JP2017226894A - プラズマ成膜方法およびプラズマ成膜装置 - Google Patents

プラズマ成膜方法およびプラズマ成膜装置 Download PDF

Info

Publication number
JP2017226894A
JP2017226894A JP2016125087A JP2016125087A JP2017226894A JP 2017226894 A JP2017226894 A JP 2017226894A JP 2016125087 A JP2016125087 A JP 2016125087A JP 2016125087 A JP2016125087 A JP 2016125087A JP 2017226894 A JP2017226894 A JP 2017226894A
Authority
JP
Japan
Prior art keywords
plasma
gas
chamber
film forming
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016125087A
Other languages
English (en)
Other versions
JP6861479B2 (ja
Inventor
稔 本多
Minoru Honda
稔 本多
敏雄 中西
Toshio Nakanishi
敏雄 中西
雅士 今中
Masashi Imanaka
雅士 今中
千洙 韓
Senshu Kan
千洙 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2016125087A priority Critical patent/JP6861479B2/ja
Priority to US15/627,583 priority patent/US10190217B2/en
Priority to KR1020170078124A priority patent/KR102047160B1/ko
Publication of JP2017226894A publication Critical patent/JP2017226894A/ja
Application granted granted Critical
Publication of JP6861479B2 publication Critical patent/JP6861479B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32467Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Plasma Technology (AREA)

Abstract

【課題】安定性が高く均一なプラズマを生成することができ、均一性の高い膜を得ることができるプラズマ成膜方法およびプラズマ成膜装置を提供する。
【解決手段】チャンバー内に被処理体を配置し、チャンバー内に成膜ガスを供給するとともに、チャンバー内にプラズマを生成させ、そのプラズマにより成膜ガスを励起させて被処理体上に所定の膜を成膜するにあたり、チャンバー内に、成膜ガスとともにプラズマ生成ガスとしてヘリウムガスを供給し、チャンバー内にヘリウムガスを含むプラズマを生成させる。
【選択図】図2

Description

本発明は、マイクロ波プラズマを用いたプラズマ成膜方法およびプラズマ成膜装置に関する。
半導体デバイスの製造工程においては、絶縁膜、保護膜、電極膜等として種々の膜の成膜が行われる。このような各種膜の成膜方法として、プラズマにより成膜ガスを励起して基板上に所定の膜を堆積させるプラズマCVDが知られている。
例えば、特許文献1には、チャンバー内に、珪素原料ガスと、窒素含有ガスと、プラズマ生成ガスであるアルゴンガスとを供給して、マイクロ波プラズマを用いたプラズマCVDにより窒化珪素膜を成膜することが記載されている。
プラズマ生成ガスとしてのアルゴンガスは、必須ではないが、プラズマを安定的に生成するために用いられる。また、特許文献2には、このようなプラズマ生成用ガスとして、他の希ガスも使用可能なことが記載されている。しかし、実際には、ほとんどの場合、プラズマ生成ガスとしてはアルゴンガスが用いられている。
特開2009−246129号公報 特開2011−77323号公報
ところで、近時、半導体素子の微細化が進んでおり、成膜処理において、膜厚均一性や膜質均一性への要求が高まっている。しかし、プラズマ生成ガスとしてアルゴンガスを用いた場合には、十分な膜厚均一性や膜質均一性が得られず、むしろ悪化する場合もあることが判明した。一方、このようなことを回避するため、アルゴンガスを用いずにプラズマ成膜処理を行うと、プラズマ安定性が不十分になる可能性がある。
したがって、本発明は、安定性が高く均一なプラズマを生成することができ、均一性の高い膜を得ることができるプラズマ成膜方法およびプラズマ成膜装置を提供することを課題とする。
上記課題を解決するため、本発明の第1の観点は、チャンバー内に被処理体を配置し、前記チャンバー内に成膜ガスを供給するとともに、前記チャンバー内にプラズマを生成させ、前記プラズマにより前記成膜ガスを励起させて被処理体上に所定の膜を成膜するプラズマ成膜方法であって、前記チャンバー内に、前記成膜ガスとともにプラズマ生成ガスとしてヘリウムガスを供給し、前記チャンバー内にヘリウムガスを含むプラズマを生成させることを特徴とするプラズマ成膜方法を提供する。
本発明の第2の観点は、被処理体が収容されるチャンバーと、前記チャンバー内で被処理体が保持される基板保持部材と、前記チャンバー内にガスを供給するガス供給機構と、前記チャンバー内を排気する排気機構と、前記チャンバー内にプラズマを生成させるプラズマ生成手段とを有し、前記ガス供給機構は、前記被処理体上に所定の膜を成膜させるための成膜ガスと、プラズマ生成ガスとしてのヘリウムガスとを前記チャンバー内に供給し、前記プラズマ生成手段により、前記チャンバー内にヘリウムガスを含むプラズマを生成させ、該プラズマにより前記成膜ガスを励起させて前記被処理体上に所定の膜を成膜することを特徴とするプラズマ成膜装置を提供する。
本発明において、前記チャンバー内に生成されるプラズマは、マイクロ波プラズマとすることができる。この場合に、前記マイクロ波プラズマとしては、RLSA(登録商標)マイクロ波プラズマ処理装置により生成されたものを用いることができる。
また、前記成膜ガスと前記ヘリウムガスとの分圧比率は、0.15〜2.5の範囲が好適である。
前記成膜ガスとして、シリコン原料ガスおよび窒素含有ガスを用い、前記所定の膜として窒化珪素膜を成膜することができる。この場合に、前記被処理体の処理温度は、250〜550℃の範囲とすることができ、前記チャンバー内の処理圧力は、6.5〜100Paの範囲とすることができる。
本発明によれば、プラズマにより成膜ガスを励起させて被処理基板上に所定の膜を成膜するにあたり、チャンバー内に、成膜ガスとともにプラズマ生成ガスとしてヘリウムガスを供給し、チャンバー内にヘリウムガスを含むプラズマを生成させるので、安定性が高く均一なプラズマを生成することができ、膜厚や膜質の均一性が高い膜を得ることができる。
本発明の一実施形態に係るプラズマ成膜方法が適用可能なプラズマ成膜装置の一例を示す断面図である。 プラズマ成膜方法の一実施形態を示すフローチャートである。 Heガスを添加しない場合とHeガスを添加した場合について膜厚均一性を比較して示した図である。 Heガス添加なしおよびHeガス添加ありの場合における膜厚レンジの平均値(%)と屈折率(RI)レンジをプロットした図である。
以下、添付図面を参照して本発明の実施の形態について詳細に説明する。
<プラズマ成膜装置>
図1は本発明の一実施形態に係るプラズマ成膜方法が適用可能なプラズマ成膜装置の一例を示す断面図である。図1のプラズマ処理装置は、RLSA(登録商標)マイクロ波プラズマ成膜装置として構成されており、被処理体である半導体ウエハ(以下単に「ウエハ」と記す)にプラズマCVDにより窒化珪素(SiN)膜を成膜するようになっている。
図1に示すように、プラズマ成膜装置100は、気密に構成され、接地された略円筒状のチャンバー1を有している。チャンバー1の底壁1aの略中央部には円形の開口部10が形成されており、底壁1aにはこの開口部10と連通し、下方に向けて突出する排気室11が設けられている。
チャンバー1内には被処理体、例えばウエハWを水平に支持するためのAlN等のセラミックスからなるサセプタ2が設けられている。このサセプタ2は、排気室11の底部中央から上方に延びる円筒状のAlN等のセラミックスからなる支持部材3により支持されている。また、サセプタ2には抵抗加熱型のヒーター5が埋め込まれており、このヒーター5はヒーター電源6から給電されることによりサセプタ2を加熱しウエハWを加熱する。また、サセプタ2は電極7が埋め込まれており、電極7には整合器8を介してバイアス印加用の高周波電源9が接続されている。
サセプタ2には、ウエハWを支持して昇降させるためのウエハ支持ピン(図示せず)がサセプタ2の表面に対して突没可能に設けられている。
チャンバー1の側壁には環状をなすガス導入部15が設けられており、このガス導入部15には均等にガス放射孔15aが形成されている。このガス導入部15にはガス供給機構16が接続されている。
ガス供給機構16は、Si原料ガス、窒素含有ガス、およびプラズマ生成ガスであるヘリウム(He)ガスを供給するようになっている。Si原料ガスとしてはモノシラン(SiH)やジシラン(Si)、窒素含有ガスとしてはNガスやアンモニア(NH)が例示される。これらのガスは、それぞれのガス供給源から、別個の配管によりマスフローコントローラ等の流量制御器により独立に流量制御され、ガス導入部15へ供給される。図1では、Si原料ガスとしてSiHガス、窒素含有ガスとしてNガスを用いた例を示す。
なお、ガス導入部15よりも下方に、例えばシャワープレート等の別のガス導入部を設け、シリコン原料ガス等のプラズマにより完全に解離されないほうが好ましいガスを別のガス導入部から、よりウエハWに近い電子温度がより低い領域に供給してもよい。
上記排気室11の側面には排気管23が接続されており、この排気管23には真空ポンプや自動圧力制御バルブ等を含む排気機構24が接続されている。排気機構24の真空ポンプを作動させることによりチャンバー1内のガスが、排気室11の空間11a内へ均一に排出され、排気管23を介して排気され、自動圧力制御バルブによりチャンバー1内を所定の真空度に制御可能となっている。
チャンバー1の側壁には、プラズマ成膜装置100に隣接する搬送室(図示せず)との間でウエハWの搬入出を行うための搬入出口25と、この搬入出口25を開閉するゲートバルブ26とが設けられている。
チャンバー1の上部は開口部となっており、その開口部の周縁部がリング状の支持部27となっている。この支持部27に誘電体、例えば石英やAl等のセラミックスからなる円板状のマイクロ波透過板28がシール部材29を介して気密に設けられている。したがって、チャンバー1内は気密に保持される。
マイクロ波透過板28の上方には、マイクロ波透過板28に対応する円板状をなす平面アンテナ31がマイクロ波透過板28に密着するように設けられている。この平面アンテナ31はチャンバー1の側壁上端に係止されている。平面アンテナ31は導電性材料からなる円板で構成されている。
平面アンテナ31は、例えば表面が銀または金メッキされた銅板またはアルミニウム板からなり、マイクロ波を放射するための複数のスロット32が貫通するように形成された構成となっている。スロット32のパターンの例としては、T字状に配置された2つのスロット32を一対として複数対のスロット32が同心円状に配置されているものを挙げることができる。スロット32の長さや配列間隔は、マイクロ波の波長(λg)に応じて決定され、例えばスロット32は、それらの間隔がλg/4、λg/2またはλgとなるように配置される。なお、スロット32は、円形状、円弧状等の他の形状であってもよい。さらに、スロット32の配置形態は特に限定されず、同心円状のほか、例えば、螺旋状、放射状に配置することもできる。
この平面アンテナ31の上面には、真空よりも大きい誘電率を有する誘電体、例えば石英、ポリテトラフルオロエチレン、ポリイミドなどの樹脂からなる遅波材33が密着して設けられている。遅波材33はマイクロ波の波長を真空中より短くして平面アンテナ31を小さくする機能を有している。
平面アンテナ31とマイクロ波透過板28との間が密着した状態となっており、また、遅波板33と平面アンテナ31との間も密着されている。また、遅波板33、平面アンテナ31、マイクロ波透過板28、およびプラズマで形成される等価回路が共振条件を満たすようにマイクロ波透過板28、遅波材33の厚さが調整されている。遅波材33の厚さを調整することにより、マイクロ波の位相を調整することができ、平面アンテナ31の接合部が定在波の「はら」になるように厚さを調整することにより、マイクロ波の反射が極小化され、マイクロ波の放射エネルギーが最大となる。また、遅波板33とマイクロ波透過板28を同じ材質とすることにより、マイクロ波の界面反射を防止することができる。
なお、平面アンテナ31とマイクロ波透過板28との間、また、遅波材33と平面アンテナ31との間は、離間していてもよい。
チャンバー1の上面には、これら平面アンテナ31および遅波材33を覆うように、例えばアルミニウムやステンレス鋼、銅等の金属材からなるシールド蓋体34が設けられている。チャンバー1の上面とシールド蓋体34とはシール部材35によりシールされている。シールド蓋体34には、冷却水流路34aが形成されており、そこに冷却水を通流させることにより、シールド蓋体34、遅波材33、平面アンテナ31、マイクロ波透過板28を冷却するようになっている。なお、シールド蓋体34は接地されている。
シールド蓋体34の上壁の中央には開口部36が形成されており、この開口部には導波管37が接続されている。この導波管37の端部には、マッチング回路38を介してマイクロ波発生装置39が接続されている。これにより、マイクロ波発生装置39で発生した例えば周波数2.45GHzのマイクロ波が導波管37を介して上記平面アンテナ31へ伝播されるようになっている。なお、マイクロ波の周波数としては、8.35GHz、1.98GHz、860MHz、915MHz等、種々の周波数を用いることができる。
導波管37は、上記シールド蓋体34の開口部36から上方へ延出する断面円形状の同軸導波管37aと、この同軸導波管37aの上端部にモード変換器40を介して接続された水平方向に延びる矩形導波管37bとを有している。矩形導波管37bと同軸導波管37aとの間のモード変換器40は、矩形導波管37b内をTEモードで伝播するマイクロ波をTEMモードに変換する機能を有している。同軸導波管37aの中心には内導体41が延在しており、この内導体41の下端部は、平面アンテナ31の中心に接続固定されている。これにより、マイクロ波は、同軸導波管37aの内導体41を介して平面アンテナ31へ均一に効率よく伝播される。
プラズマ成膜装置100は制御部50を有している。制御部50は、プラズマ成膜装置100の各構成部、例えばマイクロ波発生装置39、ヒーター電源6、高周波電源9、排気機構24、ガス供給機構16のバルブや流量制御器等を制御するCPU(コンピュータ)を有する主制御部と、入力装置(キーボード、マウス等)、出力装置(プリンタ等)、表示装置(ディスプレイ等)、記憶装置(記憶媒体)を有している。制御部50の主制御部は、例えば、記憶装置に内蔵された記憶媒体、または記憶装置にセットされた記憶媒体に記憶された処理レシピに基づいて、プラズマ成膜装置100に、所定の動作を実行させる。
<プラズマ成膜方法>
次に、このように構成されるプラズマ成膜装置100を用いたプラズマ成膜方法の一実施形態について図2のフローチャートを参照して説明する。
まず、ゲートバルブ26を開にして搬入出口25から被処理体であるウエハWをチャンバー1内に搬入し、サセプタ2上に載置する(ステップ1)。
次いで、チャンバー1内を所定圧力に調整し、ガス供給機構16からガス導入部15を介して、チャンバー1内に、Si原料ガスとして例えばSiHガス、窒素含有ガスとして例えばNガス、プラズマ生成ガスであるHeガスを導入する(ステップ2)。そして、マイクロ波発生装置39から所定パワーのマイクロ波をチャンバー1内に導入してプラズマを生成し、プラズマCVDによりウエハW上にSiN膜を成膜する(ステップ3)。
ステップ3について具体的に説明する。
マイクロ波発生装置39からの所定のパワーのマイクロ波を、マッチング回路38を経て導波管37に導く。導波管37に導かれたマイクロ波は、矩形導波管37bをTEモードで伝播される。TEモードのマイクロ波はモード変換器40でTEMモードにモード変換され、TEMモードのマイクロ波が同軸導波管37aをTEMモードで伝播される。そして、TEMモードのマイクロ波は、遅波材33、平面アンテナ31のスロット32、およびマイクロ波透過板28を透過し、チャンバー1内に放射される。
マイクロ波は表面波としてマイクロ波透過板28の直下領域にのみ広がり、これにより表面波プラズマが生成される。そして、プラズマは下方に拡散し、ウエハWの配置領域では、高電子密度かつ低電子温度のプラズマとなる。
Si原料ガスおよび窒素含有ガスは、プラズマにより励起され、例えばSiHやNH等の活性種に解離され、これらがウエハW上で反応してSiN膜が成膜される。
ところで、このようなプラズマを安定的に生成するために、従来からプラズマ生成ガスが用いられ、従来、プラズマ生成ガスとして、コスト的および工業的に有利なArガスが多用されてきた。上述した特許文献2等に、Arガス以外の他の希ガスの使用可能性が示されているものの、これらはArガスと同様の機能を有するとみなされており、Arガス以外の希ガスはほとんど用いられていなかった。
しかし、プラズマ生成ガスとしてArガスを用いた場合には、最近の半導体素子の微細化に対応して要求される膜厚均一性や膜質均一性への要求を満たすことが困難となりつつあることが判明した。
すなわち、Arガスは原子量が大きい元素であり、均一に広がり難く、かつイオン化してウエハW上の膜に衝突した場合に膜にダメージを与えやすいため、十分な膜厚均一性や膜質均一性が得られず、むしろ悪化してしまう。
このようなことを回避するために、Arガスを用いずにプラズマ成膜処理を行うと、プラズマ安定性が不十分になることがあった。
そこで、他のプラズマ生成ガスを検討した結果、Heガスを用いることにより、プラズマを安定化する機能を保持した上で、所望の膜厚均一性や膜質均一性が得られることが新たに見出された。
すなわち、Heガスは、イオン化しやすくプラズマ生成ガスとしての機能を果たすのみならず、原子量が小さい軽い元素であるため、広がりやすく、プラズマを広げて均一化する効果があり、さらに、原子量が小さいゆえにウエハW上の膜に対してArガスのようなプラズマダメージを与え難い。このため、プラズマ生成ガスとしてHeガスを供給することにより、プラズマを安定化しつつ、所望の膜厚均一性や膜質均一性が得られるのである。
このとき、成膜ガスであるSi原料ガスおよび窒素含有ガス(SiHガス+Nガス)とHeガスとの分圧比(流量比)は、0.15〜2.5(すなわち、成膜ガスとHeガスとの分圧比が0.15:1〜2.5:1)の範囲であることが好ましい。
Si原料ガスとしてSiHガスを用い、窒素含有ガスとしてNガスを用いたときの他の条件の好ましい範囲は、以下のとおりである。
処理温度(サセプタ2表面の温度):250〜550℃
処理圧力:6.5〜100Pa(50〜750mTorr)
Heガス流量:100〜400mL/min(sccm)
SiHガス流量:10〜200mL/min(sccm)
ガス流量:10〜200mL/min(sccm)
マイクロ波パワー密度:0.01〜0.04W/cm
以上のように、本実施形態によれば、プラズマ生成ガスとしてHeガスを用いることにより、安定性が高く均一なプラズマを生成することができ、かつ膜厚均一性および膜質均一性等の均一性の高いSiN膜を得ることができる。
<実験例>
次に、実験例について説明する。
ここでは、図1に示すプラズマ成膜装置を用いてプラズマCVDによりSiN膜を成膜するにあたり、プラズマ生成ガスとしてHeガスを添加しない場合とHeガスを添加した場合について膜厚均一性を比較した。
図3はその結果を示すものであり、(a)はHeガスを添加しなかった場合、(b)はHeガスを流量200sccmで添加した場合のウエハ径方向の膜厚分布を示す図である。なお、膜厚分布はウエハの4つの径方向について求めた。また、ウエハの周方向の膜厚分布も求めた。
Heガスの供給条件以外の条件は両者で共通であり、以下のとおりとした。
SiHガス流量:90sccm
ガス流量:70sccm
マイクロ波パワー密度:2.78W/cm
処理時間:80sec
図3(a)に示すように、Heガス添加なしの場合には、ウエハの中心から周縁方向に向けて膜厚が上昇し、周縁部分において膜厚が低下するといった膜厚の不均一性が見られ、膜厚レンジ(1σ)が6.9%であった。これに対し、図3(b)に示すように、Heガス添加ありの場合には、膜厚はほぼフラットであり、膜厚レンジが3.0%となった。また、半径147mmの位置における周方向の膜厚レンジは、Heガス添加なしの場合が6.0%であったのに対し、Heガス添加ありの場合では1.1%であった。これらの結果から、Heガスを添加することにより、膜厚均一性が著しく向上することが確認された。
次に、種々の条件でSiN膜を成膜した際の、Heガス添加の有無による膜厚均一性と膜質均一性について調査した。
ここでは、処理条件を以下の範囲で調整し、一部ハードの調整も行って、Heガス添加なしの場合と、Heガス添加あり(100〜400sccm)の場合について、膜厚の均一性と膜質の均一性を調査した。
・成膜条件
SiHガス流量:10〜200sccm
ガス流量:5〜200sccm
マイクロ波パワー密度:2.43〜3.34W/cm
処理時間:10〜200sec
膜厚の均一性は、膜厚レンジの平均値(%)により求めた。また、膜質の指標としては膜の屈折率(RI)を用い、膜質の均一性は屈折率レンジにより求めた。図4は、Heガス添加なしおよびHeガス添加ありの場合における、各ケースでの膜厚レンジの平均値(%)と屈折率(RI)レンジをプロットした図である。
図4に示すように、Heガスを添加した場合には、Heガス添加なしの場合に比較して、膜厚レンジの平均値および屈折率レンジともに小さくなる傾向にあり、Heガスを添加することにより、膜厚の均一性および膜質の均一性ともに向上することが確認された。
<他の適用>
以上、添付図面を参照して本発明の実施形態について説明したが、本発明は、上記の実施の形態に限定されることなく、本発明の思想の範囲内において種々変形可能である。
例えば、上記実施形態では、RLSA(登録商標)マイクロ波プラズマ処理装置を用いてプラズマCVDによりSiN膜を成膜する場合を例にとって説明したが、プラズマとしては、他の方式のマイクロ波プラズマであっても、誘導結合プラズマ等のマイクロ波プラズマ以外のプラズマであってもよく、成膜される膜としてはSiN膜に限らず、他の膜の成膜に適用してもよい。
また、上記実施形態では、被処理体として半導体ウエハを用いた場合について示したが、半導体ウエハに限るものではなく、ガラス基板やセラミックス基板等の他の被処理体であってもよい。
1;チャンバー
2;サセプタ
5;ヒーター
15;ガス導入部
16;ガス供給機構
24;排気機構
28;マイクロ波透過板
31;平面アンテナ
32;スロット
33;遅波材
37;導波管
38;マッチング回路
39;マイクロ波発生装置
40;モード変換器
50;制御部
100;プラズマ成膜装置
W;半導体ウエハ(被処理体)

Claims (14)

  1. チャンバー内に被処理体を配置し、前記チャンバー内に成膜ガスを供給するとともに、前記チャンバー内にプラズマを生成させ、前記プラズマにより前記成膜ガスを励起させて被処理体上に所定の膜を成膜するプラズマ成膜方法であって、
    前記チャンバー内に、前記成膜ガスとともにプラズマ生成ガスとしてヘリウムガスを供給し、前記チャンバー内にヘリウムガスを含むプラズマを生成させることを特徴とするプラズマ成膜方法。
  2. 前記チャンバー内に生成されるプラズマは、マイクロ波プラズマであることを特徴とする請求項1に記載のプラズマ成膜方法。
  3. 前記マイクロ波プラズマは、RLSA(登録商標)マイクロ波プラズマ処理装置により生成されたものであることを特徴とする請求項2に記載のプラズマ成膜方法。
  4. 前記成膜ガスと前記ヘリウムガスとの分圧比率は、0.15〜2.5の範囲であることを特徴とする請求項1から請求項3のいずれか1項に記載のプラズマ成膜方法。
  5. 前記成膜ガスとして、シリコン原料ガスおよび窒素含有ガスを用い、前記所定の膜として窒化珪素膜を成膜することを特徴とする請求項1から請求項4のいずれか1項に記載のプラズマ成膜方法。
  6. 前記被処理体の処理温度は、250〜550℃の範囲であることを特徴とする請求項5に記載のプラズマ成膜方法。
  7. 前記チャンバー内の処理圧力は、6.5〜100Paの範囲であることを特徴とする請求項5または請求項6に記載のプラズマ成膜方法。
  8. 被処理体が収容されるチャンバーと、
    前記チャンバー内で被処理体が保持される基板保持部材と、
    前記チャンバー内にガスを供給するガス供給機構と、
    前記チャンバー内を排気する排気機構と、
    前記チャンバー内にプラズマを生成させるプラズマ生成手段と
    を有し、
    前記ガス供給機構は、前記被処理体上に所定の膜を成膜させるための成膜ガスと、プラズマ生成ガスとしてのヘリウムガスとを前記チャンバー内に供給し、
    前記プラズマ生成手段により、前記チャンバー内にヘリウムガスを含むプラズマを生成させ、該プラズマにより前記成膜ガスを励起させて前記被処理体上に所定の膜を成膜することを特徴とするプラズマ成膜装置。
  9. 前記プラズマ生成手段は、前記チャンバー内にマイクロ波プラズマを生成させるものであることを特徴とする請求項8に記載のプラズマ成膜装置。
  10. 前記プラズマ生成手段は、マイクロ波を発生させるマイクロ波発生装置と、マイクロ波を放射するスロットを有する平面アンテナと、前記チャンバーの天壁を構成する誘電体からなるマイクロ波透過板とを有し、前記平面アンテナの前記スロットおよび前記マイクロ波透過板を介してマイクロ波を前記チャンバー内に放射させ、前記チャンバー内にマイクロ波プラズマを供給し、前記チャンバー内にマイクロ波プラズマを生成させることを特徴とする請求項9に記載のプラズマ成膜装置。
  11. 前記ガス供給機構は、前記成膜ガスと前記ヘリウムガスとの分圧比率を、0.15〜2.5の範囲にして供給することを特徴とする請求項8から請求項10のいずれか1項に記載のプラズマ成膜装置。
  12. 前記ガス供給機構は、前記成膜ガスとして、シリコン原料ガスおよび窒素含有ガスを供給し、前記所定の膜として窒化珪素膜が成膜されることを特徴とする請求項8から請求項11のいずれか1項に記載のプラズマ成膜装置。
  13. 前記被処理体の処理温度を制御する手段を有し、前記被処理体の温度が250〜550℃の範囲に制御されることを特徴とする請求項12に記載のプラズマ成膜装置。
  14. 前記チャンバー内の処理圧力を制御する手段を有し、前記チャンバー内の処理圧力が6.5〜100Paの範囲に制御されることを特徴とする請求項12または請求項13に記載のプラズマ成膜装置。
JP2016125087A 2016-06-24 2016-06-24 プラズマ成膜方法およびプラズマ成膜装置 Active JP6861479B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016125087A JP6861479B2 (ja) 2016-06-24 2016-06-24 プラズマ成膜方法およびプラズマ成膜装置
US15/627,583 US10190217B2 (en) 2016-06-24 2017-06-20 Plasma film-forming method and plasma film-forming apparatus
KR1020170078124A KR102047160B1 (ko) 2016-06-24 2017-06-20 플라즈마 성막 방법 및 플라즈마 성막 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016125087A JP6861479B2 (ja) 2016-06-24 2016-06-24 プラズマ成膜方法およびプラズマ成膜装置

Publications (2)

Publication Number Publication Date
JP2017226894A true JP2017226894A (ja) 2017-12-28
JP6861479B2 JP6861479B2 (ja) 2021-04-21

Family

ID=60677223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016125087A Active JP6861479B2 (ja) 2016-06-24 2016-06-24 プラズマ成膜方法およびプラズマ成膜装置

Country Status (3)

Country Link
US (1) US10190217B2 (ja)
JP (1) JP6861479B2 (ja)
KR (1) KR102047160B1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240017106A (ko) * 2018-04-01 2024-02-06 엘지전자 주식회사 축소된 2차 변환을 이용하여 비디오 신호를 처리하는 방법 및 장치
JP7489905B2 (ja) * 2020-11-30 2024-05-24 東京エレクトロン株式会社 チャンバーコンディションの診断方法及び基板処理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168569A (ja) * 1996-12-03 1998-06-23 Lucent Technol Inc 複合膜を形成する方法および装置
WO2004107430A1 (ja) * 2003-05-29 2004-12-09 Tokyo Electron Limited プラズマ処理装置およびプラズマ処理方法
JP2011077323A (ja) * 2009-09-30 2011-04-14 Tokyo Electron Ltd 窒化珪素膜の成膜方法および半導体メモリ装置の製造方法
JP2013033828A (ja) * 2011-08-01 2013-02-14 Tokyo Electron Ltd 成膜方法
JP2013249530A (ja) * 2012-06-04 2013-12-12 National Institute Of Advanced Industrial Science & Technology グラフェンの製造方法及びグラフェン
JP2016076715A (ja) * 2007-08-17 2016-05-12 株式会社半導体エネルギー研究所 表示装置の作製方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287643B1 (en) * 1999-09-30 2001-09-11 Novellus Systems, Inc. Apparatus and method for injecting and modifying gas concentration of a meta-stable or atomic species in a downstream plasma reactor
US20030134499A1 (en) * 2002-01-15 2003-07-17 International Business Machines Corporation Bilayer HDP CVD / PE CVD cap in advanced BEOL interconnect structures and method thereof
JP2009246129A (ja) 2008-03-31 2009-10-22 Tokyo Electron Ltd プラズマcvd窒化珪素膜の成膜方法及び半導体集積回路装置の製造方法
JP2012216667A (ja) * 2011-03-31 2012-11-08 Tokyo Electron Ltd プラズマ処理方法
US9117668B2 (en) * 2012-05-23 2015-08-25 Novellus Systems, Inc. PECVD deposition of smooth silicon films
TWI690632B (zh) * 2014-11-10 2020-04-11 日商德山股份有限公司 Iii族氮化物單結晶製造裝置、使用該裝置之iii族氮化物單結晶之製造方法、及氮化鋁單結晶

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168569A (ja) * 1996-12-03 1998-06-23 Lucent Technol Inc 複合膜を形成する方法および装置
WO2004107430A1 (ja) * 2003-05-29 2004-12-09 Tokyo Electron Limited プラズマ処理装置およびプラズマ処理方法
JP2016076715A (ja) * 2007-08-17 2016-05-12 株式会社半導体エネルギー研究所 表示装置の作製方法
JP2011077323A (ja) * 2009-09-30 2011-04-14 Tokyo Electron Ltd 窒化珪素膜の成膜方法および半導体メモリ装置の製造方法
JP2013033828A (ja) * 2011-08-01 2013-02-14 Tokyo Electron Ltd 成膜方法
JP2013249530A (ja) * 2012-06-04 2013-12-12 National Institute Of Advanced Industrial Science & Technology グラフェンの製造方法及びグラフェン

Also Published As

Publication number Publication date
KR102047160B1 (ko) 2019-11-20
JP6861479B2 (ja) 2021-04-21
US20170370000A1 (en) 2017-12-28
US10190217B2 (en) 2019-01-29
KR20180001465A (ko) 2018-01-04

Similar Documents

Publication Publication Date Title
JP6700118B2 (ja) プラズマ成膜装置および基板載置台
KR102009923B1 (ko) 질화 규소막의 처리 방법 및 질화 규소막의 형성 방법
KR101943754B1 (ko) 마이크로파 플라즈마원 및 마이크로파 플라즈마 처리 장치
JP2007042951A (ja) プラズマ処理装置
JP2006244891A (ja) マイクロ波プラズマ処理装置
US20190237326A1 (en) Selective film forming method and film forming apparatus
JPWO2006064898A1 (ja) プラズマ処理装置
JP5422396B2 (ja) マイクロ波プラズマ処理装置
US10190217B2 (en) Plasma film-forming method and plasma film-forming apparatus
JP7422540B2 (ja) 成膜方法および成膜装置
KR102004037B1 (ko) 마이크로파 플라즈마 처리 장치 및 마이크로파 플라즈마 처리 방법
US11145522B2 (en) Method of forming boron-based film, and film forming apparatus
JP2008182102A (ja) 天板部材及びこれを用いたプラズマ処理装置
JP2021176174A (ja) プリコート方法及び処理装置
JP2020017606A (ja) ハードマスク用膜を形成する方法および装置、ならびに半導体装置の製造方法
WO2021033579A1 (ja) 処理装置および成膜方法
WO2022264829A1 (ja) クリーニング方法及びプラズマ処理装置
KR20230136206A (ko) 기판 처리 방법 및 기판 처리 장치
JP2011029250A (ja) マイクロ波プラズマ処理装置およびマイクロ波プラズマ処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210330

R150 Certificate of patent or registration of utility model

Ref document number: 6861479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250