JPWO2011016387A1 - イオンプレーティング用タブレットとその製造方法、および透明導電膜 - Google Patents

イオンプレーティング用タブレットとその製造方法、および透明導電膜 Download PDF

Info

Publication number
JPWO2011016387A1
JPWO2011016387A1 JP2011525865A JP2011525865A JPWO2011016387A1 JP WO2011016387 A1 JPWO2011016387 A1 JP WO2011016387A1 JP 2011525865 A JP2011525865 A JP 2011525865A JP 2011525865 A JP2011525865 A JP 2011525865A JP WO2011016387 A1 JPWO2011016387 A1 JP WO2011016387A1
Authority
JP
Japan
Prior art keywords
phase
sintered body
oxide
cerium
tablet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011525865A
Other languages
English (en)
Other versions
JP5733208B2 (ja
Inventor
中山 徳行
徳行 中山
阿部 能之
能之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011525865A priority Critical patent/JP5733208B2/ja
Publication of JPWO2011016387A1 publication Critical patent/JPWO2011016387A1/ja
Application granted granted Critical
Publication of JP5733208B2 publication Critical patent/JP5733208B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】青色LEDや太陽電池に適した透明導電膜の高速成膜とスプラッシュを発生しないノジュールレス成膜を実現できるイオンプレーティング用タブレット、それを得るために最適な酸化物焼結体とその製造方法の提供。【解決手段】インジウムとセリウムを酸化物として含有する、セリウムの含有量がCe/(In+Ce)原子数比で0.3〜9原子%である酸化物焼結体を加工して得られるイオンプレーティング用タブレットであって、該酸化物焼結体は、ビックスバイト型構造のIn2O3相が主たる結晶相となり、第2相として蛍石型構造のCeO2相が平均粒径3μm以下の結晶粒として微細に分散していることを特徴とする;酸化物焼結体は、酸化インジウム粉末と酸化セリウム粉末を含む平均粒径1.5μm以下の原料粉末を混合した後、混合粉末を成形し、成形物を常圧焼結法によって焼結するか、あるいは混合粉末をホットプレス法によって成形し焼結することにより製造する。【選択図】図5

Description

本発明は、イオンプレーティング用タブレットとその製造方法、および透明導電膜に関し、より詳しくは、青色LEDや太陽電池に適した透明導電膜の高速成膜とスプラッシュレス成膜を実現できるイオンプレーティング用タブレット、それを得るために最適な酸化物焼結体とその製造方法に関する。
透明導電膜は、高い導電性と可視光領域における高い透過率とを有するため、太陽電池や液晶表示素子、その他各種受光素子の電極などに利用されている。そのほか、自動車窓や建築用の熱線反射膜、帯電防止膜、冷凍ショーケースなどのための各種の防曇用の透明発熱体としても利用されている。
実用的な透明導電膜としてよく知られているものには、酸化スズ(SnO)系、酸化亜鉛(ZnO)系、酸化インジウム(In)系の薄膜がある。酸化スズ系では、アンチモンをドーパントとして含むもの(ATO)やフッ素をドーパントとして含むもの(FTO)が利用され、酸化亜鉛系では、アルミニウムをドーパントとして含むもの(AZO)やガリウムをドーパントとして含むもの(GZO)が利用されている。しかし、最も工業的に利用されている透明導電膜は、酸化インジウム系である。その中でもスズをドーパントとして含む酸化インジウムは、ITO(Indium−Tin−Oxide)膜と称され、特に低抵抗の膜が容易に得られることから、幅広く利用されている。
低抵抗の透明導電膜は、太陽電池、液晶、有機エレクトロルミネッセンスおよび無機エレクトロルミネッセンスなどの表面素子や、タッチパネルなど、幅広い用途で好適に用いられる。これらの透明導電膜の製造方法として、スパッタリング法やイオンプレーティング法が良く用いられている。このスパッタリング法は、蒸気圧の低い材料の成膜の際や、精密な膜厚制御を必要とする際に有効な手法であり、操作が非常に簡便であるため、工業的に広範に利用されている。
スパッタリング法では、薄膜の原料としてスパッタリング用ターゲットが用いられる。ターゲットは、成膜したい薄膜の構成元素を含む固体材料であり、金属、金属酸化物、金属窒化物、金属炭化物などの焼結体や、場合によっては単結晶が使われる。この方法では、一般に真空装置を用い、一旦高真空にした後、希ガス(アルゴン等)を導入し、約10Pa以下のガス圧のもとで、基板を陽極とし、ターゲットを陰極とし、これらの間にグロー放電を起こしてアルゴンプラズマを発生させ、プラズマ中のアルゴン陽イオンを陰極のターゲットに衝突させ、これによって弾き飛ばされるターゲット成分の粒子を、基板上に堆積させて膜を形成する。
スパッタリング法は、アルゴンプラズマの発生方法で分類され、高周波プラズマを用いるものは高周波スパッタリング法といい、直流プラズマを用いるものは直流スパッタリング法という。
一般に、直流スパッタリング法は、高周波スパッタリング法と比べて成膜速度が速く、電源設備が安価であり、成膜操作が簡単であるなどの理由で、工業的に広範に利用されている。しかし、絶縁性ターゲットでも成膜することができる高周波スパッタリング法に対して、直流スパッタリング法では、導電性のターゲットを用いなければならない。
スパッタリングの成膜速度は、ターゲット物質の化学結合と密接な関係がある。スパッタリングは、運動エネルギーをもったアルゴン陽イオンがターゲット表面に衝突して、ターゲット表面の物質がエネルギーを受け取って弾き出される現象であり、ターゲット物質のイオン間結合もしくは原子間結合が弱いほど、スパッタリングによって飛び出す確率は増加する。
ITOなどの酸化物の透明導電膜をスパッタリング法で成膜する際には、膜の構成金属の合金ターゲット(ITO膜の場合はIn−Sn合金)を用いてアルゴンと酸素の混合ガス中における反応性スパッタリング法によって酸化物膜を成膜する方法と、膜の構成金属の酸化物からなる焼結体ターゲット(ITO膜の場合はIn−Sn−O焼結体)を用いてアルゴンと酸素の混合ガス中でスパッタリングを行う反応性スパッタリング法によって酸化物膜を成膜する方法がある。
このうち合金ターゲットを用いる方法は、スパッタリング中に酸素ガスを多めに供給するが、膜の特性(比抵抗、透過率)は、成膜速度や成膜中に導入する酸素ガス量に対する依存性が極めて大きく、一定の膜厚、特性の透明導電膜を安定して製造することはかなり難しい。
一方、金属酸化物ターゲットを用いる方法は、膜に供給される酸素の一部がターゲットからスパッタリングにより供給されるので、残りの不足酸素量を酸素ガスとして供給するが、膜の特性(比抵抗、透過率など)は、成膜速度や成膜中に導入する酸素ガス量に対する依存性が合金ターゲットを用いる時よりも小さく、一定の膜厚で、一定の特性の透明導電膜を安定して製造することができるため、工業的には酸化物ターゲットを用いる方法が採られている。
このような背景から、透明導電膜をスパッタリング法で成膜して量産する場合には、金属酸化物ターゲットを用いた直流スパッタリング法が主に採用されている。ここで生産性や製造コストを考慮すると、直流スパッタリング時の酸化物ターゲットの特性が重要となる。すなわち、同一の電力を投入した場合に、より高い成膜速度が得られる酸化物ターゲットが有用である。さらに、高い直流電力を投入するほど成膜速度が上がるため、工業的には、高い直流電力を投入しても、ターゲットの割れやノジュール発生によるアーキングなどの異常放電が起こらずに、安定して成膜することが可能な酸化物ターゲットが有用となる。
ここでノジュールとは、ターゲットがスパッタリングされていくと、ターゲット表面のエロージョン部分(ターゲットの、スパッタリングされている部分を言う)に、エロージョン最深部のごくわずかな部分を除き、発生する黒色の析出物(突起物)のことをいう。一般に、ノジュールは、外来の飛来物の堆積や表面での反応生成物ではなく、スパッタリングによる掘れ残りであるとされている。ノジュールは、アーキングなどの異常放電の原因となっており、ノジュールの低減によってアーキングは抑制されることが知られている(非特許文献1参照)。したがって、安定した成膜を行うには、ノジュール、すなわちスパッタリングによる掘れ残りの発生しない酸化物ターゲットの使用が必要となる。
一方、イオンプレーティング法は、10−3〜10−2Pa程度の圧力下で、金属あるいは金属酸化物を抵抗加熱あるいは電子ビーム加熱することで蒸発させ、さらに蒸発物を反応ガス(酸素)とともにプラズマにより活性化させてから基板に堆積させる方法である。透明導電膜の形成に用いるイオンプレーティング用ターゲット(タブレットまたはペレットとも呼ぶ)についても、スパッタリング用ターゲットと同様で、酸化物タブレットを用いた方が安定して一定の膜厚、一定の特性の透明導電膜を製造することができる。酸化物タブレットは均一に蒸発することが求められ、化学的な結合が安定で蒸発しにくい物質が、主相として存在する蒸発しやすい物質と共存しないほうが好ましい。
また、蒸発材(タブレット)である酸化物焼結体をイオンプレーティング法により蒸発させてイオン化し薄膜を形成する方法では、加熱時に蒸発材のスプラッシュが起こり、飛散する粒子によって蒸着膜にピンホール欠陥ができるという問題がある。スプラッシュとは、次の様な現象をいう。即ち、真空中で蒸発材(タブレット)にプラズマビームや電子ビームを照射して加熱すると、蒸発材はある温度に達した時点で気化し、原子状態で均一な蒸発が始まる。スプラッシュとは、この際に、均一な蒸発ガスに混じって数μm〜1000μm程度の目に見える大きさの飛沫が蒸発材から飛び出して蒸着膜に衝突する現象をいう。この現象が起こると、飛沫の衝突によって蒸着膜にピンホール欠陥などを起こす原因となり、蒸着膜の均質性を害するばかりか導電膜としての性能を著しく劣化させる。
以上、ITOなどの酸化物の透明導電膜を直流スパッタリング法で形成するためには、ノジュール発生によるアーキングなどの異常放電が起こらずに、安定して成膜することが可能な酸化物ターゲットの使用が重要であり、イオンプレーティング法で形成するためには、加熱時に蒸発材のスプラッシュが起こりにくく、飛散する粒子によって蒸着膜にピンホール欠陥ができない酸化物タブレットの使用が重要であると言える。
さて、上記のプロセスで形成されたITO膜などの透明導電膜の多くは、n型の縮退した半導体であり、キャリアである電子が電気伝導を高めるうえで大きく寄与する。したがって、従来から、ITO膜を低抵抗化させるために、キャリア電子濃度をできるだけ高めるようにされてきた。
ITO膜は、一般に結晶化温度が190〜200℃程度であることが知られ、この温度を境に、非晶質あるいは結晶質の膜が形成される。例えば、基板を室温に維持してスパッタリング法で膜を形成した場合には、結晶化するのに必要な熱エネルギーが与えられずに非晶質の膜となる。一方、結晶化温度以上の温度、例えば300℃程度の基板温度の場合には、結晶質の膜が形成される。
ITOの非晶質と結晶質の膜では、キャリア電子の生成機構が異なる。一般に、非晶質膜の場合は、キャリア電子のほとんど全てが酸素欠損によって生成する。一方、結晶質膜の場合には、酸素欠損だけでなく、スズのドーピング効果によるキャリア電子の生成も期待できる。
酸化インジウムは、常圧あるいはそれよりも低い圧力で安定な立方晶系の結晶相のビックスバイト(bixbyte)と呼ばれる結晶構造をとる。ビックスバイト構造における3価のインジウムの格子点に、4価のスズが置き換わることでキャリア電子が生成する。スズはドーパントとして最もキャリア電子濃度を高めることが可能な元素であり、酸化スズ換算で10重量%添加すると最も低抵抗になることが知られている。すなわち、ITO膜を結晶質とすることによって、酸素欠損とスズのドーパントの双方によってキャリア電子が多量に生成するため、酸素欠損のみの非晶質の膜より低い電気抵抗を示す膜を形成することが可能である。
しかし、近年、進歩の著しいLED(Light Emitting Diode)や太陽電池では、ITOでは達成することの困難な特性が必要とされる場合が出てきている。それらの一例として、青色LEDでは、光の取り出し効率を高めるために、波長460nm付近の青色光に対する透明導電膜の屈折率が高いことが必要とされている。青色LEDの発光層には窒化ガリウム層が用いられる。窒化ガリウム層の光学的な特徴として、屈折率が約2.4と高い点が挙げられる。発光層からの光の取り出し効率を高めるためには、透明導電膜と窒化ガリウム層との屈折率の整合性をよくする必要があり、透明導電膜には2.4にできるだけ近い屈折率が求められる。屈折率は物質固有の値であり、一般に知られる酸化インジウムの屈折率は1.9〜2.0と低い。また、透明導電膜には低い表面抵抗が求められる。窒化ガリウム層の電気的な特徴として、膜面方向の電流拡散が十分でないことがその理由である。しかし、キャリア電子濃度を高めて電気抵抗を下げようとすると、酸化インジウム系の透明導電膜の屈折率は、1.9〜2.0よりさらに低下し、1.8〜1.9を示すようになる。前記の通り、ITO膜は、ドーパントであるスズによってキャリア電子濃度が著しく高められた材料であるため、このように低抵抗の結晶膜を得ようとすると屈折率が低下してしまい、これが解決すべき課題となっていた。
また、屈折率や比抵抗以外にも、ITO膜よりも優れた、ウエットエッチングによるパターニング性などの特性が要求される。前述の青色LEDにおいても、低温で形成された非晶質の透明導電膜に、弱酸によるウエットエッチングによるパターニングを施し、その後、非酸化性雰囲気中の熱処理によって非晶質の透明導電膜を結晶化させて低抵抗化させるプロセスが好ましい。このプロセスを用いることによって、高精細にパターニングされた透明電極を形成することが可能である。
透明導電膜の他の用途例として、太陽電池がある。太陽電池の表面電極として用いる場合、可視光だけでなく、赤外光の透過率が高い透明導電膜であれば、太陽光を効率よく取り込むことができる。ITO膜は、比抵抗を低くすることができるが、キャリア電子濃度が高いため、赤外光の反射率や吸収が高く、透過率が低くなってしまうことが問題であった。
また、裏面電極の一部として用いられる場合には、太陽光の取り込み効率を高めることを目的として、モジュール全体の屈折率調整を行うために屈折率を高めた透明導電膜を用いることがあるが、この場合でも、青色LED用途と同じ理由から、ITO膜では不十分であった。ただし、太陽電池用途では、青色LEDのように、弱酸によるウエットエッチングによる高精細なパターニングは必要とはされない。
酸化インジウム系透明導電膜の屈折率を高める方法の一つとして、高い屈折率を示す酸化物を添加する方法がある。
特許文献1には、銀系薄膜上にスパッタリング法にて防湿性に優れた透明薄膜を効率的に成膜でき、しかもこの成膜時に上記銀系薄膜が損傷を受け難いスパッタリングターゲットが記載され、銀との固溶域を実質的に持たない金属元素の酸化物を含有する導電性透明金属酸化物にて構成され、銀との固溶域を実質的に持たない上記金属元素の含有割合が導電性透明金属酸化物の金属元素に対し5〜40atom%(原子%)であるスパッタリングターゲットが提案されている。具体的には、銀との固溶域を実質的に持たない金属元素として少なくともチタン元素又はセリウム元素を含むことが好ましいことが記載され、同様に適用できる金属元素として、ジルコニウム元素、ハフニウム元素、タンタル元素があげられている。また、導電性透明金属酸化物として酸化インジウム好ましいことが記載されている。
また、特許文献1には、銀との固溶域を実質的に持たない金属元素であるチタン元素又はセリウム元素の金属酸化物は2.3以上の高屈折率を有しており、かつ、該高屈折率材料として、チタン元素とセリウム元素の合計の含有割合が導電性透明金属酸化物の金属元素に対し5〜40atom%となる量含有しているため、このスパッタリングターゲットを用いて成膜される透明薄膜の屈折率を約2.1〜2.3まで増大させることが可能としている。
また、特許文献2には、銀系薄膜を挟持する構成の導電膜の透明薄膜を成膜する際に適用される混合酸化物の焼結体のスパッタリングターゲットが提案されている。銀系薄膜を狭持する構成の導電膜の透明薄膜を成膜する際、耐湿性に優れた透明薄膜を効率的に成膜でき、しかもこの成膜時に上記銀系薄膜が損傷を受け難いスパッタリングターゲットとするために、具体的には、酸化インジウムと酸化セリウムを基材とする混合酸化物に、各々基材の混合割合より少ない量にて酸化スズあるいは/および酸化チタンを含有せしめた混合酸化物の焼結体を用いている。すなわち、特許文献1と同様に、酸化セリウムが高屈折率であることから、酸化インジウムと酸化セリウムの混合酸化物の屈折率も、酸化セリウムの添加割合に従って高屈折率となっている。
さらに、酸化インジウムと酸化セリウムの混合酸化物は、酸化セリウムが十分な導電性をもたないことから、酸化セリウムの混合比率を高めるに従い、その混合酸化物の焼結体を用いたターゲットの導電性は急激に低下し、直流スパッタリング法での成膜が困難な、導電性の低いターゲットとなっている。
上記したように、特許文献1および2によれば、銀系薄膜上にスパッタリング法にて防湿性に優れた透明薄膜を効率的に成膜できることや、チタン元素又はセリウム元素の金属酸化物は2.3以上の高屈折率を有していることから、このスパッタリングターゲットを用いて成膜される透明薄膜の屈折率を約2.1〜2.3まで増大させることなどが期待される。ところが、上記したように、直流スパッタリング法を用いて透明導電膜の成膜を行って量産する場合には、工業的には、高い直流電力を投入しても、ターゲットの割れやノジュール発生によるアーキングなどの異常放電が起こらずに、安定して成膜することが可能な酸化物ターゲットが有用となるという観点からすれば、スパッタリング電圧を上げるなどして成膜速度を上げる条件を選択したときに、前記したアーキングの原因となるノジュール発生を抑制すること、あるいはイオンプレーティング法におけるスプラッシュを抑制することが必要であるが、これを可能とするような酸化物焼結体の組織等に関する検討は全くなされていない。
すなわち、上記透明導電膜の安定的な成膜に適用されるターゲットやタブレットを得るための酸化物焼結体に関して、工業的に必要な特性まで考慮されてはいなかった。
さらに、特許文献1および2においては、単純に酸化スズあるいは酸化チタンを添加することによって、ターゲットを得るための焼結体の製造方法、あるいは、導電性を向上させる方法については検討されているが、インジウムとセリウムを酸化物として含有する酸化物焼結体の組織を詳しく解析し制御することによって焼結体密度を向上させる方法、あるいは上記のスパッタリング法を用いた成膜時におけるアーキングやイオンプレーティング法を用いた成膜時におけるスプラッシュなどを回避する方法については何ら検討されていない。また、結晶質の透明導電膜を形成した場合については、添加元素である酸化スズあるいは酸化チタンの、透明導電膜の屈折率に与える影響についても何ら検討されていない。
一方、特許文献3には、極めて平滑で、仕事関数が高く、非晶質である透明導電性薄膜と、該透明導電性薄膜を安定的に成膜可能な酸化物焼結体およびこれを用いたスパッタリングターゲットが提案され、該酸化物焼結体は、セリウムを3質量%〜20質量%、スズを0.1質量%〜4質量%、およびチタンを0.1質量%〜0.6質量%含み、残部が実質的にインジウムおよび酸素からなり、さらにセリウム、スズおよびチタンが、インジウムサイトに固溶しており、焼結密度が7.0g/cm以上であって、平均結晶粒径が3μm以下であることが望ましい旨が記載されている。
この特許文献3においても、該スパッタリングターゲットやタブレットを用いて形成した結晶質の透明導電膜の屈折率を高めることに関しては何ら検討されていない。特に、スズが及ぼす低屈折率化への影響については何ら言及がない。
さらに、該酸化物焼結体については、スパッタリング中の焼結割れとその部分に発生するノジュールを抑制する目的で、セリウム、スズおよびチタンがインジウムサイトに固溶した酸化インジウムの結晶粒を平均粒径3μm以下に制御しているが、セリウムが酸化インジウムに固溶せずに酸化セリウムの結晶粒として存在し、それがノジュールの起点となるという問題に関しては何ら検討されていない。
また、特許文献4には、酸化インジウムと酸化セリウムからなるスパッタリングターゲットにおいて、X線回折により結晶ピークを観察した場合、酸化インジウム及び酸化セリウムに由来するピークの存在が観察され、且つEPMA測定を行った場合、酸化インジウム中に分散した酸化セリウム粒子の直径が、5μm以下であると測定されることを特徴とするスパッタリングターゲットが記載されている。
この特許文献4は、酸化インジウムと酸化セリウムからなるスパッタリングターゲットやタブレットを用いて形成した結晶質の透明導電膜の屈折率を高め、抵抗を下げることに関しては何ら検討されていない。特に、スズが及ぼす低屈折率化への影響については何ら言及がない。
以上のように、低い比抵抗と高い屈折率を有するインジウムとセリウムを含有する酸化物焼結体に関する従来技術では、結晶質の透明導電膜を量産する上で重要となる、イオンプレーティング成膜におけるスプラッシュ防止などについて十分な検討がなされておらず、これら課題を解決したインジウムとセリウムを含有する酸化物焼結体の出現が望まれていた。
特開平8−260134号公報 特開平9−176841号公報 特開2005−320192号公報 特開2005−290458号公報
「透明導電膜の技術(改訂2版)」、オーム社、2006年12月20日発行、p.238〜239 「透明導電膜の新展開」、シーエムシー、1999年3月1日発行、p.117〜125
本発明の目的は、低い比抵抗と高い屈折率を有し、結晶質の透明導電膜を、高い成膜速度と、ならびにスプラッシュ防止を実現できるイオンプレーティング用タブレット、及びそれを得るのに最適な酸化物焼結体とその製造方法を提供することにある。
本発明者等は、インジウムとセリウムを含む酸化物からなる酸化物焼結体の構成相と組織を変えて多くの酸化物焼結体試料を作製し、これを原料とした酸化物タブレットを用い、イオンプレーティング法により、酸化物透明導電膜を成膜し、その成膜速度などの製造条件や、イオンプレーティング時のスプラッシュ発生に対して、酸化物焼結体の構成相と組織がどのように影響するかについて、詳細に検討を行った。
その結果、(1)インジウムとセリウムを酸化物として含有する酸化物焼結体中のセリウム含有量をCe/(In+Ce)原子数比で0.3〜9原子%とするか、あるいは、さらにチタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上の金属元素(M元素)を酸化物として含有し、その含有量をM/(In+Ce+M)原子数比で1原子%以下とするとともに、(2)上記酸化物焼結体が実質的に、ビックスバイト型構造のIn相と蛍石型構造のCeO相で構成され、In相中に分散するCeO相からなる結晶粒の平均粒径が3μm以下に制御されており、かつ密度が3.4〜5.5g/cmであることで、基板上に上記透明導電膜を形成する際に投入電力を大きくして成膜速度を高めた場合でも、従来に比して、イオンプレーティング時のスプラッシュ発生を抑制することができ、その結果、効率的にかつ安定して、低い比抵抗と高い屈折率を有する、結晶質の透明導電膜が得られることを見出し、本発明を完成するに至った。
すなわち、本発明の第1の発明によれば、インジウムとセリウムを酸化物として含有し、セリウムの含有量がCe/(In+Ce)原子数比で0.3〜9原子%である酸化物焼結体を加工して得られるイオンプレーティング用タブレットであって、該酸化物焼結体は、ビックスバイト型構造のIn相が主たる結晶相となり、第2相として蛍石型構造のCeO相が平均粒径3μm以下の結晶粒として微細に分散しており、かつ密度が3.4〜5.5g/cmであることを特徴とするイオンプレーティング用タブレットが提供される。
また、本発明の第2の発明によれば、第1の発明において、ビックスバイト型構造のIn相が、平均粒径2μm以下の結晶粒ならびに平均粒径2.5μm以上の結晶粒からなる2種類の平均粒径の結晶粒によって構成されることを特徴とするイオンプレーティング用タブレットが提供される。
また、本発明の第3の発明によれば、第1の発明において、セリウムの含有量がCe/(In+Ce)原子数比で0.3〜5原子%であることを特徴とするイオンプレーティング用タブレットが提供される。
また、本発明の第4の発明によれば、第1の発明において、下記の式で定義されるX線回折ピーク強度比(I)が25%以下であることを特徴とするイオンプレーティング用タブレットが提供される。
I=CeO相(111)/In相(222)×100[%]
また、本発明の第5の発明によれば、第1の発明において、さらに、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上の金属元素(M元素)を酸化物として含有し、セリウムの含有量がCe/(In+Ce+M)原子数比で0.3〜9原子%、かつM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下、かつセリウムとM元素の総含有量が(Ce+M)/(In+Ce+M)原子数比で9原子%以下であることを特徴とするイオンプレーティング用タブレットが提供される。
また、本発明の第6の発明によれば、第5の発明において、M元素が、チタンであることを特徴とするイオンプレーティング用タブレットを提供する。
また、本発明の第7の発明によれば、第1の発明において、スズを含まないことを特徴とするイオンプレーティング用タブレットが提供される。
また、本発明の第8の発明によれば、平均粒径1.5μm以下の酸化インジウム粉末、平均粒径2μm以上の酸化インジウム粉末、ならびに平均粒径1.5μm以下の酸化セリウム粉末からなる原料粉末を混合した後、混合粉末を成形し、成形物を常圧焼結法によって焼結した後、あるいは混合粉末をホットプレス法によって成形し焼結した後、加工して得られるイオンプレーティング用タブレットの製造方法であって、焼結後の酸化物焼結体は、ビックスバイト型構造のIn相が主たる結晶相となり、第二相として蛍石型構造のCeO相からなる平均粒径3μm以下の結晶粒が微細分散し、かつ密度が3.4〜5.5g/cmであることを特徴とするイオンプレーティング用タブレットの製造方法が提供される。
また、本発明の第9の発明によれば、平均粒径1.5μm以下の酸化インジウム粉末、平均粒径2μm以上の酸化インジウム粉末、ならびに平均粒径1.5μm以下の酸化セリウム粉末からなる原料粉末に、平均粒径1.5μm以下のチタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなるM金属元素群より選ばれる少なくとも一種以上のM元素の酸化物粉末を添加して混合した後、混合粉末を成形し、成形物を常圧焼結法によって焼結するか、あるいは混合粉末をホットプレス法によって成形し焼結するか、焼結した後、加工して得られるイオンプレーティング用タブレットの製造方法であって、焼結後の酸化物焼結体は、ビックスバイト型構造のIn相が主たる結晶相となり、第二相として蛍石型構造のCeO相からなる平均粒径3μm以下の結晶粒が微細分散し、かつ密度が3.4〜5.5g/cmであることを特徴とするイオンプレーティング用タブレットの製造方法が提供される。
また、本発明の第10の発明によれば、第8又は9の発明において、原料粉末が、酸素ガスを含有する雰囲気で、1000〜1200℃の焼結温度で10〜30時間焼結されることを特徴とするイオンプレーティング用タブレットの製造方法が提供される。
また、本発明の第11の発明によれば、第8又は9の発明において、原料粉末が、ホットプレス法により、不活性ガス雰囲気又は真空中で、2.45〜9.80MPaの圧力下、700〜800℃の焼結温度で1〜3時間焼結されることを特徴とするイオンプレーティング用タブレットの製造方法が提供される。
さらに、本発明の第12の発明によれば、第1〜7の発明のイオンプレーティング用タブレットを用いて、基板上にイオンプレーティング法で形成されることを特徴とする透明導電膜が提供される。
本発明に係るインジウムとセリウムを含有する酸化物焼結体は、酸化物焼結体中のセリウム含有量がCe/(In+Ce)原子数比で0.3〜9原子%であり、ビックスバイト型構造のIn相が主たる結晶相となり、第2相として蛍石型構造のCeO相が平均粒径3μm以下の結晶粒として微細に分散しているため、イオンプレーティング法で、該酸化物焼結体を使用して酸化物透明導電膜を得るとき成膜速度を高めても、イオンプレーティング時のスプラッシュ発生を抑制することができる。これにより、成膜速度を高めた成膜条件への移行も可能で、透明導電膜を量産できる。その結果、効率的に、インジウムとセリウムを含有する低抵抗かつ高屈折率を有する透明導電膜を得ることができ、工業的に極めて有用である。
図1は、主たる結晶相のIn相に、CeO相の結晶粒を微細分散させた例として、セリウム含有量がCe/(In+Ce)原子数比で9原子%含まれた酸化物焼結体の破断面の走査型電子顕微鏡(SEM)による二次電子像とエネルギー分散型X線分析法(EDS)による面分析結果を示す写真である。 図2は、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されている参考例1の酸化物焼結体のX線回折測定結果を示すチャートである。 図3は、参考比較例3の酸化物焼結体を用いてスパッタリングしたときのアーキング発生状況を示すグラフである。 図4は、主たる結晶相のIn相に、CeO相の結晶粒を微細分散させた例として、セリウム含有量がCe/(In+Ce)原子数比で1原子%含まれた酸化物焼結体の破断面の走査型電子顕微鏡(SEM)による二次電子像とエネルギー分散型X線分析法(EDS)による面分析結果を示す写真である。 図5は、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されている実施例2の酸化物焼結体のX線回折測定結果を示すチャートである。
以下に、本発明のイオンプレーティング用タブレットとその製造方法、および透明導電膜について図面を用いて詳細に説明する。
1.酸化物焼結体
本発明において、インジウムとセリウムの酸化物を含む酸化物焼結体には、特定の相構造を有し、セリウムの含有量がCe/(In+Ce)原子数比で0.3〜9原子%であるもの(以下、これを第一の酸化物焼結体という)と、インジウムとセリウムの他に、さらにM元素を含有し、セリウムの含有量がCe/(In+Ce+M)原子数比で0.3〜9原子%、かつM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下、かつセリウムとM元素の総含有量が(Ce+M)/(In+Ce+M)原子数比で9原子%以下であり、M元素が、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上の金属元素であるもの(以下、これを第二の酸化物焼結体という)の2種類に大別され、第二の酸化物焼結体において、M元素がチタンであるものが好ましく、以下、これを第三の酸化物焼結体という。
上記したように、従来、インジウムとセリウムを含む酸化物からなる透明導電膜の形成を目的としたスパッタリング用ターゲットが提案されているが、イオンプレーティング法については、その材料となるインジウムとセリウムを含む酸化物焼結体に関して、該酸化物焼結体の構成相や組織、あるいは密度の最適化などが十分に検討されていないために、イオンプレーティング法で酸化物透明導電膜を得るときに、スプラッシュ発生を抑制できず、透明導電膜を安定的に高速で製造することが難しい面があった。本発明では、インジウムとセリウムを含む酸化物焼結体を、その構成相と組織の面から詳しく検討し、酸化物透明導電膜の成膜速度への影響や、イオンプレーティング法による成膜時のスプラッシュ発生への影響を解明したものである。
1)第一の酸化物焼結体
本発明の第一の酸化物焼結体は、インジウムとセリウムを酸化物として含有し、セリウムの含有量がCe/(In+Ce)原子数比で0.3〜9原子%であるとともに、ビックスバイト型構造のIn相が主たる結晶相となり、第二相として蛍石型構造のCeO相が平均粒径3μm以下の結晶粒として微細に分散しており、かつ密度が3.4〜5.5g/cmである。
(a)組成
本発明の第一の酸化物焼結体は、イオンプレーティング法により、低い比抵抗と高い屈折率を有する結晶質の透明導電膜が得られるように、セリウムの含有量がCe/(In+Ce)原子数比で0.3〜9原子%であることが必要である。
酸化物焼結体のセリウム含有量が、Ce/(In+Ce)原子数比で0.3原子%未満の場合は、これを原料として形成された透明導電膜において、最低限必要なキャリア電子が生成されず好ましくない。酸化物焼結体を原料として形成された透明導電膜が、高い移動度によって低い比抵抗を示すためには、酸素欠損によって生成するキャリア電子に加え、セリウムのドーピングによる少量のキャリア電子を生成させることが必要である。なお、スズは、酸化インジウムに添加した場合のキャリア電子生成の効果が著しく高いため、含有させてはならない。スズと比較して、前記効果はやや劣るが、シリコン、ゲルマニウム、アンチモン、ビスマス、およびテルルなどの元素も同様の理由から、含有させるのは好ましくない。ただし、上記特性に影響を与えない程度の量の不可避不純物については、その限りではない。
一方、酸化物焼結体のセリウム含有量が、Ce/(In+Ce)原子数比で9原子%を超える場合には、酸化物焼結体中に分散する蛍石型構造のCeO相の割合が増加してしまい、CeO相は、In相と比較すると電気抵抗が高く成膜速度が低下し、工業的に生産効率が低下してしまう。また、過剰のCeを添加すると、形成される結晶質の透明導電膜の比抵抗が高くなってしまい、青色LEDや太陽電池の透明電極として使用する場合に最低限必要な8×10−4Ω・cm以下とすることが困難である。
(b)生成相とその形態
本発明の第一の酸化物焼結体は、上記組成範囲であるだけでなく、その組織がビックスバイト型構造のIn相が主たる結晶相となり、第2相として蛍石型構造のCeO相が平均粒径3μm以下の結晶粒として微細に分散していることが必要である。
上記の主相であるビックスバイト型構造のIn相には、セリウムはほとんど固溶しない。一方、分散相である蛍石型構造のCeO相にもインジウムはほとんど固溶しない。ただし、両相において、非平衡的にインジウムの一部がセリウムによって置換されるか、あるいは、セリウムの一部がインジウムによって置換されていてもよく、化学量論組成からの多少のずれ、金属元素の欠損、または酸素欠損を含んでいても構わない。
前記特許文献3では、酸化物焼結体であるIn相のインジウムサイトにセリウム、スズおよびチタンが固溶すると記載されている。本来、In相にはセリウムは固溶しにくいが、特許文献3の場合には、主にスズを含むことによってセリウムが固溶しやすくなったものと推定される。また、前記特許文献1および2でも、ほとんどの実施例においてスズやチタンがセリウムに対して比較的高い組成比で含まれるため、同様にセリウムが固溶しやすくなったものと推定される。しかし、本発明の組成範囲を超えるような、多量のセリウムを添加する場合はその限りではなく、例えばIn、Ce、Sn、Tiのいずれかを含む複合酸化物などが別の相として形成される可能性がある。
また、本発明の酸化物焼結体は、上記のようにセリウムがほとんど固溶しないビックスバイト型構造のIn相の主相と、第2相である蛍石型構造のCeO相の関係が、下記の式(1)で定義されるX線回折ピーク強度比(I)で表され、該X線回折ピーク強度比が25%以下であることが必要である。特に、X線回折ピーク強度比が20%以下であることが好ましい。X線回折ピーク強度比が25%を超えると、イオンプレーティング法による成膜の際にスプラッシュが頻発するようになり好ましくない。
I=CeO相(111)/In相(222)×100[%] (1)
第2相として蛍石型構造のCeO2相は、平均粒径3μm以下の結晶粒として微細に分散していなければならず、結晶粒が平均粒径3μmを超えるとイオンプレーティング法による成膜の際にスプラッシュが頻発するようになり好ましくない。結晶粒の平均粒径は、2μm以下であることがより好ましい。
(c)焼結体組織とノジュール
本発明に係る酸化物焼結体は、イオンプレーティング法による成膜の際にスプラッシュが起こりにくい焼結体組織を有している。
インジウムとセリウムを酸化物として含有する酸化物焼結体を加工して、例えば、イオンプレーティング用タブレットとした場合、該タブレット表面あるいは内部には、主相のIn相と第二相としてのCeO相の結晶粒が存在するが、このうちCeO相の結晶粒径や分散状態によって、タブレット表面あるいは内部でスプラッシュが発生する問題が起こる場合がある。CeO相は、In相と比較すると電気抵抗が高く、プラズマビームや電子ビームなどにより電荷のチャージアップが起こりやすいという特徴を有している。一般的なITOの酸化物焼結体は、Snが固溶した、平均粒径10μm程度の粗大なIn相の結晶粒で構成されているが、上記組成範囲のインジウムとセリウムを酸化物として含有する酸化物焼結体が、ITO焼結体と同じように、In相、CeO相とも粗大な結晶粒で構成されている場合は、CeO相の結晶粒のチャージアップが起こりやすく、結果としてスプラッシュが起こってしまう。
このようにCeO相の結晶粒のチャージアップを抑制するためには、上記組成範囲のインジウムとセリウムを酸化物として含有する酸化物焼結体の組織を微細化することが必要である。すなわち、該酸化物焼結体中のCeO相の結晶粒を微細分散させることが必要である。
図1に、CeO相の結晶粒を主相であるIn相中に微細分散させた例として、セリウム含有量がCe/(In+Ce)原子数比で9原子%含まれた酸化物焼結体を挙げて、その破断面の走査型電子顕微鏡(SEM)による二次電子像とエネルギー分散型X線分析法(EDS)による面分析した結果を示す。写真左上の二次電子像では判別できないが、写真右下の面分析結果では、主相であるIn相と第2相であるCeO相が明確に識別される。これは、ビックスバイト型構造のIn相にはセリウムがほとんど固溶せず、また分散相である蛍石型構造のCeO相にもインジウムがほとんど固溶しないためであると考えられる。ここで、CeO相の結晶粒は、平均粒径が3μm以下の基準を満足する、平均粒径1μm以下のものが多く、また、この酸化物焼結体を加工したターゲットを用いると、スパッタリングにおいて掘れ残りを起点としたノジュール発生はほとんど起こらないことが確認された。これにより、図1のように、In相を主相として、第2相のCeO相が微細分散された組織であればスパッタリングの進行に伴い生成されがちなノジュールの抑制に有効であることが明らかである。
また、図4に、CeO相の結晶粒を主相であるIn相中に微細分散させた例として、セリウム含有量がCe/(In+Ce)原子数比で1原子%含まれた酸化物焼結体を挙げて、その破断面の走査型電子顕微鏡(SEM)による二次電子像とエネルギー分散型X線分析法(EDS)による面分析した結果を示す。写真左上の二次電子像では判別できないが、写真右下の面分析結果では、主相であるIn相と第2相であるCeO相が明確に識別される。これは、ビックスバイト型構造のIn相にはセリウムがほとんど固溶せず、また分散相である蛍石型構造のCeO相にもインジウムがほとんど固溶しないためであると考えられる。
ここで、In相の結晶粒には、2種類の粒径の結晶粒が確認される。1種類は、平均粒径2μm以下の基準を満足する、平均粒径1μmの比較的小さい結晶粒であり、もう1種類は、平均粒径2.5μm以上の基準を満足する、平均粒径3μmの比較的大きな結晶粒である。前者は焼結性に優れ、結晶粒同士のネッキングなどによって焼結体強度を確保することに寄与している。これに対して、後者は焼結性に劣り、イオンプレーティング用タブレットとして好適な焼結体密度に調整する、すなわち低密度化させることに寄与している。したがって、In相をこれら平均粒径が異なる2種類の結晶粒によって構成することで、強度確保と焼結体密度調整(低密度化)を実現させている。一方、CeO相の結晶粒は、平均粒径3μm以下の基準を満足する、粒径1μm以下のものが多く、また、この酸化物焼結体を加工したタブレットを用いると、イオンプレーティング法による成膜においてチャージアップによるスプラッシュ発生はほとんど起こらないようになる。これにより、図4のように、In相を主相として、第2相のCeO相が微細分散された組織であれば、イオンプレーティング法による成膜におけるチャージアップによるスプラッシュの抑制に有効であることが明らかである。
上記のように、チャージアップによるスプラッシュ抑制のためには、CeO相からなる結晶粒の平均粒径が3μm以下であることが必要である。さらには、2μm以下に制御されることが好ましい。なお、酸化物焼結体中のセリウム含有量が0.3原子%未満の場合は、微細なCeO相の結晶粒が均一に分散されなくなり、スプラッシュ抑制が有効でなくなる。
同様に、チャージアップによるスプラッシュ抑制のためには、In相の結晶粒が大きさの異なる2種類、すなわち、平均粒径が2μm以下、より好ましくは1.5μm以下、さらに好ましくは1μm以下の比較的小さい結晶粒と、平均粒径が2.5μm以上、より好ましくは3〜6μmの比較的大きな結晶粒からなることが必要である。このように、In相を2種類の大きさの結晶粒によって構成することで、強度確保と焼結体密度調整(低密度化)の両立が可能となり、スプラッシュが抑制される。なお、比較的小さい結晶粒を多くして平均粒径を2.5μm未満に制御しようとすると、結果として低密度化が困難になる、すなわち密度5.5g/cmを超えてしまう。一方、比較的大きな結晶粒の大きさが6μmを超えるようになると、酸化物焼結体の密度が3.4g/cmを下回る、あるいは焼結体強度が損なわれるため、スプラッシュ抑制が困難になってしまう。
このように本発明では、酸化物焼結体中のCeO相の分散状態が規定されるとともに、In相との構成比も規定される。本発明に係る酸化物焼結体における、主相のIn相と分散相のCeO相の構成比は、前出の(1)式で定義されるX線回折ピーク強度比(I)が25%以下である。
また、本発明では、酸化物焼結体を構成する結晶粒を微細化することによって、強度を向上させている。すなわち、イオンプレーティング時に投入する電力を高めたことにより、熱などによる衝撃を受けても、酸化物焼結体が割れにくいものとなる。
2)第二の酸化物焼結体
本発明に係る第二の酸化物焼結体は、第一の酸化物焼結体に、さらに、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上の金属元素(M元素)を酸化物として含有し、セリウムの含有量がCe/(In+Ce+M)原子数比で0.3〜9原子%、かつM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下、かつセリウムとM元素の総含有量が(Ce+M)/(In+Ce+M)原子数比で9原子%以下であることを特徴としている。
酸化インジウム系透明導電膜にセリウムが添加されると、キャリア電子を生成する効果が低くなる。しかし、高屈折率より低比抵抗が優先される用途では、結晶質の透明導電膜中にキャリア電子をやや多めに生成させることが好ましい。その場合は、セリウムの添加だけではなく、セリウムとM元素の両方を添加するほうが有効である。
チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上のM金属元素が、インジウムとセリウムを含む透明導電膜に、さらに、M元素の酸化物として含有されており、M元素の全金属元素に対する原子比が1原子%以下の含有量であれば、セリウムと比較して、キャリア電子を生成する効果が数段高く、ごく僅かな量の添加で必要な量のキャリア電子を生成させることができる。M元素を添加する分、セリウム添加量を低くする必要があるため、わずかに屈折率は低下するが、より比抵抗を低下させる効果が得られる。この効果は、前記元素群より選ばれた2種類以上の元素を組み合わせても有効である。
なお、スズは、上記M元素と比較して、酸化インジウムに添加した場合のキャリア電子生成の効果がはるかに高いため、含有させてはならない。スズと比較して、前記効果はやや劣るが、シリコン、ゲルマニウム、アンチモン、ビスマス、およびテルルなどの元素も同様の理由から、含有させるのは好ましくない。ただし、不可避不純物については、その限りでない。
本発明における第二の酸化物焼結体は、その生成相や組織が、第一の酸化物焼結体と同様であることが好ましい。なお、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなるM金属元素群より選ばれる少なくとも一種以上のM金属元素は、いずれもIn相に優先的に固溶するが、全金属元素に対する原子比が1原子%を超えるとCeO相にも固溶する場合がある。M金属元素が固溶したCeO相は、導電性が高くなるため好ましくない。
すなわち、第二の酸化物焼結体は、インジウムとセリウム、ならびにチタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなるM金属元素群より選ばれる少なくとも一種以上の金属元素を酸化物として含有する酸化物焼結体において、セリウムの含有量がCe/(In+Ce+M)原子数比で0.3〜9原子%、かつ前記元素群より選ばれる少なくとも一種以上のM金属元素の含有量がM/(In+Ce+M)原子数比で1原子%以下、かつセリウムと前記元素群より選ばれる少なくとも一種以上のM金属元素の総含有量が(Ce+M)/(In+Ce+M)原子数比で9原子%以下であって、ビックスバイト型構造のIn相が主たる結晶相となり、第二相として蛍石型構造のCeO相が平均粒径3μm以下、より好ましくは2μm以下の結晶粒として微細に分散しており、かつ密度が3.4〜5.5g/cmである。なお、In相は、大きさが異なる2種類の結晶粒、すなわち平均粒径が2μm以下、より好ましくは1.5μm以下、さらに好ましくは1μm以下の比較的小さい結晶粒と、平均粒径が2.5μm以上、より好ましくは3〜6μmの比較的大きな結晶粒から構成される。
3)第三の酸化物焼結体
本発明における第三の酸化物焼結体は、M金属元素群のうち、チタン一種を選択した場合である。すなわち、インジウムとセリウムとチタンを酸化物として含有する酸化物焼結体において、セリウムの含有量がCe/(In+Ce+Ti)原子数比で0.3〜9原子%、かつチタンの含有量がTi/(In+Ce+Ti)原子数比で1原子%以下、かつセリウムとチタンの総含有量が(Ce+Ti)/(In+Ce+Ti)原子数比で9原子%以下であって、ビックスバイト型構造のIn相が主たる結晶相となり、第二相として蛍石型構造のCeO相が平均粒径3μm以下の結晶粒として微細に分散しており、かつ密度が3.4〜5.5g/cmである。なお、In相は、大きさが異なる2種類の結晶粒、すなわち平均粒径が2μm以下、より好ましくは1.5μm以下、さらに好ましくは1μm以下の比較的小さい結晶粒と、平均粒径が2.5μm以上、より好ましくは3〜6μmの比較的大きな結晶粒から構成される。
前記のとおり、酸化インジウム系透明導電膜にセリウムが添加されると、キャリア電子を生成する効果が低くなる。しかし、高屈折率より低比抵抗が優先される用途では、結晶質の透明導電膜中にキャリア電子をやや多めに生成させることが好ましい。その場合には、セリウムの添加だけではなく、セリウムとチタンの両方を添加する方が有効である。チタンは、セリウムと比較して、キャリア電子を生成する効果が数段高く、ごく僅かな量の添加で必要な量のキャリア電子を生成させることができる。チタンを添加する分、セリウム添加量を低くする必要があるため、わずかに屈折率は低下するが、比抵抗を効果的に低下させることが可能になる。
なお、前記したように、スズは、チタンよりはるかにキャリア電子生成の効果が高いため、含有させてはならない。スズと比較して、前記効果はやや劣るが、シリコン、ゲルマニウム、アンチモン、ビスマス、およびテルルなどの元素も同様の理由から、含有させるのは好ましくない。
以上の理由から、セリウムの含有量がCe/(In+Ce+Ti)原子数比で0.3〜9原子%、かつチタンの含有量がTi/(In+Ce+Ti)原子数比で1原子%以下、かつセリウムとチタンの総含有量が(Ce+Ti)/(In+Ce+Ti)原子数比で9原子%以下であることが好ましい。セリウムの含有量を上記のように規定する理由は、第一の酸化物焼結体と同様である。
チタンの含有量が、Ti/(In+Ce+Ti)原子数比で1原子%を超えると、結晶質の透明導電膜中のキャリア電子濃度が高くなりすぎて屈折率が低下するため、かえって好ましくない。さらに、酸化物焼結体において、チタンはIn相に優先的に固溶するが、1原子%を超えるとCeO相にも固溶する場合がある。CeO相は、チタンが固溶すると還元状態でも導電性が高くなってしまう。また、セリウムとチタンの総含有量については、(Ce+Ti)/(In+Ce+Ti)原子数比で9原子%を超えると、主にチタン含有量が増えたことによって、同様に屈折率が低下するため好ましくない。なお、主にセリウム含有量が増えたことによる場合は、第一の酸化物焼結体と同様である。
本発明に係る第三の酸化物焼結体は、その生成相や組織が、第一の酸化物焼結体と同様であることが好ましい。
2.酸化物焼結体の製造方法
本発明に係る酸化物焼結体の製造方法は、酸化インジウム粉末と酸化セリウム粉末を含む原料粉末を混合するか、または、この原料粉末に、さらに、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなるM金属元素群より選ばれる少なくとも一種以上の金属元素の酸化物粉末、好ましくは、酸化チタン粉末を添加して混合した後、混合粉末を成形し、成形物を常圧焼成法によって、焼結する。あるいは上記混合粉末をホットプレス法によって成形し焼結する。
上記原料粉末のうち、酸化セリウム粉末の平均粒径を1.5μm以下とし、焼結後の酸化物焼結体が、ビックスバイト型構造のIn相が主たる結晶相となり、第二相として蛍石型構造のCeO相からなる平均粒径3μm以下の結晶粒が微細分散した酸化物焼結体が得られるのに十分な温度、時間で加熱処理する。これにより、ビックスバイト型構造のIn相が主たる結晶相となり、第二相として蛍石型構造のCeO相からなる平均粒径3μm以下、より好ましくは2μm以下の結晶粒が微細分散した酸化物焼結体とすることができる。
さらに、イオンプレーティング用タブレットを製造する場合には、2種類の平均粒径の酸化インジウム粉末を用いることが有効であり、このうち1種類の平均粒径は1.5μm以下、より好ましくは1μm以下とし、もう1種類は2μm以上、より好ましくは2〜5μmの平均粒径とすることが好ましい。
すなわち、上記の相構成ならびに各相の組成を有する酸化物焼結体は、その性能が、酸化物焼結体の製造条件、例えば原料粉末の粒径、混合条件および焼成条件に大きく依存する。
本発明に係る酸化物焼結体は、平均粒径1.5μm以下に調整した酸化セリウム粉末を原料粉末として用いることが必要である。また、第二、第三の酸化物焼結体の場合には、酸化インジウム粉末と酸化セリウム粉末を含む原料粉末に、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなるM金属元素群より選ばれる少なくとも一種以上のM元素、特にチタンの酸化物粉末を原料粉末として用いることが必要である。
上記したように、原料粉末のうち、酸化セリウム粉末の平均粒径を1.5μm以下とすることにより、本発明に係る酸化物焼結体の組織は、ビックスバイト型構造のIn相が主相であって、蛍石型構造のCeO相からなる第二相が存在するが、CeO相からなる結晶粒は主相に対して微細かつ均一に分散しており、結晶粒の平均粒径が3μm以下とすることが可能となる。さらに、酸化セリウム粉末を平均粒径1μm以下に調整することによって、第二相のCeO相からなる結晶粒の平均粒径を2μm以下に制御することが可能となる。
原料粉末として、平均粒径が1.5μmを超えた酸化セリウム粉末を用いると、得られる酸化物焼結体中に主相となるIn相とともに存在する、第二相のCeO相からなる結晶粒の平均粒径が3μmを超えてしまう。
なお、イオンプレーティング用タブレットを製造する場合には、2種類の平均粒径の酸化インジウム粉末を用いることが有効であり、このうち1種類の平均粒径は1.5μm以下、より好ましくは1μm以下とし、もう1種類は2μm以上、より好ましくは2〜5μmの平均粒径とすることが好ましい。平均粒径が比較的小さいものと、比較的大きなものの割合は、焼結体の密度が3.4〜5.5g/cmとなればよく、特に制限されないが、例えば10:90〜90:10、好ましくは30:70〜70:30とすることができる。
非特許文献2には、ITOの焼結メカニズムについて、焼結時にITO成形体を加熱・昇温する速度を一定の速度より速くすると、緻密化が進行しにくい蒸発・凝縮機構、あるいは、表面拡散機構によるネックの成長および粒成長が起きる時間が短縮され、焼結の駆動力が温存された状態で体積拡散の温度域へ達することができるために、緻密化が進み、焼結密度が向上することが説明されている。この場合、原料粉末の粒径に相当する焼結前の粒子間距離dは、焼結過程の体積拡散による物質移動によって、d’に縮む。このように、原料粉末の粒子2個の焼結に限った場合、焼結体の結晶粒径は2d’になる。ただし、通常は、同種の酸化物の粒子が複数個隣接するため、最終的に焼結体の結晶粒径は2d’を超えるものと考えられる。
本発明のように、酸化インジウムにセリウムがほとんど固溶しない場合、焼結体の酸化セリウム相の結晶粒径を小さくするためには、酸化セリウム原料粉末の粒径を小さくすることが重要となる。
前記の通り、CeO相の平均粒径が3μmを超える大きな結晶粒はチャージアップされやすい。このためイオンプレーティング法による成膜を続けた場合に、スプラッシュの原因となってしまう。
酸化インジウム粉末は、ITO(インジウム−スズ酸化物)の原料であり、焼結性に優れた微細な酸化インジウム粉末の開発は、ITOの改良とともに進められてきた。そして、現在でもITO用原料として大量に使用されているため、平均粒径1.5μmを超えるものはもとより、平均粒径1.5μm以下、より好ましくは1μm以下の原料粉末を入手することは容易である。
ところが、酸化セリウム粉末の場合、酸化インジウム粉末に比べて使用量が少ないため、焼結体製造用の原料粉末として相応しい粉末、すなわち平均粒径1.5μm以下、より好ましくは1μm以下であって、粉砕等を行わずそのまま利用できる状態で入手することは困難である。したがって、粗大な酸化セリウム粉末を平均粒径1.5μm、より好ましくは1μm以下まで粉砕することが必要となる。
また、第二の酸化物焼結体を得るために添加されるチタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる少なくとも一種以上の金属元素の酸化物粉末の場合も、酸化セリウムの場合と同様で、平均粒径1.5μm以下、より好ましくは1μm以下の原料粉末を入手することは難しく、粗大な酸化物粉末を平均粒径1.5μm、より好ましくは1μm以下まで粉砕することが必要である。
本発明において酸化物焼結体を得るためには、上記平均粒径を有する酸化インジウム粉末と酸化セリウム粉末を含む原料粉末を混合した後、混合粉末を成形し、成形物を常圧焼結法によって焼結するか、あるいは混合粉末をホットプレス法によって成形し焼結する。常圧焼結法は、簡便かつ工業的に有利な方法であって好ましい手段であるが、必要に応じてホットプレス法も用いることができる。
1)常圧焼結法
本発明において、酸化物焼結体を得るために常圧焼結法を用いる場合、まず成形体を作製する。上記原料粉末を樹脂製ポットに入れ、バインダー(例えば、PVAを用いる)などとともに湿式ボールミル等で混合する。酸化物焼結体を得るためには、上記ボールミル混合を18時間以上行うことが好ましい。この際、混合用ボールとしては、硬質ZrOボールを用いればよい。混合後、スラリーを取り出し、濾過、乾燥、造粒を行う。その後、得られた造粒物を、冷間静水圧プレスで9.8MPa(0.1ton/cm)〜294MPa(3ton/cm)程度の圧力をかけて成形し、成形体とする。
常圧焼結法の焼結工程では、酸素の存在する雰囲気において所定の温度範囲に加熱する。イオンプレーティング用タブレットを得るためには、成形体を酸素の存在する雰囲気において、1000〜1200℃で10〜30時間焼結する。より好ましくは焼結炉内の大気に酸素ガスを導入する雰囲気において1000〜1100℃で焼結する。焼結時間は15〜25時間であることが好ましい。
焼結温度を上記範囲とし、前記の平均粒径1.5μm以下、より好ましくは1μm以下に調整した酸化セリウム粉末を原料粉末として用いることで、In相マトリックス中に、結晶粒の平均粒径が3μm以下、より好ましくは2μm以下のCeO相からなる結晶粒が微細分散した緻密な酸化物焼結体を得ることが可能である。
なお、本発明の密度が3.4〜5.5g/cmに制御されたイオンプレーティング用タブレットを製造する場合には、2種類の平均粒径の酸化インジウム粉末を用いることが有効であり、このうち1種類の平均粒径は1.5μm以下、より好ましくは1μm以下とし、もう1種類は2μm以上、より好ましくは2〜5μmの平均粒径とすることが好ましい。
焼結温度が低すぎると焼結反応が十分進行しない。特に密度が3.4g/cm以上の酸化物焼結体を得るためには、1000℃以上が望ましい。一方、焼結温度が1200℃を超えると、酸化物焼結体の密度が5.5g/cmを超えてしまう。
特許文献3では、特許文献1および2も同様であるが、従来技術ではインジウムおよびセリウムの他に相当量のチタンやスズを入れているため、酸化インジウム相にセリウムが固溶するが、本発明では、チタン添加量も少なく、かつ、スズを含んでいないため、酸化インジウム相にセリウムが固溶しないことが特徴となっている。
焼結雰囲気は、酸素の存在する雰囲気が好ましく、焼結炉内の大気に酸素ガスを導入する雰囲気であれば、なお一層好ましい。焼結時の酸素の存在によって、酸化物焼結体の高密度化が可能となる。焼結温度まで昇温する場合、焼結体の割れを防ぎ、脱バインダーを進行させるためには、昇温速度を0.2〜5℃/分の範囲とすることが好ましい。また、必要に応じて、異なる昇温速度を組み合わせて、焼結温度まで昇温するようにしてもよい。昇温過程において、脱バインダーや焼結を進行させる目的で、特定温度で一定時間保持してもよい。焼結後、冷却する際は酸素導入を止め、1000℃までを0.2〜10℃/分、0.2〜5℃/分が好ましく、特に、0.2℃〜1℃/分の範囲の降温速度で降温することが好ましい。
2)ホットプレス法
本発明において、酸化物焼結体の製造にホットプレス法を採用する場合、混合粉末を不活性ガス雰囲気又は真空中において、2.45〜29.40MPaの圧力下、700〜950℃で1〜10時間成形し焼結する。ホットプレス法は、上記の常圧焼結法と比較して、酸化物焼結体の原料粉末を還元雰囲気下で成形、焼結するため、焼結体中の酸素含有量を低減させることが可能である。しかし、950℃を超える高温で成形焼結すると、酸化インジウムが還元され、金属インジウムとして溶融するため注意が必要である。
次に、ホットプレス法により、本発明に係る酸化物焼結体を得る場合の製造条件の一例を挙げる。すなわち、まず、酸化インジウム粉末、ならびに平均粒径1.5μm以下、より好ましくは1μm以下の酸化セリウム粉末、あるいは、さらに平均粒径1.5μm以下、より好ましくは1μm以下のチタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる少なくとも一種以上の金属元素の酸化物粉末を原料粉末とし、これらの粉末を、所定の割合になるように調合する。なお、本発明の密度が3.4〜5.5g/cmに制御されたイオンプレーティング用タブレットを製造する場合には、上記平均粒径が比較的小さいものと、比較的大きなものからなる2種類の酸化インジウム粉末を用いることが有効であり、このうち1種類の平均粒径は1.5μm以下、より好ましくは1μm以下とし、もう1種類は2μm以上、より好ましくは2〜5μmの平均粒径とすることが好ましい。
調合した原料粉末を、常圧焼結法のボールミル混合と同様、好ましくは混合時間を18時間以上とし、十分混合し造粒までを行う。次に、造粒した混合粉末をカーボン容器中に給粉してホットプレス法により焼結する。焼結温度は700〜950℃、圧力は2.45MPa〜29.40MPa(25〜300kgf/cm)、焼結時間は1〜10時間程度とすればよい。ホットプレス中の雰囲気は、アルゴン等の不活性ガス中または真空中が好ましい。
イオンプレーティング用タブレットを得る場合、より好ましくは、焼結温度は700〜800℃、圧力は2.45〜9.80MPa(25〜100kgf/cm)、焼結時間は1〜3時間とすればよい。
3.イオンプレーティング用タブレット
本発明に係る酸化物焼結体を、所定の大きさに切断、表面を研磨加工してイオンプレーティング用タブレットとする。
イオンプレーティング用タブレットでは、密度が3.4〜5.5g/cmに制御される必要がある。3.4g/cmを下回ると、焼結体自体の強度が劣るため、僅かな局所的熱膨張に対してもクラックや割れが起こりやすくなる。密度が5.5g/cmを上回ると、プラズマビームあるいは電子ビーム投入時に局部に発生した応力や歪みを吸収することができずに、クラックが生じやすくなり、高速成膜がむずかしくなる。好ましい密度は、3.8〜5.3g/cmで、より好ましい密度は、4.0〜5.0g/cmである。本発明では、酸化物焼結体の密度調整(低密度化)によって、タブレット組織には開口(空隙)部が存在するようになる。
直径、厚さは特に制限されないが、使用するイオンプレーティング装置に適合した形状であることが必要である。一般的には円柱形状がよく用いられ、例えば、直径20〜50mm、高さ30〜100mm程度のものが好ましい。
4.インジウムとセリウムを含有する透明導電膜とその成膜方法
本発明では、上記の酸化物焼結体をイオンプレーティング用タブレットとして用い、基板上に、主に結晶質の透明導電膜を形成する。
基板としては、ガラス、合成石英、PETやポリイミドなどの合成樹脂、ステンレス板など用途に応じて各種の板又はフィルムが使用できる。特に、結晶質の透明導電膜を形成する場合には加熱が必要となるため、耐熱性を有する基板であることが必要となる。
イオンプレーティング法では、透明導電膜の成膜速度を向上させるために、投入する直流電力を高めることが一般的に行われている。これまで述べてきたように、本発明に係る第一、第二、および第三の酸化物焼結体においては、In相を主たる相とし、第二相であるCeO相の結晶粒が平均粒径3μm以下、より好ましくは2μm以下で均一に微細分散されている。したがって、投入する直流電力を高めても、チャージアップは抑制され、その結果、スプラッシュを抑え込むことができる。
1)イオンプレーティング法による成膜
イオンプレーティング法では、上記酸化物焼結体から作製したイオンプレーティング用のタブレット(あるいはペレットとも呼ぶ。)を用いて透明導電膜を形成する。このとき密度が3.4〜5.5g/cmの酸化物焼結体を加工して得られる本発明のイオンプレーティング用タブレットを使用する。
前述したように、イオンプレーティング法では、蒸発源となるタブレットに、電子ビームやアーク放電による熱などを照射すると、照射された部分は局所的に高温になり、蒸発粒子が蒸発して基板に堆積される。このとき、蒸発粒子を電子ビームやアーク放電によってイオン化する。イオン化する方法には、様々な方法があるが、プラズマ発生装置(プラズマガン)を用いた高密度プラズマアシスト蒸着法(HDPE法)は、良質な透明導電膜の形成に適している。この方法では、プラズマガンを用いたアーク放電を利用する。該プラズマガンに内蔵されたカソードと蒸発源の坩堝(アノード)との間でアーク放電が維持される。カソードから放出される電子を磁場偏向により坩堝内に導入して、坩堝に仕込まれたタブレットの局部に集中して照射する。この電子ビームによって、局所的に高温となった部分から、蒸発粒子が蒸発して基板に堆積される。気化した蒸発粒子や反応ガスとして導入されたOガスは、このプラズマ内でイオン化ならびに活性化されるため、良質な透明導電膜を作製することができる。
透明導電膜を形成するには、不活性ガスと酸素、特にアルゴンと酸素からなる混合ガスを用いることが好ましい。また、装置のチャンバー内を0.1〜3Pa、特に0.2〜2Paの圧力とすることが好ましい。
本発明では、基板を加熱せずに室温で成膜できるが、基板を50〜500℃、特に250〜500℃に加熱することもできる。例えば、高精細の透明電極を必要とする青色LEDでは、非晶質の透明導電膜を一旦形成し、弱酸を用いたウエットエッチングによるパターニングを施した後に、非酸化性雰囲気での熱処理によって結晶化させて低抵抗化させるため、成膜時の基板は室温近傍など低温に維持したほうがよい。他に、太陽電池では、弱酸を用いたウエットエッチングによるパターニングを必要としないため、基板温度を250℃以上の高温に維持して、結晶質の透明導電膜を形成する。また、用途によっては、基板が樹脂板、樹脂フィルムなど低融点のものを用いるため、この場合は加熱しないで成膜することが望ましい。
2)得られる透明導電膜
このように、本発明のイオンプレーティング用タブレットを用いることで、光学特性、導電性に優れた非晶質あるいは結晶質の透明導電膜を、イオンプレーティング法によって、比較的高い成膜速度で、基板上に製造することができる。
得られる透明導電膜の組成は、イオンプレーティング用タブレットとほぼ同じになる。膜厚は、用途により異なるが、10〜1000nmとすることができる。なお、非晶質の透明導電膜は、不活性ガス雰囲気下、300〜500℃に10〜60分間加熱して、結晶質とすることができる。
結晶質の透明導電膜の比抵抗は、抵抗率計による四探針法によって測定した表面抵抗と膜厚の積から算出され、8×10−4Ω・cm以下である。なお、非晶質であっても、比抵抗を8×10−4Ω・cm以下を示すことは十分可能である。結晶質の透明導電膜のキャリア電子濃度および移動度は、ホール効果測定より求められ、35cm−1−1以上である。この膜の生成相は、X線回折測定によって同定され、酸化物焼結体とは異なり、酸化インジウム相のみである。また、屈折率は、分光エリプソメーターによって測定され、波長460nmで、2.1以上である。
なお、本発明のイオンプレーティング用タブレットを用いて形成した結晶質あるいは非晶質の透明導電膜は、低比抵抗は必要とせず、高屈折率のみを必要とする用途、例えば光ディスクの用途などにも好適である。
以下、実施例、比較例を用いて、本発明を具体的に示すが、本発明は、これらによって何ら限定されるものではない。
(酸化物焼結体の評価)
得られた酸化物焼結体の密度は、端材を用いて、アルキメデス法で求めた。続いて得られた酸化物焼結体の生成相は、端材の一部を粉砕し、X線回折装置(フィリップス製X‘pertPRO MPD)を用いて粉末法により同定を行った。そして、下記の式で定義されるX線回折ピーク強度比(I)を求めた。
I=CeO相(111)/In相(222)×100[%] (1)
また、粉末の一部を用いて、酸化物焼結体のICP発光分光法による組成分析を行った。さらに、走査電子顕微鏡ならびにエネルギー分散型X線分析法(SEM−EDS,カールツァイス製ULTRA55およびブルカー製QuanTax QX400)を用いて、酸化物焼結体の組織観察ならびに面分析を行った。これらの像の画像解析結果から、CeO相の結晶粒の平均粒径を求めた。
(透明導電膜の基本特性評価)
得られた透明導電膜の組成をICP発光分光法によって調べた。透明導電膜の膜厚は、表面粗さ計(テンコール社製Alpha−Step IQ)で測定した。成膜速度は、膜厚と成膜時間から算出した。膜の比抵抗は、抵抗率計(ダイアインスツルメンツ社製ロレスタEP MCP−T360型)による四探針法によって測定した表面抵抗と膜厚の積から算出した。膜のキャリア電子濃度および移動度は、ホール効果測定より求めた。膜の生成相は、酸化物焼結体と同様、X線回折測定によって同定した。また、屈折率を分光エリプソメーター(J.A.Woolam製 VASE)によって測定し、特に青色光に対する特性を評価するため、波長460nmの屈折率を比較した。
(参考例1)
酸化インジウム粉末および酸化セリウム粉末を平均粒径1μm以下となるよう調整して原料粉末とした。セリウム含有量がCe/(In+Ce)原子数比で9原子%となるように、これらの粉末を調合し、水とともに樹脂製ポットに入れ、湿式ボールミルで混合した。この際、硬質ZrOボールを用い、混合時間を18時間とした。混合後、スラリーを取り出し、濾過、乾燥、造粒した。造粒物を、冷間静水圧プレスで3ton/cmの圧力をかけて成形した。
次に、成形体を次のように焼結した。炉内容積0.1m当たり5リットル/分の割合で、焼結炉内の大気に酸素を導入する雰囲気で、1400℃の焼結温度で20時間焼結した。この際、1℃/分で昇温し、焼結後の冷却の際は酸素導入を止め、1000℃までを10℃/分で降温した。
得られた酸化物焼結体を、直径152mm、厚み5mmの大きさに加工し、スパッタリング面をカップ砥石で最大高さRzが3.0μm以下となるように磨いた。加工した酸化物焼結体を、無酸素銅製のバッキングプレートに金属インジウムを用いてボンディングして、スパッタリングターゲットとした。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、図2に示すように、X線回折測定による酸化物焼結体の相同定を行った。図2より、酸化物焼結体はビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、16%であった。
酸化物焼結体の密度を測定したところ、6.87g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ(前出の図1参照)、CeO相の平均粒径は1.1μmであった。これらの結果を表1に示す。
次に、アーキング抑制機能のない直流電源を装備した直流マグネトロンスパッタリング装置(アネルバ製SPF−530H)の非磁性体ターゲット用カソードに、上記スパッタリングターゲットを取り付けた。基板には、大きさが50mm角、厚さが0.5mmの合成石英を用い、ターゲット−基板間距離を49mmに固定した。1×10−4Pa未満まで真空排気後、アルゴンと酸素の混合ガスを酸素の比率が1.0%になるように導入し、ガス圧を0.3Paに調整した。なお、上記の酸素の比率1.0%において、最も低い比抵抗を示した。
直流電力200W(1.10W/cm)を印加して直流プラズマを発生させ、スパッタリングを実施した。投入した直流電力とスパッタリング時間の積から算出される積算投入電力値12.8kwhに到達するまで、直流スパッタリングを連続して実施した。この間、アーキングは起こらず放電は安定していた。スパッタリング終了後、ターゲット表面を観察したが、ノジュールの発生は特に見られなかった。次に、直流電力200、400、500、600W(1.10〜3.29W/cm)と変化させ、それぞれの電力で10分間ずつスパッタリングを行い、アーキング発生回数を測定した。いずれの電力でもアーキングは起こらず、各直流電力での1分間当たりアーキング発生平均回数はゼロであった。
続いて、直流スパッタリングによる成膜を行った。10分間のプリスパッタリング後、スパッタリングターゲットの直上、すなわち静止対向位置に基板を配置し、基板温度500℃でスパッタリングを実施して、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、6.6×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.6×1020cm−3、キャリア電子移動度36cm−1−1であった。波長460nmの屈折率は、2.21であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(参考例2)
セリウム含有量がCe/(In+Ce)で表される原子数比で7原子%となるように、平均粒径1.5μm以下となるよう調整した原料粉末を調合したこと以外は、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、14%であった。
酸化物焼結体の密度を測定したところ、6.88g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は2.7μmであった。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は500℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、5.4×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.5×1020cm−3、キャリア電子移動度46cm−1−1であった。波長460nmの屈折率は、2.20であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(参考例3)
セリウム含有量がCe/(In+Ce)で表される原子数比で5原子%となるように、平均粒径1μm以下となるよう調整した原料粉末を調合したこと以外は、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、9%であった。
酸化物焼結体の密度を測定したところ、6.92g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は1.3μmであった。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は400℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、4.6×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.4×1020cm−3、キャリア電子移動度57cm−1−1であった。波長460nmの屈折率は、2.19であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であることが確認された。
次に、基板温度を室温(25℃)として直流スパッタリングによる成膜を行い、その後、窒素中で熱処理を行った。
室温で形成された膜の比抵抗を測定したところ、7.5×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は4.9×1020cm−3、キャリア電子移動度17cm−1−1であった。波長460nmの屈折率は、2.17であった。X線回折測定によって膜の結晶性を調べた結果、非晶質の膜であった。
続いて、この非晶質の膜を窒素雰囲気中において、400℃にて、30分間の熱処理を行った。その結果、膜の比抵抗は4.9×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.2×1020cm−3、キャリア電子移動度58cm−1−1であった。波長460nmの屈折率は、2.20であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(参考例4)
セリウム含有量がCe/(In+Ce)で表される原子数比で4原子%となるように、平均粒径1.5μm以下となるよう調整した原料粉末を調合したこと以外は、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、8%であった。
酸化物焼結体の密度を測定したところ、6.91g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は2.8μmであった。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は400℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、4.2×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.3×1020cm−3、キャリア電子移動度65cm−1−1であった。波長460nmの屈折率は、2.17であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(参考例5)
セリウム含有量がCe/(In+Ce)で表される原子数比で1原子%となるように、平均粒径1μm以下となるよう調整した原料粉末を調合したこと以外は、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、2%であった。
酸化物焼結体の密度を測定したところ、6.86g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は1.1μmであった。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は400℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、4.4×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は1.6×1020cm−3、キャリア電子移動度88cm−1−1であった。波長460nmの屈折率は、2.14であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(参考例6)
セリウム含有量がCe/(In+Ce)で表される原子数比で0.3原子%となるように、平均粒径1μm以下となるよう調整した原料粉末を調合したこと以外は、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、0.5%であった。
酸化物焼結体の密度を測定したところ、6.70g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は1.2μmであった。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、7.6×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は1.0×1020cm−3、キャリア電子移動度82cm−1−1であった。波長460nmの屈折率は、2.13であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(参考例7)
酸化インジウム粉末、酸化セリウム粉末および酸化チタン粉末を平均粒径1.5μm以下となるよう調整して原料粉末としたこと、さらにはセリウム含有量がCe/(In+Ce+Ti)原子数比で8原子%ならびにチタン含有量がTi/(In+Ce+Ti)原子数比で1原子%となるように調合したことを除いては、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、25%であった。
酸化物焼結体の密度を測定したところ、7.06g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は2.7μmであった。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は400℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、5.6×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は3.1×1020cm−3、キャリア電子移動度36cm−1−1であった。波長460nmの屈折率は、2.14であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムおよびチタンは酸化インジウム相に固溶していることが確認された。
(参考例8)
酸化インジウム粉末、酸化セリウム粉末および酸化チタン粉末を平均粒径1μm以下となるよう調整して原料粉末としたこと、さらにはセリウム含有量がCe/(In+Ce+Ti)原子数比で5原子%ならびにチタン含有量がTi/(In+Ce+Ti)原子数比で0.5原子%となるように調合したことを除いては、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、14%であった。
酸化物焼結体の密度を測定したところ、7.01g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は1.5μmであった。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は400℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、5.4×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.5×1020cm−3、キャリア電子移動度46cm−1−1であった。波長460nmの屈折率は、2.17であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムおよびチタンは酸化インジウム相に固溶していることが確認された。
(参考例9)
酸化インジウム粉末、酸化セリウム粉末および酸化チタン粉末を平均粒径1μm以下となるよう調整して原料粉末としたこと、さらにはセリウム含有量がCe/(In+Ce+Ti)原子数比で4原子%ならびにチタン含有量がTi/(In+Ce+Ti)原子数比で1原子%となるように調合したことを除いては、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、7%であった。
酸化物焼結体の密度を測定したところ、7.06g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は1.1μmであった。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は400℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、5.0×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.5×1020cm−3、キャリア電子移動度50cm−1−1であった。波長460nmの屈折率は、2.16であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムおよびチタンは酸化インジウム相に固溶していることが確認された。
(参考例10)
酸化インジウム粉末、酸化セリウム粉末および酸化チタン粉末を平均粒径1μm以下となるよう調整して原料粉末としたこと、さらにはセリウム含有量がCe/(In+Ce+Ti)原子数比で0.3原子%ならびにチタン含有量がTi/(In+Ce+Ti)原子数比で0.3原子%となるように調合したことを除いては、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、1%であった。
酸化物焼結体の密度を測定したところ、7.05g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は1.0μmであった。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、5.0×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は1.5×1020cm−3、キャリア電子移動度83cm−1−1であった。波長460nmの屈折率は、2.12であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムおよびチタンは酸化インジウム相に固溶していることが確認された。
(参考例11)
酸化インジウム粉末、酸化セリウム粉末および酸化ジルコニウム粉末を平均粒径1μm以下となるよう調整して原料粉末としたこと、さらにはセリウム含有量がCe/(In+Ce+Zr)原子数比で0.3原子%ならびにジルコニウム含有量がZr/(In+Ce+Zr)原子数比で0.3原子%となるように調合したことを除いては、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、1%であった。
酸化物焼結体の密度を測定したところ、6.98g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は1.0μmであった。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、5.2×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は1.5×1020cm−3、キャリア電子移動度80cm−1−1であった。波長460nmの屈折率は、2.12であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムおよびジルコニウムは酸化インジウム相に固溶していることが確認された。
なお、ジルコニウムの代わりに、ハフニウム、モリブデン、あるいはタングステンを同組成添加した場合についても、ほぼ同様の結果を得た。
(参考比較例1)
セリウム含有量がCe/(In+Ce)で表される原子数比で0.1原子%となるように、平均粒径1μm以下となるよう調整した原料粉末を調合したこと以外は、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相のみが確認された。
酸化物焼結体の密度を測定したところ、6.74g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、極少量のCeO相が点在している様子が観察された。CeO相の平均粒径は1.0μmであった。これらの結果を表1に示す。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、1.3×10−3Ωcmと高い値を示した。また、ホール効果測定を行ったところ、キャリア電子濃度は6.2×1019cm−3、キャリア電子移動度68cm−1−1であった。波長460nmの屈折率は、2.12であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(参考比較例2)
セリウム含有量がCe/(In+Ce)で表される原子数比で11原子%となるように、平均粒径1.5μm以下となるよう調整した原料粉末を調合したこと以外は、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、28%と高かった。
酸化物焼結体の密度を測定したところ、6.69g/cmとやや低かった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は2.6μmであった。また、CeO相の結晶粒の体積比率増加に起因すると推測されるが、In相の結晶粒がやや微細化している様子が観察された。このことによって、前記式(1)で表されるCeO相(111)のX線回折ピーク強度比が高くなったものと考えられる。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は500℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、1.0×10−3Ωcmと高かった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.8×1020cm−3、キャリア電子移動度21cm−1−1であった。波長460nmの屈折率は、2.18であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(参考比較例3)
平均粒径2μmの酸化セリウム粉末を原料粉末として用いたこと以外は、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、18%であった。
酸化物焼結体の密度を測定したところ、6.72g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は4.2μmであった。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kWhに到達するまで、直流スパッタリングを実施した。スパッタリングを開始してから、しばらくアーキングは起こらなかったが、積算時間が11.2kWhを経過後から、しだいにアーキングが起こるようになった。積算時間到達後、ターゲット表面を観察したところ、多数のノジュールの生成が確認された。続いて、直流電力200、400、500、600Wと変化させ、それぞれの電力で10分間ずつスパッタリングを行い、アーキング発生回数を測定した。図3に、参考例2とともに、各直流電力での1分間当たりアーキング発生平均回数を示した。図3より、直流電力増加とともにアーキングが頻発するようになっていることは明らかである。なお、アーキングが頻発したため、成膜は実施しなかった。
(参考比較例4)
酸化インジウム粉末、酸化セリウム粉末および酸化チタン粉末を平均粒径1μm以下となるよう調整して原料粉末としたこと、さらにはセリウム含有量がCe/(In+Ce+Ti)原子数比で0.3原子%ならびにチタン含有量がTi/(In+Ce+Ti)原子数比で3原子%となるように調合したことを除いては、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相による回折ピークのみが観察され、蛍石型構造のCeO相による回折ピークは観察されなかった。酸化物焼結体の密度を測定したところ、7.04g/cmであった。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、3.0×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は5.6×1020cm−3、キャリア電子移動度37cm−1−1であった。波長460nmの屈折率は、2.07と低かった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムおよびチタンは酸化インジウム相に固溶していることが確認された。
(参考比較例5)
酸化インジウム粉末、酸化セリウム粉末および酸化スズ粉末を平均粒径1μm以下となるよう調整して原料粉末としたこと、さらにはセリウム含有量がCe/(In+Ce+Sn)原子数比で0.3原子%ならびにスズ含有量がSn/(In+Ce+Sn)原子数比で3原子%となるように調合したことを除いては、参考例1と同様の方法で酸化物焼結体、さらにはスパッタリングターゲットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相による回折ピークのみが観察され、蛍石型構造のCeO相による回折ピークは観察されなかった。酸化物焼結体の密度を測定したところ、7.09g/cmであった。
次に、参考例1と同様の方法によって、直流スパッタリングにおけるアーキング発生について調べた。積算投入電力値12.8kwhに到達するまでアーキングは起こらず放電は安定していた。また、直流電力を変化させた場合の各直流電力での1分間当たりアーキング発生平均回数もゼロであった。
続いて、参考例1と同様に、直流スパッタリングによる成膜を行った。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、2.6×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は7.3×1020cm−3、キャリア電子移動度33cm−1−1であった。波長460nmの屈折率は、2.04と低かった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムおよびスズは酸化インジウム相に固溶していることが確認された。
(実施例1)
セリウム含有量がCe/(In+Ce)で表される原子数比で2原子%となる酸化物焼結体からなるタブレットを用いて、イオンプレーティング法で成膜を実施した。
酸化物焼結体の作製方法は、平均粒径1μm以下となるよう調整した原料粉末を調合したことを含めて、参考例1のスパッタリングターゲットの場合とほぼ同様の作製方法であるが、先に述べたように、イオンプレーティング用のタブレットとして用いる場合には、密度を低くする必要があるため、2種類の平均粒径の酸化インジウム粉末を用いることとし、平均粒径1μm以下となるよう調整した前記の酸化インジウム粉末に加え、平均粒径3μmとなるよう調整した酸化インジウム粉末を選択することとした。
同様に低密度化のために焼結温度を1100℃とした。タブレットは、焼結後の寸法が直径30mm、高さ40mmとなるよう予め成形した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、4%であった。酸化物焼結体の密度を測定したところ、4.67g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は1.0μmであった。
このような酸化物焼結体をタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
タブレット交換後、成膜を実施した。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、3.3×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.1×1020cm−3、キャリア電子移動度92cm−1−1であった。波長460nmの屈折率は、2.13であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(実施例2)
セリウム含有量がCe/(In+Ce)で表される原子数比で1原子%になるよう原料粉末を調合したこと以外は、実施例1と同様に酸化物焼結体からなるタブレットを作製した。得られたタブレットの組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。
タブレットの密度を測定したところ、4.58g/cmであった。また、前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、1%であった。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、図5に示すように、X線回折測定による酸化物焼結体の相同定を行った。図5より、酸化物焼結体はビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、1%であった。
続いて、SEMによる酸化物焼結体の組織観察を行ったところ(前出の図4参照)、CeO相の平均粒径は1.0μmであった。これらの結果を表1に示す。
このタブレットを用いて、実施例1と同様にイオンプレーティング法による成膜を実施した。
基板温度は400℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
膜の比抵抗を測定したところ、3.6×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.1×1020cm−3、キャリア電子移動度83cm−1−1であった。波長460nmの屈折率は、2.14であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(実施例3)
セリウム含有量がCe/(In+Ce)で表される原子数比で9原子%となるよう原料粉末を調合したこと、および原料粉末のうち酸化セリウム粉末を平均粒径1.5μm以下となるよう調整したこと以外は、実施例1と同様に酸化物焼結体からなるタブレットを作製した。得られたタブレットの組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。タブレットの密度を測定したところ、4.88g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は2.6μmであった。また、前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、24%であった。このタブレットを用いて、実施例1と同様に成膜を実施した。
基板温度は400℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
膜の比抵抗を測定したところ、5.8×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.7×1020cm−3、キャリア電子移動度40cm−1−1であった。波長460nmの屈折率は、2.20であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(実施例4)
セリウム含有量がCe/(In+Ce)で表される原子数比で0.3原子%となるよう原料粉末を調合したこと以外は、実施例1と同様に酸化物焼結体からなるタブレットを作製した。得られたタブレットの組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。タブレットの密度を測定したところ、4.52g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は1.0μmであった。また、前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、0.5%であった。
このタブレットを用いて、実施例1と同様に成膜を実施した。
基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
膜の比抵抗を測定したところ、6.5×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は1.2×1020cm−3、キャリア電子移動度80cm−1−1であった。波長460nmの屈折率は、2.13であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(実施例5)
セリウム含有量がCe/(In+Ce+Ti)原子数比で4原子%、ならびにチタン含有量がTi/(In+Ce+Ti)原子数比で1原子%となるよう原料粉末を調合したこと、ならびに酸化チタン粉末を平均粒径1μm以下となるよう調整して原料粉末としたこと以外は、実施例1と同様に酸化物焼結体からなるタブレットを作製した。得られたタブレットの組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。また、前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、6%であった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は1.2μmであった。タブレットの密度を測定したところ、4.84g/cmであった。このタブレットを用いて、実施例1と同様に成膜を実施した。
基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
膜の比抵抗を測定したところ、3.9×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.9×1020cm−3、キャリア電子移動度55cm−1−1であった。波長460nmの屈折率は、2.15であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(比較例1)
セリウム含有量がCe/(In+Ce)で表される原子数比で0.1原子%となるように、平均粒径1μm以下となるよう調整した原料粉末を調合したこと以外は、実施例1と同様の方法で酸化物焼結体、さらにはイオンプレーティング用タブレットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相のみが確認された。
酸化物焼結体の密度を測定したところ、4.49g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、極少量のCeO相が点在している様子が観察された。CeO相の平均粒径は1.0μmであった。これらの結果を表1に示す。
次に、実施例1と同様に、イオンプレーティング法による成膜を実施し、スプラッシュの発生状況を調べたが、タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
続いて、実施例1と同様に、イオンプレーティング法による成膜を行った。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、1.2×10−3Ωcmと高い値を示した。また、ホール効果測定を行ったところ、キャリア電子濃度は6.9×1019cm−3、キャリア電子移動度75cm−1−1であった。波長460nmの屈折率は、2.11であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(比較例2)
セリウム含有量がCe/(In+Ce)で表される原子数比で11原子%となるように、平均粒径1.5μm以下となるよう調整した原料粉末を調合したこと以外は、実施例1と同様の方法で酸化物焼結体、さらにはイオンプレーティング用タブレットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、28%と高かった。
酸化物焼結体の密度を測定したところ、4.86g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は2.7μmであった。
次に、実施例1と同様の方法によって、イオンプレーティング法による成膜を実施し、スプラッシュの発生状況を調べたが、タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
続いて、実施例1と同様に、イオンプレーティング法による成膜を行った。なお、基板温度は500℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、1.1×10−3Ωcmと高かった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.9×1020cm−3、キャリア電子移動度20cm−1−1であった。波長460nmの屈折率は、2.18であった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムは酸化インジウム相に固溶していることが確認された。
(比較例3)
平均粒径2μmの酸化セリウム粉末を原料粉末として用いたこと以外は、実施例2と同様の方法で酸化物焼結体、さらにはイオンプレーティング用タブレットを作製した。
得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。前記式(1)で表されるCeO相(111)のX線回折ピーク強度比は、2%であった。
酸化物焼結体の密度を測定したところ、4.61g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は4.0μmであった。
次に、実施例1と同様の方法によって、イオンプレーティング法による成膜を実施し、スプラッシュの発生状況を調べたところ、成膜時間の経過とともに、スプラッシュが頻発するようになった。なお、スプラッシュが頻発したため、成膜は実施しなかった。
(比較例4)
セリウム含有量がCe/(In+Ce+Ti)原子数比で0.3原子%ならびにチタン含有量がTi/(In+Ce+Ti)原子数比で3原子%となるように原料粉末を調合したことを除いては、実施例5と同様の方法で酸化物焼結体、さらにはイオンプレーティング用タブレットを作製した。
得られたタブレットの組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相による回折ピークのみが観察され、蛍石型構造のCeO相による回折ピークは観察されなかった。酸化物焼結体の密度を測定したところ、4.55g/cmであった。
次に、実施例1と同様の方法によって、イオンプレーティング法による成膜を実施し、スプラッシュの発生状況を調べたが、タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
続いて、実施例1と同様に、イオンプレーティング法による成膜を行った。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、2.7×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は5.9×1020cm−3、キャリア電子移動度39cm−1−1であった。波長460nmの屈折率は、2.06と低かった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムおよびチタンは酸化インジウム相に固溶していることが確認された。
(比較例5)
セリウム含有量がCe/(In+Ce+Sn)原子数比で0.3原子%ならびにスズ含有量がSn/(In+Ce+Sn)原子数比で3原子%となるように調合したこと、ならびに酸化スズ粉末を平均粒径1μm以下となるよう調整して原料粉末としたことを除いては、実施例1と同様の方法で酸化物焼結体、さらにはイオンプレーティング用タブレットを作製した。
得られたタブレットの組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、ビックスバイト型構造のIn相による回折ピークのみが観察され、蛍石型構造のCeO相による回折ピークは観察されなかった。酸化物焼結体の密度を測定したところ、4.61g/cmであった。
次に、実施例1と同様の方法によって、イオンプレーティング法による成膜を実施し、スプラッシュの発生状況を調べたが、タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
続いて、実施例1と同様に、イオンプレーティング法による成膜を行った。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
膜の比抵抗を測定したところ、2.4×10−4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は8.7×1020cm−3、キャリア電子移動度30cm−1−1であった。波長460nmの屈折率は、2.02と低かった。X線回折測定によって膜の結晶性を調べた結果、酸化インジウム相のみからなる結晶質の膜であり、セリウムおよびスズは酸化インジウム相に固溶していることが確認された。
Figure 2011016387
「評価」
表1に示した結果から明らかなように、実施例1〜5の酸化物焼結体は、酸化物焼結体中のセリウム含有量がCe/(In+Ce)原子数比で0.3〜9原子%であり、ビックスバイト型構造のIn相が主たる結晶相となり、第2相として蛍石型構造のCeO相が平均粒径3μm以下の結晶粒として微細に分散しており、これらの酸化物焼結体をタブレットとして、イオンプレーティング法(HDPE法)による長時間の連続放電においてCeO相起因のスプラッシュが発生しないことが明らかとなった。さらに、In相の結晶粒が2種類の大きさの平均粒径からなり、1種類が平均粒径2μm以下、より好ましくは1.5μm以下、さらに好ましくは1μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上、より好ましくは3〜6μmの比較的大きい結晶粒であることによって、焼結体の強度確保と密度調整(低密度化)に寄与し、その結果としてスプラッシュが発生しないことが明らかとなった。また、焼結体密度が3.4〜5.5g/cmの範囲にあり、タブレットとしては熱衝撃によって割れにくくなる適度な密度を示した。なお、実施例1〜5で形成された結晶質の透明導電膜は、優れた電気的および光学的特性を示すことが確認された。
これに対して、参考例1〜6では、平均粒径1.5μm以下に調整した酸化インジウム粉末および酸化セリウム粉末を用いて、セリウム含有量をCe/(In+Ce)原子数比で0.3〜9原子%の範囲に調合して、インジウム酸化物とセリウム酸化物からなる酸化物焼結体(第1の酸化物焼結体)を作製しており、ビックスバイト型構造のIn相を主相とし、第2相である蛍石型構造のCeO相が平均粒径3μm以下の結晶粒として微細分散された焼結体組織を有することが確認された。さらに、In相とCeO相の結晶粒の粒径と分散状態の関係は、前出の式(1)で表されるIn相(222)に対するCeO相(111)のX線回折ピーク強度比において、25%以下であることが確認された。
また、参考例7〜11より、平均粒径1.5μm以下に調整した酸化インジウム粉末、酸化セリウム粉末、およびチタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上のM元素の酸化物粉末を用いて、セリウム含有量をCe/(In+Ce)原子数比で0.3〜9原子%、かつM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下、かつセリウムとM元素の総含有量が(Ce+M)/(In+Ce+M)原子数比で9原子%以下の範囲に調合して、インジウム、セリウム、およびM元素を酸化物として含有する酸化物焼結体(第2の酸化物焼結体)、M元素がチタンである酸化物焼結体(第3の酸化物焼結体)を作製しており、参考例1〜6の酸化物焼結体と同様の微細分散組織を有することが確認された。
参考例1〜11の酸化物焼結体は、焼結体密度が6.3g/cm以上であり、いずれも高密度を示した。これらの酸化物焼結体をスパッタリングターゲットとして、直流スパッタリングを実施したところ、長時間の連続スパッタリング後でもCeO相起因のスパッタリングの掘れ残りを起点としたノジュールの発生はみられず、直流電力200〜600Wの範囲で変化させてもアーキングが発生しないことが明らかとなった。
参考例1〜11において形成された結晶質の透明導電膜の比抵抗は8×10−4Ω・cm以下と良好であり、この低い比抵抗が35cm−1−1を超える高いキャリア電子移動度に依存することが確認された。同時に、光学特性に関しては、キャリア電子濃度が低く抑制された結果、波長460nmにおける屈折率が2.1を超える高い値を示すことが確認された。なお、参考例3では、非晶質であるためキャリア電子移動度は低いものの、波長460nmにおける屈折率が2.1を超える高い値を示した。
したがって、これら参考例1〜11の酸化物焼結体は、スパッタリングターゲットとして使用できるが、焼結体密度が5.5g/cmを超えているので、イオンプレーティング用タブレットとしては使用できない。
一方、比較例1では、セリウム含有量を本発明の範囲から外れた、Ce/(In+Ce)原子数比で0.1原子%としている。セリウム含有量が低すぎるため、イオンプレーティングにより形成された結晶質の透明導電膜は、十分なキャリア電子濃度を生成することができず、比抵抗は1.2×10−3Ω・cmを示し、青色LEDや太陽電池の用途などで必要な比抵抗8×10−4Ω・cm以下を示すには至らなかった。
同様に、比較例2では、セリウム含有量を本発明の範囲から外れた、Ce/(In+Ce)原子数比で11原子%としている。セリウム含有量が高過ぎるため、イオンプレーティング法により形成された結晶質の透明導電膜は、キャリア電子移動度が低下してしまい、比抵抗は1.1×10−3Ω・cmを示し、青色LEDや太陽電池の用途などで必要な比抵抗8×10−4Ω・cm以下を示すには至らなかった。
比較例3では、平均粒径2μmの比較的粗大な酸化セリウム粉末を原料粉末として用いたことによって、酸化物焼結体に分散されたCeO相からなる結晶粒の平均粒径が3μmを超えている。このような組織の酸化物焼結体をタブレットとし、イオンプレーティング法による成膜を実施したところ、成膜時間の経過とともに、スプラッシュが頻発することが確認された。すなわち、実施例1〜5のように、平均粒径1.5μm以下に調整した酸化セリウム粉末を用いて、CeO相からなる結晶粒の平均粒径が3μm以下となるよう微細分散された酸化物焼結体の組織が、スプラッシュ発生の抑制に有効であることが明らかとなった。
比較例4は、チタン含有量を本発明の範囲から外れた、Ti/(In+Ce+Ti)原子数比で3原子%としている。チタン含有量が高過ぎるため、イオンプレーティング法により形成された結晶質の透明導電膜は、キャリア電子濃度が高くなり過ぎてしまい、屈折率は2.06を示し、青色LEDの用途などで必要な屈折率2.1を示すには至らなかった。
比較例5の酸化物焼結体は、インジウムおよびセリウムの他に、本発明の酸化物焼結体の構成元素とは異なるスズをSn/(In+Ce+Sn)原子数比で3原子%含有している。スズを含むため、イオンプレーティング法により形成された結晶質の透明導電膜は、キャリア電子濃度が高くなり過ぎてしまい、屈折率は2.02を示し、青色LEDの用途などで必要な屈折率2.1を示すには至らなかった。
したがって、これら比較例1〜5の酸化物焼結体は、イオンプレーティング用タブレットとして使用することができない
さらに、参考比較例1では、セリウム含有量を本発明の範囲から外れた、Ce/(In+Ce)原子数比で0.1原子%としている。セリウム含有量が低すぎるため、スパッタリングにより形成された結晶質の透明導電膜は、十分なキャリア電子濃度を生成することができず、比抵抗は1.3×10−3Ω・cmを示し、青色LEDや太陽電池の用途などで必要な比抵抗8×10−4Ω・cm以下を示すには至らなかった。
同様に、参考比較例2では、セリウム含有量を本発明の範囲から外れた、Ce/(In+Ce)原子数比で11原子%としている。セリウム含有量が高過ぎるため、スパッタリングにより形成された結晶質の透明導電膜は、キャリア電子移動度が低下してしまい、比抵抗は1.0×10−3Ω・cmを示し、青色LEDや太陽電池の用途などで必要な比抵抗8×10−4Ω・cm以下を示すには至らなかった。
参考比較例3では、平均粒径2μmの比較的粗大な酸化セリウム粉末を原料粉末として用いたことによって、酸化物焼結体に分散されたCeO相からなる結晶粒の平均粒径が3μmを超えている。このような組織の酸化物焼結体をスパッタリングターゲットとし、直流スパッタリングを実施したところ、長時間の連続スパッタリング後にノジュールが発生し、アーキングが頻発することが確認された。すなわち、参考例1〜11のように、平均粒径1.5μm以下に調整した酸化セリウム粉末を用いて、CeO相からなる結晶粒の平均粒径が3μm以下となるよう微細分散された酸化物焼結体の組織が、ノジュール発生とアーキング発生の抑制に有効であることが明らかとなった。
参考比較例4は、チタン含有量を本発明の範囲から外れた、Ti/(In+Ce+Ti)原子数比で3原子%としている。チタン含有量が高過ぎるため、スパッタリングにより形成された結晶質の透明導電膜は、キャリア電子濃度が高くなり過ぎてしまい、屈折率は2.07を示し、青色LEDの用途などで必要な屈折率2.1を示すには至らなかった。参考比較例5の酸化物焼結体は、インジウムおよびセリウムの他に、本発明の酸化物焼結体の構成元素とは異なるスズをSn/(In+Ce+Sn)原子数比で3原子%含有している。スズを含むため、スパッタリングにより形成された結晶質の透明導電膜は、キャリア電子濃度が高くなり過ぎてしまい、屈折率は2.04を示し、青色LEDの用途などで必要な屈折率2.1を示すには至らなかった。
したがって、これら参考比較例1〜5の酸化物焼結体は、スパッタリングターゲットとして使用できず、しかも、焼結体密度が5.5g/cmを超えているので、イオンプレーティング用タブレットとしても使用することができない
産業上の利用分野
本発明は、インジウムとセリウムを含有する酸化物焼結体を加工したイオンプレーティング用タブレットであり、イオンプレーティング法による酸化物透明導電膜の生産に使用することができる。この透明導電膜は、青色LED(Light Emitting Diode)や太陽電池の表面電極、光ディスク用の高屈折率膜として、工業的に極めて有用である。

Claims (12)

  1. インジウムとセリウムを酸化物として含有し、セリウムの含有量がCe/(In+Ce)原子数比で0.3〜9原子%である酸化物焼結体を加工して得られるイオンプレーティング用タブレットであって、
    該酸化物焼結体は、ビックスバイト型構造のIn相が主たる結晶相となり、第2相として蛍石型構造のCeO相が平均粒径3μm以下の結晶粒として微細に分散しており、かつ密度が3.4〜5.5g/cmであることを特徴とするイオンプレーティング用タブレット。
  2. ビックスバイト型構造のIn相が、平均粒径2μm以下の結晶粒ならびに平均粒径2.5μm以上の結晶粒からなる2種類の平均粒径の結晶粒によって構成されることを特徴とする請求項1に記載のイオンプレーティング用タブレット。
  3. セリウムの含有量がCe/(In+Ce)原子数比で0.3〜5原子%であることを特徴とする請求項1に記載のイオンプレーティング用タブレット。
  4. 下記の式で定義されるX線回折ピーク強度比(I)が25%以下であることを特徴とする請求項1に記載のイオンプレーティング用タブレット。
    I=CeO相(111)/In相(222)×100[%]
  5. さらに、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上の金属元素(M元素)を酸化物として含有し、セリウムの含有量がCe/(In+Ce+M)原子数比で0.3〜9原子%、かつM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下、かつセリウムとM元素の総含有量が(Ce+M)/(In+Ce+M)原子数比で9原子%以下であることを特徴とする請求項1に記載のイオンプレーティング用タブレット。
  6. M元素が、チタンであることを特徴とする請求項5に記載のイオンプレーティング用タブレット。
  7. スズを含まないことを特徴とする請求項1に記載のイオンプレーティング用タブレット。
  8. 平均粒径1.5μm以下の酸化インジウム粉末、平均粒径2μm以上の酸化インジウム粉末、ならびに平均粒径1.5μm以下の酸化セリウム粉末からなる原料粉末を混合した後、混合粉末を成形し、成形物を常圧焼結法によって焼結した後、あるいは混合粉末をホットプレス法によって成形し焼結した後、加工して得られるイオンプレーティング用タブレットの製造方法であって、
    焼結後の酸化物焼結体は、ビックスバイト型構造のIn相が主たる結晶相となり、第二相として蛍石型構造のCeO相からなる平均粒径3μm以下の結晶粒が微細分散し、かつ密度が3.4〜5.5g/cmであることを特徴とするイオンプレーティング用タブレットの製造方法。
  9. 平均粒径1.5μm以下の酸化インジウム粉末、平均粒径2μm以上の酸化インジウム粉末、ならびに平均粒径1.5μm以下の酸化セリウム粉末からなる原料粉末に、平均粒径1.5μm以下のチタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなるM金属元素群より選ばれる少なくとも一種以上のM元素の酸化物粉末を添加して混合した後、混合粉末を成形し、成形物を常圧焼結法によって焼結するか、あるいは混合粉末をホットプレス法によって成形し焼結するか、焼結した後、加工して得られるイオンプレーティング用タブレットの製造方法であって、
    焼結後の酸化物焼結体は、ビックスバイト型構造のIn相が主たる結晶相となり、第二相として蛍石型構造のCeO相からなる平均粒径3μm以下の結晶粒が微細分散し、かつ密度が3.4〜5.5g/cmであることを特徴とするイオンプレーティング用タブレットの製造方法。
  10. 原料粉末が、酸素ガスを含有する雰囲気で、1000〜1200℃の焼結温度で10〜30時間焼結されることを特徴とする請求項8又は9に記載のイオンプレーティング用タブレットの製造方法。
  11. 原料粉末が、ホットプレス法により、不活性ガス雰囲気又は真空中で、2.45〜9.80MPaの圧力下、700〜800℃の焼結温度で1〜3時間焼結されることを特徴とする請求項8又は9に記載のイオンプレーティング用タブレットの製造方法。
  12. 請求項1〜7に記載のイオンプレーティング用タブレットを用いて、基板上にイオンプレーティング法で形成されることを特徴とする透明導電膜。
JP2011525865A 2009-08-05 2010-07-29 イオンプレーティング用タブレットとその製造方法、および透明導電膜 Expired - Fee Related JP5733208B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011525865A JP5733208B2 (ja) 2009-08-05 2010-07-29 イオンプレーティング用タブレットとその製造方法、および透明導電膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009182761 2009-08-05
JP2009182761 2009-08-05
JP2011525865A JP5733208B2 (ja) 2009-08-05 2010-07-29 イオンプレーティング用タブレットとその製造方法、および透明導電膜
PCT/JP2010/062816 WO2011016387A1 (ja) 2009-08-05 2010-07-29 イオンプレーティング用タブレットとその製造方法、および透明導電膜

Publications (2)

Publication Number Publication Date
JPWO2011016387A1 true JPWO2011016387A1 (ja) 2013-01-10
JP5733208B2 JP5733208B2 (ja) 2015-06-10

Family

ID=43544283

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2011525865A Expired - Fee Related JP5733208B2 (ja) 2009-08-05 2010-07-29 イオンプレーティング用タブレットとその製造方法、および透明導電膜
JP2011525866A Expired - Fee Related JP5768290B2 (ja) 2009-08-05 2010-07-29 酸化物焼結体とその製造方法、ターゲット、および透明導電膜
JP2015076713A Expired - Fee Related JP6015801B2 (ja) 2009-08-05 2015-04-03 酸化物焼結体とその製造方法、ターゲット、および透明導電膜

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2011525866A Expired - Fee Related JP5768290B2 (ja) 2009-08-05 2010-07-29 酸化物焼結体とその製造方法、ターゲット、および透明導電膜
JP2015076713A Expired - Fee Related JP6015801B2 (ja) 2009-08-05 2015-04-03 酸化物焼結体とその製造方法、ターゲット、および透明導電膜

Country Status (7)

Country Link
US (3) US9028721B2 (ja)
EP (3) EP2463255B1 (ja)
JP (3) JP5733208B2 (ja)
KR (3) KR101696859B1 (ja)
CN (3) CN104058728B (ja)
TW (3) TWI542565B (ja)
WO (2) WO2011016388A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2463255B1 (en) * 2009-08-05 2016-09-07 Sumitomo Metal Mining Co., Ltd. Tablet for ion plating, method for producing same, and transparent conductive film
KR101568215B1 (ko) * 2009-08-07 2015-11-11 스미토모 긴조쿠 고잔 가부시키가이샤 증착용 타블렛의 제조 방법
JP5257372B2 (ja) 2009-11-30 2013-08-07 住友金属鉱山株式会社 酸化物蒸着材と透明導電膜および太陽電池
JP4968318B2 (ja) * 2009-12-22 2012-07-04 住友金属鉱山株式会社 酸化物蒸着材
CN102634796A (zh) * 2012-04-28 2012-08-15 桂林电子科技大学 一种具有抗菌性能的复合陶瓷层的制备方法
EP2881379A4 (en) * 2012-07-31 2016-03-02 Sumitomo Metal Mining Co OXIDE SINTERED BODY AND TABLET OBTAINED BY THE TREATMENT OF SAID BODY
JP6107085B2 (ja) * 2012-11-22 2017-04-05 住友金属鉱山株式会社 酸化物半導体薄膜および薄膜トランジスタ
KR102069192B1 (ko) 2013-02-08 2020-01-23 삼성디스플레이 주식회사 나노 결정 형성 방법 및 나노 결정의 형성된 박막을 포함한 유기 발광 표시 장치의 제조 방법
FR3004853B1 (fr) * 2013-04-22 2016-10-21 Centre Nat Rech Scient Procede de fabrication d'une diode schottky sur un substrat en diamant
US10906017B2 (en) * 2013-06-11 2021-02-02 University Of Florida Research Foundation, Inc. Solar thermochemical reactor and methods of manufacture and use thereof
JP5971201B2 (ja) * 2013-06-17 2016-08-17 住友金属鉱山株式会社 In−Ce−O系スパッタリングターゲットとその製造方法
CN103819177B (zh) * 2013-12-11 2015-09-09 广西晶联光电材料有限责任公司 一种ITiO靶材的制备方法
US20160343554A1 (en) * 2013-12-27 2016-11-24 Idemitsu Kosan Co., Ltd. Oxide sintered body, method for producing same and sputtering target
US9460925B2 (en) 2014-11-05 2016-10-04 Solarcity Corporation System and apparatus for efficient deposition of transparent conductive oxide
WO2018012562A1 (ja) * 2016-07-14 2018-01-18 イビデン株式会社 ハニカム構造体及び該ハニカム構造体の製造方法
KR101999894B1 (ko) * 2017-08-03 2019-07-12 주식회사 나노신소재 복합 산화물 소결체 및 스퍼터링 타겟, 산화물 투명도전막의 제조방법
CN110875098A (zh) * 2018-08-29 2020-03-10 天津大学 基于热压烧结的纳米银线导电墨水烧结薄膜及其制备方法和应用
CN111943650B (zh) * 2020-07-22 2022-11-29 长沙壹纳光电材料有限公司 一种用于活化等离子沉积技术的iwo靶材及其制备方法
CN111943649B (zh) * 2020-07-22 2022-08-26 长沙壹纳光电材料有限公司 一种用于蒸镀的烧结体及其制备方法
CN113481471B (zh) * 2021-07-10 2023-08-04 如皋市凯源电器设备有限公司 高性能导电条用金属材料制备工艺
CN113716953B (zh) * 2021-09-14 2022-10-28 基迈克材料科技(苏州)有限公司 氧化铈掺杂izo粉体、靶材及制备方法
CN114180938A (zh) * 2021-12-15 2022-03-15 先导薄膜材料(广东)有限公司 一种氧化铟铈钛钽粉体及其制备方法
CN114524664B (zh) * 2022-02-25 2023-07-18 洛阳晶联光电材料有限责任公司 一种太阳能电池用陶瓷靶材及其制备方法
CN116217208B (zh) * 2022-12-15 2024-08-30 先导薄膜材料(广东)有限公司 一种高致密性的氧化铟铈靶材及其制备方法
CN116768603A (zh) * 2023-06-09 2023-09-19 先导薄膜材料(广东)有限公司 氧化铟钛钽铈靶材及其制备方法和镀膜玻璃片

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376841A (ja) * 1989-08-15 1991-04-02 Bridgestone Corp ゴム補強用繊維
JP3158948B2 (ja) 1995-03-22 2001-04-23 凸版印刷株式会社 スパッタリングターゲット
JP3445891B2 (ja) * 1995-12-21 2003-09-08 凸版印刷株式会社 スパッタリングターゲット
JP2002343151A (ja) * 2001-03-07 2002-11-29 Ueyama Denki:Kk 透明導電膜積層基板の製造方法
JP4028269B2 (ja) * 2002-03-19 2007-12-26 日鉱金属株式会社 高抵抗透明導電性膜用スパッタリングターゲット
JP2004149883A (ja) 2002-10-31 2004-05-27 Mitsui Mining & Smelting Co Ltd 高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法
JP2005123124A (ja) 2003-10-20 2005-05-12 Seiko Epson Corp 有機el装置の製造方法および有機el装置
JP2005242264A (ja) 2004-02-27 2005-09-08 Mitsui Chemicals Inc 透明導電性薄膜積層体およびそれを用いたプラズマディスプレイパネル用光学フィルター
CN103121799A (zh) 2004-03-09 2013-05-29 出光兴产株式会社 溅射靶、透明导电膜、薄膜晶体管、薄膜晶体管基板及其制造方法及液晶显示装置
JP4428698B2 (ja) * 2004-03-31 2010-03-10 出光興産株式会社 酸化インジウム−酸化セリウム系スパッタリングターゲット及び透明導電膜及び透明導電膜の製造方法
JP2005320192A (ja) * 2004-05-07 2005-11-17 Sumitomo Metal Mining Co Ltd 酸化物焼結体、スパッタリングターゲットおよび透明導電性薄膜
JP4915065B2 (ja) * 2005-08-24 2012-04-11 住友金属鉱山株式会社 酸化物焼結体及びその製造方法、酸化物焼結体を用いて得られる非晶質酸化物膜、並びにその非晶質酸化物膜を含む積層体
US8336243B2 (en) * 2007-04-09 2012-12-25 Colt Defense Llc Firearm having a removable hand guard
JP4552950B2 (ja) * 2006-03-15 2010-09-29 住友金属鉱山株式会社 ターゲット用酸化物焼結体、その製造方法、それを用いた透明導電膜の製造方法、及び得られる透明導電膜
CN101460425B (zh) * 2006-06-08 2012-10-24 住友金属矿山株式会社 氧化物烧结体、靶、用它制得的透明导电膜以及透明导电性基材
JP4807331B2 (ja) 2007-06-18 2011-11-02 住友金属鉱山株式会社 酸化インジウム系スパッタリングターゲットの製造方法
CN103030381B (zh) 2007-07-06 2015-05-27 住友金属矿山株式会社 氧化物烧结体及其制造方法、靶、使用该靶得到的透明导电膜以及透明导电性基材
JP4936064B2 (ja) 2007-09-10 2012-05-23 凸版印刷株式会社 ガスバリア性フィルムおよびその製造方法
JP2009231549A (ja) * 2008-03-24 2009-10-08 Toyoda Gosei Co Ltd 窒化物系半導体発光素子
EP2463255B1 (en) * 2009-08-05 2016-09-07 Sumitomo Metal Mining Co., Ltd. Tablet for ion plating, method for producing same, and transparent conductive film
DE112011100972T5 (de) * 2010-03-19 2013-01-17 Sumitomo Metal Mining Co. Ltd. Transparenter leitender Film

Also Published As

Publication number Publication date
CN102482154A (zh) 2012-05-30
EP2463256A4 (en) 2013-01-23
US20120175570A1 (en) 2012-07-12
EP2463256A1 (en) 2012-06-13
JP2015127297A (ja) 2015-07-09
EP2952493B1 (en) 2017-03-15
CN102482155A (zh) 2012-05-30
KR20120051656A (ko) 2012-05-22
EP2463255A1 (en) 2012-06-13
CN104058728A (zh) 2014-09-24
EP2952493A2 (en) 2015-12-09
JP6015801B2 (ja) 2016-10-26
KR101741278B1 (ko) 2017-05-29
CN104058728B (zh) 2016-06-01
JPWO2011016388A1 (ja) 2013-01-10
US9028721B2 (en) 2015-05-12
WO2011016387A1 (ja) 2011-02-10
TWI460297B (zh) 2014-11-11
TW201518245A (zh) 2015-05-16
US20120175569A1 (en) 2012-07-12
EP2463256B1 (en) 2017-06-07
KR20120052255A (ko) 2012-05-23
TWI453291B (zh) 2014-09-21
EP2463255B1 (en) 2016-09-07
TW201120227A (en) 2011-06-16
WO2011016388A1 (ja) 2011-02-10
CN102482155B (zh) 2014-07-02
EP2952493A3 (en) 2016-01-20
US20150235820A1 (en) 2015-08-20
CN102482154B (zh) 2014-09-17
US9005487B2 (en) 2015-04-14
KR101696859B1 (ko) 2017-01-16
TW201113384A (en) 2011-04-16
EP2463255A4 (en) 2013-01-23
KR101768833B1 (ko) 2017-08-16
JP5768290B2 (ja) 2015-08-26
KR20160124259A (ko) 2016-10-26
US9721770B2 (en) 2017-08-01
TWI542565B (zh) 2016-07-21
JP5733208B2 (ja) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5733208B2 (ja) イオンプレーティング用タブレットとその製造方法、および透明導電膜
JP5994818B2 (ja) 酸化物膜及び透明基材
JP5764828B2 (ja) 酸化物焼結体およびそれを加工したタブレット
JP5561358B2 (ja) 透明導電膜
WO2014021374A1 (ja) 酸化物焼結体およびそれを加工したタブレット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R150 Certificate of patent or registration of utility model

Ref document number: 5733208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150601

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150608

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees