JPWO2013145043A1 - ビルドアップ基板およびその製造方法ならびに半導体集積回路パッケージ - Google Patents

ビルドアップ基板およびその製造方法ならびに半導体集積回路パッケージ Download PDF

Info

Publication number
JPWO2013145043A1
JPWO2013145043A1 JP2014507027A JP2014507027A JPWO2013145043A1 JP WO2013145043 A1 JPWO2013145043 A1 JP WO2013145043A1 JP 2014507027 A JP2014507027 A JP 2014507027A JP 2014507027 A JP2014507027 A JP 2014507027A JP WO2013145043 A1 JPWO2013145043 A1 JP WO2013145043A1
Authority
JP
Japan
Prior art keywords
build
metal oxide
substrate
film
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014507027A
Other languages
English (en)
Inventor
中谷 誠一
誠一 中谷
川北 晃司
晃司 川北
享 澤田
享 澤田
山下 嘉久
嘉久 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014507027A priority Critical patent/JPWO2013145043A1/ja
Publication of JPWO2013145043A1 publication Critical patent/JPWO2013145043A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4682Manufacture of core-less build-up multilayer circuits on a temporary carrier or on a metal foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/017Glass ceramic coating, e.g. formed on inorganic substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0175Inorganic, non-metallic layer, e.g. resist or dielectric for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0126Dispenser, e.g. for solder paste, for supplying conductive paste for screen printing or for filling holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0514Photodevelopable thick film, e.g. conductive or insulating paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1366Spraying coating

Abstract

回路基板上に絶縁層と配線パターン層とが積層されたビルドアップ基板を製造するための方法であって、(i)配線パターンを備えた回路基板の両面または片面に対して、光反応性の金属酸化物前駆体原料を塗布し、その光反応性の金属酸化物前駆体原料を乾燥処理に付して絶縁膜を形成する工程、(ii)絶縁膜を露光および現像処理に付すことを通じて絶縁膜にバイアホール用開口部を形成する工程、(iii)絶縁膜を熱処理に付して絶縁膜を無機金属酸化物膜とし、それによって無機金属酸化物膜から成るビルドアップ絶縁層を得る工程、ならびに、(iv)ビルドアップ絶縁層に対してめっき処理を施すことによってバイアホールを形成すると共に金属層を形成し、その金属層にエッチング処理を施してビルドアップ配線パターンを形成する工程を含んで成り、(v)前記の(i)〜(iv)工程を少なくとも1回以上繰返し行う、ビルドアップ基板の製造方法。

Description

本発明は、ビルドアップ基板およびその製造方法ならびに半導体集積回路パッケージに関する。より詳細には、本発明は、ビルドアップ絶縁層が実質的に無機材料から構成されたビルドアップ基板に関すると共に、かかるビルドアップ基板を製造するための方法にも関する。更には、本発明は、ビルドアップ基板から得られる半導体集積回路パッケージにも関する。
電子機器の進展に伴って、コンピュータのCPUやGPU、および、デジタルテレビやスマートフォンなどに用いられる半導体集積回路(LSI)は高速化が進んでいる。特に画像処理LSIなどは高速化と共に、高集積化も進んでおり、小型化およびI/O端子の増大への対応があわせて望まれている。
小型化とI/O端子数の増大とが同時進行している状況においては、端子ピッチの小型/狭ピッチ化が更に進み、半導体集積回路のパッケージ配線基板への実装が困難になりつつある。
LSIのパッケージ用配線基板としては、従来から熱伝導性に優れたセラミック基板が利用されている。セラミック基板は、耐熱性および耐湿性に優れているだけでなく、熱膨張係数も小さく、かつ基板反りが小さいため、はんだ等の金属接合に向いている。しかしながら、セラミック基板は大きなサイズでの焼成が困難であり、また割れなどが生じ易く薄型化には向かない。
一般的には、エポキシ樹脂などの有機系のコア基板の両面に、層間絶縁層、バイアホールおよび銅箔配線層から構成されるビルドアップ層が複数積層したビルドアップ配線基板がLSIのパッケージ用配線基板として利用されている。例えば、特許文献1などでは、感光性のビルドアップ樹脂絶縁材を用いてビア穴形成(フォトビアプロセス法)を行い、銅めっきにて配線を形成するビルドアップ基板が開示されている(図13も併せて参照のこと)。また、特許文献2では、ビルドアップ絶縁層にレーザ加工によってビア穴形成(レーザビアプロセス法)を行ない、同様に銅めっきにて配線を形成するビルドアップ基板が開示されている。更に特許文献3においては、予め銅箔をエッチング法に付して開口部を設け、その開口部にレーザ加工法で微細なビア穴を形成する工法(コンフォーマルプロセス法)が開示されている(図14も併せて参照のこと)。
最新のCPUでは、微細化が22nmまで進化し、I/O端子の増大、回路の大規模化の進展が著しく、サーバー用途では、むしろ半導体集積回路チップの大型化が進んでいるといえる。このように大型のチップが利用されるようになると、通常のビルドアップ基板であっても、生産工程上の反りや、LSIチップ実装における熱履歴による反りなどで、接合部のはんだ接合部が剥がれてしまうことが懸念される。また、微細化の進展で小径ビア穴加工や、微細配線ピッチの進展により、絶縁信頼性が低下し、絶縁不良や絶縁耐圧の低下を招いてしまうという懸念もある。近年では、更なる薄型化の要望もあり、コア基板を用いずビルドアップ層だけで基板を構成するケースも増えており、薄型化に対応した高い信頼性を有する絶縁材が望まれている。
特開平4−148590号公報 特開平3−233997号公報 特開平8−279678号公報
“大型”において高集積半導体をベアチップ搭載する場合、微細な配線ピッチと小径ビア接続とを有するビルドアップ基板が必須であるものの、前述の3通りのビルドアップ基板では高い信頼性を得ることは極めて困難である。
具体的には、第1のフォトビアプロセス法では、感光性樹脂材料を用いて一括露光してビア穴を形成するために穴間の相対的位置精度が高く、タクトも短いことが利点であるものの、感光性樹脂材料に感光性を付与するために絶縁性に難があり、また、めっき法により形成した銅電極との接着強度が低い点が懸念される。第2のレーザビアプロセス法では、“レーザ加工法による穴明け”であるため、穴形成時のゴミの影響は受け難くい利点を有するものの、小径化にはレーザの絞り精度の問題で向かない。また、順次穴加工を行うためタクトが長く、設備コストも大きいなどの欠点を有している。位置精度もフォトビアプロセス法よりは相対的に良くないといえる。そして、第3のコンフォーマルプロセス法は、ビルドアップ樹脂が塗布された銅箔を積層して接着し、銅箔に予めビア穴形成する場所だけ開口すべくエッチングで取り除き、その開口径よりも小さいスポット径のレーザビームを照射してビア穴を開口する手法であり、それゆえ、銅とのレーザの吸収率差を利用するために小径化に向く。更に銅箔を予め接着させるので密着性に優れた配線が得られる。そうではあるものの、コンフォーマルプロセス法は、レーザビアプロセス法のように順次穴加工のため、タクトおよび設備コストの点で難があり、位置精度が悪いという欠点を有している。
このように、感光性樹脂材料を用いた第1の従来法では、微細な配線化・薄型化に伴う絶縁材料の絶縁信頼性の点が問題となり得、レーザ加工法でバイアホール加工を行う第2および第3の従来法では、レーザ加工装置のコストが高く、また、加工位置精度がレンズ収差などの影響で良くない点が問題となる。更には、第2および第3の従来法では、小径化の点で難があり、また、各バイアホール加工が一括でなく順次加工であるために加工タクトなどの点で問題となり得、総じてレーザ加工装置に伴う問題が多いといえる。
また、ビルドアップ基板においては、最新半導体ベアチップが搭載された基板の反り影響を排除することが困難である。これはビルドアップ基板の絶縁材が、有機材料からなるため、高い弾性率が得られないからである。一般的に高い弾性率を有するセラミック基板の利用が有効であり、セラミック基板は、高い弾性率の点でビルドアップ基板より有利といえるところ、大きなサイズの基板が得られないことと、その結果として高コストであることなどが課題となっている。例えば100mm×100mm程度のセラミック基板サイズに対して、ビルドアップ基板を代表例とするプリント基板サイズが340mm×510mm程度となっており、ビルドアップ基板のような生産性は得られない。この点、セラミック基板サイズを単に大きくすることが考えられるものの、セラミック基板サイズを単に大きくするだけでは、上述したように基板の割れや欠けを引き起こす要因となり、そのような割れ・欠けを防止しようとするとプロセス上搬送が困難となってしまうか、必要以上に厚みを大きくしなければならない。また、大型セラミック基板の製造に用いる焼成用セッターは、そもそも製作困難である。更には、そのような焼成用セッターを仮に製作できたとしても、非常に高価となるか、あるいは、セラミック基板のそりに直接影響するため平滑性問題で厳密性が要求される。
本発明はかかる事情に鑑みて為されたものである。即ち、本発明の主たる目的は、生産性向上に寄与し得る大型のビルドアップ基板であって、更には、微細配線化および絶縁層の薄層化にも向く、高い信頼性を有する大型ビルドアップ基板を提供することである。
上記目的を達成するため、本発明では、回路基板上に絶縁層と配線パターン層とが積層されたビルドアップ基板を製造するための方法であって、
(i)配線パターンを備えた回路基板の両面または片面に対して、光反応性の金属酸化物前駆体原料を塗布し、その光反応性の金属酸化物前駆体原料を乾燥処理に付して絶縁膜を形成する工程、
(ii)絶縁膜を露光・現像処理に付すことを通じて絶縁膜にバイアホール用開口部を形成する工程、
(iii)「バイアホール用開口部が形成された絶縁膜」を熱処理に付して絶縁膜を無機金属酸化物膜とし、それによって無機金属酸化物膜から成るビルドアップ絶縁層を得る工程、ならびに
(iv)ビルドアップ絶縁層に対して全体的にめっき処理を施すことによって前記開口部にバイアホールを形成すると共にビルドアップ絶縁層上に金属層を形成し、その金属層にはエッチング処理を施してビルドアップ配線パターンを形成する工程
を含み、
(v)前記の工程(i)〜(iv)を少なくとも1回以上繰返し行う、ビルドアップ基板の製造方法が提供される。
本発明の製造方法の特徴の1つは、ビルドアップ絶縁層原料として「感光性の金属酸化物前駆体原料」を用いることである。より具体的には、「感光性の金属酸化物前駆体原料」を塗布および乾燥処理して形成された絶縁膜に対して露光・現像処理を含むリソグラフィーを行ってバイアホールを形成し、次いで、かかる絶縁膜を加熱処理して金属酸化物絶縁膜とすることによって、薄く絶縁信頼性に優れたビルドアップ絶縁層を得る。
本明細書における「ビルドアップ」といった用語は、本発明の対象となる基板が積層構造を有している態様に鑑みて用いている。例えば、“ビルドアップ”は、配線パターンを備えた回路基板(コア層とも呼ぶ)などの基板上に対して絶縁層および配線パターンなどが積層している態様に鑑みている(尚、本発明における“ビルドアップ”は、コア基板が設けられている態様に必ずしも限定されず、コア基板が最終的に除去された態様をも包含する)。
また、本明細書における「光反応性」といった用語は、光の照射に応じて、被照射部の物理的性質または化学的性質などが変化する特性のことを意味している。
本発明では、上述の製造方法から得られるビルドアップ基板も提供される。かかる本発明のビルドアップ基板は、配線パターンを備えた回路基板の両面または片面にてビルドアップ絶縁層とビルドアップ配線パターンとが積層しており、
ビルドアップ絶縁層が、光反応性の金属酸化物前駆体原料から形成された無機金属酸化物膜から構成されている。
かかる本発明に係るビルドアップ基板の特徴の1つは、ビルドアップ絶縁層が「光反応性の金属酸化物前駆体原料を用いて形成された金属酸化物の無機膜」から成ることである。
本発明では、上述のビルドアップ基板を利用した半導体集積回路パッケージも提供される。かかる本発明の半導体集積回路パッケージは、バンプを介してビルドアップ絶縁層上のビルドアップ配線パターンに対して半導体ベアチップがフリップチップ実装されている。
本発明に係るビルドアップ基板の製造方法では、「感光性の金属酸化物前駆体原料」を用いており、その結果、薄く絶縁信頼性に優れたビルドアップ絶縁膜を得ることができる。また、「感光性の金属酸化物前駆体原料」はペースト状または液体状の原料であり得るので、スプレー法やスリットコータ法によって塗布することができ、均一な製膜を大きな基板サイズで簡易に実現することができる。更には、「感光性の金属酸化物前駆体原料」ゆえに、その塗布膜(より具体的には「塗布後に乾燥処理して得られた絶縁膜」)に対して、一括して露光・現像処理することができ、その結果、一括してバイアホール加工を行うことができる。それゆえ、バイアホール位置精度が良好となる。つまり、大きな基板サイズであっても小径化バイアホールを安価に簡易に得ることができる。
また本願発明の製造方法では、金属酸化物前膜を得るための加熱温度が比較的低温であり、それゆえ、コア用回路基板の選択自由度が高くなっている。例えば、コア基板の種類によっては、ビルドアップ基板にとって望ましい弾性率あるいは屈曲性を供すことができる。あくまでも例示にすぎないが、コアとなる回路基板の絶縁材(絶縁性基板部)を有機材料から成るものとした場合、ある程度の屈曲性を発揮させることができ、高い絶縁信頼性と柔軟性とを備えたビルドアップ基板を得ることができる。一方、コアとなる回路基板の絶縁材(絶縁性基板部)を無機材料から成るものとした場合、ビルドアップ絶縁層およびビルドアップ配線パターンの全てが実質的に無機材料から成り得るため、基板としての信頼性が増し、そのうえ熱膨張係数もシリコン半導体に近いため、高い実装信頼性を得ることができる。
更に本発明では、“金属酸化物の無機膜”ゆえに、その厚さが1μm以上かつ20μm以下の薄さでも高い弾性率を呈する緻密なビルドアップ絶縁層が供されており、モバイル用途などにとって好適な薄型半導体パッケージが実現される。
更には、本発明に係るビルドアップ基板は、大型の薄い基板とした場合であっても、高い弾性と適度な熱膨張性のため、ビルドアップ基板の割れやクラックなどが抑制されている。それゆえ、本発明に従えばプリント基板の製造インフラを利用してビルドアップ基板の製造を好適に行うこともできる。
図1(a)〜(f)は、製造プロセス態様1に係る本発明の製造プロセス態様を模式的に示した工程断面図である。 図2(a)〜(b)は、製造プロセス態様1に係る本発明の製造プロセス態様を模式的に示した工程断面図である。 図3は、スプレー法の態様を模式的に表した断面図である。 図4は、スリットコータ法の態様を模式的に表した断面図である。 図5(a)〜(g)は、製造プロセス態様2に係る本発明の製造プロセス態様を模式的に示した工程断面図である。 図6(a)〜(d)は、製造プロセス態様2に係る本発明の製造プロセス態様を模式的に示した工程断面図である。 図7(a)〜(h)は、製造プロセス態様3に係る本発明の製造プロセス態様を模式的に示した工程断面図である。 図8は、本発明のビルドアップ基板100の構成を模式的に示した断面図である。 図9は、本発明の半導体集積回路パッケージ400の構成を模式的に示した断面図である。 図10は、本発明のビルドアップ基板100’の構成を模式的に示した断面図である。 図11は、本発明の半導体集積回路パッケージ400’の構成を模式的に示した断面図である。 図12は、トランジスタを備えた本発明のビルドアップ基板100'''の構成を模式的に示した断面図である。 図13は、感光性樹脂を用いたプロセスの態様を表した工程断面図である(従来技術)。 図14は、コンフォーマル・プロセスの態様を表した工程断面図である(従来技術)。
以下、図面を参照しながら、本発明の実施の形態を説明する。図面においては、説明の簡略化のため、実質的に同一の機能を有する構成要素を同一の参照番号で示している。また、各図における寸法関係(長さ、幅、厚さなど)は実際の寸法関係を反映するものではない。更に、本明細書で間接的に触れる“上下方向”は、便宜上、図中における上下方向に対応した方向に相当する。
[本発明のビルドアップ基板の製造方法]
(製造プロセス態様1)
製造プロセス態様1として、図1および図2を参照しながら本発明のビルドアップ基板の製造方法について説明する。
本発明の製造方法の実施に際しては、まず工程(i)を実施する。即ち、配線パターンを備えた回路基板の両面または片面に対して、光反応性の金属酸化物前駆体原料を塗布し、その塗布した原料を乾燥処理に付して絶縁膜を形成する。具体的には、図1(a)に示すように、両面または片面に配線パターン103を有する回路基板104を準備する。例えば、両面に配線パターン103を有する回路基板104は、例えばガラス織布にエポキシ樹脂を含浸した基材101の両面に銅箔からなる金属層を積層して加熱加圧することで一体化させ、更にフォトリソグラフィー法でエッチングして配線パターン103を形成することにより得ることができる。銅箔の積層後に、ドリルによる穴加工とめっき工法とを施すことによって層間接続するスルーホール102を設けてもよい(図1(a)参照)。
次いで、回路基板104の両面に「光反応性の金属酸化物前駆体原料」を塗布し、その「光反応性の金属酸化物前駆体原料」を乾燥処理に付して絶縁膜105を形成する(図1(b)参照)。「光反応性の金属酸化物前駆体原料」は、例えば有機溶剤などを含んでおり、ペースト形態または液体形態を有し得る。ペースト形態の場合、「光反応性の金属酸化物前駆体原料」は、例えば室温(25℃)およびずり速度1000[1/s]において1mPa・s〜50Pa・s程度(特に10mPa・s〜50Pa・s程度)の粘度を有している。このような範囲に粘度を有すると、塗布領域における原料の濡れ広がりをより効果的に防止できる。本発明では「光反応性の金属酸化物前駆体原料」がペースト形態または液体形態であるがゆえ、スプレー法(図3)またはスリットコータ法(図4)を利用して原料を塗布することができる。
スプレー法では、図3に示すように、貯留タンク204中の「光反応性の金属酸化物前駆体原料205」を供給配管206を通してスプレーノズル203に供給する一方、圧縮ポンプ207から配管208を介して、キャリアガスとして圧縮空気をスプレーノズル203に供給する。これにより、スプレーノズル203からキャリアガスと共に一定量の「光反応性の金属酸化物前駆体原料」がステージ201上に配された回路基板202に対してスプレー209され、その結果、「光反応性の金属酸化物前駆体原料」の塗布膜210が形成される。回路基板202上に形成された塗布膜210の厚さは、例えば、好ましくは4μm〜50μm、より好ましくは6μm〜30μm、更に好ましくは8μm〜20μm(例えば約10μm)であってよい。このようなスプレー法は、簡易かつ高速に塗布膜210を形成できる。
一方、スリットコータ法では、図4に示すように、貯留タンク306から「光反応性の金属酸化物前駆体原料」が配管307を介してポンプ308によりスリットコータノズル303へと供給される。スリットコータノズル303へと供給された「光反応性の金属酸化物前駆体原料」は、マニホールド304に一旦貯められた後、スリット305からステージ301上の回路基板302へと直接的に塗布される。スリットコータノズル303は、回路基板301との間の距離を任意に設定することができる。それゆえ、「回路基板301との間のギャップ距離の調整」と「光反応性の金属酸化物前駆体原料を供給するポンプ圧力の調整」とによって、塗布膜厚を好適に制御できる。スリットコータ法は、スプレー法よりも比較的厚い塗布膜310を大きなサイズで実現することができ、かつ、一定厚みで塗布することができる。スリットコータ法では、例えば30μm〜50μm程度の厚みの塗布膜310を形成できる。
尚、「光反応性の金属酸化物前駆体原料」には、金属酸化物、特に金属酸化物粒子(金属酸化物の粉末)を添加しておいてもよい。何故なら、最終的に形成される“金属酸化物膜”につき絶縁性向上や熱的性質(熱膨張・熱伝導度)の制御が可能となり得るからである。金属酸化物粒子としては、例えば、Al、SiO、MgOおよびTiOから成る群から選択される材料を含んで成る粒子であってよい(それゆえ、例えば金属酸化物粒子はAl粒子、SiO粒子、MgO粒子またはTiO粒子などであってよい)。金属酸化物粒子の粒径自体は例えば約0.1μm〜約0.5μm程度である。
塗布された「光反応性の金属酸化物前駆体原料」(塗布膜)は、乾燥に付されることによって、それに含まれている有機溶剤などが減じられ、結果的に絶縁膜(金属酸化物の前駆体膜)が形成される。つまり、乾燥により有機溶剤などの気化成分が金属酸化物前駆体原料から抜けていく。尚、「光反応性の金属酸化物前駆体原料」への熱付与により乾燥させることに必ずしも限定されず、有機溶剤が気化するのであれば他の手段を用いてもよく、例えば、塗布された「光反応性の金属酸化物前駆体原料」を減圧下または真空下に置いてもよい。
熱付与により乾燥を行う場合では、例えば、塗布された「光反応性の金属酸化物前駆体原料」を大気圧下で50〜200℃程度(好ましくは60℃〜150℃)の温度条件下に付すことが好ましい。また、減圧下または真空下に置く場合では、減圧度または真空度は有機溶剤の飽和蒸気圧以下に維持することによって有機溶剤の蒸発を進行させることになる。例えば、7〜0.1Pa程度の減圧下または真空下に付すことが好ましい。必要に応じて「熱付与」と「減圧下または真空下」とを組み合わせて乾燥を実施してもよい。
“乾燥”により形成される絶縁膜は、その厚さが好ましくは1μm〜40μm、より好ましくは2μm〜15μm、更に好ましくは3μm〜10μm(例えば約4μm)であってよい。塗布方法および塗布膜との関係で例示すると、スプレー法では8〜12μm程度の厚みの塗布膜を形成し、乾燥の後に3〜5μm程度の厚みとなるようにしてよく、一方、スリットコータ法では30〜50μm程度の厚みの塗布膜を形成し、乾燥の後に20〜30μm程度の厚みとなるようにしてよい。
工程(i)に引き続いて工程(ii)を実施する。つまり、絶縁膜105を露光および現像処理に付すことを通じて絶縁膜105にバイアホール用開口部107を形成する(図1(c)および(d)参照)。例えば、露光および現像を含んだリソグラフィーを実施することによって、絶縁膜105にバイアホール用開口部107を形成してよい(リソグラフィーの態様は、特に制限されるものではなく、露光および現像後に、リンスおよびエッチング処理などを含む態様であってもよい)。
露光は、例えば、所望のパターンを備えたフォトマスクを絶縁膜に配して行う態様の他、そのようなマスクを用いないダイレクト露光の態様であってもよい。いずれの態様であっても、適当な光を所望のパターンで絶縁膜に対して照射する。照射する光は、常套のリソグラフィーに用いられているものであれば、特に制限はない。例えば、照射光は、紫外線(UV)、可視光、X線、赤外線、放射光などのいわゆる“光”の認識に相当するものであってよい他、必要に応じてイオンビームや電子線なども用いてよい。1つ例示すると、UV光を用いてマスク露光を行う(例えば、約360〜370nmの波長のUV光につき80〜120mJ/cmの光量であってよい)。また、露光形態は、特に限定されず、密着露光、近接露光および投影露光などのいずれの形態であってもよい。
露光処理に引き続いて、現像処理を行う。かかる現像処理も常套のリソグラフィーで採用されている処理であれば、特に制限はない。つまり、絶縁膜の露光領域が現像液に溶け出す“ポジ型”に相当するものであれば、それに適した現像液で処理すればよく、その逆で、絶縁膜の露光領域が現像液に溶解しないで残る“ネガ型”に相当するものであれば、それに適した現像液で処理すればよい。現像の処理形態なども特に制限はなく、浸漬法、スプレー法およびパドル法などを利用してよい。このような現像処理によって、絶縁膜105にバイアホール用開口部107が形成される。尚、必要に応じて、現像後においてリンスやエッチング処理などを付加的に行ってもよい。
工程(ii)に引き続いて、工程(iii)を実施する。つまり、絶縁膜105を熱処理に付して無機金属酸化物膜とし、それによって無機金属酸化物膜から成るビルドアップ絶縁層106を得る(図1(e)参照)。
かかる熱処理では、絶縁膜105が加熱されることに起因して、絶縁膜105において反応または形態変化などが進行し、最終的に無機金属酸化物膜が形成される。あくまでも例示にすぎないが、「光反応性の金属酸化物前駆体原料」が感光性ゾルゲル原料を含んで成るものである場合、加水分解反応および/または縮合反応などが進行して最終的に無機金属酸化物膜が形成される。
工程(iii)の熱処理の温度は、比較的低い温度である。具体的に例示すると、工程(iii)の熱処理の温度は、500℃以下、好ましくは400℃以下、より好ましくは300℃以下(例えば250℃以下)であってよい。このような熱処理の温度の下限値は、特に制限はないものの、同様に例示すると、200℃、好ましくは150℃、より好ましくは120℃(例えば100℃)であってよい。
絶縁膜105を熱処理に付す時間は、金属酸化物の無機膜が最終的に得られるものであれば、特に制限はない(一般的には、必要な反応に要する熱量などを考慮することになり、加熱温度や原料の種類などによって好適な加熱時間を決定すればよい)。熱処理手段としては、例えば、焼成炉のような加熱チャンバーを用いてよい。この場合、加熱チャンバー内に「絶縁膜105が形成された回路基板104」を供することによって、絶縁膜105を全体的に熱処理できる。
1つ例示すると、工程(i)にて80℃〜120℃程度の乾燥温度とし、工程(ii)でUV光を用いてマスク露光を行った場合(例えば、約360〜370nmの波長のUV光につき80〜120mJ/cmの光量とした場合)などでは、180℃〜220℃程度の温度で焼成を行うことで、金属酸化物膜よりなるビルドアップ絶縁層106を得ることができる。
工程(iii)に引き続いて、工程(iv)を実施する。つまり、ビルドアップ絶縁層106に対してめっき処理を施すことによって開口部107にバイアホール109を形成すると共にビルドアップ絶縁層106上に金属層108を形成し(図1(f)参照)、その金属層108にエッチング処理を施してビルドアップ配線パターン110を形成する(図2(a)参照)。
1つ例示すると、バイアホール用の開口部107を設けたビルドアップ絶縁層106に対して、無電解めっき法および電解めっき法を実施して金属銅層108を形成する。無電解めっきでは銅を利用することができ、更に電解銅めっきを行うことにより、ビルドアップ絶縁層106上だけでなく、開口部107にも選択的に厚く銅めっきすることが可能となる。つまり、開口部107を埋めるとともに、ビルドアップ層へも平坦な銅めっきを施すことができる。
開口部107が銅めっきで充填されることでバイアホール109が形成されるが、開口部107にはデスミア処理や粗化処理などを行って銅層との密着性を改善してよい。また、無電解めっきを行う前にスパッタ法でTiなどの下地層を形成してもよい。これにより銅層とビルドアップ層との接着性が良好となり得る。形成された金属層108はフォトリソグラフィー法および化学的エッチング法などに付し、それによって、図2(a)に示すように金属層108からビルドアップ配線パターン110を形成してよい。
以上のような工程を経ることによって、回路基板104上にビルドアップ絶縁層106およびビルドアップ配線パターン110を形成することができる(図2(a)参照)。引き続いて、工程(v)として上記の工程(i)〜(iv)を繰返し行うと、回路基板104上に複数のビルドアップ絶縁膜106とビルドアップ配線パターン110とを形成することができ、最終的にビルドアップ基板100が得られることになる(図2(b)参照)。つまり、ビルドアップ基板100として、無機絶縁膜を備えた多層基板が得られる。
(製造プロセス態様2)
次に、製造プロセス態様2として、図5および図6を参照して本発明のビルドアップ基板の製造方法について説明する(説明の重複を避けるため“製造プロセス態様1”と同様の事項は原則除いて説明する)。
まず、図5(a)に示すように、離型キャリア500を供する。かかる離型キャリア500は、最終的に除去することになる部材である。ここで、離型キャリア500としては、後に剥離しやすいような有機フィルムを利用することができ、例えばPETやPPSなどから成る有機フィルムを利用してよい。また別法にて、離型キャリア500としては、化学的に溶かして除去することが可能な金属箔も利用することができ、例えば銅箔などを利用してよい。離型キャリア500は、“キャリア”として以降の工程で有る程度の搬送などに耐えるように、80〜120μm程度の厚みを有していることが好ましい。図5(b)に示すように、離型キャリア500上には配線パターン501を形成する。例えば、無電解銅めっきを0.3〜0.7μm程度の厚みで実施し、その導電性を利用して電解銅めっきを3〜7μm程度の厚み行ってよい。次いで、銅めっき処理を行って得られた金属層を化学エッチング法に付して配線パターン501を形成する。引き続いて、「光反応性の金属酸化物前駆体原料」を塗布して乾燥に付し、それによって、絶縁膜105たる金属酸化物前駆体膜を形成する(図5(c)参照)。かかる塗布は、上述したようなスプレー法またはスリットコータ法を利用してよいし、あるいは、ドクターブレード法またはバーコータ法などを利用してもよい。それ以降に実施する工程(図5(d)〜6(b)に示される工程)は、上述の工程(ii)〜(v)と実質的に同様である。つまり、絶縁膜105を露光・現像処理に付すことを通じて絶縁膜105にバイアホール用開口部107を形成する(図5(d)および(e)参照)。次いで、絶縁膜105を熱処理に付して無機金属酸化物膜とし、それによって無機金属酸化物膜から成るビルドアップ絶縁層106を得る(図5(f)参照)。次いで、ビルドアップ絶縁層106に対してめっき処理などを施すことによってバイアホール109を形成すると共に金属層108を形成し(図5(g)参照)、その金属層108にエッチング処理を施してビルドアップ配線パターン110を形成する(図6(a)参照)。以降、そのような処理を繰り返して実施することによって、離型キャリア500上に複数のビルドアップ絶縁膜105とビルドアップ配線パターン110とを積層させることができる(図6(b)および(c)参照)。最終的には、図6(c)および(d)に示すように、離型キャリア500を剥離すると、極薄の多層ビルドアップ基板100’を得ることができる。
(製造プロセス態様3)
次に、製造プロセス態様3として、図7(a)〜(h)を参照して本発明のビルドアップ基板の製造方法について説明する(説明の重複を避けるため“製造プロセス態様1”および“製造プロセス態様2”と同様の事項は原則除いて説明する)。
かかる製造プロセス態様3は、上述の工程(iv)に代えて、(iv)’として、「ビルドアップ絶縁層の表面にレジストを形成した後でビルドアップ絶縁層およびレジストに対して全体的にめっき処理を施し、レジストを最終的に除去することによって、レジストの非形成部にバイアホールおよびビルドアップ配線パターンが設けられる態様」を実施する。
まず、図7(a)〜(c)に示すように、上述の工程(i)〜(iii)を実施する。つまり、配線パターン703を備えた回路基板704の両面または片面に対して光反応性の金属酸化物前駆体原料を塗布し、その原料を乾燥処理に付して絶縁膜705を形成する(図7(a)および(b)参照)。次いで、絶縁膜705を露光・現像処理に付すことを通じて絶縁膜705にバイアホール用開口部707を形成する(図7(c)参照)。次いで、熱処理に付して絶縁膜705を無機金属酸化物膜とし、それによって無機金属酸化物膜から成るビルドアップ絶縁層706を得る(図7(d)参照)。
バイアホール用開口部707を設けたビルドアップ層に、後の工程で行う銅などの電解めっきに供するため10nmから100nm程度の薄膜電極を形成してよい(薄いため図示せず)。かかる薄膜電極の形成は、例えばPd触媒液に浸し乾燥の後、無電解ニッケルめっきを全体に行う方法で形成することができる。このように全体を薄く金属層で無電解めっきする手法の他に、金属銅や金属ニッケル、金属銅や金属チタン又は金属ニッケルとクロムの合金などをスパッタして形成してもよい。このようにして形成した金属ニッケル層やチタン層上に、以降にて電解銅めっきを施したくない部分にフォトリソグラフィー法によりフォトレジスト708を形成する(図7(e)参照)。フォトレジスト708は基板全面レジストを塗布した後、マスクパターン露光、レジスト現像処理を行って形成することができる。フォトレジスト層708の厚みは所望の銅電極の厚みである5μm以上であることが望ましい。次いで、先に形成したニッケル層を共通電極とし、図7(f)に示すように電解銅めっきにより厚い銅層710を形成する。尚、開口部707には電解銅めっきにより充填されることでバイアホール711が形成される。この際、開口部にはデスミア処理、粗化処理などを行って銅層との密着性を改善してよい。電解銅めっきの後では、図7(g)のようにレジスト708を剥離し、全面を薄くエッチングすることで、銅表面と下地のニッケル層やチタン層を除去して完成とする。以降は、上記処理を繰り返して実施することによって、回路基板704上において複数のビルドアップ絶縁層706とビルドアップ配線パターン710とを積層させる(図7(h)参照)。
(その他の製造プロセス態様)
本発明の製造方法では、工程(iii)における絶縁膜の加熱処理(例えば焼成処理)が250℃以下であることが望ましい。なぜなら、配線パターンを有する回路基板の選択肢が広がるからである。例えばガラスエポキシ樹脂に限らず、PPS、PENなどの有機フィルムをベースとするフレキシブル基板を利用することが可能となる。また、工程(iii)における絶縁膜の加熱処理(例えば焼成処理)は、その雰囲気条件が真空雰囲気もしくは不活性ガス雰囲気であることが望ましい。なぜなら、銅などの配線パターンの酸化を防止できるからである。
(光反応性の金属酸化物前駆体原料)
次の本発明の特徴部分の1つである「光反応性の金属酸化物前駆体原料」について詳述する。
本発明の製造方法では、工程(i)で用いる光反応性の金属酸化物前駆体原料が、感光性ゾルゲル原料を含んで成るものであってよい。一般にゾルゲル原料は、金属酸化物の前駆体溶液から出発し、熱処理などを通じて、加水分解・縮重合などの化学反応を経てゲル(ゼリー状の固体)化し、更に熱処理をすることにより内部に残された溶媒を取り除き、緻密化を促進させることによってガラスやセラミックスなどの無機金属酸化物とすることができる。このような原料を用いた“ゾルゲル法”では、セラミックスの焼成膜や、ガラス膜など、他の方法と比較して低温かつ容易に金属酸化物膜を作成することができる。また、“ゾルゲル法”では、化学反応を利用し、低温で作製することが可能であるので有機物と無機物との複合化が可能となる。具体的な作製方法は、例えば無機・有機金属塩の溶液を出発溶液とする。この溶液を加水分解および縮重合反応に付してコロイド溶液(Sol)とし、さらに反応を促進させることにより流動性を失った固体(Gel)とする。このGelを熱処理すると金属酸化膜を作製することができる。
特に本発明の製造方法で用いる感光性ゾルゲル原料は、アルコキシド化合物を含んで成るものであってよい。かかる場合、アルコキシド化合物を含んだ前駆体溶液が加水分解反応および/または縮重合反応などを経ることによって、最終的に無機金属酸化物膜のビルドアップ絶縁層とすることができる。アルコキシド化合物としての金属アルコキシドは、M(OR)で表される化合物である(Mは金属、Rはアルキル基および/またはアルキレン基)。例えば、金属アルコキシドとしてのSi(OC)(テトラエチルシラン)を出発原料とし、適度な水を添加して加水分解を引き起こさせる。ただし水による反応は非常に遅いため、酸と塩基触媒を用いて、短時間で加水分解反応を促進する方法を利用してもよい。そのために、本発明では、光酸発生剤を前駆体原料に添加してよく、UV照射された部分だけ、反応が進み、それ以外の部分は反応が遅くなるように調整してよい。
上記のような原料は、ペースト形態ないしは液体形態を有し得るので、スプレー法またはスリットコータ法で塗布を行うことができる(図2または図3参照)。原料がゲル化した前駆体膜(即ち絶縁膜105,705)をUV露光、溶媒エッチングし、更に加熱することで金属酸化物である酸化ケイ素の膜を得ることができる。即ち、酸化ケイ素膜から成るビルドアップ絶縁層(106,706)を得ることができる。
本発明においては、ビルドアップ絶縁層は、酸化ケイ素膜に特に限定されるわけではなく、用いる金属アルコキシドの種類などに応じて、例えば、酸化アルミニウム、酸化マグネシウムおよびそれらの化合物から成る群から選択される金属酸化物の膜を形成することができる。酸化アルミニウム、酸化ケイ素、酸化マグネシウムおよびそれらの化合物から成る群から選択される金属酸化物は、電気絶縁性と熱伝導性とに優れる点で望ましい(“熱伝導性”についていうと、例えば約20W/mK以下の良好な熱伝導性を実現することができる)。
本発明において、感光性ゾルゲル原料は、無機ネットワーク(無機網目構造)中に分子レベルで有機官能基を含んだハイブリッド材料(複合材料)を含んで成るものであってよい。なぜなら、容易に感光性などの機能を付与することが可能であって、無機材料としての耐熱性、配線パターンとの接着性などの利点を踏襲しながら、容易なバイアホール加工性を有し得るからである。上記ハイブリッド材料(複合材料)は、例えば「有機官能基を含んだシロキサンオリゴマー」であってよい。このようなハイブリッド材料は、分子レベルの組成制御が可能であり、各種の適当な有機官能基の導入などにより、光学特性や、絶縁性、誘電率制御など電子分野への応用が容易となる。例えば、導入する有機官能基によって感光性や透明性などの各種の機能を付与することができる。「有機官能基を含んだシロキサンオリゴマー」を例にとると、シルセスキオキサンを使用して、有機官能基としてマレイミド基、メタクリロキシ基および/またはフェニル基などを導入してよい。マレイミド基を導入すれば“感光性”を付与でき、メタクリロキシ基を導入すれば“低温硬化性”を付与でき、そして、フェニル基を導入すれば“絶縁膜の製膜性または柔軟性”が向上し得る。
尚、本発明においては、感光性ゾルゲル原料が「β−ジケトンなどで化学修飾された金属アルコキシド」を含んで成るであってもよい。例えば、感光性ゾルゲル原料が、アセチルアセトンまたはベンゾイルアセトンなどで化学修飾された金属アルコキシドを含んで成るものであってよい。このような感光性ゾルゲル原料を用いると、ZrO、TiO、Al、Al−SiOを含んで成る無機金属酸化物膜を形成することができる。より具体的に説明すると、適当な金属アルコキシドに対して、化学修飾剤としてβ−ジケトン(例えばアセチルアセトンまたはベンゾイルアセトン)、増感剤(例えばベンゾフェノンまたはアセトフェノン)および溶剤(例えばイソプロピルアルコールなどのアルコール類)などを加えて調製される原料を用いてよく、その原料を塗布して得られる原料膜に対してUV光などを照射することを通じて、上記の金属酸化物膜を形成することができる。
[本発明のビルドアップ基板および半導体集積回路パッケージ]
次に、本発明のビルドアップ基板および半導体集積回路パッケージについて説明する。
(ビルドアップ基板の基本構成)
本発明のビルドアップ基板100は、上述の製造方法で得られる基板である。図8に示されるように、配線パターン103を備えた回路基板104の両面または片面にてビルドアップ絶縁層106とビルドアップ配線パターン110(電極層)とが積層しており、ビルドアップ絶縁層106が、「光反応性の金属酸化物前駆体原料から形成された無機金属酸化物膜」から構成されている。ビルドアップ層106は、1層に限らず、複数の層設けられていてよい(尚、ビルドアップ層に設けられているバイアホール109は、異なる層の配線パターン層同士を電気的に相互接続するために供されている)。上述したように、本発明のビルドアップ基板100では、ビルドアップ絶縁層106の“金属酸化物の無機膜”が、例えば、酸化アルミニウム、酸化ケイ素、酸化マグネシウムおよびそれらの化合物から成る群から選択される少なくとも1種を含んで成っている。また、ビルドアップ絶縁層106は、その厚さが好ましくは1μm以上かつ20μm以下、より好ましくは1μm以上かつ15μm以下、更に好ましくは1μm以上かつ10μm以下となっている(場合によってはビルドアップ絶縁層の厚さは1μm未満にも成り得る)。このようなビルドアップ絶縁層は、絶縁性および熱伝導性に優れる層としてより好適に機能を発揮し得る。また、薄いビルドアップ絶縁層に起因して、モバイル用途における電子機器の薄型化には大きく貢献する(あくまでも1つの例示にすぎないが、ビルドアップ絶縁層が20μmの厚さであった場合、それが10層積層しても積層厚さが0.2mm程度になるにすぎず、薄い基板が実現される)。
尚、ビルドアップ絶縁層の原料となる「光反応性の金属酸化物前駆体原料」に金属酸化物粒子(金属酸化物の粉末)が含まれる場合、ビルドアップ絶縁層がその金属酸化物粒子を含んで成る。かかる場合、例えばビルドアップ絶縁層はAl粒子、SiO粒子、MgO粒子および/またはTiO粒子(粒径:約0.1μm〜約0.5μm)を含んで成る。
ビルドアップ基板100は、所望のサイズにカットされ、半導体ベアチップが搭載されることで、図9に示すような半導体集積回路パッケージ400が得られることになる。
図9における半導体集積回路パッケージ400は、本発明のビルドアップ基板100に半導体ベアチップ414をC4(Controlled Collapse Chip Connection)実装法で搭載して得ることができる。このような半導体集積回路パッケージ400は、ビルドアップ絶縁層に無機金属酸化物膜と銅配線とで積層された構成となっているので、各種の熱履歴に対して基板反り変化が極めて少なく、また基板が半導体ベアチップと近い熱膨張係数となるため、フリップチップ実装の信頼性が高く良好となる。更には、熱伝導度も通常のビルドアップ基板よりも良好であり、半導体ベアチップで生じる熱を速やかに逃がすこともできる。そして何よりも、薄いビルドアップ絶縁層に起因して、通常の半導体集積回路パッケージよりも薄くすることができる。
ここで、本発明の特徴の1つとなる“基板の大型化”について説明しておく。従来において無機材料よりなる通常のセラミック基板では、1辺が100mm程度の焼結体しか得られなかったが、本発明ではプリント基板業界での一般的サイズである330mm×500mm、又は500mm×500mmなどといったサイズの大型基板とした場合であっても容易に塗布および熱処理して基板を得ることができる。従って、本発明は、プリント基板業界、特にビルドアップメーカのインフラがそのまま利用できるという工業上極めて優れた利点を有している。
尚、配線パターンを備えた回路基板104は、有機材料を絶縁材とするものであってよく、その基板を貫通する貫通スルーホールを少なくとも1つ備えたものであってよい。かかる場合、上記の有機材料が、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂のいずれか、またはそれらの組み合わせよりなるものが好ましい。安価な有機材料よりなる回路基板を利用できるからである。
また、配線パターンを備えた回路基板104は、無機材料を絶縁材とするものであってよく、その基板を貫通する貫通スルーホールを少なくとも1つ備えたものであってよい。ビルドアップ基板の実質全ての材料構成を無機材とすることが可能となり、優れた絶縁性および熱伝導性がもたらされるうえ、耐熱性、ヒートサイクルなど高い信頼性を有する回路基板が得られるからである。上記の無機材料は、ガラス、セラミックのいずれか、またはそれらの混合物よりなるとよい。更にいえば、上記のガラスが、硼ケイ酸ガラス、アルミノケイ酸ガラスおよびアルミノ硼ケイ酸ガラスから成る群から選択される少なくとも1種のガラスであるものが好ましい。このように回路基板がガラス基板であると、ビルドアップ絶縁層及び配線パターンの全てが無機材料からなるため、基板としての信頼性が増すばかりか、熱膨張係数もシリコン半導体に近いため、高い実装信頼性が得られる。また近年薄いガラス板(25〜50μm程度)が供給されつつあり、全体として曲げに耐えるビルドアップ基板が得られることになる。また、上記のセラミックは、アルミナ、ムライトおよびジルコニアから成る群から選択される少なくとも1種のセラミックであることが好ましい。回路基板のセラミック基板であると、ガラス基板と同様、シリコン半導体と同程度の熱膨張係数となり、高い信頼性を有するビルドアップ基板が得られる。また、熱伝導度に優れたビルドアップ基板が得られるという格別の効果もある。
(極薄ビルドアップ基板)
本発明では、極めて薄いビルドアップ基板が提供される。かかる基板は、上述の「製造プロセス態様2(図5〜6参照)」で得られる多層ビルドアップ基板100’である(図10参照)。
このような、極めて薄いビルドアップ基板100’は、高い信頼性と相俟って、半導体集積回路パッケージ400’として用いるうえで好適である(図11参照)。また、その製造時にて離型キャリアのサイズを選ばないため、プリント基板業界での一般的サイズである330mm×500mm、又は500mm×500mmなどの大型サイズを有する基板としても容易に実現可能である。
(トランジスタを備えたビルドアップ基板)
本発明のビルドアップ基板は、ビルドアップ絶縁層が「光反応性の金属酸化物前駆体原料」に起因して、極めて薄くなっており、有機系絶縁材では得られない高い絶縁性を有しているので、更に高い機能を発揮させることができる。例えば、図12に示すように、トランジスタをビルドアップ基板内又は表層に備えたビルドアップ基板が実現される。
図12に示す構成においては、「ビルドアップ絶縁層601a、601b、601c、601d上に形成した配線パターン605a,605b,605cと、配線パターン606a,606b,606cとの上にて、それらと接するように金属酸化物半導体膜604a、604b、604cがそれぞれ形成されており、これにより、電界効果型トランジスタが供されている。図12に示す構成を備えたビルドアップ基板では、配線パターン605a,605b,605cと、配線パターン606a,606b,606cがソース又はドレイン、金属酸化物半導体膜604a、604b、604cが半導体層、金属酸化物の無機膜601a、601b、601cが、ゲート絶縁膜として機能し得、このゲート絶縁膜の直上又は直下の配線パターンがゲート電極として機能し得る。尚、金属酸化物半導体604a,604b,604cとしては、In−Ga−Zn−O系もしくはIn−Zn−O系の金属酸化物半導体が利用できる。金属酸化物半導体は、スパッタ法で作製できるが、本発明におけるビルドアップ絶縁層の形成のように金属酸化物前駆体原料の塗布を通じて得ることもできる。
本願発明においては、ビルドアップ絶縁層が例えば約1μm程度の薄い無機金属酸化物膜より形成されているため、ソース電極及びドレイン電極となる配線層上に形成された金属酸化物半導体膜上のビルドアップ絶縁層がゲート絶縁膜として作用し、更にその上部に形成された配線パターンがゲート電極として機能する。これによりソース電極とドレイン電極間に電圧を印加した状態で、ゲート電極に電位を加えると、それにより金属酸化物半導体膜がスイッチし、ドレイン電流を制御することができる。このようにビルドアップ基板内もしくは表層に半導体素子を形成することができ、能動素子内蔵のビルドアップ基板が実現される。
さらに本発明では、薄いビルドアップ絶縁膜を利用してコンデンサなどが供されることは言うまでもない。つまり、薄い絶縁層上に更に所望の配線パターンを形成することで、コンデンサを形成することが可能となる。本発明では、絶縁層が薄く絶縁性に優れ、有機系材料よりも誘電率を高くすることが可能なため、高容量のコンデンサをビルドアップ基板内もしくは表層に設けることができる。その結果、能動素子は勿論のこと、コンデンサや抵抗体などの受動素子も機能内蔵することが可能となる。更には、上述の「製造プロセス態様2(図5〜6参照)」で得られる多層ビルドアップ基板100’、即ち、回路基板を備えていないビルドアップ層および配線パターンを有する基板が、上記のような電界効果トランジスタを有していても良いことは言うまでもない。付言しておくと、通常、金属酸化物半導体は、本発明のように金属酸化物半導体の前駆体原料を塗布・加熱処理して得ることができるが、550℃程度の温度が必要とされている。このような高温に耐えるビルドアップ基板は従来では無いものの、本発明のように無機系の金属酸化物としてのビルドアップ絶縁膜と金属配線層とから構成される無機系のビルドアップ基板であれば、そのような不都合が回避される。更に、本発明では、ビルドアップ基板に半導体ベアチップが搭載されると、内蔵した電界効果トランジスタが保護素子として機能したり、電源電圧の変動を抑制するコンデンサを有する、極めて高機能な半導体集積回路パッケージを実現することができる。
最後に、本発明は下記の態様を有するものであることを確認的に付言しておく。
第1態様:回路基板上に絶縁層と配線パターン層とが積層されたビルドアップ基板の製造方法であって、
(i)配線パターンを備えた回路基板の両面または片面に対して、光反応性の金属酸化物前駆体原料を塗布し、該光反応性の金属酸化物前駆体原料を乾燥処理に付して絶縁膜を形成する工程、
(ii)前記絶縁膜を露光および現像処理に付すことを通じて該絶縁膜にバイアホール用開口部を形成する工程、
(iii)前記絶縁膜を熱処理に付して該絶縁膜を金属酸化物膜とし、それによって該金属酸化物膜から成るビルドアップ絶縁層を得る工程、ならびに
(iv)前記ビルドアップ絶縁層に対してめっき処理を施すことによって前記開口部にバイアホールを形成すると共に前記ビルドアップ絶縁層上に金属層を形成し、該金属層にエッチング処理を施してビルドアップ配線パターンを形成する工程
を含んで成り、
(v)前記(i)〜(iv)の工程を少なくとも1回以上繰返し行う、ビルドアップ基板の製造方法。
第2態様:上記第1態様において、前記工程(iii)における前記絶縁膜の前記熱処理を500℃以下かつ100℃以上の温度で行うことを特徴とするビルドアップ基板の製造方法。例えば、絶縁膜の熱処理を好ましくは400℃以下、より好ましくは300℃以下、例えば250℃以下の温度で行ってよい。これにつき1つ例示すると、“焼成”に付すことによって絶縁膜を金属酸化物絶縁膜とし、それによってビルドアップ絶縁膜を得てよい。
第3態様:上記第1態様または第2態様において、前記工程(iii)における前記絶縁膜の前記熱処理を真空下もしくは不活性ガス雰囲気下で行うことを特徴とするビルドアップ基板の製造方法。
第4態様:上記第1態様〜第3態様のいずれかにおいて、前記工程(i)で用いる前記光反応性の金属酸化物前駆体原料が、感光性ゾルゲル原料を含んで成ることを特徴とするビルドアップ基板の製造方法。
第5態様:上記第4態様において、前記工程(i)で用いる前記光反応性の金属酸化物前駆体原料が、アルコキシド化合物を含んで成ることを特徴とするビルドアップ基板の製造方法。
第6態様:上記第5態様において、前記(iii)では、前記アルコキシド化合物の加水分解反応を通じて、該アルコキシド化合物から前記金属酸化物膜を得ることを特徴とするビルドアップ基板の製造方法。
第7態様:上記第1態様〜第6態様のいずれかにおいて、前記工程(i)で用いる前記光反応性の金属酸化物前駆体原料が、無機ネットワーク中に有機官能基を含んだハイブリッド材料を含んで成ることを特徴とするビルドアップ基板の製造方法。
第8態様:上記第7態様において、前記ハイブリッド材料が、有機官能基を含んだシロキサンオリゴマーであることを特徴とするビルドアップ基板の製造方法。
第9態様:上記第1態様〜第8態様のいずれかにおいて、前記工程(i)では、前記光反応性の金属酸化物前駆体原料の前記塗布をスプレー法またはスリットコータ法によって行うことを特徴とするビルドアップ基板の製造方法。これは「感光性の金属酸化物前駆体原料」がペースト形態ないしは液体形態を有し得るので、光反応性の金属酸化物前駆体原料をスプレー法またはスリットコータ法によって塗布することができることを意味している。
第10態様:上記第1態様〜第9態様のいずれかにおいて、前記回路基板が、配線パターンを備えた金属箔または有機フィルムから構成されており、
前記工程(i)では、前記回路基板の片面に前記光反応性の金属酸化物前駆体原料を塗布し、また
前記工程(v)の後において、前記金属箔または前記有機フィルムを除去することを特徴とするビルドアップ基板の製造方法。かかる第10態様の製造方法では、コア基板の無いビルドアップ基板を得ることができる。つまり、極めて薄い多層ビルドアップ基板を得ることができる。
第11態様:上記第1態様〜第10態様のいずれかにおいて、前記工程(iv)に代えて、(iv)’として、前記ビルドアップ絶縁層の表面にレジストを形成した後で該ビルドアップ絶縁層および該レジストに対して全体的にめっき処理を施し、最終的に該レジストを除去することによって、該レジストの非形成部に前記バイアホールおよび前記ビルドアップ配線パターンを設けることを特徴とするビルドアップ基板の製造方法。つまり、本発明の製造方法では、バイアホールおよびビルドアップ配線パターンは、レジストを用いることを通じて形成してもよい。
第12態様:上記第1態様〜第11態様のいずれかにおいて、前記光反応性の金属酸化物前駆体原料が、Al、SiO、MgOおよびTiOから成る群から選択される材料から成る粒子(粒径:0.1μm〜0.5μm)を含んで成ることを特徴とするビルドアップ基板の製造方法。
第13態様:ビルドアップ基板であって、
配線パターンを備えた回路基板の両面または片面にてビルドアップ絶縁層とビルドアップ配線パターンとが積層しており、
前記ビルドアップ絶縁層が、光反応性の金属酸化物前駆体原料から形成された金属酸化物膜から成る、ビルドアップ基板。
第14態様:上記第13態様において、前記ビルドアップ絶縁層の前記金属酸化物膜が、酸化アルミニウム、酸化ケイ素および酸化マグネシウムから成る群から選択される少なくとも1種の金属酸化物を含んで成ることを特徴とするビルドアップ基板。
第15態様:上記第13態様または第14態様において、前記ビルドアップ絶縁層が1μm以上かつ20μm以下の厚さを有していることを特徴とするビルドアップ基板。つまり、本発明におけるビルドアップ絶縁層は、その厚さが例えば1μm以上かつ20μm以下と非常に薄い絶縁層を成し得る。
第16態様:上記第13態様〜第15態様のいずれかにおいて、前記回路基板の絶縁性基板部(絶縁部)が有機材料から成り、該絶縁性基板部(絶縁部)を貫通する少なくとも1つの貫通スルーホールが該回路基板に設けられていることを特徴とするビルドアップ基板。
第17態様:上記第16態様において、前記絶縁性基板部の前記有機材料が、エポキシ樹脂、フェノール樹脂およびポリイミド樹脂から成る群から選択される少なくとも1種を含んで成ることを特徴とするビルドアップ基板。
第18態様:上記第13態様〜第15態様のいずれかにおいて、前記回路基板の絶縁性基板部(絶縁部)が無機材料から成り、該絶縁性基板部(絶縁部)を貫通する少なくとも1つの貫通スルーホールが該回路基板に設けられていることを特徴とするビルドアップ基板。
第19態様:上記第18態様において、前記絶縁性基板部の前記無機材料が、ガラス成分およびセラミック成分から成る群から選択される少なくとも1種を含んで成ることを特徴とするビルドアップ基板。
第20態様:上記第19態様において、前記ガラス成分が、硼ケイ酸ガラス、アルミノケイ酸ガラスおよびアルミノ硼ケイ酸ガラスから成る群から選択される少なくとも1種のガラス成分であることを特徴とするビルドアップ基板。
第21態様:上記第19態様において、前記セラミック成分が、アルミナ、ムライトおよびジルコニアから成る群から選択される少なくとも1種のセラミック成分となっていることを特徴とするビルドアップ基板。
第22態様:上記第13態様〜第21態様のいずれかにおいて、前記ビルドアップ基板にトランジスタ素子が設けられており、
前記ビルドアップ絶縁層の前記金属酸化物膜の少なくとも一部がゲート絶縁膜として作用し、
前記ビルドアップ基板が、
前記金属酸化物膜の上にて金属酸化物半導体から構成された半導体膜、
前記半導体膜上と接するように前記ビルドアップ配線パターンの少なくとも一部から構成されたソース電極・ドレイン電極、および
前記ゲート絶縁膜の「前記半導体膜を形成した面の反対面側」に位置する前記ビルドアップ配線パターンの少なくとも一部から構成されたゲート電極
を有して成ることを特徴とするビルドアップ基板。
第23態様:上記第13態様〜第22態様のいずれかにおいて、前記ビルドアップ絶縁層の前記金属酸化物膜が、Al、SiO、MgOおよびTiOから成る群から選択される材料から成る粒子(粒径:0.1μm〜0.5μm)を含んで成ることを特徴とするビルドアップ基板。
第24態様:上記第13態様〜第23態様のいずれかのビルドアップ基板を有して成る半導体集積回路パッケージであって、
バンプを介して前記ビルドアップ絶縁層上の前記ビルドアップ配線パターンに対して半導体ベアチップがフリップチップ実装されている、半導体集積回路パッケージ。
以上、本発明について説明してきたが、本発明の適用範囲のうちの典型的態様を例示したにすぎない。従って、本発明ではこれに限定されず、種々の態様が付加的または代替的に考えられることを当業者は容易に理解されよう。
最後に、本発明において奏し得る効果について、下記に纏めて述べておく。

● 本発明に係るビルドアップ基板の製造方法では、コアとなる回路基板の両面または片面にて感光性の金属酸化物前駆体溶液から絶縁膜を形成し、バイアホール用開口部の加工を行った後、焼成などの加熱処理により金属酸化物絶縁膜を得るので、薄く絶縁信頼性に優れたビルドアップ絶縁膜を得ることができる。

● 感光性の金属酸化物前駆体溶液を塗布し、乾燥の後、一括してマスク露光し、更に現像処理で一括してバイアホール用開口部の加工が行えるので、バイアホールの位置精度が良好であり、且つ5〜20μm程度の小径化バイアホールが安価に大型基板サイズで簡易に得ることができる。さらに、ビルドアップ絶縁膜として緻密な金属酸化物絶縁膜が得られるので、有機物のような残渣が生じず、ビルドアップ基板のようなデスミア処理は不要となる。加えて、金属酸化物前駆体溶液を塗布する工程が、スプレー法やスリットコータ法によって行うことできるので、均一な製膜が大きさサイズで簡易に行うことができる。

● 本願発明の製造方法によれば、金属酸化物前駆体膜の焼成を好ましくは250℃以下の低温度で行うことができる。このため、各種のコア用回路基板の選択が自由である。本発明の基板構成としては絶縁材料層と配線パターン層とが積層しており、絶縁材料層が、感光性の無機金属酸化物前駆体膜を焼成して得られる無機ビルドアップ絶縁材からなり、それゆえ、緻密で絶縁性及び絶縁信頼性に優れている。このように、本発明に係るビルドアップ基板は、薄く微細な配線パターンに対応でき、かつ高い弾性率と高い信頼性の絶縁膜を備えている。

● 無機のビルドアップ絶縁層は、焼成などの加熱処理により酸化アルミニウム、酸化ケイ素、酸化マグネシウムなどから形成され得るので、絶縁信頼性に優れるばかりか、高い熱伝導性がもたらされ、高集積半導体パッケージ用のビルドアップ基板として望ましい。また例えば、ビルドアップ絶縁層が、無機ネットワーク中に分子レベルで有機官能基を有する無機/有機ハイブリッド材料より構成される場合では、容易に感光性などの機能を付与することが可能で、無機材料としての耐熱性、配線パターンとの接着性などの利点を踏襲しながら、容易なバイアホール加工性が得られる。また、金属酸化物膜のビルドアップ絶縁膜であるため、1μm以上かつ20μm以下の薄さでも高い弾性率と緻密絶縁膜とを具備した基板が得られることになり、モバイル用途などに好適な薄型半導体パッケージが実現される。

● 本発明の基板構成では、配線パターンを有する回路基板として、有機材料を絶縁材とするものが利用できるので、ある程度の屈曲性を発揮できる。これにより高い絶縁信頼性と柔軟性とを備えたビルドアップ基板が実現される。一方、配線パターンを有する回路基板が、無機材料のガラス基板の場合、ビルドアップ絶縁層及び配線パターンの全てが無機材料からなるため、基板としての信頼性が増すばかりか、熱膨張係数もシリコン半導体に近いため、高い実装信頼性が得られる。さらに、回路基板の絶縁材がセラミック基板であると、ガラス基板と同様、シリコン半導体と同程度の熱膨張係数となり、高い信頼性を有するビルドアップ基板が実現され、かつ熱伝導度に優れたビルドアップ基板が実現される。

● 本発明では、無機金属酸化膜から成る絶縁材料層が好適に利用されたトランジスタ素子を含んだビルドアップ基板を実現することができ、能動素子も含む多機能なビルドアップ基板が供される。

● 本発明では、ビルドアップ基板に半導体ベアチップがバンプを介してフリップチップ実装されている半導体集積回路パッケージも提供されるが、基板部分が無機金属酸化物膜と配線パターンとで構成されているため、耐熱性と熱伝導性に優れ、かつ半導体チップの熱膨張とほぼ一致した高い実装信頼性を有す高集積した半導体パッケージを実現することができる。

●本発明に係るビルドアップ基板は、大型の薄い基板とした場合であっても、高い弾性および適度な熱膨張性のため、ビルドアップ基板の割れやクラックなどが抑制されている。このように、本発明のビルドアップ基板は薄く大型化しても割れ・クラックや反りなどが抑制されるので、本発明に従えばプリント基板の製造インフラを利用してビルドアップ基板の製造を好適に行うことができる。

● 更には、本発明のビルドアップ基板は、金属酸化物の絶縁材として利用するので、種々の誘電率を選択できる(1つ例示すると、ε=2.5程度)。低誘電率材を選択した場合、高周波特性に優れた基板となり得る。

● このように、本発明では、従来のビルドアップ基板では得られない格別な効果がある。即ち、本発明の無機系ビルドアップ絶縁膜は、微細な配線化、薄型化に伴う絶縁材料の絶縁信頼性に優れ、かつ感光性と現像、加熱処理により一括してバイアホール形成が行えるので、レーザ加工法のような高価な装置が不要であり、高い加工位置精度が実現できるばかりか、バイアホールの好適な小径化(1つ例示すると、径サイズ20μm以下)を実現することができる。
本発明に係るビルドアップ基板は、薄型のモバイル機器の基板や、放熱性を必要とする高輝度LED用の基板として好適に用いられると共に、電子部品が高密度実装された電子機器の基板などとしても好適に用いられる。
特に本発明に係るビルドアップ基板は、薄型及び高い信頼性を要望される機器に適しており、これを用いた半導体パッケージ用ビルドアップ基板として放熱性、寸法安定性、高い信頼性を有している。それゆえ、本発明のビルドアップ基板は、コンピュータやサーバーなどのCPU半導体集積回路を実装する半導体パッケージ用基板としても有用である。
関連出願の相互参照
本出願は、日本国特許出願第2012−71996号(出願日:2012年3月27日、発明の名称「ビルドアップ基板およびその製造方法ならびに半導体集積回路パッケージ」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるとする。
100、100’、100''、100''' ビルドアップ基板
101 絶縁性基板部
102 バイアホール/ビア/貫通スルーホール
103 配線パターン
104 回路基板
105 絶縁膜(金属酸化物前駆体膜)
106 ビルドアップ絶縁膜(金属酸化物の無機膜)
107 バイアホール用開口部
108 金属層
109 めっき充填バイアホール/ビア
110 ビルドアップ配線パターン
201 ステージ
202 基板
203 スプレーノズル
204 貯留タンク
205 金属酸化物前駆体原料
206 供給配管
207 圧縮ポンプ
208 配管
209 スプレー噴霧
210 スプレー法で形成される塗布膜
301 ステージ
302 基板
303 スリットコータノズル
304 マニホールド
305 スリット
306 貯留タンク
307 配管
308 ポンプ
310 スリットコータ法で形成される塗布膜
400、400’ 半導体集積回路パッケージ(高集積半導体パッケージ)
414、414’ 半導体チップ
415、415’ はんだバンプ
500 離型キャリア
501 配線パターン
601a〜d ビルドアップ絶縁層(無機金属酸化物膜)
602 バイアホール/ビア
603 配線パターン
604a〜c 金属酸化物半導体
605a〜c ドレイン電極
606a〜c ソース電極
607a〜c ゲート電極
608 コンデンサ層
701 絶縁性基板部
702 バイアホール
703 配線パターン
704 回路基板
705 絶縁膜(金属酸化物前駆体膜)
706 ビルドアップ絶縁膜(無機金属酸化物膜)
707 バイアホール用開口部
708 レジスト
710 金属層/ビルドアップ配線パターン
711 めっき充填バイアホール/ビア

Claims (22)

  1. 回路基板上に絶縁層と配線パターン層とが積層されたビルドアップ基板の製造方法であって、
    (i)配線パターンを備えた回路基板の両面または片面に対して、光反応性の金属酸化物前駆体原料を塗布し、該光反応性の金属酸化物前駆体原料を乾燥処理に付して絶縁膜を形成する工程、
    (ii)前記絶縁膜を露光および現像処理に付すことを通じて該絶縁膜にバイアホール用開口部を形成する工程、
    (iii)前記絶縁膜を熱処理に付して該絶縁膜を金属酸化物膜とし、それによって該金属酸化物膜から成るビルドアップ絶縁層を得る工程、ならびに
    (iv)前記ビルドアップ絶縁層に対してめっき処理を施すことによって前記開口部にバイアホールを形成すると共に前記ビルドアップ絶縁層上に金属層を形成し、該金属層にエッチング処理を施してビルドアップ配線パターンを形成する工程
    を含んで成り、
    (v)前記(i)〜(iv)の工程を少なくとも1回以上繰返し行う、ビルドアップ基板の製造方法。
  2. 前記工程(iii)における前記絶縁膜の前記熱処理を500℃以下かつ100℃以上の温度で行うことを特徴とする、請求項1に記載のビルドアップ基板の製造方法。
  3. 前記工程(iii)における前記絶縁膜の前記熱処理を真空下もしくは不活性ガス雰囲気下で行うことを特徴とする、請求項1に記載のビルドアップ基板の製造方法。
  4. 前記工程(i)で用いる前記光反応性の金属酸化物前駆体原料が、感光性ゾルゲル原料を含んで成ることを特徴とする、請求項1に記載のビルドアップ基板の製造方法。
  5. 前記工程(i)で用いる前記光反応性の金属酸化物前駆体原料が、アルコキシド化合物を含んで成ることを特徴とする、請求項4に記載のビルドアップ基板の製造方法。
  6. 前記(iii)では、前記アルコキシド化合物の加水分解反応を通じて、該アルコキシド化合物から前記金属酸化物膜を得ることを特徴とする、請求項5に記載のビルドアップ基板の製造方法。
  7. 前記工程(i)で用いる前記光反応性の金属酸化物前駆体原料が、無機ネットワーク中に有機官能基を含んだハイブリッド材料を含んで成ることを特徴とする、請求項1に記載のビルドアップ基板の製造方法。
  8. 前記ハイブリッド材料が、有機官能基を含んだシロキサンオリゴマーであることを特徴とする、請求項7に記載のビルドアップ基板の製造方法。
  9. 前記工程(i)では、前記光反応性の金属酸化物前駆体原料の前記塗布をスプレー法またはスリットコータ法によって行うことを特徴とする、請求項1に記載のビルドアップ基板の製造方法。
  10. 前記回路基板が、配線パターンを備えた金属箔または有機フィルムから構成されており、
    前記工程(i)では、前記回路基板の片面に前記光反応性の金属酸化物前駆体原料を塗布し、また
    前記工程(v)の後において、前記金属箔または前記有機フィルムを除去することを特徴とする、請求項1に記載のビルドアップ基板の製造方法。
  11. 前記工程(iv)に代えて、(iv)’として、前記ビルドアップ絶縁層の表面にレジストを形成した後で該ビルドアップ絶縁層および該レジストに対して全体的にめっき処理を施し、最終的に該レジストを除去することによって、該レジストの非形成部に前記バイアホールおよび前記ビルドアップ配線パターンを設けることを特徴とする、請求項1に記載のビルドアップ基板の製造方法。
  12. ビルドアップ基板であって、
    配線パターンを備えた回路基板の両面または片面にてビルドアップ絶縁層とビルドアップ配線パターンとが積層しており、
    前記ビルドアップ絶縁層が、光反応性の金属酸化物前駆体原料から形成された金属酸化物膜から成る、ビルドアップ基板。
  13. 前記ビルドアップ絶縁層の前記金属酸化物膜が、酸化アルミニウム、酸化ケイ素および酸化マグネシウムから成る群から選択される少なくとも1種の金属酸化物を含んで成ることを特徴とする、請求項12に記載のビルドアップ基板。
  14. 前記ビルドアップ絶縁層が1μm以上かつ20μm以下の厚さを有していることを特徴とする、請求項12に記載のビルドアップ基板。
  15. 前記回路基板の絶縁性基板部が有機材料から成り、該絶縁性基板部を貫通する少なくとも1つの貫通スルーホールが該回路基板に設けられていることを特徴とする、請求項12に記載のビルドアップ基板。
  16. 前記絶縁性基板部の前記有機材料が、エポキシ樹脂、フェノール樹脂およびポリイミド樹脂から成る群から選択される少なくとも1種を含んで成ることを特徴とする、請求項15に記載のビルドアップ基板。
  17. 前記回路基板の絶縁性基板部が無機材料から成り、該絶縁性基板部を貫通する少なくとも1つの貫通スルーホールが該回路基板に設けられていることを特徴とする、請求項12に記載のビルドアップ基板。
  18. 前記絶縁性基板部の前記無機材料が、ガラス成分およびセラミック成分から成る群から選択される少なくとも1種を含んで成ることを特徴とする、請求項17に記載のビルドアップ基板。
  19. 前記ガラス成分が、硼ケイ酸ガラス、アルミノケイ酸ガラスおよびアルミノ硼ケイ酸ガラスから成る群から選択される少なくとも1種のガラス成分であることを特徴とする、請求項18に記載のビルドアップ基板。
  20. 前記セラミック成分が、アルミナ、ムライトおよびジルコニアから成る群から選択される少なくとも1種のセラミック成分となっていることを特徴とする、請求項18に記載のビルドアップ基板。
  21. 前記ビルドアップ基板にトランジスタ素子が設けられており、
    前記ビルドアップ絶縁層の前記金属酸化物膜の少なくとも一部がゲート絶縁膜として作用し、
    前記ビルドアップ基板が、
    前記金属酸化物膜の上にて金属酸化物半導体から構成された半導体膜、
    前記半導体膜上と接するように前記ビルドアップ配線パターンの少なくとも一部から構成されたソース電極・ドレイン電極、および
    前記ゲート絶縁膜の前記半導体膜を形成した面の反対面側に位置する前記ビルドアップ配線パターンの少なくとも一部から構成されたゲート電極
    を有して成ることを特徴とする、請求項12に記載のビルドアップ基板。
  22. 請求項12に記載のビルドアップ基板を有して成る半導体集積回路パッケージであって、
    バンプを介して前記ビルドアップ絶縁層上の前記ビルドアップ配線パターンに対して半導体ベアチップがフリップチップ実装されている、半導体集積回路パッケージ。
JP2014507027A 2012-03-27 2012-10-29 ビルドアップ基板およびその製造方法ならびに半導体集積回路パッケージ Pending JPWO2013145043A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014507027A JPWO2013145043A1 (ja) 2012-03-27 2012-10-29 ビルドアップ基板およびその製造方法ならびに半導体集積回路パッケージ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012071996 2012-03-27
JP2012071996 2012-03-27
JP2014507027A JPWO2013145043A1 (ja) 2012-03-27 2012-10-29 ビルドアップ基板およびその製造方法ならびに半導体集積回路パッケージ

Publications (1)

Publication Number Publication Date
JPWO2013145043A1 true JPWO2013145043A1 (ja) 2015-08-03

Family

ID=49258413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014507027A Pending JPWO2013145043A1 (ja) 2012-03-27 2012-10-29 ビルドアップ基板およびその製造方法ならびに半導体集積回路パッケージ

Country Status (4)

Country Link
US (1) US9236338B2 (ja)
JP (1) JPWO2013145043A1 (ja)
CN (1) CN103597916A (ja)
WO (1) WO2013145043A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107251667B (zh) 2014-11-28 2019-10-18 英特尔公司 多层印刷布线板的制造方法
JP2018018868A (ja) * 2016-07-26 2018-02-01 イビデン株式会社 コイル基板及びその製造方法
JP2018113396A (ja) * 2017-01-13 2018-07-19 東レエンジニアリング株式会社 フレキシブルプリント基板の製造方法及びフレキシブルプリント基板
CN109103164B (zh) * 2018-06-28 2020-09-29 中国电子科技集团公司第二十九研究所 一种ltcc基板的bga互联结构及实现方法
CN112437759A (zh) * 2018-07-16 2021-03-02 康宁股份有限公司 具有改善的翘曲的玻璃制品的陶瓷化方法
CN112512979B (zh) 2018-07-16 2022-09-20 康宁股份有限公司 利用成核和生长密度以及粘度变化对玻璃进行陶瓷化的方法
KR102618611B1 (ko) 2018-07-16 2023-12-27 코닝 인코포레이티드 개선된 특성을 갖는 유리 세라믹 물품 및 이의 제조 방법
CN110876225A (zh) * 2018-08-30 2020-03-10 苏州旭创科技有限公司 电路板、电路板的制备方法及具有该电路板的光模块
US20200083154A1 (en) 2018-09-10 2020-03-12 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Component Carrier With a Photoimageable Dielectric Layer and a Structured Conductive Layer Being Used as a Mask for Selectively Exposing the Photoimageable Dielectric Layer With Electromagnetic Radiation
CN109890150A (zh) * 2019-03-06 2019-06-14 江苏艾森半导体材料股份有限公司 一种高效率多层线路的制作工艺
US11626448B2 (en) 2019-03-29 2023-04-11 Lumileds Llc Fan-out light-emitting diode (LED) device substrate with embedded backplane, lighting system and method of manufacture
EP3723459A1 (en) 2019-04-10 2020-10-14 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with high passive intermodulation (pim) performance
CN112310041B (zh) * 2019-07-29 2023-04-18 群创光电股份有限公司 电子装置及其制造方法
US11621173B2 (en) 2019-11-19 2023-04-04 Lumileds Llc Fan out structure for light-emitting diode (LED) device and lighting system
US11777066B2 (en) 2019-12-27 2023-10-03 Lumileds Llc Flipchip interconnected light-emitting diode package assembly
US11664347B2 (en) 2020-01-07 2023-05-30 Lumileds Llc Ceramic carrier and build up carrier for light-emitting diode (LED) array
JP2023510760A (ja) * 2020-01-07 2023-03-15 ルミレッズ リミテッド ライアビリティ カンパニー 発光ダイオード(led)アレイ用のセラミックキャリア及びビルドアップキャリア
US11476217B2 (en) 2020-03-10 2022-10-18 Lumileds Llc Method of manufacturing an augmented LED array assembly

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168909A (en) * 1981-04-13 1982-10-18 Nippon Telegr & Teleph Corp <Ntt> Photocurable resin composition
JPS5813630A (ja) * 1981-07-17 1983-01-26 Nippon Telegr & Teleph Corp <Ntt> 光硬化性樹脂組成物
JPS6089996A (ja) * 1983-10-22 1985-05-20 松下電器産業株式会社 多層回路基板
JPS63258959A (ja) * 1987-01-07 1988-10-26 Tokyo Ohka Kogyo Co Ltd 金属酸化膜形成用塗布液
JPH03501188A (ja) * 1987-08-03 1991-03-14 アライド‐シグナル・インコーポレーテッド 多層印刷回路板製造法
JPH08307061A (ja) * 1995-04-28 1996-11-22 Mitsubishi Materials Corp マルチチップモジュール用多層配線板及びその製造方法
JPH11258803A (ja) * 1997-02-20 1999-09-24 Matsushita Electric Ind Co Ltd パターン形成材料及びパターン形成方法
JP2000307141A (ja) * 1999-02-16 2000-11-02 Tdk Corp 機能部品およびその製造方法
JP2000313612A (ja) * 1999-04-28 2000-11-14 Asahi Chem Ind Co Ltd 絶縁薄膜製造用組成物
JP2001032086A (ja) * 1999-05-18 2001-02-06 Sharp Corp 電気配線の製造方法および配線基板および表示装置および画像検出器
JP2002111205A (ja) * 2000-07-27 2002-04-12 Sumitomo Bakelite Co Ltd 多層配線板の製造方法および多層配線板
JP2005191243A (ja) * 2003-12-25 2005-07-14 Ngk Spark Plug Co Ltd ビルドアップ多層配線基板
JP2007012854A (ja) * 2005-06-30 2007-01-18 Shinko Electric Ind Co Ltd 半導体チップ及びその製造方法
JP2007188986A (ja) * 2006-01-12 2007-07-26 Tdk Corp 多層回路基板及びその製造方法
JP2008270768A (ja) * 2007-03-22 2008-11-06 Ngk Spark Plug Co Ltd 多層配線基板の製造方法
JP2009064973A (ja) * 2007-09-06 2009-03-26 Shinko Electric Ind Co Ltd 配線基板の製造方法
JP2011109077A (ja) * 2009-10-21 2011-06-02 Semiconductor Energy Lab Co Ltd 端子構造およびその作製方法、ならびに電子装置およびその作製方法
JP2011530652A (ja) * 2008-08-07 2011-12-22 プライオグ リミテッド ライアビリティ カンパニー 金属組成物及びその製法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB829263A (en) * 1957-02-08 1960-03-02 Sperry Rand Corp Method of making printed circuits
US3310432A (en) * 1963-07-11 1967-03-21 Corning Glass Works Method for applying electrical conductors on a smooth vitreous surface and article
US4923997A (en) * 1987-03-16 1990-05-08 Loctite Corporation Novel siloxane maleimides
JPH02255464A (ja) 1989-03-27 1990-10-16 Horii Kk 紙折り機
JPH03233997A (ja) 1990-02-09 1991-10-17 Oki Electric Ind Co Ltd ポリイミド多層配線板の製造方法
JP2739726B2 (ja) 1990-09-27 1998-04-15 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン 多層プリント回路板
JPH08279678A (ja) 1995-04-04 1996-10-22 Matsushita Electric Works Ltd 多層プリント配線板の製造方法
CN100367491C (zh) * 2004-05-28 2008-02-06 日本特殊陶业株式会社 中间基板
CN101765297B (zh) * 2008-12-26 2013-06-19 王利平 在导电层上形成绝缘层和导电层、在导电层间形成电连接的方法及相应多层电路板生产方法
JP5564331B2 (ja) * 2009-05-29 2014-07-30 株式会社半導体エネルギー研究所 半導体装置の作製方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168909A (en) * 1981-04-13 1982-10-18 Nippon Telegr & Teleph Corp <Ntt> Photocurable resin composition
JPS5813630A (ja) * 1981-07-17 1983-01-26 Nippon Telegr & Teleph Corp <Ntt> 光硬化性樹脂組成物
JPS6089996A (ja) * 1983-10-22 1985-05-20 松下電器産業株式会社 多層回路基板
JPS63258959A (ja) * 1987-01-07 1988-10-26 Tokyo Ohka Kogyo Co Ltd 金属酸化膜形成用塗布液
JPH03501188A (ja) * 1987-08-03 1991-03-14 アライド‐シグナル・インコーポレーテッド 多層印刷回路板製造法
JPH08307061A (ja) * 1995-04-28 1996-11-22 Mitsubishi Materials Corp マルチチップモジュール用多層配線板及びその製造方法
JPH11258803A (ja) * 1997-02-20 1999-09-24 Matsushita Electric Ind Co Ltd パターン形成材料及びパターン形成方法
JP2000307141A (ja) * 1999-02-16 2000-11-02 Tdk Corp 機能部品およびその製造方法
JP2000313612A (ja) * 1999-04-28 2000-11-14 Asahi Chem Ind Co Ltd 絶縁薄膜製造用組成物
JP2001032086A (ja) * 1999-05-18 2001-02-06 Sharp Corp 電気配線の製造方法および配線基板および表示装置および画像検出器
JP2002111205A (ja) * 2000-07-27 2002-04-12 Sumitomo Bakelite Co Ltd 多層配線板の製造方法および多層配線板
JP2005191243A (ja) * 2003-12-25 2005-07-14 Ngk Spark Plug Co Ltd ビルドアップ多層配線基板
JP2007012854A (ja) * 2005-06-30 2007-01-18 Shinko Electric Ind Co Ltd 半導体チップ及びその製造方法
JP2007188986A (ja) * 2006-01-12 2007-07-26 Tdk Corp 多層回路基板及びその製造方法
JP2008270768A (ja) * 2007-03-22 2008-11-06 Ngk Spark Plug Co Ltd 多層配線基板の製造方法
JP2009064973A (ja) * 2007-09-06 2009-03-26 Shinko Electric Ind Co Ltd 配線基板の製造方法
JP2011530652A (ja) * 2008-08-07 2011-12-22 プライオグ リミテッド ライアビリティ カンパニー 金属組成物及びその製法
JP2011109077A (ja) * 2009-10-21 2011-06-02 Semiconductor Energy Lab Co Ltd 端子構造およびその作製方法、ならびに電子装置およびその作製方法

Also Published As

Publication number Publication date
CN103597916A (zh) 2014-02-19
US20140124777A1 (en) 2014-05-08
US9236338B2 (en) 2016-01-12
WO2013145043A1 (ja) 2013-10-03

Similar Documents

Publication Publication Date Title
WO2013145043A1 (ja) ビルドアップ基板およびその製造方法ならびに半導体集積回路パッケージ
CN103052501B (zh) 绝缘片、其制造方法及采用了该绝缘片的结构体的制造方法
US8926714B2 (en) Heat dissipating substrate and method of manufacturing the same
US7435675B2 (en) Method of providing a pre-patterned high-k dielectric film
KR20050020739A (ko) 다층 배선 회로 모듈 및 그 제조 방법
US20050218480A1 (en) Device mounting board and semiconductor apparatus using device mounting board
JP2008306071A (ja) 半導体装置及びその製造方法
JP2007067382A (ja) 配線基板形成用キャリア、配線基板形成用基材およびこれらを用いた配線基板の製造方法
WO2012049822A1 (ja) ハイブリッド基板およびその製造方法ならびに半導体集積回路パッケージ
JP2009272608A (ja) 印刷回路基板及びその製造方法
JP2019204921A (ja) ガラス回路基板およびその製造方法
JPH1174625A (ja) 配線基板及びその製造方法
JP3071764B2 (ja) 金属箔付きフィルム及びそれを用いた配線基板の製造方法
US20110123772A1 (en) Core substrate and method of manufacturing core substrate
US11075130B2 (en) Package substrate having polymer-derived ceramic core
JPH1051108A (ja) 転写シート及びそれを用いた配線基板の製造方法
JP3758811B2 (ja) 転写シート及びそれを用いた配線基板の製造方法
JP2841888B2 (ja) 多層配線基板及びその製造方法
KR102558809B1 (ko) 적층체 내부의 열을 방출하는 수단을 구비한 다층 세라믹 기판 및 그의 제조 방법
JP3610156B2 (ja) 多層配線基板の製造方法
JP4775753B2 (ja) 誘電体薄膜キャパシタの製造方法
JP2017069257A (ja) 半導体装置の製造方法
JP5902559B2 (ja) 配線基板およびその製造方法
IMANAKA Future Perspective of Materials and Processes of LTCC Technology Beyond Microelectronics Packaging
JP2005347411A (ja) 素子搭載基板およびそれを用いる半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161122