WO2018012562A1 - ハニカム構造体及び該ハニカム構造体の製造方法 - Google Patents

ハニカム構造体及び該ハニカム構造体の製造方法 Download PDF

Info

Publication number
WO2018012562A1
WO2018012562A1 PCT/JP2017/025475 JP2017025475W WO2018012562A1 WO 2018012562 A1 WO2018012562 A1 WO 2018012562A1 JP 2017025475 W JP2017025475 W JP 2017025475W WO 2018012562 A1 WO2018012562 A1 WO 2018012562A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
honeycomb
particles
ceria
composite oxide
Prior art date
Application number
PCT/JP2017/025475
Other languages
English (en)
French (fr)
Inventor
真之助 後藤
巧 東條
吉田 健
鈴木 宏昌
Original Assignee
イビデン株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社, トヨタ自動車株式会社 filed Critical イビデン株式会社
Priority to CN201780039870.1A priority Critical patent/CN109414691A/zh
Priority to JP2018527646A priority patent/JP6934007B2/ja
Publication of WO2018012562A1 publication Critical patent/WO2018012562A1/ja
Priority to US16/245,255 priority patent/US20190143312A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to a honeycomb structure and a method for manufacturing the honeycomb structure.
  • Exhaust gas discharged from internal combustion engines such as automobiles contains harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC).
  • An exhaust gas purification catalyst that decomposes such harmful gases is also called a three-way catalyst, and a catalyst layer is provided by washing a slurry containing noble metal particles having catalytic activity on a honeycomb monolith substrate made of cordierite or the like. Things are common.
  • Patent Document 1 discloses an exhaust gas purification catalyst in which a monolith base material includes ceria-zirconia composite oxide particles and ⁇ -phase alumina particles, and the monolith base material carries noble metal particles.
  • the warm-up performance of the catalyst can be improved because the temperature is likely to rise.
  • the warm-up performance of the catalyst means the length of time until the exhaust gas purification performance sufficient as a catalyst can be exhibited after the engine is started. This means that the exhaust gas purification performance can be sufficiently exhibited in a short time after starting.
  • the volume of the exhaust gas purification catalyst is large because both the ceria-zirconia composite oxide particles constituting the monolith substrate and the ⁇ phase alumina particles have large thermal expansion coefficients.
  • the monolith substrate may be damaged depending on use conditions such as.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a honeycomb structure having high thermal shock resistance and a method for manufacturing the honeycomb structure.
  • a honeycomb structure of the present invention is a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween.
  • the ceria-zirconia composite oxide particles and the alumina particles are formed by extrusion molding.
  • the ceria-zirconia composite oxide particles have an average particle diameter of 1 to 50 ⁇ m, and the ceria-zirconia composite oxide particles have cracks. It is characterized by containing particles.
  • a honeycomb fired body is constituted by an extrusion-molded body containing ceria-zirconia composite oxide particles and alumina particles.
  • the ceria-zirconia composite oxide particles constituting the honeycomb fired body include crack-existing particles.
  • the crack existing particles are ceria-zirconia composite oxide particles in which cracks are formed in the particles.
  • Ceria-zirconia composite oxide particles are particles with a large thermal expansion coefficient.
  • the ceria-zirconia composite oxide particles will not crack even if they expand or contract. Can be absorbed.
  • the entire honeycomb structure can be prevented from being damaged by thermal shock, and a honeycomb structure having high thermal shock resistance can be obtained.
  • Whether the ceria-zirconia composite oxide particles contain crack-present particles can be confirmed by observing an electron microscope image of the honeycomb fired body. If cracks are observed in 3 or more of 10 particles of the ceria-zirconia composite oxide in the electron microscope image of the honeycomb fired body, it is determined that the ceria-zirconia composite oxide particles include crack-present particles. .
  • the average particle size of the ceria-zirconia composite oxide particles can also be confirmed by observing an electron microscope image of the honeycomb fired body.
  • the average particle diameter of the ceria-zirconia composite oxide particles is 1 to 50 ⁇ m, it becomes easy to form cracks in the ceria-zirconia composite oxide particles.
  • the alumina particles are preferably ⁇ -phase alumina particles.
  • the ⁇ -phase alumina particles as the partition material for the ceria-zirconia composite oxide, the size of the pores in the partition walls can be increased, so that the gas easily diffuses into the partition walls.
  • the alumina particles into the ⁇ phase the phase change of alumina in the exhaust gas can be suppressed, so that the heat resistance can be increased.
  • the ratio of the length to the diameter of the honeycomb structure is preferably 0.5 to 0.9.
  • the honeycomb structure preferably has a diameter of 130 mm or less.
  • the diameter of the honeycomb structure By setting the diameter of the honeycomb structure to 130 mm or less, the temperature distribution in the honeycomb structure can be reduced, so that the thermal shock resistance of the honeycomb structure can be further improved.
  • a noble metal is supported on the honeycomb fired body. Since the honeycomb fired body made of an extrusion-molded body containing ceria-zirconia composite oxide particles and alumina particles itself has a catalyst carrier function and a promoter function, a noble metal can be directly supported on the honeycomb fired body. Furthermore, since the temperature of the honeycomb structure easily rises by directly supporting the noble metal on the honeycomb fired body, it is possible to improve the exhaust gas purification performance from the beginning.
  • the method for manufacturing a honeycomb structure of the present invention is a method for manufacturing a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween, and the ceria-zirconia composite oxide particles
  • a honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween is produced. It includes a forming step and a firing step for producing a honeycomb fired body by firing the honeycomb formed body.
  • the ceria-zirconia composite oxide particles are heat-treated at 700 to 1000 ° C. for 1 to 24 hours to repeat the reducing atmosphere and the oxidizing atmosphere, and then the ceria- Cracks are formed in at least some of the zirconia composite oxide particles. Then, when a honeycomb fired body is manufactured using ceria-zirconia composite oxide particles including crack-present particles, the crack-present particles used as a raw material remain in a cracked state in the honeycomb fired body. As a result, a honeycomb structure with high thermal shock resistance can be manufactured.
  • the reducing atmosphere is an atmosphere in which oxygen can be released from the ceria-zirconia composite oxide particles, for example, an atmosphere of carbon monoxide 0.5 vol%, oxygen 0 vol%, and nitrogen 99.5 vol%.
  • the oxidizing atmosphere is an atmosphere in which the ceria-zirconia composite oxide particles can occlude oxygen.
  • the atmosphere is oxygen 5 vol% and nitrogen 95 vol%.
  • the honeycomb structure can be used as a honeycomb catalyst for exhaust gas purification.
  • FIG. 1 is a perspective view schematically showing an example of the honeycomb structure of the present invention.
  • FIG. 2 is an electron microscope image of the honeycomb fired body including crack-present particles.
  • the honeycomb structure of the present invention includes a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween.
  • the honeycomb fired body is formed of an extrusion-molded body containing ceria-zirconia composite oxide particles (hereinafter also referred to as CZ particles) and alumina particles.
  • CZ particles ceria-zirconia composite oxide particles
  • the honeycomb fired body is manufactured by extruding and firing a raw material paste containing CZ particles and alumina particles. It can be confirmed by X-ray diffraction (XRD) that the honeycomb structure of the present invention has the components described above.
  • the honeycomb structure of the present invention may include a single honeycomb fired body, or may include a plurality of honeycomb fired bodies, and the plurality of honeycomb fired bodies are bonded by an adhesive layer. Also good.
  • an outer peripheral coat layer may be formed on the outer peripheral surface of the honeycomb fired body.
  • FIG. 1 is a perspective view schematically showing an example of the honeycomb structure of the present invention.
  • a honeycomb structure 10 shown in FIG. 1 includes a single honeycomb fired body 11 in which a plurality of through holes 11a are arranged in parallel in the longitudinal direction with a partition wall 11b interposed therebetween.
  • the honeycomb fired body 11 includes CZ particles and alumina particles, and has a shape of an extrusion-molded body.
  • the CZ particles include crack-present particles.
  • FIG. 2 is an electron microscope image of the honeycomb fired body including crack-present particles. As is apparent from this image, there are cracks in some of the particles. A plurality of cracks may exist in one particle. If cracks are observed in 3 or more of 10 particles of the ceria-zirconia composite oxide in the electron microscope image of the honeycomb fired body, it is determined that the ceria-zirconia composite oxide particles include crack-present particles. . When ceria-zirconia composite oxide particles containing crack-present particles are used as a raw material for manufacturing a honeycomb fired body, the crack-present particles used as the raw material remain in a cracked state in the honeycomb fired body.
  • the average particle size of the CZ particles constituting the honeycomb fired body is 1 to 50 ⁇ m from the viewpoint of improving the thermal shock resistance.
  • the average particle size of the CZ particles is preferably 1 to 30 ⁇ m.
  • the average particle size of the CZ particles is 1 to 50 ⁇ m, it becomes easy to form cracks in the ceria-zirconia composite oxide particles.
  • the average particle diameter of the alumina particles constituting the honeycomb fired body is not particularly limited, but is preferably 1 to 10 ⁇ m from the viewpoint of improving gas purification performance and warm-up performance. More desirably, it is 5 ⁇ m.
  • the average particle size of CZ particles and alumina particles constituting the honeycomb fired body can be obtained by taking an SEM photograph of the honeycomb fired body using a scanning electron microscope (SEM, S-4800 manufactured by Hitachi High-Tech). it can.
  • the content ratio of CZ particles is preferably 35 to 65% by weight.
  • the content of alumina particles is preferably 15 to 35% by weight.
  • the ceria-zirconia composite oxide constituting the CZ particles is a material used as a promoter (oxygen storage material) of the exhaust gas purification catalyst.
  • ceria and zirconia preferably form a solid solution.
  • the ceria-zirconia composite oxide may further contain a rare earth element other than cerium.
  • rare earth elements scandium (Sc), yttrium (Y), lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), Examples thereof include ytterbium (Yb) and lutetium (Lu).
  • the ceria-zirconia composite oxide preferably contains 30% by weight or more, more preferably 40% by weight or more, and on the other hand, it preferably contains 90% by weight or less of ceria. More preferably, it is contained in an amount of 80% by weight or less. Further, the ceria-zirconia composite oxide preferably contains 60% by weight or less, more preferably 50% by weight or less of zirconia. Since such a ceria-zirconia composite oxide has a small heat capacity, the temperature of the honeycomb structure easily rises, and the warm-up performance can be improved.
  • the kind of the alumina particles is not particularly limited, but is desirably ⁇ -phase alumina particles (hereinafter also referred to as ⁇ -alumina particles).
  • ⁇ -alumina particles As the partition material for the ceria-zirconia composite oxide, the size of the pores in the partition walls can be increased, so that the gas easily diffuses into the partition walls.
  • the alumina particles into the ⁇ phase the phase change of alumina in the exhaust gas can be suppressed, so that the heat resistance can be increased.
  • the honeycomb fired body preferably includes inorganic particles used as an inorganic binder during production, and more preferably includes ⁇ -alumina particles derived from boehmite.
  • the honeycomb fired body preferably includes inorganic fibers, and more preferably includes ⁇ -alumina fibers.
  • the honeycomb fired body contains inorganic fibers such as ⁇ -alumina fibers, the mechanical properties of the honeycomb structure can be improved.
  • an inorganic fiber means that whose aspect ratio is 5 or more
  • an inorganic particle means that whose aspect ratio is less than 5.
  • the ratio of the length to the diameter of the honeycomb structure is preferably 0.5 to 0.9, and preferably 0.6 to 0.8. More desirable.
  • the honeycomb structure preferably has a diameter of 130 mm or less, and more preferably 125 mm or less.
  • the honeycomb structure preferably has a diameter of 85 mm or more.
  • the length of the honeycomb structure is preferably 65 to 120 mm, and more preferably 70 to 110 mm.
  • the shape of the honeycomb structure of the present invention is not limited to a cylindrical shape, and examples thereof include a prismatic shape, an elliptical cylindrical shape, a long cylindrical shape, and a rounded chamfered prismatic shape (for example, a rounded chamfered triangular prism shape). .
  • the thickness of the partition walls of the honeycomb fired body is desirably uniform. Specifically, the thickness of the partition walls of the honeycomb fired body is desirably 0.05 to 0.50 mm, and more desirably 0.10 to 0.30 mm.
  • the shape of the through hole of the honeycomb fired body is not limited to a quadrangular prism shape, and examples thereof include a triangular prism shape and a hexagonal prism shape.
  • the density of the through holes in the cross section perpendicular to the longitudinal direction of the honeycomb fired body is preferably 31 to 155 holes / cm 2 .
  • the porosity of the honeycomb fired body is preferably 40 to 70%.
  • the porosity of the honeycomb fired body can be measured by a mercury intrusion method under the conditions of a contact angle of 130 ° and a surface tension of 485 mN / m.
  • the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
  • a noble metal is supported on the honeycomb fired body.
  • the noble metal include platinum group metals such as platinum, palladium, and rhodium.
  • the loading amount of the noble metal is desirably 0.1 to 15 g / L, and more desirably 0.5 to 10 g / L.
  • the loading amount of the noble metal refers to the weight of the noble metal per apparent volume of the honeycomb structure.
  • the apparent volume of the honeycomb structure is a volume including the void volume, and includes the volume of the outer peripheral coat layer and / or the adhesive layer.
  • the method for manufacturing a honeycomb structure of the present invention is a method for manufacturing a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween, and the ceria-zirconia composite oxide particles
  • a honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween is produced.
  • a heat treatment step for forming ceria-zirconia composite oxide particles including crack-present particles is performed.
  • Ceria-zirconia composite oxide particles are co-precipitated by adding ammonia water to an aqueous solution in which cerium salts (cerium nitrate, etc.) and zirconium salts (zirconium oxynitrate, etc.) are dissolved. And the obtained precipitate is dried and then calcined at 400 to 500 ° C. for about 5 hours.
  • the prepared ceria-zirconia composite oxide is cracked in at least some of the ceria-zirconia composite oxide particles by subjecting the ceria-zirconia composite oxide to a heat treatment in which a reducing atmosphere and an oxidizing atmosphere are repeated at 700 to 1000 ° C. for 1 to 24 hours. Can be formed. Ceria-zirconia composite oxide particles with cracks formed are crack-existing particles.
  • the reducing atmosphere is an atmosphere in which oxygen can be released from the ceria-zirconia composite oxide particles. For example, an atmosphere of carbon monoxide 0.3 to 0.7 vol%, oxygen 0 vol%, nitrogen 99.3 to 99.7 vol%, and more specific examples include carbon monoxide 0.5 vol% and oxygen 0 vol%.
  • the oxidizing atmosphere is an atmosphere in which oxygen can be stored in the ceria-zirconia composite oxide particles.
  • an atmosphere of oxygen 1 to 10 vol% and nitrogen 90 to 99 vol% and more specific example is an atmosphere of oxygen 5 vol% and nitrogen 95 vol%.
  • a raw material paste containing ceria-zirconia composite oxide particles containing cracked particles and alumina particles is prepared.
  • Examples of other raw materials used when preparing the raw material paste include inorganic fibers, inorganic binders, organic binders, pore formers, molding aids, and dispersion media.
  • alumina a silica, silicon carbide, a silica alumina, glass, potassium titanate, an aluminum borate etc.
  • alumina fibers are desirable, and ⁇ -alumina fibers are particularly desirable.
  • the aspect ratio of the inorganic fiber is preferably 5 to 300, more preferably 10 to 200, and even more preferably 10 to 100.
  • Solid content contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, boehmite, etc. is mentioned. Two or more of these inorganic binders may be used in combination.
  • Boehmite is an alumina monohydrate represented by the composition of AlOOH and is well dispersed in a medium such as water. Therefore, it is desirable to use boehmite as an inorganic binder.
  • Methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol, a phenol resin, an epoxy resin etc. are mentioned, You may use 2 or more types together.
  • a pore making agent for example, an acrylic resin, coke, starch, etc. are mentioned. In the present invention, it is desirable to use two or more of acrylic resin, coke and starch.
  • the pore-forming agent refers to a material used for introducing pores into the fired body when the fired body is produced.
  • Alcohol such as water
  • organic solvents such as benzene, methanol, etc.
  • CZ particles 40 to 60% by weight
  • Alumina particles 15 to 35% by weight
  • ⁇ -alumina fiber 5 to 15% by weight
  • boehmite 10 to 20% by weight
  • the raw material paste When preparing the raw material paste, it is desirable to mix and knead, and it may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
  • the raw material paste is formed to produce a honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls.
  • a honeycomb formed body is manufactured by extrusion molding using the raw material paste. That is, by passing the paste through a mold having a predetermined shape, a continuous body of the honeycomb molded body having through holes having a predetermined shape is formed, and the honeycomb molded body is obtained by cutting to a predetermined length. It is done.
  • the honeycomb formed body can be dried to produce a honeycomb dried body. desirable.
  • a dryer such as a microwave dryer, hot air dryer, dielectric dryer, vacuum dryer, vacuum dryer, freeze dryer, etc.
  • honeycomb formed body and the honeycomb dried body before the firing step are collectively referred to as a honeycomb formed body.
  • the honeycomb fired body is fired to produce a honeycomb fired body.
  • this process performs degreasing and firing of the honeycomb formed body, it can also be referred to as a “degreasing / firing process”, but it is referred to as “a firing process” for convenience.
  • the temperature of the firing step is desirably 800 to 1300 ° C., and more desirably 900 to 1200 ° C.
  • the firing process time is preferably 1 to 24 hours, and more preferably 3 to 18 hours.
  • the atmosphere of the firing step is not particularly limited, but it is desirable that the oxygen concentration is 1 to 20% by volume.
  • a honeycomb structure can be manufactured by the above process.
  • the method for manufacturing a honeycomb structure of the present invention preferably further includes a supporting step of supporting a noble metal on the honeycomb fired body.
  • the method of supporting the noble metal on the honeycomb fired body include a method in which the honeycomb fired body or the honeycomb structure is immersed in a solution containing noble metal particles and / or a complex and then heated up.
  • the honeycomb structure includes an outer peripheral coat layer
  • a precious metal may be supported on the honeycomb fired body before forming the outer peripheral coat layer, or a precious metal may be supported on the honeycomb fired body or the honeycomb structure after the outer peripheral coat layer is formed. You may carry.
  • the honeycomb structure includes an adhesive layer
  • the noble metal may be supported on the honeycomb fired body before the adhesive layer is formed, or the noble metal may be supported on the honeycomb fired body or the honeycomb structure after the adhesive layer is formed. May be.
  • the amount of the noble metal supported in the supporting step is preferably 0.1 to 15 g / L, and more preferably 0.5 to 10 g / L.
  • the outer peripheral coat layer is coated with the outer peripheral coat layer paste on the outer peripheral surface excluding both end faces. Thereafter, it can be formed by drying and solidifying.
  • the outer coat layer paste include the same composition as the raw material paste.
  • the honeycomb structured body in which a plurality of honeycomb fired bodies are bonded via an adhesive layer has an adhesive layer paste on the outer peripheral surface excluding both end faces of the plurality of honeycomb fired bodies. After applying and adhering, it can be produced by drying and solidifying.
  • the adhesive layer paste include those having the same composition as the raw material paste.
  • Example 1 CZ particles (average particle size: 30 ⁇ m) were placed on a magnetic dish and stirred at 800 ° C. for 1 minute in an oxidizing atmosphere (carbon monoxide 0 vol%, oxygen 5 vol%, nitrogen 95 vol%), and a reducing atmosphere (carbon monoxide 0. 5 vol%, oxygen 0 vol%, nitrogen 99.5 vol%), and a heat treatment step of heating for 10 hours while alternately exchanging gases was performed.
  • an oxidizing atmosphere carbon monoxide 0 vol%, oxygen 5 vol%, nitrogen 95 vol%
  • a reducing atmosphere carbon monoxide 0. 5 vol%, oxygen 0 vol%, nitrogen 99.5 vol
  • Heat-treated CZ particles were 26.4% by weight, ⁇ -alumina particles (average particle diameter: 2 ⁇ m) were 13.2% by weight, and ⁇ -alumina fibers (average fiber diameter: 3 ⁇ m, average fiber length: 60 ⁇ m) were 5 .3% by weight, boehmite as an inorganic binder, 11.3% by weight, methyl cellulose as an organic binder, 5.3% by weight, acrylic resin as a pore-forming agent, 2.1% by weight, and coke as a pore-forming agent, 2.6%
  • a raw material paste was prepared by mixing and kneading 4.2% by weight of polyoxyethylene oleyl ether, which is a surfactant as a molding aid, and 29.6% by weight of ion-exchanged water.
  • honeycomb fired body The raw material paste was extruded using an extruder to produce a honeycomb formed body.
  • the honeycomb molded body was dried at an output of 1.74 kW and a reduced pressure of 6.7 kPa for 12 minutes using a vacuum microwave dryer, and then degreased and fired at 1100 ° C. for 10 hours to obtain a honeycomb fired body (honeycomb structure).
  • the honeycomb fired body had a cylindrical shape with a diameter of 103 mm and a length of 80 mm, a density of through holes of 77.5 holes / cm 2 (500 cpsi), and a partition wall thickness of 0.127 mm (5 mil).
  • Example 1 A honeycomb fired body was manufactured in the same manner as in Example 1 except that CZ particles (average particle size: 30 ⁇ m) were used without performing the heat treatment step.
  • Example 1 and Comparative Example 1 manufactured by the above steps were sealed in a metal case through an alumina mat, and air heated by a gas burner and air at room temperature Were alternately aerated.
  • a heat cycle test was performed in which cooling and heating were repeated 100 cycles so that the temperature at the center of the honeycomb fired body was alternately 200 ° C. and 950 ° C.
  • the honeycomb fired body of Example 1 was not damaged (cracked) after the heat cycle test, but the honeycomb fired body of Comparative Example 1 was damaged (cracked) after the heat cycle test. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本発明は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体であって、上記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む押出成形体からなり、上記セリア-ジルコニア複合酸化物粒子の平均粒子径が1~50μmであり、上記セリア-ジルコニア複合酸化物粒子は、クラック存在粒子を含むことを特徴とするハニカム構造体に関する。

Description

ハニカム構造体及び該ハニカム構造体の製造方法
本発明は、ハニカム構造体及び該ハニカム構造体の製造方法に関する。
自動車等の内燃機関から排出される排ガスには、一酸化炭素(CO)、窒素酸化物(NOx)、炭化水素(HC)等の有害ガスが含まれている。そのような有害ガスを分解する排ガス浄化触媒は三元触媒とも称され、コージェライト等からなるハニカム状のモノリス基材に触媒活性を有する貴金属粒子を含むスラリーをウォッシュコートして触媒層を設けたものが一般的である。
一方、特許文献1には、モノリス基材がセリア-ジルコニア複合酸化物粒子とθ相のアルミナ粒子とを含み、上記モノリス基材に貴金属粒子が担持された排ガス浄化触媒が開示されている。
特開2015-85241号公報
特許文献1に記載の排ガス浄化触媒では、モノリス基材の材料としてコージェライトを用いず、自らが触媒担体機能及び助触媒機能を有する材料を用いることによって、嵩密度が小さくなり、モノリス基材の温度が上がりやすくなるため、触媒の暖機性能を向上させることができるとされている。
本明細書において、触媒の暖機性能とは、エンジンの始動後、触媒として充分な排ガス浄化性能を発揮できるようになるまでの時間の長短をいい、暖機性能に優れているとは、エンジンの始動後、短時間で排ガス浄化性能を充分に発揮できることをいう。
ここで、特許文献1に記載の排ガス浄化触媒では、モノリス基材を構成するセリア-ジルコニア複合酸化物粒子及びθ相のアルミナ粒子の熱膨張係数がどちらも大きいため、排ガス浄化触媒の容積が大きくなる等の使用条件によってはモノリス基材が破損するおそれがあった。
本発明は、上記の問題を解決するためになされたものであり、耐熱衝撃性が高いハニカム構造体及び該ハニカム構造体の製造方法を提供することを目的とする。
上記目的を達成するための本発明のハニカム構造体は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体であって、上記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む押出成形体からなり、上記セリア-ジルコニア複合酸化物粒子の平均粒子径が1~50μmであり、上記セリア-ジルコニア複合酸化物粒子は、クラック存在粒子を含むことを特徴とする。
本発明のハニカム構造体においては、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む押出成形体によってハニカム焼成体が構成されている。そして、ハニカム焼成体を構成するセリア-ジルコニア複合酸化物粒子はクラック存在粒子を含んでいる。
クラック存在粒子とは、粒子内にクラックが形成されたセリア-ジルコニア複合酸化物粒子である。
セリア-ジルコニア複合酸化物粒子は熱膨張係数の大きな粒子であるが、粒子内にクラックが形成されていると、セリア-ジルコニア複合酸化物粒子が熱膨張もしくは熱収縮しても粒子内のクラックを吸収することができる。その結果、ハニカム構造体全体に熱衝撃による破損が生じることを防止し、耐熱衝撃性の高いハニカム構造体とすることができる。
セリア-ジルコニア複合酸化物粒子がクラック存在粒子を含むかどうかは、ハニカム焼成体の電子顕微鏡画像を観察することで確認することができる。ハニカム焼成体の電子顕微鏡画像においてセリア-ジルコニア複合酸化物の10個の粒子のうち3個以上の粒子にクラックが観察されれば、セリア-ジルコニア複合酸化物粒子がクラック存在粒子を含むと判断する。
また、セリア-ジルコニア複合酸化物粒子の平均粒子径も、ハニカム焼成体の電子顕微鏡画像を観察することで確認することができる。
セリア-ジルコニア複合酸化物粒子の平均粒子径が1~50μmであると、セリア-ジルコニア複合酸化物粒子にクラックを形成させやすくなる。
本発明のハニカム構造体では、上記アルミナ粒子は、θ相のアルミナ粒子であることが好ましい。
θ相のアルミナ粒子をセリア-ジルコニア複合酸化物の仕切り材として用いることにより、隔壁中の細孔のサイズを大きくすることができるため、ガスが隔壁の内部まで拡散しやすくなる。さらに、アルミナ粒子をθ相とすることにより、排ガス中でのアルミナの相変化を抑制することができるため、耐熱性を高くすることができる。
本発明のハニカム構造体では、上記ハニカム構造体の直径に対する長さの比(長さ/直径)は、0.5~0.9であることが好ましい。
ハニカム構造体の長さ/直径の比を1以下にすることにより、ハニカム構造体内の温度分布を小さくすることができるため、ハニカム構造体の耐熱衝撃性をさらに向上させることができる。
本発明のハニカム構造体では、上記ハニカム構造体の直径は、130mm以下であることが好ましい。
ハニカム構造体の直径を130mm以下にすることにより、ハニカム構造体内の温度分布を小さくすることができるため、ハニカム構造体の耐熱衝撃性をさらに向上させることができる。
本発明のハニカム構造体では、上記ハニカム焼成体に貴金属が担持されていることが好ましい。
セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む押出成形体からなるハニカム焼成体は、それ自体が触媒担体機能及び助触媒機能を有するため、貴金属をハニカム焼成体に直接担持させることができる。さらに、貴金属をハニカム焼成体に直接担持させることにより、ハニカム構造体の温度が上昇しやすくなるため、初期からの排ガス浄化性能を高めることができる。
本発明のハニカム構造体の製造方法は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体の製造方法であって、セリア-ジルコニア複合酸化物粒子に対して700~1000℃で1~24時間、還元雰囲気と酸化雰囲気を繰り返す熱処理を行ってセリア-ジルコニア複合酸化物粒子の少なくとも一部の粒子にクラックを形成する熱処理工程と、クラックが形成されたクラック存在粒子を含むセリア-ジルコニア複合酸化物粒子と、アルミナ粒子とを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含むことを特徴とする。
上記ハニカム構造体の製造方法では、ハニカム成形体の成形前に、セリア-ジルコニア複合酸化物粒子に対して700~1000℃で1~24時間、還元雰囲気と酸化雰囲気を繰り返す熱処理を行ってセリア-ジルコニア複合酸化物粒子の少なくとも一部の粒子にクラックを形成する。
そして、クラック存在粒子を含むセリア-ジルコニア複合酸化物粒子を用いてハニカム焼成体を作製すると、ハニカム焼成体には原料として用いたクラック存在粒子がクラックを有した状態で残存する。その結果、耐熱衝撃性の高いハニカム構造体を製造することができる。
還元雰囲気とはセリア-ジルコニア複合酸化物粒子から酸素を放出させることができる雰囲気であり、例えば、一酸化炭素0.5vol%、酸素0vol%、窒素99.5vol%の雰囲気である。酸化雰囲気とはセリア-ジルコニア複合酸化物粒子に酸素を吸蔵させることができる雰囲気であり、例えば、酸素5vol%、窒素95vol%の雰囲気である。
本発明のハニカム構造体の製造方法において、上記ハニカム焼成体に貴金属を担持させる担持工程をさらに含むことが望ましい。
ハニカム焼成体に貴金属を担持させることにより、ハニカム構造体を排ガス浄化用のハニカム触媒として使用することが可能となる。
図1は、本発明のハニカム構造体の一例を模式的に示す斜視図である。 図2は、クラック存在粒子を含むハニカム焼成体の電子顕微鏡画像である。
(発明の詳細な説明)
[ハニカム構造体]
まず、本発明のハニカム構造体について説明する。
本発明のハニカム構造体は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えている。
本発明のハニカム構造体において、ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子(以下、CZ粒子ともいう)とアルミナ粒子とを含む押出成形体からなる。後述するように、ハニカム焼成体は、CZ粒子とアルミナ粒子とを含む原料ペーストを押出成形した後、焼成することにより作製されている。
本発明のハニカム構造体が上記した成分を有していることは、X線回折(XRD)にて確認することができる。
本発明のハニカム構造体は、単一のハニカム焼成体を備えていてもよいし、複数個のハニカム焼成体を備えていてもよく、複数個のハニカム焼成体が接着剤層により結合されていてもよい。
本発明のハニカム構造体において、ハニカム焼成体の外周面には、外周コート層が形成されていてもよい。
図1は、本発明のハニカム構造体の一例を模式的に示す斜視図である。
図1に示すハニカム構造体10は、複数の貫通孔11aが隔壁11bを隔てて長手方向に並設された単一のハニカム焼成体11を備えている。ハニカム焼成体11は、CZ粒子とアルミナ粒子とを含み、押出成形体の形状を有している。
また、CZ粒子はクラック存在粒子を含んでいる。
図2は、クラック存在粒子を含むハニカム焼成体の電子顕微鏡画像である。この画像から明らかなように粒子の一部にクラックが存在している。1つの粒子の中に複数のクラックが存在していてもよい。
ハニカム焼成体の電子顕微鏡画像においてセリア-ジルコニア複合酸化物の10個の粒子のうち3個以上の粒子にクラックが観察されれば、セリア-ジルコニア複合酸化物粒子がクラック存在粒子を含むと判断する。
ハニカム焼成体を製造するための原料としてクラック存在粒子を含むセリア-ジルコニア複合酸化物粒子を用いると、ハニカム焼成体には原料として用いたクラック存在粒子がクラックを有した状態で残存する。
本発明のハニカム構造体において、ハニカム焼成体を構成するCZ粒子の平均粒子径は耐熱衝撃性を向上させる観点から、1~50μmである。また、CZ粒子の平均粒子径は1~30μmであることが好ましい。
CZ粒子の平均粒子径が1~50μmであると、セリア-ジルコニア複合酸化物粒子にクラックを形成させやすくなる。
本発明のハニカム構造体において、ハニカム焼成体を構成するアルミナ粒子の平均粒子径は特に限定されないが、ガス浄化性能及び暖機性能を向上させる観点から、1~10μmであることが望ましく、1~5μmであることがより望ましい。
ハニカム焼成体を構成するCZ粒子及びアルミナ粒子の平均粒子径は、走査型電子顕微鏡(SEM、日立ハイテク社製 S-4800)を用いて、ハニカム焼成体のSEM写真を撮影することにより求めることができる。
本発明のハニカム構造体において、CZ粒子の含有割合は、35~65重量%であることが望ましい。
本発明のハニカム構造体において、アルミナ粒子の含有割合は、15~35重量%であることが望ましい。
本発明のハニカム構造体において、CZ粒子を構成するセリア-ジルコニア複合酸化物は、排ガス浄化触媒の助触媒(酸素貯蔵材)として用いられている材料である。セリア-ジルコニア複合酸化物は、好ましくはセリアとジルコニアが固溶体を形成している。
本発明のハニカム構造体において、セリア-ジルコニア複合酸化物は、セリウム以外の希土類元素をさらに含んでいてもよい。希土類元素としては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、イッテルビウム(Yb)、ルテチウム(Lu)等が挙げられる。
本発明のハニカム構造体において、セリア-ジルコニア複合酸化物は、セリアを30重量%以上含むことが好ましく、40重量%以上含むことがより好ましく、一方、セリアを90重量%以下含むことが好ましく、80重量%以下含むことがより好ましい。また、セリア-ジルコニア複合酸化物は、ジルコニアを60重量%以下含むことが好ましく、50重量%以下含むことがより好ましい。このようなセリア-ジルコニア複合酸化物は熱容量が小さいため、ハニカム構造体の温度が上昇しやすくなり、暖機性能を高めることができる。
本発明のハニカム構造体において、上記アルミナ粒子の種類は特に限定されないが、θ相のアルミナ粒子(以下、θ-アルミナ粒子ともいう)であることが望ましい。
θ相のアルミナ粒子をセリア-ジルコニア複合酸化物の仕切り材として用いることにより、隔壁中の細孔のサイズを大きくすることができるため、ガスが隔壁の内部まで拡散しやすくなる。さらに、アルミナ粒子をθ相とすることにより、排ガス中でのアルミナの相変化を抑制することができるため、耐熱性を高くすることができる。
本発明のハニカム構造体において、ハニカム焼成体は、製造時に無機バインダとして用いられた無機粒子を含むことが望ましく、ベーマイトに由来するγ-アルミナ粒子を含むことがより望ましい。
本発明のハニカム構造体において、ハニカム焼成体は、無機繊維を含むことが望ましく、α-アルミナ繊維を含むことがより望ましい。
ハニカム焼成体がα-アルミナ繊維等の無機繊維を含んでいると、ハニカム構造体の機械的特性を改善することができる。
なお、無機繊維とは、アスペクト比が5以上のものをいい、無機粒子とは、アスペクト比が5未満のものをいう。
本発明のハニカム構造体において、ハニカム構造体の直径に対する長さの比(長さ/直径)は、0.5~0.9であることが望ましく、0.6~0.8であることがより望ましい。
本発明のハニカム構造体において、ハニカム構造体の直径は、130mm以下であることが望ましく、125mm以下であることがより望ましい。また、ハニカム構造体の直径は、85mm以上であることが望ましい。
本発明のハニカム構造体において、ハニカム構造体の長さは、65~120mmであることが望ましく、70~110mmであることがより望ましい。
本発明のハニカム構造体の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。
本発明のハニカム構造体において、ハニカム焼成体の隔壁の厚さは、均一であることが望ましい。具体的には、ハニカム焼成体の隔壁の厚さは、0.05~0.50mmであることが望ましく、0.10~0.30mmであることがより望ましい。
本発明のハニカム構造体において、ハニカム焼成体の貫通孔の形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。
本発明のハニカム構造体において、ハニカム焼成体の長手方向に垂直な断面の貫通孔の密度は、31~155個/cmであることが望ましい。
本発明のハニカム構造体において、ハニカム焼成体の気孔率は、40~70%であることが望ましい。ハニカム焼成体の気孔率を上記範囲とすることにより、ハニカム構造体の強度を維持しつつ、高い排ガス浄化性能を発揮することができる。
ハニカム焼成体の気孔率は、水銀圧入法にて接触角を130°、表面張力を485mN/mとした条件で測定することができる。
本発明のハニカム構造体において、ハニカム焼成体の外周面に外周コート層が形成されている場合、外周コート層の厚さは、0.1~2.0mmであることが望ましい。
本発明のハニカム構造体においては、ハニカム焼成体に貴金属が担持されていることが望ましい。
貴金属としては、例えば、白金、パラジウム、ロジウム等の白金族金属が挙げられる。
本発明のハニカム構造体において、貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
本明細書において、貴金属の担持量とは、ハニカム構造体の見掛けの体積当たりの貴金属の重量をいう。なお、ハニカム構造体の見掛けの体積は、空隙の体積を含む体積であり、外周コート層及び/又は接着層の体積を含むこととする。
[ハニカム構造体の製造方法]
次に、本発明のハニカム構造体の製造方法について説明する。
本発明のハニカム構造体の製造方法は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体の製造方法であって、セリア-ジルコニア複合酸化物粒子に対して700~1000℃で1~24時間、還元雰囲気と酸化雰囲気を繰り返す熱処理を行ってセリア-ジルコニア複合酸化物粒子の少なくとも一部の粒子にクラックを形成する熱処理工程と、クラックが形成されたクラック存在粒子を含むセリア-ジルコニア複合酸化物粒子と、アルミナ粒子とを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含む。
(熱処理工程)
まず、クラック存在粒子を含むセリア-ジルコニア複合酸化物粒子を形成するための熱処理工程を行う。
セリア-ジルコニア複合酸化物粒子は、セリア-ジルコニア複合酸化物は、例えば、セリウム塩(硝酸セリウム等)とジルコニウム塩(オキシ硝酸ジルコニウム等)とを溶解させた水溶液に、アンモニア水を加えて共沈殿を生成させ、得られた沈殿物を乾燥させた後に400~500℃で5時間程度焼成することにより調製することができる。
調製したセリア-ジルコニア複合酸化物に対して、700~1000℃で1~24時間、還元雰囲気と酸化雰囲気を繰り返す熱処理を行うことによってセリア-ジルコニア複合酸化物粒子の少なくとも一部の粒子にクラックを形成することできる。クラックが形成されたセリア-ジルコニア複合酸化物粒子がクラック存在粒子となる。
還元雰囲気とはセリア-ジルコニア複合酸化物粒子から酸素を放出させることができる雰囲気である。例えば、一酸化炭素0.3~0.7vol%、酸素0vol%、窒素99.3~99.7vol%の雰囲気であり、さらに具体的な例としては一酸化炭素0.5vol%、酸素0vol%、窒素99.5vol%の雰囲気である。
酸化雰囲気とはセリア-ジルコニア複合酸化物粒子に酸素を吸蔵させることができる雰囲気である。例えば、酸素1~10vol%、窒素90~99vol%の雰囲気であり、さらに具体的な例としては酸素5vol%、窒素95vol%の雰囲気である。
(成形工程)
成形工程では、まずクラック存在粒子を含むセリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む原料ペーストを調製する。
クラック存在粒子を含むセリア-ジルコニア複合酸化物粒子及びアルミナ粒子の種類、平均粒子径等については、[ハニカム構造体]の項目で説明したため、詳細な説明は省略する。
原料ペーストを調製する際に用いる他の原料としては、無機繊維、無機バインダ、有機バインダ、造孔剤、成形助剤、分散媒等が挙げられる。
無機繊維を構成する材料としては、特に限定されないが、例えば、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム等が挙げられ、二種以上併用してもよい。これらの中では、アルミナ繊維が望ましく、特にα-アルミナ繊維が望ましい。
無機繊維のアスペクト比は、5~300であることが望ましく、10~200であることがより望ましく、10~100であることがさらに望ましい。
無機バインダとしては、特に限定されないが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベーマイト等に含まれる固形分が挙げられる。これらの無機バインダは、二種以上併用してもよい。
無機バインダの中では、ベーマイトが望ましい。ベーマイトは、AlOOHの組成で示されるアルミナ1水和物であり、水等の媒体に良好に分散するので、ベーマイトを無機バインダとして用いることが望ましい。
有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。
造孔剤としては、特に限定されないが、例えば、アクリル樹脂、コークス、デンプン等が挙げられる。本発明では、アクリル樹脂、コークス及びデンプンのうち2種類以上を用いることが望ましい。
造孔剤とは、焼成体を製造する際、焼成体の内部に気孔を導入するために用いられるものをいう。
成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。
分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。
上記した原料としてCZ粒子、アルミナ粒子、α-アルミナ繊維及びベーマイトを使用した際、これらの配合割合は、原料中の焼成工程後に残存する全固形分に対し、CZ粒子:40~60重量%、アルミナ粒子:15~35重量%、α-アルミナ繊維:5~15重量%、ベーマイト:10~20重量%が望ましい。
原料ペーストを調製する際には、混合混練することが望ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。
上記方法により原料ペーストを調製した後、原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する。
具体的には、上記原料ペーストを用いて押出成形することにより、ハニカム成形体を作製する。つまり、所定の形状の金型に上記ペーストを通過させることにより、所定の形状の貫通孔を有するハニカム成形体の連続体を形成し、所定の長さにカットすることにより、ハニカム成形体が得られる。
次に、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥してハニカム乾燥体を作製することが望ましい。
本明細書においては、焼成工程を行う前のハニカム成形体及びハニカム乾燥体をまとめてハニカム成形体とも呼ぶ。
(焼成工程)
本発明のハニカム構造体の製造方法において、焼成工程では、ハニカム成形体を焼成することにより、ハニカム焼成体を作製する。なお、この工程は、ハニカム成形体の脱脂及び焼成が行われるため、「脱脂・焼成工程」ということもできるが、便宜上「焼成工程」という。
焼成工程の温度は、800~1300℃であることが望ましく、900~1200℃であることがより望ましい。また、焼成工程の時間は、1~24時間であることが望ましく、3~18時間であることがより望ましい。焼成工程の雰囲気は特に限定されないが、酸素濃度が1~20体積%であることが望ましい。
以上の工程により、ハニカム構造体を製造することができる。
(担持工程)
本発明のハニカム構造体の製造方法は、上記ハニカム焼成体に貴金属を担持させる担持工程をさらに含むことが望ましい。
ハニカム焼成体に貴金属を担持する方法としては、例えば、貴金属粒子及び/又は錯体を含む溶液にハニカム焼成体又はハニカム構造体を浸漬した後、引き上げて加熱する方法等が挙げられる。
ハニカム構造体が外周コート層を備える場合、外周コート層を形成する前のハニカム焼成体に貴金属を担持してもよいし、外周コート層を形成した後のハニカム焼成体又はハニカム構造体に貴金属を担持してもよい。また、ハニカム構造体が接着層を備える場合、接着層を形成する前のハニカム焼成体に貴金属を担持してもよいし、接着層を形成した後のハニカム焼成体又はハニカム構造体に貴金属を担持してもよい。
本発明のハニカム構造体の製造方法において、担持工程で担持される貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
(その他の工程)
本発明のハニカム構造体の製造方法において、ハニカム焼成体の外周面に外周コート層を形成する場合、外周コート層は、ハニカム焼成体の両端面を除く外周面に外周コート層用ペーストを塗布した後、乾燥固化することにより形成することができる。外周コート層用ペーストとしては、原料ペーストと同じ組成のものが挙げられる。
本発明のハニカム構造体の製造方法において、複数個のハニカム焼成体が接着層を介して接着されてなるハニカム構造体は、複数個のハニカム焼成体の両端面を除く外周面に接着層用ペーストを塗布して、接着させた後、乾燥固化することにより作製することができる。接着層用ペーストとしては、原料ペーストと同じ組成のものが挙げられる。
(実施例)
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、以下の実施例のみに限定されるものではない。
[ハニカム焼成体の作製]
(実施例1)
CZ粒子(平均粒子径:30μm)を磁性皿に載せ、撹拌しながら800℃で酸化雰囲気(一酸化炭素0vol%、酸素5vol%、窒素95vol%)で1分、還元雰囲気(一酸化炭素0.5vol%、酸素0vol%、窒素99.5vol%)で1分、交互にガス交換しながら10時間加熱する熱処理工程を行った。
熱処理工程を経たCZ粒子を26.4重量%、θ-アルミナ粒子(平均粒子径:2μm)を13.2重量%、α-アルミナ繊維(平均繊維径:3μm、平均繊維長:60μm)を5.3重量%、無機バインダとしてベーマイトを11.3重量%、有機バインダとしてメチルセルロースを5.3重量%、造孔剤としてアクリル樹脂を2.1重量%、同じく造孔剤としてコークスを2.6重量%、成形助剤として界面活性剤であるポリオキシエチレンオレイルエーテルを4.2重量%、及び、イオン交換水を29.6重量%混合混練して、原料ペーストを調製した。
押出成形機を用いて、原料ペーストを押出成形して、ハニカム成形体を作製した。そして、減圧マイクロ波乾燥機を用いて、ハニカム成形体を出力1.74kW、減圧6.7kPaで12分間乾燥させた後、1100℃で10時間脱脂・焼成することにより、ハニカム焼成体(ハニカム構造体)を作製した。ハニカム焼成体は直径が103mm、長さが80mmの円柱状であり、貫通孔の密度が77.5個/cm(500cpsi)、隔壁の厚さが0.127mm(5mil)であった。
(比較例1)
CZ粒子(平均粒子径:30μm)を熱処理工程を行わずに使用した他は実施例1と同様にしてハニカム焼成体を作製した。
[ハニカム焼成体の評価]
(1)CZ粒子の観察
上記工程により製造された実施例1及び比較例1のハニカム焼成体の電子顕微鏡画像を観察し、CZ粒子にクラックが生じているかを判定した。その結果、実施例1のハニカム焼成体ではCZ粒子がクラック存在粒子を含んでいたが、比較例1のハニカム焼成体ではCZ粒子がクラック存在粒子を含んでいなかった。
図2に示す電子顕微鏡画像は、実施例1で製造した、クラック存在粒子を含むハニカム焼成体の電子顕微鏡画像である。
(2)耐熱衝撃性
上記工程により製造された実施例1及び比較例1のハニカム焼成体を、アルミナ製マットを介して金属ケース内に封入し、ガスバーナーで熱せられた空気と室温の空気とを交互に通気させた。ハニカム焼成体の中心の温度が200℃及び950℃に交互になるように冷却と加熱を100サイクル繰り返すヒートサイクル試験を行った。
その結果、実施例1のハニカム焼成体にはヒートサイクル試験後に破損(ひび割れ)が発生していなかったが、比較例1のハニカム焼成体にはヒートサイクル試験後に破損(ひび割れ)が発生していた。
 10 ハニカム構造体
 11 ハニカム焼成体
 11a 貫通孔
 11b 隔壁

Claims (7)

  1. 複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体であって、
    前記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む押出成形体からなり、
    前記セリア-ジルコニア複合酸化物粒子の平均粒子径が1~50μmであり、
    前記セリア-ジルコニア複合酸化物粒子は、クラック存在粒子を含むことを特徴とするハニカム構造体。
  2. 前記アルミナ粒子は、θ相のアルミナ粒子である請求項1に記載のハニカム構造体。
  3. 前記ハニカム構造体の直径に対する長さの比(長さ/直径)は、0.5~0.9である請求項1又は2に記載のハニカム構造体。
  4. 前記ハニカム構造体の直径は、130mm以下である請求項1~3のいずれか1項に記載のハニカム構造体。
  5. 前記ハニカム焼成体に貴金属が担持されている請求項1~4のいずれか1項に記載のハニカム構造体。
  6. 複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体の製造方法であって、
    セリア-ジルコニア複合酸化物粒子に対して700~1000℃で1~24時間、還元雰囲気と酸化雰囲気を繰り返す熱処理を行ってセリア-ジルコニア複合酸化物粒子の少なくとも一部の粒子にクラックを形成する熱処理工程と、
    クラックが形成されたクラック存在粒子を含むセリア-ジルコニア複合酸化物粒子と、アルミナ粒子とを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、
    前記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含むことを特徴とするハニカム構造体の製造方法。
  7. 前記ハニカム焼成体に貴金属を担持させる担持工程をさらに含む請求項6に記載のハニカム構造体の製造方法。
PCT/JP2017/025475 2016-07-14 2017-07-13 ハニカム構造体及び該ハニカム構造体の製造方法 WO2018012562A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780039870.1A CN109414691A (zh) 2016-07-14 2017-07-13 蜂窝结构体和该蜂窝结构体的制造方法
JP2018527646A JP6934007B2 (ja) 2016-07-14 2017-07-13 ハニカム構造体及び該ハニカム構造体の製造方法
US16/245,255 US20190143312A1 (en) 2016-07-14 2019-01-11 Honeycomb structure and production method for said honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-139683 2016-07-14
JP2016139683 2016-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/245,255 Continuation US20190143312A1 (en) 2016-07-14 2019-01-11 Honeycomb structure and production method for said honeycomb structure

Publications (1)

Publication Number Publication Date
WO2018012562A1 true WO2018012562A1 (ja) 2018-01-18

Family

ID=60953085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025475 WO2018012562A1 (ja) 2016-07-14 2017-07-13 ハニカム構造体及び該ハニカム構造体の製造方法

Country Status (4)

Country Link
US (1) US20190143312A1 (ja)
JP (1) JP6934007B2 (ja)
CN (1) CN109414691A (ja)
WO (1) WO2018012562A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020114786A (ja) * 2019-01-17 2020-07-30 イビデン株式会社 ハニカム構造体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6698602B2 (ja) * 2017-09-27 2020-05-27 イビデン株式会社 排ガス浄化用ハニカム触媒
JP2019058875A (ja) * 2017-09-27 2019-04-18 イビデン株式会社 ハニカム触媒
JP6684257B2 (ja) * 2017-09-27 2020-04-22 イビデン株式会社 排ガス浄化用ハニカム触媒
JP2019058876A (ja) 2017-09-27 2019-04-18 イビデン株式会社 ハニカム触媒
JP6771005B2 (ja) * 2018-09-12 2020-10-21 イビデン株式会社 ハニカム構造体の製造方法
JP6764451B2 (ja) * 2018-09-12 2020-09-30 イビデン株式会社 ハニカム構造体の製造方法
CN111672533B (zh) * 2020-06-28 2021-07-13 北京化工大学 一种脱砷催化剂及其制备方法
CN117098601A (zh) * 2021-06-10 2023-11-21 庄信万丰股份有限公司 使用鞣酸作为络合和还原剂的钯固定和低新鲜储氧能力
US11845063B2 (en) * 2021-06-10 2023-12-19 Johnson Matthey Public Limited Company TWC activity using rhodium/platinum and tannic acid as a complexing and reducing agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063057A (ja) * 2005-08-30 2007-03-15 Toyota Central Res & Dev Lab Inc 複合金属酸化物多孔体
JP2009255029A (ja) * 2008-03-27 2009-11-05 Ibiden Co Ltd ハニカム構造体
JP2012523954A (ja) * 2009-04-16 2012-10-11 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン ハニカム触媒担体及びその製造方法
JP2015085241A (ja) * 2013-10-29 2015-05-07 トヨタ自動車株式会社 排ガス浄化触媒

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020216B1 (en) * 1999-01-18 2004-06-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gas
DE60031258T2 (de) * 2000-07-14 2007-05-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Katalysator zum Reinigen von Abgas
CN101006024B (zh) * 2005-06-24 2010-05-05 揖斐电株式会社 蜂窝结构体
JPWO2007097056A1 (ja) * 2006-02-23 2009-07-09 イビデン株式会社 ハニカム構造体および排ガス浄化装置
CN100540507C (zh) * 2006-03-31 2009-09-16 揖斐电株式会社 蜂窝结构体及其制造方法
KR101741278B1 (ko) * 2009-08-05 2017-05-29 스미토모 긴조쿠 고잔 가부시키가이샤 산화물 소결물체와 그 제조 방법, 타겟 및 투명 도전막
WO2011061840A1 (ja) * 2009-11-19 2011-05-26 イビデン株式会社 ハニカム構造体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063057A (ja) * 2005-08-30 2007-03-15 Toyota Central Res & Dev Lab Inc 複合金属酸化物多孔体
JP2009255029A (ja) * 2008-03-27 2009-11-05 Ibiden Co Ltd ハニカム構造体
JP2012523954A (ja) * 2009-04-16 2012-10-11 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン ハニカム触媒担体及びその製造方法
JP2015085241A (ja) * 2013-10-29 2015-05-07 トヨタ自動車株式会社 排ガス浄化触媒

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020114786A (ja) * 2019-01-17 2020-07-30 イビデン株式会社 ハニカム構造体

Also Published As

Publication number Publication date
JPWO2018012562A1 (ja) 2019-05-09
CN109414691A (zh) 2019-03-01
JP6934007B2 (ja) 2021-09-08
US20190143312A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP6934007B2 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
JP6998871B2 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
WO2018012565A1 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
US11298686B2 (en) Honeycomb catalytic converter
US20200222890A1 (en) Honeycomb catalytic converter
JP6949019B2 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
WO2019065806A1 (ja) ハニカム触媒
US10989092B2 (en) Honeycomb structured body
CN111450816A (zh) 蜂窝结构体
JP7186031B2 (ja) ハニカム構造体
WO2018012561A1 (ja) ハニカム構造体
JP6845777B2 (ja) ハニカム触媒の製造方法
JP6944834B2 (ja) ハニカム触媒
WO2019026645A1 (ja) ハニカム構造体の製造方法及びハニカム構造体
JP6985854B2 (ja) ハニカム構造体の製造方法
JP2019026547A (ja) ハニカム構造体の製造方法
JP2019151508A (ja) ハニカム構造体の製造方法
JP7112212B2 (ja) ハニカム構造体の製造方法
JP6985842B2 (ja) ハニカム触媒
JP6944833B2 (ja) ハニカム構造体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527646

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827685

Country of ref document: EP

Kind code of ref document: A1