WO2012002232A1 - プラズマ処理装置及び方法 - Google Patents

プラズマ処理装置及び方法 Download PDF

Info

Publication number
WO2012002232A1
WO2012002232A1 PCT/JP2011/064311 JP2011064311W WO2012002232A1 WO 2012002232 A1 WO2012002232 A1 WO 2012002232A1 JP 2011064311 W JP2011064311 W JP 2011064311W WO 2012002232 A1 WO2012002232 A1 WO 2012002232A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
processing
plasma
common gas
common
Prior art date
Application number
PCT/JP2011/064311
Other languages
English (en)
French (fr)
Inventor
松本 直樹
弥 吉川
康弘 瀬尾
加藤 和行
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020127034251A priority Critical patent/KR101772723B1/ko
Priority to JP2012522579A priority patent/JP5514310B2/ja
Priority to CN201180032082.2A priority patent/CN103003924B/zh
Publication of WO2012002232A1 publication Critical patent/WO2012002232A1/ja
Priority to US13/728,551 priority patent/US8889023B2/en
Priority to US14/532,569 priority patent/US20150053346A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a plasma processing apparatus and method for plasma processing a substrate by converting a processing gas introduced into a processing container into plasma.
  • Plasma treatment is roughly classified into plasma etching and plasma CVD (Chemical Vapor Deposition).
  • Plasma etching is an important basic technology along with lithography in forming fine patterns of semiconductor devices.
  • LSI Large Scale Integration
  • the diversification of the film advances at the same time as the miniaturization, and the plasma etching is required to have a technology capable of uniformly controlling the microfabrication performance and a large diameter wafer of, for example, 300 mm or more. .
  • Patent Document 1 discloses a plasma etching apparatus using a parallel plate as a plasma source.
  • a parallel plate type plasma etching apparatus a pair of parallel upper and lower electrodes are installed in a processing vessel, a high frequency is applied to the lower electrode, and a substrate is placed on the lower electrode for etching.
  • the upper electrode is divided into a central region for supplying a processing gas to the center of the substrate and a peripheral region for supplying the processing gas to the periphery of the substrate.
  • a common processing gas is supplied to the substrate from the central region and the peripheral region of the upper electrode, and an additive gas is further added to the peripheral region in addition to the common gas.
  • a plasma etching apparatus using a radial line slot antenna (Radial Line Slot Antenna) has been developed as one of plasma sources (see Patent Document 2).
  • a slot antenna having a large number of slots is installed on a dielectric window of a processing container. Microwaves radiated from a number of slots of the slot antenna are introduced into the processing space of the processing container through a dielectric window made of a dielectric. The processing gas is turned into plasma by microwave energy.
  • a characteristic of microwave plasma generated by a radial line slot antenna is that a plasma with a relatively high electron temperature of several eV generated just below the dielectric window (called plasma excitation region) diffuses, When the substrate is directly below the substrate 100 mm or more (called a diffusion plasma region), the electron temperature is as low as about 1 to 2 eV. That is, the electron temperature distribution of the plasma is generated as a function of the distance from the dielectric window.
  • an etching gas is supplied to a low electron temperature region, and the dissociation of the etching gas is controlled (control of the amount of etching species generated in the plasma).
  • the surface chemical reaction of the substrate) is controlled, so that the etching accuracy can be improved and the damage to the substrate is greatly reduced.
  • a device can be manufactured according to the design dimensions such as etching in a spacer forming step, and damage such as a recess can be suppressed from entering the substrate.
  • an object of the present invention is to provide a plasma processing apparatus and method that can control the dissociation state of the processing gas in various ways and can also control the in-plane uniformity of the substrate processing.
  • an embodiment of the present invention includes a processing container that has a dielectric window that transmits microwaves in a ceiling portion and can keep the inside airtight, and a processing container that is provided inside the processing container.
  • a mounting base for mounting the substrate, a slot antenna provided on an upper surface of the dielectric window of the processing container, for introducing microwaves into the processing space of the processing container through a number of slots, and a predetermined frequency
  • a microwave generator for generating a microwave, a microwave introduction path for guiding the microwave generated by the microwave generator to the slot antenna, and a processing gas supplied from a processing gas source are introduced into the processing container
  • Plasma comprising processing gas introduction means and exhaust means for exhausting the processing gas introduced into the processing container from an exhaust port below the upper surface of the substrate placed on the mounting table.
  • the processing gas source includes a common gas source for supplying a common gas and an additive gas source for supplying an additive gas
  • the processing gas introduction means is connected to the common gas source.
  • a plurality of peripheral introductions arranged in the circumferential direction above the substrate for supplying the common gas to the peripheral portion of the substrate placed on the mounting table, connected to the other of the branch common gas lines branched to Have mouth
  • a peripheral introduction section that is connected to the additive gas source, and an additive gas line that adds the additive gas to at least one of the branch common gas lines branched into two systems, and the additive gas line,
  • a processing gas is introduced into a processing container that has a dielectric window that transmits microwaves for generating plasma in a ceiling portion and can keep the inside airtight, and the processing container
  • the processing gas introduced into the substrate is exhausted from an exhaust port below the upper surface of the substrate mounted on the mounting table, and the gas is passed through a plurality of slots of a slot antenna provided on the upper surface of the dielectric window of the processing container.
  • a plasma processing method for introducing plasma into a processing space of a processing container, a step of branching a common gas supplied from a common gas source into two systems by a flow splitter, and the common gas branched into two systems,
  • a central introduction portion having a central introduction port for supplying to the central portion of the substrate placed on the substrate, and a circumferential direction above the substrate for feeding to the peripheral portion of the substrate placed on the placement table.
  • a step of introducing into a peripheral introduction part having a plurality of peripheral introduction ports arranged, and a step of adding an additive gas supplied from an additive gas source to at least one of the common gases branched into two systems
  • the central introduction port is disposed at a central portion of the dielectric window of the processing container, and the plurality of peripheral introduction ports are placed below the dielectric window of the processing container and placed on the mounting table.
  • the plasma electron temperature in the region where the plurality of peripheral inlets are arranged is lower than the plasma electron temperature in the region where the central inlet is arranged, which is arranged above the substrate.
  • the common gas branched into two systems is introduced into the central inlet for supplying the processing gas to the central portion of the substrate and the plurality of peripheral inlets for supplying the processing gas to the peripheral portion of the substrate. Since the additive gas is added to at least one of the common gases branched into the system, the in-plane uniformity of the substrate processing can be controlled. In addition, since the central inlet is disposed in a region where the plasma electron temperature is high and the plurality of peripheral inlets are disposed in a region where the plasma electron temperature is low, dissociation of the processing gas can be controlled in various ways.
  • FIG. 1 is a longitudinal sectional view of a plasma processing apparatus in one embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line XX of FIG.
  • FIG. 3 is a graph showing the relationship between the distance Z from the dielectric window and the electron temperature of the plasma.
  • FIG. 4 is a longitudinal sectional view of the plasma processing apparatus used in the example.
  • FIG. 5 is a graph comparing the etching rates in the X-axis direction of the wafers in Comparative Example 1 and Example 1.
  • FIG. 6 is a graph evaluating uniformity in Comparative Example 1, Example 1, and Example 2.
  • FIG. 7 is a graph comparing the etching rates in the X-axis direction of the wafers in Comparative Example 1 and Example 3.
  • FIG. 8 is a diagram showing a cross-sectional photograph of the pattern formed on the silicon substrate.
  • the plasma processing apparatus 1 includes a cylindrical processing container 2.
  • the ceiling of the processing container 2 is closed with a dielectric window (top plate) 16 made of a dielectric.
  • the processing container 2 is made of, for example, aluminum and is electrically grounded.
  • the inner wall surface of the processing container 2 is covered with an insulating protective film 2f such as alumina.
  • a mounting table 3 for mounting a semiconductor wafer (hereinafter referred to as a wafer) W as a substrate is provided in the center of the bottom of the processing container 2.
  • a wafer W is held on the upper surface of the mounting table 3.
  • the mounting table 3 is made of a ceramic material such as alumina or alumina nitride.
  • a heater 5 is embedded in the mounting table 3 so that the wafer W can be heated to a predetermined temperature.
  • the heater 5 is connected to the heater power supply 4 through wiring arranged in the support column.
  • an electrostatic chuck CK that electrostatically attracts the wafer W mounted on the mounting table 3 is provided.
  • a high frequency power supply HFQ for bias that applies high frequency power for bias is connected to the electrostatic chuck CK via a matching unit MG.
  • an exhaust pipe 11 that exhausts the processing gas from an exhaust port 11 a below the surface of the wafer W mounted on the mounting table 3 is provided.
  • a pressure control valve PCV and a vacuum pump 10 are connected to the exhaust pipe 11.
  • the pressure in the processing container 2 is adjusted to a predetermined pressure by the pressure control valve PCV and the vacuum pump 10.
  • the exhaust pipe 11, the pressure control valve PCV, and the vacuum pump (exhaust device) 10 constitute exhaust means. That is, the exhaust device 10 communicates with the inside of the processing container 2 via the pressure control valve PCV.
  • a dielectric window 16 is provided on the ceiling of the processing container 2 via a seal 15 such as an O-ring for ensuring airtightness.
  • the dielectric window 16 is made of a dielectric material such as quartz, alumina (Al 2 O 3 ), or aluminum nitride (AlN), and is permeable to microwaves.
  • a disk-shaped slot antenna 20 is provided on the upper surface of the dielectric window 16.
  • the slot antenna 20 is made of a conductive material, for example, copper plated or coated with Ag, Au or the like.
  • a plurality of T-shaped slots 21 are concentrically arranged.
  • a dielectric plate 25 for compressing the wavelength of the microwave is disposed on the upper surface of the slot antenna 20.
  • the dielectric plate 25 is made of a dielectric such as quartz (SiO 2 ), alumina (Al 2 O 3 ), or aluminum nitride (AlN).
  • the dielectric plate 25 is covered with a conductive cover 26.
  • An annular heat medium passage 27 is provided in the cover 26. The cover 26 and the dielectric plate 25 are adjusted to a predetermined temperature by the heat medium flowing through the heat medium flow path 27. Taking a microwave having a wavelength of 2.45 GHz as an example, the wavelength in vacuum is about 12 cm, and the wavelength in the dielectric window 16 made of alumina is about 3 to 4 cm.
  • a coaxial waveguide 30 that propagates microwaves is connected to the center of the cover 26.
  • the coaxial waveguide 30 includes an inner conductor 31 and an outer conductor 32.
  • the inner conductor 31 passes through the center of the dielectric plate 25 and is connected to the center of the slot antenna 20.
  • a microwave generator 35 is connected to the coaxial waveguide 30 via a mode converter 37 and a rectangular waveguide 36.
  • microwaves such as 860 MHz, 915 MHz, and 8.35 GHz can be used as the microwave.
  • the microwave generated by the microwave generator 35 propagates to the rectangular waveguide 36, the mode converter 37, the coaxial waveguide 30, and the dielectric plate 25 as a microwave introduction path.
  • the microwave propagated to the dielectric plate 25 is supplied into the processing container 2 from the many slots 21 of the slot antenna 20 through the dielectric window 16.
  • An electric field is formed below the dielectric window 16 by the microwave, and the processing gas in the processing container 2 is turned into plasma.
  • the lower end of the inner conductor 31 connected to the slot antenna 20 is formed in a truncated cone shape. Thereby, the microwave is efficiently propagated from the coaxial waveguide 30 to the dielectric plate 25 and the slot antenna 20 without loss.
  • the characteristics of the microwave plasma generated by the radial line slot antenna is that a plasma of a few eV, which is generated directly under the dielectric window 16 (referred to as a plasma excitation region) and has a relatively high electron temperature, diffuses and directly above the wafer W (diffusion).
  • the plasma In the plasma region), the plasma has a low electron temperature of about 1 to 2 eV. That is, unlike plasma of a parallel plate or the like, the plasma electron temperature distribution is clearly generated as a function of the distance from the dielectric window 16. More specifically, as shown in FIG. 3, an electron temperature of several eV to about 10 eV just below the dielectric window 16 as a function of the distance Z from just below the dielectric window 16 is about 1 to 2 eV on the wafer W.
  • the processing of the wafer W is performed in a region where the electron temperature of plasma is low (diffusion plasma region), the wafer W is not seriously damaged such as a recess.
  • the processing gas is supplied to a region where the plasma electron temperature is high (plasma excitation region), the processing gas is easily excited and dissociated.
  • the processing gas is supplied to a region where the plasma electron temperature is low (plasma diffusion region), the degree of dissociation can be suppressed as compared with the case where the processing gas is supplied to the vicinity of the plasma excitation region.
  • a central introduction part 55 for introducing a processing gas into the central part of the wafer W is provided in the center of the dielectric window 16 on the ceiling of the processing container 2.
  • a processing gas supply path 52 is formed in the inner conductor 31 of the coaxial waveguide 30.
  • the central introduction part 55 is connected to the supply path 52.
  • the center introducing portion 55 includes a columnar block 57 fitted in a cylindrical space portion 59 provided in the center of the dielectric window 16, a lower surface of the inner conductor 31 of the coaxial waveguide 30, and an upper surface of the block 57. And a gas reservoir 60 spaced at an appropriate interval between them.
  • the block 57 is made of a conductive material such as aluminum and is electrically grounded.
  • the block 57 is formed with a plurality of central introduction ports 58 (see FIG. 2) penetrating in the vertical direction.
  • the planar shape of the central introduction port 58 is formed in a perfect circle or a long hole in consideration of necessary conductance and the like.
  • the aluminum block 57 is coated with anodized alumina (Al 2 O 3 ), yttria (Y 2 O 3 ), or the like.
  • the processing gas supplied from the supply path 52 penetrating the inner conductor 31 to the gas reservoir 60 diffuses in the gas reservoir 60, and then downwards from the plurality of central inlets 58 of the block 57 and at the center of the wafer W. It is jetted toward.
  • a ring-shaped peripheral introducing portion 61 for supplying a processing gas to the peripheral portion of the wafer W is disposed so as to surround the periphery above the wafer W.
  • the peripheral introduction part 61 is arranged below the central introduction port 58 arranged on the ceiling part and above the wafer W placed on the mounting table.
  • the peripheral introduction portion 61 is a hollow pipe formed in an annular shape, and a plurality of peripheral introduction ports 62 are opened at a certain interval in the circumferential direction on the inner peripheral side thereof.
  • the peripheral inlet 62 injects the processing gas toward the center of the peripheral inlet 61.
  • the peripheral introduction part 61 is made of quartz, for example.
  • a supply path 53 made of stainless steel penetrates the side surface of the processing container 2.
  • the supply path 53 is connected to the peripheral introduction part 61.
  • the processing gas supplied from the supply path 53 to the inside of the peripheral introduction part 61 diffuses in the space inside the peripheral introduction part 61 and is then injected from the plurality of peripheral introduction ports 62 toward the inside of the peripheral introduction part 61. .
  • the processing gas sprayed from the plurality of peripheral introduction ports 62 is supplied to the upper periphery of the wafer W.
  • a plurality of peripheral introduction ports 62 may be formed on the inner surface of the processing container 2.
  • the processing gas source that supplies the processing gas into the processing container 2 includes a common gas source 41 and an additive gas source 42.
  • the common gas source 41 and the additive gas source 42 supply process gases corresponding to the plasma etching process and the plasma CVD process. For example, when etching a silicon-based film such as Poly-Si, Ar gas, HBr gas (or Cl 2 gas), O 2 gas is supplied, and when etching an oxide film such as SiO 2 , Ar gas, CHF System gas, CF gas, and O 2 gas are supplied. When etching a nitride film such as SiN, Ar gas, CF gas, CHF gas, and O 2 gas are supplied.
  • CHF-based gas CH 3 (CH 2) 3 CH 2 F, CH 3 (CH 2) 4 CH 2 F, CH 3 (CH 2) 7 CH 2 F, CHCH 3 F 2, CHF 3, CH 3 Examples thereof include F and CH 2 F 2 .
  • Examples of the CF-based gas include C (CF 3 ) 4 , C (C 2 F 5 ) 4 , C 4 F 8 , C 2 F 2 , and C 5 F 8 .
  • the common gas source 41 and the additive gas source 42 may supply the same type of gas, or the common gas source 41 and the additive gas source 42 may supply different types of gas.
  • a plasma excitation gas may be supplied from the common gas source 41 and an etching gas may be supplied from the additive gas source 42.
  • Ar gas is supplied as plasma excitation gas from the common gas source 41, and only HBr gas and O 2 gas are supplied as etching gas from the additive gas source 42. .
  • the common gas source 41 further supplies a cleaning gas such as O 2 and SF 6 and other common gases.
  • the common gas supplied from the common gas source 41 is divided into two systems by a flow splitter 44 described later.
  • the common gas source 41 is provided with flow rate control valves 41a, 41b, 41c for controlling the flow rate of each gas.
  • a control device 49 for controlling the flow rate is connected to the flow rate control valves 41a, 41b, 41c, the flow splitter 44, and the flow rate control valves 42a, 42b, 42c.
  • the plurality of flow control valves 41 a, 41 b, 41 c are connected to a plurality of common gas lines 45. In order to mix the gases, the plurality of common gas lines 45 are combined into one and connected to the upstream side of the flow splitter 44.
  • the plurality of flow control valves 41 a, 41 b, 41 c are controlled by the control device 49.
  • the control device 49 adjusts the flow rate of each gas, and determines the flow rate and partial pressure for each gas type of the common gas supplied to the flow splitter 44.
  • the common gas supplied from the common gas source is mixed and then introduced into the flow splitter 44 provided in the middle of the common gas line.
  • the flow splitter 44 divides the common gas into two systems.
  • Two branch common gas lines 46 and 47 are provided on the downstream side of the flow splitter 44.
  • One of the two branch common gas lines 46 is connected to the central inlet 58 of the ceiling of the processing vessel 2, and the other 47 is connected to the peripheral inlet 61 inside the processing vessel 2.
  • the flow splitter 44 adjusts the branch ratio of the common gas divided into two systems, that is, the ratio of the flow rate of one of the branch common gas lines 46 to the flow rate of the other 47.
  • the flow splitter 44 is controlled by the control device 49, and the control device 49 determines the branch ratio of the common gas.
  • RDC Ring Distribution Control
  • a common RDC is a case where the gas types introduced into the central introduction portion 55 and the peripheral introduction portion 61 are common. The optimum RDC value is experimentally determined depending on the type of film to be etched and various conditions.
  • the additive gas source 42 is provided with flow rate control valves 42a, 42b, and 42c for controlling the flow rate of each gas.
  • the plurality of flow control valves 42 a, 42 b, 42 c are connected to a plurality of additive gas lines 48. In order to mix the gases, the plurality of additive gas lines 48 are combined into one.
  • the additive gas line 48 is connected to the other branch common gas line 47 on the downstream side of the flow splitter 44.
  • the control device 49 controls the flow rate of each gas from the additive gas source 42 and controls the partial pressure of each additive gas added to the other 47 of the branch common gas line.
  • the additive gas line is connected to the other 47 of the branch common gas line connected to the peripheral introduction portion 61.
  • the additive gas line is connected to one of the branch common gas lines 46. Also good.
  • the additive gas line is connected to the other 47 of the branch common gas lines branched from the flow splitter 44 into two systems, and the additive gas is added to the other system.
  • the partial pressure for each gas type and the gas type itself can be arbitrarily changed between the branch common gas lines 46 and 47. Since the partial pressure for each gas type of the introduced processing gas and the gas type itself can be changed between the central portion and the peripheral portion of the wafer W, the characteristics of the plasma processing can be changed in various ways.
  • Example of etching using the plasma processing apparatus 1 As an example of plasma processing using the plasma processing apparatus 1 configured as described above, an example of etching the Poly-Si film on the upper surface of the wafer W using a processing gas containing HBr will be described.
  • the wafer W is loaded into the processing container 2, mounted on the mounting table 3, and attracted onto the electrostatic chuck CK.
  • a high frequency voltage is applied to the electrostatic chuck CK from the direct current and / or the high frequency power supply HFQ via the matching unit MG.
  • the pressure control valve PCV is controlled by the controller CONT, the exhaust pipe 11 is exhausted, and the inside of the processing container 2 is depressurized.
  • the controller CONT controls elements such as the flow rate control device 49, the high frequency power supply HFQ, the heater power supply 4, and the microwave generator 35.
  • the controller CONT outputs a flow rate control instruction to the control device 49.
  • a common gas composed of Ar gas is supplied from the common gas source 41 to the flow splitter 44.
  • the pressure of Ar gas supplied to the flow splitter 44 is determined by the control device 49.
  • an additive gas containing HBr gas and O 2 gas is supplied from the additive gas source 42 to the other 47 of the branch common gas line.
  • the partial pressure of the HBr gas and the O 2 gas added to the other 47 of the branch common gas line is controlled by the controller 49.
  • the flow splitter 44 divides the common gas composed of Ar gas into two systems.
  • the branching ratio of the flow splitter 44 is determined by the control device 49.
  • One system of the common gas divided into two systems by the flow splitter 44 is introduced into the central inlet 58 of the ceiling portion of the processing vessel 2 through one of the branch common gas lines 46. Then, it is introduced into the processing container 1 from the central introduction port 58.
  • the other of the two common gases is introduced into the peripheral introduction portion 61 inside the processing vessel 2 through the other 47 of the branch common gas line.
  • An additive gas containing HBr gas and O 2 gas is added to the other 47 of the branch common gas line.
  • Ar gas, HBr gas, and O 2 gas which are mixed gases of the common gas and the additive gas, are supplied to the peripheral introduction portion 61.
  • the mixed gas is supplied from the peripheral introduction unit 61 into the processing container 2.
  • the microwave generator 35 When the microwave generator 35 is operated, first, Ar gas is excited by microwaves, and Ar plasma is generated. Next, HBr gas and O 2 gas are excited by Ar plasma, and the poly-Si film is etched by the generated radicals and ions. After the etching process is performed for a predetermined time, the operation of the microwave generator 35 and the supply of the processing gas into the processing container 2 are stopped.
  • a cleaning gas such as O 2 gas is supplied from the common gas source 41 into the processing container 2 to clean the inside of the processing container 2.
  • the plasma processing apparatus 1 Since the plasma processing apparatus 1 according to the present invention is characterized in that the plasma processing space is wide and the electron temperature of the plasma is attenuated by the distance from the dielectric window 16, the etching gas is changed depending on the position where the etching gas is introduced. The dissociation state can be changed. If an etching gas is introduced directly under the dielectric window 16, the plasma electron temperature is high, so that the dissociation of the etching gas easily proceeds. On the other hand, when the etching gas is introduced at a position relatively far from the dielectric window 16, the plasma electron temperature is low, so that dissociation of the etching gas can be suppressed to a low level.
  • the etching gas when obtaining a desired dissociation state of the etching gas, it is easily dissociated by adjusting the amount of gas supplied directly below the dielectric window 16 and the amount of gas supplied to a position far from the dielectric window 16.
  • the state can be controlled.
  • microwave plasma is generated by the radial line slot antenna
  • low electron temperature and high density plasma (about 10 12 cm ⁇ 3 ) can be uniformly generated in the region where the wafer W is processed. That is, the plasma in the region immediately below the dielectric window 16 has a high density and a relatively high electron temperature, but the plasma diffuses into the region where the wafer W is processed below, and the electron temperature also decreases. Since the plasma in the generation region has a high density, the plasma is sufficiently high in the diffusion region.
  • etching gas may be supplied to the diffusion region of the microwave plasma.
  • the peripheral introducing portion 61 is disposed in the plasma diffusion region, dissociation can be suppressed by supplying an etching gas to the peripheral introducing portion 61. That is, if Ar gas as plasma excitation gas is supplied from the common gas source 41 during plasma processing, and HBr gas and O 2 gas as etching gas are supplied from the additive gas source 42, dissociation of the etching gas is suppressed. be able to.
  • a plurality of peripheral introduction ports 62 are arranged around the flow of the processing gas ejected toward the wafer W by the central introduction port 58 arranged in the dielectric window 16, and the plurality of peripheral introduction ports 62 are arranged at the central introduction port. Since the processing gas is jetted toward the flow of the processing gas jetted from the port 58, the plasma and the etching gas that have reached the surface of the wafer W are controlled in the central portion of the wafer W, and the periphery of the wafer W Since it is possible to control independently in the part, it is possible to control the etching rate in a plane with an excellent effect.
  • the gas supply from the central inlet 58 near the dielectric window 16 By determining the gas supply amount / ratio from the peripheral introduction unit 61 near the wafer W in combination, optimal uniformity control becomes possible.
  • the microwave plasma has a high electron temperature in the vicinity of the dielectric window 16 at the generation site, but rapidly diffuses away from the generation site to lower the electron temperature. Therefore, etching that does not damage the wafer W is possible on the surface to be processed of the wafer W.
  • the ring-shaped peripheral introduction portion 61 has a large opening at the center as a plasma diffusion path in the downward direction of the plasma, and the plasma descends toward the surface to be processed of the wafer W.
  • the peripheral introduction portion 61 is provided with a plurality of peripheral introduction ports 62 in a direction orthogonal to the plasma diffusion path, and HBr, O 2 or the like is injected as an etching gas. Since the plasma electron temperature is low, the etching gas supplied from the plurality of peripheral inlets 62 reaches the surface of the wafer W with low dissociation.
  • the ion energy of the polysilicon film is small, but it acts as a suitable ion for promoting the chemical reaction of etching.
  • a hole is formed in a state where the etching shape of the polysilicon film maintains the right angle of the side wall. Causes a reaction.
  • an etching gas is additionally supplied from the central introduction port 58 opposed to the central portion of the wafer W, and the etching gas is supplied from a plurality of peripheral introduction ports 62 opposed to the peripheral portion of the wafer W to supply both of them.
  • the uniformity of the etching rate (etching rate) within the surface of the wafer W can be controlled as desired.
  • an etching gas such as HBr is a corrosive gas and corrodes aluminum. Since the block 57 of the central inlet 58 is made of aluminum, there is a risk of corrosion even if the surface is covered with an anodized film. Since the peripheral introduction part 61 is made of a non-corrosive material such as quartz, there is no possibility of corrosion even if an etching gas is passed through the peripheral introduction part 61.
  • a CF-based gas or a CHF-based gas for example, depositing CH 2 F 2
  • CF-based gas is introduced from the central inlet 58 provided through the dielectric window 16
  • radicals and electrons generated by high electron temperature plasma flow back through the central inlet 58, and the gas is introduced into the processing chamber.
  • the CF-based gas is dissociated before the reaction is performed, and the reaction product accumulates at the central inlet 58, which may clog the central inlet 58.
  • the present invention is not limited to the above embodiment and can be variously modified without changing the gist of the present invention.
  • the substrate processed by the etching apparatus of the present invention may be any of a semiconductor wafer W, an organic EL substrate, and a substrate for FDP (flat panel display).
  • the plasma source is not limited to the radial line slot antenna as long as the microwave can be introduced from the dielectric window 16 of the processing container 2 to generate the microwave excitation plasma in the processing container.
  • HBr gas, CH 2 F 2 gas or CHF 3 gas, Ar gas, and O 2 gas can be supplied from the additive gas source 42 as additive gas.
  • the gas box is provided with flow rate control valves 42a to 42d as flow rate control units for controlling the flow rates of the respective gases, and the flow rates of the respective gases are controlled by the respective flow rate control valves 42a to 42d.
  • the flow control valves 42a to 42d are controlled by the control device 49 shown in FIG.
  • the common gas source 41 is also provided with a plurality of flow rate control valves 41a, 41b, 41c,... 41x as flow rate control units capable of controlling the flow rates of a plurality of different types of gases. Is also controlled by the control device 49 shown in FIG.
  • the common gas source 41 can supply HBr gas, CH 2 F 2 gas or CHF 3 gas, Ar gas, O 2 gas, cleaning gas, and other common gases as a common gas.
  • the gas type is selected according to the film type to be etched. For example, Ar gas, HBr gas, and O 2 gas are selected when etching Poly-Si, and Ar gas, CHF-based gas, and O 2 gas are selected when etching the SiO 2 film.
  • the common gas is divided into two systems by the flow splitter 44, and one system of processing gas can be introduced into the processing container 2 from the central inlet 58 of the ceiling portion of the processing container 2, and the remaining one system of processing gas is supplied to the processing container 2. It was made possible to introduce from the peripheral introduction part 61.
  • Example 1 of poly-Si etching Poly-Si on the wafer W was etched using Ar gas as a common gas and HBr / O 2 as an additive gas. Only Ar gas was allowed to flow through the common gas line 45. Ar gas was divided into two systems by the flow splitter 44, and Ar gas was introduced into the processing container 2 from the central inlet 58 and the peripheral inlet 61.
  • the Ar gas introduction ratio (hereinafter referred to as RDC) is as shown in Table 1 below.
  • RDC is represented by the ratio between the amount of gas introduced from the central inlet 58 and the amount of gas introduced from the peripheral inlet 61.
  • RDC was changed into three patterns of (1) 7:93, (2) 50:50, and (3) 80:20.
  • HBr and O 2 were added to the branch common gas line for each RDC pattern.
  • MW indicates the power of the microwave
  • RF indicates the power of the bias applied to the wafer
  • pressure indicates the pressure in the processing chamber 2.
  • FIG. 5 is a graph comparing the etching rates of the wafer W in the X-axis direction in Example 1 and Comparative Example 1.
  • the vertical axis represents the etching rate (Poly E / R (nm / min)), and the horizontal axis represents the distance X (mm) from the center of the wafer W. The closer the line in the graph is to a flat line, the higher the in-plane uniformity of the etching rate.
  • Comparative Example 1 when the RDC 50 is used (that is, when the gas introduction amount introduced from the central introduction port (center portion) is 50% and the gas introduction amount introduced from the peripheral introduction portion (edge) is 50%), the wafer W The etching rate at the peripheral part of the film was lower than the etching rate at the central part, and it was difficult to ensure uniformity. Further, when the RDC was set to 7:93 (when the amount of gas introduced into the central portion of the wafer W was 7%), the etching rate at the central portion of the wafer W was lowered.
  • Example 1 by changing the RDC, the distribution of uniformity of the etching rate could be changed in a variety of ways from the concave in the center to the inflated in the center.
  • the peripheral portion of the wafer W By supplying HBr and O 2 to the peripheral portion of the wafer W, it is assumed that the peripheral portion of the wafer W can be more easily etched than the central portion.
  • RDC is set to 7:93
  • the etching rate at the center of the wafer W can be lowered.
  • the etching rate distribution can be made flat.
  • the etching rate at the center can be changed more greatly.
  • FIG. 6 is a graph evaluating the uniformity in Comparative Example 1, Example 1 and Example 2.
  • the horizontal axis is the initial value of the ratio of RDC (ratio of the amount of gas introduced into the central portion of the wafer W), and the vertical axis is non-uniformity. This means that the larger the positive value on the vertical axis, the higher the etching rate at the center of the wafer W tends to be higher.
  • the smaller the negative value on the vertical axis the smaller the absolute value (the larger the absolute value). ), which means that the etching rate at the periphery of the wafer W tends to be high.
  • the non-uniformity (vertical axis) becomes 0 (in other words, the most uniform) when the RDC is 12-13.
  • the non-uniformity becomes a positive value (that is, the etching rate at the central portion becomes larger than the peripheral portion of the wafer W).
  • the non-uniformity of the vertical axis becomes zero (in other words, the most uniform). Become).
  • the value of RDC increases, and when it approaches 50, the non-uniformity increases.
  • the value of RDC that improves the uniformity is about 55.
  • argon, oxygen (3 sccm), and hydrogen bromide (HBr 580 sccm) are all mixed, and hydrogen bromide (HBr) and oxygen gas are added separately as additive gases from the edge, compared with the case where the RDC value is changed.
  • HBr hydrogen bromide
  • oxygen gas are added separately as additive gases from the edge, compared with the case where the RDC value is changed.
  • the RDC value at which the uniformity is the best moves in the right direction of the graph so that it can be understood that the flow rate ratio of oxygen has a great influence on the processing.
  • the nonuniformity values are distributed in a positive and negative balance with respect to the change in RDC, it can be seen that the tendency of the peripheral portion of the wafer W to be etched can be stronger than that in Comparative Example 1.
  • Example 2 in FIG. 6 shows data when the amount of O 2 added is twice that of Example 1. If the amount of O 2 added is doubled, the RDC when the non-uniformity becomes zero can be further increased. However, it should be noted that the rate of change in non-uniformity with respect to the change in RDC becomes steep. That is, when the case where oxygen is added at 3 sccm in Example 1 and the case where oxygen is added at 6 sccm as in Example 2, the amount of change (that is, the slope) of non-uniformity (%) with respect to the amount of change in RDC changes. . It can be seen that the addition of 6 sccm of oxygen affects the non-uniformity more sensitively.
  • the state of the processing container changes with time due to the accumulation of etching deposits in the processing container 2, and the etching process varies among wafers. .
  • the present invention is also effectively used to suppress non-uniformity in wafer processing due to changes over time.
  • the etching uniformity of the wafer can be inspected every predetermined number of times, and the composition of the etching gas can be changed, or the RDC value can be fed back to the optimum value for easy adjustment.
  • the etched shape etching depth, etc.
  • the in-plane etching uniformity is calculated, and the value is the reference (within range).
  • the RDC value is finely adjusted. Specifically, the adjustment can be made such that when the non-uniformity (%) is positive, the RDC value is decreased, and when the non-uniformity (%) is negative, the RDC value is increased.
  • FIG. 6 it can be said that the configuration according to the example has a larger range in which the RDC value can be changed, the so-called “adjustment margin” is larger, and the controllability is higher than the configuration shown in the first comparative example.
  • data as shown in FIG. 6 is accumulated in the controller CONT including the storage device for each oxygen amount, and the RDC value is adjusted as described above by adjusting the flow rate flowing through each flow rate control valve. It is also possible to automatically perform feedback control so as to control.
  • Example 3 of poly-Si etching
  • HBr and O 2 were added to the branch common gas line 47 connected to the peripheral introduction part 61.
  • the additive gas was added to the branch common gas line 46 connected to the central inlet 58. That is, instead of the additive gas line 48 in FIG. 4, the additive gas line 48 ′ (shown by a dotted line) is used, and the additive gas line 48 ′ is connected to the branch common gas line 46.
  • FIG. 7 is a graph showing the etching rate in the X-axis direction of the wafer W in Example 3 to which O 2 was added, together with the etching rate of Comparative Example 1 in which RDC was set to 7:93, and the vertical axis represents the etching rate. (Poly E / R (nm / min)) is shown, and the horizontal axis shows the distance X (mm) from the center of the wafer W. It can be seen that when the O 2 gas is added to the central introduction port 58 as in the third embodiment, the etching rate at the central portion of the wafer W is locally reduced as compared with the case where it is added to the peripheral introduction portion 61.
  • Example 4 (Embodiment 4 of etching for forming STI (Shallow Trench Isolation))
  • the apparatus configuration was the same as in Example 1, and the conditions such as the gas flow rate ratio were set as shown in Table 4 below, the etching target was a silicon substrate, and silicon etching for STI formation was performed. Etching was performed on a sample having a portion where the pattern was densely packed (Dense) and a portion where the pattern was sparse (Isolated) in the central portion and the peripheral portion of the wafer W, respectively.
  • FIG. 8 is a diagram showing a cross-sectional photograph of the pattern formed on the silicon substrate, where the densely clogged portion is shown as Dense and the sparse portion is shown as Iso.
  • the pattern width, taper angle, and trench depth were measured, the difference between the central part and the peripheral part of the wafer W was within the required value. It was within the required value.
  • the RDC value can be adjusted as appropriate in consideration of the etching selectivity between the film to be etched and the underlying film. For example, when the base film is an oxide film, and etching is performed using plasma containing oxygen, etching with high etching selectivity and high shape controllability with the base film is possible. It is possible to take a wider range of RDC values necessary for the above.
  • the above-described plasma processing apparatus is provided with the processing container 2, the dielectric window 16 that is provided in the upper part of the processing container 2 and defines the processing space, and the mounting table provided in the processing container 2. 3, the slot antenna 20 provided on the upper surface of the dielectric window 16, the microwave introduction paths 36, 37, 30 connected to the microwave generator 35 and the slot antenna 20, and the exhaust gas communicating with the inside of the processing container 2.
  • a common gas line 45 connected to the apparatus 10, a common gas source 41 containing a plasma excitation gas such as a rare gas, and a common gas line 45 provided in the middle of the common gas line 45.
  • the common gas line 45 is divided into first and second branches.
  • a flow splitter 44 that can branch to the common gas lines 46 and 47 and adjust the flow rate ratio of the gas flowing through the first and second branch common gas lines 46 and 47, and the first branch common gas line 46.
  • a central introduction part 55 having a central introduction port 58 located above the central part of the substrate W placed on the placement table 3 and connected to the second branch common gas line 47 and in a space above the substrate W.
  • a peripheral introduction portion 61 having a plurality of peripheral introduction ports 62 arranged along the circumferential direction and positioned below the dielectric window 16, an additive gas source 42 including an etching gas, and the first and second branch common gases And an additive gas line connecting at least one of the lines 46 and 47.
  • the dissociation state of the processing gas can be controlled in various ways, and the in-plane uniformity of the substrate processing can also be controlled.
  • W ... wafer (substrate), 1 ... processing container, 3 ... mounting table, 11a ... exhaust port, 16 ... dielectric window, 20 ... slot antenna, 21 ... slot, 35 ... microwave generator, 41 ... common gas source, 42 ... addition gas source, 42a, 42b, 42c ... flow rate control valve (flow rate adjusting unit), 44 ... flow splitter, 45 ... common gas line, 46 ... one of the branch common gas lines, 47 ... the other of the branch common gas lines 48 ... Additive gas line, 49 ... Control device, 55 ... Central inlet, 58 ... Central inlet, 61 ... Perimeter inlet, 62 ... Perimeter inlet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

 共通ガス源41から供給される共通ガスをフロースプリッタ44によって二系統に分岐させ、二系統に分岐された共通ガスを処理容器2の誘電体窓16の中央に設けられる中央導入口58(55)、及び基板Wの上方に周方向に配列される複数の周辺導入口62に導入する。二系統に分岐させた共通ガスのいずれか一方に添加ガスを添加する。処理容器2内に導入された共通ガス及び添加ガスを基板Wの下方の排気口11aから排気し、処理容器2内を所定の圧力に減圧する。多数のスロット21を有するスロットアンテナ20を用いて処理容器2内にマイクロ波を導入し、複数の周辺導入口62が設けられる領域の電子温度を中央導入口58(55)が設けられる領域の電子温度よりも低くする。

Description

プラズマ処理装置及び方法
 本発明は、処理容器に導入された処理ガスをプラズマ化させて基板をプラズマ処理するプラズマ処理装置及び方法に関する。
 従来から半導体デバイスの製造分野では、プラズマを用いて基板にプラズマ処理を行う技術が多用されている。プラズマ処理は、プラズマエッチング、及びプラズマCVD(Chemical Vapor Deposition)に大別される。プラズマエッチングは、半導体デバイスの微細パターンを形成する上で、リソグラフィーと並び重要な基盤技術である。今後のLSI(Large Scale Integration)デバイスでは、微細化と同時に膜の多様化が進み、プラズマエッチングには微細加工性能とそれを例えば300mm以上の大口径ウェハ上で均一に制御できる技術が要請される。
 プラズマエッチングのプラズマソースとしてこれまでに、平行平板、ECR(Electron Cyclotron Resonance)、ICP(Inductive Coupled Plasma)等が開発されている。特許文献1には、プラズマソースとして平行平板を用いたプラズマエッチング装置が開示されている。この平行平板型のプラズマエッチング装置においては、処理容器内に一対の平行な上部電極及び下部電極を設置し、下部電極に高周波を印加すると共に、この下部電極上に基板を置いてエッチングを行う。エッチングの基板の面内での均一性を向上するために、上部電極は、基板の中央に処理ガスを供給する中央領域と、基板の周辺に処理ガスを供給する周辺領域と、に区画される。そして、上部電極の中央領域及び周辺領域から共通の処理ガスを基板に供給し、周辺領域に共通ガスに加えてさらに添加ガスを添加している。添加ガスを加えることにより、基板の中央領域が周辺領域よりも排気されにくいことに起因したエッチングの面内不均一性を改善している。
 近年、プラズマソースの一つとして、ラジアルラインスロットアンテナ(Radial Line Slot Antenna)を使用したプラズマエッチング装置が開発されている(特許文献2参照)。ラジアルラインスロットアンテナを使用したプラズマエッチング装置では、処理容器の誘電体窓の上に多数のスロットを有するスロットアンテナが設置される。スロットアンテナの多数のスロットから放射されたマイクロ波は、誘電体からなる誘電体窓を介して処理容器の処理空間に導入される。処理ガスはマイクロ波のエネルギーによってプラズマ化する。
 ラジアルラインスロットアンテナによって生成されたマイクロ波プラズマの特徴は、誘電体窓直下(プラズマ励起領域と称される)で生成された比較的電子温度の高い数eVのプラズマが拡散し、誘電体窓より100mm以上下方の基板直上(拡散プラズマ領域と称される)では約1~2eV程度の低い電子温度となることにある。すなわち、プラズマの電子温度の分布が誘電体窓からの距離の関数として生ずることに特徴がある。
 ラジアルラインスロットアンテナ型のプラズマエッチング装置においては、低電子温度領域にエッチングガスを供給し、エッチングガスの解離制御(プラズマ中のエッチング種の生成量の制御)を行い、これによりエッチング反応(エッチング種による基板の表面化学反応)を制御するので、エッチングの高精度化が図れると共に、基板にダメージを与えることが大幅に低減される。例えば、スペーサ形成工程におけるエッチングなど、設計寸法どおりにデバイスを作製できると共に、基板にリセス等のダメージが入るのを抑えることができる。
特開2008-47687号公報 特開2010-118549号公報
 近年、半導体デバイスの微細加工性能の向上や膜の多様化に伴い、エッチングガスの多様な解離制御、及び基板の面内均一性の制御の両立が要請されている。
 しかし、特許文献1に記載の平行平板型のプラズマエッチング装置にあっては、40mm以内の短距離に隔てられた上部電極と下部電極との間に生成されるプラズマを利用しており、プラズマの電子温度は上部電極から下部電極に至るまで高いまま維持され、しかも共通ガス及び添加ガスはいずれも上部電極に導入されるので、共通ガス及び添加ガスの解離を多様に制御することができないという課題がある。
 特許文献2に記載のラジアルラインスロットアンテナを使用したエッチング装置においては、基板の面内でのエッチングレートやエッチング形状等を一定にするのが困難であり、エッチング処理を基板の面内で均一に行なうことが課題となっている。
 そこで本発明は、処理ガスの解離状態を多様に制御することができると共に、基板処理の面内均一性も制御することができるプラズマ処理装置及び方法を提供することを目的とする。
 上記課題を解決するために、本発明の一態様は、天井部にマイクロ波を透過する誘電体窓を有すると共に、内部を気密に保つことが可能な処理容器と、前記処理容器の内部に設けられ、基板を載置する載置台と、前記処理容器の前記誘電体窓の上面に設けられ、前記処理容器の処理空間に多数のスロットを介してマイクロ波を導入するスロットアンテナと、所定の周波数のマイクロ波を発生するマイクロ波発生器と、前記マイクロ波発生器が発生するマイクロ波を前記スロットアンテナに導くマイクロ波導入路と、処理ガス源から供給される処理ガスを前記処理容器に導入する処理ガス導入手段と、前記処理容器内に導入された処理ガスを、前記載置台に載置された基板の上面より下方の排気口から排気する排気手段と、を備えるプラズマ処理装置において、前記処理ガス源は、共通ガスを供給するための共通ガス源と、添加ガスを供給するための添加ガス源と、を有し、前記処理ガス導入手段は、前記共通ガス源に接続される共通ガスラインと、前記共通ガスラインの途中に設けられ、前記共通ガスラインを二系統に分岐させると共に、二系統に分岐される前記共通ガスの流量の比率を調節可能なフロースプリッタと、二系統に分岐される分岐共通ガスラインの一方に接続され、前記共通ガスを前記載置台に載置される基板の中央部に供給するための中央導入口を有する中央導入部と、二系統に分岐される前記分岐共通ガスラインの他方に接続され、前記共通ガスを前記載置台に載置される基板の周辺部に供給するための、基板上方の周方向に配列される複数の周辺導入口を有する周辺導入部と、前記添加ガス源に接続されると共に、二系統に分岐される前記分岐共通ガスラインの少なくとも一方に前記添加ガスを添加する添加ガスラインと、前記添加ガスラインに設けられ、前記添加ガスの流量を調節する流量調節部と、を有し、前記中央導入口は、前記処理容器の前記誘電体窓の中央部に配置され、前記複数の周辺導入口は、前記処理容器の前記誘電体窓よりも下方にかつ前記載置台に載置された基板よりも上方に配置され、前記複数の周辺導入口が配置される領域のプラズマの電子温度は、前記中央導入口が配置される領域のプラズマの電子温度よりも低いことを特徴とする。
 本発明の他の態様は、天井部にプラズマを生成するためのマイクロ波を透過する誘電体窓を有すると共に、内部を気密に保つことが可能な処理容器に処理ガスを導入し、前記処理容器内に導入された処理ガスを載置台に載置された基板の上面より下方の排気口から排気し、前記処理容器の前記誘電体窓の上面に設けられるスロットアンテナの多数のスロットを介して前記処理容器の処理空間にプラズマを導入するプラズマ処理方法において、共通ガス源から供給される共通ガスをフロースプリッタによって二系統に分岐する工程と、二系統に分岐される前記共通ガスを、前記載置台に載置された基板の中央部に供給するための中央導入口を有する中央導入部、及び前記載置台に載置された基板の周辺部に供給するための、基板上方の周方向に配列される複数の周辺導入口を有する周辺導入部に導入する工程と、添加ガス源から供給される添加ガスを二系統に分岐される前記共通ガスの少なくとも一方に添加する工程と、を備え、前記中央導入口は、前記処理容器の前記誘電体窓の中央部に配置され、前記複数の周辺導入口は、前記処理容器の前記誘電体窓よりも下方にかつ前記載置台に載置された基板よりも上方に配置され、前記複数の周辺導入口が配置される領域のプラズマの電子温度は、前記中央導入口が配置される領域のプラズマの電子温度よりも低いことを特徴とする。
 本発明によれば、基板の中央部に処理ガスを供給する中央導入口、及び基板の周辺部に処理ガスを供給する複数の周辺導入口に二系統に分岐させた共通ガスを導入し、二系統に分岐させた共通ガスの少なくとも一方に添加ガスを添加するので、基板処理の面内均一性を制御することができる。しかも、中央導入口がプラズマの電子温度が高い領域に配置され、複数の周辺導入口がプラズマの電子温度が低い領域に配置されるので、処理ガスの解離も多様に制御することができる。
図1は、本発明の一実施形態におけるプラズマ処理装置の縦断面図である。 図2は、図1のX-X線断面図である。 図3は、誘電体窓からの距離Zとプラズマの電子温度との関係を示すグラフである。 図4は、実施例で使用したプラズマ処理装置の縦断面図である。 図5は、比較例1と実施例1とで、ウェハのX軸方向のエッチングレートを比較したグラフである。 図6は、比較例1、実施例1及び実施例2における均一性を評価したグラフである。 図7は、比較例1と実施例3とで、ウェハのX軸方向のエッチングレートを比較したグラフである。 図8は、シリコン基板上に形成したパターンの断面写真を示す図である。
 (プラズマ処理装置の構造)
 以下添付図面に基づいて本発明の一実施形態について図面を参照して説明する。本明細書及び図面において実質的に同一の構成要素については同一の符号を付す。
 図1に示すように、プラズマ処理装置1は、円筒形状の処理容器2を備える。処理容器2の天井部は誘電体からなる誘電体窓(天板)16で塞がれる。処理容器2は、例えばアルミニウムからなり、電気的に接地される。処理容器2の内壁面は、アルミナなどの絶縁性の保護膜2fで被覆されている。
 処理容器2の底部の中央には、基板としての半導体ウェハ(以下ウェハという)Wを載置するための載置台3が設けられる。載置台3の上面にウェハWが保持される。載置台3は、例えばアルミナや窒化アルミナ等のセラミック材からなる。載置台3の内部には、ヒータ5が埋め込まれ、ウェハWを所定温度に加熱できるようになっている。ヒータ5は、支柱内に配された配線を介してヒータ電源4に接続される。
 載置台3の上面には、載置台3に載置されるウェハWを静電吸着する静電チャックCKが設けられる。静電チャックCKには、整合器MGを介してバイアス用の高周波電力を印加するバイアス用高周波電源HFQが接続される。
 処理容器2の底部には、載置台3に載置されるウェハWの表面よりも下方の排気口11aから処理ガスを排気する排気管11が設けられる。排気管11には、圧力制御弁PCV、真空ポンプ10が接続される。圧力制御弁PCV及び真空ポンプ10によって、処理容器2内の圧力が所定の圧力に調節される。これら、排気管11、圧力制御弁PCV及び真空ポンプ(排気装置)10が排気手段を構成する。すなわち、排気装置10は、圧力制御弁PCVを介して、処理容器2の内部に連通している。
 処理容器2の天井部には気密性を確保するためのOリングなどのシール15を介して誘電体窓16が設けられる。誘電体窓16は、例えば、石英、アルミナ(Al)、あるいは窒化アルミニウム(AlN)などの誘電体からなり、マイクロ波に対して透過性を有する。
 誘電体窓16の上面には、円板形状のスロットアンテナ20が設けられる。スロットアンテナ20は、導電性を有する材質、例えばAg,Au等でメッキやコーティングされた銅からなる。スロットアンテナ20には、例えば複数のT字形状のスロット21が同心円状に配列されている。
 スロットアンテナ20の上面には、マイクロ波の波長を圧縮するための誘電体板25が配置される。誘電体板25は、例えば、石英(SiO)、アルミナ(Al)、あるいは窒化アルミニウム(AlN)などの誘電体からなる。誘電体板25は導電性のカバー26で覆われる。カバー26には円環状の熱媒流路27が設けられる。この熱媒流路27を流れる熱媒によってカバー26及び誘電体板25が所定の温度に調節される。2.45GHzの波長のマイクロ波を例にとると、真空中の波長は約12cmであり、アルミナ製の誘電体窓16中での波長は約3~4cmとなる。
 カバー26の中央には、マイクロ波を伝播する同軸導波管30が接続される。同軸導波管30は、内側導体31と外側導体32から構成される、内側導体31は、誘電体板25の中央を貫通してスロットアンテナ20の中央に接続される。
 同軸導波管30には、モード変換器37及び矩形導波管36を介してマイクロ波発生器35が接続される。マイクロ波は、2.45GHzの他、860MHz,915MHzや8.35GHzなどのマイクロ波を用いることができる。
 マイクロ波発生器35が発生したマイクロ波は、マイクロ波導入路としての、矩形導波管36、モード変換器37、同軸導波管30、及び誘電体板25に伝播する。誘電体板25に伝播したマイクロ波はスロットアンテナ20の多数のスロット21から誘電体窓16を介して処理容器2内に供給される。マイクロ波によって誘電体窓16の下方に電界が形成され、処理容器2内の処理ガスがプラズマ化する。
 スロットアンテナ20に接続される内側導体31の下端は円錐台形状に形成される。これにより、同軸導波管30から誘電体板25及びスロットアンテナ20にマイクロ波が効率よく損失なく伝播される。
 ラジアルラインスロットアンテナによって生成されたマイクロ波プラズマの特徴は、誘電体窓16直下(プラズマ励起領域と呼ばれる)で生成された比較的電子温度の高い数eVのプラズマが拡散し、ウェハW直上(拡散プラズマ領域)では約1~2eV程度の低い電子温度のプラズマとなることにある。すなわち、平行平板等のプラズマとは異なり、プラズマの電子温度の分布が誘電体窓16からの距離の関数として明確に生ずることに特徴がある。より詳細には、図3に示したとおり、誘電体窓16直下からの距離Zの関数として、誘電体窓16直下での数eV~約10eVの電子温度が、ウェハW上では約1~2eV程度に減衰する。ウェハWの処理はプラズマの電子温度の低い領域(拡散プラズマ領域)で行なわれるため、ウェハWへリセス等の大きなダメージを与えることがない。プラズマの電子温度の高い領域(プラズマ励起領域)へ処理ガスが供給されると、処理ガスは容易に励起され、解離される。一方、プラズマの電子温度の低い領域(プラズマ拡散領域)へ処理ガスが供給されると、プラズマ励起領域近傍へ供給された場合に比べ、解離の程度は抑えられる。
 処理容器2の天井部の誘電体窓16中央には、ウェハWの中心部に処理ガスを導入する中央導入部55が設けられる。同軸導波管30の内側導体31には、処理ガスの供給路52が形成される。中央導入部55は供給路52に接続される。
 中央導入部55は、誘電体窓16の中央に設けられた円筒形状の空間部59に嵌め込まれる円柱形状のブロック57と、同軸導波管30の内側導体31の下面とブロック57の上面との間に適当な間隔を持って空けられたガス溜め部60と、から構成される。ブロック57は、例えばアルミニウムなどの導電性材料からなり、電気的に接地されている。ブロック57には上下方向に貫通する複数の中央導入口58(図2参照)が形成される。中央導入口58の平面形状は、必要なコンダクタンス等を考慮して真円又は長孔に形成される。アルミニウム製のブロック57は、陽極酸化被膜アルミナ(Al)、イットリア(Y)等でコーティングされる。
 内側導体31を貫通する供給路52からガス溜め部60に供給された処理ガスは、ガス溜め部60内を拡散した後、ブロック57の複数の中央導入口58から下方にかつウェハWの中心部に向かって噴射される。
 処理容器2の内部には、ウェハWの上方の周辺を囲むように、ウェハWの周辺部に処理ガスを供給するリング形状の周辺導入部61が配置される。周辺導入部61は、天井部に配置される中央導入口58よりも下方であって、かつ載置台に載置されたウェハWよりも上方に配置される。周辺導入部61は中空のパイプを環状にしたものであり、その内周側には周方向に一定の間隔を空けて複数の周辺導入口62が空けられる。周辺導入口62は、周辺導入部61の中心に向かって処理ガスを噴射する。周辺導入部61は、例えば、石英からなる。処理容器2の側面には、ステンレス製の供給路53が貫通する。供給路53は周辺導入部61に接続される。供給路53から周辺導入部61の内部に供給された処理ガスは、周辺導入部61の内部の空間を拡散した後、複数の周辺導入口62から周辺導入部61の内側に向かって噴射される。複数の周辺導入口62から噴射された処理ガスはウェハWの周辺上部に供給される。なお、リング形状の周辺導入部61を設ける替わりに、処理容器2の内側面に複数の周辺導入口62を形成してもよい。
 処理容器2内に処理ガスを供給する処理ガス源は、共通ガス源41及び添加ガス源42から構成される。共通ガス源41及び添加ガス源42は、プラズマエッチング処理、プラズマCVD処理に応じた処理ガスを供給する。例えばPoly-Si等のシリコン系の膜をエッチングするときは、Arガス、HBrガス(又はClガス)、Oガスを供給し、SiO等の酸化膜をエッチングするときはArガス、CHF系ガス、CF系ガス、Oガスを供給し、SiN等の窒化膜をエッチングするときはArガス、CF系ガス、CHF系ガス、Oガスを供給する。
 なお、CHF系ガスとしてはCH(CHCHF、CH(CHCHF、CH(CHCHF、CHCH、CHF、CHF及びCHなどを挙げることができる。
 CF系ガスとしては、C(CF、C(C、C、C、及びCなどを挙げることができる。
 共通ガス源41と添加ガス源42で同じ種類のガスを供給してもよいし、共通ガス源41と添加ガス源42とで違う種類のガスを供給してもよい。後述するようにエッチングガスの解離を抑制するためには、共通ガス源41からプラズマ励起用ガスを供給し、添加ガス源42からエッチングガスを供給してもよい。例えば、シリコン系の膜をエッチングするときは、共通ガス源41からプラズマ励起用ガスとしてArガスのみを供給し、添加ガス源42からエッチングガスとしてHBrガス、Oガスのみを供給する等である。
 共通ガス源41はさらに、O、SF等のクリーニングガスその他の共通ガスを供給する。共通ガス源41が供給する共通ガスは、後述するフロースプリッタ44によって二系統に分けられる。共通ガス源41を設けることで、添加ガス源42に共通ガス源を設ける必要がなくなり、ガスラインを簡素化することができる。
 共通ガス源41には、各ガスの流量を制御する流量制御バルブ41a,41b,41cが設けられる。また、流量を制御するための制御装置49が、流量制御バルブ41a,41b,41c、フロースプリッタ44及び流量制御バルブ42a,42b,42cに接続される。複数の流量制御バルブ41a,41b,41cは複数本の共通ガスライン45に接続される。ガスを混合するために、複数本の共通ガスライン45は一本にまとめられ、フロースプリッタ44の上流側に接続される。複数の流量制御バルブ41a,41b,41cは、制御装置49によって制御される。制御装置49は各ガスの流量を調節し、フロースプリッタ44に供給される共通ガスのガス種毎の流量・分圧を決定する。
 共通ガス源から供給される共通ガスは混合された後、共通ガスラインの途中に設けられるフロースプリッタ44に導入される。フロースプリッタ44は、共通ガスを二系統に分ける。フロースプリッタ44の下流側には、二系統の分岐共通ガスライン46,47が設けられる。二系統の分岐共通ガスラインの一方46は、処理容器2の天井部の中央導入口58に接続され、他方47は処理容器2の内部の周辺導入部61に接続される。
 フロースプリッタ44は、二系統に分けられる共通ガスの分岐比率、すなわち分岐共通ガスラインの一方46の流量と他方47の流量の比を調節する。フロースプリッタ44は制御装置49によって制御され、制御装置49が共通ガスの分岐比率を決定する。
 ここで、均一なプラズマの生成、面内均一なウェハWの処理を目的とし、フロースプリッタ44によって共通ガスの分岐比率を調節し、中央導入口58及び周辺導入部61からのガス導入量を調節する技術をRDC(Radial Distribution Control)と呼ぶ。RDCは、中央導入口58からのガス導入量と周辺導入部61からのガス導入量との比により表わされる。中央導入部55及び周辺導入部61に導入するガス種が共通である場合が、一般的なRDCである。最適なRDC値は、エッチング対象の膜種や種々の条件により実験的に決定される。
 エッチング処理では、エッチングに従い副生成物(エッチングされたかすや堆積物)が生成する。そのため、処理容器2内でのガス流れを改善し、副生成物の処理容器外への排出を促進するため、中央導入部55からのガス導入と周辺導入部61からのガス導入とを交互に行うことが検討されている。これは、RDC値を時間的に切り替えることにより実現可能である。例えば、ウェハWの中心部分に多くのガスを導入するステップと、周辺部に多くのガスを導入するステップを所定周期で繰り返し、気流を調節することによって、処理容器2から副生成物を掃き出すことにより均一なエッチングレートを達成しようとするものである。
 添加ガス源42には、各ガスの流量を制御する流量制御バルブ42a,42b,42cが設けられる。複数の流量制御バルブ42a,42b,42cは複数本の添加ガスライン48に接続される。ガスを混合するために、複数本の添加ガスライン48は一本にまとめられる。そして、添加ガスライン48はフロースプリッタ44の下流側の、分岐共通ガスラインの他方47に接続される。制御装置49は添加ガス源42の各ガスの流量を制御し、分岐共通ガスラインの他方47に添加される添加ガスのガス種毎の分圧を制御する。
 なお、この実施形態では、添加ガスラインは周辺導入部61に接続される分岐共通ガスラインの他方47に接続されているが、これとは反対に、分岐共通ガスラインの一方46に接続されてもよい。
 本実施形態のプラズマ処理装置1によれば、フロースプリッタ44から二系統に分岐する分岐共通ガスラインのうちの他方47に添加ガスラインを接続し、当該他方に添加ガスを添加するので、二系統の分岐共通ガスライン46,47間でガス種毎の分圧やガス種自体を任意に変化させることができる。ウェハWの中心部分と周辺部分とで、導入される処理ガスのガス種毎の分圧やガス種自体を変化させることができるので、プラズマ処理の特性を多様に変化させることがきる。
 (プラズマ処理装置1を使用したエッチングの一例)
 以上のように構成されたプラズマ処理装置1を使用したプラズマ処理の一例として、HBrを含む処理ガスを使用して、ウェハWの上面のPoly-Si膜をエッチングする例を説明する。
 図1に示すように、まずウェハWが処理容器2内に搬入され、載置台3上に載置され静電チャックCK上に吸着される。静電チャックCKには、直流電流及び/又は、高周波電源HFQから整合器MGを介して高周波電圧が印加される。圧力制御弁PCVがコントローラCONTにより制御され、排気管11から排気が行われて処理容器2内が減圧される。コントローラCONTは、圧力制御弁PCVの他、流量の制御装置49、高周波電源HFQ、ヒータ電源4、及びマイクロ波発生器35などの要素を制御している。なお、コントローラCONTは、制御装置49へ流量の制御指示を出力している。
 次に、共通ガス源41からArガスからなる共通ガスがフロースプリッタ44に供給される。フロースプリッタ44に供給されるArガスの圧力は制御装置49によって決定される。これと同時に、添加ガス源42からHBrガス、Oガスを含む添加ガスを分岐共通ガスラインの他方47に供給する。分岐共通ガスラインの他方47に添加されるHBrガス及びOガスの分圧は制御装置49によって制御される。
 フロースプリッタ44はArガスからなる共通ガスを二系統に分ける。フロースプリッタ44の分岐比率は制御装置49によって決定される。
 フロースプリッタ44によって二系統に分けられた共通ガスのうちの一系統は、分岐共通ガスラインの一方46を介して処理容器2の天井部の中央導入口58に導入される。そして、中央導入口58から処理容器1内へ導入される。
 二系統に分けられた共通ガスのうちの他方の系統は、分岐共通ガスラインの他方47を介して、処理容器2の内部の周辺導入部61に導入される。分岐共通ガスラインの他方47には、HBrガス、Oガスを含む添加ガスが添加されている。このため、周辺導入部61には、共通ガスと添加ガスの混合ガスであるArガス、HBrガス、Oガスが供給される。混合ガスは周辺導入部61から処理容器2内へ供給される。
 マイクロ波発生器35を作動させると、まず、Arガスがマイクロ波により励起され、Arプラズマが生成される。次に、ArプラズマによりHBrガス、Oガスが励起され、生成したラジカル、イオンによって、Poly-Si膜がエッチングされる。所定時間エッチング処理が行われた後、マイクロ波発生器35の作動と処理容器2内への処理ガスの供給が停止される。
 その後、ウェハWが処理容器2から搬出されて一連のプラズマエッチング処理が終了する。ロット単位でウェハWのプラズマエッチングが終了したときには、共通ガス源41から処理容器2内にOガス等のクリーニングガスが供給され、処理容器2の内部がクリーニングされる。
 (エッチングガスの最適な解離状態を実現するための対策)
 微細パターンのエッチングは、被エッチング膜の側壁を保護(堆積)しつつ、エッチング種によりエッチングを行なう必要がある。特に選択比を要するエッチングにおいては、堆積によるエッチングマスクの保護と、エッチングのバランスを保ってエッチングすることが重要となる。エッチングガスの過剰解離を抑制し、エッチングに必要なイオン種、ラジカル種をエッチングガスの解離をコントロールして作り出す必要がある。本発明に係るプラズマ処理装置1においては、プラズマ処理空間が広く、プラズマの電子温度が誘電体窓16からの距離により減衰することを特徴とするため、エッチングガスを導入する位置によって、エッチングガスが解離する状態を変えることができる。誘電体窓16直下にエッチングガスを導入すれば、プラズマの電子温度が高いので、エッチングガスの解離は進みやすくなる。その一方、誘電体窓16から比較的遠い位置にエッチングガスを導入すると、プラズマの電子温度が低いので、エッチングガスの解離を低度に抑えられる。よって、所望のエッチングガスの解離状態を得ようとするとき、誘電体窓16直下に供給するガスの量と、誘電体窓16から遠い位置へ供給するガスの量を調節することにより容易に解離状態をコントロールすることができる。前述の通り、ラジアルラインスロットアンテナによりマイクロ波プラズマを発生させれば、ウェハWを処理する領域に低電子温度かつ高密度のプラズマ(1012cm-3程度)を均一に生成できる。すなわち、誘電体窓16の直下の発生領域でのプラズマは高密度で電子温度も比較的高いが、プラズマは下方のウェハWの処理を行う領域に拡散し、電子温度も低下する。当該プラズマは、発生領域のプラズマが高密度であるため、拡散領域においても十分に高密度が維持される。
 これらのことより、具体的には、過剰解離を抑制したエッチング種・ラジカルを生成するためには、マイクロ波プラズマの拡散領域にエッチングガスを多く供給すればよいことになる。本実施形態においては、プラズマの拡散領域には周辺導入部61が配置されるので、周辺導入部61にエッチングガスを供給すれば解離を抑制することができる。つまり、プラズマ処理中に共通ガス源41からプラズマ励起用ガスとしてのArガスを供給し、添加ガス源42からエッチングガスとしてのHBrガス及びOガスを供給すれば、エッチングガスの解離を抑制することができる。
 さらに、誘電体窓16に配置される中央導入口58がウェハWに向かって噴射する処理ガスの流れの周囲に複数の周辺導入口62を配置すると共に、複数の周辺導入口62が、中央導入口58が噴射する処理ガスの流れに向かって処理ガスを噴射する構成としたことで、ウェハWの表面に達したプラズマおよびエッチングガスをウェハWの中央部において制御すること、及びウェハWの周辺部において制御することを、独立して制御することが可能となるので、エッチングレートの面内均一性制御に優れた効果をもたらす。
 さらに、エッチングガスの選択、ウェハW上の対象デバイスや対象膜(例えばポリシリコン膜、酸化膜、窒化膜等)の組み合わせに応じて、誘電体窓16近傍の中央導入口58からのガス供給とウェハW近くの周辺導入部61からのガス供給量・比率を組み合わせて決定することで、最適な均一性制御が可能になる。マイクロ波プラズマは、生成場所の誘電体窓16近傍では電子温度が高いが、生成場所から離れると急速に拡散して電子温度が低くなる。このためウェハWの被処理表面では、ウェハWを傷めないエッチングが可能となる。
 リング状の周辺導入部61は、プラズマの下方方向へのプラズマの拡散の通路として、中央部が大きく開口しており、プラズマはウェハWの被処理表面に向かって下降してゆく。周辺導入部61には複数の周辺導入口62がプラズマの拡散の通路に対して直交する方向に設けられており、エッチングガスとして、HBr、O等が噴射される。プラズマの電子温度が低いため、複数の周辺導入口62から供給されたエッチングガスは、低い解離のままウェハW表面に達する。例えばポリシリコン膜に対して、イオンエネルギーとしては小さいが、エッチングの化学反応の促進には好適なイオンとして作用し、例えばポリシリコン膜のエッチング形状を側壁の直角を維持した状態でホールを形成する反応を引き起こす。
 さらに、ウェハWの中央部に対向した中央導入口58からもエッチングガスを追加して供給し、ウェハWの周辺部に対向した複数の周辺導入口62からエッチングガスを供給して両者の供給量と比率を選択することで、ウェハWの面内におけるエッチングレート(エッチング速度)の均一性を望むように制御することができる。
 エッチングガスを周辺導入部61から供給することで、以下の装置的なメリットもある。すなわち、HBr等のエッチングガスは腐食性ガスであり、アルミニウムを腐食させる。中央導入口58のブロック57はアルミニウム製なので、たとえ表面を陽極酸化膜で被覆したとしても腐食するおそれがある。周辺導入部61は石英等の非腐食性材料からなるので、周辺導入部61にエッチングガスを流しても腐食するおそれはない。
 また、シリコン酸化膜等をエッチングする場合、エッチングガスとしてCF系又はCHF系のガス(例えば、堆積性のCH)を使用する。誘電体窓16を貫通して設けられた中央導入口58からCF系のガスを導入すると、高い電子温度のプラズマによって生成したラジカルや電子が中央導入口58を逆流し、ガスが処理室内に導入される前にCF系のガスを解離させ、中央導入口58に反応生成物が堆積することにより、中央導入口58が詰まるおそれがある。プラズマの電子温度が低い位置の周辺導入部61からCF系のガスを処理室内に導入することで、高い電子温度のプラズマによって生成したラジカル等によるガスの解離を抑制し、中央導入口58に反応生成物が付着するのを防止することができる。
 なお、上記には本発明の好ましい一実施形態を示したが、本発明は上記実施形態に限られることはなく、本発明の要旨を変更しない範囲で様々に変更可能である。
 例えば、本発明のエッチング装置で処理される基板は、半導体ウェハW、有機EL基板、FDP(フラットパネルディスプレイ)用の基板のいずれでもよい。
 処理容器2の誘電体窓16からマイクロ波を導入し、処理容器内にマイクロ波励起プラズマを生成することができれば、プラズマソースはラジアルラインスロットアンテナに限られることはない。
(実施例)
 図4に示すように、添加ガス源42から、添加ガスとしてHBrガス、CHガス又はCHFガス、Arガス、及びOガスを供給できるようにした。なお、同図では説明の明確化のため、図1に示した静電チャックなどの詳細な構成の記載は省略してある。ガスボックスには各ガスの流量を制御する流量調節部としての流量制御バルブ42a~42dを設けられ、それぞれのガスの流量が、それぞれの流量制御バルブ42a~42dによって制御される。各流量制御バルブ42a~42dは、図1に示した制御装置49により制御される。
 なお、共通ガス源41にも、複数の異なる種類のガス種の流量を、それぞれ制御可能な流量調節部としての複数の流量制御バルブ41a、41b、41c、・・41xが設けられており、これらも図1に示した制御装置49により制御される。共通ガス源41から共通ガスとして、HBrガス、CHガス又はCHFガス、Arガス、Oガス、及びクリーニングガスその他の共通ガスを供給できるようにした。ガス種は、エッチング対象となる膜種に応じて選択される。例えば、Poly-SiをエッチングするときはArガス、HBrガス、Oガスが選択され、SiO膜をエッチングするときはArガス、CHF系ガス、Oガスが選択される。共通ガスをフロースプリッタ44によって二系統に分け、一系統の処理ガスを処理容器2の天井部の中央導入口58から処理容器2の内部に導入でき、残りの一系統の処理ガスを処理容器2の周辺導入部61から導入できるようにした。
 (Poly-Siのエッチングの実施例1)
 共通ガスとしてArガスを使用し、添加ガスとしてHBr/Oを使用し、ウェハW上のPoly-Siをエッチングした。共通ガスライン45にはArガスのみを流した。Arガスをフロースプリッタ44で二系統に分け、中央導入口58及び周辺導入部61から処理容器2内にArガスを導入した。Arガスの導入量比(以下、RDCという)は以下の表1のとおりである。
 ここで、RDCは、中央導入口58からのガス導入量と、周辺導入部61からのガス導入量との比で表される。この実施例1では、RDCを(1)7:93,(2)50:50,(3)80:20の三パターンに変化させた。それぞれのRDCのパターン毎、分岐共通ガスラインにHBr及びOを添加した。ここで、MWとはマイクロ波のパワー、RFとはウェハに印加するバイアスのパワー、圧力とは処理容器2内の圧力を示す。
Figure JPOXMLDOC01-appb-T000001
 
 (Poly-Siのエッチングの比較例1)
 添加ガス源42から処理ガスを添加しない比較例を行った。添加ガス源42からHBr及びOを添加することなく、共通ガス源41のみからAr/HBr/Oを供給した。この比較例1において、RDCを(1)7:93,(2)50:50の二パターンに変化させた。表2は比較例1の処理条件を示す。
Figure JPOXMLDOC01-appb-T000002
 
 図5は、実施例1及び比較例1で、ウェハWのX軸方向のエッチングレートを比較したグラフである。縦軸はエッチングレート(Poly E/R(nm/min))を示し、横軸はウェハWの中心部からの距離X(mm)を示している。グラフ中の線が平らな直線に近ければ近いほど、エッチングレートの面内均一性が高いことになる。
 比較例1では、RDC50のとき(つまり中央導入口(中心部)から導入されるガス導入量を50%、周辺導入部(エッジ)から導入されるガス導入量を50%の場合)、ウェハWの周辺部のエッチングレートが中心部のエッチングレートよりも低く、均一性を確保しにくかった。また、RDCを7:93に設定したとき(ウェハWの中心部に導入されるガス導入量を7%にしたとき)、ウェハWの中心部のエッチングレートが低下した。
 これに対して、実施例1では、RDCを変化させることで、エッチングレートの均一性の分布が、中央が凹んだものから中央が膨らんだものまで多様に変化させることができた。ウェハWの周辺部にHBr及びOを供給することで、ウェハWの周辺部が中心部よりもエッチングされる傾向を強くすることができるからだと推測される。例えば、RDCを7:93に設定すると、ウェハWの中心部のエッチングレートを低くすることができる。RDCを50:50に設定すると、エッチングレートの分布をフラットにすることができる。特にRDC7で比較例と比べると、中心部のエッチングレートをより大きく変化させることができる。
 図6は、比較例1、実施例1及び実施例2における均一性を評価したグラフである。横軸がRDCの比の最初の値(ウェハWの中心部に導入されるガス導入量の比率)であり、縦軸が不均一性(non uniformity)である。縦軸のプラスの値が大きければ大きいほど、ウェハWの中心部のエッチングレートが高くなる傾向にあることを意味し、縦軸のマイナスの値が小さければ小さいほど(絶対値が大きければ大きいほど)、ウェハWの周辺部のエッチングレートが高くなる傾向にあることを意味する。
 比較例1では、RDCが12~13のときに不均一性(縦軸)が0になる(言い換えれば最も均一になる)。しかし、RDCが12~13を超えると、不均一性が正の値になる(つまりウェハWの周辺部にくらべ、中心部のエッチングレートが大きくなる)。これに対して、実施例1では、臭化水素(HBr)と酸素3sccmをエッジから導入し、RDCが35~36のときに、縦軸の不均一性が0になる(言い換えれば最も均一になる)。不均一性が0になるときのRDCの値が大きくなり、50に近づくと、不均一性が大きくなる。さらに、導入する酸素量を増加させ、6sccmとする(実施例2とする)と、均一性が良くなるRDCの値が約55となる。以上から、アルゴンと酸素(3sccm)と臭化水素(HBr580sccm)をすべて混合し、RDC値を変化させる場合に比べ、臭化水素(HBr)と酸素ガスをエッジから添加ガスとして別に添加して導入することによって、均一性を得ることができるRDC値を大きく移動させることが可能となる。特に酸素量を増加させると、均一性が最も良くなるRDC値がグラフの右方向に移動するので、酸素の流量比が処理に大きな影響を与えることがわかる。また、RDCの変化に対して不均一性の値が正と負とにバランスよく分布するので、ウェハWの周辺部がエッチングされる傾向を比較例1よりも強めることができることがわかる。
 図6中の実施例2は、Oの添加量を実施例1の二倍にしたときのデータを示す。Oの添加量を二倍にすると、不均一性が0になるときのRDCをさらに上げることができる。ただし、RDCの変化に対して不均一性の変化の割合が急峻になることに留意する必要がある。すなわち、実施例1において酸素を3sccm添加した場合と、実施例2のように6sccm添加した場合とを比較すると、RDCの変化量に対する不均一性(%)の変化量(つまり傾き)が変化する。酸素を6sccm加えたときのほうが、より敏感に不均一性に影響するということがわかる。言い換えれば、6sccmの酸素を加えるとき、均一性を担保できるRDC値の幅は非常に狭い範囲にある。一方、酸素を3sccm加えた場合には、均一性を担保できるRDC値の幅は広くよりロバストであるといえる。処理容器内へ導入される総エッチングガスの流量が等しい場合であっても、このようにRDC値に変化が生じるのは、処理装置内へ供給したガスの解離状態の違いによるものと考えることができる。
 エッチング処理を多数のウェハに対して連続的に行うと、処理容器2内にエッチング堆積物が堆積すること等により処理容器内の状態が経時的に変化し、ウェハ間でエッチング処理にばらつきが生じる。本発明は、経時変化によるウェハの処理の不均一を抑制するのにも有効に用いられる。具体的にはウェハのエッチングの均一性を所定枚数おきに検査して、エッチングガスの組成を変化させたり、RDC値を最適値にフィードバックして調整しやすくなることができる。エッチング処理後のウェハを光学的な手法を用い、例えば25枚おきにエッチング形状(エッチング深さ等)を検査し、面内のエッチング均一性を算出し、その値が基準(範囲内)であるかどうか判定する。その値が基準値(範囲内)でないとき、RDCの値を微調整する。具体的には、不均一性(%)が正の場合は、RDC値を下げる、負の場合は、RDC値を上げるというふうに調整することができる。図6において、比較例1に示す場合よりも実施例に係る構成のほうが、RDC値を変化させることができる幅が大きく、いわゆる“調整しろ”が大きく、制御性が高いということができる。
 さらに、図6に示したようなデータをそれぞれの酸素量について、記憶装置を含むコントローラCONT内に蓄積しておき、各流量制御バルブを流れる流量を調整することで、上述のようにRDC値を制御するよう、自動的にフィードバック制御することも可能である。
 図6に示すように、ウェハWの中央部に対向した中央導入口58から供給するガスよりも、よりウェハWに近い位置でかつウェハWの周辺部に対向してガスを供給する周辺導入口62からのガス供給量のほうを相対的に増加させることで、ウェハWの表面全体のエッチングレートの均一性を、両者のガスの供給量の比率を同じ割合で変化させたときよりも、より大きなエッチングレートの変化が得られる。
 (Poly-Siのエッチングの実施例3)
 上記実施例1では、図4に示すように、周辺導入部61に接続される分岐共通ガスライン47にHBr及びOを添加した。これに対し、実施例3では、中央導入口58に接続される分岐共通ガスライン46に添加ガスを添加した。すなわち、図4における添加ガスライン48に換えて、これを添加ガスライン48’(点線で示す)とし、添加ガスライン48’を分岐共通ガスライン46に接続した。
 共通ガスライン45内を流れる共通ガスとして、Ar/HBr/Oを使用し、添加ガスライン48’内を流れる添加ガスとしてOを使用した。表3に処理条件を示す。
Figure JPOXMLDOC01-appb-T000003
 
 図7は、Oを添加した実施例3におけるウェハWのX軸方向のエッチングレートを、RDCを7:93に設定した比較例1のエッチングレートと共に示したグラフであり、縦軸はエッチングレート(Poly E/R(nm/min))を示し、横軸はウェハWの中心部からの距離X(mm)を示している。実施例3のように、Oガスを中央導入口58に添加すると、周辺導入部61に添加する場合に比べて、ウェハWの中心部のエッチングレートが局所的に減少することがわかる。エッチングレートの分布を広い範囲で均一に制御したい場合には、実施例1のように周辺導入部61にエッチングガスを添加することが有効と考えられる。実施例3と実施例1とを比べるとエッチングレートは同様の挙動を示した。
 なお、装置構成としては、双方の添加ガスライン48,48’を用いる構造を採用することもできる。
 (STI(Shallow Trench Isolation)形成用のエッチングの実施例4)
 実施例4では、実施例1と同じ装置構成であって、ガス流量比などの条件を以下の表4に示す条件とし、エッチング対象物をシリコン基板とし、STI形成用のシリコンエッチングを行った。ウェハWの中心部及び周辺部それぞれにパターンが密につまっている部分(Dense)とパターンが疎の部分(Isolated)のあるサンプルに対しエッチングを行なった。
Figure JPOXMLDOC01-appb-T000004
 
 図8はシリコン基板上に形成したパターンの断面写真を示す図であり、上記密につまっている部分をDenseとして示し、疎の部分をIsoとして示している。パターンの幅、テーパ角、トレンチの深さを測定したところ、ウェハWの中心部と周辺部とでその差は要求される値に収まるものであり、またパターンの密と疎とでもその差は要求される値に収まるものであった。
 なお、RDC値は、被エッチング膜とその下地膜とのエッチング選択比を考慮し適宜調節が可能である。例えば、下地膜が酸化膜であり、酸素が含まれるプラズマを用いてエッチングする際には、下地膜とのエッチング選択性が高く形状制御性がよいエッチングが可能であるので、均一性の高いエッチングに必要なRDC値の幅をより広くとることが可能である。
 以上説明したように、上述のプラズマ処理装置は、処理容器2と、処理容器2の上部に設けられ、処理空間を画成する誘電体窓16と、処理容器2の内部に設けられた載置台3と、誘電体窓16の上面に設けられたスロットアンテナ20と、マイクロ波発生器35とスロットアンテナ20と接続するマイクロ波導入路36、37、30と、処理容器2の内部に連通した排気装置10と、希ガスなどのプラズマ励起用ガスを含む共通ガス源41に接続される共通ガスライン45と、共通ガスライン45の途中に設けられ、共通ガスライン45を、第1及び第2分岐共通ガスライン46,47に分岐し、第1及び第2分岐共通ガスライン46,47を流れるガスの流量の比率を調節可能なフロースプリッタ44と、第1分岐共通ガスライン46に接続され、載置台3に載置される基板Wの中央部の上方に位置する中央導入口58を有する中央導入部55と、第2分岐共通ガスライン47に接続され基板Wの上方の空間の周方向に沿って配列され、誘電体窓16よりも下方に位置する複数の周辺導入口62を有する周辺導入部61と、エッチングガスなどを含む添加ガス源42と第1及び第2分岐共通ガスライン46,47の少なくとも一方とを接続する添加ガスラインとを備えている。この装置によれば、処理ガスの解離状態を多様に制御することができると共に、基板処理の面内均一性も制御することができる。
 W…ウェハ(基板)、1…処理容器、3…載置台、11a…排気口、16…誘電体窓、20…スロットアンテナ、21…スロット、35…マイクロ波発生器、41…共通ガス源、42…添加ガス源、42a,42b,42c…流量制御バルブ(流量調節部)、44…フロースプリッタ、45…共通ガスライン、46…分岐共通ガスラインの一方、47…分岐第共通ガスラインの他方、48…添加ガスライン、49…制御装置、55…中央導入部、58…中央導入口、61…周辺導入部、62…周辺導入口。
 

Claims (6)

  1.  天井部にマイクロ波を透過する誘電体窓を有すると共に、内部を気密に保つことが可能な処理容器と、
     前記処理容器の内部に設けられ、基板を載置する載置台と、
     前記処理容器の前記誘電体窓の上面に設けられ、前記処理容器の処理空間に多数のスロットを介してマイクロ波を導入するスロットアンテナと、
     所定の周波数のマイクロ波を発生するマイクロ波発生器と、
     前記マイクロ波発生器が発生するマイクロ波を前記スロットアンテナに導くマイクロ波導入路と、
     処理ガス源から供給される処理ガスを前記処理容器に導入する処理ガス導入手段と、
     前記処理容器内に導入された処理ガスを、前記載置台に載置された基板の上面より下方の排気口から排気する排気手段と、を備えるプラズマ処理装置において、
     前記処理ガス源は、共通ガスを供給するための共通ガス源と、添加ガスを供給するための添加ガス源と、
    を有し、
     前記処理ガス導入手段は、
     前記共通ガス源に接続される共通ガスラインと、
     前記共通ガスラインの途中に設けられ、前記共通ガスラインを二系統に分岐させると共に、二系統に分岐される前記共通ガスの流量の比率を調節可能なフロースプリッタと、
     二系統に分岐される分岐共通ガスラインの一方に接続され、前記共通ガスを前記載置台に載置される基板の中央部に供給するための中央導入口を有する中央導入部と、
     二系統に分岐される前記分岐共通ガスラインの他方に接続され、前記共通ガスを前記載置台に載置される基板の周辺部に供給するための、基板上方の周方向に配列される複数の周辺導入口を有する周辺導入部と、
     前記添加ガス源に接続されると共に、二系統に分岐される前記分岐共通ガスラインの少なくとも一方に前記添加ガスを添加する添加ガスラインと、
     前記添加ガスラインに設けられ、前記添加ガスの流量を調節する流量調節部と、を有し、
     前記中央導入口は、前記処理容器の前記誘電体窓の中央部に配置され、
     前記複数の周辺導入口は、前記処理容器の前記誘電体窓よりも下方にかつ前記載置台に載置された基板よりも上方に配置され、
     前記複数の周辺導入口が配置される領域のプラズマの電子温度は、前記中央導入口が配置される領域のプラズマの電子温度よりも低いことを特徴とするプラズマ処理装置。
  2.  前記プラズマ処理装置はさらに、
     前記フロースプリッタが二系統に分岐させる前記共通ガスの流量の比率、及び前記流量調節部が調節する前記添加ガスの流量を制御する制御装置を備えることを特徴とする請求項1に記載のプラズマ処理装置。
  3.  前記複数の周辺導入口は、前記誘電体窓に配置される前記中央導入口が基板に向かって噴射する処理ガスの流れの周囲に配置されると共に、前記中央導入口が噴射する処理ガスの流れに向かって処理ガスを噴射することを特徴とする請求項1に記載のプラズマ処理装置。
  4.  前記共通ガス源は、前記共通ガスとして、プラズマ励起用ガスを含み、
     前記添加ガス源は、前記添加ガスとして、基板をエッチングするエッチング用ガスを含み、
     前記添加ガスラインは、前記二系統に分岐される分岐共通ガスラインのうち、前記複数の周辺導入口に前記共通ガスを供給する方の分岐共通ガスラインに、前記添加ガスを添加することを特徴とする請求項1に記載のプラズマ処理装置。
  5.  天井部にプラズマを生成するためのマイクロ波を透過する誘電体窓を有すると共に、内部を気密に保つことが可能な処理容器に処理ガスを導入し、前記処理容器内に導入された処理ガスを載置台に載置された基板の上面より下方の排気口から排気し、前記処理容器の前記誘電体窓の上面に設けられるスロットアンテナの多数のスロットを介して前記処理容器の処理空間にプラズマを導入するプラズマ処理方法において、
     共通ガス源から供給される共通ガスをフロースプリッタによって二系統に分岐する工程と、
     二系統に分岐される前記共通ガスを、前記載置台に載置された基板の中央部に供給するための中央導入口を有する中央導入部、及び前記載置台に載置された基板の周辺部に供給するための、基板上方の周方向に配列される複数の周辺導入口を有する周辺導入部に導入する工程と、
     添加ガス源から供給される添加ガスを二系統に分岐される前記共通ガスの少なくとも一方に添加する工程と、
    を備え、
     前記中央導入口は、前記処理容器の前記誘電体窓の中央部に配置され、
     前記複数の周辺導入口は、前記処理容器の前記誘電体窓よりも下方にかつ前記載置台に載置された基板よりも上方に配置され、
     前記複数の周辺導入口が配置される領域のプラズマの電子温度は、前記中央導入口が配置される領域のプラズマの電子温度よりも低いことを特徴とするプラズマ処理方法。
  6.  処理容器と、
     前記処理容器の上部に設けられ、処理空間を画成する誘電体窓と、
     前記処理容器の内部に設けられた載置台と、
     前記誘電体窓の上面に設けられたスロットアンテナと、
     マイクロ波発生器と前記スロットアンテナと接続するマイクロ波導入路と、
     前記処理容器の内部に連通した排気装置と、
     共通ガス源に接続される共通ガスラインと、
     前記共通ガスラインの途中に設けられ、前記共通ガスラインを、第1及び第2分岐共通ガスラインに分岐し、前記第1及び第2分岐共通ガスラインを流れるガスの流量の比率を調節可能なフロースプリッタと、
     前記第1分岐共通ガスラインに接続され、前記載置台に載置される基板の中央部の上方に位置する中央導入口を有する中央導入部と、
     前記第2分岐共通ガスラインに接続され前記基板上方の空間の周方向に沿って配列され、前記誘電体窓よりも下方に位置する複数の周辺導入口を有する周辺導入部と、
     添加ガス源と前記第1及び第2分岐共通ガスラインの少なくとも一方とを接続する添加ガスラインと、
    を備えることを特徴とするプラズマ処理装置。
PCT/JP2011/064311 2010-06-28 2011-06-22 プラズマ処理装置及び方法 WO2012002232A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127034251A KR101772723B1 (ko) 2010-06-28 2011-06-22 플라즈마 처리 방법
JP2012522579A JP5514310B2 (ja) 2010-06-28 2011-06-22 プラズマ処理方法
CN201180032082.2A CN103003924B (zh) 2010-06-28 2011-06-22 等离子体处理装置及方法
US13/728,551 US8889023B2 (en) 2010-06-28 2012-12-27 Plasma processing apparatus and plasma processing method
US14/532,569 US20150053346A1 (en) 2010-06-28 2014-11-04 Plasma processing apparatus and plasma processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010145866 2010-06-28
JP2010-145866 2010-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/728,551 Continuation-In-Part US8889023B2 (en) 2010-06-28 2012-12-27 Plasma processing apparatus and plasma processing method

Publications (1)

Publication Number Publication Date
WO2012002232A1 true WO2012002232A1 (ja) 2012-01-05

Family

ID=45401952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064311 WO2012002232A1 (ja) 2010-06-28 2011-06-22 プラズマ処理装置及び方法

Country Status (6)

Country Link
US (2) US8889023B2 (ja)
JP (1) JP5514310B2 (ja)
KR (1) KR101772723B1 (ja)
CN (1) CN103003924B (ja)
TW (1) TWI452627B (ja)
WO (1) WO2012002232A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049376A (ja) * 2010-08-27 2012-03-08 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
US20150294839A1 (en) * 2014-04-09 2015-10-15 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US20160027618A1 (en) * 2014-07-24 2016-01-28 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
JP2016154234A (ja) * 2015-02-20 2016-08-25 東京エレクトロン株式会社 サブ10nmパターニングを実現するための材料プロセシング
US10008368B2 (en) * 2013-03-12 2018-06-26 Applied Materials, Inc. Multi-zone gas injection assembly with azimuthal and radial distribution control

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9388494B2 (en) 2012-06-25 2016-07-12 Novellus Systems, Inc. Suppression of parasitic deposition in a substrate processing system by suppressing precursor flow and plasma outside of substrate region
WO2014110446A2 (en) * 2013-01-14 2014-07-17 California Institute Of Technology Method and system for graphene formation
US20150118416A1 (en) * 2013-10-31 2015-04-30 Semes Co., Ltd. Substrate treating apparatus and method
US9617638B2 (en) * 2014-07-30 2017-04-11 Lam Research Corporation Methods and apparatuses for showerhead backside parasitic plasma suppression in a secondary purge enabled ALD system
JP2017537435A (ja) * 2014-10-15 2017-12-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 耐腐食性軽減システム
US9928993B2 (en) * 2015-01-07 2018-03-27 Applied Materials, Inc. Workpiece processing chamber having a rotary microwave plasma antenna with slotted spiral waveguide
CN106876299B (zh) * 2015-12-11 2019-08-23 北京北方华创微电子装备有限公司 半导体加工设备
US20170211185A1 (en) * 2016-01-22 2017-07-27 Applied Materials, Inc. Ceramic showerhead with embedded conductive layers
US9738977B1 (en) 2016-06-17 2017-08-22 Lam Research Corporation Showerhead curtain gas method and system for film profile modulation
US11195704B2 (en) * 2017-03-31 2021-12-07 Beijing E-town Semiconductor Technology Co., Ltd. Pedestal assembly for plasma processing apparatus
US10017856B1 (en) * 2017-04-17 2018-07-10 Applied Materials, Inc. Flowable gapfill using solvents
US10923324B2 (en) 2017-07-10 2021-02-16 Verity Instruments, Inc. Microwave plasma source
US10679832B2 (en) * 2017-07-10 2020-06-09 Verity Instruments, Inc. Microwave plasma source
US11769652B2 (en) * 2018-07-31 2023-09-26 Taiwan Semiconductor Manufacturing Co., Ltd. Devices and methods for controlling wafer uniformity in plasma-based process
DE102018120580A1 (de) * 2018-08-23 2020-02-27 Infineon Technologies Ag Vorrichtung und verfahren zum abscheiden einer schicht bei atmosphärendruck
KR102601581B1 (ko) 2018-10-31 2023-11-14 삼성전자주식회사 플라즈마 챔버의 가스 공급 장치 및 이를 적용한 플라즈마 처리 장치
CN111370281B (zh) * 2018-12-26 2023-04-28 中微半导体设备(上海)股份有限公司 等离子体刻蚀装置
GB201919215D0 (en) 2019-12-23 2020-02-05 Spts Technologies Ltd Method and apparatus for plasma etching
GB201919220D0 (en) * 2019-12-23 2020-02-05 Spts Technologies Ltd Method of plasma etching
JP2022068031A (ja) * 2020-10-21 2022-05-09 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184329A (ja) * 2006-01-04 2007-07-19 Tokyo Electron Ltd ガス供給装置,基板処理装置,ガス供給方法
JP2007250838A (ja) * 2006-03-16 2007-09-27 Tokyo Electron Ltd プラズマ処理装置及びそれに用いられる電極
JP2010118549A (ja) * 2008-11-13 2010-05-27 Tokyo Electron Ltd プラズマエッチング方法及びプラズマエッチング装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660647B1 (en) * 1998-03-12 2003-12-09 Hitachi, Ltd. Method for processing surface of sample
US6333272B1 (en) * 2000-10-06 2001-12-25 Lam Research Corporation Gas distribution apparatus for semiconductor processing
JP4402860B2 (ja) * 2001-03-28 2010-01-20 忠弘 大見 プラズマ処理装置
JP4209688B2 (ja) * 2001-05-24 2009-01-14 セレリティ・インコーポレーテッド 決定された比率のプロセス流体を供給する方法および装置
US6591850B2 (en) * 2001-06-29 2003-07-15 Applied Materials, Inc. Method and apparatus for fluid flow control
JP3856730B2 (ja) * 2002-06-03 2006-12-13 東京エレクトロン株式会社 流量制御装置を備えたガス供給設備からのチャンバーへのガス分流供給方法。
JP4753276B2 (ja) * 2002-11-26 2011-08-24 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
JP4482308B2 (ja) 2002-11-26 2010-06-16 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US20040112540A1 (en) * 2002-12-13 2004-06-17 Lam Research Corporation Uniform etch system
US20040168719A1 (en) * 2003-02-28 2004-09-02 Masahiro Nambu System for dividing gas flow
JP4369264B2 (ja) * 2003-03-25 2009-11-18 東京エレクトロン株式会社 プラズマ成膜方法
US6829056B1 (en) * 2003-08-21 2004-12-07 Michael Barnes Monitoring dimensions of features at different locations in the processing of substrates
US7072743B2 (en) * 2004-03-09 2006-07-04 Mks Instruments, Inc. Semiconductor manufacturing gas flow divider system and method
US20070066038A1 (en) * 2004-04-30 2007-03-22 Lam Research Corporation Fast gas switching plasma processing apparatus
US7988816B2 (en) * 2004-06-21 2011-08-02 Tokyo Electron Limited Plasma processing apparatus and method
WO2006025593A2 (en) * 2004-08-31 2006-03-09 Honda Motor Co., Ltd. Growth of nitride semiconductor crystals
JP4701691B2 (ja) * 2004-11-29 2011-06-15 東京エレクトロン株式会社 エッチング方法
US7993489B2 (en) * 2005-03-31 2011-08-09 Tokyo Electron Limited Capacitive coupling plasma processing apparatus and method for using the same
US7673645B2 (en) * 2005-04-21 2010-03-09 Mks Instruments, Inc. Gas delivery method and system including a flow ratio controller using a multiple antisymmetric optimal control arrangement
US7621290B2 (en) * 2005-04-21 2009-11-24 Mks Instruments, Inc. Gas delivery method and system including a flow ratio controller using antisymmetric optimal control
US20070151668A1 (en) * 2006-01-04 2007-07-05 Tokyo Electron Limited Gas supply system, substrate processing apparatus, and gas supply method
US8008596B2 (en) 2006-03-16 2011-08-30 Tokyo Electron Limited Plasma processing apparatus and electrode used therein
US20070241454A1 (en) * 2006-04-13 2007-10-18 Jun-Ming Chen Capture ring
JP5211450B2 (ja) 2006-08-15 2013-06-12 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
US20080078746A1 (en) 2006-08-15 2008-04-03 Noriiki Masuda Substrate processing system, gas supply unit, method of substrate processing, computer program, and storage medium
US9405298B2 (en) * 2006-11-20 2016-08-02 Applied Materials, Inc. System and method to divide fluid flow in a predetermined ratio
JP5168907B2 (ja) * 2007-01-15 2013-03-27 東京エレクトロン株式会社 プラズマ処理装置、プラズマ処理方法及び記憶媒体
TWI386997B (zh) * 2007-03-29 2013-02-21 Tokyo Electron Ltd 電漿處理裝置
KR100872312B1 (ko) * 2007-05-04 2008-12-05 주식회사 디엠에스 에칭가스 제어시스템
JP5459895B2 (ja) * 2007-10-15 2014-04-02 Ckd株式会社 ガス分流供給ユニット
JP5192214B2 (ja) 2007-11-02 2013-05-08 東京エレクトロン株式会社 ガス供給装置、基板処理装置および基板処理方法
JP5297885B2 (ja) * 2008-06-18 2013-09-25 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
US20100084023A1 (en) * 2008-10-07 2010-04-08 Chris Melcer Flow control module for a fluid delivery system
JP5360069B2 (ja) * 2008-11-18 2013-12-04 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法
JP2011192664A (ja) * 2010-03-11 2011-09-29 Tokyo Electron Ltd プラズマエッチング方法及びプラズマエッチング装置
JP2012174854A (ja) 2011-02-21 2012-09-10 Tokyo Electron Ltd 半導体素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184329A (ja) * 2006-01-04 2007-07-19 Tokyo Electron Ltd ガス供給装置,基板処理装置,ガス供給方法
JP2007250838A (ja) * 2006-03-16 2007-09-27 Tokyo Electron Ltd プラズマ処理装置及びそれに用いられる電極
JP2010118549A (ja) * 2008-11-13 2010-05-27 Tokyo Electron Ltd プラズマエッチング方法及びプラズマエッチング装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049376A (ja) * 2010-08-27 2012-03-08 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
US10008368B2 (en) * 2013-03-12 2018-06-26 Applied Materials, Inc. Multi-zone gas injection assembly with azimuthal and radial distribution control
US11139150B2 (en) * 2013-03-12 2021-10-05 Applied Materials, Inc. Nozzle for multi-zone gas injection assembly
US20150294839A1 (en) * 2014-04-09 2015-10-15 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US20160027618A1 (en) * 2014-07-24 2016-01-28 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
JP2016154234A (ja) * 2015-02-20 2016-08-25 東京エレクトロン株式会社 サブ10nmパターニングを実現するための材料プロセシング

Also Published As

Publication number Publication date
CN103003924B (zh) 2015-07-08
JPWO2012002232A1 (ja) 2013-08-22
JP5514310B2 (ja) 2014-06-04
CN103003924A (zh) 2013-03-27
US8889023B2 (en) 2014-11-18
TW201216359A (en) 2012-04-16
KR20130114607A (ko) 2013-10-17
US20130115781A1 (en) 2013-05-09
US20150053346A1 (en) 2015-02-26
TWI452627B (zh) 2014-09-11
KR101772723B1 (ko) 2017-08-29

Similar Documents

Publication Publication Date Title
JP5514310B2 (ja) プラズマ処理方法
US10424464B2 (en) Oxide etch selectivity systems and methods
CN102473634B (zh) 等离子体处理装置和等离子体处理方法
KR102402866B1 (ko) 고 종횡비의 구조체들의 콘택 세정
US9595425B2 (en) Antenna, dielectric window, plasma processing apparatus and plasma processing method
CN105489485B (zh) 处理被处理体的方法
US9793134B2 (en) Etching method
US9218983B2 (en) Etching method and device
KR101835683B1 (ko) 다층막을 에칭하는 방법
US11289308B2 (en) Apparatus and method for processing substrate and method of manufacturing semiconductor device using the method
US9263283B2 (en) Etching method and apparatus
US11361945B2 (en) Plasma processing apparatus, processing system, and method of etching porous film
US8558134B2 (en) Plasma processing apparatus and plasma processing method
KR20180018824A (ko) 조정 가능한 원격 해리
US20210327719A1 (en) Method for processing workpiece
WO2013191108A1 (ja) プラズマ処理装置、及びプラズマ処理方法
KR102337936B1 (ko) 플라즈마 처리 장치
JP2019009403A (ja) プラズマ処理方法およびプラズマ処理装置
JP2010267670A (ja) プラズマ処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522579

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127034251

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800697

Country of ref document: EP

Kind code of ref document: A1