KR101169534B1 - 발진 장치 및 방법 - Google Patents

발진 장치 및 방법 Download PDF

Info

Publication number
KR101169534B1
KR101169534B1 KR1020107016513A KR20107016513A KR101169534B1 KR 101169534 B1 KR101169534 B1 KR 101169534B1 KR 1020107016513 A KR1020107016513 A KR 1020107016513A KR 20107016513 A KR20107016513 A KR 20107016513A KR 101169534 B1 KR101169534 B1 KR 101169534B1
Authority
KR
South Korea
Prior art keywords
mirror
axis
frequency
spring
reflector
Prior art date
Application number
KR1020107016513A
Other languages
English (en)
Other versions
KR20100106517A (ko
Inventor
강 첸
롤랜드 리프
마리아 엘리나 사이몬
Original Assignee
알카텔-루센트 유에스에이 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알카텔-루센트 유에스에이 인코포레이티드 filed Critical 알카텔-루센트 유에스에이 인코포레이티드
Publication of KR20100106517A publication Critical patent/KR20100106517A/ko
Application granted granted Critical
Publication of KR101169534B1 publication Critical patent/KR101169534B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Projection Apparatus (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

장치는 기판과 미러를 포함한다. 미러는 스프링을 통해 기판에 부착된다. 전기 기계적인 드라이버는 미러가 상이한 제 1 및 제 2 주파수에서 제 1 및 제 2 동일 직선 상에 있지 않는 축에 관해 회전적으로 발진하도록 동작 가능하다.

Description

발진 장치 및 방법{OSCILLATING MIRROR FOR IMAGE PROJECTION}
관련 출원에 대한 교차 참조
본 출원은 본 명세서의 전 범위에서 참조로서 인용되는 2008년 1월 22일에 출원된 "DIFFUSER CONFIGURATION FOR AN IMAGE PROJECTOR"란 명칭의 미국 특허 출원 제 12/017,440 호의 계속 출원이다.
본 출원은 전반적으로, 발진 미러 및 이러한 미러를 이용하는 장치와 방법에 관한 것이다.
이 단락은 본 방법의 보다 나은 이해를 촉진하는데 도움을 줄 수 있는 측면을 도입한다. 따라서, 이 단락의 설명은 이러한 관점에서 읽혀지며, 종래 기술인 것 또는 종래 기술이 아닌 것에 관한 제한으로서 이해되어서는 안된다.
작은 이미지 프로젝션 시스템은 셀 전화 및 PDA와 같은 작은 휴대용 전자 디바이스에서 프로젝션 기능을 포함하기 위한 잠재력을 제공할 수 있다. 몇몇 이러한 시스템은 이미지를 생성하기 위해 레이저 광을 이용할 수 있다. 그러나, 레이저로부터의 광 빔의 코히어런스는 이미지 품질을 저하시키는 이미지 아티팩트(artifact)를 초래할 수 있다.
일 측면은 기판과 미러를 포함하는 장치를 제공한다. 미러는 스프링을 통해 기판에 부착된다. 전기 기계적인 드라이버는 미러가 상이한 제 1 및 제 2 주파수에서 제 1 및 제 2 동일 직선 상에 있지 않는(non-colinear) 축에 관해 회전적으로 발진하도록 동작 가능하다.
다른 측면은 방법을 제공한다. 방법은 입사 광 빔으로 미러를 조명하는 단계를 포함한다. 미러가 제 1 주파수에서 제 1 축에 관해 회전적으로 발진하고 상이한 제 2 주파수에서 제 2 동일 직선 상에 있지 않는 축에 관해 회전적으로 발진하도록 조명하는 단계를 수행하는 동안 미러가 기계적으로 구동된다.
본 개시 내용은 첨부 도면과 함께 읽혀질 때 후술하는 상세한 설명으로부터 가장 잘 이해된다. 도면에서 각종 특징은 반드시 축적대로 도시되어 있지 않다. 각종 특징의 치수는 개시 내용의 명확성을 위해 증대되거나 축소될 수 있다. 좌표축은 몇몇 도면에서 설명을 위한 참조를 제공하기 위해 나타내어진다. 한 도면의 좌표축은 다른 도면의 좌표축과 반드시 정렬되지 않는다. 도면 전반에 걸쳐 유사한 참조 부호는 유사한 요소를 나타낸다. 첨부 도면과 함께 후술하는 상세한 설명에 대한 참조가 행해지며, 도면에서
도 1은 본 개시 내용의 이미지 프로젝션 시스템을 도시하고,
도 2는 도 1의 이미지 프로젝션 시스템에서 이용 가능한, 예를 들어, 반사기를 도시하며,
도 3(a) 내지 도 3(c)는 도 1의 시스템의, 예를 들어, 공간 광 변조기(SLM)를 조명하는 광 빔을 도시하고,
도 4(a) 내지 도 4(c)는 도 1의 이미지 프로젝션 시스템에서 이용 가능한, 예를 들어, 미러 및 액추에이터를 도시하며,
도 5(a) 및 도 5(b)는 동일 직선 상에 있지 않는 축에 관해 도 4의 미러의 회전을 도시하고,
도 6은 도 2의 미러, 예를 들어, 발진 미러의 고유 주파수를 도시하며,
도 7a 내지 도 7c는 도 1의 이미지 프로젝션 시스템에서 이용 가능한, 예를 들어, 반사기의 다른 실시예를 도시하고,
도 8(a) 내지 도 8(c)는 도 1의 이미지 프로젝션 시스템의 도 2의 미러, 예를 들어, 2개의 축에 관해 회전하기 위한 미러의 발진 여기를 도시하며,
도 9(a) 내지 도 9(c)는 미러에 탑재된 액추에이터 요소에 전력이 제공되는 도 1의 이미지 프로젝션 시스템에서 이용 가능한, 예를 들어, 반사기의 실시예를 도시하고,
도 10은 스프링이 축 비대칭적인 복원력을 인가하는 도 1의 이미지 프로젝션 시스템에서 이용 가능한, 예를 들어, 반사기의 실시예를 도시하며,
도 11은 압전 요소를 이용하여 도 1의 이미지 프로젝션 시스템에서 이용 가능한, 예를 들어, 반사기의 실시예를 도시하고,
도 12(a) 내지 도 12(c)는 회전 축으로부터 위치 오프셋에 위치하는 액추에이터를 이용하여, 도 1의 이미지 프로젝션 시스템에서 이용 가능한, 예를 들어, 반사기의 실시예를 도시하며,
도 13(a) 및 도 13(b)는 도 1의 이미지 프로젝션 시스템에서 이용 가능한, 예를 들어, 반사기(도 13(a)), 및 이러한 반사기의 어레이(도 13(b))의 실시예를 도시한다.
레이저 광 빔에 의해 뷰잉 스크린(viewing screen)을 조명하는 것은 전형적으로 어느 정도의 스페클(speckle)을 초래한다. 본 명세서에서, 스페클은 작은 이미지 결함, 예를 들어, 코히어런트 광 파형의 간섭에 의해 생성되는 의사 랜덤 공간 강도 패턴을 지칭한다. 이러한 간섭은, 예를 들어, 이미지가 투영되는 스크린에서의 이미지를 생성하는 광 빔에서, 또는 이러한 스크린에서 확산하여 반사되는 광에서 발생할 수 있다. 예를 들어, 스페클은 뷰잉 표면의 거칠기에 대한 반사에 의해 생성된 분리된 광 파형의 간섭에 의해 생성될 수 있다. 공간 광 변조기(SLM)를 조명하기 위해 레이저를 이용하는 이미지 프로젝터에서, 스페클은 인간 뷰어에 대해 이미지의 품질을 감소시키는 프로젝션 이미지의 결함을 초래할 수 있다.
레이저 이미지 프로젝터에서, 스페클 감소는 인간의 눈과 같은 검출기의 해상도보다 낮은 공간 영역 및/또는 시간 주기 내에서 2개 이상의 독립적인 스페클 구성을 평균화하는 것을 수반할 수 있다. 인간의 눈에 대해, 평균 시간은 플리커 퓨전 임계치 또는 플리커 퓨전 레이트라 불리우는 생리학적 파라미터로부터 추정될 수 있다. 보다 구체적으로, 플리커 퓨전 레이트보다 낮은 레이트에서 진동하고 있는 광은 플리커링에 의해 인지된다. 이와 달리, 플리커 퓨전 레이트보다 높은 레이트에서 진동하고 있는 광은 시간상 끊임이 없는 것으로서 인지된다. 플리커 퓨전 레이트는 사람마다 가변적이며 개개인의 피로 레벨, 광원의 밝기, 및 광원을 관측하도록 사용되는 망막의 영역에 따라 달라진다. 그럼에도 불구하고, 극히 소수의 사람이 초 당(s-1) 약 75보다 높은 레이트에서 플리커를 인지한다. 실제로, 시네마 및 텔레비전에서, 프레임 전송 레이트는 약 16s-1과 60s-1 사이에 있으며, 24-30s-1이 통상적으로 사용된다. 압도적인 다수의 사람에 대해, 이들 프레임 전송 레이트는 그 플리커 퓨전 레이트보다 높다.
본 발명자는 2개의 축에 관해 진동 회전을 경험하도록 구성된 평면형, 볼록, 또는 오목 미러로부터 반사된 광으로 SLM을 조명하는 것은 다수의 상관하지 않는 스페클 패턴을 생성할 수 있음을 인식하여 왔다. 몇몇 실시예에서, 미러의 이러한 진동 모드의 고유 주파수들은 전형적인 인간의 눈의 플리커 퓨전 레이트보다 높게 차이나도록 선택된다. 이하 고유 주파수가 정의되고 기술된다.
도 1은 이미징 시스템(100)의 실시예를 도시한다. 본 명세서에서 기술된 이미징 시스템의 몇몇 요소 및 투영된 이미지를 생성하도록 상기 요소를 이용하는 방법은 미국 특허 제 7440158; 2008년 1월 22일에 출원된 미국 특허 출원 제 12/017984 호, 제 12/017440 호('440 출원), 제 12/009991 호 및 제 12/009851 호; 2007년 3월 2일에 출원된 미국 특허 출원 제 11/713155 호, 제 11/681376 호 및 제 11/713483 호; 2009년 1월 22일에 출원된 Gang Chen, et al.에 의한 "A Light Modulator for Optical Image Projection"란 명칭의 미국 특허 출원 제 ___ 호(Docket No. CHEN 17-10-27) 중 하나 이상에 기술되어 있다. 상기 나열된 미국 특허 및 상기 나열된 미국 특허 출원은 본 명세서의 전체 범위에서 참조로서 인용된다.
이미징 시스템(100)은 광학 소스(110), 산란/확산 광학 렌즈 시스템(120), 반사기(130), 편광 빔 스플리터(PBS)(140), 및 SLM(150)을 포함한다. 도시된 실시예에서, 광학 소스(110)는, 예를 들어, 각각 적색, 녹색 및 청색 레이저일 수 있는 코히어런트 광원(112a, 112b, 112c)(통합적으로 광원(112)으로서 지칭됨)을 포함한다. 컬러 결합기("z 큐브"로서 또한 알려짐)(114)는 단일의 광 빔(115)을 생성하도록 코히어런트 광원(112a, 112b, 112c)의 출력을 결합할 수 있다. 광 빔(115)은, 예를 들어, 광 빔(115)의 단면 영역을 증가시키고 그 결과의 광 빔을 콜리메이팅하도록 산란/확산 광학 렌즈 시스템(120)을 통과한다. 광 빔(115)은 반사된 광 빔(135)으로 반사기(130)로부터 반사된다. PBS(140)는 SLM(150)을 조명하도록 반사된 광 빔(135)을 다이렉팅한다. SLM(150)은, 예를 들어, 액정 픽셀, 예를 들어, LCoS(liquid-crystal-on-silicon)의 평면형 어레이 또는 MEMS 작동 마이크로미러 어레이일 수 있다. SLM(150)은, 예를 들어, 공간 진폭 변조기로서 구성될 수 있다.
도시된 실시예에서, 반사된 광 빔(135)은, 예를 들어, 투영된 이미지의 콘트라스트를 증대시키기 위해 사용된 보상 파장판(155)을 통과한다. SLM(150)이 LCoS 디바이스일 때, 그 개별적인 픽셀은, 예를 들어, 반사된 광 빔(135)과 반대이거나, 반사된 광 빔(135)과 동일한 편광 상태로 각각, 광이 해당 픽셀로부터 반사되도록 활성화되거나, 활성 해제될 수 있다. 시스템(100)의 구성에 따라, 수직 또는 수평 편광된 광 중 하나는 프로젝션 광학계(도시되지 않음)에 대해 PBS(140)를 통해 반사하여, 투영된 이미지의 명시야 픽셀(bright-field pixel)을 제공한다. 수평 또는 수직 편광된 광 중 다른 하나는 프로젝션 광학계에 대해 직교하는 방향으로 PBS(140)를 통해 반사하여, 이미지의 암시야 픽셀(dark-field pixel)을 제공한다. 이미지 픽셀을 형성하도록 구성된 SLM(150)의 픽셀은 출력 광 빔(160)을 생성한다. 출력 광 빔(160)은 투영된 이미지를 생성하는 광 빔을 형성하도록 공간 필터(도시되지 않음)에 의해 더 조작될 수 있다.
레이저 스페클링에 의해 생성된 이미지 아티팩트의 인식을 감소시키기 위해, 광 빔의 오프 축 성분의 공간 위상 및/또는 강도 상관이 감소될 수 있다. 이러한 상관을 감소시키는 하나의 기법은 '440 출원에 개시되어 있다. 그 기법에서, 반사기(130)의 위치에서의 반사기는 샤프트 상에 탑재된 평면형, 볼록, 또는 오목 미러를 포함한다. 샤프트는 표면에 대한 법선에 대해 작은 각도를 가진 채 미러의 표면에 고정된다. 샤프트는 미러로부터 반사되는 광의 방향이 시간에 따라 다소 가변하도록 미러의 표면이 워블링 모션(wobbling motion)을 경험하여 회전하도록 구성되어, 이러한 반사된 광이 시간적으로 덜 상관되도록 한다. 샤프트의 회전 레이트는 뷰어의 플리커 퓨전 레이트보다 클 수 있다.
'440 출원에 기술된 방법은 인지된 스페클링을 감소시키지만, 예를 들어, 이러한 스피닝 디바이스의 전기 기계적인 복잡성 및 비용은 바람직하지 않을 수 있다. 따라서, 스페클의 시간 또는 공간 상관을 감소시키는 다른 미러가 요구된다.
도 2는 반사기(130)를 도시하며, 참조로서 x, y 및 z 좌표축을 도시한다. 반사기(130)에서, 평면형, 볼록, 또는 오목 미러(210)는 스프링(230)에 의해 기판(220)에 부착된다. 미러(210)는 고도의 반사 표면을 갖는다. 몇몇 실시예에서, 미러(210)는 고도의 반사 표면을 갖도록 형성된 금속 플레이트를 포함한다. 예를 들어, 미러(210)는, 폴리시된 금속 플레이트로 형성될 수 있거나, 또는, 예를 들어, 통상적인 수단에 의해 은 또는 알루미늄의 층이 폴리시된 금속 플레이트 상으로 증착될 수 있다. 몇몇 실시예에서, 미러(210)는 통상적인 수단에 의해 Si와 같은 평면형 글래스 또는 반도체 기판 상에 완만한 반사 금속 층, 예를 들어, 증착된 Al을 포함한다. 몇몇 실시예에서, 글래스 또는 실리콘 기판은 이하 기술된 기계적인 액추에이션 방법에 의해 생성된 스트레스 하에서 과도한 변형을 방지하기 위해 충분한 강성을 제공하도록 약 0.5mm 이상의 두께일 수 있다. 다른 실시예에서, 미러(210)는 유전체 미러를 포함한다. 관련 분야에서 통상의 지식을 가잔 자라면 유전체 미러는 좁은 범위의 파장에 걸쳐, 예를 들어, 브래그(Bragg) 반사기로서, 높은 반사율을 제공하도록, 상이한 굴절률, 예를 들어, 교번적인 굴절률의 다수의 유전체 층을 포함한다는 것을 이해할 것이다. 유전체 미러는, 예를 들어, 통상적인 증착 기법에 의해 글래스 또는 실리콘 기판 상에 형성될 수 있다.
미러(210)는 자신과 연관된 표면 법선 N을 갖는다. 미러(210)의 편향되지 않은 상태(평형(equilibrium) 또는 안정 위치라 또한 지칭됨)에서, 광 빔(115)은 반사된 광 빔(135)을 형성하도록 미러(210)로부터 반사된다. 광 빔(115, 135)의 방향은, 예를 들어, 포인팅 벡터(Poynting vectors) Sin 및 Sout 각각에 의해 나타내어질 수 있다. 편향 상태(비평형(nonequilibrium) 위치라 또한 지칭됨)에서, (210')으로 표시된 미러는 자신과 연관된 표면 법선 N'을 갖는다. 미러의 편향은 이하 상세하게 기술된 바와 같이 x-y 평면에서 인가된 구동력으로 인한 것이다. 반사된 광 빔(135')은 포인팅 벡터 S'out에 의해 나타내어진 방향을 갖는다. 구동력은 S'out의 방향이 시간에 따라 또한 가변하도록, 시간에 따라 가변한다.
도 2는 미러(210)의 경사가 y 축에 관한 미러(210)의 회전으로 인한 경우를 도시한다. 따라서 표면 법선 N은 도시된 참조 프레임의 x-z 평면에서 회전한다. 미러(210)는 N이 y-z 평면에서 회전하도록 하기 위해 x 축에 관해 또한 회전될 수 있다. 따라서, 미러(210)는 미러(210)의 구동력에 응답하여 두 개의 동일 직선 상에 있지 않는 축에 관해 경사질 수 있다. 경사는 S'out의 방향이 2 차원으로 시간에 따라 가변되도록 한다.
도 3(a)는 광 빔(135)(광 빔(135')을 포함함)에 의해 조명될 때 SLM(150)의 예의 평면도이고, 도 3(b) 및 도 3(c)는 그 단면도이다. 여기서, x, y 및 z 좌표축은 도 2의 x, y 및 z 좌표축과 상이하게 배향될 수 있다. 도시된 실시예에서, SLM(150)은 픽셀(310)의 규칙적인 2 차원 어레이를 갖는다. 픽셀(310)은 진폭의 원하는 수평 방향 패턴으로 반사하도록 구성될 수 있어, 예를 들어, 원하는 컬러로 이미지의 한 프레임에 대한 광 빔을 제공한다. 다중 컬러 이미지는 선택된 컬러 시퀀스, 예를 들어, 적색, 녹색 및 청색을 갖는 단색성 프레임의 시퀀스를 시간적으로 인터리빙함으로써 형성될 수 있다.
도 3(b) 및 도 3(c)는 광 빔(135, 135')을 도시한다. 반사된 광 빔은 차이 S'out - Sout에 의해 나타내어진 범위에서 동적으로 이동하므로, 미러(210)가 동일 직선 상에 있지 않는 축에 관해 회전함에 따라 SLM(150)의 표면 상에서 스위핑(sweeping)한다. S'out의 배향은, 예를 들어, x 및 y 축에 관해 미러(210)의 최대 회전에 의해 결정된 콘(cone) 내에서 가변할 수 있다. 도 3(b)에서 미러(210)가 도 2의 y 축에 관해 그 안정 위치로부터 그 편향 한계로 편향함에 따라 광 빔(135)은 y 방향의 표면 상에서 거리(320)를 스위핑한다. 도 3(c)에서 미러(210)가 도 2의 x 축에 관해 그 안정 위치로부터 그 편향 한계로 편향함에 따라 광 빔(135)은 x 방향의 표면 상에서 거리(330)를 스위핑한다. 거리(320)는 거리(330)와 동등할 수도 있지만, 반드시 그렇지는 않다. 미러(210)가 2개의 동일 직선 상에 있지 않는 축에 관해 동시에 회전될 때, 광 빔(135)은 2 차원으로 SLM 상에서 스위핑한다. 시스템(100)의 몇몇 실시예에서, 픽셀(310)은 약 5㎛의 피치를 갖는다. 몇몇 실시예에서, 반사된 광(135)의 방향의 1°변화는 약 200㎛ 또는 약 40 픽셀인 스위핑 거리(320, 330)를 초래한다. 기술된 방식으로 반사된 광(135)을 확산하는 것은 스페클의 공간 및/또는 시간 상관을 유리하게 감소시켜, 향상된 품질의 투영된 이미지를 초래한다. 다른 실시예에서, 스위핑 거리는, 예를 들어, 시스템(100)의 요소의 구성에서의 차이로 인해 200㎛보다 크거나 작다.
이하 더 기술된 바와 같이, 빔(135)은 x 및 y 방향에서 발진 방식으로 SLM(150) 상에서 스위핑한다. 발진은 전형적인 뷰어의 플리커 퓨전 레이트의 주파수를 초과하는 주파수에서 발생한다. 몇몇 실시예에서, x 및 y 축에서의 발진은 100Hz 내지 1kHz 범위의 주파수를 가질 수 있다.
이제 도 4(a) 내지 도 4(c)를 참조하면 (400)으로 표시된 기계적으로 구동된 반사기의 실시예가 도시된다. 도 4(a)는 반사기(400)의 평면도이고, 도 4(b) 및 도 4(c)는 그 단면도이다. 평면형, 볼록, 또는 오목 미러(410)의 후면이 스프링(430)에 의해 기판(420)에 부착된다. 액추에이터(440, 450)는 이하 더 기술된 바와 같이, 미러(410)에 토크를 인가하도록 구성된다. 미러 상의 토크는 미러(410)에 탄성적으로 본딩하고 미러(410)에 복원력을 제공하는 스프링(430)에 전달된다. 스프링(430)은, 예를 들어, 벤딩(bending) 빔 스프링, 코일 스프링 및 토션(torsion) 스프링 중 임의의 형태를 가질 수 있다. 미러(410)는 전형적으로 전기 기계적인 액추에이터(440, 450)에 의해 인가된 토크 하에서 크게 변형하지 않도록 충분한 강성으로 형성된다.
액추에이터(440, 450)는 미러(410) 상에서 힘을 생성하고 그 중심을 벗어난 위치로 인해 미러(410)가 평형 배향으로부터 회전하도록 하는 토크를 생성한다. 액추에이터(440, 450)는 전기 기계적인 드라이버일 수 있고 인력 또는 척력을 제공할 수 있다. 힘은 예를 들어, 캐패시터, 전자석, 인가된 전계에서 그 길이가 변경되는 압전 구성요소에 의해 생성될 수 있다.
제한적이지 않는 예에서, 액추에이터(440, 450)는 서로에 대해 끌어당기거나 밀어내도록 동작될 수 있는 수직으로 대면하는 자기 구성요소를 포함한다. 보다 구체적으로, 액추에이터(440)는, 예를 들어, 영구 자석(440a), 및 전자석(440b)과 같은 액추에이터 구성요소(440a, 440b)를 포함할 수 있다. 액추에이터(440, 450)는 미러(410)가 상이한 제 1 및 제 2 주파수에서 제 1 및 제 2 동일 직선 상에 있지 않는 축에 관해 회전적으로 발진하도록 동작 가능하다. 영구 자석(440a)과 전자석(440b) 사이의 힘은 영구 자석(440a)의 자기 모멘트 M과 전자석(440b)의 자계 B의 내적(dot product)에 대략 비례하는 것으로 예상된다. 영구 자석(440a)은 도시된 바와 같이, 미러(410)와 기판(420) 사이에 또는 미러(410) 위에 위치할 수 있다. 각종 실시예에서, 영구 자석은 강자기 다이폴, 예를 들어, Nd2Fe14B, SmCo5 또는 Sm2Co17와 같은 희토류 자기 재료를 유지할 수 있는 재료를 포함한다. 이러한 자석은 미러(410)를 통상적인 접착재로 본딩할 수 있다.
미러(410)의 구성요소 치수가 작은, 예를 들어, 선형 미러 치수 < 1㎜인 실시예에서, 관련 분야에서 통상의 지식을 가진 자에게 알려진 마이크로머시닝 기법은 미러(410), 스프링(420) 및 액추에이터(440, 450)를 형성하도록 사용될 수 있다. 이러한 기법은, 예를 들어, 습식 에칭에 의해 희생 부착 층을 제거함으로써, 예를 들어, 재료의 리소그래픽 패터닝과 에칭, CVD, 스퍼터링, 및 이동 가능한 구성요소의 릴리스를 포함할 수 있다. 몇몇 자기 재료, 예를 들어, 퍼멀로이(Ni/Fe)가 통상적인 기법을 이용하여 증착되고, 패터닝되며, 에칭될 수 있다.
제어기(도시되지 않음)로부터의 제어 전류에 의해 지시될 때, 전자석(440b)이 자화됨으로써, 영구 폴 자석(440a)에 대해, z 방향으로 인력 또는 척력을 생성한다. 그 힘은 표시된 기준 프레임에서 x 축에 관해 미러(410)를 회전시키는 토크를 초래한다. 액추에이터(440)는 영구 자석(440a), 및 전자석(440b)을 마찬가지로 포함할 수 있다. 액추에이터(450)가 활성화될 때, 미러(410)는 액추에이터(450)에 의해 인가된 토크로 인해 y 축에 관해 회전한다.
액추에이터(440 및/또는 450)는 교류 전류(AC)원에 의해 구동될 수 있다. 예를 들어, AC원은 액추에이터(440) 또는 액추에이터(450)에서 캐패시터 양단에 접속될 수 있다. 미러(410)는 공진적으로 또는 비공진적으로, 즉, 구동 주파수에 따라, 회전적으로 발진한다. 몇몇 실시예에서, AC원은 액추에이터(440, 450)에 연속적으로 가변하는 교류 전류 제공할 수 있다. 다른 실시예에서, AC원은 주기적 유사 디지털(quasi-digital) 임펄스를 제공한다. 공진 발진의 경우에, 미러(410), 스프링(430) 및 미러(410)에 부착된 임의의 액추에이터 구성요소는 기계적인 필터를 형성한다. 강성 이동 구성요소(예를 들어, 미러(410) 및 부착된 액추에이터 구성요소)는 자신과 연관된 관성의 모멘트를 가지며, 액추에이터(440, 450)는 힘 및 연관된 토크를 제공하고, 스프링(430)은 복원력과 토크를 제공한다. 필터는, 예를 들어, 자신과 연관된 Q 값을 갖는다. Q가 충분히 클 때, 예를 들어, 10보다 클 때, 액추에이터(440, 450)에 의해 인가된 AC 힘이 공진 주파수에서 인가되면, 미러의 모션이 행해질 수 있다. 필터로서, 강성 미러(410)는 공진 주파수 이외의 주파수에서 기계적인 회전을 강하게 댐핑한다. 몇몇 경우에, 비공진적인 구동 모션을 댐핑하는 이 기능은 몇몇 시스템 설계를 간략화할 수 있다.
몇몇 실시예에서, AC 구동력은 공진 주파수로부터 멀리 떨어진 주파수를 가지므로, 미러(410)의 회전 발진은 비공진적이다. 몇몇 경우에, 공진 주파수가 존재하지 않을 수 있거나, 또는 이동 어셈블리의 Q는 명확한 공진성을 위해 제공하는데는 너무 낮을 수 있다(고도로 댐핑됨). 비공진적인 실시예에서, 미러(410)의 배향은 제어기(도시되지 않음)에 의해 지시된 값으로 설정될 수 있다. 제어기는, 예를 들어, 축에 관해 원하는 발진 회전을 초래하는 통합적인 방식으로, x 및 y 축에 관해 미러(410)를 회전하도록 구성된 신호를 또한 제공할 수 있다. 이러한 제어기는 일반적으로 비평행한 축에 관해 발진 회전을 독립적으로 제어하고 2개의 축에 관해 회전의 상대 위상을 또한 제어하는 분리 채널을 필요로 한다.
도 5(a) 및 도 5(b)는 편향된 구성의 반사기(400)를 도시한다. 도 5(a)는 도 4(b)에 대응하고 도 5(b)는 도 4(c)에 대응한다. 액추에이터 구성요소(450a, 450b)는 미러(410)와 스프링(430)과 결합하여 y 축에 관해 회전 발진과 연관된 기계적인 공진 주파수 ωθ를 가질 수 있다. 주파수 ωθ는 미러(410)의 질량, x 방향에서의 미러의 길이, 및 y 축에 관해 미러(410)를 회전시키는 스프링(430)에 의해 제공된 복원력에 주로 의존할 것으로 예상된다. 액추에이터(440)가 전자석을 포함하는 경우에, 예를 들어, 전자석은 주파수 ωθ에서 공진 모드를 여기하도록 약 ωθ의 주파수에서 구동될 수 있다.
마찬가지로, 미러(410)는 x 축에 관해 회전 발진과 연관된 기계적인 공진 주파수 ωψ를 가질 수 있다. 주파수 ωψ는 미러(410)의 질량, y 방향에서의 미러의 길이, 및 x 축에 관해 미러(410)를 회전시키는 스프링(430)에 의해 제공된 복원력에 의존할 것으로 예상된다. x 축에 관한 복원력은 y 축에 관한 복원력과 반드시 동등하지는 않다. 액추에이터(450)가 전자석을 포함하는 경우에 대해, 예를 들어, 전자석은 주파수 ωψ에서 공진 모드를 여기하도록 약 ωψ의 주파수에서 활성화될 수 있다. 따라서, 미러(410)는 x 축에 관해 회전을 위한 제 1 공진 발진 주파수(고유 주파수)를 가질 수 있고 y 축에 관해 회전을 위한 상이한 제 2 공진 발진 주파수(고유 주파수)를 가질 수 있다.
반사기(400)는 ωθ 및 ωψ 공진 모드가 동시에 여기되도록 동작될 수 있다. 이러한 방식으로 동작될 때, 미러(410)로부터 반사된 광 빔은 복합 시간 경로, 예를 들어, 리사주 도형(Lissajous` figure)을 스위핑 아웃할 수 있다. 이러한 동작은 유리하게는 스페클을 초래하는 공간 상관을 시간적으로 스위핑 아웃할 수 있다.
예시적인 실시예에서, 미러(410)는 약 8㎜의 길이 및 약 5㎜의 폭으로 형성된다. 스프링(430)은 약 1㎜의 직경 및 약 2㎜의 길이를 갖는 코일 스프링을 이용하여 형성된다. 이 구성은 약 200s-1과 230s-1 사이의 공진 주파수 ωθ 및 ωψ를 초래할 수 있다. 다른 실시예에서, 미러 측면의 길이는, 예를 들어, 약 1센티미터일 수 있다. 정전 액추에이터는 일반적으로 액추에이터 구성요소, 예를 들어, 캐패시터 플레이트 사이에서 전자석보다 근접한 공간을 필요로 함에 따라, 미러(410)의 회전 발진의 범위를 제한하므로, 보다 큰 미러(> 1-2㎜)는 일반적으로 전자석에 의해 가장 활성화된다고 생각된다. 몇몇 경우에, 예를 들어, 정전 드라이버가 이들 작은 치수에 대해 알려진 기법을 이용하여 더 쉽게 제조될 수 있다 하더라도, 약 1㎜ 이하의 미러는 자기 또는 정전 드라이버에 의해 구동될 수 있다.
도 6은 구동 주파수의 함수로서 미러(410)의 (임의의 유닛 내에서) 각도 변위의 진폭 크기를 질적으로 도시한다. 미러(410)가 회전적으로 대칭적이지 않은 도시된 실시예에서, 공진 구동 주파수 ωθ 및 ωψ에서 2개의 피크 진폭이 존재할 수 있다. 피크 진폭의 주파수 ωθ 및 ωψ는 본 명세서에서 힘 또는 토크를 구동하는 미러의 고유 주파수라 지칭된다. 고유 주파수는 그 2개의 구동 축에 관해 미러(410)의 공진 발진과 연관된다. 공진 모드는 기본 모드이거나 기본 모드의 고조파일 수 있다
반사기(400)가 고유 주파수 ωθ 및 ωψ에서 동시에 구동될 때, ωψ - ωθ의 크기와 동등한 비트 주파수 Δω가 발생할 수 있다. Δω가 뷰어의 플리커 퓨전 레이트보다 적을 때, 스페클 피크의 모션은 몇몇 뷰어에 의해 인지될 수 있다. 따라서, 몇몇 실시예에서, 고유 주파수는 인간의 눈의 플리커 퓨전 레이트보다 큰, 예를 들어, 약 16s-1인 비트 주파수를 발생하도록 선택된다. 이러한 방식으로, 미러(410)의 공진 기계적인 구동에 의해 야기된 스페클 피크의 수평 방향 모션 및/또는 변형의 인지가 실질적으로 감소되는 것으로 예상된다.
도 4를 다시 참조하면, 반사기(400)는 그 반사 표면의 중심에서 법선 벡터에 관해 비회전적으로 대칭일 수 있다. 이러한 구성에서 미러(410) 및 그에 부착된 기계적인 구성요소는 2개의 상이한 동일 직선 상에 있지 않는 축에 관해 회전적으로 발진하도록 미러(410)를 구동하는 2개의 상이한 고유 주파수가 존재하도록 할 수 있다. 도시된 바와 같이, 미러(410)가 장방형이고, 스프링(430)이 미러(410), 예를 들어, 원형 단명을 갖는 스프링(430)의 회전 축을 따라 대칭적 힘을 제공하는 경우, 미러(410)는 x 축(미러(410)의 긴 축)에 관해 회전 발진과 연관된 제 1 고유 주파수를 가질 것이고, y 축(미러(410)의 짧은 축)에 관해 회전 발진과 연관된 상이한 제 2 고유 주파수를 가질 것이다.
반사기(400)의 기계적인 특성의 다른 변형은 AC가 동일 직선 상에 있지 않는 축에 관해 회전 발진을 수행하도록 미러(410)를 구동할 때 2개의 상이한 고유 주파수를 또한 초래할 수 있다. 몇몇 실시예에서, 스프링(430)은 상이한 회전 축에 관해 회전 발진을 위한 상이한 복원력을 생성하도록 형성될 수 있다. 이러한 스프링은, 예를 들어, 장방형 단면으로, 또는 축 방향으로 비대칭적인 기계적 특성을 갖는 재료 구성요소로 형성될 수 있다.
액추에이터(440, 450)는 통상적인 기법, 예를 들어, 접착재 또는 솔더링에 의해 미러(410)와 기판(420)에 부착될 수 있다. 액추에이터 구성의 다른 측면은 일반적으로 채용된 액추에이터의 유형에 의존한다. 예를 들어, 영구 자석은 단지 미러(410) 또는 기판(420)에 기계적으로 부착될 필요가 있다. 그러나, 전자석은 자석을 활성화하도록 전기 접속을 또한 필요로 한다. 마찬가지로, 캐패시터 액추에이터의 플레이트는 플레이트 사이의 전압의 인가를 가능하게 하도록 전기 접속을 필요로 한다. 따라서, 예를 들어, 기판(420) 및/또는 스프링(430) 내에서, 액추에이터 구성요소(440b, 450b)의 하나 또는 양자에 대해 전류 경로가 제공될 수 있다.
몇몇 실시예에서, 액추에이터(440, 450)는 정전 인력 또는 척력을 제공할 수 있다. 따라서, 예를 들어, 제어기는 액추에이터 구성요소(440a, 450a)에 정적 및/또는 주기적 교류 전압을 적용하여 이들 사이에 정적 및/또는 교류 전기 포텐셜을 생성할 수 있다. 몇몇 실시예에서, 액추에이터 구성요소(440a, 450a)가 제거되고, 미러(410)는 액추에이터(440, 450)의 하나의 캐패시터 플레이트로서 직접 기능한다.
도 7a, 도 7b 및 도 7c는 반사기(700)의 실시예를 도시한다. 도 7a는 반사기(700)의 단면도이다. 평면형, 볼록, 또는 오목 미러(710)는 스프링(730)에 의해 기판(720)에 부착된다. 자석(740x)은 미러(710)에 강성으로 부착된다. 코일(750)은 기판(720) 상에 위치한다. 코일(750)은 좌표축 기준 프레임의 z축을 따라 자계 B를 생성하도록 전류 I로 활성화될 수 있다. 자계 B는 좌표축 기준 프레임(도 7b)의 y 축에 평행한 회전의 축(760)에 관해 각도 θ만큼 미러(710)를 편향하는 약
Figure 112012001331623-pct00001
의 토크를 생성하도록 예상된다.
도 7b는 자석(740x)을 통한 평면도이다. 도시된 실시예에서, 자석(740y)은 미러(710)에 강성으로 부착되고 (자석(740x)에 수직하는) y 축에 평행하게 배향된다. 자계 B는 좌표축 기준 프레임의 x 축에 평행한 회전의 축(770)에 관해 각도φ만큼 미러(710)를 편향할 토오크
Figure 112012001331623-pct00002
를 생성하도록 예상된다.
도 8(a)를 참조하면, 평면형, 볼록, 또는 오목 미러(710)의 2개의 공진 주파수를 여기하기 위한 도 7a, 도 7b 및 도 7c의 자계 B를 생성하도록 전자석(들)을 구동하는 AC원의 시간 도메인 프리젠테이션의 제한적이지 않은 예가 도시된다. 도 8(b)는 주파수 도메인 프리젠테이션을 제공한다. 제 1 고유 주파수 ωθ는 약 10ns100s-1)의 주기를 갖는다. 주기 1/ωθ를 갖는 트레인의 펄스는 790θ로 표시된다. 제 2 고유 주파수 ωψ는 약 7ns143s-1)의 주기를 갖는다. 주기 1/ωψ를 갖는 트레인의 펄스는 790ψ로 표시된다. 미러(710)가 공진 주파수 ωθ 및 ωψ를 갖도록 미러(710) 및 자석(740x, 740y)이 구성되며, 미러(710)는 이들 주파수에서 x 및 y 축에 관해 공진적으로 회전 진동(즉, 워블링)할 것이다.
도 8(c)는 일 예시적인 방식으로 구동되는 미러(710)의 일례의 편향 동안 시간적으로 스위핑 아웃된 ψ 및 θ 값의 트레이스를 도시한다. 이 트레이스는 파라미터 공간의 집중이 조밀할 수 있음을 도시한다. 각종 실시예에서, 미러 및/또는 그 복원 스프링이 축 대칭적이지 않을 때 리사주 곡선, 예를 들어, 조밀한 리사주 곡선과 유사한 트레이스를 획득할 것으로 예상된다. 도 8(c)에서와 같이, 조밀한 집중을 갖는 트레이스에 대해, 미러(710)로부터 반사되는 코히어런트 광 빔은 미러(710)의 편향 한계 내에서 균일하게 재배향되는 것으로 예상되어 관측자에 의한 스페클의 인지를 감소시킨다.
일반적으로 ωθ 및 ωψ는 이들 주파수가, 예를 들어, 작은 정수 배만큼 관련되지 않도록 선택되는 것이 바람직하다. 예를 들어, ωθ = ωψ인 경우, 도 8(c)에서 ψ 및 θ의 트레이스는, 예를 들어, 원형 또는 타원형일 수 있다. 이러한 경우에 스페클의 공간 및/또는 시간 상관이 유리하게 감소될 수 있으나, 도 8(c)의 예에서 도시된 바와 같이 ψ 및 θ 파라미터 공간에서 ψ 및 θ의 트레이스가 보다 균일하게 분포될 때, 보다 나은 장점이 초래되는 것으로 예상된다.
다시 도 7c를 참조하면, 반사기(700)의 다른 실시예가 도시된다. 이 실시예에서, 자석(740x, 740y)은 회전 축(760, 770)에 평행하지 않게 배향된 자기 모멘트 Mxy를 갖는 자석(780)으로 대체된다. 도시된 바와 같이 구성될 때, 자계 B는 x 및 y 축에서 구성요소를 갖는 토크를 생성하는 것으로 예상된다. 자계 B가 x 및 y 축의 공진 모드의 고유 주파수를 포함하도록 구성될 때, 미러(710)는, 예를 들어, 도 8(b)에 도시된 경우와 유사하게 작동하는 것으로 예상된다. 이동 어셈블리의 Q 값이 약 10보다 클 때, 예를 들어, 어셈블리는 공진 주파수 이외의 주파수에서 모션을 효과적으로 댐핑할 수 있다. 따라서, 예를 들어, 단일의 전자석은 다른 주파수에서 바람직하지 않은 진동을 생성하지 않고 두 공지 주파수를 여기하도록 사용될 수 있다.
일반적으로, 미러(710)의 공진 주파수는, 예를 들어, 미러/자석 어셈블리의 질량의 상이한 분포로 인해, 도 7b에 비해, 도 7c의 구성에서 상이할 것으로 예상된다. 즉, 미러 및 강성으로 부착된 어셈블리는 미러가 구동되는 평행하지 않은 회전 축에 관해 상이한 관성 모멘트를 갖는다. 관련 분야에서 통상의 지식을 가진 자라면 자석(780)의 다른 구성은 미러(710)의 두 공진 모드의 여기를 초래하도록 사용될 수 있다.
다른 예시적인 실시예에서, 도 9는 전자석 액추에이터 구성요소에 전력이 제공되는 반사기(900)를 도시한다. 액추에이터(910)는, 예를 들어, 전자석(910a, 910b)일 수 있는 2개의 액추에이터 구성요소(910a, 910b)를 포함한다. 액추에이터(920)는, 예를 들어, 전자석(920a, 920b)일 수 있는 2개의 액추에이터 구성요소(920a, 920b)를 포함한다. 평면형, 볼록, 또는 오목 미러(930)는 스프링(950)을 갖는 기판(420)에 관해 지지된다. 전자석(910a, 920a)에 대한 전력은 각각의 도전체(940, 950)를 통해 제공될 수 있다. 몇몇 실시예에서, 도전체(940, 950)는 제어기(도시되지 않음)로부터의 AC 제어 신호를 제공하도록 스프링(950) 및 미러(930)에 부착된다. 다른 실시예에서, 스프링(950)은 도전체(960, 970)에 접속되어 그를 통해 도전성 경로를 제공한다. 전자석(910b, 920b)은 기판(420) 내에 매립되도록 부착된 도전체(도시되지 않음)를 통해 전력 공급될 수 있다.
전자석(910a, 910b, 920a, 920b)은 전형적으로 자신과 연관된 영구 자석 다이폴을 갖지 않는다. 따라서, 전력이 공급되지 않을 때, 전자석(910a, 910b, 920a, 920b)은 반사기(960)에 대해 외부적인 소스로부터의 자계와 큰 상호 작용을 갖지 않을 것으로 예상된다. 따라서, 외부 자계는 영구 자석을 채용하는 실시예 보다 미러(930)의 위치에 보다 덜한 변화를 초래할 것으로 예상된다.
이제 도 10을 참조하면, 일반적으로 (1000)으로 표시된 평면형, 볼록, 또는 오목 반사기의 실시예가 도시된다. 반사기(1000)는 x 및 y 방향에서 상이한 복원력을 갖는 스프링(1010)을 포함한다. 액추에이터는 존재하지만 도시되지 않는다. 제한 없이, 스프링(1010)은 장방형 단면을 갖는 것으로서 도시된다. 스프링(1010)은 축 비대칭적 복원력을 인가하므로, 평면형, 볼록, 또는 오목 미러(1020)는 축 비대칭적일 수 있고 x 및 y 축에 간해 회전 배향을 위한 2개의 상이한 고유 주파수를 또한 갖는다. 이러한 구성은 광 빔(115)이, 예를 들어, 정방형 또는 원형 단면을 갖는 경우에서 바람직할 수 있다. 도시된 실시예에서, 스프링(1010)은 x 방향 근처에서보다 y 방향 근처에서 더 강할 것으로 예상된다. 따라서, 반사기(1000)는 y 방향 근처에서보다 x 방향 근처에서 회전 발진과 연관된 보다 높은 고유 주파수를 가질 것이다. 앞서 기술된 바와 같이, 스프링(1010)은 2개의 공진 복원 발진 모드와 연관된 고유 주파수 간의 차이의 진폭이 플리커 퓨전 레이트보다 크도록 구성될 수 있다.
도 11은 액추에이터(1110, 1120)가 압전 요소인 반사기(1100)의 실시예를 도시한다. 평면형, 볼록, 또는 오목 미러(1130)는 스프링(1150)에 의해 기판(420)에 의해 부착된다. 액추에이터(1110, 1120)는 통상적인 압전 요소일 수 있고, 당 분야에서 통상의 지식을 가진 자에 대해 알려진 방법에 의해 제어될 수 있다. 액추에이터(1110, 1120)는 반사기(400)에 대해 앞서 기술된 바와 같이, 상이한 고유 주파수를 갖는 2개의 비선형적인 방향 근처에서 미러(1130)가 회전 발진을 공진적으로 수행하도록 하기 위해 제어기(도시되지 않음)에 의해 제어될 수 있다.
이 실시예에서, 미러(1130)의 고유 주파수가 앞서 기술된 요소에 부가하여, 압전 액추에이터(1110, 1120)에 의존할 것으로 예상된다. 따라서, 미러(1130)의 관성의 치수 및 모멘트가 미러(410)의 고유 주파수와 동일할 수 있다 하더라도, 반사기(1100)의 고유 주파수는 일반적으로 반사기(400)의 고유 주파수와 동일할 것으로 예상된다. 압전 액추에이터(1110, 1120)는 몇몇 경우에 주변 자계가 미러(410)의 지시되지 않은 편향을 초래할 가능성이 낮다는 점에서, 예를 들어, 액추에이터(440, 450)와 같은 자기 액추에이터 구성요소에 비해 장점을 제공한다. 또한, 압전 액추에이터(1110, 1120)는 기판(420) 및 미러(1130)에 강성으로 부착될 수 있으므로, 미러(1130)가 회전 축에 관해 발진하는 주파수는 미러(1130)와 스프링(1150)의 공진 주파수에서 설정될 필요가 없다.
이제 도 12를 참조하면, 미러(1220)의 2개의 고유 주파수를 여기하도록 구성된 액추에이터(1210)를 포함하는 일반적으로 (1200)로 표시된 반사기의 실시예가 도시된다. 액추에이터(1210)는 본 개시 내용의 범위 내의 임의의 액추에이터일 수 있고, 액추에이터 구성요소(1210a, 1210b)를 포함하는 것으로서 제한 없이 도시된다. 평면형, 볼록, 또는 오목 미러(1220)는 스프링(1240)에 의해 기판(420)에 부착된다. 미러(1220) 및 스프링(1240)은 장방형 및 장방형 단면을 각각 갖는 것으로서 제한 없이 도시된다. 따라서, 미러(1220)는 y 축에 관해 공진 회전 발진과 연관된 고유 주파수보다 큰 x 축에 관해 공진 회전 발진과 연관된 고유 주파수를 가질 수 있다.
액추에이터(1210)는 평면형, 볼록, 또는 오목 미러(1220)의 x 및 y 축으로부터 변위된 위치에 존재한다. 도시된 실시예에서, 액추에이터(1210)는 정방형 미러(1220)의 대각 방향에 배치되지만, 반드시 그럴 필요는 없다. 도 7c의 실시예와 마찬가지로, 액추에이터가 그 고유 주파수에서 미러(1220)를 동시에 구동하도록 구성된 제어기(도시되지 않음)에 의해 액추에이터(1210)에 제어 신호가 제공된다. 제어 신호는, 예를 들어, 여기될 각각의 고유 주파수에 대응하는 주파수 구성요소를 포함할 수 있다. 반사기(1200)의 구성은 유리하게는 미러의 각종 회전 진동 모드를 여기하도록 개별적인 액추에이터를 이용하여 실시예에 대한 구성요소 카운트를 감소시킨다.
마지막으로 도 13(a) 및 도 13(b)를 참조하면, MEMS 미러(1300), 즉, 평면형, 볼록, 또는 오목 미러의 실시예가 도시된다. MEMS 미러(1300)는 2개의 축에서 입사 광 빔을 조사하도록 구성된다. 관련 분야에서 통상의 지식을 가진 자는 MEMS가 약 마이크론 또는 밀리미터의 피쳐 크기를 갖는 구성요소를 전형적으로 포함하는 마이크로 전기 기계적 시스템을 지칭한다는 것을 이해하고 있다. MEMS 미러와 같은 제한적이지 않은 예는 Alcatel-Lucent USA, Inc., Murray Hill, NJ, USA에 의해 제조된 WavestarTM Lambda router에서의 MEMS 미러이다. SOI(silicon-on-insulator) 기판 상에서의 유사한 미러 어셈블리의 제조는, 예를 들어, 본 명세서의 전체 범위에서 참조로서 인용되는 Dennis Greywall, et al., "Crystalline Silicon Tilting Mirrors of Optical Cross-Connect Switches," Journal of Microelectromechanical Systems, Vol. 12, No. 5, IEEE October 2003에 기술되어 있다.
도 13(a)의 도시된 실시예에서, 평면형, 볼록, 또는 오목 미러(1310)는 토션 스프링(1330)을 통해 짐벌(gimbal)(1320)에 부착되고, 짐벌(1320)은 토션(torsion) 스프링(1350)을 통해 링(1340)에 부착된다. 미러(1310), 짐벌(1320) 및 링(1340)은 아래에 놓이는 기판에 부착된다. 미러(1310)는 짐벌(1320) 내에서 제 1 축에 대해 회전하는데 자유롭고, 짐벌(1320)은 링(1340) 내에서 제 2 상이한 축에 대해 회전하는데 자유롭다.
MEMS 미러(1300)는 제 2 축에 대해 그 경사와 독립적으로 제 1 축 근처에서 경사지도록 제어 가능하다. 따라서, 입사 광 빔은 미러(1310)의 경사 제한에 의해 정의된 콘 내에서 임의로 MEMS 미러(1300)에 의해 반사될 수 있다. 제어기(도시되지 않음)는 미러(1300)로부터 출력 광 빔(160)에 의해 생성된 이미지 상에서의 스페클링의 효과를 감소시키도록 결정된 원하는 시간 편향 패턴을 생성하도록 구성될 수 있다. 몇몇 실시예에서, 미러(1310)는 제 1 주파수 ωθ에서 제 1 축에 관해 발진 경사를 수행하고 제 2 주파수 ωψ에서 제 2 축에 관해 발진 경사를 수행하도록 구동된다. 차이 ωψ - ωθ의 크기가 플리커 퓨전 임계치보다 크거나, 또는 약 16s-1보다 크도록 주파수가 선택된다. 일반적으로, 미러(130)는 그 움직임이 예를 들어, 공기 저항에 의해 고도로 댐핑되는 경향이 있으므로, 공진 주파수에서 동작되지 않는다. 따라서, 몇몇 실시예에서, MEMS 미러(1300)는 반사기(400)에 대해 기술된 바와 같이, 2개의 회전 축과 독립적으로 동작하도록 구성된다. 미러(1310)는 투영된 이미지 내의 시각적인 아티팩트의 효과적인 억제를 제공하도록 설계된 패턴을 갖는 주기적 회전 변위로 이동하도록 구성된다. 몇몇 실시예에서, 패턴은 인간 인지의 임계치보다 낮은 공간 상관을 복원하도록 설계된 의사 랜덤 패턴 또는 유사 리사주(Quasi-Lissajou) 패턴이다.
도 13(b)는 앞서 기술된 바와 같이 각각 구성되는 MEMS 미러(1300)의 어레이(1340)를 도시한다. 몇몇 실시예에서, MEMS 미러는 동일한 방향으로 입사 광 빔을 동시에 편향하도록 구성된다. 그러나, 어레이(1340)의 동작은 이러한 결합 모션으로 제한되지 않는다. 예를 들어, MEMS 미러(1300)는 이러한 제어가 스페클링의 인지를 감소시키도록 결정될 때 서로에 대해 독립적으로 제어될 수 있다. 몇몇 실시예에서, 이러한 동작이 스페클 인지를 유리하게 감소키는 상이한 회전 발진으로 MEMS 미러(1300)를 동작시키는 것이 바람직할 수 있다.
본 출원과 관련되는 당 분야에서 통상의 지식을 가진 자라면 기술된 실시예에 대해 다른 추가, 삭제, 대체 및 변경이 행해질 수 있음을 이해할 것이다.

Claims (10)

  1. 기판과,
    전기 기계적인 드라이버와,
    스프링과,
    상기 스프링을 통해 상기 기판에 부착되는 미러-상기 드라이버는 상기 미러가 상이한 각각의 제 1 주파수 및 제 2 주파수에서 동일 직선 상에 있지 않은(non-colinear) 제 1 축 및 제 2 축에 관해 회전적으로 발진하도록 동작함―와,
    공간 광 변조기를 포함하며,
    상기 미러는, 조명 빔이 상기 공간 광 변조기 상에서 상기 조명 빔의 직경보다 작은 최대 크기를 갖는 경로를 스위핑하도록, 코히어런트 광학 소스로부터 상기 공간 광 변조기를 향해 상기 조명 빔을 지향하도록 구성되는
    장치.
  2. 제 1 항에 있어서,
    상기 미러는 상기 제 1 축에 관한 회전을 위한 제 1 공진 발진 주파수를 갖고, 상기 제 2 축에 관한 회전을 위한 상이한 제 2 공진 발진 주파수를 갖는
    장치.
  3. 제 1 항에 있어서,
    상기 드라이버는 전자석, 압전 요소 또는 캐패시터를 포함하는
    장치.
  4. 제 1 항에 있어서,
    상기 드라이버로 하여금 상기 제 1 주파수 및 상기 제 2 주파수에서 상기 미러를 동시에 회전적으로 발진시키도록 접속된 하나 이상의 교류 전류원을 더 포함하는
    장치.
  5. 제 1 항에 있어서,
    상기 코히어런트 광학 소스를 더 포함하는
    장치.
  6. 입사 광 빔으로 미러를 조명하는 단계와,
    상기 조명하는 단계를 수행하는 동안, 상기 미러가 제 1 주파수에서 제 1 축에 관해 회전적으로 발진하고 상이한 제 2 주파수에서 동일 직선 상에 있지 않은 제 2 축에 관해 회전적으로 발진하도록 상기 미러를 기계적으로 구동하는 단계를 포함하고,
    상기 조명하는 단계는 코히어런트 광학 소스로부터의 입사 광으로 상기 미러를 조명하는 단계를 포함하며,
    상기 미러는, 조명 광이 공간 광 변조기 상에서 상기 조명 광의 직경보다 작은 최대 크기를 갖는 경로를 스위핑하도록, 상기 공간 광 변조기를 향해 상기 조명 광을 반사하도록 구성되는
    방법.
  7. 제 6 항에 있어서,
    상기 구동하는 단계는 전자석, 압전 요소 또는 캐패시터에 의해 수행되는
    방법.
  8. 제 6 항에 있어서,
    상기 미러는 축에 관해 축 대칭적이지 않으며, 상기 축은 상기 미러의 반사 표면의 중심에 위치하며 상기 표면에 수직하는
    방법.
  9. 제 6 항에 있어서,
    상기 구동하는 단계는 상기 미러로 하여금 상기 제 1 주파수와 상기 제 2 주파수의 차이가 16 s-1 보다 커지도록 발진하게 하는
    방법.
  10. 삭제
KR1020107016513A 2008-01-22 2009-01-22 발진 장치 및 방법 KR101169534B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/017,440 2008-01-22
US12/017,440 US8109638B2 (en) 2008-01-22 2008-01-22 Diffuser configuration for an image projector
PCT/US2009/000413 WO2009094165A1 (en) 2008-01-22 2009-01-22 Oscillating mirror for image projection

Publications (2)

Publication Number Publication Date
KR20100106517A KR20100106517A (ko) 2010-10-01
KR101169534B1 true KR101169534B1 (ko) 2012-07-30

Family

ID=40583496

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020107016367A KR20100095028A (ko) 2008-01-22 2009-01-21 광학 장치 및 이미지 투사 방법
KR1020107016513A KR101169534B1 (ko) 2008-01-22 2009-01-22 발진 장치 및 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020107016367A KR20100095028A (ko) 2008-01-22 2009-01-21 광학 장치 및 이미지 투사 방법

Country Status (6)

Country Link
US (2) US8109638B2 (ko)
EP (2) EP2240823A1 (ko)
JP (2) JP2011510357A (ko)
KR (2) KR20100095028A (ko)
CN (2) CN101925855A (ko)
WO (2) WO2009094136A1 (ko)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080219303A1 (en) * 2007-03-02 2008-09-11 Lucent Technologies Inc. Color mixing light source and color control data system
JP2009003428A (ja) * 2007-05-18 2009-01-08 Sanyo Electric Co Ltd 映像表示装置および携帯端末装置
WO2009094152A1 (en) 2008-01-22 2009-07-30 Alcatel-Lucent Usa Inc. A light modulator for optical image projection
US8109638B2 (en) * 2008-01-22 2012-02-07 Alcatel Lucent Diffuser configuration for an image projector
US8247999B2 (en) 2008-01-22 2012-08-21 Alcatel Lucent Time division multiplexing a DC-to-DC voltage converter
JP5315756B2 (ja) * 2008-04-01 2013-10-16 セイコーエプソン株式会社 画像表示装置
US20110064218A1 (en) * 2008-05-15 2011-03-17 Donald Henry Willis Method, apparatus and system for anti-piracy protection in digital cinema
US8226241B2 (en) * 2009-05-15 2012-07-24 Alcatel Lucent Image projector employing a speckle-reducing laser source
DE102010009476A1 (de) * 2009-12-15 2011-06-16 Testo Ag Verfahren und Vorrichtung zur Visualisierung von ortsaufgelösten Messergebnissen von nicht unmittelbar für das menschliche Auge sichtbaren Eigenschaften
WO2012014798A1 (ja) * 2010-07-30 2012-02-02 ソニー株式会社 光源ユニット、照明装置および表示装置
US8421844B2 (en) 2010-08-13 2013-04-16 Alcatel Lucent Apparatus for correcting gaze, a method of videoconferencing and a system therefor
JP5540991B2 (ja) * 2010-08-19 2014-07-02 ソニー株式会社 光学装置および表示装置
WO2012100261A1 (en) * 2011-01-21 2012-07-26 Clear Align Llc System and apparatuses providing laser illumination with reduced or zero speckle
JP2012203392A (ja) 2011-03-28 2012-10-22 Sony Corp 照明装置、投影型表示装置および直視型表示装置
DE102011081042B4 (de) * 2011-08-16 2021-05-27 Robert Bosch Gmbh Steuervorrichtung für einen Mikrospiegel, Verfahren zum Ansteuern eines Mikrospiegels und Bildprojektionssystem
JP2013044800A (ja) * 2011-08-22 2013-03-04 Sony Corp 照明装置および表示装置
CN102566235B (zh) * 2012-02-06 2014-10-29 海信集团有限公司 光源装置、光源产生方法及包含光源装置的激光投影机
JP5672254B2 (ja) * 2012-02-21 2015-02-18 ウシオ電機株式会社 コヒーレント光源装置およびプロジェクタ
US9291806B2 (en) 2012-06-21 2016-03-22 Qualcomm Mems Technologies, Inc. Beam pattern projector with modulating array of light sources
US9170474B2 (en) 2012-06-21 2015-10-27 Qualcomm Mems Technologies, Inc. Efficient spatially modulated illumination system
JP5920095B2 (ja) * 2012-07-31 2016-05-18 株式会社Jvcケンウッド 画像表示装置
US8905548B2 (en) * 2012-08-23 2014-12-09 Omnivision Technologies, Inc. Device and method for reducing speckle in projected images
TWI509344B (zh) * 2013-09-18 2015-11-21 Coretronic Corp 照明系統以及投影裝置
WO2015056381A1 (ja) * 2013-10-17 2015-04-23 ソニー株式会社 光源装置、及び画像表示装置
TWI524129B (zh) 2013-11-21 2016-03-01 中強光電股份有限公司 照明系統以及投影裝置
US9753298B2 (en) 2014-04-08 2017-09-05 Omnivision Technologies, Inc. Reducing speckle in projected images
US9474143B2 (en) * 2014-08-19 2016-10-18 University Of Dayton Systems and methods for generating complex vectorial optical fields
US10008822B2 (en) * 2014-10-10 2018-06-26 The Boeing Company Laser system and method for controlling the wave front of a laser beam
WO2016098281A1 (ja) * 2014-12-18 2016-06-23 日本電気株式会社 投射装置およびインターフェース装置
KR101587788B1 (ko) * 2015-02-13 2016-01-22 주식회사 크레모텍 레이저다이오드 액정 프로젝터
JP6458580B2 (ja) * 2015-03-20 2019-01-30 セイコーエプソン株式会社 プロジェクター
CN106033148A (zh) * 2015-03-20 2016-10-19 中兴通讯股份有限公司 一种抑制激光散斑的方法和装置
RU2625815C2 (ru) * 2015-09-18 2017-07-19 Самсунг Электроникс Ко., Лтд. Устройство отображения
JP6604110B2 (ja) * 2015-09-18 2019-11-13 株式会社Jvcケンウッド 光学装置および投射装置
JP2017083636A (ja) * 2015-10-28 2017-05-18 セイコーエプソン株式会社 照明装置及びプロジェクター
US20210168352A1 (en) * 2016-01-26 2021-06-03 Imax Corporation Stereo image projection with high intra-frame contrast
CN109073903B (zh) * 2016-04-12 2022-05-27 麦格纳国际公司 高功率动态透镜
CN106094220A (zh) * 2016-07-27 2016-11-09 山东大学 激光匀光器及具有该匀光器的激光传输转换装置
JP6946650B2 (ja) * 2017-02-01 2021-10-06 セイコーエプソン株式会社 光源装置及びプロジェクター
JP6832745B2 (ja) * 2017-02-28 2021-02-24 リコーインダストリアルソリューションズ株式会社 光学装置
US10921431B2 (en) 2017-10-19 2021-02-16 Cepton Technologies Inc. Apparatuses for scanning a lidar system in two dimensions
EP3710872A1 (en) 2017-11-14 2020-09-23 Imax Theatres International Limited Light conditioning of direct view display for cinema
US11105898B2 (en) * 2017-12-29 2021-08-31 Symbol Technologies, Llc Adaptive illumination system for 3D-time of flight sensor
CN110045481B (zh) * 2018-01-17 2021-05-18 长沙青波光电科技有限公司 一种反射镜装置及激光散斑光场生成装置
CN108168441B (zh) * 2018-01-29 2023-12-12 北京科技大学 基于时分复用的散斑干涉三维动态检测系统
US10104210B1 (en) * 2018-01-31 2018-10-16 Yonatan Zike Zenebe Projector housing for iPhone
CN110412817B (zh) 2018-04-28 2024-05-03 中强光电股份有限公司 投影装置以及照明系统
CN209373339U (zh) 2018-12-13 2019-09-10 中强光电股份有限公司 照明系统及投影装置
CN209590516U (zh) * 2019-01-18 2019-11-05 中强光电股份有限公司 照明系统及投影装置
GB2585072B (en) 2019-06-27 2024-01-24 Andor Tech Limited Radiation Delivery apparatus for microscope systems
CN210142255U (zh) 2019-08-16 2020-03-13 中强光电股份有限公司 照明系统以及投影装置
CN213690210U (zh) * 2020-12-25 2021-07-13 中强光电股份有限公司 照明系统及投影装置
CN114721161B (zh) * 2021-01-05 2024-04-05 台达电子工业股份有限公司 激光光斑消除装置及其操作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040213515A1 (en) 2000-10-30 2004-10-28 Santur Corporation Laser and fiber coupling control
US20050253055A1 (en) 2004-05-14 2005-11-17 Microvision, Inc., A Corporation Of The State Of Delaware MEMS device having simplified drive
WO2007022237A2 (en) * 2005-08-17 2007-02-22 Texas Instruments Incorporated Method for aligning consecutive scan lines on bi-directional scans of a resonant mirror

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549240A (en) 1967-11-06 1970-12-22 Optics Technology Inc Optical filtering method and apparatus
US3573353A (en) 1967-12-18 1971-04-06 Technical Operations Inc Optical detection system and method with spatial filtering
US3546374A (en) 1967-12-28 1970-12-08 Technical Operations Inc Image processing system and method
US3719127A (en) 1971-04-01 1973-03-06 Technical Operations Inc Spectral zonal information storage and retrieval
US4155630A (en) * 1977-11-17 1979-05-22 University Of Delaware Speckle elimination by random spatial phase modulation
US4281904A (en) 1979-06-21 1981-08-04 Xerox Corporation TIR Electro-optic modulator with individually addressed electrodes
US4471445A (en) 1981-03-30 1984-09-11 Grumman Aerospace Corporation Fourier transform signal processor
US4522466A (en) 1983-05-26 1985-06-11 Grumman Aerospace Corporation Recursive optical filter system
US4834476A (en) 1987-03-31 1989-05-30 Massachusetts Institute Of Technology Real image holographic stereograms
US5032002A (en) 1989-02-14 1991-07-16 Grumman Aerospace Corporation Write with light optical notching filter
KR100202246B1 (ko) 1989-02-27 1999-06-15 윌리엄 비. 켐플러 디지탈화 비디오 시스템을 위한 장치 및 방법
US5272473A (en) * 1989-02-27 1993-12-21 Texas Instruments Incorporated Reduced-speckle display system
US5192946A (en) 1989-02-27 1993-03-09 Texas Instruments Incorporated Digitized color video display system
US5327270A (en) 1989-03-23 1994-07-05 Matsushita Electric Industrial Co., Ltd. Polarizing beam splitter apparatus and light valve image projection system
US4986619A (en) 1989-10-30 1991-01-22 Massachusetts Institute Of Technology Holographic color control systems
US5172251A (en) 1990-04-12 1992-12-15 Massachusetts Institute Of Technology Three dimensional display system
JP2681304B2 (ja) 1990-05-16 1997-11-26 日本ビクター株式会社 表示装置
JPH07113533B2 (ja) 1990-11-30 1995-12-06 浜松ホトニクス株式会社 光学的変形量測定装置
US5412674A (en) 1992-10-26 1995-05-02 The United States Of America As Represented By The Secretary Of The Navy Compact rapidly modulatable diode-pumped visible laser
AU669247B2 (en) 1993-03-04 1996-05-30 Ldt Gmbh & Co. Laser-Display-Technologie Kg Television projection system
FR2727529B1 (fr) 1994-11-28 1997-01-03 France Telecom Dispositif de diffraction de lumiere utilisant des modulateurs spatiaux de lumiere reconfigurables et l'effet talbot fractionnaire
US5596451A (en) 1995-01-30 1997-01-21 Displaytech, Inc. Miniature image generator including optics arrangement
JPH09159988A (ja) 1995-12-12 1997-06-20 Nikon Corp 投射型表示装置
US6426836B2 (en) 1996-06-11 2002-07-30 Hewlett-Packard Co. Method and apparatus for reducing the formation of spots in laser projection
US5834331A (en) 1996-10-17 1998-11-10 Northwestern University Method for making III-Nitride laser and detection device
US6304237B1 (en) 1996-11-29 2001-10-16 Corporation For Laser Optics Research Monochromatic R,G,B laser light source display system and method
US6281949B1 (en) 1997-03-24 2001-08-28 Sony Corporation Apparatus for displaying a picture which involves spatially modulating a light beam
US6310713B2 (en) 1997-04-07 2001-10-30 International Business Machines Corporation Optical system for miniature personal displays using reflective light valves
US6525821B1 (en) 1997-06-11 2003-02-25 Ut-Battelle, L.L.C. Acquisition and replay systems for direct-to-digital holography and holovision
SE9800665D0 (sv) * 1998-03-02 1998-03-02 Micronic Laser Systems Ab Improved method for projection printing using a micromirror SLM
US6211848B1 (en) 1998-05-15 2001-04-03 Massachusetts Institute Of Technology Dynamic holographic video with haptic interaction
JP3012841B1 (ja) * 1998-11-04 2000-02-28 日本アイ・ビー・エム株式会社 単板式カラープロジェクタ
JP2000199872A (ja) * 1998-12-29 2000-07-18 Sony Corp 照明装置及び画像表示装置
US6317169B1 (en) * 1999-04-28 2001-11-13 Intel Corporation Mechanically oscillated projection display
US6317228B2 (en) 1999-09-14 2001-11-13 Digilens, Inc. Holographic illumination system
US6545790B2 (en) 1999-11-08 2003-04-08 Ralph W. Gerchberg System and method for recovering phase information of a wave front
KR100959976B1 (ko) 2000-07-31 2010-05-27 코닝 로체스터 포토닉스 코포레이션 빛을 제어하여 발산시키기 위한 구조 스크린
US6870650B2 (en) * 2000-08-01 2005-03-22 Riake Corporation Illumination device and method for laser projector
US7019376B2 (en) 2000-08-11 2006-03-28 Reflectivity, Inc Micromirror array device with a small pitch size
US6323984B1 (en) 2000-10-11 2001-11-27 Silicon Light Machines Method and apparatus for reducing laser speckle
US6771326B2 (en) 2000-10-26 2004-08-03 General Atomics, Inc. Multi-screen laser projection system using a shared laser source
JP3973356B2 (ja) 2000-10-26 2007-09-12 株式会社リコー 照明光学装置及び照明光学装置を用いたプロジェクタ
FI116918B (fi) 2000-12-13 2006-03-31 Modines Ltd Oy Säteenmuokkaaja
US6600590B2 (en) 2001-02-20 2003-07-29 Eastman Kodak Company Speckle suppressed laser projection system using RF injection
US6625381B2 (en) 2001-02-20 2003-09-23 Eastman Kodak Company Speckle suppressed laser projection system with partial beam reflection
JP2002307396A (ja) * 2001-04-13 2002-10-23 Olympus Optical Co Ltd アクチュエータ
US7015983B2 (en) 2001-06-26 2006-03-21 Honeywell International Inc. Projection system utilizing fiber optic illumination
JP2004534276A (ja) 2001-07-06 2004-11-11 エクスプレイ エルティーディー 画像投影装置および方法
US6621235B2 (en) 2001-08-03 2003-09-16 Koninklijke Philips Electronics N.V. Integrated LED driving device with current sharing for multiple LED strings
US6791739B2 (en) 2001-08-08 2004-09-14 Eastman Kodak Company Electro-optic despeckling modulator and method of use
US6594090B2 (en) * 2001-08-27 2003-07-15 Eastman Kodak Company Laser projection display system
JP3595297B2 (ja) * 2001-11-22 2004-12-02 株式会社東芝 レーザ光源装置
US6577429B1 (en) 2002-01-15 2003-06-10 Eastman Kodak Company Laser projection display system
US6797983B2 (en) 2002-01-30 2004-09-28 United Microelectronics Corp. Method of fabrication LCOS structure
JP4055610B2 (ja) 2002-03-22 2008-03-05 セイコーエプソン株式会社 画像表示デバイス及びプロジェクタ
US6984917B2 (en) 2002-06-06 2006-01-10 Lucent Technologies Inc. Optical element having two axes of rotation for use in tightly spaced mirror arrays
US6902276B2 (en) 2002-07-12 2005-06-07 Florida Atlantic University Color projector apparatus and method
US6947459B2 (en) 2002-11-25 2005-09-20 Eastman Kodak Company Organic vertical cavity laser and imaging system
JP4898121B2 (ja) 2003-01-08 2012-03-14 エクスプレイ エルティーディー 画像投影装置
US6917409B2 (en) 2003-02-18 2005-07-12 Intel Corporation Integrated spacer technology for LCOS light modulators
US6876484B2 (en) 2003-03-24 2005-04-05 Lucent Technologies Inc. Deformable segmented MEMS mirror
US6950454B2 (en) 2003-03-24 2005-09-27 Eastman Kodak Company Electronic imaging system using organic laser array illuminating an area light valve
JP4016876B2 (ja) 2003-04-23 2007-12-05 セイコーエプソン株式会社 プロジェクタ
JP4736350B2 (ja) * 2003-05-12 2011-07-27 セイコーエプソン株式会社 プロジェクタおよび表示装置
JP2004347681A (ja) * 2003-05-20 2004-12-09 Seiko Epson Corp 投射型表示装置および照明装置
WO2004106982A2 (en) 2003-05-22 2004-12-09 Optical Research Associates Optical combiner designs and head mounted displays
WO2004113993A1 (en) 2003-06-26 2004-12-29 Risø National Laboratory Generation of a desired wavefront with a plurality of phase contrast filters
US7156522B2 (en) 2003-07-16 2007-01-02 Plut William J Projection-type display devices with reduced weight and size
US7138648B2 (en) 2003-12-17 2006-11-21 Palo Alto Research Center Incorporated Ultraviolet group III-nitride-based quantum well laser diodes
KR101170570B1 (ko) 2003-12-22 2012-08-01 파나소닉 주식회사 이차원 화상 표시 장치
US7161608B2 (en) 2004-01-07 2007-01-09 Texas Instruments Incorporated Digital system and method for displaying images using shifted bit-weights for neutral density filtering applications
WO2005083493A1 (ja) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. 照明光源及びそれを用いた2次元画像表示装置
US7099063B2 (en) 2004-03-09 2006-08-29 Lucent Technologies Inc. MEMS device for an adaptive optics mirror
US6905728B1 (en) * 2004-03-22 2005-06-14 Honeywell International, Inc. Cold gas-dynamic spray repair on gas turbine engine components
US7068409B2 (en) 2004-03-31 2006-06-27 Lucent Technologies Inc. Tip-tilt-piston actuator
US7083284B2 (en) 2004-04-30 2006-08-01 Infocus Corporation Method and apparatus for sequencing light emitting devices in projection systems
US7289209B2 (en) 2004-07-22 2007-10-30 Eastman Kodak Company Programmable spectral imaging system
KR100565076B1 (ko) 2004-08-05 2006-03-30 삼성전자주식회사 레이저 반점을 제거한 조명계 및 이를 채용한 프로젝션시스템
KR20070057201A (ko) 2004-09-28 2007-06-04 코닌클리케 필립스 일렉트로닉스 엔.브이. 2차원 마이크로 스캐너
US7344262B2 (en) 2004-09-29 2008-03-18 Lucent Technologies Inc. MEMS mirror with tip or piston motion for use in adaptive optics
US7268852B2 (en) 2004-10-27 2007-09-11 United Microdisplay Optronics Corp. LCOS display panel having a micro dichroic layer positioned in the back plane to filter colors
KR100682903B1 (ko) * 2004-11-19 2007-02-15 삼성전자주식회사 레이저 반점을 제거한 조명계 및 이를 채용한 프로젝션 tv
KR100682902B1 (ko) * 2004-11-19 2007-02-15 삼성전자주식회사 레이저 반점을 제거한 조명계 및 이를 채용한 프로젝션 tv
US7206117B2 (en) 2004-12-10 2007-04-17 Lucent Technologies Inc. Segmented MEMS mirror for adaptive optics or maskless lithography
US7244028B2 (en) * 2004-12-14 2007-07-17 Coherent, Inc. Laser illuminated projection displays
US7355657B2 (en) * 2004-12-14 2008-04-08 Coherent, Inc. Laser illuminated projection displays
US20060181770A1 (en) * 2005-02-15 2006-08-17 K Laser Technology, Inc. Rear projection screen with spatial varying diffusing angle
CN101120284B (zh) * 2005-02-25 2010-05-19 松下电器产业株式会社 二维图像形成装置
US7646518B2 (en) * 2005-02-25 2010-01-12 Panasonic Corporation Two dimensional image forming device
US7866831B2 (en) * 2005-03-16 2011-01-11 Panasonic Corporation Image projector
WO2006105258A2 (en) 2005-03-30 2006-10-05 Novalux, Inc. Manufacturable vertical extended cavity surface emitting laser arrays
US7193765B2 (en) 2005-03-31 2007-03-20 Evans & Sutherland Computer Corporation Reduction of speckle and interference patterns for laser projectors
US7481541B2 (en) 2005-04-22 2009-01-27 Barco N.V. Method and systems for projecting images
US7199933B2 (en) * 2005-05-17 2007-04-03 Symbol Technologies, Inc. Image projection screen with reduced speckle noise
US7253550B2 (en) 2005-05-27 2007-08-07 Lucent Technologies Inc. Torsional electrostatic actuator
EP1734771A1 (en) 2005-06-14 2006-12-20 SONY DEUTSCHLAND GmbH Illumination optics, illumination unit and image generation unit
JP4311382B2 (ja) * 2005-07-20 2009-08-12 セイコーエプソン株式会社 プロジェクタ
WO2007016373A2 (en) 2005-07-28 2007-02-08 Synditec, Inc. Pulsed current averaging controller with amplitude modulation and time division multiplexing for arrays of independent pluralities of light emitting diodes
US7450193B2 (en) 2005-08-05 2008-11-11 Lg Electronics Inc. LCOS panel assembly of projection system and image matching method having quarter wave plate holder rotatably supported about panel support by respectively slots and protrusions
US7408558B2 (en) 2005-08-25 2008-08-05 Eastman Kodak Company Laser-based display having expanded image color
EP1760513B1 (en) 2005-08-31 2010-07-28 LG Electronics Inc. Portable projector
JP4923500B2 (ja) 2005-09-29 2012-04-25 カシオ計算機株式会社 プロジェクタ装置、及びその光源制御方法
US7413311B2 (en) * 2005-09-29 2008-08-19 Coherent, Inc. Speckle reduction in laser illuminated projection displays having a one-dimensional spatial light modulator
WO2007072335A2 (en) 2005-12-19 2007-06-28 Koninklijke Philips Electronics N.V. Speckle reduction by angular scanning for laser projection displays
US7342658B2 (en) 2005-12-28 2008-03-11 Eastman Kodak Company Programmable spectral imaging system
US7649326B2 (en) 2006-03-27 2010-01-19 Texas Instruments Incorporated Highly efficient series string LED driver with individual LED control
JP4920679B2 (ja) * 2006-04-12 2012-04-18 パナソニック株式会社 投写型ディスプレイ装置及びスペックル低減素子
CN101421661B (zh) * 2006-04-12 2010-08-11 松下电器产业株式会社 图像显示装置
JP4193864B2 (ja) * 2006-04-27 2008-12-10 セイコーエプソン株式会社 プロジェクタ、スクリーン、プロジェクタシステム、およびシンチレーション除去装置
US7723926B2 (en) 2006-05-15 2010-05-25 Supertex, Inc. Shunting type PWM dimming circuit for individually controlling brightness of series connected LEDS operated at constant current and method therefor
US7619808B2 (en) 2006-06-06 2009-11-17 Alcatel-Lucent Usa Inc. Light wave front construction
US7902771B2 (en) 2006-11-21 2011-03-08 Exclara, Inc. Time division modulation with average current regulation for independent control of arrays of light emitting diodes
US7972020B2 (en) * 2006-12-29 2011-07-05 Texas Instruments Incorporated Apparatus and method for reducing speckle in display of images
US7502160B2 (en) 2007-03-02 2009-03-10 Alcatel-Lucent Usa Inc. Speckle reduction in laser-projector images
US7440158B2 (en) 2007-03-02 2008-10-21 Lucent Technologies Inc. Direct optical image projectors
US7595622B1 (en) 2007-04-05 2009-09-29 National Semiconductor Corporation System and method for providing a sample and hold circuit for maintaining an output voltage of a constant current source circuit when a feedback loop is disconnected
WO2008144962A1 (en) 2007-05-31 2008-12-04 Texas Instruments Incorporated Sample and hold scheme for a feedback network of a power converter
US7782521B2 (en) * 2007-05-31 2010-08-24 Texas Instruments Incorporated System and method for displaying images
WO2008144961A1 (en) 2007-05-31 2008-12-04 Texas Instruments Incorporated Regulation for led strings
US8059340B2 (en) * 2007-08-01 2011-11-15 Texas Instruments Incorporated Method and system for reducing speckle by vibrating a line generating element
EP2193657A2 (en) 2007-09-25 2010-06-09 Explay Ltd. Micro-projector
US7862183B2 (en) * 2007-10-16 2011-01-04 Alcatel-Lucent Usa Inc. Speckle reduction using a tunable liquid lens
US20090153579A1 (en) * 2007-12-13 2009-06-18 Hirotoshi Ichikawa Speckle reduction method
US8935609B2 (en) 2007-12-18 2015-01-13 International Business Machines Corporation Method and system to secure the display of advertisements on web browsers
US20090184976A1 (en) 2008-01-22 2009-07-23 Alcatel-Lucent System and Method for Color-Compensating a Video Signal Having Reduced Computational Requirements
US8109638B2 (en) * 2008-01-22 2012-02-07 Alcatel Lucent Diffuser configuration for an image projector
WO2010023444A1 (en) 2008-08-27 2010-03-04 Milan Momcilo Popovich Laser display incorporating speckle reduction
US7944598B2 (en) * 2008-11-06 2011-05-17 Corning Incorporated Speckle mitigation in laser scanner projector systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040213515A1 (en) 2000-10-30 2004-10-28 Santur Corporation Laser and fiber coupling control
US20050253055A1 (en) 2004-05-14 2005-11-17 Microvision, Inc., A Corporation Of The State Of Delaware MEMS device having simplified drive
WO2007022237A2 (en) * 2005-08-17 2007-02-22 Texas Instruments Incorporated Method for aligning consecutive scan lines on bi-directional scans of a resonant mirror

Also Published As

Publication number Publication date
CN101925855A (zh) 2010-12-22
CN101925845A (zh) 2010-12-22
US20120075598A1 (en) 2012-03-29
US8109638B2 (en) 2012-02-07
JP5536672B2 (ja) 2014-07-02
US20090185141A1 (en) 2009-07-23
WO2009094165A1 (en) 2009-07-30
EP2240823A1 (en) 2010-10-20
EP2240813B1 (en) 2017-01-04
JP2011510357A (ja) 2011-03-31
JP2011510358A (ja) 2011-03-31
WO2009094136A1 (en) 2009-07-30
KR20100106517A (ko) 2010-10-01
CN101925845B (zh) 2013-09-11
EP2240813A1 (en) 2010-10-20
KR20100095028A (ko) 2010-08-27

Similar Documents

Publication Publication Date Title
KR101169534B1 (ko) 발진 장치 및 방법
US8427727B2 (en) Oscillating mirror for image projection
US20120206782A1 (en) Device for reducing speckle effect in a display system
CN100481909C (zh) 投影机、屏幕、投影系统以及闪烁去除装置
JP3552601B2 (ja) 光偏向子及びこれを用いた表示装置
US10401640B2 (en) Micro-projection device with anti-speckle vibration mode
US7880965B2 (en) Projection-type image display device
US20090009860A1 (en) Flexible members for moving screens in display systems
KR20140145074A (ko) 광학 디바이스, 광스캐너 및 화상 표시 장치
JP2003057586A (ja) 光走査装置、光走査装置に用いられる振動体及び光走査装置を備えた画像形成装置
KR20070012651A (ko) 성능개선된 mems 스캐닝 시스템
JP2010117533A (ja) 拡散板駆動装置及び投射型画像表示装置
KR20060035747A (ko) 레이저 빔 스캐너
JP2008295174A (ja) 揺動装置、同装置を用いた光走査装置、映像表示装置、及び揺動装置の制御方法
JP4392410B2 (ja) 電磁力駆動スキャニングマイクロミラー及びこれを使用した光スキャニング装置
JP4766708B2 (ja) 低減されたスペックルノイズを有する画像投影
JP2010107995A (ja) 投写型画像表示装置
JP2010048897A (ja) 光走査装置および画像形成装置
JP4720723B2 (ja) 光学デバイス、光スキャナ、および画像形成装置
WO2008017005A2 (en) Sloping electrodes in a spatial light modulator
JP2006323001A (ja) 揺動体装置、およびそれを用いた光偏向器
US20050078345A1 (en) Scanning device with improved magnetic drive
TWI806993B (zh) 光路調整機構及其製造方法
JP2010134420A (ja) 光走査装置及び画像形成装置
JP2012145754A (ja) 画像表示装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150710

Year of fee payment: 4