WO2007091672A1 - プラズマ処理装置及びプラズマ処理方法 - Google Patents

プラズマ処理装置及びプラズマ処理方法 Download PDF

Info

Publication number
WO2007091672A1
WO2007091672A1 PCT/JP2007/052333 JP2007052333W WO2007091672A1 WO 2007091672 A1 WO2007091672 A1 WO 2007091672A1 JP 2007052333 W JP2007052333 W JP 2007052333W WO 2007091672 A1 WO2007091672 A1 WO 2007091672A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
top plate
planar antenna
microwaves
antenna member
Prior art date
Application number
PCT/JP2007/052333
Other languages
English (en)
French (fr)
Inventor
Caizhong Tian
Toshihisa Nozawa
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to CN2007800009451A priority Critical patent/CN101347051B/zh
Publication of WO2007091672A1 publication Critical patent/WO2007091672A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32311Circuits specially adapted for controlling the microwave discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32825Working under atmospheric pressure or higher
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4622Microwave discharges using waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/463Microwave discharges using antennas or applicators

Definitions

  • the present invention relates to a plasma processing apparatus and a plasma processing method used when processing is performed by applying plasma generated by microwaves to a semiconductor wafer or the like.
  • plasma processing apparatuses are used for processes such as film formation, etching, and ashing in the manufacturing process of semiconductor products.
  • a relatively low pressure of about 0.1 lmTorr (13.3 mPa) to a few Torr (several hundred Pa) can be stably generated even in a high vacuum state.
  • Microwave plasma devices that generate density plasma tend to be used.
  • FIG. 8 is a schematic configuration diagram showing a conventional general plasma processing apparatus.
  • FIG. 9 is a partially enlarged view showing a part of FIG. 8 in an enlarged manner.
  • this plasma processing apparatus 202 includes: a processing container 204 that can be evacuated; and a mounting table 206 on which a semiconductor wafer W provided in the processing container 204 is mounted.
  • a ceiling plate 208 made of a disk-shaped aluminum nitride, quartz, or the like that transmits microwaves is airtightly provided on a ceiling portion facing the mounting table 206 via a seal member 209 such as an O-ring.
  • a gas nozzle 210 for introducing a predetermined gas into the processing container 204 is provided on the side wall of the processing container 204. Further, an opening 212 for loading / unloading the wafer W is provided on the side wall of the processing container 204.
  • the opening 212 is provided with a gate valve G for opening and closing the opening 212 in an airtight manner.
  • An exhaust port 214 is provided at the bottom of the processing container 204, and a vacuum exhaust system (not shown) is connected to the exhaust port 214. Thereby, the inside of the processing container 204 can be evacuated.
  • a disk-shaped plate made of, for example, a copper plate having a thickness of about several mm.
  • a planar antenna member 216 is provided on the top surface or the upper side of the top plate 208.
  • a slow wave material 218 made of a dielectric is provided on the upper surface or above the planar antenna member 216.
  • the planar antenna member 216 is formed with a plurality of slot holes 220 for radiating microwaves, for example, formed of through holes having a long groove shape.
  • the slot holes 220 for microwave radiation are generally arranged concentrically or spirally.
  • the central conductor 224 of the coaxial waveguide 222 is connected to the central portion of the planar antenna member 216, and is connected to, for example, a 2.45 GHz microwave power mode converter 228 generated by the microphone mouth wave generator 226. Then, after being converted into a predetermined vibration mode, it is guided.
  • the microwave is emitted from the microwave radiation slot 220 provided in the planar antenna member 216 while propagating radially in the radial direction of the antenna member 216, passes through the top plate 208, and passes through the processing container 204. Introduced into the interior.
  • plasma is generated in the processing space S in the processing container 204, and the semiconductor wafer W on the mounting table 206 can be subjected to predetermined plasma processing such as etching.
  • the conventional plasma processing apparatus has been adjusted so as to obtain an optimum electric field distribution of the microwave by variously examining the size and arrangement of the slots 220 of the planar antenna member 216. It was. However, sufficient countermeasures have not been found yet.
  • An object of the present invention is to provide a plasma processing apparatus and a plasma processing method capable of uniformly raising plasma in a processing space by introducing a microwave into a processing container in a controllable manner.
  • the present invention provides a processing container whose ceiling is opened and the inside of which can be evacuated, a mounting table provided in the processing container for mounting a processing object, and the ceiling
  • a top plate made of a dielectric material that is airtightly attached to the opening of the substrate and transmits microwaves, gas introduction means for introducing a necessary gas into the processing container, and an upper surface of a central portion of the top plate
  • a planar antenna member in which a slot for microwave radiation is formed to introduce a microwave of a predetermined propagation mode into the processing container, and an upper surface of a peripheral portion of the top plate.
  • a slotted waveguide having a slot for radiating microwaves for introducing a microwave of a propagation mode different from the microwave introduced by the planar antenna member into the processing container;
  • a plasma processing apparatus comprising: microwave supply means for supplying a wave to the planar antenna member and the slotted waveguide.
  • the plane antenna member provided at the center of the top plate and the slotted waveguide provided at the peripheral portion of the top plate are moved into the processing container in different transport modes. Since the microwaves are introduced, the microwaves can be introduced into the processing container in a control state independent of each other. Furthermore, since the different transport modes are used, interference between the microwaves can be prevented. As a result, the plasma is uniformly distributed in the processing space above the workpiece. Can be made.
  • a plurality of the slotted waveguides are provided concentrically.
  • the slotted waveguide is formed in a ring shape and provided with a slot for absorbing microwaves, so that the microwave supply means feeds the slotted waveguide to the feed pot. Is located on the side far from the slot for microwave absorption.
  • the radius r of the planar antenna member is set to a magnitude that is greater than or equal to the length of the microwaves propagated to the planar antenna member.
  • the microwave supply means includes at least one microwave generator, and the slotted waveguide in the innermost periphery of the slotted waveguide and the planar antenna.
  • the microwave generated by the same microwave generator is branched and propagated by the distributor.
  • the distributor has a variable microwave distribution ratio.
  • the microwave supply means includes a plurality of microwave generators, and the waveguide with a slot and the planar antenna member are generated by separate microwave generators.
  • the microwaves may be propagated independently of each other.
  • the propagation mode of the microwave supplied from the planar antenna member into the processing container is a TM mode
  • the microwave supplied from the slotted waveguide into the processing container is a TM mode
  • the propagation mode is TE mode.
  • TE mode microwaves are difficult to spread in the lateral direction, it is possible to almost certainly prevent the microwaves from entering the gaps. As a result, the occurrence of abnormal discharge in the gap can be almost certainly prevented.
  • the mounting surface of the slotted waveguide with respect to the top plate is an electric field surface.
  • the present invention introduces microwaves into a processing container from a top plate provided on a ceiling portion of the processing container with respect to an object to be processed in the processing container that can be evacuated.
  • the plasma processing method for applying a predetermined plasma process to the object to be processed is used to A central microwave supply step for supplying a microwave of a certain propagation mode to the central portion, and a propagation mode different from the propagation mode of the microwave supplied to the central portion of the top plate at the peripheral portion of the top plate.
  • a peripheral microwave supply process for supplying a microwave.
  • the plane antenna member provided in the central portion of the top plate and the slotted waveguide provided in the peripheral portion of the top plate are moved into the processing container in different transport modes. Since the microwaves are introduced, the microwaves can be introduced into the processing container in a control state independent of each other. Furthermore, since the different transport modes are used, interference between the microwaves can be prevented. As a result, plasma can be uniformly distributed in the processing space above the object to be processed.
  • a TM mode microwave is supplied to the central portion of the top plate using a planar antenna member, and the peripheral microwave supply step Then, the TE-mode microphone mouth wave is supplied to the periphery of the top plate using a slotted waveguide.
  • FIG. 1 is a schematic cross-sectional view showing a plasma processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the lower surface of the top plate of the plasma processing apparatus of FIG.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • Fig. 4 (A) shows the electric field distribution of microwaves on the top plate when the power ratio of the microwaves supplied to the center and the periphery of the top plate is 1: 2. It is the photograph and schematic diagram which show.
  • FIG. 4 (B) shows the electric field distribution of microwaves on the top plate when the power ratio of the microwaves supplied to the center and the periphery of the top plate is 2: 1. It is the photograph and schematic diagram which show.
  • FIG. 5 is a diagram for explaining microwave generating means in a first modification of the plasma processing apparatus.
  • FIG. 6 is a partial schematic cross-sectional view showing a second modification of the plasma processing apparatus.
  • FIG. 7 is a schematic plan view showing a top plate of the plasma processing apparatus of FIG.
  • FIG. 8 is a schematic cross-sectional view showing a conventional general plasma processing apparatus.
  • FIG. 9 is a partially enlarged view showing a part of FIG. 8 in an enlarged manner.
  • FIG. 1 is a schematic sectional view showing a plasma processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the lower surface of the top plate of the plasma processing apparatus of FIG.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • the plasma processing apparatus 32 of the present embodiment has a processing container 34 that is entirely formed into a cylindrical shape.
  • the side wall and the bottom of the processing vessel 34 are made of a conductor such as aluminum and are grounded.
  • the inside of the processing vessel 34 is configured as, for example, a cylindrical processing space S that is hermetically sealed, and plasma is formed in the processing space S.
  • a mounting table 36 for mounting, for example, a semiconductor wafer W as an object to be processed is accommodated on the upper surface.
  • the mounting table 36 is formed in a flat disk shape made of anodized aluminum or the like, for example.
  • the mounting table 36 is supported by a support column 38 made of, for example, aluminum standing up from the bottom of the processing vessel 34.
  • an opening 40 for loading / unloading an object to be used for loading / unloading a wafer to / from the inside of the processing container 34 is provided on the side wall of the processing container 34.
  • a gate valve 42 is provided in the opening 40.
  • the processing vessel 34 is provided with a gas introduction means 44 for introducing a necessary processing gas into the processing vessel 34.
  • the gas introducing means 44 of the present embodiment has a gas nozzle 44A provided through the side wall of the processing vessel 34.
  • the gas nozzle 44A force enables the necessary processing gas to be supplied while the flow rate is controlled as required.
  • a plurality of gas nozzles 44A may be provided so that different gas types can be introduced.
  • the gas introducing means 44 may be provided on the ceiling of the processing vessel 34 in the shape of a shower head.
  • an exhaust port 46 is provided at the bottom of the processing container 34.
  • An exhaust passage 52 to which a pressure control valve 48 and a vacuum pump 50 are sequentially connected is connected to the exhaust port 46.
  • the ceiling portion of the processing container 34 is open (has an opening).
  • a top plate 54 that is permeable to microwaves is airtightly provided through a seal member 56 such as an O-ring.
  • the top plate 54 is made of a dielectric such as quartz or Al 2 O 3, for example.
  • the thickness is set to about 20 mm, for example, considering pressure resistance.
  • a plurality of, for example, three lifting pins 56 for raising and lowering the wafer W when the wafer W is loaded and unloaded are provided below the mounting table 36.
  • the ascending / descending pin 56 is moved up and down by an elevating rod 60 provided so as to penetrate the bottom of the container via an extendable bellows 58.
  • the mounting table 36 has a pin insertion hole 62 through which the elevating pin 56 is inserted.
  • the entire mounting table 36 is made of a heat-resistant material, for example, ceramic such as alumina.
  • a heating means 64 is provided in the heat resistant material.
  • the heating means 64 of the present embodiment has a thin plate-like resistance heater that is carried over substantially the entire area of the mounting table 36. This resistance heater is connected to a heater power supply 68 through a wiring 66 passing through the support 38.
  • a thin electrostatic chuck 72 having conductor wires 70 disposed therein, for example, in a mesh shape is provided on the upper surface side of the mounting table 36.
  • the conductor wire 70 of the electrostatic chuck 72 is connected to a DC power source 76 via a wiring 74 in order to exert an electrostatic adsorption force.
  • a high frequency power supply 78 for bias is also connected to the wiring 74 in order to apply high frequency power for noise of 13.56 MHz to the conductor wire 70 of the electrostatic chuck 72 when necessary.
  • a high frequency power supply 78 is not provided.
  • the planar antenna member 80 and the slotted waveguide 82 which are features of the present invention, are provided.
  • a microwave supply means 84 for supplying microwaves is connected to the planar antenna member 80 and the waveguide 82 with slots.
  • the planar antenna member 80 is provided in a disc shape on the upper surface of the substantially central portion of the top plate 54 that is not provided over the entire top surface of the top plate 54.
  • the radius r (see FIG. 2) of the planar antenna member 80 is set to a size greater than or equal to the wavelength ⁇ of the microwave propagating to the planar antenna member 80, so that the microwave can propagate efficiently.
  • is the wavelength of the microwave propagated through the slow wave material 88 (details will be described later).
  • the planar antenna member 80 has a radius r of 60 mm or more and a thickness of 1 to 1 when the slow wave material 88 is, for example, quartz and the microwave is 2.45 GHz. Consists of a conductive material of several millimeters. More specifically, for example, it may be composed of a copper plate or an aluminum plate whose surface is silver-plated.
  • the planar antenna member 80 is formed with a large number of slots 86 for microwave radiation, for example, formed of long groove-like through holes.
  • the arrangement of the slots 86 for microwave radiation is not particularly limited. For example, it can be arranged concentrically, spirally, radially, etc. Alternatively, it may be distributed so as to be uniform over the entire surface of the planar antenna member. In the example shown in FIG. 2, a set of two microwave radiation slots 86 arranged in a substantially T shape with a slight separation is arranged concentrically.
  • This flat antenna member 80 has a so-called RLSA (Radial Line Slot Antenna) type antenna structure, and thereby features of high density plasma and low electron energy are obtained. From the planar antenna member 80, as will be described later, a microwave whose propagation mode is a TM mode main body is supplied.
  • a slow wave material 88 made of, for example, aluminum nitride is provided on the planar antenna member 80.
  • the slow wave material 88 has a high dielectric constant characteristic in order to shorten the wavelength of the microwave.
  • the substantially entire upper and side surfaces of the slow wave member 88 are covered with a wave guide box 90 made of a conductive hollow cylindrical container.
  • the planar antenna member 80 is configured as a bottom plate of the waveguide box 90 and faces the mounting table 36.
  • a cooling jacket 92 through which a coolant for cooling the waveguide box 90 flows is provided at the top of the waveguide box 90.
  • the peripheral portions of the waveguide box 90 and the planar antenna member 80 are both grounded.
  • a coaxial waveguide 94 forming a part of the microphone mouth wave supply means 84 is connected to the planar antenna member 80.
  • the slotted waveguide 82 is formed of a rectangular waveguide having a rectangular cross section, and is formed, for example, in a ring shape so as to surround the periphery of the planar antenna member 80.
  • the slotted waveguide 82 is concentrically disposed around the top plate 54 in plan view.
  • a slot 96 for microwave radiation having a pattern (substantially T-shaped) substantially the same as the slot 86 provided in the planar antenna member 80 (See Fig. 2) are arranged along the circumferential direction.
  • a set in which two microwave radiation slots 96 are slightly spaced apart and arranged in a substantially T shape is arranged in the circumferential direction.
  • the mounting surface (lower surface) 82 A of the slotted waveguide 82 with respect to the top plate 54 is set to be the E surface (electric field surface).
  • a feeding pot 98 for introducing a microwave is formed at one location of the slotted waveguide 82.
  • the microphone mouth wave absorption slot 100 formed in an X shape to absorb the microwaves propagated from both circumferential directions (Fig. 2) is provided.
  • a slow wave material 102 made of a dielectric for shortening the wavelength of the propagated microwave is provided (see FIG. 1).
  • this slow wave material 102 it is preferable to use the same dielectric as the slow wave material 88 provided on the planar antenna member 80.
  • the microwave power feeding means 84 has one microwave generator 104 in the present embodiment.
  • the microwave generator 104 can generate microwaves of 2.45 GHz, for example.
  • a rectangular waveguide 108 with a matching circuit 106 for impedance matching is extended to propagate TE mode microwaves.
  • the rectangular waveguide 108 is connected to a distributor 110 for branching or distributing a plurality of microwaves (two in this case).
  • Two rectangular waveguides 112A and 112B extend from the distributor 110.
  • One of the rectangular waveguides 112A is connected to the feed pot 98 of the slotted waveguide 82, and feeds the TE mode microphone mouth wave to the feed pot 98.
  • the other rectangular waveguide 112B is connected to the coaxial waveguide 94 via a mode converter 114 that converts a TE mode microphone aperture into, for example, a TEM mode.
  • the distal end of the coaxial waveguide 94 is connected to the planar antenna member 80 side.
  • the outer conductor 94A having a circular cross section of the coaxial waveguide 94 is connected to the center of the upper portion of the waveguide box 90, and the inner conductor 94B inside the coaxial waveguide 94 is connected to the slow wave member 88. It is connected to the central portion of the planar antenna member 80 through the through hole at the center of the flat antenna member.
  • the frequency is not limited to 2.45 GHz, and other frequencies such as 8.35 GHz may be used.
  • the overall operation of the plasma processing apparatus 32 formed as described above is controlled by a control means 118 including, for example, a microphone computer.
  • a computer program for performing this operation is stored in a storage medium 120 such as a flexible disk, a CD (Compact Disc), or a flash memory.
  • a storage medium 120 such as a flexible disk, a CD (Compact Disc), or a flash memory.
  • each gas supply and flow rate control, microwave and high frequency supply power control, process temperature and process pressure control, and the like are performed.
  • the gate valve 42 is opened, and the semiconductor wafer W is accommodated in the processing container 34 by the transfer arm (not shown) through the loading / unloading port 40 for the object to be processed.
  • the wafer W is mounted on the mounting surface which is the upper surface of the mounting table 36.
  • the wafer W is electrostatically attracted by the electrostatic chuck 72.
  • the wafer W is maintained at a predetermined process temperature by the heating means 64 if necessary.
  • a predetermined gas force supplied from a gas source (not shown) is supplied from the gas nozzle 44A of the gas introduction means 44 into the processing container 34 while being controlled in flow rate.
  • the pressure control valve 48 By controlling the pressure control valve 48, the inside of the processing vessel 34 is maintained at a predetermined process pressure.
  • the microwave generator 104 of the microwave supply means 84 is driven.
  • Microwaves generated by the microphone mouth wave generator 104 propagate through the rectangular waveguide 108 and are distributed into two by the distributor 110.
  • One of the distributed microwaves is supplied to the planar antenna member 80 via the rectangular waveguide 112B, the mode converter 114, and the coaxial waveguide 94, and the wavelength is shortened by the slow wave material 88, so that the slot 86 passes through the top plate 54 and is introduced into the processing space S.
  • the other of the distributed microwaves is supplied to the slotted waveguide 82 via the rectangular waveguide 112A, the wavelength is shortened by the slow wave material 102, and transmitted through the top plate 54 from the slot 96 to be processed into the processing space. Introduced into S. In this way, plasma is generated in the processing space S, and predetermined processing using plasma is performed.
  • Microwaves generated by the microwave generator 104 propagate in the rectangular waveguide 108 in, for example, the TE mode, and are divided into two according to a predetermined distribution ratio (power ratio) predetermined by the distributor 110. Divided or branched.
  • One of the distributed microwaves is propagated to the mode converter 114 via the rectangular waveguide 112B, and the propagation mode is converted into, for example, the TEM mode by the mode converter 114. Is done. Further, the microwave is propagated in the coaxial waveguide 94 and reaches the planar antenna member 80.
  • the microwave that has reached the planar antenna member 80 propagates radially from the center of the disk-shaped planar antenna member 80 in the circumferential direction, and each slot 86 force provided on the lower surface also directs downward. Is emitted.
  • the microwaves emitted at this time are TM mode-based microwaves. As described above, the microwave passes through the central portion of the top plate 54 and is introduced into the central portion in the processing space S. This creates a plasma.
  • the TM mode mainly means that the TE mode is 10% or less and the TM mode is 90% or more of the emitted microwave.
  • the thickness of the top plate 54 is set to a predetermined value (cutoff thickness: 18 mm for quartz, 14 mm for alumina) or less, it is possible to radiate microwaves only in the TM mode.
  • a circular waveguide may be used instead of the coaxial waveguide 94. In this case, since only the TM mode microwave propagates in the waveguide, the TM antenna only radiates from the planar antenna member 80.
  • the other microwave distributed by distributor 110 passes through rectangular waveguide 112A. Propagating in TE mode as it is, it is introduced from the feed pot 98 into the ring-shaped slotted waveguide 82. Further, the TE mode microwave propagates in the circumferential direction in the slotted waveguide 82 from the feed pot 98, and radiates downward from each slot 96 provided on the lower surface (E surface). Is done. The emitted TE mode microwaves are transmitted to the peripheral portion of the processing space S through the peripheral portion of the top plate 54 as described above. This creates a plasma.
  • the microwave force processing space S distributed at a predetermined distribution ratio can be individually introduced into the central portion and the peripheral portion.
  • the electric field density of the microphone mouth wave in the processing space S can be set to a predetermined distribution state.
  • the electric field density of the microphone mouth wave can be made a uniform distribution state, and the plasma density can be made uniform over substantially the entire processing space S. Therefore, the in-plane uniformity of the plasma processing for the wafer W can be improved.
  • the mode is set differently. For this reason, interference between the two microwaves with different propagation modes can be suppressed, and the microwave can be introduced into the processing space S with good controllability. As a result, the uniformity of the microwave electric field density and plasma density in the processing space S can be further improved.
  • the TM mode microwave introduced from the planar antenna member 80 located at the center of the top plate 54 has a characteristic of spreading to a certain extent in the lateral direction.
  • TE mode microwaves introduced from the slotted waveguide 82 located in the peripheral part of the top plate 54 have almost no lateral spreading characteristics. For this reason, even if the electric field strength of the TE mode microwave is set to be large, the electric field strength of the slight gap 123 generated at the joint between the peripheral portion of the top plate 54 and the upper end portion of the processing vessel 34 is large. Nanare. For this reason, it is possible to prevent the abnormal discharge generated in the gap 230 of the conventional apparatus shown in FIG.
  • the microwave distribution ratio is set to be constant.
  • the present invention is not limited to this, and a distributor 110 having a variable distribution ratio may be provided.
  • a distributor 110 having a variable distribution ratio may be provided.
  • One end of a rod made of a magnetic material such as ferrite is inserted into the distributor 110, and an electromagnetic coil is wound around the other end of the rod that has jumped out of the distributor 110.
  • the plasma processing apparatus of the present invention was evaluated by simulation. The evaluation results will be described. Here, the distribution ratio between the microwave power supplied to the planar antenna member 80 at the center of the top plate 54 and the microphone mouth wave power supplied to the slotted waveguide 82 at the periphery thereof is changed. Then, the microwave electric field distribution in the processing space S at each distribution ratio was evaluated.
  • FIGS. 4 (A) and 4 (B) are photographs showing the electric field distribution of microwaves, and in order to facilitate understanding of the photographs, schematic diagrams are also shown.
  • Fig. 4 (A) shows the case where the power ratio of the microwaves supplied to the central part and the peripheral part of the top plate is 1: 2.
  • Figure 4 (B) shows the case where the power ratio is 2: 1.
  • the microwave in the processing space can be changed by changing the power ratio of the microwaves supplied to the central part and the peripheral part of the top plate 54. Can greatly change the electric field distribution. Therefore, if the distribution ratio is appropriately selected, a desired microwave electric field distribution can be obtained, and the electric field distribution can be made uniform.
  • the microwave supply means 84 has one microwave generator 104, and the generated microwave is divided into two to guide the planar antenna member 80 and the slotted conductor. Although it supplies to the wave tube 82, it is not limited to this.
  • the microwave generation means 84 has two microwave generators 104A and 104B, and the matching circuits are respectively supplied from the microwave generators 104A and 104B.
  • Microwaves may be supplied to the slotted rectangular waveguide 82 and the planar antenna member 80 via the rectangular waveguides 112A and 112B provided with 106A and 106B.
  • FIG. 6 is a partial schematic cross-sectional view showing a second modified example of such a plasma processing apparatus
  • FIG. 7 is a schematic plan view showing a top plate part of the second modified example of FIG.
  • the same structure as that of the slotted waveguide 82 2 is provided in the periphery of the waveguide box 90 at the center of the top plate 54.
  • Two slotted waveguides 122A and 122B are provided concentrically.
  • three or more waveguides with slots may be provided concentrically.
  • the microwaves generated from the same microwave generator 104B on the slotted waveguide 122A and the planar antenna member 80 located on the innermost periphery are described with reference to FIG. Similarly, they are supplied through rectangular waveguides 112A and 112B, respectively.
  • the microwave generated by the other microwave generator 104A is supplied to the outermost slotted waveguide 122B in TE mode via the rectangular waveguide 112C.
  • the microwave generated by one microwave generator may be distributed (branched) into three and supplied.
  • the present invention can be applied to all plasma processes such as a film forming process using plasma, a plasma etching process, and a plasma ashing process.
  • the object to be processed by plasma treatment is not limited to a semiconductor wafer, and may be a glass substrate, a ceramic substrate, an LCD substrate, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 本発明は、天井部が開口されて内部が真空引き可能になされた処理容器と、被処理体を載置するために前記処理容器内に設けられた載置台と、前記天井部の開口に気密に装着されてマイクロ波を透過する誘電体よりなる天板と、前記処理容器内へ必要なガスを導入するガス導入手段と、前記天板の中央部の上面に設けられて、所定の伝搬モードのマイクロ波を前記処理容器内へ導入するためにマイクロ波放射用のスロットが形成された平面アンテナ部材と、前記天板の周辺部の上面に設けられて、前記平面アンテナ部材で導入されるマイクロ波とは異なった伝搬モードのマイクロ波を前記処理容器内へ導入するためにマイクロ波放射用のスロットが形成されたスロット付き導波管と、マイクロ波を前記平面アンテナ部材及び前記スロット付き導波管に供給するマイクロ波供給手段と、を備えたことを特徴とするプラズマ処理装置である。

Description

明 細 書
プラズマ処理装置及びプラズマ処理方法
技術分野
[0001] 本発明は、半導体ウェハ等に対してマイクロ波により生じるプラズマを作用させて処 理を施す際に使用されるプラズマ処理装置及びプラズマ処理方法に関する。
背景技術
[0002] 近年、半導体製品の高密度化及び高微細化に伴って、半導体製品の製造工程に おいて、成膜、エッチング、アツシング等の処理のためにプラズマ処理装置が使用さ れている。特に、 0. lmTorr (13. 3mPa)〜数 Torr (数百 Pa)程度の比較的圧力が 低レ、高真空状態でも安定してプラズマを立てることができることから、マイクロ波を用 レ、て高密度プラズマを発生させるマイクロ波プラズマ装置が使用される傾向にある。
[0003] このようなプラズマ処理装置は、特開平 3— 191073号公報、特開平 5— 343334 号公報、特開平 10— 233295号公報、特開平 11—40397号公報などに開示され ている。ここで、マイクロ波を用いた一般的なプラズマ処理装置を図 8を参照して概略 的に説明する。図 8は、従来の一般的なプラズマ処理装置を示す概略構成図である 。図 9は、図 8の一部を拡大して示す部分拡大図である。
[0004] 図 8に示すように、このプラズマ処理装置 202は、真空引き可能になされた処理容 器 204と、処理容器 204内に設けられた半導体ウェハ Wを載置する載置台 206と、 を備えている。載置台 206に対向する天井部には、マイクロ波を透過する円板状の 窒化アルミや石英等よりなる天板 208が、 Oリング等のシール部材 209を介して気密 に設けられている。そして、処理容器 204の側壁には、処理容器 204内へ所定のガ スを導入するためのガスノズル 210が設けれている。また、処理容器 204の側壁には 、ウェハ Wの搬入出用の開口部 212が設けられている。この開口部 212には、これを 気密に開閉するゲートバルブ Gが設けられている。処理容器 204の底部には、排気 口 214が設けられており、この排気口 214には図示されなレ、真空排気系が接続され ている。これにより、処理容器 204内が真空引きされ得るようになつている。
[0005] 天板 208の上面ないし上方には、厚さ数 mm程度の例えば銅板からなる円板状の 平面アンテナ部材 216が設けられている。平面アンテナ部材 216の半径方向におけ るマイクロ波の波長を短縮するために、例えば誘電体よりなる遅波材 218が、平面ァ ンテナ部材 216の上面ないし上方に設置されている。
[0006] 平面アンテナ部材 216には、多数の例えば長溝状の貫通孔よりなるマイクロ波放射 用のスロット孔 220が形成されている。このマイクロ波放射用のスロット孔 220は、一 般的には、同心円状に配置されたり螺旋状に配置されたりしている。また、平面アン テナ部材 216の中心部には、同軸導波管 222の中心導体 224が接続されて、マイク 口波発生器 226によって発生された例えば 2. 45GHzのマイクロ波力 モード変換器 228にて所定の振動モードに変換された後に、導かれるようになつている。これにより 、マイクロ波は、アンテナ部材 216の半径方向へ放射状に伝搬されつつ平面アンテ ナ部材 216に設けられたマイクロ波放射用のスロット 220から放出され、天板 208を 透過して、処理容器 204の内部へと導入される。このマイクロ波によって、処理容器 2 04内の処理空間 Sにプラズマが立てられ、載置台 206上の半導体ウェハ Wにエッチ ングゃ成膜などの所定のプラズマ処理が施され得る。
[0007] 上記したようなプラズマを用いた成膜処理やエッチング処理等を施す場合、当該処 理をウェハ表面に対して均一に施すことが求められる。ところ力 天板 208を透過し たマイクロ波が当該天板 208の下面に沿って表面波となって伝搬する際に、隣接す るスロット 220から放射されるマイクロ波同士力 互いに干渉してしまう傾向がある。こ のため、処理空間 Sにおけるマイクロ波の電界分布に偏りが生じて、プラズマが均一 に分布しない場合がある。このようなプラズマの不均一分布は、ウェハ表面に対する プラズマ処理の面内均一性を劣化させるので、好ましくない。
[0008] このため、従来のプラズマ処理装置にあっては、平面アンテナ部材 216のスロット 2 20の大きさや配列等を種々検討して、マイクロ波の最適な電界分布を得るように調 整されてきた。し力 ながら、十分な対応策を未だ見い出せていない。
[0009] また、容器天井部に設けられた天板 208の断面形状を種々変更することで、マイク 口波の電界分布を制御するという試みも行われてきた。し力しながら、この試みによつ ても十分な解決策が見い出されていない。また、天板 208の断面形状を変えるのは、 天板 208の加工が比較的困難であることから、大幅なコスト高を招来するといつた問 題もある。
[0010] また、一般的には、処理空間 Sの周辺部におけるマイクロ波の電界密度が劣ること を考慮して、例えばスロット 220の配列等を工夫して、処理空間 Sの周辺部に投入さ れるマイクロ波の電力が多くなるように設定される。ところ力 図 9に示すように、処理 空間 Sの周辺部では、処理容器 204の上端部と天板 208の周辺部とがシール部材 2 09を介して接合される部分において、僅かな隙間 230が発生しているため、この僅 力な隙間 230の部分で強力なマイクロ波電界による異常放電が発生してしまうといつ た問題もある。
発明の要旨
[0011] 本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたもの である。本発明の目的は、マイクロ波をコントロール可能に処理容器内へ導入するよ うにして、処理空間においてプラズマを均一に立てることが可能なプラズマ処理装置 及びプラズマ処理方法を提供することである。
[0012] 本発明は、天井部が開口されて内部が真空引き可能になされた処理容器と、被処 理体を載置するために前記処理容器内に設けられた載置台と、前記天井部の開口 に気密に装着されてマイクロ波を透過する誘電体よりなる天板と、前記処理容器内へ 必要なガスを導入するガス導入手段と、前記天板の中央部の上面に設けられて、所 定の伝搬モードのマイクロ波を前記処理容器内へ導入するためにマイクロ波放射用 のスロットが形成された平面アンテナ部材と、前記天板の周辺部の上面に設けられて
、前記平面アンテナ部材で導入されるマイクロ波とは異なった伝搬モードのマイクロ 波を前記処理容器内へ導入するためにマイクロ波放射用のスロットが形成されたスロ ット付き導波管と、マイクロ波を前記平面アンテナ部材及び前記スロット付き導波管に 供給するマイクロ波供給手段と、を備えたことを特徴とするプラズマ処理装置である。
[0013] この特徴によれば、天板の中央部に設けられた平面アンテナ部材と天板の周辺部 に設けられたスロット付き導波管とを介して、互いに異なる搬送モードで処理容器内 へマイクロ波が導入されるので、互いに独立の制御状態で処理容器内へマイクロ波 が導入され得る。更に、異なる搬送モードであるので、互いのマイクロ波が干渉するこ とが防止され得る。この結果、被処理体の上方の処理空間に均一にプラズマを分布 させることができる。
[0014] また、処理空間の周辺部におけるマイクロ波の投入電力を特段上げる必要がない ので、天板の周辺部と処理容器の上端部との間に形成される僅かな隙間において異 常放電が発生することも防止され得る。
[0015] 例えば、前記スロット付き導波管は、複数個が同心状に設けられる。
[0016] また、例えば、前記スロット付き導波管は、リング状に形成されると共に、マイクロ波 吸収用のスロットが設けられて、前記マイクロ波供給手段の前記スロット付き導波管 への給電ポットは、マイクロ波吸収用のスロットから遠い側に位置される。
[0017] また、例えば、前記平面アンテナ部材の半径 rは、これに伝搬されるマイクロ波の波 長え以上の大きさに設定される。
[0018] また、例えば、前記マイクロ波供給手段は、少なくとも 1つのマイクロ波発生器を有し ており、前記スロット付き導波管の内の最内周のスロット付き導波管と前記平面アンテ ナ部材とへは、同一のマイクロ波発生器で発生されたマイクロ波が、分配器によって 分岐されて伝搬されるように構成される。この場合、例えば、前記分配器は、マイクロ 波の分配比が可変である。
[0019] あるいは、前記マイクロ波供給手段は、複数のマイクロ波発生器を有していて、前 記スロット付き導波管と前記平面アンテナ部材とへは、別個のマイクロ波発生器で発 生されたマイクロ波が、それぞれ独立に伝搬されるように構成されてもよい。
[0020] また、例えば、前記平面アンテナ部材から前記処理容器内へ供給されるマイクロ波 の伝搬モードは TMモードであり、前記スロット付き導波管から前記処理容器内へ供 給されるマイクロ波の伝搬モードは TEモードである。この場合、 TEモードのマイクロ 波は横方向へは広力 ^難いため、前記の隙間内にマイクロ波が侵入することが略確 実に防止できる。この結果、当該隙間内に異常放電が発生することを略確実に阻止 することができる。この場合、例えば、前記スロット付き導波管の前記天板に対する取 付面は電界面である。
[0021] また、本発明は、真空引き可能になされた処理容器内の被処理体に対して、当該 処理容器の天井部に設けられた天板から当該処理容器内にマイクロ波を導入して前 記被処理体に所定のプラズマ処理を施すプラズマ処理方法にぉレ、て、前記天板の 中央部に、ある伝搬モードのマイクロ波を供給する中央マイクロ波供給工程と、前記 天板の周辺部に、前記天板の中央部に供給されるマイクロ波の伝搬モードとは異な る伝搬モードのマイクロ波を供給する周辺マイクロ波供給工程と、を備えたことを特徴 とするプラズマ処理方法である。
[0022] この特徴によれば、天板の中央部に設けられた平面アンテナ部材と天板の周辺部 に設けられたスロット付き導波管とを介して、互いに異なる搬送モードで処理容器内 へマイクロ波が導入されるので、互いに独立の制御状態で処理容器内へマイクロ波 が導入され得る。更に、異なる搬送モードであるので、互いのマイクロ波が干渉するこ とが防止され得る。この結果、被処理体の上方の処理空間に均一にプラズマを分布 させることができる。
[0023] また、処理空間の周辺部におけるマイクロ波の投入電力を特段上げる必要がない ので、天板の周辺部と処理容器の上端部との間に形成される僅かな隙間において異 常放電が発生することも防止され得る。
[0024] 好ましくは、前記中央マイクロ波供給工程では、天板の中央部に、平面アンテナ部 材を用いて、 TMモードのマイクロ波が供給されるようになっており、前記周辺マイクロ 波供給工程では、天板の周辺部に、スロット付き導波管を用いて、 TEモードのマイク 口波が供給されるようになってレ、る。
図面の簡単な説明
[0025] [図 1]図 1は、本発明の一実施の形態に係るプラズマ処理装置を示す概略断面図で ある。
[図 2]図 2は、図 1のプラズマ処理装置の天板の下面を示す平面図である。
[図 3]図 3は、図 1中の A— A線矢視断面図である。
[図 4(A)]図 4 (A)は、天板の中央部と周辺部とに供給されるマイクロ波の電力比が 1: 2である場合についての、天板におけるマイクロ波の電界分布を示す写真及び模式 図である。
[図 4(B)]図 4 (B)は、天板の中央部と周辺部とに供給されるマイクロ波の電力比が 2 : 1である場合についての、天板におけるマイクロ波の電界分布を示す写真及び模式 図である。 [図 5]図 5は、プラズマ処理装置の第 1変形例におけるマイクロ波発生手段を説明す る図である。
[図 6]図 6は、プラズマ処理装置の第 2変形例を示す部分概略断面図である。
[図 7]図 7は、図 6のプラズマ処理装置の天板を示す概略平面図である。
[図 8]図 8は、従来の一般的なプラズマ処理装置を示す概略断面図である。
[図 9]図 9は、図 8中の一部を拡大して示す部分拡大図である。
発明を実施するための最良の形態
[0026] 以下に、本発明に係るプラズマ処理装置及びプラズマ処理方法の実施の形態を添 付図面に基づいて詳述する。
[0027] 図 1は、本発明の一実施の形態に係るプラズマ処理装置を示す概略断面図である
。図 2は、図 1のプラズマ処理装置の天板の下面を示す平面図である。図 3は、図 1中 の A - A線矢視断面図である。
[0028] 図 1に示すように、本実施の形態のプラズマ処理装置 32は、全体が筒体状に成形 された処理容器 34を有している。処理容器 34の側壁や底部は、アルミニウム等の導 体により構成され、接地されている。処理容器 34の内部は、密閉された例えば円筒 形の処理空間 Sとして構成され、この処理空間 S内にプラズマが形成されるようになつ ている。
[0029] 処理容器 34内には、上面に被処理体としての例えば半導体ウェハ Wを載置する 載置台 36が収容されている。載置台 36は、例えばアルマイト処理されたアルミニウム 等からなる平坦円板状に形成されている。載置台 36は、処理容器 34の底部より起立 する例えばアルミニウム等よりなる支柱 38に支持されている。
[0030] また、処理容器 34の側壁には、処理容器 34の内部に対してウェハを搬入 ·搬出す る時に用いられる被処理体搬出入用の開口部 40が設けられてレ、る。当該開口部 40 には、ゲートバルブ 42が設けられている。
[0031] また、処理容器 34には、処理容器 34の内部に必要な処理ガスを導入するための ガス導入手段 44が設けられている。本実施の形態のガス導入手段 44は、処理容器 34の側壁を貫通して設けられたガスノズル 44Aを有してレ、る。このガスノズノレ 44A力 ら、必要に応じて、必要な処理ガスが流量制御されつつ供給され得るようになつてい る。尚、このガスノズノレ 44Aが複数本設けられて、異なるガス種を導入できるようにし てもよレ、。あるいは、ガス導入手段 44を、シャワーヘッド状に処理容器 34の天井部に 設けるようにしてもよい。
[0032] また、処理容器 34の底部には、排気口 46が設けられている。排気口 46には、圧力 制御弁 48及び真空ポンプ 50が順次介接された排気路 52が接続されている。これに より、必要に応じて、処理容器 34内を所定の圧力まで真空引きできるようになつてい る。
[0033] また、処理容器 34の天井部は開口している(開口部を有している)。ここに、マイクロ 波に対しては透過性を有する天板 54が Oリング等のシール部材 56を介して気密に 設けられている。天板 54は、例えば石英や Al O 等の誘電体よりなる。天板 54の
2 3
厚さは、耐圧性を考慮して、例えば 20mm程度に設定される。
[0034] また、載置台 36の下方には、ウェハ Wの搬出入時にウェハ Wを昇降させる複数、 例えば 3本、の昇降ピン 56 (図 1においては 2本のみ記す)が設けられている。この昇 降ピン 56は、伸縮可能なベローズ 58を介して容器底部を貫通するように設けられた 昇降ロッド 60によって昇降される。また、載置台 36には、昇降ピン 56を挿通させるた めのピン挿通孔 62が形成されている。
[0035] 載置台 36の全体は、耐熱材料、例えばアルミナ等のセラミック、により構成されてい る。この耐熱材料中に、加熱手段 64が設けられている。本実施の形態の加熱手段 6 4は、載置台 36の略全域に亘つて坦め込まれた薄板状の抵抗加熱ヒータを有してい る。この抵抗加熱ヒータは、支柱 38内を通る配線 66を介して、ヒータ電源 68に接続さ れている。
[0036] また、載置台 36の上面側には、内部に例えば網目状に配設された導体線 70を有 する薄い静電チャック 72が設けられている。静電チャック 72の導体線 70は、静電吸 着力を発揮するために、配線 74を介して直流電源 76に接続されている。これにより、 載置台 36上詳しくは静電チャック 72上に載置されるウェハ Wが、静電吸着力により 吸着され得るようになつている。一方、配線 74には、必要時に例えば 13. 56MHzの ノ ィァス用の高周波電力を静電チャック 72の導体線 70へ印加するために、バイアス 用高周波電源 78をも接続されている。もっとも、処理の態様によっては、バイアス用 高周波電源 78は設けられない。
[0037] 天板 54の上面に、本発明の特徴である平面アンテナ部材 80とスロット付き導波管 8 2とが設けられている。これらの平面アンテナ部材 80とスロット付き導波管 82とには、 マイクロ波を供給するためのマイクロ波供給手段 84が接続されている。
[0038] 具体的には、平面アンテナ部材 80は、天板 54の上面全体に亘つて設けられている のではなぐ天板 54の略中央部の上面に円板状に設けられている。この平面アンテ ナ部材 80の半径 r (図 2参照)は、これに伝搬されるマイクロ波の波長 λ以上の大きさ に設定されており、マイクロ波を効率的に伝搬し得るようになつている。ここで、 λは、 遅波材 88 (詳細は後述する)中を伝搬されるマイクロ波の波長である。
[0039] 図 2及び図 3に示すように、平面アンテナ部材 80は、遅波材 88が例えば石英であ つてマイクロ波が 2. 45GHzの場合には、半径 rが 60mm以上、厚みが 1〜数 mm程 度の導電性材料から構成される。より具体的には、例えば表面が銀メツキされた銅板 或いはアルミ板から構成され得る。平面アンテナ部材 80には、例えば長溝状の貫通 孔よりなる多数のマイクロ波放射用のスロット 86が形成されている。
[0040] マイクロ波放射用のスロット 86の配置形態は、特に限定されない。例えば、同心円状 、螺旋状、放射状などに配置され得る。あるいは、平面アンテナ部材全面に均一にな るように分布され得る。図 2に示す例では、 2個のマイクロ波放射用のスロット 86を僅 かに離間させて略 Tの字状に配置してなる組が、同心円状に配置されている。この平 面アンテナ部材 80は、いわゆる RLSA(Radial Line Slot Antenna)方式のアン テナ構造であり、これにより、高密度プラズマ及び低電子エネルギーという特徴が得 られる。この平面アンテナ部材 80からは、後述するように、伝搬モードが TMモード主 体のマイクロ波が供給される。
[0041] 平面アンテナ部材 80上には、例えば窒化アルミ等よりなる遅波材 88が設けられて いる。遅波材 88は、マイクロ波の波長を短縮するために高誘電率特性を有している。 遅波材 88の上方及び側方の略全面は、導電性の中空円筒状容器よりなる導波箱 9 0によって覆われている。平面アンテナ部材 80は、導波箱 90の底板として構成され、 載置台 36に対向している。導波箱 90の上部には、これを冷却するための冷媒が流 れる冷却ジャケット 92が設けられている。 [0042] 導波箱 90及び平面アンテナ部材 80の周辺部は、共に接地されている。そして、マ イク口波供給手段 84の一部を形成する同軸導波管 94が、平面アンテナ部材 80に接 続されている。
[0043] スロット付き導波管 82は、本実施の形態では、断面が矩形状になされた矩形導波 管からなり、平面アンテナ部材 80の周囲を囲むように例えばリング状に形成されてい る。平面視で、スロット付き導波管 82は、天板 54の周辺部に同心状に配置されてい る。スロット付き導波管 82の下面、すなわち天板 54と接する面には、平面アンテナ部 材 80に設けられたスロット 86と略同様なパターン(略 Tの字状)のマイクロ波放射用 のスロット 96 (図 2参照)が、周方向に沿うように配置されている。具体的には、 2個の マイクロ波放射用のスロット 96を僅かに離間させて略 Tの字状に配置してなる組が、 周方向に配置されている。
[0044] このようなスロット付き導波管 82からは、平面アンテナ部材 80から供給されるマイク 口波とは異なった振動モードである例えば TEモードのマイクロ波が供給されるように なっている。そのために、スロット付き導波管 82の天板 54に対する取付面(下面) 82 Aは、 E面(電界面)となるようにする。
[0045] また、スロット付き導波管 82の一箇所に、マイクロ波を導入するための給電ポット 98 が形成されている。この給電ポット 98の周方向反対側(180度反対側)の取付面に、 両周方向から伝搬されてくるマイクロ波を吸収するために X字状に形成されたマイク 口波吸収スロット 100 (図 2参照)が設けられている。
[0046] また、スロット付き導波管 82内にも、伝搬されるマイクロ波の波長を短縮させるため の誘電体よりなる遅波材 102が設けられている(図 1参照)。この遅波材 102としては 、平面アンテナ部材 80上に設けられた遅波材 88と同じ誘電体を用いることが好まし レ、。
[0047] 一方、マイクロ波給電手段 84は、本実施の形態では 1つのマイクロ波発生器 104を 有している。マイクロ波発生器 104は、例えば 2. 45GHzのマイクロ波を発生し得るよ うになつている。マイクロ波発生器 104からは、インピーダンス整合を図るためのマツ チング回路 106が介設された矩形導波管 108が延びており、 TEモードのマイクロ波 を伝搬するようになっている。 [0048] この矩形導波管 108には、マイクロ波を複数 (ここでは 2つ)に分岐或いは分配する ための分配器 110が接続されている。この分配器 110からは、 2つの矩形導波管 11 2A、 112Bが延びている。そして、この内の一方の矩形導波管 112Aは、スロット付き 導波管 82の給電ポット 98に接続されており、当該給電ポット 98に TEモードのマイク 口波を給電するようになっている。また、他方の矩形導波管 112Bは、 TEモードのマ イク口波を例えば TEMモードへ変換するモード変換器 114を介して、前記同軸導波 管 94に接続されている。
[0049] 同軸導波管 94の先端は、平面アンテナ部材 80側に接続されている。具体的には、 同軸導波管 94の断面円形状の外側導体 94Aが、導波箱 90の上部の中心に接続さ れ、同軸導波管 94の内側の内部導体 94Bが、遅波材 88の中心の貫通孔を通って 平面アンテナ部材 80の中心部に接続されている。尚、前記周波数は 2. 45GHzに 限定されず、他の周波数、例えば 8. 35GHzが用いられてもよい。
[0050] そして、このように形成されたプラズマ処理装置 32の全体の動作は、例えばマイク 口コンピュータ等よりなる制御手段 118によって制御されるようになっている。この動 作を行うコンピュータのプログラムは、フレキシブルディスクや CD (Compact Disc) やフラッシュメモリ等の記憶媒体 120に記憶されている。具体的には、この制御手段 118からの指令により、各ガスの供給や流量制御、マイクロ波や高周波の供給ゃ電 力制御、プロセス温度やプロセス圧力の制御等が行われるようになつている。
[0051] 次に、以上のように構成されたプラズマ処理装置 32を用いて行なわれるプラズマ処 理方法について説明する。
[0052] まず、ゲートバルブ 42が開いて、被処理体用の搬出入口 40を介して、半導体ゥェ ハ Wが搬送アーム(図示せず)によって処理容器 34内に収容される。昇降ピン 56を 上下動させることによって、ウェハ Wは載置台 36の上面である載置面に載置される。 そして、このウェハ Wは、静電チャック 72によって静電吸着される。このウェハ Wは、 必要な場合には、加熱手段 64によって所定のプロセス温度に維持される。図示され ないガス源から供給される所定のガス力 流量制御されつつ、ガス導入手段 44のガ スノズル 44Aから処理容器 34内へ供給される。圧力制御弁 48を制御することにより 、処理容器 34内は所定のプロセス圧力に維持される。 [0053] これと同時に、マイクロ波供給手段 84のマイクロ波発生器 104が駆動される。マイク 口波発生器 104にて発生されたマイクロ波は、矩形導波管 108を伝搬して分配器 11 0で 2つに分配される。分配された一方のマイクロ波が、矩形導波管 112B、モード変 換器 114及び同軸導波管 94を介して、平面アンテナ部材 80に供給され、遅波材 88 によって波長が短くされて、スロット 86より天板 54を透過して処理空間 Sに導入される 。分配された他方のマイクロ波は、矩形導波管 112Aを介してスロット付き導波管 82 へ供給され、遅波材 102によって波長が短くされて、スロット 96より天板 54を透過し て処理空間 Sに導入される。このようにして、処理空間 Sにプラズマが発生され、プラ ズマを用いた所定の処理が行われる。
ここで、マイクロ波の伝搬に関してより詳しく説明する。マイクロ波発生器 104にて発 生されたマイクロ波は、矩形導波管 108内を例えば TEモードで伝搬し、分配器 110 にて予め定められた所定の分配比(電力比)に従って 2つに分配乃至分岐される。
[0054] 分配されたマイクロ波の内の一方のマイクロ波は、矩形導波管 112Bを介してモー ド変換器 114に伝搬され、このモード変換器 114にて伝搬モードが例えば TEMモー ドへ変換される。更にこのマイクロ波は、同軸導波管 94内を伝搬されて、平面アンテ ナ部材 80へ到達する。
[0055] そして、平面アンテナ部材 80へ到達したマイクロ波は、円板状の平面アンテナ部材 80の中心部からその周方向へ放射状に伝搬しつつ、下面に設けられた各スロット 86 力も下方に向けて放射される。この時放射されるマイクロ波は、 TMモード主体のマイ クロ波である。このマイクロ波は、上述したように天板 54の中央部を透過して処理空 間 S内の中央部へ導入される。これによりプラズマが立てられる。ここで、 TMモード 主体とは、放射されるマイクロ波のうち TEモードが 10%以下であり、 TMモードが 90 %以上であることをいう。更に、天板 54の厚さを所定の値 (カットオフ厚み:石英では 18mm,アルミナでは 14mm)以下に設定すると、 TMモードのみのマイクロ波を放 射することも可能である。或いは、同軸導波管 94に代えて円形導波管を用いてもよ レ、。この場合においては、導波管内を TMモードのみのマイクロ波が伝搬するため、 平面アンテナ部材 80からは TMモードのみのマイクロ波が放射することになる。
[0056] 一方、分配器 110にて分配された他方のマイクロ波は、矩形導波管 112A内をその まま TEモードで伝搬して、給電ポット 98からリング状のスロット付き導波管 82内へ導 入される。更に、この TEモードのマイクロ波は、給電ポット 98からスロット付き導波管 8 2内をその周方向に伝搬しつつ、下面(E面)に設けられた各スロット 96から下方に向 けて放射される。この放射された TEモードのマイクロ波は、上述のように天板 54の周 辺部を透過して処理空間 S内の周辺部へ導入される。これによりプラズマが立てられ る。
[0057] 以上のように、予め定められた分配比で分配されたマイクロ波力 処理空間 Sの中 央部と周辺部とにそれぞれ個別に導入され得る。これにより、処理空間 Sにおけるマ イク口波の電界密度を所定の分布状態にすることができる。これにより、例えばマイク 口波の電界密度を均一な分布状態にして、プラズマ密度を処理空間 Sの略全域に亘 つて均一化することができる。従って、ウェハ Wに対するプラズマ処理の面内均一性 を向上させるとができる。
[0058] 本実施の形態では、天板 54の中央部の平面アンテナ部材 80から導入されるマイク 口波の伝搬モードと、その周辺部のスロット付き導波管 82から導入されるマイクロ波の 伝搬モードと、が異なるように設定されている。このため、伝搬モードが異なる両マイ クロ波間の干渉が抑制され得るし、制御性の良い状態でマイクロ波が処理空間 S内 へ導入され得る。この結果、処理空間 Sにおけるマイクロ波の電界密度及びプラズマ 密度の均一性を更に高めることができる。
[0059] 更には、天板 54の中央部に位置する平面アンテナ部材 80から導入される TMモー ドのマイクロ波は、横方向へ或る程度広がる特性を有している。これに対して、天板 5 4の周辺部に位置するスロット付き導波管 82から導入される TEモードのマイクロ波は 、横方向へ広がる特性をほとんど有していなレ、。このため、 TEモードのマイクロ波の 電界強度が大きくなるように設定しても、天板 54の周辺部と処理容器 34の上端部と の接合部に発生する僅かな隙間 123の電界強度は大きくならなレ、。このため、図 9に 示した従来装置の隙間 230にて発生したような異常放電が、当該隙間 123において 発生することが防止され得る。
[0060] 尚、本実施の形態の分配器 110では、マイクロ波の分配比が一定となるように設定 されたが、これに限定されず、分配比が可変の分配器 110を設けてもよい。例えば、 フェライト等の磁性体よりなる棒体の一端側を分配器 110内に挿入しておき、分配器 110の外に飛び出した棒体の他端側に電磁コイルを卷回して、当該電磁コイルに電 流を流して棒体に供給する磁界を制御することにより、分配比は容易に可変制御す ること力 Sできる。
[0061] <本発明の評価 >
本発明のプラズマ処理装置について、シミュレーションによって評価を行った。その 評価結果について説明する。ここでは、天板 54の中央部の平面アンテナ部材 80に 供給されるマイクロ波電力と、その周辺部のスロット付き導波管 82に供給されるマイク 口波電力と、の分配比を変更して、それぞれの分配比における処理空間 Sのマイクロ 波の電界分布を評価した。
[0062] 図 4 (A)及び図 4 (B)は、マイクロ波の電界分布を示す写真であるが、写真の理解 を容易にするために、それぞれに模式図が併記されている。図 4 (A)は、天板の中央 部と周辺部とに供給されるマイクロ波の電力比が 1 : 2の場合を示している。図 4 (B)は 、当該電力比が 2 : 1の場合を示している。
[0063] 図 4 (A)及び図 4 (B)から明らかなように、天板 54の中央部と周辺部とに供給される マイクロ波の電力比を変化させることにより、処理空間におけるマイクロ波の電界分布 を大きく変えることができる。従って、当該分配比を適切に選択すれば、所望するマイ クロ波の電界分布が得られ、電界分布を均一化させることもできる。
[0064] なお、前記実施の形態では、マイクロ波供給手段 84が 1つのマイクロ波発生器 104 を有し、ここで発生されたマイクロ波を 2つに分配して平面アンテナ部材 80とスロット 付き導波管 82とに供給するようになっているが、これに限定されない。例えば図 5に 示す第 1変形例のように、マイクロ波発生手段 84が 2つのマイクロ波発生器 104A、 1 04Bを有していて、各マイクロ波発生器 104A、 104Bから、それぞれ、マッチング回 路 106A、 106Bが介設された矩形導波管 112A、 112Bを介して、スロット付き矩形 導波管 82と平面アンテナ部材 80とにマイクロ波を供給するようになっていてもよい。
[0065] この場合には、各マイクロ波発生器 104A、 104Bの容量を小さく出来るので、安価 なマイクロ波発生器 104A、 104Bを用いることができる。
[0066] また、前記実施の形態では、天板 54の中央部に設けられた平面アンテナ部材 80 の周辺部に、 1つのスロット付き導波管 82が設けられた場合を例にとって説明してい るが、これに限定されない。複数個のスロット付き導波管が同心状に設けられてもよ レ、。図 6は、このようなプラズマ処理装置の第 2変形例を示す部分概略断面図であり 、図 7は、図 6の第 2変形例の天板部分を示す概略平面図である。
[0067] 第 2変形例では、図 6及び図 7に示されるように、天板 54の中央部の導波箱 90の周 辺部に、先のスロット付き導波管 82と同じ構造の 2つのスロット付き導波管 122A、 12 2Bが同心状に設けられている。勿論、 3つ以上のスロット付き導波管が同心状に設 けられてもよい。第 2変形例では、最内周に位置するスロット付き導波管 122Aと平面 アンテナ部材 80とに、同一のマイクロ波発生器 104Bから発生されたマイクロ波が、 図 1を用いて説明したのと同様に矩形導波管 112A、 112Bを介してそれぞれ供給さ れる。そして、最外周のスロット付き導波管 122Bへは、他のマイクロ波発生器 104A にて発生されたマイクロ波が、矩形導波管 112Cを介して TEモードで供給される。尚 、第 2変形例の場合にも、 1つのマイクロ波発生器で発生されたマイクロ波が 3つに分 配 (分岐)されて供給されるように構成されてもょレ、。
[0068] なお、本発明は、プラズマを用いた成膜処理、プラズマエッチング処理、プラズマァ ッシング処理等の全てのプラズマ処理に適用することができる。また、プラズマ処理の 被処理体は、半導体ウェハに限定されず、ガラス基板、セラミック基板、 LCD基板等 であってもよい。

Claims

請求の範囲
[1] 天井部が開口されて内部が真空引き可能になされた処理容器と、
被処理体を載置するために前記処理容器内に設けられた載置台と、
前記天井部の開口に気密に装着されてマイクロ波を透過する誘電体よりなる天板と 前記処理容器内へ必要なガスを導入するガス導入手段と、
前記天板の中央部の上面に設けられて、所定の伝搬モードのマイクロ波を前記処 理容器内へ導入するためにマイクロ波放射用のスロットが形成された平面アンテナ部 材と、
前記天板の周辺部の上面に設けられて、前記平面アンテナ部材で導入されるマイ クロ波とは異なった伝搬モードのマイクロ波を前記処理容器内へ導入するためにマイ クロ波放射用のスロットが形成されたスロット付き導波管と、
マイクロ波を前記平面アンテナ部材及び前記スロット付き導波管に供給するマイク 口波供給手段と、
を備えたことを特徴とするプラズマ処理装置。
[2] 前記スロット付き導波管は、複数個が同心状に設けられている
ことを特徴とする請求項 1に記載のプラズマ処理装置。
[3] 前記スロット付き導波管は、リング状に形成されており、また、マイクロ波吸収用のス ロットが設けられており、
前記マイクロ波供給手段の前記スロット付き導波管への給電ポットは、マイクロ波吸 収用のスロットから遠い側に位置している
ことを特徴とする請求項 1または 2に記載のプラズマ処理装置。
[4] 前記平面アンテナ部材の半径 rは、これに伝搬されるマイクロ波の波長え以上の大 きさに設定されている
ことを特徴とする請求項 1乃至 3のいずれかに記載のプラズマ処理装置。
[5] 前記マイクロ波供給手段は、少なくとも 1つのマイクロ波発生器を有しており、
前記スロット付き導波管の内の最内周のスロット付き導波管と前記平面アンテナ部 材とへは、同一のマイクロ波発生器で発生されたマイクロ波が、分配器によって分岐 されて伝搬されるように構成されてレ、る
ことを特徴とする請求項 1乃至 4のいずれかに記載のプラズマ処理装置。
[6] 前記分配器は、マイクロ波の分配比が可変である
ことを特徴とする請求項 5に記載のプラズマ処理装置。
[7] 前記マイクロ波供給手段は、複数のマイクロ波発生器を有しており、
前記スロット付き導波管と前記平面アンテナ部材とへは、別個のマイクロ波発生器 で発生されたマイクロ波が、それぞれ独立に伝搬されるように構成されている ことを特徴とする請求項 1乃至 4のいずれかに記載のプラズマ処理装置。
[8] 前記平面アンテナ部材から前記処理容器内へ供給されるマイクロ波の伝搬モード は TMモードであり、
前記スロット付き導波管から前記処理容器内へ供給されるマイクロ波の伝搬モード は TEモードである
ことを特徴とする請求項 1乃至 7のいずれかに記載のプラズマ処理装置。
[9] 前記スロット付き導波管の前記天板に対する取付面は、電界面である
ことを特徴とする請求項 8に記載のプラズマ処理装置。
[10] 真空引き可能になされた処理容器内の被処理体に対して、当該処理容器の天井 部に設けられた天板から当該処理容器内にマイクロ波を導入して前記被処理体に所 定のプラズマ処理を施すプラズマ処理方法において、
前記天板の中央部に、ある伝搬モードのマイクロ波を供給する中央マイクロ波供給 工程と、
前記天板の周辺部に、前記天板の中央部に供給されるマイクロ波の伝搬モードと は異なる伝搬モードのマイクロ波を供給する周辺マイクロ波供給工程と、 を備えたことを特徴とするプラズマ処理方法。
[11] 前記中央マイクロ波供給工程では、天板の中央部に、平面アンテナ部材を用いて 、 TMモードのマイクロ波が供給されるようになっており、
前記周辺マイクロ波供給工程では、天板の周辺部に、スロット付き導波管を用いて 、 TEモードのマイクロ波が供給されるようになっている
ことを特徴とする請求項 10に記載のプラズマ処理方法。
PCT/JP2007/052333 2006-02-09 2007-02-09 プラズマ処理装置及びプラズマ処理方法 WO2007091672A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800009451A CN101347051B (zh) 2006-02-09 2007-02-09 等离子体处理装置和等离子体处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006033023A JP4677918B2 (ja) 2006-02-09 2006-02-09 プラズマ処理装置及びプラズマ処理方法
JP2006-033023 2006-02-09

Publications (1)

Publication Number Publication Date
WO2007091672A1 true WO2007091672A1 (ja) 2007-08-16

Family

ID=38345264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052333 WO2007091672A1 (ja) 2006-02-09 2007-02-09 プラズマ処理装置及びプラズマ処理方法

Country Status (5)

Country Link
JP (1) JP4677918B2 (ja)
KR (1) KR101008746B1 (ja)
CN (1) CN101347051B (ja)
TW (1) TW200810613A (ja)
WO (1) WO2007091672A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803472B (zh) * 2007-09-28 2012-07-18 东京毅力科创株式会社 等离子体处理装置
JP2015018685A (ja) * 2013-07-10 2015-01-29 東京エレクトロン株式会社 マイクロ波プラズマ処理装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5066502B2 (ja) * 2007-09-28 2012-11-07 東京エレクトロン株式会社 プラズマ処理装置
JP5422396B2 (ja) * 2008-01-31 2014-02-19 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
JP2010232493A (ja) * 2009-03-27 2010-10-14 Tokyo Electron Ltd プラズマ処理装置
JP5479013B2 (ja) * 2009-09-30 2014-04-23 東京エレクトロン株式会社 プラズマ処理装置及びこれに用いる遅波板
JP5710209B2 (ja) 2010-01-18 2015-04-30 東京エレクトロン株式会社 電磁波給電機構およびマイクロ波導入機構
JP6178140B2 (ja) 2013-07-10 2017-08-09 東京エレクトロン株式会社 マイクロ波プラズマ処理装置及びマイクロ波供給方法
JP2015018684A (ja) 2013-07-10 2015-01-29 東京エレクトロン株式会社 マイクロ波プラズマ処理装置、スロットアンテナ及び半導体装置
JP2015079677A (ja) * 2013-10-17 2015-04-23 東京エレクトロン株式会社 マイクロ波プラズマ処理装置及びマイクロ波供給方法
EP3240363B1 (en) * 2014-12-22 2020-08-26 Panasonic Intellectual Property Management Co., Ltd. Microwave heating device
TWI690972B (zh) * 2015-05-12 2020-04-11 日商東京威力科創股份有限公司 電漿處理裝置及電漿處理方法
KR101781290B1 (ko) 2016-02-29 2017-09-22 부산대학교 산학협력단 대면적 표면파 플라즈마 장치 및 이를 이용하여 전기전도성 다이아몬드 코팅방법
JP6697292B2 (ja) * 2016-03-14 2020-05-20 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP6527482B2 (ja) 2016-03-14 2019-06-05 東芝デバイス&ストレージ株式会社 半導体製造装置
KR102619949B1 (ko) 2016-05-16 2024-01-03 삼성전자주식회사 안테나, 그를 포함하는 마이크로파 플라즈마 소스, 플라즈마 처리 장치
CN109145327B (zh) * 2017-06-27 2021-10-29 大唐移动通信设备有限公司 一种微带天线的开槽设置方法及装置
KR102521817B1 (ko) * 2020-01-27 2023-04-14 주식회사 히타치하이테크 플라스마 처리 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319332A (ja) * 1989-06-16 1991-01-28 Hitachi Ltd マイクロ波プラズマ処理装置
JPH0394422A (ja) * 1989-06-30 1991-04-19 Hitachi Ltd プラズマcvd装置及びその方法
JPH07135093A (ja) * 1993-11-08 1995-05-23 Matsushita Electric Ind Co Ltd プラズマ処理装置及び処理方法
JP2005235755A (ja) * 2004-02-07 2005-09-02 Samsung Electronics Co Ltd マイクロウェーブ供給装置、それを用いたプラズマ工程装置及びプラズマ工程方法
JP2006040609A (ja) * 2004-07-23 2006-02-09 Naohisa Goto プラズマ処理装置および方法、並びにフラットパネルディスプレイ装置の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW328617B (en) * 1996-03-28 1998-03-21 Sumitomo Metal Ind Plasma processing device and plasma processing method
JP3957135B2 (ja) * 2000-10-13 2007-08-15 東京エレクトロン株式会社 プラズマ処理装置
JP4141764B2 (ja) * 2002-08-20 2008-08-27 東京エレクトロン株式会社 プラズマ処理装置
JP2004165551A (ja) * 2002-11-15 2004-06-10 Sharp Corp プラズマ処理装置
JP4396166B2 (ja) * 2003-07-10 2010-01-13 株式会社島津製作所 表面波励起プラズマ処理装置
JP2006216903A (ja) * 2005-02-07 2006-08-17 Hitachi High-Technologies Corp プラズマ処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319332A (ja) * 1989-06-16 1991-01-28 Hitachi Ltd マイクロ波プラズマ処理装置
JPH0394422A (ja) * 1989-06-30 1991-04-19 Hitachi Ltd プラズマcvd装置及びその方法
JPH07135093A (ja) * 1993-11-08 1995-05-23 Matsushita Electric Ind Co Ltd プラズマ処理装置及び処理方法
JP2005235755A (ja) * 2004-02-07 2005-09-02 Samsung Electronics Co Ltd マイクロウェーブ供給装置、それを用いたプラズマ工程装置及びプラズマ工程方法
JP2006040609A (ja) * 2004-07-23 2006-02-09 Naohisa Goto プラズマ処理装置および方法、並びにフラットパネルディスプレイ装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803472B (zh) * 2007-09-28 2012-07-18 东京毅力科创株式会社 等离子体处理装置
JP2015018685A (ja) * 2013-07-10 2015-01-29 東京エレクトロン株式会社 マイクロ波プラズマ処理装置

Also Published As

Publication number Publication date
CN101347051B (zh) 2011-06-08
JP4677918B2 (ja) 2011-04-27
KR20080037077A (ko) 2008-04-29
CN101347051A (zh) 2009-01-14
KR101008746B1 (ko) 2011-01-14
JP2007213994A (ja) 2007-08-23
TW200810613A (en) 2008-02-16

Similar Documents

Publication Publication Date Title
WO2007091672A1 (ja) プラズマ処理装置及びプラズマ処理方法
JP5805227B2 (ja) プラズマ処理装置
KR100960424B1 (ko) 마이크로파 플라즈마 처리 장치
JP6096547B2 (ja) プラズマ処理装置及びシャワープレート
JP5438205B2 (ja) プラズマ処理装置用の天板及びプラズマ処理装置
WO2015037508A1 (ja) プラズマ処理装置
JP2000268996A (ja) 平面アンテナ部材、これを用いたプラズマ処理装置及びプラズマ処理方法
WO2002005339A1 (fr) Dispositif de traitement au plasma
JP2006086449A (ja) プラズマ処理装置およびプラズマ処理方法
JP5096047B2 (ja) マイクロ波プラズマ処理装置およびマイクロ波透過板
JP4910396B2 (ja) プラズマ処理装置
JP2018006718A (ja) マイクロ波プラズマ処理装置
JP4093212B2 (ja) プラズマ処理装置
JP2002134418A (ja) プラズマ処理装置
JP2000260747A (ja) 平面アンテナ部材、これを用いたプラズマ処理装置及びプラズマ処理方法
US20090050052A1 (en) Plasma processing apparatus
JP5422396B2 (ja) マイクロ波プラズマ処理装置
JP5374853B2 (ja) プラズマ処理装置
WO2007148690A1 (ja) マイクロ波導入装置及びプラズマ処理装置
WO2007136043A1 (ja) 平面アンテナ部材及びこれを用いたプラズマ処理装置
US10832892B2 (en) Antenna, plasma processing device and plasma processing method
JP6700128B2 (ja) マイクロ波プラズマ処理装置
JP2002075881A (ja) プラズマ処理装置
JP4709192B2 (ja) プラズマ処理装置
JP2013033979A (ja) マイクロ波プラズマ処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000945.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087005903

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07713989

Country of ref document: EP

Kind code of ref document: A1