JP6749258B2 - マイクロ波プラズマ源、マイクロ波プラズマ処理装置、およびプラズマ処理方法 - Google Patents

マイクロ波プラズマ源、マイクロ波プラズマ処理装置、およびプラズマ処理方法 Download PDF

Info

Publication number
JP6749258B2
JP6749258B2 JP2017015089A JP2017015089A JP6749258B2 JP 6749258 B2 JP6749258 B2 JP 6749258B2 JP 2017015089 A JP2017015089 A JP 2017015089A JP 2017015089 A JP2017015089 A JP 2017015089A JP 6749258 B2 JP6749258 B2 JP 6749258B2
Authority
JP
Japan
Prior art keywords
microwave
temperature
threshold value
plasma
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017015089A
Other languages
English (en)
Other versions
JP2018125114A (ja
Inventor
泰明 谷池
泰明 谷池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2017015089A priority Critical patent/JP6749258B2/ja
Priority to KR1020180007103A priority patent/KR102215403B1/ko
Priority to US15/882,028 priority patent/US11056317B2/en
Publication of JP2018125114A publication Critical patent/JP2018125114A/ja
Application granted granted Critical
Publication of JP6749258B2 publication Critical patent/JP6749258B2/ja
Priority to US17/229,122 priority patent/US11942308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32311Circuits specially adapted for controlling the microwave discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、マイクロ波プラズマ源、マイクロ波プラズマ処理装置、およびプラズマ処理方法に関する。
プラズマ処理は、半導体デバイスの製造に不可欠な技術であるが、近時、LSIの高集積化、高速化の要請からLSIを構成する半導体素子のデザインルールが益々微細化され、また、半導体ウエハ(ウエハ)が大型化されており、それにともなって、プラズマ処理装置においてもこのような微細化および大型化に対応するものが求められている。
プラズマ処理装置としては、従来から平行平板型や誘導結合型のプラズマ処理装置が用いられているが、大型のウエハを均一かつ高速にプラズマ処理することは困難である。
そこで、高密度で低電子温度の表面波プラズマを均一に形成することができるRLSA(登録商標)マイクロ波プラズマ処理装置が注目されている(例えば特許文献1)。
RLSA(登録商標)マイクロ波プラズマ処理装置は、チャンバーの上部に所定のパターンで複数のスロットが形成された平面状のスロットアンテナを設け、マイクロ波発生器から導かれたマイクロ波を、誘電体からなる遅波材を介してスロットアンテナに導き、マイクロ波をスロットアンテナのスロットから放射させるとともに、誘電体からなるチャンバーの天壁を介して真空に保持されたチャンバー内に透過させ、チャンバー内に表面波プラズマを生成させるものである。そして、このプラズマにより、チャンバー内に導入されたガスをプラズマ化し、半導体ウエハ等の被処理体を処理する。
また、マイクロ波を複数に分配し、上記のようなマイクロ波放射アンテナである平面状のスロットアンテナを有するマイクロ波放射部を複数設け、スロットアンテナから放射されたマイクロ波をチャンバー内に導きチャンバー内でマイクロ波を空間合成してプラズマを生成するプラズマ処理装置も提案されている(特許文献2)。
このようなマイクロ波プラズマ装置においては、プラズマの着火不良が生じると、適正な処理を行うことができないばかりか、マイクロ波伝播経路の部材の接続部分等に異常放電が生じて部材の破損が生じるおそれがあるため、着火不良を検知する安全対策が必要である。
このような安全対策としては、マイクロ波プラズマ源の内部で検知・調整されるパラメータ(例えば進行波と反射波の比や、インピーダンス整合を行うチューナのポジション等)の閾値を監視することによって、異常反射などが発生したときにマイクロ波のパワーを遮断するものや、特許文献2に記載されているように、チャンバー内を発光センサ(光量や色調センサ)でセンシングすることによってマイクロ波パワーON時の着火確認を行い、正常に着火しなければ同様にマイクロ波のパワーを遮断するものが主流である。
一方、RLSA(登録商標)マイクロ波プラズマ処理装置は、真空容器内に配置された回転テーブル上に複数の半導体ウエハを載置し、回転テーブルを回転させながら、ウエハが、原料ガス(プリカーサ)を供給する領域と、反応ガスのプラズマを供給する領域を交互に通過するようにして、ウエハに原子層堆積法(ALD)による成膜を行うセミバッチ式の成膜装置にも用いられている(例えば、特許文献3)。具体的には、回転テーブルの上方側の円形の空間を、原料ガス(プリカーサ)を供給する第1領域と、反応ガスのプラズマを供給する第2領域に分け、第2領域を第1領域よりも広くして、第2領域に反応ガスをプラズマ化したり還元処理を行ったりするための3つのマイクロ波プラズマ処理ユニット(マイクロ波プラズマ処理装置)を設けている。これにより、例えば、SiN膜のような窒化膜を成膜する際に、窒化を促進して良質な膜を形成することができる。
しかし、特許文献3に記載されたような成膜装置の場合、3つのマイクロ波プラズマ処理ユニットが隣接して設けられているため、一つのユニットのプラズマ発光センサが、他のユニットで発生したプラズマの発光を誤検知してしまうおそれがあり、また、スペース上発光センサを設けること自体が難しい。さらに、このような成膜装置は狭いスペースで効率的にウエハを加熱するために、ウエハを加熱するヒーターとして赤外線を出すカーボンワイヤーヒーターが用いられるため、発光センサを設けることができたとしても、プラズマの発光の検出が困難である。
このため、特許文献3に記載された成膜装置に用いられるようなマイクロ波ユニット(マイクロ波プラズマ処理装置)では、発光センサを用いず、マイクロ波ユニット内部で検知・調整するパラメータの閾値監視のみで、着火不良を検知する安全対策を行っている。
特開2000−294550号公報 特開2013−171847号公報 特開2016−115814号公報
しかしながら、閾値の監視のみで発光センサを用いない場合には、アンテナ部で予期せずマッチングが生じた際や、微小放電がスロットアンテナに至るマイクロ波伝播経路内で発生した際には、マイクロ波ユニット内部で検知・調整されるパラメータに異常が現れない場合があり、事前に着火不良を発見することは難しい。このため、プラズマ着火時に突如着火不良が発生して、アンテナ部を構成する部材の損傷や、処理中のウエハへの損害、装置復旧のためのダウンタイムが発生してしまうことを完全に防止することができない。
したがって、本発明は、マイクロ波プラズマの着火不良の予兆を確実に検出して着火不良を未然に防止することができる技術を提供することを課題とする。
上記課題を解決するため、本発明の第1の観点は、被処理基板を処理する処理空間にマイクロ波プラズマを生成するマイクロ波プラズマ源であって、マイクロ波を発生させるマイクロ波発生部と、前記マイクロ波発生部で発生されたマイクロ波を伝播する導波路と、前記導波路を伝播したマイクロ波を前記処理空間内に放射する、所定パターンのスロットが形成されたスロットアンテナ、および前記スロットから放射されたマイクロ波を透過して前記処理空間に供給する誘電体からなるマイクロ波透過板を有するアンテナ部と、前記スロットアンテナに至るマイクロ波伝播経路の所定位置の温度を検出する温度検出器と、前記温度検出器が検出した温度が入力され、その温度に基づいて前記アンテナ部での予期せぬ箇所でのマイクロ波のマッチングまたは前記マイクロ波伝播経路内での微小放電に基づく前記マイクロ波伝播経路の異常を検出して前記マイクロ波プラズマの着火不良を未然に防止する異常検出部とを有することを特徴とするマイクロ波プラズマ源を提供する。
本発明の第2の観点は、被処理基板を処理する処理空間を画成する処理容器と、マイクロ波を発生させるマイクロ波発生部と、前記マイクロ波発生部で発生されたマイクロ波を伝播する導波路と、前記導波路を伝播したマイクロ波を前記処理空間に放射する、所定パターンのスロットが形成されたスロットアンテナ、および前記スロットから放射されたマイクロ波を透過して前記処理空間に供給する誘電体からなるマイクロ波透過板を有するアンテナ部と、前記スロットアンテナに至るマイクロ波伝播経路の所定位置の温度を検出する温度検出器と、前記温度検出器が検出した温度が入力され、その温度に基づいて前記アンテナ部での予期せぬ箇所でのマイクロ波のマッチングまたは前記マイクロ波伝播経路内での微小放電に基づく前記マイクロ波伝播経路の異常を検出して前記マイクロ波プラズマの着火不良を未然に防止する異常検出部と、前記処理空間にプラズマ処理のためのガスを供給するガス供給機構と、前記処理空間を排気する排気機構とを有することを特徴とするマイクロ波プラズマ処理装置を提供する。
上記第1の観点および第2の観点において、前記導波路として、前記アンテナ部のアンテナにマイクロ波を伝播する同軸導波管と、前記マイクロ波発生部からマイクロ波を伝播する導波管と、前記同軸導波管と前記導波管を接続する接続部とを有し、前記同軸導波管の内側導体の下に、前記スロットアンテナに接続されるコネクタおよび前記コネクタの下部を覆うキャップを有するものを用いることができる。
前記温度検出器は、前記同軸導波管、前記コネクタ、または前記キャップに対応する位置に設けられることが好ましい。
前記異常検出部は、前記温度検出器が検出する検出温度の所定の閾値が設定され、前記温度検出器で検出された温度が前記閾値を超えたときに異常と判定し、マイクロ波伝播経路の部材の安全を確保するための指令を発する構成とすることができる。
前記異常検出部は、前記所定の閾値として、第1の閾値と、前記第1の閾値よりも高い第2の閾値が設定され、前記温度検出器で検出された温度が前記第1の閾値を超えた場合に警告を発する指令を出力し、前記温度検出器で検出された温度が前記第2の閾値を超えた場合に警報を発するとともにプラズマを停止する指令を出力する構成とすることができる。
本発明の第3の観点は、被処理基板を処理する処理空間を画成する処理容器と、マイクロ波を発生させるマイクロ波発生部と、前記マイクロ波発生部で発生されたマイクロ波を伝播する導波路と、前記導波路を伝播したマイクロ波を前記処理空間に放射する、所定パターンのスロットが形成されたスロットアンテナ、および前記スロットから放射されたマイクロ波を透過して前記処理空間に供給する誘電体からなるマイクロ波透過板を有するアンテナ部と、前記処理空間にプラズマ処理のためのガスを供給するガス供給機構と、前記処理空間を排気する排気機構とを有するマイクロ波プラズマ処理装置によりプラズマ処理を行うプラズマ処理方法であって、前記プラズマ処理のためのガスを前記処理空間に供給しつつ、前記導波路および前記アンテナ部を介して前記処理空間にマイクロ波を放射してマイクロ波プラズマを生成する際に、前記スロットアンテナに至るマイクロ波伝播経路の所定位置の温度を検出し、その温度に基づいて前記アンテナ部での予期せぬ箇所でのマイクロ波のマッチングまたは前記マイクロ波伝播経路内での微小放電に基づく前記マイクロ波伝播経路の異常を検出して前記マイクロ波プラズマの着火不良を未然に防止することを特徴とするプラズマ処理方法を提供する。
本発明によれば、スロットアンテナに至るマイクロ波伝播経路において、接触不良などによる予期せぬ箇所でのマッチングや、軽度な放電が発生した際の温度上昇を検出することができるので、着火不良を未然に防止することができる。
本発明の一実施形態のマイクロ波プラズマ処理装置が適用される成膜装置の一例を示す横断面図である。 図1の成膜装置のA−A′線による縦断面図である。 図1の成膜装置の平面図である。 本発明の一実施形態のマイクロ波プラズマ処理装置を示す断面図である。 図4のマイクロ波プラズマ処理装置の同軸導波管、コネクタ、キャップと熱電対の配置位置を示す断面図である。 実験例における同軸導波管の下に設けられたコネクタ、キャップ近傍の温度変化を示す図である。
以下、添付図面を参照して本発明の実施形態について説明する。
<マイクロ波プラズマ処理装置が適用された成膜装置>
最初に、本発明の一実施形態に係るマイクロ波プラズマ装置が適用された成膜装置の一例について説明する。
成膜装置は、原料ガスと反応ガスを交互に供給するとともに、反応ガスをプラズマ化する、プラズマ励起原子層堆積法(Plasma Enhanced Atomic Layer Deposition;PE−ALD)により所定の膜を成膜するPE−ALD装置として構成される。
図1は本例に係る成膜装置の横断面図、図2は図1の成膜装置のA−A′線による縦断面図、図3は本例に係る成膜装置の平面図である。
図1〜3に示すように、成膜装置は、成膜処理が行われる処理室を画成し、真空に保持される処理容器11を有している。この処理容器11内には複数のウエハ載置領域21が形成された回転テーブル2が配置されている。処理容器11内の回転テーブル2が通過する部分の上方側空間は、ウエハWに、原料ガス、例えばジクロロシラン(DCS;SiHCl)のようなSi原料ガスを吸着させる吸着領域R1と、ウエハWに吸着した原料ガスと所定の反応を生じさせる反応ガスによる反応処理、例えば窒化処理や還元処理を施す反応領域R2とを有している。
処理容器11内の吸着領域R1の上部には、吸着領域R1に原料ガスを導入するための原料ガス導入ユニット3を有しており、原料ガス導入ユニット3には、原料ガス供給源(図示せず)が配管を介して接続されている。また、原料ガス導入ユニット3は、外周部分に、原料ガスを排気する排気領域、および原料ガスと反応領域R2の反応ガスとを分離するための、例えばArガス等の不活性ガスからなる分離ガスを供給する分離ガス供給領域(いずれも図示せず)を有している。
また、反応領域R2には、処理ガス供給源(図1〜3では図示せず)からプラズマによる反応処理を行うための処理ガスが配管を介して供給されるようになっている。処理ガスとしては、Arガス等のプラズマ生成ガス、および原料ガスと反応する反応ガス、例えばNHガスやNガス等の窒化ガスを挙げることができる。
反応領域R2は、第1領域R2−1、第2領域R2−2、第3領域R2−3に分かれており、これら領域には、それぞれマイクロ波プラズマ処理装置100A、100B、100Cが設けられている。マイクロ波プラズマ処理装置100A、100B、100Cは、それぞれマイクロ波プラズマ源6A、6B、6Cを有している。図2にマイクロ波生成部6Bを含むマイクロ波プラズマ処理装置100Bの構成が示されているが、マイクロ波プラズマ処理装置の構成については後で詳細に説明する。
図2に示すように、処理容器11は、処理容器11の側壁及び底部をなす容器本体13と、この容器本体13の上面側の開口を気密に塞ぐ天板12とにより構成され、概ね円形の扁平な容器である。処理容器11は、例えばアルミニウムなどの金属から構成され、処理容器11の内面には、陽極酸化処理またはセラミックス溶射処理等の耐プラズマ処理が施される。
回転テーブル2の表面には、例えば処理容器11と同様の耐プラズマ処理が施されている。回転テーブル2の中心部には鉛直下方へ伸びる回転軸14が設けられ、回転軸14の下端部には、回転テーブル2を回転させるための回転駆動機構15が設けられている。
回転テーブル2の上面には、図1に示すように、6つのウエハ載置領域21が周方向に均等に設けられている。各ウエハ載置領域21は、ウエハWよりもやや大きな直径を有する円形の凹部として構成されている。なお、ウエハ載置領域21の数は6つに限るものではない。
図2に示すように、回転テーブル2の下方に位置する容器本体13の底面には、前記回転テーブル2の周方向に沿って、円環状の環状溝部45が形成されている。この環状溝部45内には、ウエハ載置領域21の配置領域に対応するようにヒーター46が設けられている。ヒーター46により、回転テーブル2上のウエハWが所定の温度に加熱される。ヒーター46としては、例えばカーボンワイヤーヒーターが用いられる。また、環状溝部45の上面の開口は、円環状の板部材であるヒーターカバー47によって塞がれている。
図1および図3に示すように、処理容器11の側壁面には、ウエハWを搬入出するための搬入出部101が設けられている。搬入出部101はゲートバルブにより開閉可能となっている。この搬入出部101を介して、外部の搬送機構に保持されたウエハWが処理容器11内に搬入される。
上述の構成を備えた回転テーブル2において、回転軸14により回転テーブル2を回転させると、回転中心の周囲を各ウエハ載置領域21が公転する。そのときウエハ載置領域21は一点鎖線で示す円環状の公転領域Rを通過する。
図1に示すように、成膜装置は全体制御部8を有している。全体制御部8は成膜装置の各構成部、例えば、回転テーブル2を回転させる回転駆動機構15や、原料ガス供給部、分離ガス供給部、窒化処理ガス供給部、マイクロ波プラズマ源6A〜6Cのマイクロ波発生部69の各エレメント等を制御するようになっている。全体制御部8は、CPU(コンピュータ)を有し、上記制御を行う主制御部と、入力装置、出力装置、表示装置、および記憶装置を有している。記憶装置には、成膜装置で実行される処理を制御するためのプログラム、すなわち処理レシピが格納された記憶媒体がセットされ、主制御部は、記憶媒体に記憶されている所定の処理レシピを呼び出し、その処理レシピに基づいて成膜装置により所定の処理が行われるように制御する。
<マイクロ波プラズマ処理装置>
次に、反応領域R2のマイクロ波プラズマ処理装置について説明する。
上述したように、反応領域R2は、第1〜第3の領域R2−1〜R2−3を有しており、これら領域には、それぞれマイクロ波プラズマ処理装置100A、100B、100Cが設けられており、これらマイクロ波プラズマ処理装置100A、100B、100Cは、それぞれマイクロ波プラズマ源6A、6B、6Cを有している。
図4は、マイクロ波プラズマ処理装置100Aを示す断面図である。マイクロ波プラズマ処理装置100B、100Cも基本構成は同じである。
図4に示すように、マイクロ波プラズマ処理装置100Aは、マイクロ波プラズマプラズマ源6Aと、処理容器11内のマイクロ波プラズマ源6A直下位置の処理空間Sと、処理空間Sに処理ガスを供給する処理ガス供給機構50と、処理空間S内でウエハWを支持する支持部材としての上述した回転テーブル2と、処理空間S内を排気する排気機構57とを有している。回転テーブル2上のウエハWは、処理空間Sを通過するようになっている。
マイクロ波プラズマ源6Aは、マイクロ波発生部69と、マイクロ波発生部69で発生されたマイクロ波を伝播する導波路を構成する導波管67、モード変換器66および同軸導波管65と、同軸導波管65からマイクロ波が伝播され、処理空間Sへ向けてマイクロ波を放射するアンテナ部60とを備えている。したがって、マイクロ波プラズマ処理装置100Aは、RLSA(登録商標)マイクロ波プラズマ処理装置として構成される。アンテナ部60は、回転テーブル2の上面と対向する天板12に設けられた概略三角形の形状の開口を塞ぐように設けられている。
マイクロ波発生部69は、発振器、オシレータ、電源等を有しており、例えば2.45GHzの周波数のマイクロ波を発生する。マイクロ波発生部69には導波管67の一端が接続されており、他端が導波管67と同軸導波管65の接続部であるモード変換器66に接続されている。同軸導波管65は、モード変換器66の下方に延びている。同軸導波管65の下端にはアンテナ部60が接続されている。なお、マイクロ波発生部69の周波数は2.45GHzには限らず、8.35GHz、1.98GHz、860MHz、915MHz等、種々の周波数を用いることができる。
導波管67は、断面矩形状をなし、マイクロ波発生部69で発生されたマイクロ波がその中をTEモードで伝播する。モード変換器66ではマイクロ波の振動モードがTEモードからTEMモードへ変換され、TEMモードのマイクロ波が同軸導波管65を伝播してアンテナ部60に導かれる。
導波管67にはチューナ68および方向性結合器等からなる検出器85が設けられている。チューナ68は、処理空間S内の負荷であるプラズマのインピーダンスをマイクロ波発生部69の電源の特性インピーダンスに整合させるものである。検出器85は進行波と反射波を検出するものである。
アンテナ部60は、マイクロ波透過板61、スロットアンテナ62、遅波材63、および、シールド機能を有し、チラーユニットからエチレングリコール等の冷却媒体が通流される冷却ジャケット64からなる。
上記同軸導波管65は、内側導体651と、内側導体651と同軸的に設けられた外側導体652とを有している。内側導体651は水冷経路を備えている。同軸導波管65は、内側導体651の水冷経路を通流される水、および冷却ジャケット64に通流されるエチレングリコール等の冷却媒体により冷却される。内側導体651はアンテナ部60の冷却ジャケット64の上部からスロットアンテナ62に至る孔部71に挿入され、コネクタ70を介してスロットアンテナ62に接続されている。コネクタの下部はキャップ72で覆われている。外側導体652は、冷却ジャケット64に取り付けられている。
スロットアンテナ62は、概略三角形の金属板として構成され、多数のスロット621が形成されている。スロット621は、マイクロ波が効率良く放射されるように適宜設定される。例えば、スロット621は、三角形の中心から周縁へ向けた径方向、および周方向に所定の間隔で配置され、隣り合うスロット621同士が互いに交差または直交するように形成されている。
マイクロ波透過板61は、誘電体、例えばアルミナ等のセラミックスや石英で構成され、同軸導波管65から伝送され、スロットアンテナ62のスロット621から放射されたマイクロ波を透過してマイクロ波を処理空間Sに供給し、処理空間Sのマイクロ波透過板61の直下位置に均一に表面波プラズマを生成する機能を有しており、天板12側の開口を塞ぐことが可能な概略三角形の平面形状を有する。マイクロ波透過板61の下面には、マイクロ波のエネルギーを集中させることにより、プラズマを安定して発生させるための、テーパー面を備えた環状の凹部611を有している。なお、マイクロ波透過板61の下面は平面状であってもよい。
遅波材63は、スロットアンテナ62上に設けられており、真空よりも大きい誘電率を有する誘電体、例えばアルミナ等のセラミックスで構成される。遅波材63は、マイクロ波の波長を短くするためのものであり、マイクロ波透過板61やスロットアンテナ62に対応した概略三角形の平面形状を有する。
冷却ジャケット64は、遅波材63上に設けられており、その内部には冷媒流路641が形成され、当該冷媒流路641に冷媒を通流させることによりアンテナ部60を冷却することができるようになっている。
そして、マイクロ波発生部69にて発生されたマイクロ波が、導波管67、モード変換器66、同軸導波管65、および遅波材63を経てスロットアンテナ62のスロット621から放射され、マイクロ波透過板61を透過してその下方の処理空間Sに供給される。
処理ガス供給機構50は、処理ガス供給源51と、処理ガス供給源51から延びる配管52と、天板12のマイクロ波透過板61を支持している部分の周縁部に設けられた周縁側ガス供給路53と、天板12のマイクロ波透過板61を支持している部分の中央部に設けられた中央側ガス供給路54とを有する。
周縁側ガス供給路53は、天板12の上面に開口しており、その先端は周縁側から処理空間Sに処理ガスを吐出するガス吐出口53aとなっている。また、中央側ガス供給路54は、天板12の上面に開口しており、その先端は中央側から処理空間Sに処理ガスを吐出するガス吐出口54aとなっている。周縁側ガス供給路53は、周縁側の複数個所から処理ガスが吐出できるように間隔を置いて複数個所、例えば2箇所設けられている。配管52は周縁側ガス供給路53および中央側ガス供給路54の開口部に接続されている。配管52にはマスフローコントローラ等の流量制御器および開閉バルブ(いずれも図示せず)が設けられている。処理ガスが複数の場合は、処理ガス供給源51は処理ガスの数だけ設けられており、それぞれに配管が接続され、それぞれの配管に流量制御器および開閉バルブが設けられている。
処理ガスとしては、Arガス等のプラズマ生成ガス、および原料ガスと反応する反応ガス、例えばNHガスやNガス等の窒化ガスを挙げることができる。
処理ガスが、マイクロ波が供給された処理空間Sに供給されることにより、マイクロ波プラズマが生成され、反応ガスとして窒化ガスの活性種、例えばNHラジカル(NH )が生成され、その中を回転テーブル2上のウエハWが通過することによりウエハWに活性種による処理が施される。また、反応ガスとして窒化ガスの代わりにHガス等の還元ガスを供給して水素ラジカルによる還元処理を行ってもよい。
なお、別途のガス供給ラインを設けて、処理ガス中のプラズマ生成ガスをマイクロ波透過板61の直下位置に供給するようにしてもよい。
なお、マイクロ波プラズマ処理装置100A、100B、100Cは、全て同じ反応ガスを供給して同じ処理、例えば窒化ガスを供給してプラズマ窒化処理を行ってもよいし、これらで異なる処理を行ってもよい。例えば、中央のマイクロ波プラズマ処理装置100Bで窒化処理を行い、マイクロ波プラズマ処理装置100A、100Cで還元処理等の他の処理を行うようにしてもよい。
なお、反応領域R2の処理空間を排気する排気機構57は、図1に示すように、処理容器11の容器本体13の底部の外縁部に均等に設けられた4つの排気口190A、190B、190C、190Dを介して処理容器11内を排気する。
同軸導波管57の内側導体651およびコネクタ70には、図5に拡大して示すように、垂直方向に孔651aが形成されており、この孔651a内に温度検出器である熱電対80が挿入されており、スロットアンテナ62近傍部分であるコネクタ70、キャップ72に対応する部分に熱電対80の温度測定部80aが位置している。なお、熱電対80は、スロットアンテナ62に至るマイクロ波伝播経路、好ましくはアンテナ部60内である同軸導波管65の内側導体651の他の位置に設けてもよい。また、マイクロ波伝播経路の複数個所に設けてもよい。温度検出器である熱電対80としてはシース熱電対や、光ファイバー式熱電対等を好適に用いることができる。
熱電対80の信号線80bは異常検出部81に接続されており、異常検出部81に熱電対80の温度信号が入力される。異常検出部81は熱電対80の温度信号を監視するとともに、その温度信号に基づいて異常の判定を行う。具体的には、異常検出部81には、検出温度の所定の閾値が設定され、これを超えたら異常と判定し、マイクロ波伝播経路の部材の安全を確保するための指令を発する。本例では、異常検出部81に所定温度の第1の閾値および第1の閾値よりも高い温度の第2の閾値を設定し、熱電対80からの温度信号が第1の閾値を超えた場合に、警告発生部82に警告発生信号を出力し、警告発生部82が警告を発する。また、熱電対80からの温度信号が第2の閾値を超えた場合に、警報発生部83に警報発生信号を出力し、警報発生部83で警報を発するとともに、全体制御部8へプラズマ停止信号を出力し、全体制御部8はプラズマを停止する制御を行う(レシピアボート)。例えば、処理レシピ中のステップをプラズマ生成が行われないステップに進めるようにする。
また、異常検出部81は、例えば方向性結合器からなる進行波と反射波とを検出することができる検出器85からの進行波と反射波の信号が入力され、チューナ68からそのポジション(例えばスラグチューナの場合はスラグポジション)が入力されるようになっており、検知・調整パラメータとして、進行波と反射波の比およびチューナ68のポジション(例えばスラグチューナの場合はスラグポジション)を検知し、これらの値が閾値を超えた場合に全体制御部8へプラズマ停止信号を出力する従来と同様の機能も有している。
<成膜装置の動作>
次に、以上のように構成された成膜装置の動作について説明する。
上記成膜装置を用いてPE−ALD成膜処理を行う際には、最初に、搬入出部101のゲートバルブを開き、外部の搬送機構によって処理容器11内に複数のウエハWを搬入し、回転テーブル2のウエハ載置領域21に複数のウエハWを載置する。
ウエハWの受け渡しは、回転テーブル2を間欠的に回転させて行い、全てのウエハ載置領域21にウエハWを載置する。ウエハWの載置が終了したら、搬送機構を退出させ、搬入出部101のゲートバルブを閉じる。このとき処理容器11内は排気機構57によって予め所定の圧力に真空排気されている。また分離ガスとして例えばArガスが供給されている。
次いで、温度センサ(図示せず)の検出値に基づいてヒーター46により回転テーブル2上のウエハWを所定の設定温度まで上昇させ、処理容器11内の吸着領域R1への原料ガスの供給、反応領域R2の領域R2−1、R2−2、R2−3に設けられたマイクロ波プラズマ処理装置100A、100B、100Cへの反応ガスを含む処理ガスの供給、およびマイクロ波プラズマ源6A〜6Cからのマイクロ波の供給を開始し、回転テーブル2を所定速度で時計回りに回転させ、ウエハW上において、原料ガスの吸着と、プラズマによる反応処理とを交互に繰り返し、PE−ALDにより所定の膜を成膜する。
例えば、原料ガスとして、例えばジクロロシラン(DCS;SiHCl)のようなSi原料ガスを用い、反応ガスとして、NHガスのような窒化ガスを用いた場合には、Si原料の吸着と、プラズマ化された窒化ガスの活性種による反応処理が交互に繰り返され、SiN膜が成膜される。
このとき、マイクロ波プラズマ処理装置100A、100B、100Cでは、上述したように、同じ反応ガスを供給して同じ処理、例えば窒化ガスを供給してプラズマ窒化処理を行ってもよいし、これらで異なる処理、例えば、中央のマイクロ波プラズマ処理装置100Bで窒化処理を行い、マイクロ波プラズマ処理装置100A、100Cで還元処理等の他の処理を行うようにしてもよく、処理ガスとして、反応ガスの他にArガス等のプラズマ生成ガスを用いてもよいが、いずれの処理ガスを用いた場合でも、これら装置では同様な処理が行われる。
以下、マイクロ波プラズマ処理装置100A、100B、100Cを代表して、図4に示すマイクロ波プラズマ処理装置100Aの動作について説明する。
処理ガス供給機構50の処理ガス供給源51から配管52ならびに周縁側ガス供給路53および中央側ガス供給路54を介して処理空間Sに反応ガスを含む処理ガスを導入しつつ、マイクロ波を導入し、マイクロ波プラズマを生成する。
具体的には、マイクロ波発生部69で発生した所定のパワーのマイクロ波を導波管67にTEモードで伝播させ、モード変換器66でTEMモードに変換させるとともに、TEMモードのマイクロ波を同軸導波管65に伝播させて、遅波材63、スロットアンテナ62のスロット621、およびマイクロ波透過板61を経て、処理空間Sに放射させる。
マイクロ波は表面波としてマイクロ波透過板61の直下領域にのみ広がり、マイクロ波プラズマが表面波プラズマとして生成される。そして、プラズマは下方に拡散し、ウエハWの配置領域では、高電子密度かつ低電子温度のプラズマとなる。
このとき、マイクロ波プラズマ処理装置100A、100B、100Cにおいて、着火不良が発生すると、アンテナ部60を構成する部材の損傷や、処理中のウエハへの損害、装置復旧のためのダウンタイムが発生してしまうため、着火不良を監視する安全対策が必要である。
本実施形態のマイクロ波プラズマ処理装置100A、100B、100Cは、上述した特許文献3と同様の成膜装置に搭載されており、これらは隣接した領域に配置されているため、誤検知の問題が生じ、また、スペースの問題、およびカーボンワイヤーヒーターが用いられている問題等により、着火不良を監視する安全対策として発光センサを適用することが困難であり、発光センサは用いていない。
発光センサを用いない場合の安全対策としては、従来は、マイクロ波プラズマ源の内部で検知・調整されるパラメータ(例えば進行波と反射波の比や、インピーダンス整合を行うチューナのポジション等)の閾値を監視することのみであったが、閾値の監視のみで発光センサを用いない場合には、アンテナ部で予期せずマッチングが生じた場合や、微小放電がマイクロ波伝播経路内で発生した場合は、マイクロ波プラズマ源内部で検知・調整されるパラメータに異常が現れない場合があり、事前に着火不良を発見することは難しい。
そこで、本発明者が調査・検討した結果、閾値の監視のみで異常が現れない、アンテナ部での予期せぬ箇所でのマイクロ波のマッチングや、スロットアンテナ62に至るマイクロ波伝播経路内での微小放電等は、マイクロ波伝播経路の部材の接続部分等で抵抗が高くなることにより温度が上昇すること、および、温度が上昇すると異常放電が生じやすくなり、結果として着火不良が生じることを見出した。
したがって、マイクロ波伝播経路の温度上昇は、着火不良が起こる前兆とみなすことができ、スロットアンテナ62に至るマイクロ波伝播経路の温度を検出することにより、着火不良を事前に予測することができる。
また、より温度が上昇しやすいのは、マイクロ波伝播経路のアンテナ部60に対応する部分、すなわち同軸導波管65の内側導体651、コネクタ70やその下のキャップ72の部分であり、その中でもコネクタ70やキャップ72の近傍、特にキャップ72の近傍であることが判明した。また、マイクロ波プラズマ処理装置を本例のALDプロセスのような長時間のプロセスに適用した場合には、アンテナ部で予期せぬマッチングが起こった場合や微小放電が起こった場合など、高温状態が続くことによって、異常放電が生じ、着火不良が生じることが判明した。
そこで、本実施形態では、同軸導波管65の内側導体651およびコネクタ70に形成された孔651a内に温度検出器である熱電対80を挿入し、その温度測定部80aをスロットアンテナ62近傍部分であるコネクタ70、キャップ72に対応する部分に位置させてその部分の温度を検出し、その温度信号を異常検出部81に入力し、その温度信号に基づいて異常検出部81により異常の判定を行う。具体的には、異常検出部81に所定の閾値を設定し、これを超えたら異常と判定し、安全を確保するための指令を発する。本例では、異常検出部81に所定温度の第1の閾値および第1の閾値よりも高い温度の第2の閾値を設定し、熱電対80からの温度信号が第1の閾値を超えた場合に、警告発生部82に警告発生信号を出力し、警告発生部82が警告を発する。また、熱電対80からの温度信号が第2の閾値を超えた場合に、警報発生部83に警報発生信号を出力し、警報発生部83で警報を発するとともに、全体制御部8へプラズマ停止信号を出力し、全体制御部8はプラズマを停止する制御を行う。第1の閾値を超えた警告段階では、処理は継続し、処理が終了後、部材の交換等のメンテナンスを行う。
このように、接触不良などによる予期せぬ箇所でのマッチングや、軽度な放電が発生した際に、マイクロ波伝播経路の部材の温度が上昇することに着目し、マイクロ波伝播経路の部材の温度、好ましくはより温度が上昇しやすいアンテナ部60内の部材の温度、特に、温度が上昇しやすいコネクタ70、キャップ72の近傍部分の温度を監視することにより、着火不良を未然に防止することができる。
異常検出部81は、さらに、従来と同様、検知・調整パラメータとして、検出器85の検出値に基づく進行波と反射波の比およびチューナ68のポジション(例えばスラグチューナの場合はスラグポジション)を検知し、これらの値が閾値を超えた場合に全体制御部8へプラズマ停止信号を出力する。これにより、従来と同様の安全対策を行うこともできる。
<実験例>
次に実験例について説明する。
ここでは、上記実施形態と同様、3つのマイクロ波プラズマ処理装置を隣接して設けた成膜装置において、3つのマイクロ波プラズマ処理装置で実際にプラズマを生成してマイクロ波伝播経路の温度測定の実験を行った。その際の条件は以下のとおりとした。
1.処理容器仕様
処理容器温度:475℃
処理容器圧力:2Torr
2.アンテナ部仕様
アンテナ温度:80℃(チラー制御)
内側導体水冷温度:25℃(室温)
同軸導波管圧力:大気圧
3.プロセス仕様
使用ガス種:Ar/NH/H
マイクロ波パワー:2.5kW、3kW
4.温度監視閾値
異常警告(第1の閾値):150℃超過 2sec以上
異常警報(第2の閾値):300℃超過 2sec以上
この条件で3つのマイクロ波プラズマ処理装置でプラズマを生成し、アンテナ部(Ant−1,Ant−2、Ant−3)のキャップ部分の温度を測定した。その結果を図6に示す。
図6に示すように、マイクロ波パワーが2.5kWのときは、いずれのアンテナ部のキャップ温度が警告閾値である150℃以下であったが、マイクロ波パワーが3kWのときは、Ant−2において150℃を超える温度(162.7℃)となった。このAnt−2を使い続けた結果、後日同軸導波管に異常放電が生じ、着火不良が生じた。Ant−2を解体してチェックしたところ、同軸導波管の内側導体の外側および外側導体の内側に相対向するように放電痕が見られた。
この結果から、マイクロ波伝播経路の温度、具体的には同軸導波管の下のキャップ部分の温度を測定することにより、着火不良を事前に予測できることが確認された。
<他の適用>
以上、本発明の実施形態について説明したが、本発明は、上記の実施形態に限定されず、その思想を逸脱しない範囲で種々変形可能である。
例えば、上記実施形態では、PE−ALD成膜装置に複数設けられたマイクロ波プラズマ処理装置に適用した場合について示したが、これに限らず、他のマイクロ波プラズマ処理装置にも適用することができる。
また、上記実施形態では、温度検出器として熱電対を用いたが、温度検出器はこれに限るものではなく、光ファイバーセンサ等、従来用いられている温度検出器のいずれも用いることができる。ただし、温度検出器がシース熱電対等、金属で被覆したものの場合、閉空間に設置し、マイクロ波伝播に干渉しないよう注意が必要である。また、温度測定部分が100〜1000℃に加熱される場合もあるが、温度検出器は加熱温度に応じた耐熱性を有する材質のものを用いることが好ましい。
さらに、上記実施形態では、温度検出器をコネクタ、キャップに対応する部分に設けたが、これに限らず同軸導波管の他の位置に設けてもよい。ただし、温度検出位置は水冷部を避けた位置であることが望ましい。アンテナ部の構成上、異常放電リスクが生じる箇所が同軸導波管にある場合等には、温度検出位置は、同軸導波管以外のマイクロ波伝播経路であってもよい。
2;回転テーブル
3;原料ガス導入ユニット
6A、6B、6C;マイクロ波プラズマ源
8;全体制御部
11;処理容器
50;処理ガス供給機構
51;処理ガス供給源
52;配管
57;排気機構
60;アンテナ部
61;マイクロ波透過板
62;スロットアンテナ
63;遅波材
64;冷却ジャケット
65;同軸導波管
66;モード変換器
67;導波管
68;チューナ
69;マイクロ波発生部
70;コネクタ
72;キャップ
80;熱電対
80a;温度測定部
81;異常検出部
82;警告発生部
83;警報発生部
85;検出器
100A,100B,100c;マイクロ波プラズマ処理装置
R1;吸着領域
R2;反応領域
S;処理空間
W;半導体ウエハ

Claims (15)

  1. 被処理基板を処理する処理空間にマイクロ波プラズマを生成するマイクロ波プラズマ源であって、
    マイクロ波を発生させるマイクロ波発生部と、
    前記マイクロ波発生部で発生されたマイクロ波を伝播する導波路と、
    前記導波路を伝播したマイクロ波を前記処理空間内に放射する、所定パターンのスロットが形成されたスロットアンテナ、および前記スロットから放射されたマイクロ波を透過して前記処理空間に供給する誘電体からなるマイクロ波透過板を有するアンテナ部と、
    前記スロットアンテナに至るマイクロ波伝播経路の所定位置の温度を検出する温度検出器と、
    前記温度検出器が検出した温度が入力され、その温度に基づいて前記アンテナ部での予期せぬ箇所でのマイクロ波のマッチングまたは前記マイクロ波伝播経路内での微小放電に基づく前記マイクロ波伝播経路の異常を検出して前記マイクロ波プラズマの着火不良を未然に防止する異常検出部と
    を有することを特徴とするマイクロ波プラズマ源。
  2. 前記導波路は、前記アンテナ部のアンテナにマイクロ波を伝播する同軸導波管と、前記マイクロ波発生部からマイクロ波を伝播する導波管と、前記同軸導波管と前記導波管を接続する接続部とを有し、前記同軸導波管の内側導体の下に、前記スロットアンテナに接続されるコネクタおよび前記コネクタの下部を覆うキャップを有することを特徴とする請求項1に記載のマイクロ波プラズマ源。
  3. 前記温度検出器は、前記同軸導波管、前記コネクタ、または前記キャップに対応する位置に設けられることを特徴とする請求項2に記載のマイクロ波プラズマ源。
  4. 前記異常検出部は、前記温度検出器が検出する検出温度の所定の閾値が設定され、前記温度検出器で検出された温度が前記閾値を超えたときに異常と判定し、マイクロ波伝播経路の部材の安全を確保するための指令を発することを特徴とする請求項1から請求項3のいずれか1項に記載のマイクロ波プラズマ源。
  5. 前記異常検出部は、前記所定の閾値として、第1の閾値と、前記第1の閾値よりも高い第2の閾値が設定され、前記温度検出器で検出された温度が前記第1の閾値を超えた場合に警告を発する指令を出力し、前記温度検出器で検出された温度が前記第2の閾値を超えた場合に警報を発するとともにプラズマを停止する指令を出力することを特徴とする請求項4に記載のマイクロ波プラズマ源。
  6. 被処理基板を処理する処理空間を画成する処理容器と、
    マイクロ波を発生させるマイクロ波発生部と、
    前記マイクロ波発生部で発生されたマイクロ波を伝播する導波路と、
    前記導波路を伝播したマイクロ波を前記処理空間に放射する、所定パターンのスロットが形成されたスロットアンテナ、および前記スロットから放射されたマイクロ波を透過して前記処理空間に供給する誘電体からなるマイクロ波透過板を有するアンテナ部と、
    前記スロットアンテナに至るマイクロ波伝播経路の所定位置の温度を検出する温度検出器と、
    前記温度検出器が検出した温度が入力され、その温度に基づいて前記アンテナ部での予期せぬ箇所でのマイクロ波のマッチングまたは前記マイクロ波伝播経路内での微小放電に基づく前記マイクロ波伝播経路の異常を検出して前記マイクロ波プラズマの着火不良を未然に防止する異常検出部と、
    前記処理空間にプラズマ処理のためのガスを供給するガス供給機構と、
    前記処理空間を排気する排気機構と
    を有することを特徴とするマイクロ波プラズマ処理装置。
  7. 前記導波路は、前記アンテナ部のアンテナにマイクロ波を伝播する同軸導波管と、前記マイクロ波発生部からマイクロ波を伝播する導波管と、前記同軸導波管と前記導波管を接続する接続部とを有し、前記同軸導波管の内側導体の下に、前記スロットアンテナに接続されるコネクタおよび前記コネクタの下部を覆うキャップを有することを特徴とする請求項6に記載のマイクロ波プラズマ処理装置。
  8. 前記温度検出器は、前記同軸導波管、前記コネクタ、または前記キャップに対応する位置に設けられることを特徴とする請求項7に記載のマイクロ波プラズマ処理装置。
  9. 前記異常検出部は、前記温度検出器が検出する検出温度の所定の閾値が設定され、前記温度検出器で検出された温度が前記閾値を超えたときに異常と判定し、マイクロ波伝播経路の部材の安全を確保するための指令を発することを特徴とする請求項6から請求項8のいずれか1項に記載のマイクロ波プラズマ処理装置。
  10. 前記異常検出部は、前記所定の閾値として、第1の閾値と、前記第1の閾値よりも高い第2の閾値が設定され、前記温度検出器で検出された温度が前記第1の閾値を超えた場合に警告を発する指令を出力し、前記温度検出器で検出された温度が前記第2の閾値を超えた場合に警報を発するとともにプラズマを停止する指令を出力することを特徴とする請求項9に記載のマイクロ波プラズマ処理装置。
  11. 被処理基板を処理する処理空間を画成する処理容器と、
    マイクロ波を発生させるマイクロ波発生部と、
    前記マイクロ波発生部で発生されたマイクロ波を伝播する導波路と、
    前記導波路を伝播したマイクロ波を前記処理空間に放射する、所定パターンのスロットが形成されたスロットアンテナ、および前記スロットから放射されたマイクロ波を透過して前記処理空間に供給する誘電体からなるマイクロ波透過板を有するアンテナ部と、
    前記処理空間にプラズマ処理のためのガスを供給するガス供給機構と、
    前記処理空間を排気する排気機構と
    を有するマイクロ波プラズマ処理装置によりプラズマ処理を行うプラズマ処理方法であって、
    前記プラズマ処理のためのガスを前記処理空間に供給しつつ、前記導波路および前記アンテナ部を介して前記処理空間にマイクロ波を放射してマイクロ波プラズマを生成する際に、
    前記スロットアンテナに至るマイクロ波伝播経路の所定位置の温度を検出し、その温度に基づいて前記アンテナ部での予期せぬ箇所でのマイクロ波のマッチングまたは前記マイクロ波伝播経路内での微小放電に基づく前記マイクロ波伝播経路の異常を検出して前記マイクロ波プラズマの着火不良を未然に防止することを特徴とするプラズマ処理方法。
  12. 前記マイクロ波プラズマ処理装置において、前記導波路は、前記アンテナ部のアンテナにマイクロ波を伝播する同軸導波管と、前記マイクロ波発生部からマイクロ波を伝播する導波管と、前記同軸導波管と前記導波管を接続する接続部とを有し、前記同軸導波管の内側導体の下に、前記スロットアンテナに接続されるコネクタおよび前記コネクタの下部を覆うキャップを有することを特徴とする請求項11に記載のプラズマ処理方法。
  13. 前記同軸導波管、前記コネクタ、または前記キャップに対応する位置の温度を検出することを特徴とする請求項12に記載のプラズマ処理方法。
  14. 前記検出された温度が所定の閾値を超えたときに前記マイクロ波伝播経路に異常があると判断し、マイクロ波伝播経路の部材の安全を確保することを特徴とする請求項11から請求項13のいずれか1項に記載のプラズマ処理方法。
  15. 前記閾値として、第1の閾値と、前記第1の閾値よりも高い第2の閾値を設定し、前記検出された温度が前記第1の閾値を超えた場合に警告を発し、前記検出された温度が前記第2の閾値を超えた場合に警報を発するとともにプラズマを停止することを特徴とする請求項14に記載のプラズマ処理方法。
JP2017015089A 2017-01-31 2017-01-31 マイクロ波プラズマ源、マイクロ波プラズマ処理装置、およびプラズマ処理方法 Active JP6749258B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017015089A JP6749258B2 (ja) 2017-01-31 2017-01-31 マイクロ波プラズマ源、マイクロ波プラズマ処理装置、およびプラズマ処理方法
KR1020180007103A KR102215403B1 (ko) 2017-01-31 2018-01-19 마이크로파 플라스마원, 마이크로파 플라스마 처리 장치, 및 플라스마 처리 방법
US15/882,028 US11056317B2 (en) 2017-01-31 2018-01-29 Microwave plasma source, microwave plasma processing apparatus and plasma processing method
US17/229,122 US11942308B2 (en) 2017-01-31 2021-04-13 Microwave plasma source, microwave plasma processing apparatus and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017015089A JP6749258B2 (ja) 2017-01-31 2017-01-31 マイクロ波プラズマ源、マイクロ波プラズマ処理装置、およびプラズマ処理方法

Publications (2)

Publication Number Publication Date
JP2018125114A JP2018125114A (ja) 2018-08-09
JP6749258B2 true JP6749258B2 (ja) 2020-09-02

Family

ID=62980702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017015089A Active JP6749258B2 (ja) 2017-01-31 2017-01-31 マイクロ波プラズマ源、マイクロ波プラズマ処理装置、およびプラズマ処理方法

Country Status (3)

Country Link
US (2) US11056317B2 (ja)
JP (1) JP6749258B2 (ja)
KR (1) KR102215403B1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374023B2 (ja) 2020-03-09 2023-11-06 東京エレクトロン株式会社 検査方法及びプラズマ処理装置
US12014898B2 (en) * 2021-09-27 2024-06-18 Applied Materials, Inc. Active temperature control for RF window in immersed antenna source

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3257328B2 (ja) * 1995-03-16 2002-02-18 株式会社日立製作所 プラズマ処理装置及びプラズマ処理方法
JP4255563B2 (ja) 1999-04-05 2009-04-15 東京エレクトロン株式会社 半導体製造方法及び半導体製造装置
JP2003338400A (ja) * 2002-05-20 2003-11-28 Daihen Corp プラズマ発生装置及びその絶縁体間放電検出装置
TW200740089A (en) * 2006-03-07 2007-10-16 Rohm Co Ltd Capacitor charging apparatus
JP2008072030A (ja) * 2006-09-15 2008-03-27 Matsushita Electric Ind Co Ltd プラズマ処理装置、プラズマ処理装置の異常検出方法、及びプラズマ処理方法
JP2008091218A (ja) 2006-10-02 2008-04-17 Seiko Epson Corp プラズマ処理装置
US20100101728A1 (en) * 2007-03-29 2010-04-29 Tokyo Electron Limited Plasma process apparatus
JP5438260B2 (ja) * 2007-03-29 2014-03-12 東京エレクトロン株式会社 プラズマ処理装置
JP5297885B2 (ja) * 2008-06-18 2013-09-25 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
JP4694596B2 (ja) * 2008-06-18 2011-06-08 東京エレクトロン株式会社 マイクロ波プラズマ処理装置及びマイクロ波の給電方法
KR101170006B1 (ko) * 2008-07-04 2012-07-31 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치, 플라즈마 처리 방법 및 유전체창의 온도 조절 기구
JP2011029475A (ja) * 2009-07-28 2011-02-10 Shibaura Mechatronics Corp プラズマ処理装置及びプラズマ処理方法
JP5570938B2 (ja) * 2009-12-11 2014-08-13 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
JP5955062B2 (ja) * 2011-04-25 2016-07-20 東京エレクトロン株式会社 プラズマ処理装置
JP5848982B2 (ja) 2012-02-17 2016-01-27 東京エレクトロン株式会社 プラズマ処理装置及びプラズマのモニタリング方法
JP6378070B2 (ja) 2014-12-15 2018-08-22 東京エレクトロン株式会社 成膜方法
JP6494443B2 (ja) * 2015-06-15 2019-04-03 東京エレクトロン株式会社 成膜方法及び成膜装置

Also Published As

Publication number Publication date
US20180218880A1 (en) 2018-08-02
US20210233742A1 (en) 2021-07-29
US11056317B2 (en) 2021-07-06
KR102215403B1 (ko) 2021-02-10
JP2018125114A (ja) 2018-08-09
US11942308B2 (en) 2024-03-26
KR20180089289A (ko) 2018-08-08

Similar Documents

Publication Publication Date Title
US10804077B2 (en) Microwave plasma source, microwave plasma processing apparatus and plasma processing method
JP5166501B2 (ja) 天板およびプラズマ処理装置
JP5805227B2 (ja) プラズマ処理装置
JP5848982B2 (ja) プラズマ処理装置及びプラズマのモニタリング方法
JP4979389B2 (ja) プラズマ処理装置
WO2007015504A1 (ja) プラズマ処理装置およびガス通過プレート
JP5121698B2 (ja) プラズマ処理装置
WO2006092985A1 (ja) マイクロ波プラズマ処理装置
WO2007091672A1 (ja) プラズマ処理装置及びプラズマ処理方法
WO2014010356A1 (ja) マイクロ波導入モジュールにおけるsパラメータ取得方法及び異常検知方法
JP2007149559A (ja) プラズマ処理装置
US11942308B2 (en) Microwave plasma source, microwave plasma processing apparatus and plasma processing method
JP5096047B2 (ja) マイクロ波プラズマ処理装置およびマイクロ波透過板
US20090050052A1 (en) Plasma processing apparatus
JP2007250569A (ja) プラズマ処理装置およびプラズマに曝される部材
JP2003203869A (ja) プラズマ処理装置
JP2010073753A (ja) 基板載置台およびそれを用いた基板処理装置
KR102004037B1 (ko) 마이크로파 플라즈마 처리 장치 및 마이크로파 플라즈마 처리 방법
JP2008182102A (ja) 天板部材及びこれを用いたプラズマ処理装置
JP7090521B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2017226894A (ja) プラズマ成膜方法およびプラズマ成膜装置
JP4709192B2 (ja) プラズマ処理装置
JP2019046766A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200811

R150 Certificate of patent or registration of utility model

Ref document number: 6749258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250