KR101333112B1 - 플라즈마 처리 장치 - Google Patents

플라즈마 처리 장치 Download PDF

Info

Publication number
KR101333112B1
KR101333112B1 KR1020127003140A KR20127003140A KR101333112B1 KR 101333112 B1 KR101333112 B1 KR 101333112B1 KR 1020127003140 A KR1020127003140 A KR 1020127003140A KR 20127003140 A KR20127003140 A KR 20127003140A KR 101333112 B1 KR101333112 B1 KR 101333112B1
Authority
KR
South Korea
Prior art keywords
gas
plasma
processing
chamber
dielectric window
Prior art date
Application number
KR1020127003140A
Other languages
English (en)
Other versions
KR20120034117A (ko
Inventor
마사히데 이와사키
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007088407A external-priority patent/JP5438260B2/ja
Priority claimed from JP2007088653A external-priority patent/JP5522887B2/ja
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20120034117A publication Critical patent/KR20120034117A/ko
Application granted granted Critical
Publication of KR101333112B1 publication Critical patent/KR101333112B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow

Abstract

소정의 플라즈마 처리가 실시되는 기판을 수납하는 감압 배기 가능한 처리실과, 플라즈마를 생성하기 위해 마이크로파를 발생시키는 마이크로파 발생기와, 상기 마이크로파 발생기로부터의 마이크로파를 상기 처리실로 전파하는 도파관과, 상기 도파관의 일단에 연결된 도파관-동축관 변환기와, 마이크로파가 상기 도파관-동축관 변환기로부터 상기 처리실로 전파되는 라인을 형성하는 동축관을 포함하는 플라즈마 처리 장치가 개시된다. 상기 동축관의 내부 도전체는, 중공부와, 상기 동축관의 내부 도전체의 중공부를 통해 상기 처리실로 처리 가스를 공급하는 제 1 처리 가스 공급부를 구비한다.

Description

플라즈마 처리 장치{PLASMA PROCESS APPARATUS}
본 발명은, 소정의 플라즈마 처리를 행하기 위해 마이크로파를 이용하는 마이크로파 플라즈마 처리장치에 관한 것으로, 특히, 전자파 결합을 통해 처리실 내의 플라즈마에 마이크로파 전력을 공급하는 마이크로파 플라즈마 처리장치에 관한 것이다.
반도체 장치, 액정 표시 장치(LCD) 등을 제조하기 위한 플라즈마 처리에 있어서, 진공 처리실에서 처리 가스를 방전 혹은 이온화화기 위해 RF(Radio Frequency)파와 마이크로파가 이용된다. RF 플라즈마 장치는 주로 한쌍의 전극이 적절한 간격으로 처리실 내에 평행하게 배치된 용량 결합 방식을 채용한다. RF파는 두 전극 중 하나가 접지되어 있는 상태에서 다른 하나의 전극에 캐패시터를 통하여 인가된다. 그러나, RF 플라즈마 장치의 경우 비교적 낮은 압력에서 고밀도 플라즈마를 생성하는 것이 어렵다. 또한, RF 플라즈마는 높은 전자 온도를 가질 수 밖에 없어, 플라즈마 처리중에 웨이퍼 상에 형성된 디바이스 소자의 손상이 더욱 빈번하게 발생할 수 있다는 문제점을 갖는다.
반면에, 마이크로파 플라즈마 장치는 비교적 낮은 압력에서 저전자 온도 및 고밀도의 플라즈마를 생성할 수 있다는 이점을 갖는다. 또한, 이 마이크로파 플라즈마 장치는, 마이크로파를 처리실 내로 도입하는 평면 마이크로파 도입창을 사용할 경우, 보다 넓은 압력 범위에서 대면적의 2차원 공간에 마이크로파 플라즈마를 효과적으로 생성할 수 있다는 점에서 또 다른 이점을 갖는다. 또한, 마이크로파 플라즈마 장치는 자기장이 필요치 않으므로 전체적으로 간단한 구성을 가질 수 있다(특허문헌1 참조).
특허문헌 1: WO2005/045913 A1 (도 1A 및 도 2 참조)
마이크로파 플라즈마 처리 장치에 있어서, 마이크로파와 처리 가스를 처리실 내로 도입함으로써 처리 가스로부터 마이크로파 플라즈마가 생성되기 때문에, 마이크로파와 처리 가스를 도입하는 방법은 플라즈마 특성과 장치 성능을 결정짓는 매우 중요한 요소이다.
평면 마이크로파 도입창을 이용한 마이크로파 플라즈마 장치는 처리 가스를 처리실 내로 도입하는 방법에 따라 두가지의 구성으로 분류될 수 있다. 첫번째 구성은 서셉터와 대향하여 배치된 마이크로파 도입창으로서의 샤워 플레이트를 갖는 구성이다. 이 구성에서는 처리 가스가 샤워 플레이트에 균일하게 배치된 복수개의 가스 분사 구멍을 통해 하방으로 분사된다.
반면에, 두 번째 구성의 경우 처리 가스를 챔버 내의 플라즈마 영역에 분사하기 위해 하나 혹은 복수개의 가스 분사 구멍이 챔버의 측벽에 형성된다.
첫번째 구성의 경우, 플라즈마가 서셉터 상에 균일하게 생성될 수 있다는 장점이 있는 반면, 플라즈마의 밀도가 더 낮은 경향이 있고, 이에 의해 플라즈마 처리 장치가 에칭 장치인 경우 에칭 속도가 낮고, 전체적으로 프로세스의 효율이 떨어진다. 이것은 복수개의 가스 분사 구멍을 갖는 샤워 플레이트가 마이크로파(전자파)가 통과하는 통로로 작용하기 때문이다. 또한, 이러한 구성은 오염 등의 문제를 초래할 수 있다.
반면에, 두 번째 구성의 경우, 마이크로파가 챔버의 측벽에 마련된 가스 분사 구멍을 통과하지 않으므로, 비정상적인 방전이 일어날 확률은 매우 낮다. 그러나, 처리 가스를 반경 방향으로 균일하게 확산시키는 것이 어렵고, 따라서 플라즈마의 분포가 불균일하게 될 수 있다. 특히, 낱장식 플라즈마 처리장치의 챔버는 서셉터와 챔버의 내벽 사이의 링 형상 공간을 통해 배기되므로, 처리 가스의 챔버 내에서의 흐름이 불균일해지는 경향이 있다. 이것은 링 형상 공간 위로 흐르도록 도입되는 처리 가스가 링 형상 공간 아래에 위치한 배기구를 향하는 가스의 흐름에 영향을 받기 때문이다.
또한, 처리 가스는 처리실의 천정면에 해당하고 서셉터와 대향하여 배치된 유전체창에 관통하여 형성된 가스 분사 구멍을 통해 처리실 내로 도입될 수도 있다.
이 경우, 유전체창이 마이크로파 도입창, 즉 마이크로파 전반 경로로 기능하기 때문에 유전체창 내에 전기장이 존재하게 된다. 따라서, 처리 가스가 유전체창을 통과할 때 마이크로파 전기장에 노출되고, 이에 의해 유전체창 내의 가스관 내 또는 가스 분사 구멍 근처에서 이온화될 수 있다. 그 결과 비정상적인 방전이 발생하게 된다. 이러한 비정상적인 방전의 영향으로 유전체창이 비교적 단기간에 열화되거나 손상될 수 있어 처리 성능을 해칠 수 있다.
본 발명은 상기의 문제점 중 적어도 하나를 개선하기 위하여 고안된 것으로, 마이크로파 전송 라인 또는 방사로, 또는 처리 가스 분사부에서의 비정상적 방전을 방지할 수 있는 플라즈마 처리 장치를 제공함으로써, 밀도의 균일성과 제어성이 우수한 플라즈마를 실현할 수 있고, 이에 의해 플라즈마 처리의 성능과 품질을 향상시킬 수 있다.
또한, 본 발명은 플라즈마 조건 또는 플라즈마 처리를 쉽고 효율적으로 감시할 수 있는 플라즈마 처리 장치를 제공한다.
상기의 문제점 중 어느 하나를 해결하기 위해 본 발명의 제 1 측면에 따르면, 플라즈마를 이용하여 기판을 처리하는 플라즈마 처리 장치가 제공된다. 이 플라즈마 처리 장치는 소정의 플라즈마 처리가 실시되는 기판을 수납하는 감압 배기 가능한 처리실과, 플라즈마를 생성하기 위해 마이크로파를 발생시키는 마이크로파 발생기와, 마이크로파 발생기로부터의 마이크로파를 처리실로 전파하는 도파관과, 도파관의 일단에 연결된 도파관-동축관 변환기와, 마이크로파가 도파관-동축관 변환기로부터 처리실로 전파되는 라인을 형성하는 동축관으로서, 이 동축관의 내부 도전체는 중공부를 가지는 것인 동축관과, 동축관의 내부 도전체의 중공부를 통해 처리실로 처리 가스를 공급하는 제 1 처리 가스 공급부를 구비한다.
상기 제 1 측면에 따른 플라즈마 처리 장치에 있어서, 마이크로파 발생기에서 출력된 마이크로파는 도파관, 도파관-동축관 변환기 및 동축관을 포함하는 마이크로파 전송 라인을 통해 전반하고, 처리실 내로 도입된다. 그 사이 처리 가스 공급기로부터의 처리 가스는 마이크로파 전반 경로를 우회하는 동축관의 내부 도전체의 중공부를 통해 흘러 처리실 내로 도입된다. 처리 가스는 마이크로파에 의해 이온화되어 처리실 내에 플라즈마를 생성한다. 이 플라즈마에 의해 기판이 처리된다.
본 발명의 일 실시예에 따르면, 제 1 측면에 따른 플라즈마 처리 장치는 처리실 내에서 기판을 탑재하는 서셉터와, 마이크로파를 처리실 내로 도입하는 유전체창을 더 포함하고, 상기 유전체창은 서셉터와 대향하는 천정면으로 기능 한다. 이로 인해, 마이크로파는 유전체창의 하면을 따라 표면파로서 전반하게 되고, 이 표면파에 의해 플라즈마가 발생한다. 또한, 유전체창에는 내부 도전체의 중공부와 연통하는 가스 분사 구멍이 마련될 수 있으며, 이 가스 분사 구멍으로부터 처리실로 처리 가스가 분사될 수 있다.
본 발명의 또 다른 실시예에 따르면, 유전체창은 동축관의 단부가 연결된 평면 안테나의 구성요소 중의 하나이어도 좋다. 이 평면 안테나는 고밀도 플라즈마를 효율적으로 생성하기 위한 슬롯 안테나이어도 좋다. 또한, 이 평면 안테나는 대면적 혹은 대직경 플라즈마를 생성하기 위한 래디얼 라인 슬롯 안테나이어도 좋다.
본 발명의 또다른 실시예에 따르면, 도파관-동축관 변환기는 도파관에서의 전송 모드를 동축관에서의 TEM 모드로 변환한다. 바람직하게는, 도파관은 정사각형 모양이고, 내부 도전체의 일단부가 정사각형 모양의 도파관 내로 돌출되어 있고, 이 돌출된 단부는 도파관-동축관 변환기 내에서 돌출 방향을 따라서 두꺼워진다. 또한, 상기 중공부는 동축관의 내부 도전체를 관통하여 설치됨으로써 처리 가스가 내부 도전체의 돌출된 단부에 마련된 도입구로부터 상기 중공부에 유입되어 처리실 내부를 향하는 구멍으로부터 분사되도록 구성되어 있다. 또한, 상기 동축관의 내부 도전체는 냉매를 흘리기 위한 냉매관을 포함해도 좋다.
본 발명의 또 다른 실시예에 따르면, 상술한 추가 특징 중 적어도 어느 하나의 특징을 갖는 플라즈마 처리 장치는 처리 가스를 처리실로 도입하기 위한 제 2 처리 가스 도입부를 포함하여도 좋다. 상기 제 2 처리 가스 공급부는 처리 가스를 처리실 내의 중심부로 분사하는 측벽 분사 구멍을 포함해도 좋다. 이 경우, 제 1 처리 가스 공급부를 통해 처리실 내로 도입되는 처리 가스의 유량을 제어하는 제 1 유량 제어부와, 제 2 처리 가스 공급부를 통해 처리실 내로 도입되는 처리 가스의 유량을 제어하는 제 2 유량 제어부가 마련되어 있어도 좋다. 이러한 구성에 의해, 해당 처리 가스 공급부로부터 처리실로 도입되는 처리 가스의 유량 및 유량비를 제어할 수 있고, 따라서 플라즈마 밀도와 분포 균일성을 향상시킬 수 있다.
또한, 본 발명의 다른 실시예에 따른 플라즈마 처리 장치는 서셉터에 자기 바이어스 전압을 발생시키기 위해 RF파를 서셉터에 인가하는 RF파 발생기를 더 포함하거나, 또는 처리실의 주위에 자기장을 형성하기 위해 처리실을 둘러쌈으로서 처리실 내의 플라즈마에 전자 공명(electron cyclotron resonance)을 일으키는 자기장 발생부를 더 포함해도 좋다.
본 발명의 제 2 측면에 따르면, 소정의 플라즈마 처리가 실시되는 기판을 감압 배기 가능한 처리실에 수납하고, 마이크로파를 도입하여 처리실 내에 도입된 처리 가스로부터 플라즈마를 발생시켜 기판에 상기 소정의 플라즈마 처리를 실시하는 플라즈마 처리 장치가 제공된다. 상기 플라즈마 처리 장치는 상기 마이크로파를 마이크로파 발생기로부터 처리실로 전송하는 마이크로파 전송 라인을 포함하고, 상기 마이크로파 전송 라인의 일단부를 포함하는 상기 마이크로파 전송 라인의 소정 부분이 동축 라인으로 형성되고, 동축 라인의 내부 도전체가 처리 가스를 처리실로 도입하기 위한 중공관으로 형성된다.
본 발명의 제 3 측면에 따르면, 소정의 플라즈마 처리가 실시되는 기판을 감압 배기 가능한 처리실에 수납하고, 마이크로파를 도입하여 처리실 내에 도입된 처리 가스로부터 플라즈마를 발생시켜 기판에 상기 소정의 플라즈마 처리를 실시하는 플라즈마 처리 장치가 제공된다. 상기 플라즈마 처리 장치는, 상기 마이크로파를 마이크로파 발생기로부터 처리실로 전송하는 마이크로파 전송 라인으로서, 이 마이크로파 전송라인의 일단부를 포함하는 상기 마이크로파 전송 라인의 소정 부분이 동축 라인으로 형성되고, 이 동축 라인의 내부 도전체가 중공관으로 형성되는 것인 마이크로파 전송 라인과, 상기 중공관을 통해 처리실 내의 플라즈마 처리를 감시하는 모니터부를 포함 한다.
제 3 측면에 따른 플라즈마 처리 장치에 있어서, 마이크로파 발생기로부터 출력된 마이크로파는 마이크로파 전송 라인을 통해 전반하여 처리실 내로 도입되고, 이 마이크로파는 처리실 내에 플라즈마를 생성하도록 처리 가스를 이온화한다. 기판은 이 플라즈마에 의해 처리된다. 이러한 공정이 실시될 때, 처리실 내의 플라즈마 조건 또는 플라즈마 처리는 모니터부에 의해 마이크로파 전송 라인의 적어도 일부를 구성하는 동축관의 내부 도전체의 중공부를 통해 원위치에서(in-situ) 감시할 수 있다. 상기 모니터부는, 처리실 내에서의 플라즈마의 발광을 분광학적으로 측정하는 플라즈마 발광 측정부 또는, 처리실 내의 서셉터 상에 유지된 기판 상의 막 두께를 측정하는 광 두께 측정부, 또는 처리실 내의 온도를 측정하는 온도 센서를 포함 한다.
본 발명의 제 4 측면에 따르면, 기판에 소정의 처리를 실시하기 위해 플라즈마를 이용하는 플라즈마 처리 장치가 제공된다. 상기 플라즈마 처리 장치는 소정의 플라즈마 처리가 실시되는 기판을 수납하는 감압 배기 가능한 처리실과, 플라즈마를 생성하기 위해 마이크로파를 발생시키는 마이크로파 발생기와, 마이크로파를 처리실 내로 도입하는 유전체창과, 마이크로파 발생기로부터의 마이크로파를 유전체창으로 전파하는 마이크로파 전송 라인과, 처리 가스를 처리실로 공급하기 위해 유전체창을 관통하여 처리실로 연장된 가스관을 포함하는 제 1 처리 가스 공급부를 포함하고, 상기 가스관은 전기적으로 도전성이며 접지되어 있다.
본 발명의 제 4 측면에 따른 플라즈마 처리 장치에 있어서, 상기 제 1 처리 가스 공급부의 처리 가스 공급기로부터 공급된 처리 가스는 접지되어 있는 상기 가스관과 유전체창을 통과하여 흐른다. 따라서, 처리 가스는 마이크로파에 의해 형성된 전기장에 노출되지 않게 되고, 이에 의해 이상 방전이 방지될 수 있다.
본 발명의 바람직한 실시예의 하나로서, 본 발명의 제 4 측면에 따른 플라즈마 처리 장치에 있어서, 상기 가스관은 유전체창의 일부를 관통하거나, 또는 복수개의 상기 가스관이 유전체창의 복수개의 대응 부분을 관통하여도 좋다. 대칭적인 가스 흐름 패턴이라는 면에서, 상기 유전체창의 일부를 관통할 때 상기 가스관은 유전체창의 대략 중심을 관통하는 것이 바람직하며, 또한 상기 복수개의 부분은 유전체창의 대략 중심에 대해 대칭으로 위치하는 것이 바람직하다.
또 다른 바람직한 실시예로서, 본 발명의 제 4 측면에 따른 플라즈마 처리 장치에 있어서, 상기 가스관의 가스 분사부는 유전체창으로부터 처리실 내로 돌출되어도 좋고, 구체적으로, 상기 가스관의 상기 가스 분사부는 유전체창으로부터 10 mm 이상 떨어져 있는 것이 바람직하다. 이러한 구성에 의해, 가스 분사부는 플라즈마 생성 영역 또는 플라즈마 확산 영역 외측에 위치하게 되어, 가스 분사부 주위에서의 이상 방전을 방지할 수 있다.
또한, 제 4 측면에 따른 상기 플라즈마 처리 장치는 처리실 내에서 기판을 탑재하는 서셉터를 더 포함하여도 좋은데, 상기 유전체창은 서셉터와 대향하는 천정면으로 기능한다. 상기 서셉터가 마련되는 경우, 상기 플라즈마 처리 장치는 서셉터에 자기 바이어스 전압을 발생시켜 플라즈마 내의 이온을 인입하기 위해 RF파를 인가하는 RF파 발생기를 포함하는 것이 바람직하다.
본 발명의 또 다른 바람직한 실시예로서, 상술한 추가 특징중 적어도 하나의 특징을 갖는 본 발명의 제 4 측면에 따른 플라즈마 장치에 있어서, 상기 유전체창은 평면 안테나의 구성 요소 중 하나이다. 이 경우, 상기 평면 안테나는 래디얼 라인 슬롯 안테나를 포함해도 좋다. 또한, 상기 마이크로파 전송 라인은 그 일단부가 평면 안테나에 연결된 동축관을 포함한다.
본 발명의 또 다른 바람직한 실시예로서, 상술한 추가 특징중 적어도 하나의 특징을 갖는 본 발명의 제 4 측면에 따른 플라즈마 장치에 있어서, 상기 가스관은 내부 도전체 내에 형성되어 있다. 이 경우 상기 내부 도전체는, 내부 도전체의 중심축을 따라 연장하며 가스 통과에 이용가능한 중공부를 포함하는 것이 바람직하다. 또한, 상기 가스관은 중공부와 연통하고, 상기 유전체창에 형성된 관통 구멍을 통해 처리실 내로 연장하는 것이 바람직하다. 이러한 구성에 의해, 처리 가스가 효율적이고 간단한 가스 도입 구성에 의해 처리실 내로 도입될 수 있다.
본 발명의 또 다른 바람직한 실시예로서, 상기 마이크로파 전송 라인은 그 일단이 마이크로파 발생기에 연결된 도파관과, 상기 도파관에서의 전자파의 전송 모드를 동축관에서의 다른 전송 모드로 바꾸기 위해 상기 도파관의 타단을 상기 동축관의 일단에 연결하는 도파관-동축관 변환기를 포함한다. 이 경우, 마이크로파 발생기에서 출력된 마이크로파는 도파관, 도파관-동축관 변환기 및 동축관을 통해 전반하고, 처리실 내로 도입된다. 그 사이, 처리 가스 공급부로부터의 처리 가스는 접지되어 있고 마이크로파에 의해 발생된 전기장에 노출되지 않은 채로 동축관의 내부 도전체를 포함하는 가스관을 통해 흘러, 처리실 내로 도입된다.
본 발명의 또 다른 바람직한 실시예로서, 본 발명의 제 4 측면에 따른 플라즈마 처리 장치는 상기 처리 가스를 상기 처리실로 도입하기 위한 제 2 처리 가스 도입부를 더 포함한다. 상기 제 2 처리 가스 공급부는 처리 가스를 처리실 내의 중심부로 분사하는 측벽 분사 구멍을 포함한다. 이 경우 제 4 측면에 따른 플라즈마 처리 장치는 제 1 처리 가스 공급부를 통해 처리실 내로 도입되는 처리 가스의 유량을 제어하는 제 1 유량 제어부와, 제 2 처리 가스 공급부를 통해 처리실 내로 도입되는 처리 가스의 유량을 제어하는 제 2 유량 제어부를 더 포함한다. 이러한 구성에 의해, 해당 처리 가스 공급부로부터 처리실로 도입되는 처리 가스의 유량 및 유량비를 제어할 수 있고, 따라서 플라즈마 밀도와 분포 균일성을 향상시킬 수 있다.
본 발명의 제 5 측면에 따르면, 기판에 소정의 처리를 실시하기 위해 플라즈마를 이용하는 플라즈마 처리 장치가 제공된다. 이 플라즈마 처리 장치는 소정의 플라즈마 처리가 실시되는 기판을 수납하는 처리실과, 처리실을 감압 배기하는 배기부와, 처리 가스를 처리실로 공급하며, 전기적으로 도전성이며 접지되어 있는 가스 공급 라인과, 플라즈마를 생성하기 위해 마이크로파를 발생시키는 마이크로파 발생기와, 마이크로파를 처리실 내로 도입하며 가스 공급 라인 둘레에 연장하는 유전체창과, 상기 마이크로파 발생기로부터의 마이크로파를 유전체창으로 전파하는 마이크로파 전송 라인을 포함한다.
이러한 제 5 측면에 따른 플라즈마 처리 장치에서, 상기 처리 가스 공급부의 처리 가스 공급기로부터 공급된 처리 가스는 가스 공급관을 흘러 처리실 내로 도입된다. 그 사이, 마이크로파 발생기로부터 출력된 마이크로파는 마이크로파 전송 라인을 전반하여 가스 공급 라인 둘레에 연장하는 유전체창을 통해 처리실 내로 도입된다. 상기 가스 공급 라인의 일단의 가스 분사 구멍으로부터 분사된 처리 가스는 처리실 내에 확산하고, 마이크로파에 의해 유전체창 근처에서 이온화된다. 이러한 플라즈마 처리 장치에서도, 가스 공급관의 단부가 유전체창으로부터 처리실 내로 돌출하는 것이 바람직하다.
본 발명의 여러 실시예에 따르면, 마이크로파 전송 라인, 방사로 또는 처리 가스 분사부에서의 이상 방전을 방지할 수 있는 플라즈마 처리 장치가 제공된다. 따라서, 플라즈마 밀도의 균일성과 제어성이 우수한 플라즈마가 구현될 수 있고, 이에 의해 플라즈마 처리의 성능과 특질이 향상될 수 있다. 또한, 플라즈마 조건 또는 플라즈마 처리를 간단히 감시할 수 있는 플라즈마 처리 장치 또한 제공된다.
도 1은 본 발명의 제 1 실시예에 따른 플라즈마 처리 장치를 개략적으로 도시한 단면도이다.
도 2는 도 1에 도시된 플라즈마 처리 장치의 주요부를 개략적으로 도시하고 있다.
도 3은 도 1에 도시된 플라즈마 처리 장치에 사용된 슬롯 안테나의 평면도이다.
도 4는 본 발명의 제 1 실시예에 따른 플라즈마 처리 장치의 변형예를 개략적으로 도시한 단면도이다.
도 5는 본 발명의 제 1 실시예에 따른 플라즈마 처리 장치의 또 다른 변형예를 개략적으로 도시한 단면도이다.
도 6은 본 발명의 제 2 실시예에 따른 플라즈마 처리 장치를 개략적으로 도시한 단면도이다.
도 7은 도 6에 도시된 플라즈마 처리장치의 주요부를 개략적으로 도시하고 있다.
도 8은 도 6에 도시된 플라즈마 처리 장치에서 유전체창으로부터 서셉터 방향으로의 전자 밀도 분포의 실험 결과를 도시하고 있다.
도 9는 도 6에 도시된 플라즈마 처리 장치에서 유전체창으로부터 서셉터를 향하는 방향으로의 전자 온도 분포의 실험 결과를 도시하고 있다.
도 10은 본 발명의 제 2 실시예에 따른 플라즈마 처리 장치의 변형예를 개략적으로 도시한 단면도이다.
이하에 첨부 도면을 참조하여 본 발명의 한정적이지 않은 실시예에 대해 설명한다. 도면에서 동일 또는 대응하는 구성요소에는 동일 또는 대응하는 부호를 부여한다. 첨부 도면들은 본 발명을 설명하기 위한 것으로, 각 구성요소 단독의 혹은 각 구성요소간의 크기 및 상대적 비율은 고려되지 않았다. 따라서, 특정 두께 혹은 크기는 하기 실시예를 참고하여 당업자에 의해 결정되어야 한다.
(제 1 실시예)
도 1은 본 발명의 제 1 실시예에 따른 마이크로파 플라즈마 에칭 장치(1)를 개략적으로 도시한 단면도이다. 평면 SWP형 플라즈마 처리 장치로 구성된 마이크로파 플라즈마 에칭장치(1)는 알루미늄 또는 스테인리스 스틸등의 금속으로 이루어진 원통 형상의 챔버(처리실)(10)를 가지고 있다. 챔버(10)는 안전을 위해 접지되어 있다.
우선, 마이크로파 플라즈마 에칭 장치(1)의 챔버(10) 내에서 마이크로파 플라즈마의 생성에 직접 기여하지 않는 구성 요소에 관하여 먼저 설명한다.
챔버(10)의 하부 중심부에는 반도체 웨이퍼(W)(이하에서는 "웨이퍼(W)"라 칭함)를 탑재하는 서셉터(12)가 설치되어 있다. 서셉터(12)는 챔버(1)의 바닥부에서 상방으로 연장된 원통형의 지지부(14)에 의해 수평으로 지지되어 있다. 상기 원통형의 지지부(14)는 절연재로 이루어져 있다. 또한, 서셉터(12)는 원판 형상으로 형성되어 있고, 예를 들면, 알루미늄으로 구성되어, RF파가 인가되는 하부 전극으로서 기능하도록 구성되어 있다.
상기 원통형 지지부(14)의 외주연부를 따라 챔버(10)의 바닥부로부터 상방으로 연장된 또다른 원통형 지지부(16)와, 챔버(10)의 내측벽과의 사이에 링 형상의 배기로(18)가 마련된다. 상기 원통형의 지지부(16)는 전도성을 갖는다. 링 형상의 배플 플레이트(20)가 배기로(18)의 상부(혹은 도입부)에 배치되어 있고, 배기로(18)의 하부에 배기구(22)가 마련되어 있다. 챔버(10) 내에 있어서 서셉터(12)상의 웨이퍼(W)에 대해 대칭적으로 배치된 균일한 가스 흐름 패턴을 얻기 위해, 복수 개의 배기부(22)가 원주 방향을 따라서 동일한 각도 간격으로 배치되는 것이 바람직하다. 각 배기구(22)는 배기관(24)를 통해 배기장치(26)에 연결되어 있다. 배기 장치(26)는 처리실(10) 내를 배기하여 소망하는 압력으로 감압할 수 있는 터보 분자 펌프(TMP)와 같은 진공 펌프를 가질 수 있다. 또한, 챔버(10)의 외벽에는 게이트 밸브(28)가 장착되어 있다. 게이트 밸브(28)는 웨이퍼(W)를 챔버(10)에 대해 반입 및 반출하기 위한 반송구를 개폐한다.
서셉터(12)는 정합부(32) 및 급전 막대(34)를 거쳐 RF 바이어스 전압을 서셉터(12)에 인가하는 RF전원(30)에 전기적으로 연결되어 있다. RF 전원(30)은 예를 들면 13.56 MHz의 상대적으로 낮은 주파수를 갖는 RF파를 소정의 전력 레벨로 출력한다. 이러한 낮은 주파수는 서셉터(12)상의 웨이퍼(W)에 인입되는 이온의 에너지를 조절하는데 적합하다. 정합기(32)는 전원(30)의 출력 임피던스와 전극(서셉터), 챔버(10) 내에 생성된 플라즈마 및 챔버(10)를 포함하는 부하의 임피던스를 정합하기 위한 정합 소자를 포함한다. 상기 정합 소자는 자기 바이어스를 생성하기 위한 블로킹 컨덴서(blocking condenser)를 가지고 있다.
정전척(36)이 서셉터(12)의 상면에 배치되어 있다. 정전척(36)은 정전력에 의해 웨이퍼(W)를 서셉터(12) 상에 유지한다. 정전척(36)은 한 쌍의 절연막(36b, 36c)과 그 사이에 개재된 전도성막으로 형성된 전극(36a)을 구비한다. 상기 전극(36a)에는 직류 전원(40)이 스위치(42)를 거쳐 전기적으로 연결되어 있다. 직류 전원(40)으로부터 정전척(36)에 인가된 직류 전압은 쿨롱력을 생성하고, 이에 의해 웨이퍼(W)를 정전척(36)상에 유지한다. 정전척(36)의 바깥쪽에는 포커스링(38)이 웨이퍼(W)를 둘러싸도록 배치되어 있다.
냉각 매체실(44)은 서셉터(12) 내에 배치되어 있다. 냉각 매체실(44)는 원주방향으로 연장하는 링 형상을 가지고 있다. 소정 온도의 냉각 매체 혹은 냉각수가 배관(46, 48)을 통해 칠러 유닛(도시하지 않음)으로부터 냉각 매체실(44)로 공급되어 냉각 매체실(44) 및 배관(46,48)을 통해 순환된다. 온도 조절된 냉각 매체 등에 의해 정전척(36)상의 웨이퍼(W)의 온도를 조절할 수 있다. 또한, He 가스와 같은 열 전도 가스가 열 전도 가스 공급부(도시하지 않음)로부터 가스 공급관(50)을 통해 웨이퍼(W)와 정전척(36) 사이에 공급된다. 또한, 챔버(10)은 서셉터(12)를 수직으로 관통하고 웨이퍼(W)가 챔버(10)로부터 반입 및 반출 될 때 웨이퍼(W)를 승강 및 하강시키는 승강 자유자재의 리프트 핀(도시하지 않음)을 가지고 있다. 상기 리프트 핀은 승강 기구(도시하지 않음)에 의해 구동될 수 있다.
이어서, 마이크로파 플라즈마 에칭 장치(1)의 챔버(10) 내에서 마이크로파 플라즈마를 생성하는데 기여하는 구성 요소 및 부재에 관하여 설명한다.
평면 안테나(55)가 마이크로파를 챔버(1) 내로 도입하기 위하여 서셉터(12)의 상방에 배치되어 있다. 평면 안테나(55)는 유전체창으로서의 원형의 석영판(52)과 원형의 래디얼 라인 슬롯 안테나(RLSA)(54)를 포함한다. 구체적으로, 석영판(52)은 챔버(10)에 기밀하게 장착되어 있고, 서셉터(12)와 대향하는 챔버(10)의 천정면으로 기능한다. RLSA(54)는 석영판(52)의 상면에 배치되어 있고, 동심원으로 배치된 복수개의 슬롯을 갖는다. RLSA(54)는 유전체, 예를 들어, 석영으로 이루어진 지파판(56)을 거쳐 마이크로파 전송 라인(58)에 전자기적으로 연결되어 있다.
마이크로파 전송 라인(58)은 도파관(62), 도파관-동축관 변환기(64) 및 동축관(66)을 포함하며, 마이크로파 발생기(60)으로부터 출력된 마이크로파를 RLSA(54)로 전파한다. 도파관(62)은 예를 들면, 정사각형의 배관으로 이루어지고, 마이크로파 발생기(62)로부터의 TE 모드 마이크로파를 도파관-동축관 변환기(64)를 통해 전파한다.
도파관-동축관 변환기(64)는 도파관(62)과 동축관(66)을 연결하고, 도파관(62)에서의 TE 모드의 마이크로파를 동축관(66)에서의 TEM 모드의 마이크로파로 변환한다. 바람직하게는, 변환기(64)는 고전력 전송 레벨에서 발생하는 전자기장의 집중을 피하기 위해 도파관(62)에 연결된 상부의 직경이 크고, 동축관(66)의 내부 도체(68)에 연결된 하부의 직경이 작도록 구성되어 있다. 즉, 변환기(64)는 도 1 및 도 2에 도시된 바와 같이 역원추형(또는 도어 손잡이 모양)으로 형성되는 것이 바람직하다. 이하에서는 설명의 편의를 위해 변환기(64)를 역원추형부(68a)로 칭한다.
동축관(66)은 변환기(64)로부터 챔버(10)의 상측 중심부를 향해 수직 하방으로 연장되어 RLSA(54)에 연결되어 있다. 상세하게는, 동축관(66)은 외부 도체(70)와 내부 도체(68)로 구성된다. 외부 도체(70)는 그 상단이 도파관(62)에 접하며 지파판(56)에 닿도록 하방으로 연장되어 있다. 내부 도체(68)는 그 상단이 변환기(64)에 접하며 RLSA(54)에 닿도록 하방으로 연장되어 있다. 마이크로파는 내부도체(68)와 외부 도체(70) 사이에서 TEM 모드로 전반한다.
마이크로파 발생기(60)로부터 출력된 마이크로파는 도파관(62), 변환기(64) 및 동축관(66)을 포함하는 마이크로파 전송 라인(58)을 통해 전파되어, 지파판(56)을 통과하여 RLSA(54)로 공급된다. 그리고, 마이크로파는 지파판(56) 내에서 반경 방향으로 퍼져나가 RLSA(54)의 슬롯을 통해 챔버(10)을 향해 방출된다. 슬롯을 통해 방출된 마이크로파는 표면파로서 석영판(52)의 하면을 따라 전반하고, 석영판(52)의 하면 근처의 가스를 이온화하여, 챔버(10) 내에 플라즈마를 생성한다.
안테나 이면판(72)은 지파판(56)의 상면에 마련되어 있다. 안테나 이면판(72)은 예를 들면 알루미늄으로 이루어져있다. 안테나 이면판(72)은 소정 온도의 냉각 매체 또는 냉각수가 유체관(74) 및 배관(76, 78)을 통해 순환되도록 칠러 유닛(도시하지 않음)에 연결된 유체관(74)을 포함하고 있다. 즉, 안테나 이면판(72)은 석영판(52)에서 생성된 열을 흡수하고 이 열을 외부로 전달하는 냉각 재킷으로 작용한다.
도 1에 도시된 바와 같이, 본 실시예에서는, 가스관(80)이 동축관(66)의 내부 도체(68)를 관통하도록 마련되어 있다. 또한, 제 1 가스 공급관(84)(도 1참조)의 일단이 가스관(80)의 상부 개구에 연결되어 있고, 그 타단은 처리 가스 공급기(82)에 연결되어 있다. 또한, 가스 분사 구멍(86)이 석영판(52)의 중심부에 형성되어 있고, 챔버(10) 내에 개방되어 있다. 상기의 구성을 갖는 제 1 처리 가스 도입부(88)에서, 처리 가스 공급기(82)로부터의 처리 가스는 제 1 가스 공급관(84) 과 동축관(66) 내의 가스관(80)을 흘러, 가스 분사 구멍(86) 하부에 위치한 서셉터(12)를 향해 가스 분사 구멍(86)으로부터 분사된다. 분사된 처리 가스는 챔버(10) 내에서 반경 방향을 향해 외측으로 퍼져나간다. 이것은 부분적으로는 처리 가스가 배기 장치(26)에 의해 서셉터(12)를 둘러싼 배기로(18)를 향해 당겨지기 때문이다. 한편, 제 1 처리 가스관(84)의 중간에는 매스 플로우 컨트롤러(MFC)(90)와 온오프 밸브(92)가 마련되어 있다.
본 실시예에서는, 처리 가스를 챔버(10)로 도입하기 위해 제 1 처리 가스 도입부(88) 외에 제 2 처리 가스 도입부(94)도 마련되어 있다. 제 2 처리 가스 도입부(94)는 버퍼실(96)과, 복수개의 측면 분사 홀(98)과 가스 공급관(100)을 포함한다. 버퍼실(96)은 챔버(10)의 측벽부 내에서 측벽부의 원주 방향을 따라 연장되는 중공의 링 형상으로 형성되어 있고, 석영판(52)보다 다소 낮게 위치하고 있다. 복수개의 측면 분사 홀(98)은 챔버(10) 내의 플라즈마 영역을 향해 개방되어 있고, 챔버(10)의 내벽을 따라 등각도 간격으로 배치되어 있으며, 버퍼실(96)과 가스 연통되어 있다. 가스 공급관(100)은 버퍼실(96)을 처리 가스 공급기(82)에 연결한다. 가스 공급관(100)의 중간에는 MFC(102)와 온오프 밸브(104)가 마련되어 있다.
제 2 처리 가스 도입부(94)에서는, 처리 가스 공급기(82)로부터의 처리 가스가 제 2 처리 가스 공급관(100)을 통해 챔버(10)의 측벽부 내의 버퍼실(96) 내로 도입된다. 처리 가스로 채워진 버퍼실(96) 내의 압력은 그 원주 방향으로 따라 균일하게 분포하고, 이에 의해 처리 가스가 복수개의 분사 홀(98)로부터 챔버(10) 내의 플라즈마 영역을 향해 균일하게 수평으로 분사된다. 이 경우, 처리 가스가 배기로(18) 상을 흐를 때 배기구(22)를 향해 당겨지기 때문에 분사 홀(98)로부터 분사된 처리 가스를 웨이퍼(W) 상에 균일하게 분포시키는 것은 어려울 수 있다. 그러나, 상기 설명한 바와 같이, 본 실시예에서는, 석영판(52)의 중심에 위치한 가스 분사 구멍(86)으로부터 분사된 처리 가스는 외측 반경 방향으로 퍼져나가 배기로(18)을 향해 흐르기 때문에, 배기 장치(26)가 측면 분사 홀(98)에서 분사된 처리 가스에 미치는 영향은 그리 크지 않다. 따라서, 플라즈마가 서셉터(12)상의 웨이퍼(W) 상에 균일하게 분포될 수 있다.
한편, 제 1 처리 가스 도입부(88) 및 제 2 처리 가스 도입부(94)로부터 각각 챔버(10) 내로 도입된 처리 가스는 동일할 수도 있고, 다를 수도 있다. 이들 처리 가스의 유량은 MFC(90, 102)에 의해 각각 제어되거나, 또는 소정의 유량비로 챔버 내로 도입되어, 이들 가스와 플라즈마는 반경 방향으로 균일하게 분포하게 된다.
도 2는 도파관-동축관 변환기(64) 및 동축관(66)의 상세 구성을 도시하고 있다. 내부 도체(68)은 예를 들면 알루미늄으로 이루어져 있다. 가스관(80)은 내부 도체(68)의 중심축을 따라 내부 도체(68)를 관통한다. 또한, 냉각 매체관(106)이 가스관(80)과 평행하게 형성되어 있다. 냉각 매체관(106)은 수직 칸막이(미도시)에 의해 구분된 진입로(106a)와 진출로(106b)를 포함하고 있다. 역원추형부(68a)의 상부에는, 배관(108)이 냉각 매체관(106)의 진입로(106a)에 연결되어 있다. 상기 배관(108)의 반대측 단부는 칠러 유닛(미도시)에 연결되어 있다. 또한, 배관(110)이 냉각 매체관(106)의 진출로(106b)에 연결되어 있다. 상기 배관(110)의 반대측 단부 역시 상기 칠러 유닛에 연결된다. 이러한 구성에 의해, 칠러 유닛으로부터 공급된 냉각 매체 또는 냉각수는 진입로(106a)를 통해 하방으로 흘러 진입로(106a)의 바닥에 도달하고 진출로(106)를 통해 다시 상방으로 흘러 배관(110) 내로 흘러들어간다. 이에 의해, 내부 도체(68)가 냉각된다.
도 2에 도시된 바와 같이, RLSA(54)의 중심에는 가스관(80)이 삽입되는 개구(54a)가 마련되어 있다. 또한, 개구(54a)는 석영판(52)의 가스 분사 구멍(86)과 동축으로 배치되어 있다. 이러한 구성에 있어서는, RLSA(54)로부터 방사된 전자파(마이크로파)가 가스 분사 구멍(86)에 도달하지 않기 때문에, 가스 분사 구멍(86)에서는 방전이 일어나지 않는다. 한편, 가스 분사 구멍(86)은 석영판(52)에서 복수의 홀로 분기될 수 있다. 복수의 홀은 석영판(52)의 반경 방향으로의 소정 영역에 배치된다.
도 3은 본 실시예에서의 RLSA(54) 내에의 슬롯 패턴을 도시한다. 도시된 바와 같이 RLSA(54)는 동심원으로 분포된 복수개의 슬롯을 갖는다. 상세하게는 각각의 길이방향이 대략 직각을 이루는 두 종류의 슬롯(54b, 54c)이 동심원 형상으로 교대로 배열되어 있다. 이들 동심원은 RLSA(54)의 반경 방향으로 전반하는 마이크로파의 파장에 따라 일정한 반경방향 간격으로 배열된다. 이러한 슬롯 패턴에 의하면, 마이크로파는 서로 교차하는 두 개의 편광 성분을 갖는 원형 편광 평면파로 변환되고, 이들 평면파가 RLSA(54)로부터 방사된다. 상술한 바와 같이 구성된 RLSA(54)는 마이크로파가 실질적으로 안테나의 전역에서 챔버(10)(도 1 참조) 내로 균일하게 방사될 수 있다는 장점을 갖고, 따라서 균일하고 안정적인 플라즈마를 형성하는데 적합하다.
한편, 본 발명의 제 1 실시예에 따른 마이크로파 플라즈마 에칭장치(1)에서, 배기 장치(26), RF 전원(30), 직류 전원(40)의 스위치(42), 마이크로파 발생기(60), 처리 가스 도입부(88,94), 칠러 유닛(미도시), 및 열 전도 가스 공급부(미도시)의 다양한 동작과 장치 전체의 총체적 동작은, 예를 들면 마이크로컴퓨터로 구성된 제어부(도시하지 않음)에 의해 제어된다.
이러한 마이크로파 플라즈마 에칭 장치(1)에 있어서 에칭 공정을 실행하기 위해서는, 게이트 밸브(28)을 연 후, 에칭 처리 대상의 웨이퍼(W)가 챔버(10) 내로 반송되어 정전척(36)상에 탑재된다. 이어서, 제 1처리 가스 도입부(88) 및 제 2처리 가스 도입부(94)로부터 에칭 가스(일반적으로, 혼합 가스)가 소정의 유량 및 소정 비율로 각각 도입된다. 이 때, 챔버(10)의 내부 압력이 설정 압력이 되도록, 챔버(10)는 배기 장치(26)에 의해 배기된다. 또한, RF 전원(30)이 활성화되어 매칭 소자(32)와 급전 막대(34)를 통해 소정 전력 레벨로 RF파가 출력된다. 또한, 스위치(42)가 온(on)되어 직류 전원(44)으로부터 직류 전압이 정전척(36)의 전극(36a)으로 인가되고, 이에 의해 웨이퍼(W)가 정전척(36)상에 견고히 유지된다. 그리고, 마이크로파 발생기(60)가 작동하여 마이크로파 전송 라인(58)을 통해 마이크로파를 RLSA(54)로 인가하고, 따라서, 마이크로파가 RLSA(54)로부터 석영판(52)을 통해 챔버(10) 내로 도입된다.
제 1 처리 가스 도입부(88)의 가스 분사 구멍(86) 및 제 2 처리 가스 도입부(94)의 측면 분사 홀(98)로부터 챔버(10) 내로 도입된 에칭 가스는 석영판(52) 하부에서 확산하고, 석영판(52)의 하면을 따라 전반하는 표면파(마이크로파)로부터 방출된 마이크로파 에너지에 의해 이온화된다. 따라서, 표면 플라즈마가 발생된다. 이후, 석영판(52) 하부에 발생된 플라즈마는 하방으로 확산하고, 이에 의해 플라즈마 내의 라디칼에 의해서 웨이퍼(W)의 막이 등방성 에칭되거나, 플라즈마 내의 이온의 조사에 의해 상기 막이 수직으로 에칭된다.
마이크로파 플라즈마 처리 장치로서의 마이크로파 플라즈마 에칭 장치에 있어서, 고밀도 플라즈마가 표면파 여기에 의해 생성되어, 서셉터(12)상에 위치한 웨이퍼(W) 근방의 플라즈마의 전자 온도는 약 0.7 내지 1.5 eV로 낮게 형성된다. 따라서, 이온 조사 에너지가 감소하고, 이에 의해 에칭되는 막의 손상을 경감할 수 있다. 또한, 마이크로파 에너지는 RLSA(54)를 통해 대면적 내로 도입되기 때문에, 플라즈마 에칭 장치는 크기가 큰 웨이퍼(W)를 쉽게 처리할 수 있다. 또한, 가스관(80)이 마이크로파 전송관(58)의 단부인 동축관(66)의 내부 도체(68)를 관통하도록 구성되어 있고, 처리 가스가 가스 분사 구멍(86)으로부터 가스관(80)을 통해 챔버(10) 내로 도입되기 때문에, 안테나의 성능 저하 및 비정상적 방전등과 같은 악영항 없이 플라즈마 밀도의 균일성과 웨이퍼면내 전체의 에칭률의 균일성을 향상시킬 수 있다.
또한, 마이크로파 플라즈마 에칭 장치(1)는 챔버(10)에 자기장을 인가하지 않고 마이크로파 플라즈마를 발생시키기 때문에, 영구 자석, 또는 마그네틱 코일등을 포함하는 자기장 생성 기구가 불필요해지고, 따라서 마이크로파 플라즈마 에칭 장치의 구성이 간단해진다. 그러나, 본 실시예에 따른 플라즈마 에칭 장치는 예를 들면, 전자 공명(ECR)을 이용한 플라즈마 에칭 장치일 수도 있다.
도 4를 참조하여, ECR 플라즈마 처리 장치는 챔버(10) 둘레에 배치된 영구 자석 또는 마그네틱 코일 포함하는 자기장 생성 기구(112)를 포함한다. 자기장 생성 기구(112)는, 플라즈마 생성 영역의 모든 지점에서 마이크로파의 주파수와 전자 사이클로트론 진동수(electron cyclotron frequency)가 같아지도록, 챔버(10) 내의 플라즈마 생성 영역에 자기장을 인가한다. 이에 의해, 고밀도 플라즈마가 생성된다. 2.45 GHz의 마이크로파를 이용할 경우, 약 875 Gauss의 자기장이 인가될 수 있다.
한편, 챔버(10)의 상부 중심부(가스 분사 구멍(86))로부터 처리 가스를 도입하기 위해 제 1 처리 가스 도입부(88)를 마련하고, 제 2 처리 가스 도입부(94)(도 1 참조)는 도 4에 도시된 바와 같이 생략될 수 있다.
또한, 도 2에 도시된 가스관(80)에 해당하는 동축관(66)의 내부 도체(68) 내에 형성된 중공 영역은 본 발명에 따른 다른 실시예에 있어서 여러가지 다양한 목적으로 이용될 수 있다. 도 5를 참조하여, 모니터부(114)가 역원추형부(68a)상에 위치되어 있고, 내부 도체(68)의 중공 영역은 모니터부(114)에 의해 플라즈마 처리를 모니터하기 위한 광 측정 라인으로서 작용한다. 예를 들면, 플라즈마 에칭의 종점을 검지하기 위해, 챔버(10)의 상부 중앙부에 위치한 중공 영역 내로 삽입된 광섬유 프로브(미도시)를 통해 플라즈마 스펙트럼을 모니터부(114)에 의해 관찰하여, 분광 광도법에 의해 분석할 수 있다. 이에 의해, 특정 가스종으로부터의 특정 발광의 강도의 피크값이 증가하거나 감소하는 시점에서 종점을 검출할 수 있다. 또한, 내부 도체(68)의 중공 영역은 웨이퍼(W)상의 반사방지막 또는 레지스트 막의 두께를 측정하기 위하여 레이저빔을 전반하는 광로로 이용될 수도 있다. 또한, 챔버(10)의 상부 중심부 및 그 주변에서의 온도를 측정하기 위해 그 말단부에 열전대를 구비하고 있는 온도 센서가 내부 도체(68)의 중공 영역에 삽입될 수도 있다.
또한, 동축관(66)의 내부 도체(68)는 가스관(80)과는 다른 배관을 구비해도 좋다. 예를 들면, 동축관(66)의 내부 도체(68)에는 가스관(80) 대신에 예를 들면 이중관을 이용하는 복수형 배관 구성이 이용될 수 도 있다. 이 경우, 복수개의 관 각각은 독립 라인(가스 공급 라인, 측정 라인 등)으로 이용될 수 있다. 또한, 본 발명의 실시예에 따른 플라즈마 에칭 장치(1)는 처리 가스를 챔버(10) 내로 도입하기 위해, 제 1 및 제 2 처리 가스 도입부(88, 94) 대신에 혹은 추가로 제 3 처리 가스 도입부를 포함할 수 있다.
또한, 상기한 각 구성 요소, 부재 또는 그들의 기능은 다양한 방법으로 수정 및 변경될 수 있다. 예를 들면, RLSA(54) 대신에, 다른 종류의 슬롯 안테나를 이용할 수 있다. 특히, 대면적 플라즈마 영역이 필요하지 않을 시에는, 마이크로파가 안테나가 아니라 덕트에 의해 챔버 내로 도입될 수 있는 바, 이 방법을 마이크로파 주입법이라 칭한다. 또한, 마이크로파 전송 라인(58)이 다르게 구성될 수도 있다. 예를 들면, 마이크로파 발생기(60)와 정사각형 개구를 갖는 도파관(62) 사이에 다른 전송 라인이 삽입될 수 있다. 또한, 도파관(62) 대신에 원형관이 사용될 수도 있다. 또한, 변환기(64)의 역원추형부(68a)는 도어 손잡이 형상 대신에 리지 가이드(ridge guide) 형상을 가질 수 있다. 또한, 원형의 도파관은 변환기(64)없이 챔버(10)에 전자기적으로 연결 될 수 있다.
(제 2 실시예)
도 6 내지 도 9를 참조하여, 본 발명의 제 2 실시예에 따른 플라즈마 처리 장치를 설명한다. 도 6은 본 발명의 제 2 실시예에 따른 플라즈마 처리 장치(2)의 개략 단면도이다. 제 2 실시예의 플라즈마 처리 장치(2)는 웨이퍼(W)를 에칭 할 때에 있어서 제 1 실시예에 따른 플라즈마 처리 장치(1)와 실질적으로 동일한 방식으로 작동하지만, 챔버(10)의 상부 중심부에서의 가스 분사 구조에 있어 제 1 실시예의 플라즈마 처리 장치(1)와 차이점을 갖는다. 이하의 설명은 그 차이점을 중심으로 이루어진다.
도 6에 도시된 바와 같이, 가스관(80)이 동축관(66)의 내부 도체(68)를 관통하도록 구성되어 있고, 가스관(80)의 상부가 제 1 가스 공급관(84)를 통해 처리 가스 공급기(82)에 연결됨으로써, 가스관(80)과 제 1 가스 공급관(84)는 가스 연통하도록 되어 있다. 또한, 도전성 분사부(110)가 가스관(80)과 가스 연통되도록 내부 도체(68)의 하부에 연결되어 있다. 분사부(110)는 석영판(52)를 관통하여 석영판(52)의 하면으로부터 하방으로 돌출되어 있다. 또한, 분사부(110)은 그 하단에 처리 가스를 챔버(10) 내로 분사하기 위한 가스 분사 구멍(110a)을 갖는다.
이러한 구성을 갖춘 제 1 처리 가스 도입부(88)에 있어서, 처리 가스 공급기(82)로부터 소정 압력으로 공급된 처리 가스는 제1 가스 공급관(84), 가스관(80) 및 분사부(110)를 상기 순서로 흘러, 분사부(110)의 가스 분사 구멍(110a)으로부터 챔버(10) 내의 플라즈마 영역으로 분사된다. 한편, 제 1 처리 가스 공급관(84)은 매스 플로우 컨트롤러(MFC)(90)와 개폐 밸브(92)로 구성되어 있다.
도 7은 동축관(66)과 분사부(110)의 상세 구성을 도시한다. 동축관(66)의 내부 도체(68)는 예를 들면 알루미늄으로 이루어져 있고, 내부 도체(68)의 중심축을 따라 내부 도체(68)을 관통하는 가스관(80)을 구비한다. 분사부(110) 또한, 예를 들면, 알루미늄으로 이루어져 있고, 동축관(66)의 내부 도체(68) 내의 가스관(80)과 가스 연통하는 가스관(112)를 구비하고 있다. 한편, 제 1 가스 공급관(84)는 금속(또는 도체) 또는 수지(또는 절연체)로 이루어져 있다.
분사부(110)은 대직경의 상반부(114)와 소직경의 하반부(116)으로 구성된다. 상반부(114)는 석영판(52)에 형성된 오목부(118)에 끼워져 있고, 하반부(116)는 오목부(118)의 바닥 중심으로부터 석영판(52)의 하면을 통해 연장된 관통 구멍(120)에 삽입되어 있다. O-ring과 같은 밀봉 부재(122)가 상반부(114)와 오목부(118)의 바닥면 사이에 개재하고, 이에 의해 상반부(114)가 오목부(118)(석영판(52))에 대해 기밀하게 밀봉된다. 한편, 바람직하게는, 동축관(66) 및 분사부(110)는 축 대칭의 중심 또는 RLSA(54)(챔버 10 및 서셉터(12))의 중심을 통과하는 법선을 따라 배열된다.
도 7에 도시된 바와 같이, 분사부(110)의 상부는 RLSA(54)의 개구(54a)와 접해 있다. 따라서, 분사부(110)는 RLSA(54) 및 챔버(10)를 거쳐서, 또는 동축관(66)의 내부 도체(68), 외부 도체(70), 안테나 이면판(72) 및 챔버(10)를 통해 상기 순서로 접지될 수 있다. 또한, 소직경의 하반부(116)는 석영판(52)의 관통 구멍(120)으로부터 챔버(10) 내로 하방 돌출되어 있다. 하반부(116)의 돌출 거리(d)(또는, 가스 분사 구멍(110a)과 석영판(52)의 하면간의 거리)는 하기의 이유로 약 10 mm 이상으로 설정된다.
상술한 바와 같이, 가스관(80)은 마이크로파 전송 라인(58)의 단부인 동축관(66)의 내부 도체(68)을 관통한다. 또한, 가스관(80)과 가스 연통하는 도전성 분사부(110)는 내부 도체(68)의 하단부에 연결되어 있고 내부 도체(68)와 함께 접지된다. 또한, 분사부(110)는 RLSA(54)와 석영판(52)을 관통하여 챔버(10) 내로 돌출되어 있다.
이러한 구성에 있어서, 처리 가스 공급기(82)로부터의 처리 가스를 챔버(10) 내로 흘리는 내부 도체(68)와 도전성 분사부(110)는 챔버(10)를 통해 접지되어 있기 때문에, 처리 가스는 챔버(10)에 도달하기 전에 마이크로파에 노출되지 않는다. 따라서 원치 않는 이온화(비정상적 방전)가 처리 가스 공급기(82)로부터 가스 분사 구멍(110a)에 이르는 처리 가스 유로 내에서 일어나지 않게 된다. 특히, 가스관(112)이 분사부(110)에 의해 전기장으로부터 보호되기 때문에, 석영판(52) 내의 전기장은 분사부(110) 내의 가스관(112)으로 새어나가지 않는다. 따라서, 석영판(52) 내에서의 비정상적인 방전이 방지될 수 있고, 이에 의해 플라즈마 발생 효율, 플라즈마 밀도 분포등과 같은 플라즈마 특성이 안정적으로 유지될 수 있어, 처리 성능이 향상된다. 또한, 석영판(52)의 열화나 손상이 방지되기 때문에, 그 작동 수명이 증가된다.
또한, 본 실시예에서는 분사부(110)가 챔버(10) 내로 적정 거리(d)만큼 돌출되어 있기 때문에, 가스 분사 구멍(110a)에서의 방전이 방지될 수 있다. 상술한 바와 같이, 석영판(52)의 하면을 따라 전반하는 표면파로부터 방출된 마이크로파 에너지에 의해 상기 하면 근처의 처리 가스 분자가 이온화되어 마이크로파 플라즈마가 석영판(52)의 근처에 크게 집중된다. 그러나, 상기 표면파 에너지는 석영판(52)의 하면에서 조금만 멀어져도 급속히 감소한다. 이러한 감소된 표면파 에너지를 갖는 영역은 플라즈마 확산 영역으로 불리우며, 이 영역에서는 플라즈마 내에 생성된 활성종이 확산만 할 수 있다. 즉, 분사부(110)의 가스 분사 구멍(110a)을 석영판(52)의 하면으로부터 멀리 떨어져 플라즈마 확산 영역에 위치시키면 , 가스 분사 구멍(110a)에서의 처리 가스의 이온화가 효과적으로 방지된다.
도 8은 본 발명의 제 2 실시예에 따른 마이크로파 플라즈마 처리 장치(2)에서 수직 방향(Z)으로의 플라즈마 밀도 분포의 실험 결과를 도시하고 있다. 도 9는 본 발명의 제 2 실시예에 따른 마이크로파 플라즈마 처리 장치(2)에서 수직 방향(Z)으로의 플라즈마 온도 분포의 실험결과를 도시하고 있다. 이들 도면으로부터 유전체창(석영판(52))으로부터 약 10 mm 이상의 거리가 떨어진 지점은 모두 플라즈마 확산 영역 내에 포함됨을 알 수 있다. 가스 분사 구멍(110a)의 돌출 거리(d)를 약 10 mm 이상으로 설정하는 이유는 바로 이 때문이다. 그러나, 돌출 거리(d)가 너무 커지면, 가스 분사 구멍(110a)으로부터 분사된 처리 가스가 상방으로 흘러 석영판(52)에 도달하기 어려워진다. 따라서, 돌출 거리(d)는 약 30 mm 이하로 설정하는 것이 바람직하다. 또한, 분사부(110)의 하단부가 챔버(10) 내외로의 웨이퍼(W)의 반송을 방해하는지, 마이크로파 분포와 서셉터(12)에 인가되는 RF 바이어스에 영향을 줌으로써 에칭 속도에 영향을 미칠 수 있는지, 그리고 처리 가스가 웨이퍼(W)상을 확산하는 거리가 희망하는 처리 가스 분포를 얻을 수 있도록 충분한지의 여부를 고려하면, 분사부(110)의 가스 분사 구멍(110a)은 서셉터(12)상의 웨이퍼(W)로부터 약 20 mm 이상의 거리에 위치하는 것이 바람직하다.
한편, 도 7에서는 처리 가스가 가스 분사 구멍(110a)으로부터 하방으로 분사되도록 도시되어 있으나, 처리 가스는 분사부(110)의 하단부로부터 수평으로 분사되거나, 챔버(10)의 반경 방향으로 분사되어도 좋다. 또한, 예를 들면 이중관을 이용하는 복수형 배관 구조가 동축관(66)의 내부 도체(68)에 적용되어도 좋다. 이 경우, 복수의 관 각각이 독립관(가스 공급관, 측정관등)으로 이용될 수 있다.
제 2 실시예에 있어서, 처리 가스를 석영판(52)을 통해 도입하기 위해 동축관(66)의 내부 도체(68) 내에 위치한 가스관(80)이 제 1 처리 가스 도입부(88)의 가스 공급 라인의 일부로 이용되기 때문에, 가스 공급 라인(특히, 분사부(110))가 관통하는 석영판(52)의 관통 구멍은 가능한 한 작게 형성될 수 있고, 따라서 이상 방전의 가능성이 감소된다.
그러나, 제 1 처리 가스 도입부(88)의 가스 공급 라인은 동축관(66)의 내부 도체(68)를 통과하지 않도록 변형될 수 있다. 예를 들면, 도 10에 도시된 바와 같이, 제 1 가스 공급관(84)이 챔버(10)의 측벽에 형성된 개구를 통해 석영판(52)의 측벽으로부터 삽입되어 석영판(52) 내에서 수평으로 연장되도록 구성할 수도 있고, 석영판(52)의 하면으로부터 하방으로 돌출하도록 석영판(52)의 중심부에서 굴곡될 수도 있다. 또는, 제 1 가스 공급관(84)은 석영판(52) 내의 분사부(110)에 형성된 측면 개구에 연결될 수도 있다. 이러한 경우들에 있어서는, 적어도 석영판(52) 내에 위치한 제 1 가스 공급관(84) 부분은 도전성 물질로 이루어져 있고, 챔버(10)의 측벽을 통해 접지되어 있다.
또한, 도시하지는 않았으나, 제 2 실시예에 따른 플라즈마 처리 장치(2)의 또 다른 변형예로서, 그 일단부가 처리 가스 공급기(82)에 연결된 제 1 가스 공급관(84)이 동축관(66)의 내부 도체(68)가 아니라 안테나 이면판(72), 지파판(56), RLSA(54)와 석영판(52)을 이 순서로 관통하도록 구성되어도 좋다. 이 경우, 제 1 가스 공급관(84)의 타단부가 석영판(52)의 하면으로부터 하방으로 돌출되거나, 석영판(52) 내의 분사부(110)에 형성된 측면 개구에 연결되어도 좋다. 이러한 구성에서, 복수개의 분사부(110)가 링 형상으로 축대칭으로 배치될 수 있다. 한편, 적어도 석영판(52) 내에 위치한 제 1 가스 공급관(84) 부분은 도전성 물질로 이루어져 있고, 안테나 이면판(72)이나 RLSA(54)를 통해 접지되어 있다.
또 다른 변형예로서, 본 실시예에 따른 플라즈마 에칭 장치(2)는 처리 가스를 챔버(10) 내로 도입하기 위해, 제 1 및 제 2 처리 가스 도입부(88, 94) 대신에 혹은 추가로 제 3 처리 가스 도입부를 포함할 수 있다. 또한, 챔버(10)의 상부 중심부(가스 분사 구멍(86))로부터 처리 가스를 도입하기 위해 제 1 처리 가스 도입부(88)를 구비하고, 제 2 처리 가스 도입부(94)(도 1 참조)는 생략될 수 있다.
또한, 상기한 각 구성 요소, 부재 또는 그들의 기능은 다양한 방법으로 수정 및 변경될 수 있다. 예를 들면, RLSA(54) 대신에, 다른 종류의 슬롯 안테나를 이용할 수 있다. 특히, 대면적 플라즈마가 필요하지 않을 시에는, 마이크로파가 안테나가 아니라 덕트에 의해 챔버 내로 도입될 수 있는 바, 이 방법을 마이크로파 주입법(microwave injection method)이라 칭한다. 또한, 마이크로파 전송 라인(58)이 다르게 구성될 수도 있다. 예를 들면, 마이크로파 발생기(60)와 정사각형 개구를 갖는 도파관(62) 사이에 다른 전송 라인이 삽입될 수 있다. 또한, 도파관(62) 대신에 원형관이 사용될 수도 있다. 또한, 변환기(64)는 도어 손잡이 형상의 역원추형부(68a) 대신에 리지 가이드(ridge guide) 형상의 부재를 가질 수 있다. 또한, 원형의 도파관은 변환기(64)없이 챔버(10)에 전자기적으로 연결 될 수 있다.
또한, 본 발명의 제 2 실시예에 따른 마이크로파 플라즈마 에칭 장치(2)는 챔버(10)에 자기장을 인가하지 않고 마이크로파 플라즈마를 발생시키기 때문에, 영구 자석, 또는 마그네틱 코일등을 포함하는 자기장 생성 기구가 불필요해지고, 따라서 마이크로파 플라즈마 에칭 장치(2)의 구성이 간단해진다. 그러나, 본 실시예에 따른 플라즈마 에칭 장치는 예시한 바에 한정되지 않으며, 예를 들면, 제 1 실시예에서 도 4에 설명한 전자 공명(ECR)을 이용한 플라즈마 에칭 장치일 수도 있다.
본 발명의 실시예는 전술한 실시예의 마이크로파 플라즈마 에칭장치로 한정되지 않으며, 플라즈마 화학 기상 증착(CVD) 장치, 플라즈마 산화 장치, 플라즈마 질화 장치, 플라즈마 스퍼터링 장치등이 될 수 있다. 또한, 플라즈마 처리 대상인 기판은 반도체 웨이퍼에 한정되지 않고, 플랫 패널 디스플레이, 포토 마스크, CD 기판, 인쇄 기판 등을 제조하는데 사용되는 다양한 기판이 될 수 있다.
본 발명은 2007년 3월 29일 출원된 일본 특허 출원 번호 2007-088407과 2007-088653, 및 2007년 6월 25일과 2007년 7월 2일에 각각 출원된 미국 가출원 출원 번호 60/945,958 및 60/947,524에 기초한 것으로, 이들 출원의 전체 내용이 본 건에서 원용된다.
본 발명의 여러 실시예에 따르면, 마이크로파 전송 라인, 방사로 또는 처리 가스 분사부에서의 이상 방전을 방지할 수 있는 플라즈마 처리 장치가 제공된다. 따라서, 플라즈마 밀도의 균일성과 제어성이 우수한 플라즈마가 구현될 수 있고, 이에 의해 플라즈마 처리의 성능과 특질이 향상될 수 있다. 또한, 플라즈마 조건 또는 플라즈마 처리를 간단히 감시할 수 있는 플라즈마 처리 장치 또한 제공된다.

Claims (20)

  1. 기판에 소정의 플라즈마 처리를 실시하기 위해 플라즈마를 이용하는 플라즈마 처리 장치에 있어서,
    소정의 플라즈마 처리가 실시되는 기판을 수납하는 감압 배기 가능한 처리실과,
    플라즈마를 생성하기 위해 마이크로파를 발생시키는 마이크로파 발생기와,
    마이크로파를 상기 처리실 내로 도입하는 유전체창과,
    상기 마이크로파 발생기로부터의 마이크로파를 상기 유전체창으로 전파하는 마이크로파 전송 라인과,
    처리 가스를 상기 처리실로 공급하기 위해 유전체창을 관통하여 처리실로 연장된 가스관을 포함하는 제 1 처리 가스 공급부를 포함하고,
    상기 가스관은 전기적으로 도전성이며, 상기 처리실을 통해 접지되어 있는 것을 특징으로 하는 플라즈마 처리 장치.
  2. 제 1 항에 있어서,
    상기 가스관은 상기 유전체창의 일부를 관통하는 것을 특징으로 하는 플라즈마 처리 장치.
  3. 제 2 항에 있어서,
    상기 가스관은 상기 유전체창의 중심을 관통하는 것을 특징으로 하는 플라즈마 처리 장치.
  4. 제 1 항에 있어서,
    복수개의 상기 가스관이 상기 유전체창의 복수개의 대응 부분을 관통하고, 상기 복수개의 부분은 상기 유전체창의 중심에 대해 대칭으로 위치하고 있는 것을 특징으로 하는 플라즈마 처리 장치.
  5. 제 1 항에 있어서,
    상기 가스관의 가스 분사부는 상기 유전체창으로부터 상기 처리실 내로 돌출하는 것을 특징으로 하는 플라즈마 처리 장치.
  6. 제 5 항에 있어서,
    상기 가스관의 상기 가스 분사부는 상기 유전체창으로부터 10 mm 이상 떨어져 있는 것을 특징으로 하는 플라즈마 처리 장치.
  7. 제 1 항에 있어서,
    상기 처리실 내에서 기판을 탑재하는 서셉터를 더 포함하고, 상기 유전체창이 상기 서셉터와 대향하는 천정면으로 기능하는 것을 특징으로 하는 플라즈마 처리 장치.
  8. 제 7 항에 있어서,
    상기 서셉터에 자기 바이어스 전압을 발생시키기 위해 RF파를 인가하는 RF파 발생기를 더 포함하는 것을 특징으로 하는 플라즈마 처리 장치.
  9. 제 7 항에 있어서,
    상기 플라즈마 처리 장치는 평면 안테나를 더 포함하며, 상기 유전체창은 상기 평면 안테나의 구성 요소 중 하나인 것을 특징으로 하는 플라즈마 처리 장치.
  10. 제 9 항에 있어서,
    상기 평면 안테나는 래디얼 라인 슬롯 안테나를 포함하는 것을 특징으로 하는 플라즈마 처리 장치.
  11. 제 9 항에 있어서,
    상기 마이크로파 전송 라인은 그 일단부가 상기 평면 안테나에 연결된 동축관을 포함하는 것을 특징으로 하는 플라즈마 처리 장치.
  12. 제 11 항에 있어서,
    상기 가스관은 동축관의 내부 도전체 내에 형성되어 있는 것을 특징으로 하는 플라즈마 처리 장치.
  13. 제 12 항에 있어서,
    상기 동축관의 내부 도전체는 가스 통과에 이용가능한 중공부를 포함하고 있고, 상기 중공부는 상기 동축관의 내부 도전체의 중심축을 따라 연장하는 것을 특징으로 하는 플라즈마 처리 장치.
  14. 제 13 항에 있어서,
    상기 가스관은 상기 중공부와 연통하고, 상기 유전체창에 형성된 관통 구멍을 통해 상기 처리실 내로 연장하는 것을 특징으로 하는 플라즈마 처리 장치.
  15. 제 11 항에 있어서,
    상기 마이크로파 전송 라인은,
    일단이 상기 마이크로파 발생기에 연결된 도파관과,
    상기 도파관에서의 전자파의 전송 모드를 상기 동축관에서의 다른 전송 모드로 바꾸기 위해 상기 도파관의 타단을 상기 동축관의 일단에 연결하는 도파관-동축관 변환기를 포함하는 것을 특징으로 하는 플라즈마 처리 장치.
  16. 제 1 항에 있어서,
    처리 가스를 상기 처리실로 도입하기 위한 제 2 처리 가스 공급부를 더 포함하는 것을 특징으로 하는 플라즈마 처리 장치.
  17. 제 16 항에 있어서,
    상기 제 2 처리 가스 공급부는 처리 가스를 상기 처리실 내의 중심부로 분사하는 측벽 분사 구멍을 포함하는 것을 특징으로 하는 플라즈마 처리 장치.
  18. 제 16 항에 있어서,
    상기 제 1 처리 가스 공급부를 통해 상기 처리실 내로 도입되는 처리 가스의 유량을 제어하는 제 1 유량 제어부와
    상기 제 2 처리 가스 공급부를 통해 상기 처리실 내로 도입되는 처리 가스의 유량을 제어하는 제 2 유량 제어부를 더 포함하는 것을 특징으로 하는 플라즈마 처리 장치.
  19. 기판에 소정의 플라즈마 처리를 실시하기 위해 플라즈마를 이용하는 플라즈마 처리 장치에 있어서,
    소정의 플라즈마 처리가 실시되는 기판을 수납하는 처리실과,
    상기 처리실을 감압 배기하는 배기부와,
    처리 가스를 상기 처리실로 공급하고, 전기적으로 도전성이며, 상기 처리실을 통해 접지되어 있는 가스 공급 라인과,
    플라즈마를 생성하기 위해 마이크로파를 발생시키는 마이크로파 발생기와,
    마이크로파를 상기 처리실 내로 도입하고, 상기 가스 공급 라인 둘레에 연장하는 유전체창과,
    상기 마이크로파 발생기로부터의 마이크로파를 상기 유전체창으로 전파하는 마이크로파 전송 라인을 포함하는 것을 특징으로 하는 플라즈마 처리 장치.
  20. 제 19 항에 있어서,
    상기 가스 공급 라인의 가스 분사부가 상기 유전체창으로부터 상기 처리실 내로 돌출하는 것을 특징으로 하는 플라즈마 처리 장치.
KR1020127003140A 2007-03-29 2008-03-28 플라즈마 처리 장치 KR101333112B1 (ko)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JPJP-P-2007-088407 2007-03-29
JP2007088407A JP5438260B2 (ja) 2007-03-29 2007-03-29 プラズマ処理装置
JP2007088653A JP5522887B2 (ja) 2007-03-29 2007-03-29 プラズマ処理装置
JPJP-P-2007-088653 2007-03-29
US94595807P 2007-06-25 2007-06-25
US60/945,958 2007-06-25
US94752407P 2007-07-02 2007-07-02
US60/947,524 2007-07-02
PCT/JP2008/056744 WO2008123605A1 (en) 2007-03-29 2008-03-28 Plasma process apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020117016076A Division KR101173268B1 (ko) 2007-03-29 2008-03-28 플라즈마 처리 장치

Publications (2)

Publication Number Publication Date
KR20120034117A KR20120034117A (ko) 2012-04-09
KR101333112B1 true KR101333112B1 (ko) 2013-11-26

Family

ID=39831060

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020127003140A KR101333112B1 (ko) 2007-03-29 2008-03-28 플라즈마 처리 장치
KR1020117016076A KR101173268B1 (ko) 2007-03-29 2008-03-28 플라즈마 처리 장치
KR1020097022751A KR101119627B1 (ko) 2007-03-29 2008-03-28 플라즈마 처리 장치

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020117016076A KR101173268B1 (ko) 2007-03-29 2008-03-28 플라즈마 처리 장치
KR1020097022751A KR101119627B1 (ko) 2007-03-29 2008-03-28 플라즈마 처리 장치

Country Status (5)

Country Link
US (3) US20100101728A1 (ko)
KR (3) KR101333112B1 (ko)
CN (1) CN101647101B (ko)
TW (1) TWI386997B (ko)
WO (1) WO2008123605A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322336B2 (en) 2018-10-05 2022-05-03 Semes Co., Ltd. Apparatus and method for treating substrate

Families Citing this family (290)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5520455B2 (ja) * 2008-06-11 2014-06-11 東京エレクトロン株式会社 プラズマ処理装置
US8291857B2 (en) * 2008-07-03 2012-10-23 Applied Materials, Inc. Apparatuses and methods for atomic layer deposition
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
CN102473634B (zh) * 2009-08-20 2015-02-18 东京毅力科创株式会社 等离子体处理装置和等离子体处理方法
WO2012002232A1 (ja) * 2010-06-28 2012-01-05 東京エレクトロン株式会社 プラズマ処理装置及び方法
US9728429B2 (en) * 2010-07-27 2017-08-08 Lam Research Corporation Parasitic plasma prevention in plasma processing chambers
JP5385875B2 (ja) * 2010-08-26 2014-01-08 東京エレクトロン株式会社 プラズマ処理装置及び光学モニタ装置
JP5709505B2 (ja) * 2010-12-15 2015-04-30 東京エレクトロン株式会社 プラズマ処理装置、プラズマ処理方法、および記憶媒体
GB201021865D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021853D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
US9637838B2 (en) * 2010-12-23 2017-05-02 Element Six Limited Methods of manufacturing synthetic diamond material by microwave plasma enhanced chemical vapor deposition from a microwave generator and gas inlet(s) disposed opposite the growth surface area
GB201021860D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for diamond synthesis
GB201021870D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021913D0 (en) 2010-12-23 2011-02-02 Element Six Ltd Microwave plasma reactors and substrates for synthetic diamond manufacture
GB201021855D0 (en) 2010-12-23 2011-02-02 Element Six Ltd Microwave power delivery system for plasma reactors
JP5955062B2 (ja) * 2011-04-25 2016-07-20 東京エレクトロン株式会社 プラズマ処理装置
JP5368514B2 (ja) * 2011-06-30 2013-12-18 東京エレクトロン株式会社 プラズマ処理装置
JP5377587B2 (ja) * 2011-07-06 2013-12-25 東京エレクトロン株式会社 アンテナ、プラズマ処理装置及びプラズマ処理方法
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
KR101935959B1 (ko) * 2011-10-13 2019-04-04 세메스 주식회사 마이크로파 안테나 및 이를 포함하는 기판 처리 장치
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
KR101372333B1 (ko) * 2012-02-16 2014-03-14 주식회사 유진테크 기판 처리 모듈 및 이를 포함하는 기판 처리 장치
US20140368110A1 (en) * 2012-02-17 2014-12-18 Tohoku University Plasma processing apparatus and plasma processing method
DE102012103425A1 (de) * 2012-04-19 2013-10-24 Roth & Rau Ag Mikrowellenplasmaerzeugungsvorrichtung und Verfahren zu deren Betrieb
US9948214B2 (en) 2012-04-26 2018-04-17 Applied Materials, Inc. High temperature electrostatic chuck with real-time heat zone regulating capability
CN102744026B (zh) * 2012-06-25 2013-12-11 电子科技大学 一种封闭式频率可调谐振式微波反应腔
CN102760634A (zh) * 2012-07-26 2012-10-31 上海宏力半导体制造有限公司 半导体制造系统
JP2015536043A (ja) * 2012-09-26 2015-12-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 基板処理システムにおける温度制御
JP2014096553A (ja) * 2012-10-09 2014-05-22 Tokyo Electron Ltd プラズマ処理方法、及びプラズマ処理装置
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
KR20190025051A (ko) * 2013-01-14 2019-03-08 캘리포니아 인스티튜트 오브 테크놀로지 그라펜을 형성시키는 방법 및 시스템
JP6006145B2 (ja) * 2013-03-01 2016-10-12 東京エレクトロン株式会社 疎水化処理装置、疎水化処理方法及び疎水化処理用記録媒体
US9867269B2 (en) * 2013-03-15 2018-01-09 Starfire Industries, Llc Scalable multi-role surface-wave plasma generator
JP6359627B2 (ja) * 2013-03-15 2018-07-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高対称四重ガス注入によるプラズマリアクタ
US8889534B1 (en) * 2013-05-29 2014-11-18 Tokyo Electron Limited Solid state source introduction of dopants and additives for a plasma doping process
US9885493B2 (en) * 2013-07-17 2018-02-06 Lam Research Corporation Air cooled faraday shield and methods for using the same
US9660314B1 (en) * 2013-07-24 2017-05-23 Hrl Laboratories, Llc High efficiency plasma tunable antenna and plasma tuned delay line phaser shifter
US20150118416A1 (en) * 2013-10-31 2015-04-30 Semes Co., Ltd. Substrate treating apparatus and method
KR101980313B1 (ko) * 2014-01-24 2019-05-20 주식회사 원익아이피에스 기판 처리 장치
JP6410622B2 (ja) * 2014-03-11 2018-10-24 東京エレクトロン株式会社 プラズマ処理装置及び成膜方法
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US20150279626A1 (en) * 2014-03-27 2015-10-01 Mks Instruments, Inc. Microwave plasma applicator with improved power uniformity
US9653266B2 (en) * 2014-03-27 2017-05-16 Mks Instruments, Inc. Microwave plasma applicator with improved power uniformity
US9530621B2 (en) * 2014-05-28 2016-12-27 Tokyo Electron Limited Integrated induction coil and microwave antenna as an all-planar source
CN106663607A (zh) * 2014-06-13 2017-05-10 应用材料公司 外延腔室上的双辅助掺杂剂入口
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
CN106298419B (zh) * 2015-05-18 2018-10-16 中微半导体设备(上海)有限公司 电感耦合等离子体处理系统及处理方法
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
FR3042091B1 (fr) * 2015-10-05 2017-10-27 Sairem Soc Pour L'application Ind De La Rech En Electronique Et Micro Ondes Dispositif elementaire d’application d’une energie micro-onde avec applicateur coaxial
US10233543B2 (en) 2015-10-09 2019-03-19 Applied Materials, Inc. Showerhead assembly with multiple fluid delivery zones
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
JP6590420B2 (ja) * 2015-11-04 2019-10-16 国立研究開発法人産業技術総合研究所 窒素化合物の製造方法及び製造装置
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US9831066B1 (en) 2016-05-27 2017-11-28 Mks Instruments, Inc. Compact microwave plasma applicator utilizing conjoining electric fields
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (ko) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. 기판 가공 장치 및 그 동작 방법
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
KR20180068582A (ko) * 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
KR20180070971A (ko) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
JP6749258B2 (ja) 2017-01-31 2020-09-02 東京エレクトロン株式会社 マイクロ波プラズマ源、マイクロ波プラズマ処理装置、およびプラズマ処理方法
JP6698560B2 (ja) * 2017-02-01 2020-05-27 東京エレクトロン株式会社 マイクロ波プラズマ源、マイクロ波プラズマ処理装置、およびプラズマ処理方法
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
JP6890459B2 (ja) * 2017-04-14 2021-06-18 東京エレクトロン株式会社 プラズマ処理装置及び制御方法
KR102457289B1 (ko) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10546724B2 (en) * 2017-05-10 2020-01-28 Mks Instruments, Inc. Pulsed, bidirectional radio frequency source/load
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US20190051495A1 (en) * 2017-08-10 2019-02-14 Qiwei Liang Microwave Reactor For Deposition or Treatment of Carbon Compounds
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102491945B1 (ko) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102630301B1 (ko) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
JP7206265B2 (ja) 2017-11-27 2023-01-17 エーエスエム アイピー ホールディング ビー.ブイ. クリーン・ミニエンバイロメントを備える装置
KR102597978B1 (ko) 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. 배치 퍼니스와 함께 사용하기 위한 웨이퍼 카세트를 보관하기 위한 보관 장치
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TWI799494B (zh) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 沈積方法
KR20200108016A (ko) 2018-01-19 2020-09-16 에이에스엠 아이피 홀딩 비.브이. 플라즈마 보조 증착에 의해 갭 충진 층을 증착하는 방법
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
JP7124098B2 (ja) 2018-02-14 2022-08-23 エーエスエム・アイピー・ホールディング・ベー・フェー 周期的堆積プロセスにより基材上にルテニウム含有膜を堆積させる方法
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102501472B1 (ko) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
JP2019192606A (ja) 2018-04-27 2019-10-31 東京エレクトロン株式会社 アンテナ装置、および、プラズマ処理装置
TW202344708A (zh) 2018-05-08 2023-11-16 荷蘭商Asm Ip私人控股有限公司 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構
KR20190129718A (ko) 2018-05-11 2019-11-20 에이에스엠 아이피 홀딩 비.브이. 기판 상에 피도핑 금속 탄화물 막을 형성하는 방법 및 관련 반도체 소자 구조
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TW202013553A (zh) 2018-06-04 2020-04-01 荷蘭商Asm 智慧財產控股公司 水氣降低的晶圓處置腔室
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
KR20210027265A (ko) 2018-06-27 2021-03-10 에이에스엠 아이피 홀딩 비.브이. 금속 함유 재료를 형성하기 위한 주기적 증착 방법 및 금속 함유 재료를 포함하는 막 및 구조체
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
KR20200002519A (ko) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10978278B2 (en) * 2018-07-31 2021-04-13 Tokyo Electron Limited Normal-incident in-situ process monitor sensor
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (ko) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (zh) 2018-10-01 2020-04-07 Asm Ip控股有限公司 衬底保持设备、包含所述设备的系统及其使用方法
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
JP7097793B2 (ja) * 2018-10-17 2022-07-08 株式会社Kelk 検出装置
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (ko) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (ja) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム
TWI819180B (zh) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
KR20200091543A (ko) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN111524788B (zh) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
TW202044325A (zh) 2019-02-20 2020-12-01 荷蘭商Asm Ip私人控股有限公司 填充一基板之一表面內所形成的一凹槽的方法、根據其所形成之半導體結構、及半導體處理設備
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
TW202104632A (zh) 2019-02-20 2021-02-01 荷蘭商Asm Ip私人控股有限公司 用來填充形成於基材表面內之凹部的循環沉積方法及設備
KR20200102357A (ko) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. 3-d nand 응용의 플러그 충진체 증착용 장치 및 방법
TW202100794A (zh) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 基材處理設備及處理基材之方法
KR20200108242A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
KR20200108243A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOC 층을 포함한 구조체 및 이의 형성 방법
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11388809B2 (en) 2019-03-25 2022-07-12 Recarbon, Inc. Systems for controlling plasma reactors
CN111755308B (zh) * 2019-03-27 2022-07-22 北京北方华创微电子装备有限公司 工艺腔室和半导体处理设备
KR20200116033A (ko) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. 도어 개방기 및 이를 구비한 기판 처리 장치
KR20200116855A (ko) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130118A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP2020188255A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141003A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 가스 감지기를 포함하는 기상 반응기 시스템
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
CN110453202B (zh) * 2019-06-28 2023-08-25 郑州磨料磨具磨削研究所有限公司 一种天线位置可调的波导模式转换器及mpcvd装置
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP2021015791A (ja) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
KR20210010307A (ko) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210010820A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (zh) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 形成拓扑受控的无定形碳聚合物膜的方法
TW202113936A (zh) 2019-07-29 2021-04-01 荷蘭商Asm Ip私人控股有限公司 用於利用n型摻雜物及/或替代摻雜物選擇性沉積以達成高摻雜物併入之方法
CN112309899A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
CN112309900A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (zh) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 用于化学源容器的液位传感器
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (ko) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR20210029663A (ko) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
TW202129060A (zh) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 基板處理裝置、及基板處理方法
TW202115273A (zh) 2019-10-10 2021-04-16 荷蘭商Asm Ip私人控股有限公司 形成光阻底層之方法及包括光阻底層之結構
KR20210045930A (ko) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. 실리콘 산화물의 토폴로지-선택적 막의 형성 방법
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (ko) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (ko) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (ko) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
CN112951697A (zh) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 基板处理设备
KR20210065848A (ko) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. 제1 유전체 표면과 제2 금속성 표면을 포함한 기판 상에 타겟 막을 선택적으로 형성하기 위한 방법
CN112885692A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
CN112885693A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
JP2021090042A (ja) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
KR20210080214A (ko) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
KR20210095050A (ko) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TW202130846A (zh) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 形成包括釩或銦層的結構之方法
KR20210100010A (ko) 2020-02-04 2021-08-13 에이에스엠 아이피 홀딩 비.브이. 대형 물품의 투과율 측정을 위한 방법 및 장치
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
TW202146715A (zh) 2020-02-17 2021-12-16 荷蘭商Asm Ip私人控股有限公司 用於生長磷摻雜矽層之方法及其系統
KR20210116249A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
KR20210117157A (ko) 2020-03-12 2021-09-28 에이에스엠 아이피 홀딩 비.브이. 타겟 토폴로지 프로파일을 갖는 층 구조를 제조하기 위한 방법
KR20210124042A (ko) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TW202146689A (zh) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 阻障層形成方法及半導體裝置的製造方法
TW202145344A (zh) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
KR20210132605A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 냉각 가스 공급부를 포함한 수직형 배치 퍼니스 어셈블리
TW202140831A (zh) 2020-04-24 2021-11-01 荷蘭商Asm Ip私人控股有限公司 形成含氮化釩層及包含該層的結構之方法
KR20210134226A (ko) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
KR20210141379A (ko) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
KR20210143653A (ko) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210145078A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
TW202201602A (zh) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
CN111900069B (zh) * 2020-06-09 2023-01-31 哈尔滨工业大学 一种离子源导磁阳极供气装置一体化结构
TW202218133A (zh) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 形成含矽層之方法
TW202217953A (zh) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202219628A (zh) 2020-07-17 2022-05-16 荷蘭商Asm Ip私人控股有限公司 用於光微影之結構與方法
TW202204662A (zh) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
KR20220027026A (ko) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. 금속 실리콘 산화물 및 금속 실리콘 산질화물 층을 형성하기 위한 방법 및 시스템
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
TW202217037A (zh) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 沉積釩金屬的方法、結構、裝置及沉積總成
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
KR20220076343A (ko) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치의 반응 챔버 내에 배열되도록 구성된 인젝터
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
CN117015128A (zh) * 2021-03-09 2023-11-07 珠海恒格微电子装备有限公司 微波等离子体发生装置及等离子蚀刻设备
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
CN114360999B (zh) * 2021-12-30 2023-06-27 武汉华星光电半导体显示技术有限公司 等离子处理设备
CN117650047A (zh) * 2024-01-26 2024-03-05 北京北方华创微电子装备有限公司 形成半导体结构的方法、等离子体发生装置及半导体工艺设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293704A (ja) * 1996-04-25 1997-11-11 Nec Corp プラズマ処理装置
WO1999049705A1 (fr) * 1998-03-20 1999-09-30 Tokyo Electron Limited Dispositif de traitement plasmique
KR20000077209A (ko) * 1999-05-13 2000-12-26 히가시 데쓰로 유도 결합 플라즈마 처리 장치
JP2003332326A (ja) * 2002-05-10 2003-11-21 Tokyo Electron Ltd プラズマ処理装置およびプラズマ処理方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153406A (en) * 1989-05-31 1992-10-06 Applied Science And Technology, Inc. Microwave source
US5134965A (en) * 1989-06-16 1992-08-04 Hitachi, Ltd. Processing apparatus and method for plasma processing
JP2922223B2 (ja) * 1989-09-08 1999-07-19 株式会社日立製作所 マイクロ波プラズマ発生装置
TW285746B (ko) * 1994-10-26 1996-09-11 Matsushita Electric Ind Co Ltd
SG50732A1 (en) * 1995-05-19 1998-07-20 Hitachi Ltd Method and apparatus for plasma processing apparatus
US5698036A (en) * 1995-05-26 1997-12-16 Tokyo Electron Limited Plasma processing apparatus
US5810933A (en) * 1996-02-16 1998-09-22 Novellus Systems, Inc. Wafer cooling device
US6057645A (en) * 1997-12-31 2000-05-02 Eaton Corporation Plasma discharge device with dynamic tuning by a movable microwave trap
US6225592B1 (en) * 1998-09-15 2001-05-01 Astex-Plasmaquest, Inc. Method and apparatus for launching microwave energy into a plasma processing chamber
DE19847848C1 (de) * 1998-10-16 2000-05-11 R3 T Gmbh Rapid Reactive Radic Vorrichtung und Erzeugung angeregter/ionisierter Teilchen in einem Plasma
JP4187386B2 (ja) 1999-06-18 2008-11-26 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
TW480594B (en) * 1999-11-30 2002-03-21 Tokyo Electron Ltd Plasma processing apparatus
JP4464550B2 (ja) 1999-12-02 2010-05-19 東京エレクトロン株式会社 プラズマ処理装置
US6894245B2 (en) 2000-03-17 2005-05-17 Applied Materials, Inc. Merie plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression
US7196283B2 (en) 2000-03-17 2007-03-27 Applied Materials, Inc. Plasma reactor overhead source power electrode with low arcing tendency, cylindrical gas outlets and shaped surface
JP3957135B2 (ja) 2000-10-13 2007-08-15 東京エレクトロン株式会社 プラズマ処理装置
KR100413145B1 (ko) * 2001-01-11 2003-12-31 삼성전자주식회사 가스 인젝터 및 이를 갖는 식각 장치
JP4136630B2 (ja) * 2002-12-03 2008-08-20 キヤノン株式会社 プラズマ処理装置
US7122096B2 (en) * 2003-03-04 2006-10-17 Hitachi High-Technologies Corporation Method and apparatus for processing semiconductor
WO2005045913A1 (ja) 2003-11-05 2005-05-19 Tokyo Electron Limited プラズマ処理装置
US7821655B2 (en) * 2004-02-09 2010-10-26 Axcelis Technologies, Inc. In-situ absolute measurement process and apparatus for film thickness, film removal rate, and removal endpoint prediction
WO2005098083A2 (en) * 2004-04-07 2005-10-20 Michigan State University Miniature microwave plasma torch application and method of use thereof
JP2006294422A (ja) * 2005-04-11 2006-10-26 Tokyo Electron Ltd プラズマ処理装置およびスロットアンテナおよびプラズマ処理方法
US7685965B1 (en) * 2006-01-26 2010-03-30 Lam Research Corporation Apparatus for shielding process chamber port
JP5074741B2 (ja) * 2006-11-10 2012-11-14 株式会社日立ハイテクノロジーズ 真空処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293704A (ja) * 1996-04-25 1997-11-11 Nec Corp プラズマ処理装置
WO1999049705A1 (fr) * 1998-03-20 1999-09-30 Tokyo Electron Limited Dispositif de traitement plasmique
KR20000077209A (ko) * 1999-05-13 2000-12-26 히가시 데쓰로 유도 결합 플라즈마 처리 장치
JP2003332326A (ja) * 2002-05-10 2003-11-21 Tokyo Electron Ltd プラズマ処理装置およびプラズマ処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322336B2 (en) 2018-10-05 2022-05-03 Semes Co., Ltd. Apparatus and method for treating substrate

Also Published As

Publication number Publication date
KR20100003293A (ko) 2010-01-07
KR20110089208A (ko) 2011-08-04
KR101173268B1 (ko) 2012-08-10
US20100101728A1 (en) 2010-04-29
KR20120034117A (ko) 2012-04-09
KR101119627B1 (ko) 2012-03-07
CN101647101B (zh) 2012-06-20
US20180108515A1 (en) 2018-04-19
US20140290860A1 (en) 2014-10-02
US9887068B2 (en) 2018-02-06
TWI386997B (zh) 2013-02-21
CN101647101A (zh) 2010-02-10
US10734197B2 (en) 2020-08-04
TW200845199A (en) 2008-11-16
WO2008123605A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
KR101333112B1 (ko) 플라즈마 처리 장치
US8974628B2 (en) Plasma treatment device and optical monitor device
US9767993B2 (en) Plasma processing apparatus
US8419960B2 (en) Plasma processing apparatus and method
US8039772B2 (en) Microwave resonance plasma generating apparatus and plasma processing system having the same
US7718030B2 (en) Method and system for controlling radical distribution
JP5723397B2 (ja) プラズマ処理装置
US20080105650A1 (en) Plasma processing device and plasma processing method
JP5368514B2 (ja) プラズマ処理装置
JP5438260B2 (ja) プラズマ処理装置
US4192706A (en) Gas-etching device
KR102523730B1 (ko) 이중 주파수 표면파 플라즈마 소스
JP5522887B2 (ja) プラズマ処理装置
JP2019110047A (ja) プラズマ処理装置
KR101935576B1 (ko) 다중 전원을 갖는 플라즈마 발생기
JP2003086398A (ja) プラズマ処理装置
JPH10312900A (ja) プラズマ処理方法、プラズマ処理装置及び半導体装置の製造方法
JPH0799100A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161019

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171018

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181030

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191029

Year of fee payment: 7