 상기 제1층에 포함되는 상기 리튬 복합 산화물은 동일 조성 또는 거의 동일 조성이고,
상기 제2층은, 산화물 또는 불화물을 포함하고 있고,
상기 제1층에 포함되는 상기 리튬 복합 산화물은, 상기 입자에 포함되는 상기 리튬 복합 산화물보다 결정성이 낮은 정극 활물질.
(2) 라만 스펙트럼에 있어서, 550㎝-1 이상 650cm-1 이하의 범위에 있는 피크의 강도 A와 450cm-1 이상 500cm-1 이하의 범위에 있는 피크의 강도 E의 피크 강도비 E/A가 이하의 식 (1)로 표시되는 관계를 만족하는 (1)에 기재된 정극 활물질.
Figure 112017003899999-pct00013
(3) 상기 제2층에 포함되는 상기 산화물 및 상기 불화물은, Li, Ti, V, Cr, Mn, Fe, Co, Ni, Mn, Cu, Na, Mg, Al, Si, K, Ca, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ba, La, W, Bi, P 및 B 중 적어도 1종을 포함하는 (1) 또는 (2)에 기재된 정극 활물질.
(4) 상기 제2층에 포함되는 상기 산화물은, 리튬 복합 산화물인 (1) 내지 (3) 중 어느 하나에 기재된 정극 활물질.
(5) 상기 제2층에 포함되는 상기 리튬 복합 산화물의 평균 조성은, 이하의 식 (A)로 표시되는 (1) 내지 (4) 중 어느 하나에 기재된 정극 활물질.
LiwMxNyO2 - zXz … (A)
(단, w는 0.8<w<1.2, x+y는 0.9<x+y<1.1, y는 0≤y<0.1, z는 0≤z<0.05임. M은 Ti, V, Cr, Mn, Fe, Co, Ni, Mn 및 Cu 중 적어도 1종임. N은 Na, Mg, Al, Si, K, Ca, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ba, La, W 및 Bi 중 적어도 1종임. X는 F, Cl 및 S 중 적어도 1종임)
(6) 상기 입자, 상기 제1층 및 상기 제2층의 총량에 대한 상기 제2층의 양의 비율은, 0.1mol% 이상 10mol% 이하인 (1) 내지 (5) 중 어느 하나에 기재된 정극 활물질.
(7) 상기 입자에 포함되는 상기 리튬 복합 산화물의 평균 조성은, 이하의 식 (B)로 표시되는 (1) 내지 (6) 중 어느 하나에 기재된 정극 활물질.
LiwMxNyO2 - zXz … (B)
(단, w는 0.8<w<1.2, x+y는 0.9<x+y<1.1, y는 0≤y<0.1, z는 0≤z<0.05임. M은 Ti, V, Cr, Mn, Fe, Co, Ni, Mn 및 Cu 중 적어도 1종임. N은 Na, Mg, Al, Si, K, Ca, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ba, La, W 및 Bi 중 적어도 1종임. X는 F, Cl 및 S 중 적어도 1종임)
(8) 상기 입자에 포함되는 상기 리튬 복합 산화물의 평균 조성은, 이하의 식 (C)로 표시되는 (1) 내지 (6) 중 어느 하나에 기재된 정극 활물질.
LixCo1 - yMyO2 - zXz … (C)
(단, x는 0.8<x<1.2, y는 0≤y<0.15, z는 0≤z<0.05임. M은 Ti, V, Cr, Mn, Fe, Ni, Mn, Cu, Na, Mg, Al, Si, K, Ca, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ba, La 및 W 중 적어도 1종임. X는 F, Cl 및 S 중 적어도 1종임)
(9) (1) 내지 (8) 중 어느 하나에 기재된 정극 활물질을 포함하는 정극.
(10) (9)에 기재된 정극을 구비하는 전지.
(11) (10)에 기재된 전지를 구비하는 전지 팩.
(12) (10)에 기재된 전지를 구비하고,
상기 전지로부터 전력의 공급을 받는 전자 기기.
(13) (10)에 기재된 전지와,
상기 전지로부터 전력의 공급을 받아 차량의 구동력으로 변환하는 변환 장치와,
상기 전지에 관한 정보에 기초하여 차량 제어에 관한 정보 처리를 행하는 제어 장치를 구비하는 전동 차량.
(14) (10)에 기재된 전지를 구비하고,
상기 전지에 접속되는 전자 기기에 전력을 공급하는 축전 장치.
(15) 다른 기기와 네트워크를 통하여 신호를 송수신하는 전력 정보 제어 장치를 구비하고,
상기 전력 정보 제어 장치가 수신한 정보에 기초하여, 상기 전지의 충방전 제어를 행하는 (14)에 기재된 축전 장치.
(16) (10)에 기재된 전지를 구비하고,
상기 전지로부터 전력의 공급을 받거나, 또는 발전 장치 혹은 전력망으로부터 상기 전지에 전력이 공급되는 전력 시스템.
11: 전지 캔
12, 13: 절연판
14: 전지 덮개
15: 안전 밸브 기구
15A: 디스크판
16: 열감 저항 소자
17: 가스킷
20: 권회 전극체
21: 정극
21A: 정극 집전체
21B: 정극 활물질층
22: 부극
22A: 부극 집전체
22B: 부극 활물질층
23: 세퍼레이터
24: 센터 핀
25: 정극 리드
26: 부극 리드

Claims (16)

  1. 리튬 복합 산화물을 포함하는 입자와,
    상기 입자의 표면에 형성되고, 리튬 복합 산화물을 포함하는 제1층과,
    상기 제1층의 표면에 형성된 제2층을 구비하고,
    상기 입자에 포함되는 상기 리튬 복합 산화물과 상기 제1층에 포함되는 상기 리튬 복합 산화물은 구성 원소가 동일하고, 각 구성 원소의 원자 비율이 동일하거나 각 구성 원소의 원자 비율의 차이가 10원자% 이내이고,
    상기 제2층은, 산화물 또는 불화물을 포함하고 있고,
    상기 제1층에 포함되는 상기 리튬 복합 산화물은, 상기 입자에 포함되는 상기 리튬 복합 산화물보다 결정성이 낮고,
    라만 스펙트럼에 있어서, 550㎝-1 이상 650cm-1 이하의 범위에 있는 피크의 강도 A와 450cm-1 이상 500cm-1 이하의 범위에 있는 피크의 강도 E의 피크 강도비 E/A가 이하의 식 (1)로 표시되는 관계를 만족하는, 정극 활물질.
    0.1≤E/A≤0.35 … (1)
  2. 삭제
  3. 제1항에 있어서, 상기 제2층에 포함되는 상기 산화물 및 상기 불화물은, Li, Ti, V, Cr, Mn, Fe, Co, Ni, Mn, Cu, Na, Mg, Al, Si, K, Ca, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ba, La, W, Bi, P 및 B 중 적어도 1종을 포함하는, 정극 활물질.
  4. 제3항에 있어서, 상기 제2층에 포함되는 상기 산화물은 리튬 복합 산화물인, 정극 활물질.
  5. 제4항에 있어서, 상기 제2층에 포함되는 상기 리튬 복합 산화물의 평균 조성은, 이하의 식 (A)로 표시되는, 정극 활물질.
    LiwMxNyO2 - zXz … (A)
    (단, w는 0.8<w<1.2, x+y는 0.9<x+y<1.1, y는 0≤y<0.1, z는 0≤z<0.05임. M은 Ti, V, Cr, Mn, Fe, Co, Ni, Mn 및 Cu 중 적어도 1종임. N은 Na, Mg, Al, Si, K, Ca, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ba, La, W 및 Bi 중 적어도 1종임. X는 F, Cl 및 S 중 적어도 1종임)
  6. 제1항에 있어서, 상기 입자, 상기 제1층 및 상기 제2층의 총량에 대한 상기 제2층의 양의 비율은, 0.1mol% 이상 10mol% 이하인, 정극 활물질.
  7. 제1항에 있어서, 상기 입자에 포함되는 상기 리튬 복합 산화물의 평균 조성은, 이하의 식 (B)로 표시되는, 정극 활물질.
    LiwMxNyO2 - zXz … (B)
    (단, w는 0.8<w<1.2, x+y는 0.9<x+y<1.1, y는 0≤y<0.1, z는 0≤z<0.05임. M은 Ti, V, Cr, Mn, Fe, Co, Ni, Mn 및 Cu 중 적어도 1종임. N은 Na, Mg, Al, Si, K, Ca, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ba, La, W 및 Bi 중 적어도 1종임. X는 F, Cl 및 S 중 적어도 1종임)
  8. 제1항에 있어서, 상기 입자에 포함되는 상기 리튬 복합 산화물의 평균 조성은, 이하의 식 (C)로 표시되는, 정극 활물질.
    LixCo1 - yMyO2 - zXz … (C)
    (단, x는 0.8<x<1.2, y는 0≤y<0.15, z는 0≤z<0.05임. M은 Ti, V, Cr, Mn, Fe, Ni, Mn, Cu, Na, Mg, Al, Si, K, Ca, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ba, La 및 W 중 적어도 1종임. X는 F, Cl 및 S 중 적어도 1종임)
  9. 리튬 복합 산화물을 포함하는 입자와,
    상기 입자의 표면에 형성되고, 리튬 복합 산화물을 포함하는 제1층과,
    상기 제1층의 표면에 형성된 제2층을 구비하는 정극 활물질을 포함하고,
    상기 입자에 포함되는 상기 리튬 복합 산화물과 상기 제1층에 포함되는 상기 리튬 복합 산화물은 구성 원소가 동일하고, 각 구성 원소의 원자 비율이 동일하거나 각 구성 원소의 원자 비율의 차이가 10원자% 이내이고,
    상기 제2층은, 산화물 또는 불화물을 포함하고 있고,
    상기 제1층에 포함되는 상기 리튬 복합 산화물은, 상기 입자에 포함되는 상기 리튬 복합 산화물보다 결정성이 낮고,
    상기 정극 활물질이, 라만 스펙트럼에 있어서, 550㎝-1 이상 650cm-1 이하의 범위에 있는 피크의 강도 A와 450cm-1 이상 500cm-1 이하의 범위에 있는 피크의 강도 E의 피크 강도비 E/A가 이하의 식 (1)로 표시되는 관계를 만족하는, 정극.
    0.1≤E/A≤0.35 … (1)
  10. 정극 활물질을 포함하는 정극과, 부극과, 전해질을 구비하고,
    상기 정극 활물질은,
    리튬 복합 산화물을 포함하는 입자와,
    상기 입자의 표면에 형성되고, 리튬 복합 산화물을 포함하는 제1층과,
    상기 제1층의 표면에 형성된 제2층을 구비하고,
    상기 입자에 포함되는 상기 리튬 복합 산화물과 상기 제1층에 포함되는 상기 리튬 복합 산화물은 구성 원소가 동일하고, 각 구성 원소의 원자 비율이 동일하거나 각 구성 원소의 원자 비율의 차이가 10원자% 이내이고,
    상기 제2층은, 산화물 또는 불화물을 포함하고 있고,
    상기 제1층에 포함되는 상기 리튬 복합 산화물은, 상기 입자에 포함되는 상기 리튬 복합 산화물보다 결정성이 낮고,
    상기 정극 활물질이, 라만 스펙트럼에 있어서, 550㎝-1 이상 650cm-1 이하의 범위에 있는 피크의 강도 A와 450cm-1 이상 500cm-1 이하의 범위에 있는 피크의 강도 E의 피크 강도비 E/A가 이하의 식 (1)로 표시되는 관계를 만족하는, 전지.
    0.1≤E/A≤0.35 … (1)
  11. 제10항에 기재된 전지를 구비하는, 전지 팩.
  12. 제10항에 기재된 전지를 구비하고,
    상기 전지로부터 전력의 공급을 받는, 전자 기기.
  13. 제10항에 기재된 전지와,
    상기 전지로부터 전력의 공급을 받아 차량의 구동력으로 변환하는 변환 장치와,
    상기 전지에 관한 정보에 기초하여 차량 제어에 관한 정보 처리를 행하는 제어 장치를 구비하는, 전동 차량.
  14. 제10항에 기재된 전지를 구비하고,
    상기 전지에 접속되는 전자 기기에 전력을 공급하는, 축전 장치.
  15. 제14항에 있어서, 다른 기기와 네트워크를 통하여 신호를 송수신하는 전력 정보 제어 장치를 구비하고,
    상기 전력 정보 제어 장치가 수신한 정보에 기초하여, 상기 전지의 충방전 제어를 행하는, 축전 장치.
  16. 제10항에 기재된 전지를 구비하고,
    상기 전지로부터 전력의 공급을 받거나, 또는 발전 장치 혹은 전력망으로부터 상기 전지에 전력이 공급되는, 전력 시스템.
KR1020177000991A 2014-07-31 2015-07-09 정극 활물질, 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템 KR102334085B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014157040A JP2016033902A (ja) 2014-07-31 2014-07-31 正極活物質、正極および電池
JPJP-P-2014-157040 2014-07-31
PCT/JP2015/003465 WO2016017077A1 (ja) 2014-07-31 2015-07-09 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020207025011A Division KR20200105545A (ko) 2014-07-31 2015-07-09 정극 활물질, 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템

Publications (2)

Publication Number Publication Date
KR20170038787A KR20170038787A (ko) 2017-04-07
KR102334085B1 true KR102334085B1 (ko) 2021-12-01

Family

ID=55217005

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020177000991A KR102334085B1 (ko) 2014-07-31 2015-07-09 정극 활물질, 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
KR1020207025011A KR20200105545A (ko) 2014-07-31 2015-07-09 정극 활물질, 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020207025011A KR20200105545A (ko) 2014-07-31 2015-07-09 정극 활물질, 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템

Country Status (5)

Country Link
US (1) US10559810B2 (ko)
JP (1) JP2016033902A (ko)
KR (2) KR102334085B1 (ko)
CN (1) CN106575755B (ko)
WO (1) WO2016017077A1 (ko)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013848A1 (ja) 2015-07-23 2017-01-26 パナソニックIpマネジメント株式会社 正極活物質、および、電池
JP6793355B2 (ja) 2015-09-16 2020-12-02 パナソニックIpマネジメント株式会社 電池
CN107408737B (zh) 2015-09-16 2021-03-23 松下知识产权经营株式会社 电池
JP6846628B2 (ja) 2015-09-16 2021-03-24 パナソニックIpマネジメント株式会社 正極活物質、および、電池
WO2017047023A1 (ja) 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 電池
CN107408687B (zh) 2015-09-16 2022-01-28 松下知识产权经营株式会社 正极活性物质和电池
JP6793354B2 (ja) 2015-09-16 2020-12-02 パナソニックIpマネジメント株式会社 電池
JP6861399B2 (ja) 2015-09-16 2021-04-21 パナソニックIpマネジメント株式会社 電池
JP6861401B2 (ja) 2015-09-16 2021-04-21 パナソニックIpマネジメント株式会社 正極活物質、および、電池
KR102323397B1 (ko) * 2016-07-05 2021-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지
DE202017007622U1 (de) * 2016-10-12 2023-09-13 Semiconductor Energy Laboratory Co., Ltd. Positivelektrodenaktivmaterialteilchen
JP6952251B2 (ja) 2016-11-15 2021-10-20 パナソニックIpマネジメント株式会社 電池用正極活物質、および、電池
JP6979586B2 (ja) 2016-11-15 2021-12-15 パナソニックIpマネジメント株式会社 電池用正極活物質、および、電池用正極活物質を用いた電池
US20180145317A1 (en) * 2016-11-18 2018-05-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP6964246B2 (ja) 2016-12-02 2021-11-10 パナソニックIpマネジメント株式会社 正極活物質、および、正極活物質を用いた電池
US10811732B1 (en) * 2016-12-28 2020-10-20 Google Llc Pre-lithiation for batteries having si-anodes
JP7065341B2 (ja) 2017-01-19 2022-05-12 パナソニックIpマネジメント株式会社 正極活物質、および、電池
JP6952247B2 (ja) 2017-01-19 2021-10-20 パナソニックIpマネジメント株式会社 正極活物質、および、電池
JP6809313B2 (ja) * 2017-03-14 2021-01-06 株式会社村田製作所 正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JPWO2018198967A1 (ja) * 2017-04-27 2020-02-27 株式会社村田製作所 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US11489151B2 (en) 2017-05-12 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
CN115995596A (zh) 2017-05-19 2023-04-21 株式会社半导体能源研究所 锂离子二次电池
WO2018225450A1 (ja) * 2017-06-09 2018-12-13 株式会社村田製作所 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR102529616B1 (ko) 2017-06-26 2023-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법 및 이차 전지
KR102628435B1 (ko) * 2017-07-24 2024-01-23 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
US20190027739A1 (en) * 2017-07-24 2019-01-24 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
CN107978744B (zh) * 2017-11-20 2020-06-12 无锡市产品质量监督检验院 一种高容量锂二次电池用正极材料及其制备方法
KR102313089B1 (ko) * 2017-11-21 2021-10-18 주식회사 엘지화학 양극활물질 전구체, 그 제조 방법, 이를 이용해 제조된 양극 활물질, 양극 및 이차전지
CN113346069B (zh) * 2018-02-11 2022-06-10 宁德时代新能源科技股份有限公司 正极材料及其制备方法、电池
US11594720B2 (en) 2018-02-19 2023-02-28 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for secondary battery, secondary battery, and method for producing positive electrode for secondary battery
JP2019192512A (ja) * 2018-04-26 2019-10-31 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法
JP2019192513A (ja) * 2018-04-26 2019-10-31 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法
JP6992897B2 (ja) * 2018-06-21 2022-01-13 株式会社村田製作所 正極活物質および電池
EP3846261A4 (en) * 2018-08-31 2021-11-17 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL AND BATTERY INCLUDING THE LATTER
WO2020068134A1 (en) * 2018-09-30 2020-04-02 Seeo, Inc. High-energy cathode material particles with oxy-fluoride surfaces for aqueous processing
JP7044174B2 (ja) * 2018-11-30 2022-03-30 株式会社村田製作所 二次電池
US20220029159A1 (en) * 2018-12-13 2022-01-27 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing the same, and secondary battery
JP7254531B2 (ja) * 2019-01-18 2023-04-10 日本化学工業株式会社 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
KR102126898B1 (ko) * 2019-12-05 2020-06-25 주식회사 에스엠랩 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
US20230135556A1 (en) * 2020-03-27 2023-05-04 Semiconductor Energy Laboratory Co., Ltd. Secondary battery, electronic device, vehicle, and method for manufacturing secondary battery
KR102518213B1 (ko) * 2020-10-12 2023-04-05 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
CN112382741B (zh) * 2020-10-12 2022-09-13 深圳市贝特瑞纳米科技有限公司 高镍正极材料及其制备方法、锂离子二次电池
EP4254557A4 (en) * 2020-11-30 2024-05-01 Panasonic Ip Man Co Ltd POSITIVE ELECTRODE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERIES, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
TWI747735B (zh) * 2021-02-08 2021-11-21 台灣立凱電能科技股份有限公司 正極材料顆粒結構及其製造方法
JP7275180B2 (ja) * 2021-03-11 2023-05-17 プライムプラネットエナジー&ソリューションズ株式会社 正極活物質および該正極活物質を備えたリチウムイオン二次電池
FR3121788A1 (fr) * 2021-04-09 2022-10-14 Saft Revêtement pour oxyde spinelle de lithium-manganèse-nickel
CN115477319B (zh) * 2022-09-16 2023-07-25 无锡成旸科技股份有限公司 防抱团的复合粉体及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521066A (ja) 1991-07-12 1993-01-29 Yuasa Corp リチウム二次電池
JPH10144291A (ja) 1996-11-12 1998-05-29 Sanyo Electric Co Ltd 非水電解質電池及びその正極の製造方法
KR20030083476A (ko) 2002-04-23 2003-10-30 주식회사 엘지화학 수명 특성과 안전성이 우수한 리튬 금속 복합 산화물 및이의 제조 방법
JP4608946B2 (ja) * 2004-05-26 2011-01-12 トヨタ自動車株式会社 リチウム複合酸化物材料およびその利用
KR100822013B1 (ko) * 2005-04-15 2008-04-14 주식회사 에너세라믹 불소화합물코팅 리튬이차전지 양극 활물질 및 그 제조방법
KR101338705B1 (ko) 2007-01-29 2013-12-06 유미코르 아일랜드-커버형 리튬 코발타이트 산화물
JP2008289273A (ja) * 2007-05-17 2008-11-27 Toyota Motor Corp 給電システムおよび車両
JP4518125B2 (ja) 2007-09-27 2010-08-04 トヨタ自動車株式会社 正極活物質およびリチウム二次電池
JP4873000B2 (ja) 2008-12-05 2012-02-08 ソニー株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2010177042A (ja) 2009-01-29 2010-08-12 Sumitomo Electric Ind Ltd 非水電解質電池用正極とその製造方法および非水電解質電池
CN101997113A (zh) 2009-08-17 2011-03-30 北京当升材料科技股份有限公司 一种锂离子电池用多层包覆结构的多元材料及其制备方法
CN102612775B (zh) * 2009-11-05 2015-03-11 尤米科尔公司 双壳芯型锂镍锰钴氧化物
JP2013026038A (ja) * 2011-07-21 2013-02-04 Sumitomo Electric Ind Ltd 非水電解質二次電池とその製造方法
JP2013218787A (ja) 2012-04-04 2013-10-24 Sony Corp 正極活物質、正極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN103779554B (zh) * 2012-10-25 2016-05-11 中国科学院宁波材料技术与工程研究所 改性高能量密度锂离子电池正极材料及其制备方法
CN103296249B (zh) 2013-06-19 2018-05-29 宁德新能源科技有限公司 掺杂改性锂镍钴锰、制备方法及锂离子电池
KR102201686B1 (ko) * 2014-06-17 2021-01-11 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Also Published As

Publication number Publication date
CN106575755A (zh) 2017-04-19
CN106575755B (zh) 2019-11-05
KR20170038787A (ko) 2017-04-07
US20170207444A1 (en) 2017-07-20
JP2016033902A (ja) 2016-03-10
KR20200105545A (ko) 2020-09-07
US10559810B2 (en) 2020-02-11
WO2016017077A1 (ja) 2016-02-04

Similar Documents

Publication Publication Date Title
KR102334085B1 (ko) 정극 활물질, 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
KR102300465B1 (ko) 정극 활물질, 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
JP6414214B2 (ja) 正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP5900113B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電子機器、電動車両、蓄電装置および電力システム
US10629904B2 (en) Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
US11631901B2 (en) Battery, battery pack, electronic device, electric vehicle, electric storage device, and electric power system
JP2014022041A (ja) 負極活物質および負極活物質の製造方法、ならびにリチウムイオン電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2016084531A1 (ja) 二次電池用活物質、二次電池用電極、二次電池、電動車両および電子機器
JP2013222502A (ja) 正極活物質およびその製造方法、正極、電池、電池パック、電子機器、電動車両、蓄電装置ならびに電力システム
US11367875B2 (en) Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2013222503A (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR102160332B1 (ko) 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
CN110870121B (zh) 电池、电池包、电子设备、电动车辆、蓄电装置以及电力系统
JP2016152213A (ja) 負極活物質粒子およびその製造方法、負極、電池、ならびに導電性粒子
EP3282508A1 (en) Negative electrode, battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
WO2018225450A1 (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
CN110546795A (zh) 正极活性物质、正极、电池、电池包、电子设备、电动车辆、蓄电装置及电力系统

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2020101002160; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20200828

Effective date: 20211029

GRNO Decision to grant (after opposition)
GRNT Written decision to grant