WO2017013848A1 - 正極活物質、および、電池 - Google Patents

正極活物質、および、電池 Download PDF

Info

Publication number
WO2017013848A1
WO2017013848A1 PCT/JP2016/003215 JP2016003215W WO2017013848A1 WO 2017013848 A1 WO2017013848 A1 WO 2017013848A1 JP 2016003215 W JP2016003215 W JP 2016003215W WO 2017013848 A1 WO2017013848 A1 WO 2017013848A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode active
active material
battery
compound
Prior art date
Application number
PCT/JP2016/003215
Other languages
English (en)
French (fr)
Inventor
竜一 夏井
名倉 健祐
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP16827416.5A priority Critical patent/EP3327835B1/en
Priority to CN201680012995.0A priority patent/CN107431201B/zh
Priority to JP2017529442A priority patent/JP6872705B2/ja
Publication of WO2017013848A1 publication Critical patent/WO2017013848A1/ja
Priority to US15/811,685 priority patent/US10818910B2/en
Priority to US17/028,424 priority patent/US11637277B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/109Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure of button or coin shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode active material for a battery and a battery.
  • Patent Document 1 has a crystal structure belonging to the space group R3-M, and has the formula Li w M x O y X z (M is Co or Ni or Mn or V or Fe or Ti, and X is at least one kind or more.
  • a positive electrode active material represented by a halogen element, 0.2 ⁇ w ⁇ 2.5, 0.8 ⁇ x ⁇ 1.25, 1 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 1) is disclosed.
  • the positive electrode active material in one embodiment of the present disclosure has a crystal structure belonging to the space group FM-3M and includes a compound represented by the following composition formula (1).
  • Me is one or more elements selected from the group consisting of Mn, Co, Ni, Fe, and Al, and the following conditions: 1.3 ⁇ x ⁇ 2.2, 0.8 ⁇ y ⁇ 1.3, 1 ⁇ ⁇ ⁇ 2.93, 0.07 ⁇ ⁇ ⁇ 2, Meet.
  • a high capacity battery can be realized.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 10 which is an example of the battery in the second embodiment.
  • 2 is a powder X-ray diffraction chart of the positive electrode active material of Example 1.
  • Embodiment 1 The positive electrode active material in Embodiment 1 has a crystal structure belonging to space group FM-3M and includes a compound represented by the following composition formula (1).
  • Me in the composition formula (1) is at least one selected from the group consisting of Mn, Co, Ni, Fe, and Al (that is, one or more elements selected from the group).
  • the above-mentioned compound has the following conditions: 1.3 ⁇ x ⁇ 2.2, 0.8 ⁇ y ⁇ 1.3, 1 ⁇ ⁇ ⁇ 2.93, 0.07 ⁇ ⁇ ⁇ 2, Meet.
  • a lithium ion battery when a lithium ion battery is formed using a positive electrode active material containing the above-described compound, it has an oxidation-reduction potential (L / Li + standard) of about 3.3V. In general, it has a capacity of 220 mAh / g or more.
  • the amount of Li which can be utilized for the above-mentioned compound decreases when x is smaller than 1.3 in the composition formula (1). For this reason, capacity becomes insufficient.
  • the compound represented by the composition formula (1) has a crystal structure (rock salt type crystal structure) belonging to the space group FM-3M.
  • the ratio of Li and Me is represented by ⁇ Li x / Me y ⁇ .
  • the ratio of Li and Me is theoretically 1.31 ⁇ ⁇ Li x / Me y ⁇ ⁇ 2.75, which is a value larger than 1.
  • the number of Li atoms per Me atom is larger than, for example, LiMnO 2 which is a conventional positive electrode active material.
  • Li and Me are considered to be located at the same site.
  • the compound represented by the composition formula (1) can insert and desorb more Li per Me atom than the conventional positive electrode active material LiMnO 2 , for example.
  • the positive electrode active material in Embodiment 1 is suitable for realizing a high-capacity lithium ion battery.
  • a rock salt type crystal structure defined by the space group FM-3M such as the compound of the present disclosure, can maintain a stable structure without collapsing even if a large amount of Li is extracted. Thereby, a high capacity
  • the positive electrode active material in Embodiment 1 may include 90% by weight or more of the above-mentioned compound in a weight ratio with respect to the whole positive electrode active material.
  • the positive electrode active material of Embodiment 1 further includes inevitable impurities, or starting materials and by-products and decomposition products used when synthesizing the above-mentioned compound, while including the above-described compound, May be included.
  • the positive electrode active material in Embodiment 1 may include the above-mentioned compound, for example, 100% by weight with respect to the whole positive electrode active material, excluding impurities that are unavoidably mixed.
  • the compound described above may be a compound that satisfies 0.8 ⁇ (x + y) / ( ⁇ + ⁇ ) ⁇ 1 in the composition formula (1).
  • the above-described compound is a compound that satisfies 2.5 / 3 ⁇ (x + y) / ( ⁇ + ⁇ ) ⁇ 2.6 / 3 in the composition formula (1). May be.
  • the above-described compound may be a compound that satisfies 2.83 ⁇ 2 ⁇ + ⁇ (3-y) ⁇ / y in the composition formula (1).
  • Me in the composition formula (1) is a kind of element selected from Mn, Co, Ni, and Fe, a solid solution composed of Ni, Co, and Mn, or It may be either a solid solution composed of Ni, Co, and Al, a solid solution composed of Mn and Co, or a solid solution composed of Mn and Ni.
  • the compound described above may be a compound that satisfies 1.79 ⁇ x ⁇ 2.18 in the composition formula (1).
  • the compound described above may be a compound that satisfies 1.89 ⁇ x ⁇ 2 in the composition formula (1).
  • the compound described above may be a compound that satisfies 0.5 ⁇ ⁇ in the composition formula (1).
  • a battery with more excellent cycle characteristics can be realized. That is, in the above-described compound (1), when ⁇ is smaller than 0.5 (that is, when the amount of fluorine is small), the amount of oxygen redox increases. For this reason, the structure is easily destabilized by oxygen desorption. As a result, the cycle characteristics easily deteriorate.
  • the compound described above may be a compound that satisfies 0.79 ⁇ ⁇ ⁇ 1 in the composition formula (1).
  • the compound represented by the composition formula (1) can be prepared, for example, by the following method.
  • a raw material containing Li, a raw material containing F, and a raw material containing Me are prepared.
  • a raw material containing Li oxides such as Li 2 O and Li 2 O 2 , salts such as LiF, Li 2 CO 3 and LiOH, lithium composite transition metal oxides such as LiMeO 2 and LiMe 2 O 4 , Etc.
  • the raw material containing F include LiF and transition metal fluorides.
  • the raw material containing Me include oxides in various oxidation states such as Me 2 O 3 , salts such as MeCO 3 and MeNO 3 , hydroxides such as Me (OH) 2 and MeOOH, LiMeO 2, and LiMe 2 O 4. And lithium composite transition metal oxides.
  • the raw materials containing Mn include manganese oxides in various oxidation states such as Mn 2 O 3 , salts such as MnCO 3 and MnNO 3 , and water such as Mn (OH) 2 and MnOOH.
  • manganese oxides in various oxidation states such as Mn 2 O 3 , salts such as MnCO 3 and MnNO 3 , and water such as Mn (OH) 2 and MnOOH.
  • examples thereof include oxides, lithium composite transition metal oxides such as LiMnO 2 and LiMn 2 O 4 .
  • the raw materials are weighed so that these raw materials have the molar ratio shown in the composition formula (1).
  • composition formula (1) can be changed within the range represented by the composition formula (1).
  • the compound represented by the composition formula (1) can be obtained by mixing the weighed raw materials by, for example, a dry method or a wet method and reacting with mechanochemical for 10 hours or more.
  • a mixing device such as a ball mill can be used.
  • the compound represented by the composition formula (1) can be substantially obtained by adjusting the raw materials to be used and the mixing conditions of the raw material mixture.
  • composition formula (1) By using a lithium transition metal composite oxide as a precursor, the energy of mixing various elements can be further reduced. Thereby, the compound represented by composition formula (1) with higher purity is obtained.
  • composition of the compound represented by the composition formula (1) obtained can be determined by, for example, ICP emission spectroscopic analysis and inert gas melting-infrared absorption.
  • the compound represented by the composition formula (1) can be identified by determining the space group of the crystal structure by powder X-ray analysis.
  • the manufacturing method of the positive electrode active material in one embodiment of the first embodiment includes the step (a) of preparing the raw material and the step of obtaining the positive electrode active material by reacting the raw material with mechanochemical (b). And.
  • the above-mentioned process (a) mixes the raw material containing Li and F and the raw material containing Me at a ratio in which Li has a molar ratio of 1.31 or more and 2.33 or less with respect to Me.
  • the step of adjusting may be included.
  • the above-described step (a) may include a step of producing a lithium transition metal composite oxide as a raw material by a known method.
  • step (a) may include a step of adjusting the mixed raw material by mixing Li at a ratio of 1.7 to 2.0 in molar ratio to Me.
  • step (b) may include a step of reacting the raw material with mechanochemical using a ball mill.
  • the compound represented by the composition formula (1) is obtained by using a precursor (for example, LiF, Li 2 O, an oxide transition metal, a lithium composite transition metal, etc.) and a mechanochemical using a planetary ball mill. It can synthesize
  • a precursor for example, LiF, Li 2 O, an oxide transition metal, a lithium composite transition metal, etc.
  • Li atoms can be included by adjusting the mixing ratio of the precursors.
  • the battery in the second embodiment includes a positive electrode including the positive electrode active material in the above-described first embodiment, a negative electrode, and an electrolyte.
  • the positive electrode active material contains many Li atoms with respect to Me1 atoms. Therefore, a high capacity battery can be realized.
  • the battery in the second embodiment can be configured as, for example, a lithium ion secondary battery, a nonaqueous electrolyte secondary battery, or the like.
  • the positive electrode may include a positive electrode active material layer.
  • the positive electrode active material layer has the positive electrode active material in Embodiment 1 described above (the compound in Embodiment 1 described above) as a main component (that is, 50% or more by weight ratio with respect to the entire positive electrode active material layer). (50% by weight or more)).
  • the positive electrode active material layer includes the positive electrode active material according to the first embodiment described above (the compound according to the first embodiment described above) in a weight ratio of 70 to the entire positive electrode active material layer. % Or more (70% by weight or more).
  • the positive electrode active material layer includes 90% by weight of the positive electrode active material according to the first embodiment described above (the compound according to the first embodiment described above) with respect to the entire positive electrode active material layer. % Or more (90% by weight or more).
  • the negative electrode may include a negative electrode active material capable of inserting and extracting lithium (for example, a negative electrode active material having a property of inserting and extracting lithium).
  • the electrolyte may be a non-aqueous electrolyte (for example, a non-aqueous electrolyte).
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 10 which is an example of the battery according to the second embodiment.
  • the battery 10 includes a positive electrode 21, a negative electrode 22, a separator 14, a case 11, a sealing plate 15, and a gasket 18.
  • the separator 14 is disposed between the positive electrode 21 and the negative electrode 22.
  • the positive electrode 21, the negative electrode 22, and the separator 14 are impregnated with a non-aqueous electrolyte (for example, a non-aqueous electrolyte).
  • a non-aqueous electrolyte for example, a non-aqueous electrolyte
  • An electrode group is formed by the positive electrode 21, the negative electrode 22, and the separator 14.
  • the electrode group is housed in the case 11.
  • the case 11 is closed by the gasket 18 and the sealing plate 15.
  • the positive electrode 21 includes a positive electrode current collector 12 and a positive electrode active material layer 13 disposed on the positive electrode current collector 12.
  • the positive electrode current collector 12 is made of, for example, a metal material (aluminum, stainless steel, aluminum alloy, etc.).
  • the positive electrode current collector 12 can be omitted, and the case 11 can be used as the positive electrode current collector.
  • the positive electrode active material layer 13 includes the positive electrode active material in the first embodiment.
  • the positive electrode active material layer 13 may contain, for example, an additive (a conductive agent, an ion conduction auxiliary agent, a binder, etc.) as necessary.
  • an additive a conductive agent, an ion conduction auxiliary agent, a binder, etc.
  • the negative electrode 22 includes a negative electrode current collector 16 and a negative electrode active material layer 17 disposed on the negative electrode current collector 16.
  • the negative electrode current collector 16 is made of, for example, a metal material (aluminum, stainless steel, aluminum alloy, etc.).
  • the negative electrode active material layer 17 contains a negative electrode active material.
  • the negative electrode active material layer 17 may contain, for example, an additive (a conductive agent, an ion conduction auxiliary agent, a binder, etc.) as necessary.
  • an additive a conductive agent, an ion conduction auxiliary agent, a binder, etc.
  • the negative electrode active material a metal material, a carbon material, an oxide, a nitride, a tin compound, a silicon compound, or the like can be used.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • Examples of the metal material include lithium metal and lithium alloy.
  • Examples of carbon materials include natural graphite, coke, graphitized carbon, carbon fiber, spherical carbon, artificial graphite, and amorphous carbon.
  • silicon (Si), tin (Sn), a silicon compound, and a tin compound can be suitably used.
  • silicon compound and the tin compound may be an alloy or a solid solution.
  • Examples of the silicon compound include SiO x (where 0.05 ⁇ x ⁇ 1.95). Further, a compound (alloy or solid solution) obtained by substituting a part of silicon in SiO x with another element can also be used.
  • the other elements are boron, magnesium, nickel, titanium, molybdenum, cobalt, calcium, chromium, copper, iron, manganese, niobium, tantalum, vanadium, tungsten, zinc, carbon, nitrogen, and tin. At least one selected.
  • tin compounds include Ni 2 Sn 4 , Mg 2 Sn, SnO x (where 0 ⁇ x ⁇ 2), SnO 2 , SnSiO 3 , and the like.
  • One kind of tin compound selected from these may be used alone. Or the combination of 2 or more types of tin compounds selected from these may be used.
  • the shape of the negative electrode active material is not particularly limited.
  • a negative electrode active material having a known shape can be used.
  • the method for filling (occluding) lithium in the negative electrode active material layer 17 is not particularly limited. Specifically, this method includes (a) a method of depositing lithium on the negative electrode active material layer 17 by a vapor phase method such as a vacuum evaporation method, and (b) a contact between the lithium metal foil and the negative electrode active material layer 17. There is a method of heating both. In any method, lithium can be diffused into the negative electrode active material layer 17 by heat. There is also a method of electrochemically occluding lithium in the negative electrode active material layer 17. Specifically, a battery is assembled using the negative electrode 22 and lithium metal foil (positive electrode) that do not have lithium. Thereafter, the battery is charged such that lithium is occluded in the negative electrode 22.
  • binder for the positive electrode 21 and the negative electrode 22 examples include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, poly Acrylic acid ethyl ester, polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoro Polypropylene, styrene butadiene rubber, carboxymethyl cellulose, and the like can be used.
  • tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, hexadiene, Copolymers of two or more materials selected from the group consisting of may be used. Furthermore, a mixture of two or more materials selected from the above materials may be used as the binder.
  • graphite As the conductive agent for the positive electrode 21 and the negative electrode 22, graphite, carbon black, conductive fiber, graphite fluoride, metal powder, conductive whisker, conductive metal oxide, organic conductive material, and the like can be used.
  • graphite include natural graphite and artificial graphite.
  • carbon black include acetylene black, ketjen black (registered trademark), channel black, furnace black, lamp black, and thermal black.
  • An example of the metal powder is aluminum powder.
  • conductive whiskers include zinc oxide whiskers and potassium titanate whiskers.
  • An example of the conductive metal oxide is titanium oxide.
  • organic conductive material include phenylene derivatives.
  • the separator 14 a material having a large ion permeability and sufficient mechanical strength can be used. Examples of such materials include microporous thin films, woven fabrics, and non-woven fabrics.
  • the separator 14 is preferably made of a polyolefin such as polypropylene or polyethylene.
  • the separator 14 made of polyolefin not only has excellent durability, but can also exhibit a shutdown function when heated excessively.
  • the thickness of the separator 14 is, for example, in the range of 10 to 300 ⁇ m (or 10 to 40 ⁇ m).
  • the separator 14 may be a single layer film composed of one kind of material. Alternatively, the separator 14 may be a composite film (or multilayer film) composed of two or more materials.
  • the porosity of the separator 14 is, for example, in the range of 30 to 70% (or 35 to 60%). “Porosity” means the ratio of the volume of the voids to the total volume of the separator 14. “Porosity” is measured, for example, by a mercury intrusion method.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • a cyclic carbonate solvent a chain carbonate solvent, a cyclic ether solvent, a chain ether solvent, a cyclic ester solvent, a chain ester solvent, a fluorine solvent, and the like can be used.
  • cyclic carbonate solvent examples include ethylene carbonate, propylene carbonate, butylene carbonate, and the like.
  • chain carbonate solvent examples include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and the like.
  • cyclic ether solvent examples include tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, and the like.
  • chain ether solvent examples include 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like.
  • Examples of the cyclic ester solvent include ⁇ -butyrolactone.
  • chain ester solvents examples include methyl acetate and the like.
  • fluorine solvent examples include fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, fluorodimethylene carbonate, and the like.
  • non-aqueous solvent one type of non-aqueous solvent selected from these can be used alone. Alternatively, a combination of two or more non-aqueous solvents selected from these can be used as the non-aqueous solvent.
  • the nonaqueous electrolytic solution may contain at least one fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate.
  • fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate.
  • the battery 10 can be stably operated.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , etc. can be used.
  • the lithium salt one lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used as the lithium salt.
  • the concentration of the lithium salt is, for example, in the range of 0.5 to 2 mol / liter.
  • the battery in the second embodiment can be configured as a battery having various shapes such as a coin type, a cylindrical type, a square type, a sheet type, a button type, a flat type, and a laminated type.
  • the positive electrode active material in Embodiment 3 includes a compound represented by the above composition formula (1).
  • Me in the composition formula (1) is at least one selected from the group consisting of Mn, Co, Ni, Fe, and Al (that is, one or more elements selected from the group).
  • the above-mentioned compound has the following conditions: 1.3 ⁇ x ⁇ 2.2, 0.8 ⁇ y ⁇ 1.3, 1 ⁇ ⁇ ⁇ 2.93, 0.07 ⁇ ⁇ ⁇ 2, Meet.
  • the compound described above may be a compound that satisfies 0.8 ⁇ (x + y) / ( ⁇ + ⁇ ) ⁇ 1 in the composition formula (1).
  • the above-described compound is a compound that satisfies 2.5 / 3 ⁇ (x + y) / ( ⁇ + ⁇ ) ⁇ 2.6 / 3 in the composition formula (1). May be.
  • the above compound may be a compound satisfying 2.83 ⁇ 2 ⁇ + ⁇ (3-y) ⁇ / y in the composition formula (1).
  • Me in the composition formula (1) is a kind of element selected from Mn, Co, Ni, and Fe, or a solid solution composed of Ni, Co, and Mn, or It may be either a solid solution composed of Ni, Co, and Al, a solid solution composed of Mn and Co, or a solid solution composed of Mn and Ni.
  • the above-described compound may be a compound that satisfies 1.79 ⁇ x ⁇ 2.18 in the composition formula (1).
  • the compound described above may be a compound that satisfies 1.89 ⁇ x ⁇ 2 in the composition formula (1).
  • the compound described above may be a compound that satisfies 0.5 ⁇ ⁇ in the composition formula (1).
  • a battery with more excellent cycle characteristics can be realized. That is, in the above-described compound (1), when ⁇ is smaller than 0.5 (that is, when the amount of fluorine is small), the amount of oxygen redox increases. For this reason, the structure is easily destabilized by oxygen desorption. As a result, the cycle characteristics easily deteriorate.
  • the compound described above may be a compound that satisfies 0.79 ⁇ ⁇ ⁇ 1 in the composition formula (1).
  • a battery including a positive electrode including the positive electrode active material in Embodiment 3, a negative electrode, and an electrolyte may be configured.
  • the obtained raw material was placed in a 45 cc zirconia container together with a suitable amount of zirconia balls having a diameter of 3 mm and sealed in an argon glove box.
  • Powder X-ray diffraction measurement was performed on the obtained compound.
  • the space group of the obtained compound was FM-3M.
  • composition of the obtained compound was determined by ICP emission spectroscopic analysis and inert gas melting-infrared absorption method.
  • the composition of the obtained compound was Li 2 MnO 2 F.
  • a positive electrode mixture slurry was applied to one side of a positive electrode current collector formed of an aluminum foil having a thickness of 20 ⁇ m.
  • the positive electrode mixture slurry was dried and rolled to obtain a positive electrode plate having a thickness of 60 ⁇ m provided with a positive electrode active material layer.
  • the obtained positive electrode plate was punched into a circular shape having a diameter of 12.5 mm to obtain a positive electrode.
  • a negative electrode was obtained by punching out a lithium metal foil having a thickness of 300 ⁇ m into a circular shape having a diameter of 14.0 mm.
  • FEC fluoroethylene carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF6 was dissolved at a concentration of 1.0 mol / liter to obtain a nonaqueous electrolyte.
  • the obtained nonaqueous electrolytic solution was soaked in a separator (Celgard, product number 2320, thickness 25 ⁇ m).
  • Celguard (registered trademark) 2320 is a three-layer separator formed of a polypropylene layer, a polyethylene layer, and a polypropylene layer.
  • a CR2032 standard coin-type battery was produced in a dry box in which the dew point was controlled at ⁇ 50 ° C. using the positive electrode, negative electrode, and separator described above.
  • Examples 2 to 18 From the above-mentioned Example 1, the ratio of Li / Me and the ratio of O / F were changed.
  • Table 1 shows the precursors for producing the positive electrode active materials of Examples 2 to 18 and the compositions of the synthesized positive electrode active materials.
  • the positive electrode active materials of Examples 2 to 18 were synthesized in the same manner as Example 1 described above.
  • coin-type batteries of Examples 2 to 18 were fabricated using the positive electrode active materials of Examples 2 to 18 in the same manner as Example 1 described above.
  • the obtained raw material mixture was fired at 800 ° C. in an inert atmosphere. Thereby, particles of a lithium manganese composite compound (Li 2 MnO 2 F) were obtained.
  • the space group of the obtained lithium manganese composite compound particles was R3-M.
  • Lithium cobaltate (LiCoO 2 ) was obtained using a known method.
  • the space group of the obtained lithium cobaltate was R3-M.
  • Table 1 shows the precursors for producing the positive electrode active materials of Comparative Example 3 and Comparative Example 4, and the composition of the synthesized positive electrode active material.
  • Comparative Example 3 The precursors of Comparative Example 3 and Comparative Example 4 were weighed and mixed in a stoichiometric ratio in the same manner as in Example 1.
  • the space group of the obtained lithium manganese composite compound particles was R3-M.
  • the discharge end voltage was set to 1.5 V, and the battery of Example 1 was discharged at a current density of 0.05 mA / cm 2 .
  • the initial discharge capacity was 343 mAh / g.
  • the current density for the positive electrode was set to 0.05 mA / cm 2 and the battery of Comparative Example 1 was charged until a voltage of 5.2 V was reached.
  • the final discharge voltage was set to 1.5 V, and the battery of Comparative Example 1 was discharged at a current density of 0.005 mA / cm 2 .
  • the initial discharge capacity of the battery of Comparative Example 1 was 130 mAh / g.
  • the current density for the positive electrode was set to 0.05 mA / cm 2, and the battery of Comparative Example 2 was charged until a voltage of 4.3 V was reached.
  • the discharge end voltage was set to 2.5 V, and the battery of Comparative Example 2 was discharged at a current density of 0.005 mA / cm 2 .
  • the initial discharge capacity of the battery of Comparative Example 2 was 145 mAh / g.
  • Table 1 shows, for each sample, “(x + y) / ( ⁇ + ⁇ )” indicating the degree of deficiency, “ ⁇ 2 ⁇ + ⁇ (3-y) ⁇ / y” indicating the Me valence, oxygen “(4y ⁇ ) / ⁇ ” indicating the valence after the change of.
  • the batteries of Examples 1 to 18 have an initial discharge capacity of 220 to 343 mAh / g.
  • the initial discharge capacities of the batteries of Examples 1 to 18 are larger than the initial discharge capacities of the batteries of Comparative Examples 1 and 2.
  • the initial discharge capacity of the battery of Example 2 is smaller than the initial discharge capacity of the battery of Example 1.
  • the initial discharge capacity of the battery of Example 3 is smaller than the initial discharge capacity of the battery of Example 1.
  • Example 3 a large amount of fluorine having a low electronegativity was present, so that the electron conductivity was lowered, the negative addition characteristics were lowered, and the initial discharge capacity was reduced.
  • the initial discharge capacity of the batteries of Examples 4 to 6 is smaller than the initial discharge capacity of the battery of Example 1.
  • the initial discharge capacities of the batteries of Examples 7 and 8 are smaller than the initial discharge capacities of the batteries of Example 1.
  • Example 7 and Example 8 The reason for this is that in Example 7 and Example 8, the presence of a large amount of fluorine having a low electronegativity resulted in a decrease in electron conductivity, a decrease in negative addition characteristics, and a decrease in initial discharge capacity. Conceivable.
  • the initial discharge capacity of the battery of Example 9 is smaller than the initial discharge capacity of the battery of Example 1.
  • Example 9 in addition to the Mn oxidation-reduction reaction in the charge / discharge process, the oxygen oxidation-reduction reaction is frequently used, so that the crystal structure becomes unstable during charging and the initial discharge capacity is reduced. It is possible that
  • the initial discharge capacities of the batteries of Example 10 and Example 11 are smaller than the initial discharge capacities of the batteries of Example 1.
  • Example 10 and Example 11 in addition to the oxidation-reduction reaction of Fe or Co in the charge / discharge process, the oxidation-reduction reaction of oxygen is frequently used, so that the crystal structure becomes unstable during charging, It is possible that the initial discharge capacity has decreased.
  • the initial discharge capacity of the battery of Example 12 is smaller than the initial discharge capacity of the battery of Example 1.
  • Example 12 This is probably because in Example 12, the transition metal species was Ni, and the initial redox capacity was reduced due to the fact that oxygen redox reaction was frequently used in the charge / discharge process.
  • the initial discharge capacities of the batteries of Examples 13 and 14 are smaller than the initial discharge capacities of the batteries of Example 1.
  • the initial discharge capacities of the batteries of Example 15 and Example 16 are smaller than the initial discharge capacities of the batteries of Example 1.
  • Example 15 it is conceivable that the Li diffusion path was inhibited as the amount of Mn increased.
  • Example 15 it was considered that the mixed orbital of Mn and oxygen was not sufficiently formed due to the decrease in Me valence (Mn valence), and the oxidation-reduction reaction of oxygen could not be fully utilized. It is done.
  • the initial discharge capacity of the battery of Example 16 is larger than the initial discharge capacity of the battery of Example 15.
  • Example 16 compared with Example 15, a mixed orbital of Mn and oxygen was formed due to an increase in the amount of oxygen. As a result, it was considered that the capacity was increased because the oxidation-reduction reaction of oxygen could be used.
  • Example 17 and Example 18 compared with Example 1, cycling characteristics deteriorated.
  • Example 17 and Example 18 it is considered that the amount of fluorine is small (that is, ⁇ is smaller than 0.5).
  • Examples 19 to 35 From the above-mentioned Example 1, the ratio of Li / Me and the ratio of O / F were changed.
  • Table 2 shows the precursors for producing the positive electrode active materials of Examples 19 to 35 and the compositions of the synthesized positive electrode active materials.
  • Example 19 The precursors of Examples 19 to 35 were weighed and mixed in the same stoichiometric ratio as in Example 1.
  • coin-type batteries were produced in the same manner as in Example 1 described above.
  • Table 2 shows, for each sample, “(x + y) / ( ⁇ + ⁇ )” indicating the degree of deficiency, “ ⁇ 2 ⁇ + ⁇ (3-y) ⁇ / y” indicating the Me valence, oxygen “(4y ⁇ ) / ⁇ ” indicating the valence after the change of.
  • the initial discharge capacity of the batteries of Examples 19 to 25 is larger than the initial discharge capacity of the battery of Example 1.
  • Example 19 the valence change amount of oxygen was suppressed as compared with Example 1 (in other words, “(4y ⁇ ) / The value of “ ⁇ ” is larger than the value of Example 1), and it is considered that the structure could be stabilized. As a result, it is considered that the capacity has been increased.
  • the initial discharge capacity of the battery of Example 20 is smaller than the initial discharge capacity of the battery of Example 19.
  • Example 20 the addition of Co made it difficult to use the oxygen redox reaction in the charge / discharge process compared to Example 17.
  • the initial discharge capacity of the battery of Example 21 is smaller than the initial discharge capacity of the battery of Example 19.
  • Example 21 it can be considered that the amount of available Li decreased as compared with Example 17 due to the decrease in the Li / Mn ratio.
  • Example 21 compared with Example 1, cycle characteristics deteriorated.
  • Example 21 it is conceivable that the amount of fluorine is small (that is, ⁇ is smaller than 0.5).
  • the initial discharge capacity of the battery of Example 22 is smaller than the initial discharge capacity of the battery of Example 19.
  • Example 22 The reason for this is considered that the structure in Example 22 was destabilized due to an increase in the amount of oxygen oxidation-reduction reaction compared to Example 19.
  • the initial discharge capacity of the battery of Example 23 is smaller than the initial discharge capacity of the battery of Example 19.
  • Example 23 the addition of Ni made it difficult to use the oxidation-reduction reaction of oxygen in the charge / discharge process as compared with Example 19.
  • the initial discharge capacity of the battery of Example 24 is smaller than the initial discharge capacity of the battery of Example 19.
  • Example 24 “(x + y) / ( ⁇ + ⁇ )” indicating an initial defect is small, so that the randomness of the element is lower than in Example 19, and a Li diffusion path is formed well. It is thought that it was not done. Further, in Example 24, the valence change amount of oxygen is large (in other words, the value of “(4y ⁇ ) / ⁇ ” indicating the valence after the change of oxygen is small), so that the structure becomes unstable. It is possible that
  • the initial discharge capacity of the battery of Example 25 is smaller than the initial discharge capacity of the battery of Example 19.
  • Example 25 “(x + y) / ( ⁇ + ⁇ )” indicating an initial defect is small, so that the randomness of the element is lower than in Example 19, and a Li diffusion path is formed favorably. It is thought that it was not done.
  • the initial discharge capacity of the battery of Example 26 is equivalent to the initial discharge capacity of the battery of Example 1.
  • Example 26 The reason for this is that in Example 26, the structure was stabilized by the introduction of defects and the suppression of the valence change of oxygen, while the amount of available Li decreased due to the decrease in the Li / Mn ratio. Conceivable.
  • the initial discharge capacity of the batteries of Examples 27 to 29 is smaller than the initial discharge capacity of the battery of Example 1.
  • Examples 27 to 29 was destabilized due to an increase in the amount of oxygen used for the oxidation-reduction reaction compared to Example 1.
  • the change in oxygen valence is large (in other words, the value of “(4y ⁇ ) / ⁇ indicating the valence after change of oxygen is small). Is considered to have become unstable.
  • the initial discharge capacity of the battery of Example 30 is smaller than the initial discharge capacity of the battery of Example 1.
  • Example 30 The reason for this is that in Example 30, the structure was stabilized by the introduction of defects and the suppression of the valence change of oxygen, while the amount of available Li decreased due to the decrease in the Li / Mn ratio. Conceivable.
  • the initial discharge capacity of the battery of Example 30 is smaller than the initial discharge capacity of the battery of Example 26.
  • Me valence is lower in Example 30 (that is, “ ⁇ 2 ⁇ + ⁇ (3-y) ⁇ / y” is smaller) than in Example 26. Conceivable. That is, it is considered that due to the decrease in the Mn valence, the hybrid orbitals of Mn and oxygen were not sufficiently formed, and the oxygen redox reaction could not be sufficiently utilized.
  • the initial discharge capacity of the battery of Example 30 is larger than the initial discharge capacity of the battery of Example 32.
  • Example 30 As this reason, it is considered that in Example 30, as compared with Example 32, the amount of oxygen increased, so that the oxidation-reduction reaction of oxygen could be used more.
  • the initial discharge capacity of the battery of Example 31 is smaller than the initial discharge capacity of the battery of Example 1.
  • Example 31 the structure was stabilized by the introduction of defects and the suppression of the valence change of oxygen, while the amount of available Li decreased due to the decrease in the Li / Mn ratio. Conceivable.
  • the initial discharge capacity of the battery of Example 31 is smaller than the initial discharge capacity of the battery of Example 25.
  • Me valence is lower in Example 31 (that is, “ ⁇ 2 ⁇ + ⁇ (3-y) ⁇ / y” is smaller) than in Example 25. Conceivable. That is, it is considered that due to the decrease in the Mn valence, the hybrid orbitals of Mn and oxygen were not sufficiently formed, and the oxygen redox reaction could not be sufficiently utilized.
  • the initial discharge capacity of the battery of Example 32 is smaller than the initial discharge capacity of the battery of Example 1.
  • Example 32 the structure was stabilized by the introduction of defects and the suppression of the valence change of oxygen, while the amount of available Li decreased due to the decrease in the Li / Mn ratio. Conceivable.
  • the initial discharge capacity of the battery of Example 32 is smaller than the initial discharge capacity of the batteries of Example 26 and Example 30.
  • Example 32 the Me valence (Mn valence) decreased as compared to Example 26 and Example 30 (ie, “ ⁇ 2 ⁇ + ⁇ (3-y) ⁇ / y”). Small). That is, it is considered that due to the decrease in the Mn valence, the hybrid orbitals of Mn and oxygen were not sufficiently formed, and the oxygen redox reaction could not be sufficiently utilized.
  • the initial discharge capacity of the battery of Example 33 is smaller than the initial discharge capacity of the battery of Example 1.
  • Example 33 the Me valence (Mn valence) was reduced (ie, “ ⁇ 2 ⁇ + ⁇ (3-y) ⁇ / y” was smaller) than in Example 1. Conceivable. That is, it is considered that due to the decrease in the Mn valence, the hybrid orbitals of Mn and oxygen were not sufficiently formed, and the oxygen redox reaction could not be sufficiently utilized.
  • the initial discharge capacity of the battery of Example 33 is smaller than the initial discharge capacity of the battery of Example 32.
  • Example 33 compared with Example 32, it can be considered that the use of oxygen redox reaction is reduced due to the decrease in the amount of oxygen.
  • the initial discharge capacity of the batteries of Example 34 and Example 35 is larger than the initial discharge capacity of the battery of Example 13.
  • Example 34 and Example 35 defects were introduced earlier (ie, the value of “(x + y) / ( ⁇ + ⁇ )” was smaller than 1) compared to Example 13. It is considered that more Li diffusion paths were formed. In addition to this, in Example 34 and Example 35, it was considered that the structure could be stabilized by suppressing the valence change amount of oxygen as compared with Example 13. As a result, it is considered that the capacity has been increased.
  • the initial discharge capacity of the batteries of Example 34 and Example 35 is smaller than the initial discharge capacity of the battery of Example 19.
  • Example 34 and Example 35 the addition of Ni and Co made it difficult to use the oxidation-reduction reaction of oxygen in the charge / discharge process as compared with Example 19.
  • the positive electrode active material of the present disclosure can be suitably used as a positive electrode active material for a battery such as a secondary battery.

Abstract

本願発明は、高容量の電池の実現を課題とする。本願発明は、空間群FM-3Mに属する結晶構造を有し、下記の組成式(1)により表される化合物を含む、正極活物質に関する。LiMeαβ・・・式(1)ここで、前記Meは、Mn、Co、Ni、Fe、Alからなる群より選択される一種または二種以上の元素であり、かつ、下記の条件、1.3≦x≦2.2、0.8≦y≦1.3、1≦α≦2.93、0.07≦β≦2、を満たす。

Description

正極活物質、および、電池
 本開示は、電池用の正極活物質、および、電池に関する。
 特許文献1には、空間群R3-Mに属する結晶構造を有し、式Li(MはCo又はNi又はMn又はV又はFe又はTi、Xは少なくとも1種以上のハロゲン元素、0.2≦w≦2.5、0.8≦x≦1.25、1≦y≦2、0<z≦1)で表される正極活物質が、開示されている。
特開平7-037617号公報
 従来技術においては、高容量の電池の実現が望まれる。
 本開示の一様態における正極活物質は、空間群FM-3Mに属する結晶構造を有し、下記の組成式(1)により表される化合物を含む。
 LiMeαβ・・・式(1)
 ここで、前記Meは、Mn、Co、Ni、Fe、Alからなる群より選択される一種または二種以上の元素であり、かつ、下記の条件、
 1.3≦x≦2.2、
 0.8≦y≦1.3、
 1≦α≦2.93、
 0.07≦β≦2、
を満たす。
 本開示によれば、高容量の電池を実現できる。
図1は、実施の形態2における電池の一例である電池10の概略構成を示す断面図である。 図2は、実施例1の正極活物質の粉末X線回折チャートを示す図である。
 以下、本開示の実施の形態が、説明される。
 (実施の形態1)
 実施の形態1における正極活物質は、空間群FM-3Mに属する結晶構造を有し、下記の組成式(1)により表される化合物を含む。
 LiMeαβ・・・式(1)
 ここで、組成式(1)におけるMeは、Mn、Co、Ni、Fe、Alからなる群より選択される少なくとも一種(すなわち、当該群より選択される一種または二種以上の元素)である。
 かつ、実施の形態1における正極活物質においては、上述の化合物は、組成式(1)において、下記の条件、
 1.3≦x≦2.2、
 0.8≦y≦1.3、
 1≦α≦2.93、
 0.07≦β≦2、
を満たす。
 以上の構成によれば、高容量の電池を実現できる。
 上述の化合物を含む正極活物質を用いて、例えばリチウムイオン電池を構成する場合、3.3V程度の酸化還元電位(L/Li+基準)を有する。また、概ね、220mAh/g以上の容量を有する。
 なお、上述の化合物は、組成式(1)においてxが1.3よりも小さい場合、利用できるLi量が少なくなる。このため、容量が不十分となる。
 また、上述の化合物は、組成式(1)においてxが2.2より大きい場合(言い換えれば、yが0.8よりも小さい場合)、利用できる遷移金属の酸化還元反応が少なくなる。この結果、酸素の酸化還元反応を多く利用することになる。これにより、結晶構造が不安定化する。このため、容量が不十分となる。
 また、上述の化合物は、組成式(1)においてαが1よりも小さい場合(言い換えれば、βが2よりも大きい場合)、電気陰性度の高いFの影響が強くなる。この結果、電子伝導性が低下する。このため、容量が不十分となる。
 また、上述の化合物は、組成式(1)においてαが2.93よりも大きい場合(言い換えれば、βが0.07よりも小さい場合)、電気陰性度の高いFの影響が弱まる。この結果、カチオン-アニオンの相互作用が低下する。これにより、Liが脱離した際に構造が不安定化する。このため、容量が不十分となる。
 また、実施の形態1における正極活物質においては、組成式(1)で表される化合物は、空間群FM-3Mに属する結晶構造(岩塩型の結晶構造)を有する。
 組成式(1)において、LiとMeの比率は、{Li/Me}で示される。
 ここで、例えば、1.7≦x≦2.2であり、0.8≦y≦1.3である場合を考える。
 この場合においては、LiとMeの比率は、理論的には、1.31≦{Li/Me}≦2.75であり、1よりも大きな値となる。
 すなわち、Me1原子あたりのLi原子数は、例えば、従来の正極活物質であるLiMnOに比べて、大きい。
 組成式(1)で表される化合物は、LiとMeが同じサイトに位置していると考えられる。
 このため、組成式(1)で表される化合物は、例えば、従来の正極活物質であるLiMnOよりも、Me1原子あたりに、より多くのLiを挿入および脱離させることが可能である。
 したがって、実施の形態1におえる正極活物質は、高容量のリチウムイオン電池を実現するのに、適している。
 空間群R3-Mで規定される層状構造では、Liを多く引き抜いた際に、層状を維持できずに構造崩壊する。
 一方で、本開示の化合物のような空間群FM-3Mで規定される岩塩型の結晶構造であれば、Liを多く引き抜いても、構造崩壊せずに、構造を安定に維持できる。これにより、高容量の電池を実現できる。
 また、実施の形態1における正極活物質は、上述の化合物を、正極活物質の全体に対する重量割合で、90重量%以上、含んでもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 なお、実施の形態1の正極活物質は、上述の化合物を含みながら、さらに、不可避的な不純物、または、上述の化合物を合成する際に用いられる出発原料および副生成物および分解生成物など、を含んでいてもよい。
 また、実施の形態1における正極活物質は、上述の化合物を、例えば、混入が不可避的な不純物を除いて、正極活物質の全体に対する重量割合で、100%、含んでもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 また、実施の形態1における正極活物質においては、上述の化合物は、組成式(1)において、0.8≦(x+y)/(α+β)≦1、を満たす化合物であってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 また、実施の形態1における正極活物質においては、上述の化合物は、組成式(1)において、2.5/3≦(x+y)/(α+β)≦2.6/3、を満たす化合物であってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 また、実施の形態1における正極活物質においては、上述の化合物は、組成式(1)において、2.83<{2α+β-(3-y)}/y、を満たす化合物であってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 また、実施の形態1における正極活物質においては、組成式(1)におけるMeは、MnとCoとNiとFeから選ばれる一種の元素、または、NiとCoとMnとからなる固溶体、または、NiとCoとAlとからなる固溶体か、または、MnとCoとからなる固溶体であるか、または、MnとNiとからなる固溶体、のうちのいずれかであってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 また、実施の形態1における正極活物質においては、上述の化合物は、組成式(1)において、1.79≦x≦2.18、を満たす化合物であってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 また、実施の形態1における正極活物質においては、上述の化合物は、組成式(1)において、1.89≦x≦2、を満たす化合物であってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 また、実施の形態1における正極活物質においては、上述の化合物は、組成式(1)において、0.5≦β、を満たす化合物であってもよい。
 以上の構成によれば、よりサイクル特性に優れた電池を実現できる。すなわち、上述の化合物は、組成式(1)においてβが0.5よりも小さい場合(すなわち、フッ素の量が僅かとなる場合)、酸素のレドックス量が多くなる。このため、酸素脱離により、構造が不安定化し易くなる。これにより、サイクル特性が劣化し易くなる。
 また、実施の形態1における正極活物質においては、上述の化合物は、組成式(1)において、0.79≦β≦1、を満たす化合物であってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 <化合物の作製方法>
 以下に、実施の形態1の正極活物質に含まれる上述の化合物の製造方法の一例が、説明される。
 組成式(1)で表される化合物は、例えば、次の方法により、作製されうる。
 Liを含む原料、Fを含む原料、および、Meを含む原料を用意する。例えば、Liを含む原料としては、LiO、Li等の酸化物、LiF、LiCO、LiOH等の塩類、LiMeO2、LiMe等のリチウム複合遷移金属酸化物、など、が挙げられる。また、Fを含む原料としては、LiF、遷移金属フッ化物、など、が挙げられる。Meを含む原料としては、Me等の各種の酸化状態の酸化物、MeCO、MeNO等の塩類、Me(OH)、MeOOH等の水酸化物、LiMeO2、LiMe等のリチウム複合遷移金属酸化物、など、が挙げられる。例えば、MeがMnの場合には、Mnを含む原料としては、Mn等の各種の酸化状態の酸化マンガン、MnCO、MnNO等の塩類、Mn(OH)、MnOOH等の水酸化物、LiMnO2、LiMn等のリチウム複合遷移金属酸化物、など、が挙げられる。
 これらの原料を、組成式(1)に示したモル比となるように、原料を秤量する。
 これにより、組成式(1)における「x、y、α、および、β」を、組成式(1)で示す範囲において、変化させることができる。
 秤量した原料を、例えば、乾式法または湿式法で混合し、10時間以上メカノケミカルに反応させることで、組成式(1)で表される化合物を得ることができる。例えば、ボールミルなどの混合装置を使用することができる。
 用いる原料、および、原料混合物の混合条件を調整することにより、実質的に、組成式(1)で表される化合物を得ることができる。
 前駆体にリチウム遷移金属複合酸化物を用いることで、各種元素のミキシングのエネルギーを、より低下させることができる。これにより、より純度の高い、組成式(1)で表される化合物が、得られる。
 得られた組成式(1)で示される化合物の組成は、例えば、ICP発光分光分析法および不活性ガス溶融-赤外線吸収法により決定することができる。
 また、粉末X線分析によって結晶構造の空間群を決定することにより、組成式(1)で示される化合物を同定することができる。
 以上のように、実施の形態1のある一様態における正極活物質の製造方法は、原料を用意する工程(a)と、原料をメカノケミカルに反応させることにより正極活物質を得る工程(b)と、を包含する。
 また、上述の工程(a)は、LiおよびFを含む原料とMeを含む原料とを、Meに対してLiが1.31以上2.33以下のモル比となる割合で混合し、混合原料を調整する工程を、包含してもよい。
 このとき、上述の工程(a)は、原料となるリチウム遷移金属複合酸化物を、公知の方法で作製する工程を、包含してもよい。
 また、上述の工程(a)においては、Meに対してLiが1.7以上2.0以下のモル比となる割合で混合し、混合原料を調整する工程を、包含してもよい。
 また、上述の工程(b)においては、ボールミルを用いてメカノケミカルに原料を反応させる工程を、包含してもよい。
 以上のように、組成式(1)で表される化合物は、前駆体(例えば、LiF、LiO、酸化遷移金属、リチウム複合遷移金属、など)を、遊星型ボールミルを用いて、メカノケミカルの反応をさせることによって、合成され得る。
 このとき、前駆体の混合比を調整することで、より多くのLi原子を含ませることができる。
 一方、上記の前駆体を固相法で反応させる場合は、より安定な化合物に分解される。
 すなわち、前駆体を固相法で反応させる作製方法などでは、空間群FM-3Mに属する結晶構造を有し、かつ、組成式(1)で表される化合物を、得ることはできない。
 (実施の形態2)
 以下、実施の形態2が説明される。なお、上述の実施の形態1と重複する説明は、適宜、省略される。
 実施の形態2における電池は、上述の実施の形態1における正極活物質を含む正極と、負極と、電解質と、を備える。
 以上の構成によれば、高容量の電池を実現できる。
 すなわち、上述の実施の形態1で説明されたように、正極活物質が、Me1原子に対して、多くのLi原子を含む。したがって、高容量の電池を実現することが可能となる。
 実施の形態2における電池は、例えば、リチウムイオン二次電池、非水電解質二次電池、など、として、構成されうる。
 実施の形態2における電池においては、正極は、正極活物質層を備えてもよい。このとき、正極活物質層は、上述の実施の形態1における正極活物質(上述の実施の形態1における化合物)を、主成分として(すなわち、正極活物質層の全体に対する重量割合で50%以上(50重量%以上))、含んでもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 もしくは、実施の形態2における電池においては、正極活物質層は、上述の実施の形態1における正極活物質(上述の実施の形態1における化合物)を、正極活物質層の全体に対する重量割合で70%以上(70重量%以上)、含んでもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 もしくは、実施の形態2における電池においては、正極活物質層は、上述の実施の形態1における正極活物質(上述の実施の形態1における化合物)を、正極活物質層の全体に対する重量割合で90%以上(90重量%以上)、含んでもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 すなわち、実施の形態2における電池において、例えば、負極は、リチウムを吸蔵および放出しうる負極活物質(例えば、リチウムを吸蔵および放出する特性を有する負極活物質)を含んでもよい。
 また、実施の形態2における電池において、例えば、電解質は、非水電解質(例えば、非水電解液)であってもよい。
 図1は、実施の形態2における電池の一例である電池10の概略構成を示す断面図である。
 図1に示されるように、電池10は、正極21と、負極22と、セパレータ14と、ケース11と、封口板15と、ガスケット18と、を備えている。
 セパレータ14は、正極21と負極22との間に、配置されている。
 正極21と負極22とセパレータ14とには、非水電解質(例えば、非水電解液)が含浸されている。
 正極21と負極22とセパレータ14とによって、電極群が形成されている。
 電極群は、ケース11の中に収められている。
 ガスケット18と封口板15とにより、ケース11が閉じられている。
 正極21は、正極集電体12と、正極集電体12の上に配置された正極活物質層13と、を備えている。
 正極集電体12は、例えば、金属材料(アルミニウム、ステンレス、アルミニウム合金、など)で作られている。
 なお、正極集電体12を省略し、ケース11を正極集電体として使用することも可能である。
 正極活物質層13は、上述の実施の形態1における正極活物質を含む。
 正極活物質層13は、必要に応じて、例えば、添加剤(導電剤、イオン伝導補助剤、結着剤、など)を含んでいてもよい。
 負極22は、負極集電体16と、負極集電体16の上に配置された負極活物質層17と、を備えている。
 負極集電体16は、例えば、金属材料(アルミニウム、ステンレス、アルミニウム合金、など)で作られている。
 なお、負極集電体16を省略し、封口板15を負極集電体として使用することも可能である。
 負極活物質層17は、負極活物質を含んでいる。
 負極活物質層17は、必要に応じて、例えば、添加剤(導電剤、イオン伝導補助剤、結着剤、など)を含んでいてもよい。
 負極活物質として、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、など、が使用されうる。
 金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属、リチウム合金、など、が挙げられる。
 炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素、など、が挙げられる。
 容量密度の観点から、珪素(Si)、錫(Sn)、珪素化合物、錫化合物、を好適に使用できる。珪素化合物および錫化合物は、それぞれ、合金または固溶体であってもよい。
 珪素化合物の例として、SiO(ここで、0.05<x<1.95)が挙げられる。また、SiOの一部の珪素を他の元素で置換することによって得られた化合物(合金又は固溶体)も使用できる。ここで、他の元素とは、ホウ素、マグネシウム、ニッケル、チタン、モリブデン、コバルト、カルシウム、クロム、銅、鉄、マンガン、ニオブ、タンタル、バナジウム、タングステン、亜鉛、炭素、窒素及び錫からなる群より選択される少なくとも1種である。
 錫化合物の例として、NiSn、MgSn、SnO(ここで、0<x<2)、SnO、SnSiO、など、が挙げられる。これらから選択される1種の錫化合物が、単独で使用されてもよい。もしくは、これらから選択される2種以上の錫化合物の組み合わせが、使用されてもよい。
 また、負極活物質の形状は特に限定されない。負極活物質としては、公知の形状(粒子状、繊維状、など)を有する負極活物質が使用されうる。
 また、リチウムを負極活物質層17に補填する(吸蔵させる)ための方法は、特に限定されない。この方法としては、具体的には、(a)真空蒸着法などの気相法によってリチウムを負極活物質層17に堆積させる方法、(b)リチウム金属箔と負極活物質層17とを接触させて両者を加熱する方法がある。いずれの方法においても、熱によってリチウムを負極活物質層17に拡散させることができる。また、リチウムを電気化学的に負極活物質層17に吸蔵させる方法もある。具体的には、リチウムを有さない負極22およびリチウム金属箔(正極)を用いて電池を組み立てる。その後、負極22にリチウムが吸蔵されるように、その電池を充電する。
 正極21および負極22の結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、など、が使用されうる。または、結着剤として、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエン、からなる群より選択される2種以上の材料の共重合体が、使用されてもよい。さらに、上述の材料から選択される2種以上の材料の混合物が、結着剤として、使用されてもよい。
 正極21および負極22の導電剤としては、グラファイト、カーボンブラック、導電性繊維、フッ化黒鉛、金属粉末、導電性ウィスカー、導電性金属酸化物、有機導電性材料、など、が使用されうる。グラファイトの例としては、天然黒鉛および人造黒鉛が挙げられる。カーボンブラックの例としては、アセチレンブラック、ケッチェンブラック(登録商標)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックが挙げられる。金属粉末の例としては、アルミニウム粉末が挙げられる。導電性ウィスカーの例としては、酸化亜鉛ウィスカーおよびチタン酸カリウムウィスカーが挙げられる。導電性金属酸化物の例としては、酸化チタンが挙げられる。有機導電性材料の例としては、フェニレン誘導体が挙げられる。
 セパレータ14としては、大きいイオン透過度および十分な機械的強度を有する材料が使用されうる。このような材料の例としては、微多孔性薄膜、織布、不織布、など、が挙げられる。具体的に、セパレータ14は、ポリプロピレン、ポリエチレンなどのポリオレフィンで作られていることが望ましい。ポリオレフィンで作られたセパレータ14は、優れた耐久性を有するだけでなく、過度に加熱されたときにシャットダウン機能を発揮できる。セパレータ14の厚さは、例えば、10~300μm(又は10~40μm)の範囲にある。セパレータ14は、1種の材料で構成された単層膜であってもよい。もしくは、セパレータ14は、2種以上の材料で構成された複合膜(または、多層膜)であってもよい。セパレータ14の空孔率は、例えば、30~70%(又は35~60%)の範囲にある。「空孔率」とは、セパレータ14の全体の体積に占める空孔の体積の割合を意味する。「空孔率」は、例えば、水銀圧入法によって測定される。
 非水電解液は、非水溶媒と、非水溶媒に溶けたリチウム塩と、を含む。
 非水溶媒としては、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、フッ素溶媒、など、が使用されうる。
 環状炭酸エステル溶媒の例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、など、が挙げられる。
 鎖状炭酸エステル溶媒の例としては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、など、が挙げられる。
 環状エーテル溶媒の例としては、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、など、が挙げられる。
 鎖状エーテル溶媒としては、1,2-ジメトキシエタン、1,2-ジエトキシエタン、など、が挙げられる。
 環状エステル溶媒の例としては、γ-ブチロラクトン、など、が挙げられる。
 鎖状エステル溶媒の例としては、酢酸メチル、など、が挙げられる。
 フッ素溶媒の例としては、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、フルオロジメチレンカーボネート、など、が挙げられる。
 非水溶媒として、これらから選択される1種の非水溶媒が、単独で、使用されうる。もしくは、非水溶媒として、これらから選択される2種以上の非水溶媒の組み合わせが、使用されうる。
 非水電解液には、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、フルオロジメチレンカーボネートからなる群より選択される少なくとも1種のフッ素溶媒が含まれていてもよい。
 これらのフッ素溶媒が非水電解液に含まれていると、非水電解液の耐酸化性が向上する。
 その結果、高い電圧で電池10を充電する場合にも、電池10を安定して動作させることが可能となる。
 リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、など、が使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。リチウム塩の濃度は、例えば、0.5~2mol/リットルの範囲にある。
 なお、実施の形態2における電池は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、積層型、など、種々の形状の電池として、構成されうる。
 (実施の形態3)
 以下、実施の形態3が説明される。なお、上述の実施の形態1または実施の形態2と重複する説明は、適宜、省略される。
 実施の形態3における正極活物質は、上述の組成式(1)により表される化合物を含む。
 ここで、組成式(1)におけるMeは、Mn、Co、Ni、Fe、Alからなる群より選択される少なくとも一種(すなわち、当該群より選択される一種または二種以上の元素)である。
 かつ、実施の形態3における正極活物質においては、上述の化合物は、組成式(1)において、下記の条件、
 1.3≦x≦2.2、
 0.8≦y≦1.3、
 1≦α≦2.93、
 0.07≦β≦2、
を満たす。
 以上の構成によれば、高容量の電池を実現できる。
 また、実施の形態3における正極活物質においては、上述の化合物は、組成式(1)において、0.8≦(x+y)/(α+β)≦1、を満たす化合物であってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 また、実施の形態3における正極活物質においては、上述の化合物は、組成式(1)において、2.5/3≦(x+y)/(α+β)≦2.6/3、を満たす化合物であってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 また、実施の形態3における正極活物質においては、上述の化合物は、組成式(1)において、2.83<{2α+β-(3-y)}/y、を満たす化合物であってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 また、実施の形態3における正極活物質においては、組成式(1)におけるMeは、MnとCoとNiとFeから選ばれる一種の元素、または、NiとCoとMnとからなる固溶体、または、NiとCoとAlとからなる固溶体か、または、MnとCoとからなる固溶体であるか、または、MnとNiとからなる固溶体、のうちのいずれかであってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 また、実施の形態3における正極活物質においては、上述の化合物は、組成式(1)において、1.79≦x≦2.18、を満たす化合物であってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 また、実施の形態3における正極活物質においては、上述の化合物は、組成式(1)において、1.89≦x≦2、を満たす化合物であってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 また、実施の形態3における正極活物質においては、上述の化合物は、組成式(1)において、0.5≦β、を満たす化合物であってもよい。
 以上の構成によれば、よりサイクル特性に優れた電池を実現できる。すなわち、上述の化合物は、組成式(1)においてβが0.5よりも小さい場合(すなわち、フッ素の量が僅かとなる場合)、酸素のレドックス量が多くなる。このため、酸素脱離により、構造が不安定化し易くなる。これにより、サイクル特性が劣化し易くなる。
 また、実施の形態3における正極活物質においては、上述の化合物は、組成式(1)において、0.79≦β≦1、を満たす化合物であってもよい。
 以上の構成によれば、より高容量の電池を実現できる。
 なお、実施の形態3における正極活物質を含む正極と、負極と、電解質と、を備える電池が構成されてもよい。
 以上の構成によれば、高容量の電池を実現できる。
 <実施例1>
 [正極活物質の作製]
 LiFとLiMnOをLiF/LiMnO=1.0/1.0モル比でそれぞれ秤量した。
 得られた原料を、適量のφ3mmのジルコニア製ボールと共に、45ccジルコニア製容器に入れ、アルゴングローブボックス内で密閉した。
 アルゴングローブボックスから取り出し、遊星型ボールミルで、600rpmで30時間処理した。
 得られた化合物に対して、粉末X線回折測定を実施した。
 測定の結果が、図2に示される。
 得られた化合物の空間群は、FM-3Mであった。
 また、得られた化合物の組成を、ICP発光分光分析法および不活性ガス溶融―赤外線吸収法により求めた。
 その結果、得られた化合物の組成は、LiMnOFであった。
 [電池の作製]
 次に、70質量部の上述の化合物と、20質量部の導電剤と、10質量部のポリフッ化ビニリデン(PVDF)と、適量の2-メチルピロリドン(NMP)とを、混合した。これにより、正極合剤スラリーを得た。
 20μmの厚さのアルミニウム箔で形成された正極集電体の片面に、正極合剤スラリーを塗布した。
 正極合剤スラリーを乾燥および圧延することによって、正極活物質層を備えた厚さ60μmの正極板を得た。
 得られた正極板を、直径12.5mmの円形状に打ち抜くことによって、正極を得た。
 また、厚さ300μmのリチウム金属箔を、直径14.0mmの円形状に打ち抜くことによって、負極を得た。
 また、フルオロエチレンカーボネート(FEC)とエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、1:1:6の体積比で混合して、非水溶媒を得た。
 この非水溶媒に、LiPF6を、1.0mol/リットルの濃度で、溶解させることによって、非水電解液を得た。
 得られた非水電解液を、セパレータ(セルガード社製、品番2320、厚さ25μm)に、染み込ませた。
 セルガード(登録商標)2320は、ポリプロピレン層とポリエチレン層とポリプロピレン層とで形成された、3層セパレータである。
 上述の正極と負極とセパレータとを用いて、露点が-50℃に管理されたドライボックスの中で、CR2032規格のコイン型電池を、作製した。
 <実施例2~18>
 上述の実施例1から、Li/Meの比率および、O/Fの比率を、それぞれ、変えた。
 表1に、実施例2~18の正極活物質を製造する際の前駆体と、合成した正極活物質の組成と、が示される。
 これ以外は、上述の実施例1と同様にして、実施例2~18の正極活物質を合成した。
 なお、実施例2~18の各前駆体は、実施例1と同様に、化学量論比で秤量して混合した。例えば、実施例2であれば、各前駆体をLiO/LiF/Mn=1/2/1のモル比でそれぞれ秤量して混合した。
 また、実施例2~18の正極活物質を用いて、上述の実施例1と同様にして、実施例2~18のコイン型電池を作製した。
 <比較例1>
 LiFとLiMnOをLiF/LiMnO=1.0/1.0モル比でそれぞれ秤量した。
 得られた原料混合物を、不活性気中かつ800℃で焼成した。これにより、リチウムマンガン複合化合物(LiMnOF)の粒子を得た。
 得られたリチウムマンガン複合化合物の粒子の空間群は、R3-Mであった。
 得られたリチウムマンガン複合化合物の粒子を正極活物質として用いて、上述の実施例1と同様にして、比較例1のコイン型電池を作製した。
 <比較例2>
 公知の手法を用いてコバルト酸リチウム(LiCoO)を得た。
 得られたコバルト酸リチウムの空間群は、R3-Mであった。
 得られたコバルト酸リチウムを正極活物質として用いて、上述の実施例1と同様にして、比較例2のコイン型電池を作製した。
 <比較例3および比較例4>
 上述の比較例1から、正極活物質を製造する際の前駆体と、Li/Meの比率および、O/Fの比率を、それぞれ、変えた。
 表1に、比較例3および比較例4の正極活物質を製造する際の前駆体と、合成した正極活物質の組成と、が示される。
 これ以外は、上述の比較例1と同様にして、比較例3および比較例4の正極活物質を合成した。
 なお、比較例3および比較例4の各前駆体は、実施例1と同様に、化学量論比で秤量して混合した。
 得られたリチウムマンガン複合化合物の粒子の空間群は、R3-Mであった。
 得られたリチウムマンガン複合化合物の粒子を正極活物質として用いて、上述の実施例1と同様にして、比較例3および比較例4のコイン型電池を作製した。
 <電池の評価>
 正極に対する電流密度を0.005mA/cmに設定し、5.2Vの電圧に達するまで、実施例1の電池を充電した。
 その後、放電終止電圧を1.5Vに設定し、0.05mA/cmの電流密度で、実施例1の電池を放電させた。
 初回放電容量は、343mAh/gであった。
 正極に対する電流密度を0.05mA/cmに設定し、5.2Vの電圧に達するまで、比較例1の電池を充電した。
 その後、放電終止電圧を1.5Vに設定し、0.005mA/cmの電流密度で、比較例1の電池を放電させた。
 比較例1の電池の初回放電容量は、130mAh/gであった。
 正極に対する電流密度を0.05mA/cmに設定し、4.3Vの電圧に達するまで、比較例2の電池を充電した。
 その後、放電終止電圧を2.5Vに設定し、0.005mA/cmの電流密度で、比較例2の電池を放電させた。
 比較例2の電池の初回放電容量は、145mAh/gであった。
 また、比較例2と同様にして、比較例3および比較例4のコイン型電池の容量を測定した。
 また、実施例1と同様にして、実施例2~18のコイン型電池の容量を測定した。以上の結果が、表1に示される。
 なお、表1には、各サンプルに対して、欠損の度合いを示す「(x+y)/(α+β)」と、Me価数を示す「{2α+β-(3-y)}/y」と、酸素の変化後の価数を示す「(4y-β)/α」と、が記載されている。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1~18の電池は、220~343mAh/gの初回放電容量を有する。
 すなわち、実施例1~18の電池の初回放電容量は、比較例1および比較例2の電池の初回放電容量よりも、大きい。
 この理由としては、実施例1~18では、Liを結晶構造内に多く含むことによって、初回放電容量が大きくなったことが考えられる。
 また、表1に示されるように、実施例2の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例2では、合成時に不純物が存在したことにより、抵抗が高くなり、初回放電容量が小さくなったことが考えられる。
 また、表1に示されるように、実施例3の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例3では、電気陰性度の低いフッ素が多く存在したことにより、電子伝導性が低くなり、負加特性が低下し、初回放電容量が小さくなったことが考えられる。
 また、表1に示されるように、実施例4~6の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例4~6では、Li/Mn比が少なくなったことにより、充放電に関与するリチウムの量が低下し、初回放電容量が小さくなったことが考えられる。
 また、表1に示されるように、実施例7および実施例8の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例7および実施例8では、電気陰性度の低いフッ素が多く存在したことにより、電子伝導性が低くなり、負加特性が低下し、初回放電容量が小さくなったことが考えられる。
 また、表1に示されるように、実施例9の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例9では、充放電過程においてMnの酸化還元反応に加え、酸素の酸化還元反応が多く利用されることにより、充電時に結晶構造が不安定化し、初回放電容量が小さくなったことが考えられる。
 また、表1に示されるように、実施例10および実施例11の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例10および実施例11では、充放電過程においてFeあるいはCoの酸化還元反応に加え、酸素の酸化還元反応が多く利用されることにより、充電時に結晶構造が不安定化し、初回放電容量が小さくなったことが考えられる。
 また、表1に示されるように、実施例12の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例12では、遷移金属種がNiであり、充放電過程において酸素の酸化還元反応が多く利用されなったことにより、初回放電容量が小さくなったことが考えられる。
 また、表1に示されるように、実施例13および実施例14の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例13および実施例14では、NiおよびCoの添加により、充放電過程において酸素の酸化還元反応が多く利用されなったことにより、初回放電容量が小さくなったことが考えられる。
 なお、表1に示されるように、組成式(1)におけるxの値が2.1よりも大きい場合(例えば、x=2.18である実施例3)、充電時に結晶構造が不安定化した。この結果、放電容量は減少した。
 また、表1に示されるように、xの値が1.8よりも小さい場合(例えば、x=1.79である実施例6)、Li/Me比が2よりも小さくなることで、充放電に関与できるLi量が少なくなった。この結果、放電容量は減少した。
 以上の結果から、xが1.89≦x≦2を満たすことで、放電容量をより高めることができることが、分かった。
 また、表1に示されるように、実施例15および実施例16の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例15および実施例16では、Mn量の増大伴いLi拡散パスが阻害されたことが考えられる。これに加えて、実施例15では、Me価数(Mn価数)の低下によりMnと酸素との混成軌道が十分に形成されず、酸素の酸化還元反応が十分に利用できなかったことが考えられる。
 また、表1に示されるように、実施例16の電池の初回放電容量は、実施例15の電池の初回放電容量よりも、大きい。
 この理由としては、実施例16では、実施例15と比較して、酸素量の増加によりMnと酸素との混成軌道が形成されたことが考えられる。これにより、酸素の酸化還元反応が利用できたことで、より高容量化されたと考えられる。
 なお、実施例17および実施例18では、実施例1と比較して、サイクル特性が劣化した。
 この理由としては、実施例17および実施例18では、フッ素の量が僅か(すなわち、βが0.5よりも小さい)であることが考えられる。
 <実施例19~35>
 上述の実施例1から、Li/Meの比率および、O/Fの比率を、それぞれ、変えた。
 表2に、実施例19~35の正極活物質を製造する際の前駆体と、合成した正極活物質の組成と、が示される。
 これ以外は、上述の実施例1と同様にして、実施例19~35の正極活物質を合成した。
 なお、実施例19~35の各前駆体は、実施例1と同様に、化学量論比で秤量して混合した。
 また、実施例19~35の正極活物質を用いて、上述の実施例1と同様にして、コイン型電池を作製した。
 また、実施例1と同様にして、実施例19~35のコイン型電池の容量を測定した。以上の結果が、表2に示される。
 なお、表2には、各サンプルに対して、欠損の度合いを示す「(x+y)/(α+β)」と、Me価数を示す「{2α+β-(3-y)}/y」と、酸素の変化後の価数を示す「(4y-β)/α」と、が記載されている。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、実施例19~実施例25の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、大きい。
 この理由としては、実施例19~実施例25では、実施例1と比較して、初期に欠損を導入した(すなわち、「(x+y)/(α+β)」の値が1よりも小さい)ことで、Li拡散パスがより多く形成されたと考えられる。以上により、より高容量化されたと考えられる。
 この欠損の導入に加えて、実施例19では、実施例1と比較して、酸素の価数変化量を抑制した(言い換えれば、酸素の変化後の価数を示す「(4y-β)/α」の値が、実施例1の値よりも大きい)ことで、構造安定化することができたと考えられる。以上により、より高容量化されたと考えられる。
 また、表2に示されるように、実施例20の電池の初回放電容量は、実施例19の電池の初回放電容量よりも、小さい。
 この理由としては、実施例20では、Coの添加により、実施例17と比較して、充放電過程において酸素の酸化還元反応が利用され難くなったことが考えられる。
 また、表2に示されるように、実施例21の電池の初回放電容量は、実施例19の電池の初回放電容量よりも、小さい。
 この理由としては、実施例21では、Li/Mn比の減少に伴い、実施例17と比較して、利用できるLi量が減少したことが考えられる。
 なお、実施例21では、実施例1と比較して、サイクル特性が劣化した。
 この理由としては、実施例21では、フッ素の量が僅か(すなわち、βが0.5よりも小さい)であることが考えられる。
 また、表2に示されるように、実施例22の電池の初回放電容量は、実施例19の電池の初回放電容量よりも、小さい。
 この理由としては、実施例22では、実施例19と比較して、酸素の酸化還元反応の利用量が増加したことで構造が不安定化したことが考えられる。
 また、表2に示されるように、実施例23の電池の初回放電容量は、実施例19の電池の初回放電容量よりも、小さい。
 この理由としては、実施例23では、Niの添加により、実施例19と比較して、充放電過程において酸素の酸化還元反応が利用され難くなったことが考えられる。
 また、表2に示されるように、実施例24の電池の初回放電容量は、実施例19の電池の初回放電容量よりも、小さい。
 この理由としては、実施例24では、初期の欠損を示す「(x+y)/(α+β)」が小さいために、実施例19よりも元素のランダム性が低下し、Liの拡散パスが良好に形成されなかったことが考えられる。また、実施例24では、酸素の価数変化量が大きく(言い換えれば、酸素の変化後の価数を示す「(4y-β)/α」の値が小さい)ことで、構造が不安定化したことが考えられる。
 また、表2に示されるように、実施例25の電池の初回放電容量は、実施例19の電池の初回放電容量よりも、小さい。
 この理由としては、実施例25では、初期の欠損を示す「(x+y)/(α+β)」が小さいために、実施例19よりも元素のランダム性が低下し、Liの拡散パスが良好に形成されなかったことが考えられる。
 また、表2に示されるように、実施例26の電池の初回放電容量は、実施例1の電池の初回放電容量と、同等である。
 この理由としては、実施例26では、欠損の導入と酸素の価数変化量の抑制とにより構造が安定化された一方で、Li/Mn比の減少により利用可能なLi量が減少したことが考えられる。
 表2に示されるように、実施例27~実施例29の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例27~実施例29では、実施例1と比較して、酸素の酸化還元反応の利用量が増加したことで構造が不安定化したことが考えられる。また、実施例27~実施例29では、酸素の価数変化量が大きく(言い換えれば、酸素の変化後の価数を示す「(4y-β)/α」の値が小さい)ことで、構造が不安定化したことが考えられる。
 表2に示されるように、実施例30の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例30では、欠損の導入と酸素の価数変化量の抑制とにより構造が安定化された一方で、Li/Mn比の減少により利用可能なLi量が減少したことが考えられる。
 表2に示されるように、実施例30の電池の初回放電容量は、実施例26の電池の初回放電容量よりも、小さい。
 この理由としては、実施例30では、実施例26と比較して、Me価数(Mn価数)が低下した(すなわち、「{2α+β-(3-y)}/y」が小さい)ことが考えられる。すなわち、Mn価数の低下により、Mnと酸素との混成軌道が十分に形成されず、酸素の酸化還元反応が十分に利用できなかったと考えられる。
 また、表2に示されるように、実施例30の電池の初回放電容量は、実施例32の電池の初回放電容量よりも、大きい。
 この理由としては、実施例30では、実施例32と比較して、酸素量が増大したことで、酸素の酸化還元反応をより利用できたことが考えられる。
 表2に示されるように、実施例31の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例31では、欠損の導入と酸素の価数変化量の抑制とにより構造が安定化された一方で、Li/Mn比の減少により利用可能なLi量が減少したことが考えられる。
 表2に示されるように、実施例31の電池の初回放電容量は、実施例25の電池の初回放電容量よりも、小さい。
 この理由としては、実施例31では、実施例25と比較して、Me価数(Mn価数)が低下した(すなわち、「{2α+β-(3-y)}/y」が小さい)ことが考えられる。すなわち、Mn価数の低下により、Mnと酸素との混成軌道が十分に形成されず、酸素の酸化還元反応が十分に利用できなかったと考えられる。
 表2に示されるように、実施例32の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例32では、欠損の導入と酸素の価数変化量の抑制とにより構造が安定化された一方で、Li/Mn比の減少により利用可能なLi量が減少したことが考えられる。
 表2に示されるように、実施例32の電池の初回放電容量は、実施例26および実施例30の電池の初回放電容量よりも、小さい。
 この理由としては、実施例32では、実施例26および実施例30と比較して、Me価数(Mn価数)が低下した(すなわち、「{2α+β-(3-y)}/y」が小さい)ことが考えられる。すなわち、Mn価数の低下により、Mnと酸素との混成軌道が十分に形成されず、酸素の酸化還元反応が十分に利用できなかったと考えられる。
 表2に示されるように、実施例33の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例33では、実施例1と比較して、Me価数(Mn価数)が低下した(すなわち、「{2α+β-(3-y)}/y」が小さい)ことが考えられる。すなわち、Mn価数の低下により、Mnと酸素との混成軌道が十分に形成されず、酸素の酸化還元反応が十分に利用できなかったと考えられる。
 また、表2に示されるように、実施例33の電池の初回放電容量は、実施例32の電池の初回放電容量よりも、小さい。
 この理由としては、実施例33では、実施例32と比較して、酸素量が減少したことで、酸素の酸化還元反応の利用が少なくなったことが考えられる。
 表2に示されるように、実施例34および実施例35の電池の初回放電容量は、実施例13の電池の初回放電容量よりも、大きい。
 この理由としては、実施例34および実施例35では、実施例13と比較して、初期に欠損を導入した(すなわち、「(x+y)/(α+β)」の値が1よりも小さい)ことで、Li拡散パスがより多く形成されたと考えられる。これに加えて、実施例34および実施例35では、実施例13と比較して、酸素の価数変化量を抑制したことで、構造安定化することができたと考えられる。以上により、より高容量化されたと考えられる。
 また、表2に示されるように、実施例34および実施例35の電池の初回放電容量は、実施例19の電池の初回放電容量よりも、小さい。
 この理由としては、実施例34および実施例35では、NiおよびCoの添加により、実施例19と比較して、充放電過程において酸素の酸化還元反応が利用され難くなったことが考えられる。
 本開示の正極活物質は、二次電池などの電池の正極活物質として、好適に利用されうる。
 10  電池
 11  ケース
 12  正極集電体
 13  正極活物質層
 14  セパレータ
 15  封口板
 16  負極集電体
 17  負極活物質層
 18  ガスケット
 21  正極
 22  負極

Claims (13)

  1.  空間群FM-3Mに属する結晶構造を有し、下記の組成式(1)により表される化合物を含む、
    正極活物質。
     LiMeαβ・・・式(1)
     ここで、前記Meは、Mn、Co、Ni、Fe、Alからなる群より選択される一種または二種以上の元素であり、
     かつ、下記の条件、
     1.3≦x≦2.2、
     0.8≦y≦1.3、
     1≦α≦2.93、
     0.07≦β≦2、
    を満たす。
  2.  0.8≦(x+y)/(α+β)≦1、を満たす、
    請求項1に記載の正極活物質。
  3.  2.5/3≦(x+y)/(α+β)≦2.6/3、を満たす、
    請求項2に記載の正極活物質。
  4.  2.83<{2α+β-(3-y)}/y、を満たす、
    請求項1から3のいずれかに記載の正極活物質。
  5.  1.5≦(4y-β)/α、を満たす、
    請求項1から4のいずれかに記載の正極活物質。
  6.  前記Meは、MnとCoとNiとFeから選ばれる一種の元素であるか、または、NiとCoとMnとからなる固溶体であるか、または、NiとCoとAlとからなる固溶体であるか、または、MnとCoとからなる固溶体であるか、または、MnとNiとからなる固溶体である、
    請求項1から5のいずれかに記載の正極活物質。
  7.  1.79≦x≦2.18、を満たす、
    請求項1から6のいずれかに記載の正極活物質。
  8.  1.89≦x≦2、を満たす、
    請求項7に記載の正極活物質。
  9.  0.5≦β、を満たす、
    請求項1から8のいずれかに記載の正極活物質。
  10.  0.79≦β≦1、を満たす、
    請求項9に記載の正極活物質。
  11.  請求項1から10のいずれかに記載の正極活物質を含む正極と、
     負極と、
     電解質と、
    を備える、
    電池。
  12.  前記正極は、前記正極活物質を主成分として含む正極活物質層を備える、
    請求項11に記載の電池。
  13.  前記負極は、リチウムを吸蔵および放出しうる負極活物質を含み、
     前記電解質は、非水電解液である、
    請求項11または12に記載の電池。
PCT/JP2016/003215 2015-07-23 2016-07-06 正極活物質、および、電池 WO2017013848A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16827416.5A EP3327835B1 (en) 2015-07-23 2016-07-06 Positive electrode active material and battery
CN201680012995.0A CN107431201B (zh) 2015-07-23 2016-07-06 正极活性物质和电池
JP2017529442A JP6872705B2 (ja) 2015-07-23 2016-07-06 正極活物質、および、電池
US15/811,685 US10818910B2 (en) 2015-07-23 2017-11-14 Positive-electrode active material and battery
US17/028,424 US11637277B2 (en) 2015-07-23 2020-09-22 Positive-electrode active material and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-145485 2015-07-23
JP2015145485 2015-07-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/811,685 Continuation US10818910B2 (en) 2015-07-23 2017-11-14 Positive-electrode active material and battery

Publications (1)

Publication Number Publication Date
WO2017013848A1 true WO2017013848A1 (ja) 2017-01-26

Family

ID=57834182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003215 WO2017013848A1 (ja) 2015-07-23 2016-07-06 正極活物質、および、電池

Country Status (5)

Country Link
US (2) US10818910B2 (ja)
EP (1) EP3327835B1 (ja)
JP (1) JP6872705B2 (ja)
CN (1) CN107431201B (ja)
WO (1) WO2017013848A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476277A (zh) * 2017-04-07 2019-11-19 加利福尼亚大学董事会 氟取代的阳离子无序锂金属氧化物及其制备方法
WO2020026487A1 (ja) * 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 正極活物質および二次電池
US10886529B2 (en) 2018-01-17 2021-01-05 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and covering material and battery
WO2022044554A1 (ja) * 2020-08-31 2022-03-03 パナソニックIpマネジメント株式会社 二次電池用正極活物質および二次電池
US11271200B2 (en) 2017-03-06 2022-03-08 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material containing lithium composite oxide, and battery including the same
US11557760B2 (en) 2017-04-24 2023-01-17 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material containing lithium composite oxide, and battery including the same
US11605814B2 (en) 2017-05-29 2023-03-14 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material containing lithium composite oxide, and battery including the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431201B (zh) * 2015-07-23 2021-06-01 松下知识产权经营株式会社 正极活性物质和电池
CN108832096A (zh) * 2018-06-13 2018-11-16 中科廊坊过程工程研究院 一种双掺杂锂离子电池正极材料及其制备方法和锂离子电池
US20230369579A1 (en) * 2020-09-30 2023-11-16 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for secondary batteries, and secondary battery
GB2620779A (en) * 2022-07-21 2024-01-24 Univ Liverpool Electrode materials for li-ion batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089470A (ja) * 2010-09-24 2012-05-10 Toshiba Corp 非水電解質二次電池用正極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用正極活物質の製造方法
CN103928672A (zh) * 2014-04-11 2014-07-16 武汉理工大学 一种锂离子电池用正极活性物质及其制备方法
JP2015128023A (ja) * 2013-12-27 2015-07-09 国立大学法人九州大学 リチウムイオン電池用の正極活物質およびその製造方法

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107851B2 (ja) 1988-02-17 1995-11-15 三洋電機株式会社 非水系二次電池
JP3340515B2 (ja) * 1993-07-20 2002-11-05 新神戸電機株式会社 リチウム電池
US5830600A (en) 1996-05-24 1998-11-03 Sri International Nonflammable/self-extinguishing electrolytes for batteries
JPH09330720A (ja) 1996-06-11 1997-12-22 Sanyo Electric Co Ltd リチウム電池
JP4200539B2 (ja) 1997-03-28 2008-12-24 宇部興産株式会社 リチウムイオン非水電解質二次電池
JP4784608B2 (ja) 1997-03-28 2011-10-05 宇部興産株式会社 リチウムイオン非水電解質二次電池用正極活物質及びその製造方法
US6037095A (en) 1997-03-28 2000-03-14 Fuji Photo Film Co., Ltd. Non-aqueous lithium ion secondary battery
JP4061668B2 (ja) 1997-04-21 2008-03-19 宇部興産株式会社 リチウムイオン非水電解質二次電池
JP4022937B2 (ja) 1997-04-24 2007-12-19 宇部興産株式会社 リチウムイオン非水電解質二次電池
JP3982658B2 (ja) 1997-06-13 2007-09-26 日立マクセル株式会社 非水電解液二次電池用正極活物質およびその製造方法ならびに上記正極活物質を用いた非水電解液二次電池
JP4106741B2 (ja) 1998-05-28 2008-06-25 松下電器産業株式会社 非水電解質二次電池
JP4171848B2 (ja) 1998-06-02 2008-10-29 宇部興産株式会社 リチウムイオン非水電解質二次電池
KR100307160B1 (ko) 1999-03-06 2001-09-26 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
US6737195B2 (en) 2000-03-13 2004-05-18 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
JP2002015776A (ja) 2000-06-30 2002-01-18 Toshiba Corp 非水電解液二次電池
JP3578066B2 (ja) 2000-08-18 2004-10-20 日産自動車株式会社 Li欠損マンガン複合酸化物及びこれを用いた非水電解質二次電池
EP1180810A2 (en) 2000-08-18 2002-02-20 Nissan Motor Co., Ltd. Positive electrode active material for rechargeable lithium-ion battery
US6872491B2 (en) 2001-01-23 2005-03-29 Kabushiki Kaisha Toshiba Positive electrode active material and lithium ion secondary battery
JP3675439B2 (ja) 2001-11-27 2005-07-27 日本電気株式会社 二次電池用正極活物質およびそれを用いた二次電池用正極および二次電池
US7011907B2 (en) 2001-11-27 2006-03-14 Nec Corporation Secondary battery cathode active material, secondary battery cathode and secondary battery using the same
US8956421B2 (en) 2007-02-06 2015-02-17 Deka Products Limited Partnership Dynamic support apparatus and system
JP2004311408A (ja) 2003-03-25 2004-11-04 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
TWI286849B (en) 2003-03-25 2007-09-11 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP4283594B2 (ja) 2003-05-22 2009-06-24 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP4616592B2 (ja) 2003-07-29 2011-01-19 パナソニック株式会社 非水電解液二次電池とその製造方法及び電解液二次電池用電極材料
JP4943145B2 (ja) 2004-06-16 2012-05-30 Agcセイミケミカル株式会社 リチウム二次電池用正極活物質粉末
JP5875210B2 (ja) * 2005-05-17 2016-03-02 ソニー株式会社 二次電池用正極活物質および二次電池
JP5085856B2 (ja) 2005-07-07 2012-11-28 パナソニック株式会社 リチウムイオン二次電池
JP2006278341A (ja) 2006-04-07 2006-10-12 Ube Ind Ltd リチウムイオン非水電解質二次電池
JP4197002B2 (ja) 2006-04-07 2008-12-17 宇部興産株式会社 リチウムイオン非水電解質二次電池用正極活物質及びその製造方法
JP5305678B2 (ja) 2008-02-07 2013-10-02 株式会社東芝 非水電解液電池及び組電池
WO2010039732A2 (en) 2008-09-30 2010-04-08 Envia Systems, Inc. Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
US8741484B2 (en) 2010-04-02 2014-06-03 Envia Systems, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
US9178249B2 (en) 2010-05-27 2015-11-03 Uchicago Argonne, Llc Electrode stabilizing materials
JP2012014851A (ja) 2010-06-29 2012-01-19 Hitachi Maxell Energy Ltd 電気化学素子用電極および非水二次電池
JP5641560B2 (ja) 2010-07-30 2014-12-17 Necエナジーデバイス株式会社 二次電池用正極活物質及びそれを使用した二次電池
JP5682172B2 (ja) 2010-08-06 2015-03-11 Tdk株式会社 活物質、活物質の製造方法及びリチウムイオン二次電池
KR101232836B1 (ko) 2010-09-14 2013-02-13 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질의 제조 방법, 상기 제조 방법에 따라 제조된 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
JP5404567B2 (ja) 2010-09-17 2014-02-05 三菱化学株式会社 非水系電解液及びそれを用いたリチウム二次電池
WO2012086602A1 (ja) 2010-12-20 2012-06-28 旭硝子株式会社 二次電池用非水電解液および二次電池
JP5617663B2 (ja) 2011-01-27 2014-11-05 旭硝子株式会社 リチウムイオン二次電池用の正極活物質およびその製造方法
WO2012176267A1 (ja) 2011-06-20 2012-12-27 トヨタ自動車株式会社 二次電池用電極層、固体電解質層および全固体二次電池
WO2013009078A2 (ko) 2011-07-13 2013-01-17 주식회사 엘지화학 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지
JP2013222612A (ja) 2012-04-17 2013-10-28 Hitachi Maxell Ltd 非水二次電池
JP6031861B2 (ja) 2012-07-18 2016-11-24 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
EP2904655B1 (en) 2012-10-02 2021-07-21 Massachusetts Institute of Technology High-capacity positive electrode active material
KR101400593B1 (ko) 2012-12-06 2014-05-27 삼성정밀화학 주식회사 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20140094959A (ko) 2013-01-23 2014-07-31 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR102141903B1 (ko) 2013-02-18 2020-08-06 가부시기가이샤 닛뽕쇼꾸바이 전해액 및 이것을 구비한 리튬이온 이차전지
US9246187B2 (en) 2013-03-14 2016-01-26 Uchicago Argonne, Llc Non-aqueous electrolyte for lithium-ion battery
US9692043B2 (en) 2013-03-27 2017-06-27 Tokyo University Of Science Educational Foundation Administrative Organization Active material for nonaqueous electrolyte energy storage device
KR102366343B1 (ko) 2013-03-27 2022-02-23 미쯔비시 케미컬 주식회사 비수계 전해액 및 그것을 사용한 비수계 전해액 전지
KR101785262B1 (ko) 2013-07-08 2017-10-16 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 이를 채용한 양극 및 리튬이차전지
JP2015022958A (ja) 2013-07-22 2015-02-02 トヨタ自動車株式会社 正極活物質、及び当該正極活物質を含むリチウム電池
JP6090085B2 (ja) 2013-09-27 2017-03-08 トヨタ自動車株式会社 正極活物質及び正極活物質の製造方法並びにリチウム電池
JP6478090B2 (ja) 2013-09-30 2019-03-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
KR20150037085A (ko) 2013-09-30 2015-04-08 주식회사 엘지화학 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
JP6396153B2 (ja) 2013-11-11 2018-09-26 マクセルホールディングス株式会社 リチウム二次電池
JP2015118892A (ja) 2013-12-20 2015-06-25 株式会社Gsユアサ リチウム二次電池用正極活物質、その正極活物質の前駆体、リチウム二次電池用電極、リチウム二次電池及びバッテリーモジュール
JP6361518B2 (ja) 2014-01-22 2018-07-25 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
KR102183996B1 (ko) 2014-01-29 2020-11-27 삼성에스디아이 주식회사 양극 활물질 및 그 제조방법, 상기 양극 활물질을 채용한 양극과 리튬 전지
KR102184372B1 (ko) 2014-02-10 2020-11-30 삼성에스디아이 주식회사 복합양극활물질, 그 제조방법 및 이를 채용한 양극 및 리튬전지
EP2921455A1 (en) 2014-03-20 2015-09-23 Karlsruher Institut für Technologie Oxyfluoride compounds for lithium-cells and batteries
JP2016033902A (ja) 2014-07-31 2016-03-10 ソニー株式会社 正極活物質、正極および電池
DE102015211110A1 (de) 2015-06-17 2016-12-22 Robert Bosch Gmbh Aktivmaterial für eine Kathode einer Batteriezelle, Kathode und Batteriezelle
CN107431201B (zh) * 2015-07-23 2021-06-01 松下知识产权经营株式会社 正极活性物质和电池
EP3136478B1 (en) 2015-08-26 2019-07-24 Massachusetts Institute Of Technology Cation-disordered oxides for rechargeable lithium batteries and other applications
JP6846628B2 (ja) * 2015-09-16 2021-03-24 パナソニックIpマネジメント株式会社 正極活物質、および、電池
WO2017047023A1 (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 電池
JP6846627B2 (ja) * 2015-09-16 2021-03-24 パナソニックIpマネジメント株式会社 正極活物質、および、電池
JP6861401B2 (ja) * 2015-09-16 2021-04-21 パナソニックIpマネジメント株式会社 正極活物質、および、電池
WO2017047018A1 (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 電池
WO2017047016A1 (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 正極活物質、および、電池
WO2017047019A1 (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 電池
WO2017047015A1 (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 電池
CN107408737B (zh) * 2015-09-16 2021-03-23 松下知识产权经营株式会社 电池
CN109565047B (zh) * 2016-11-15 2022-04-29 松下知识产权经营株式会社 电池用正极活性物质和电池
JP6979586B2 (ja) * 2016-11-15 2021-12-15 パナソニックIpマネジメント株式会社 電池用正極活物質、および、電池用正極活物質を用いた電池
WO2018100792A1 (ja) * 2016-12-02 2018-06-07 パナソニックIpマネジメント株式会社 正極活物質、および、正極活物質を用いた電池
JP7065341B2 (ja) * 2017-01-19 2022-05-12 パナソニックIpマネジメント株式会社 正極活物質、および、電池
JP6952247B2 (ja) * 2017-01-19 2021-10-20 パナソニックIpマネジメント株式会社 正極活物質、および、電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089470A (ja) * 2010-09-24 2012-05-10 Toshiba Corp 非水電解質二次電池用正極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用正極活物質の製造方法
JP2015128023A (ja) * 2013-12-27 2015-07-09 国立大学法人九州大学 リチウムイオン電池用の正極活物質およびその製造方法
CN103928672A (zh) * 2014-04-11 2014-07-16 武汉理工大学 一种锂离子电池用正极活性物质及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUBO,K ET AL.: "Synthesis and electrochemical properties for LiNi02 substituted by other elements", JOURNAL OF POWER SOURCES, vol. 68, no. 2, October 1997 (1997-10-01), pages 553 - 557, XP005496978 *
See also references of EP3327835A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11271200B2 (en) 2017-03-06 2022-03-08 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material containing lithium composite oxide, and battery including the same
CN110476277A (zh) * 2017-04-07 2019-11-19 加利福尼亚大学董事会 氟取代的阳离子无序锂金属氧化物及其制备方法
JP2020515501A (ja) * 2017-04-07 2020-05-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア フッ素置換カチオン不規則リチウム金属酸化物およびその製造方法
JP7460367B2 (ja) 2017-04-07 2024-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア フッ素置換カチオン不規則リチウム金属酸化物およびその製造方法
US11557760B2 (en) 2017-04-24 2023-01-17 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material containing lithium composite oxide, and battery including the same
US11605814B2 (en) 2017-05-29 2023-03-14 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material containing lithium composite oxide, and battery including the same
US10886529B2 (en) 2018-01-17 2021-01-05 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and covering material and battery
WO2020026487A1 (ja) * 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 正極活物質および二次電池
JPWO2020026487A1 (ja) * 2018-07-31 2021-08-02 パナソニックIpマネジメント株式会社 正極活物質および二次電池
US20210296646A1 (en) * 2018-07-31 2021-09-23 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and secondary battery
JP7233011B2 (ja) 2018-07-31 2023-03-06 パナソニックIpマネジメント株式会社 正極活物質および二次電池
WO2022044554A1 (ja) * 2020-08-31 2022-03-03 パナソニックIpマネジメント株式会社 二次電池用正極活物質および二次電池

Also Published As

Publication number Publication date
JP6872705B2 (ja) 2021-05-19
US10818910B2 (en) 2020-10-27
EP3327835B1 (en) 2019-09-11
US11637277B2 (en) 2023-04-25
CN107431201A (zh) 2017-12-01
US20180090747A1 (en) 2018-03-29
JPWO2017013848A1 (ja) 2018-07-12
EP3327835A4 (en) 2018-07-04
EP3327835A1 (en) 2018-05-30
CN107431201B (zh) 2021-06-01
US20210005884A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
US11637277B2 (en) Positive-electrode active material and battery
US10818911B2 (en) Positive-electrode active material and battery
JP6952251B2 (ja) 電池用正極活物質、および、電池
WO2018100792A1 (ja) 正極活物質、および、正極活物質を用いた電池
JP6876955B2 (ja) 正極活物質、および、電池
US10497928B2 (en) Positive-electrode active material and battery
JP2018085324A (ja) 電池用正極活物質、および、電池用正極活物質を用いた電池
WO2017047018A1 (ja) 電池
US20210005883A1 (en) Positive-electrode active material and battery
JP6876956B2 (ja) 正極活物質、および、電池
JP7113301B2 (ja) 正極活物質、および、電池
US9893356B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of producing cathode active material for nonaqueous electrolyte secondary battery
JP2017004941A (ja) 電池用正極活物質、および、電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE