WO2018012565A1 - ハニカム構造体及び該ハニカム構造体の製造方法 - Google Patents

ハニカム構造体及び該ハニカム構造体の製造方法 Download PDF

Info

Publication number
WO2018012565A1
WO2018012565A1 PCT/JP2017/025478 JP2017025478W WO2018012565A1 WO 2018012565 A1 WO2018012565 A1 WO 2018012565A1 JP 2017025478 W JP2017025478 W JP 2017025478W WO 2018012565 A1 WO2018012565 A1 WO 2018012565A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb
honeycomb structure
particles
fired body
alumina particles
Prior art date
Application number
PCT/JP2017/025478
Other languages
English (en)
French (fr)
Inventor
真之助 後藤
健太 野村
巧 東條
吉田 健
鈴木 宏昌
Original Assignee
イビデン株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社, トヨタ自動車株式会社 filed Critical イビデン株式会社
Priority to CN201780039828.XA priority Critical patent/CN109414689A/zh
Priority to JP2018527649A priority patent/JP6998870B2/ja
Publication of WO2018012565A1 publication Critical patent/WO2018012565A1/ja
Priority to US16/245,257 priority patent/US10472290B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction

Definitions

  • the present invention relates to a honeycomb structure and a method for manufacturing the honeycomb structure.
  • Exhaust gas discharged from internal combustion engines such as automobiles contains harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC).
  • An exhaust gas purification catalyst that decomposes such harmful gases is also called a three-way catalyst, and a catalyst layer is provided by washing a slurry containing noble metal particles having catalytic activity on a honeycomb monolith substrate made of cordierite or the like. Things are common.
  • Patent Document 1 discloses an exhaust gas purification catalyst in which a monolith base material includes ceria-zirconia composite oxide particles and ⁇ -phase alumina particles, and a noble metal is supported on the monolith base material.
  • Patent Document 2 discloses a honeycomb catalyst using zeolite as a main raw material and having a pore distribution peak in the range of 0.006 to 0.06 ⁇ m and 0.06 to 1 ⁇ m.
  • the honeycomb catalyst described in Patent Document 2 since the honeycomb catalyst described in Patent Document 2 has a specific pore distribution, it can be a honeycomb catalyst having high purification performance. However, even if an attempt is made to obtain a honeycomb catalyst having a pore structure as described in Patent Document 2, the honeycomb catalyst described in Patent Document 1 has two types of particles: ceria-zirconia composite oxide particles and ⁇ -phase alumina particles. Therefore, it is not easy to form a pore structure as described above, unlike the case of a single particle of zeolite described in Patent Document 2, even if pores having a certain pore diameter are formed. Since it is difficult to increase the volume ratio of the micropores, it has been difficult to realize a honeycomb catalyst having sufficient exhaust gas purification performance.
  • the present invention has been made to solve the above problems, and even in a honeycomb structure in which a plurality of types of particles are combined, the pore size distribution can be adjusted, and the inside of the partition walls can be adjusted.
  • An object of the present invention is to provide a honeycomb structure capable of diffusing exhaust gas, increasing the chance of contact with a supported catalyst, and improving exhaust gas purification performance, and a method for manufacturing the honeycomb structure.
  • a honeycomb structure of the present invention is a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween. It consists of an extrusion-molded body containing ceria-zirconia composite oxide particles and alumina particles, and the pore diameter of the partition walls of the honeycomb fired body was measured by a mercury intrusion method. The measurement results are plotted with the pore diameter ( ⁇ m) on the horizontal axis. When the vertical axis is displayed as a pore size distribution curve consisting of log differential pore volume (ml), the pore size is in the range of 0.01 to 0.1 ⁇ m and in the range of 0.1 to 5 ⁇ m.
  • micropores pores having a pore diameter in the range of 0.01 to 0.1 ⁇ m are referred to as “micropores”, and pores having a pore diameter in the range of 0.1 to 5 ⁇ m are referred to as “macropores”. .
  • the honeycomb fired body is constituted by the extrusion-molded body including the ceria-zirconia composite oxide particles and the alumina particles. Therefore, compared with the case where cordierite is used as the material of the honeycomb fired body, the heat capacity is small, and the warm-up performance can be improved.
  • the warm-up performance of the catalyst means the length of time until the exhaust gas purification performance sufficient as a catalyst can be exhibited after the engine is started, and is excellent in warm-up performance. It means that exhaust gas purification performance can be sufficiently exhibited as a catalyst in a short time after the engine is started.
  • the honeycomb structure when the honeycomb fired body is loaded with a noble metal or the like and used as a honeycomb catalyst, first, macropores having a peak in the range of the pore diameter of 0.1 to 5 ⁇ m are formed. Therefore, the surrounding exhaust gas easily diffuses into the pores, that is, into the partition walls. Further, since the honeycomb structure is also formed with micropores having a peak in the range of the pore diameter of 0.01 to 0.1 ⁇ m, many irregularities due to the micropores are formed inside the macropores. In addition, the surface area of the surface on which the noble metal that is the catalyst is supported increases, and the chance of contact between the noble metal and the exhaust gas in the pores increases. For this reason, the honeycomb catalyst using the honeycomb structure of the present invention can exhibit high purification performance.
  • the pore volume of pores of 0.1 ⁇ m or less is desirably 50% by volume or more with respect to the total pore volume.
  • the ratio of the volume of micropores of 0.1 ⁇ m or less to the total pore volume is as large as 50% by volume or more, the surface area of the honeycomb structure becomes larger, and when used as a honeycomb catalyst, High purification performance can be demonstrated.
  • the pore volume of pores of 0.1 ⁇ m or less is more preferably 70% by volume or more with respect to the total pore volume.
  • the ratio of the volume of micropores of 0.1 ⁇ m or less to the total pore volume is as large as 70% by volume or more, the surface area is further increased, and even higher purification performance when used as a honeycomb catalyst. Can be demonstrated.
  • the pore volume of pores of 0.1 ⁇ m or less is desirably 80% by volume or less with respect to the total pore volume. This is because if the pore volume of micropores of 0.1 ⁇ m or less exceeds 80% by volume with respect to the total pore volume, the ratio of macropores becomes small and the exhaust gas hardly diffuses into the pores.
  • the porosity of the honeycomb fired body is desirably 55 to 70%.
  • the porosity of the honeycomb fired body when used as a honeycomb catalyst, higher purification performance can be exhibited.
  • the pore diameter and porosity can be measured by a mercury intrusion method under the conditions of a contact angle of 130 ° and a surface tension of 485 mN / m.
  • the porosity of the honeycomb fired body When the porosity of the honeycomb fired body is less than 55%, the ratio of closed pores increases, and the surface area of the honeycomb structure does not easily increase, so that it is difficult to increase the purification performance. On the other hand, when the porosity of the honeycomb fired body exceeds 70%, the porosity becomes too high, so that the mechanical properties of the honeycomb structure deteriorate, and cracks and breakage are likely to occur during use of the honeycomb structure. Become.
  • the alumina particles are desirably ⁇ -phase alumina particles.
  • the alumina particles are ⁇ -phase alumina particles, the ratio of the three-dimensional network pores of the macropore size can be increased, and the ratio of the micropores can be increased.
  • the purification performance when using a honeycomb catalyst can be enhanced.
  • the phase change of the alumina phase in the exhaust gas can be suppressed, and higher heat resistance can be realized.
  • honeycomb structure of the present invention it is desirable that a noble metal is supported on the honeycomb fired body.
  • a noble metal functioning as a catalyst when supported on the honeycomb fired body, it can be used as a honeycomb catalyst for exhaust gas purification.
  • the method for manufacturing a honeycomb structure of the present invention is a method for manufacturing a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween, and the ceria-zirconia composite oxide particles And forming a raw material paste containing alumina particles to form a honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween, and a honeycomb formed body formed by the above forming step Of the alumina particles used when preparing the raw material paste, and a firing step of producing a honeycomb fired body by firing the honeycomb formed body dried by the drying step.
  • the average particle size is 1-5 ⁇ m, and the cumulative distribution of the particle size of the alumina particles is D10: 0.5-2 ⁇ m, D90: 2-10 ⁇ m.
  • the average particle diameter of the near composite oxide particles is 1 to 5 ⁇ m
  • the cumulative distribution of the particle diameter of the ceria-zirconia composite oxide particles is D10: 0.5 to 2 ⁇ m
  • the alumina The average particle size of the particles is larger than the average particle size of the ceria-zirconia composite oxide particles.
  • honeycomb structure manufacturing method since the particle size and particle size distribution of the alumina particles and ceria-zirconia composite oxide particles used as raw materials are set as described above, the macropores and micropores are well balanced. A honeycomb structure that is distributed and excellent in purification performance when used as a honeycomb catalyst can be produced.
  • the honeycomb formed body formed by the forming step is freeze-dried in the drying step.
  • the manufacturing method of the honeycomb structure since a large amount of moisture in the raw material paste is sublimated in a frozen state by freeze-drying the honeycomb formed body, macropores are easily formed, and the pore diameter of the macropores Can be increased. Therefore, when used as a honeycomb catalyst, the surrounding exhaust gas is easily diffused into the pores, and a honeycomb structure having more excellent purification performance can be manufactured.
  • the weight ratio of the ceria-zirconia composite oxide particles to the alumina particles used when preparing the raw material paste is: It is desirable to be 1.0 to 3.0.
  • the weight ratio (ceria-zirconia composite oxide particles / alumina particles) is 1.0 to 3.0, the content of ceria-zirconia composite oxide particles is high.
  • the zirconia composite oxide particles are used as a co-catalyst, the catalytic action of the supported catalyst can be enhanced, and the performance as a honeycomb catalyst can be further enhanced.
  • the method for manufacturing a honeycomb structured body of the present invention it is desirable to further include a supporting step for supporting a noble metal on the honeycomb fired body.
  • a supporting step for supporting a noble metal on the honeycomb fired body it is possible to use the honeycomb fired body as a honeycomb catalyst for exhaust gas purification by supporting a noble metal on the honeycomb fired body.
  • FIG. 1 is a perspective view schematically showing an example of the honeycomb structure of the present invention.
  • FIG. 2 is a graph showing the results of measuring the pore diameter of an example of the honeycomb structure of the present invention by a mercury intrusion method (results of Example 2).
  • FIG. 3 is a graph showing the results of measurement of the pore diameter of an example of the honeycomb structure of the present invention by a mercury intrusion method (results of Example 1).
  • FIG. 4 is a graph showing the results of measuring the pore diameter of the honeycomb structure according to Comparative Example 1 by mercury porosimetry.
  • the honeycomb structure of the present invention includes a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween.
  • the honeycomb fired body has an extrusion-molded shape including ceria-zirconia composite oxide particles (hereinafter referred to as CZ particles) and alumina particles.
  • CZ particles ceria-zirconia composite oxide particles
  • alumina particles alumina particles.
  • the honeycomb fired body is manufactured by extruding and firing a raw material paste containing CZ particles, alumina particles, and an inorganic binder. Whether or not the honeycomb structure of the present invention has the above-described components can be confirmed by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the honeycomb structure of the present invention may include a single honeycomb fired body, or may include a plurality of honeycomb fired bodies, and the plurality of honeycomb fired bodies are bonded by an adhesive layer. Also good.
  • an outer peripheral coat layer may be formed on the outer peripheral surface of the honeycomb fired body.
  • FIG. 1 is a perspective view schematically showing an example of the honeycomb structure of the present invention.
  • a honeycomb structure 10 shown in FIG. 1 includes a single honeycomb fired body 11 in which a plurality of through holes 11a are arranged in parallel in the longitudinal direction with a partition wall 11b interposed therebetween.
  • the honeycomb fired body 11 includes CZ particles and alumina particles, and has a shape of an extrusion-molded body.
  • the pore diameters of the partition walls of the honeycomb fired body were measured by a mercury intrusion method, and the measurement results are shown by the pore diameter ( ⁇ m) on the horizontal axis and the log differential pore volume (ml on the vertical axis).
  • One or more peaks are formed in the pore diameter range of 0.01 to 0.1 ⁇ m and in the range of 0.1 to 5 ⁇ m, respectively.
  • the number of peaks formed in the range of 0.01 to 0.1 ⁇ m is not particularly limited, but 1 is desirable, and the number of peaks formed in the range of 0.1 to 5 ⁇ m is particularly Although not limited, 1 is desirable.
  • FIG. 2 is a graph showing the results of measuring the pore diameter of an example of the honeycomb structure of the present invention by a mercury intrusion method (results of Example 2).
  • the log differential pore volume (ml) is plotted on the vertical axis
  • the pore diameter ( ⁇ m) is plotted on the horizontal axis.
  • the pore diameter shown in FIG. 2 has the same meaning as the pore diameter.
  • the pore size distribution can be measured by a mercury intrusion method under the conditions of a contact angle of 130 ° and a surface tension of 485 mN / m.
  • the pore volume of micropores of 0.1 ⁇ m or less is desirably 50% by volume or more with respect to the total pore volume.
  • the pore volume accounts for 50 volume% or more with respect to the total pore volume.
  • the macropores having a peak in the range of 0.1 to 5 ⁇ m are first formed, when the noble metal is supported on the honeycomb fired body and used as a honeycomb catalyst, The surrounding exhaust gas easily diffuses into the partition walls of the honeycomb structure.
  • the honeycomb structure has micropores having a peak in the range of the pore diameter of 0.01 to 0.1 ⁇ m, a large number of irregularities due to the micropores are formed inside the macropores.
  • the surface area of the surface on which the noble metal that is the catalyst is supported increases, and the chance of contact between the noble metal and the exhaust gas in the pores increases. For this reason, the honeycomb catalyst using the honeycomb structure of the present invention can exhibit high purification performance.
  • the pore volume of pores of 0.1 ⁇ m or less is more preferably 70% by volume or more with respect to the total pore volume.
  • the pore volume of pores of 0.1 ⁇ m or less is desirably 80% by volume or less with respect to the total pore volume. If the pore volume of pores of 0.1 ⁇ m or less exceeds 80% by volume with respect to the total pore volume, the ratio of macropores decreases, so that the exhaust gas hardly diffuses inside the partition walls of the honeycomb structure. It is.
  • the porosity of the honeycomb fired body is desirably 55 to 70%.
  • the porosity of the honeycomb fired body when the porosity of the honeycomb fired body is 55 to 70%, since the pores are almost open pores, the surface area is increased and the surrounding exhaust gas is easily diffused into the pores.
  • the porosity can also be measured by a mercury intrusion method with a contact angle of 130 ° and a surface tension of 485 mN / m, as in the case of the pore diameter.
  • the porosity of the honeycomb fired body When the porosity of the honeycomb fired body is less than 55%, the ratio of closed pores increases, and the surface area of the honeycomb structure does not easily increase, so that it is difficult to increase the purification performance. On the other hand, when the porosity of the honeycomb fired body exceeds 70%, the porosity becomes too high, so that the mechanical properties of the honeycomb structure deteriorate, and cracks and breakage are likely to occur during use of the honeycomb structure. Become.
  • the ratio of the length to the diameter of the honeycomb structure (length / diameter) is 0.5 to 0.9. It is desirable that the honeycomb structure has a diameter of 130 mm or less.
  • the average particle diameter of CZ particles constituting the honeycomb fired body is preferably 1 to 10 ⁇ m, and the CZ particles preferably include particles having cracks.
  • CZ particles are particles having a large coefficient of thermal expansion, but if the average particle diameter is 1 to 10 ⁇ m and cracks are formed in the particles, the cracks in the particles are absorbed even if the CZ particles are thermally expanded or contracted. be able to. As a result, the entire honeycomb structure can be prevented from being damaged by thermal shock, and a honeycomb structure having high thermal shock resistance can be obtained.
  • the average particle diameter of CZ particles and alumina particles constituting the honeycomb fired body is obtained by taking an SEM photograph of the honeycomb fired body using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S-4800). Can do.
  • the CZ particles include crack-present particles can be confirmed by observing an electron microscope image of the honeycomb fired body. If cracks are observed in 3 or more of 10 particles of the ceria-zirconia composite oxide in the electron microscope image of the honeycomb fired body, it is determined that the CZ particles include crack-present particles.
  • the alumina particles constituting the honeycomb structure of the present invention are desirably ⁇ -phase alumina particles ( ⁇ alumina particles).
  • ⁇ alumina particles ⁇ -phase alumina particles
  • the ratio of the three-dimensional network pores of the macropore size can be increased, and the ratio of the micropores can be increased.
  • the purification performance when the honeycomb catalyst is obtained can be improved.
  • the phase change of the alumina phase in the exhaust gas can be suppressed, and higher heat resistance can be realized.
  • the content ratio of the ⁇ alumina particles is preferably 15 to 35% by weight.
  • the content ratio of CZ particles is preferably 35 to 65% by weight.
  • the honeycomb structure of the present invention preferably contains ⁇ -alumina used as a vanida at the time of manufacture, and more preferably contains ⁇ -alumina fiber. This is because, when the honeycomb structure is manufactured, a binder is required. When boehmite is added as a binder, most of the boehmite becomes ⁇ -alumina after firing. In addition, when the ⁇ alumina fiber is included, the mechanical characteristics of the honeycomb structure can be improved.
  • the content ratio of ⁇ -alumina is desirably 10 to 20% by weight, and the content ratio of ⁇ -alumina fiber is desirably 5 to 15% by weight.
  • the shape of the honeycomb structure of the present invention is not limited to a cylindrical shape, and examples thereof include a prismatic shape, an elliptical cylindrical shape, a long cylindrical shape, and a rounded chamfered prismatic shape (for example, a rounded chamfered triangular prism shape). .
  • the shape of the through hole of the honeycomb fired body is not limited to a quadrangular prism shape, and examples thereof include a triangular prism shape and a hexagonal prism shape.
  • the density of the through holes in the cross section perpendicular to the longitudinal direction of the honeycomb fired body is preferably 31 to 155 holes / cm 2 .
  • the thickness of the partition walls of the honeycomb fired body is desirably 0.05 to 0.50 mm, and more desirably 0.10 to 0.30 mm.
  • the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
  • a noble metal is supported on the honeycomb fired body.
  • a noble metal functioning as a catalyst when supported on the honeycomb fired body, it can be used as a honeycomb catalyst for exhaust gas purification.
  • a three-way catalyst is desirable.
  • a three-way catalyst refers to a catalyst that mainly purifies hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx). Examples of noble metals used as the three-way catalyst include noble metals such as platinum, palladium, and rhodium.
  • the loading amount of the noble metal is desirably 0.1 to 15 g / L, and more desirably 0.5 to 10 g / L.
  • the loading amount of the noble metal refers to the weight of the noble metal per apparent volume of the honeycomb structure.
  • the apparent volume of the honeycomb structure is a volume including the void volume, and includes the volume of the outer peripheral coat layer and / or the adhesive layer.
  • a method for manufacturing a honeycomb structure according to the present invention is a method for manufacturing a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in a longitudinal direction with partition walls therebetween.
  • a forming step for producing a honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween, and a honeycomb formed by the above forming step A drying step for drying the formed body, and a firing step for producing a honeycomb fired body by firing the honeycomb formed body dried by the drying step,
  • the average particle size of the alumina particles used in preparing the raw material paste is 1 to 5 ⁇ m
  • the cumulative distribution of the particle size of the alumina particles is D10: 0.5 to 2 ⁇ m, D90: 2 to 10 ⁇ m
  • the average particle size of the CZ particles is 1 to 5 ⁇ m
  • the cumulative distribution of the particle size of the CZ particles is D10: 0.5 to 2 ⁇ m
  • the average particle size of the alumina particles is It is larger than the average particle diameter of the CZ particles.
  • a honeycomb structured body of the present invention In the method for manufacturing a honeycomb structured body of the present invention, first, as a forming step, a raw material paste containing CZ particles and alumina particles is formed, so that a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween. A honeycomb formed body is produced.
  • a raw material paste containing CZ particles and alumina particles is first prepared.
  • Alumina particles having an average particle diameter of 1 to 5 ⁇ m, a cumulative distribution of the particle diameter of D10: 0.5 to 2 ⁇ m, and D90: 2 to 10 ⁇ m are used. Further, CZ particles having an average particle size of 1 to 5 ⁇ m, a cumulative distribution of the particle size of D10: 0.5 to 2 ⁇ m, and D90: 2 to 10 ⁇ m are used. Furthermore, the average particle diameter of the alumina particles to be used needs to be larger than the average particle diameter of the CZ particles.
  • the average particle diameters of the alumina particles and CZ particles, and D10 and D90 can be measured using a laser diffraction particle size distribution measuring device (MASTERSIZER 2000 manufactured by MALVERN).
  • the honeycomb fired body having the characteristics described above of the present invention that is, the gas in the partition walls of the honeycomb fired body is used.
  • the pore diameter was measured by the mercury intrusion method and the measurement result was displayed as a pore diameter distribution curve in which the horizontal axis is pore diameter ( ⁇ m) and the vertical axis is log differential pore volume (ml), the pore diameter is 0. It becomes possible to produce a fired body in which one or more peaks are formed in the range of 0.01 to 0.1 ⁇ m and in the range of 0.1 to 5 ⁇ m.
  • D10 related to the cumulative distribution of particle diameters refers to the particle diameter corresponding to 10 volume% from the smaller particle diameter
  • D90 refers to the particle diameter corresponding to 90 volume% from the smaller particle diameter
  • the partition walls of the honeycomb structure are formed in a state where particles having an appropriate particle size distribution are combined, and macro and micro pores are formed. Can be distributed in a well-balanced manner, and when used as a honeycomb catalyst, a honeycomb structure excellent in purification performance can be manufactured.
  • alumina particles as the main component having the above-described characteristics, ⁇ -phase alumina particles are desirable.
  • raw materials used when preparing the raw material paste include inorganic fibers, inorganic binders, organic binders, pore formers, molding aids, dispersion media, and the like.
  • alumina a silica, silicon carbide, a silica alumina, glass, potassium titanate, an aluminum borate etc.
  • alumina fibers are desirable, and ⁇ -alumina fibers are particularly desirable.
  • the aspect ratio of the inorganic fiber is preferably 5 to 300, more preferably 10 to 200, and still more preferably 10 to 100.
  • inorganic binder Solid content contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, boehmite etc. is mentioned, These inorganic binders may be used together 2 or more types. Of these, boehmite is desirable.
  • Boehmite is an alumina monohydrate represented by the composition of AlOOH and is well dispersed in a medium such as water. Therefore, in the method for manufacturing a honeycomb structure of the present invention, it is desirable to use boehmite as a binder.
  • the pore-forming agent refers to a material used for introducing pores into the fired body when the fired body is produced.
  • Methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol, a phenol resin, an epoxy resin etc. are mentioned, You may use 2 or more types together.
  • Alcohol such as water
  • organic solvents such as benzene, methanol, etc.
  • CZ particles, alumina particles, ⁇ -alumina fiber and boehmite are used as the raw materials
  • the blending ratio thereof is CZ particles: 40 to 60% by weight, alumina with respect to the total solid content remaining after the firing step in the raw materials.
  • the weight ratio of CZ particles to alumina particles is preferably 1.0 to 3.0.
  • CZ particles / alumina particles When the weight ratio (CZ particles / alumina particles) is 1.0 to 3.0, the content of CZ particles is high, and these CZ particles are used as a co-catalyst.
  • the catalytic action can be strengthened, and the performance as a honeycomb catalyst can be further enhanced.
  • the raw material paste When preparing the raw material paste, it is desirable to mix and knead, and it may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
  • the raw material paste prepared by the above method is molded to produce a honeycomb molded body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls.
  • a honeycomb formed body is manufactured by extrusion molding using the raw material paste.
  • a honeycomb formed body having a through hole having a predetermined shape is formed by passing a die having a predetermined shape, and cut into a predetermined length to obtain a honeycomb formed body. .
  • the honeycomb formed body formed by the forming step is dried.
  • a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, etc.
  • the honeycomb formed body can be dried to produce a honeycomb dried body.
  • a freeze drying method using a freeze dryer is desirable.
  • Freezing conditions for lyophilization include freezing at a temperature of ⁇ 30 ° C. or lower for 1 to 48 hours, and then the frozen honeycomb formed body is decompressed to 1 to 600 Pa and decompressed for 1 to 120 hours. It is desirable to sublimate moisture underneath.
  • honeycomb formed body By lyophilizing the honeycomb formed body, a large amount of moisture in the raw material paste is sublimated in a frozen state, so that macropores are easily formed, and the pore size of the macropores can be increased. Therefore, when used as a honeycomb catalyst, the surrounding exhaust gas is easily diffused into the pores, and a honeycomb structure having more excellent purification performance can be manufactured.
  • honeycomb formed body and the honeycomb dried body before the firing step are collectively referred to as a honeycomb formed body.
  • a honeycomb fired body is manufactured by firing the honeycomb formed body dried by the drying process as the firing process.
  • this process performs degreasing and firing of the honeycomb formed body, it can also be referred to as a “degreasing / firing process”, but it is referred to as “a firing process” for convenience.
  • the temperature of the firing step is desirably 800 to 1300 ° C., and more desirably 900 to 1200 ° C.
  • the firing process time is desirably 1 to 24 hours, More desirably, it is 3 to 18 hours.
  • the atmosphere of the firing step is not particularly limited, but it is desirable that the oxygen concentration is 1 to 20% by volume.
  • the honeycomb structure of the present invention can be manufactured.
  • the method for manufacturing a honeycomb structure of the present invention preferably further includes a supporting step of supporting a noble metal on the honeycomb fired body.
  • the method of supporting the noble metal on the honeycomb fired body include a method of immersing the honeycomb fired body or the honeycomb structure in a solution containing noble metal particles or a complex, and then pulling up and heating.
  • the honeycomb structure includes an outer peripheral coat layer
  • a precious metal may be supported on the honeycomb fired body before forming the outer peripheral coat layer, or a precious metal may be supported on the honeycomb fired body or the honeycomb structure after the outer peripheral coat layer is formed. You may carry.
  • the amount of the precious metal supported in the supporting step is preferably 0.1 to 15 g / L, and more preferably 0.5 to 10 g / L.
  • the outer peripheral coat layer is coated with the outer peripheral coat layer paste on the outer peripheral surface excluding both end faces. Thereafter, it can be formed by drying and solidifying.
  • the outer coat layer paste include the same composition as the raw material paste.
  • Example 1 5279 parts by weight of CZ particles (average particle diameter: 2 ⁇ m, D10: 1 ⁇ m, D90: 3 ⁇ m) and 2640 parts by weight of ⁇ alumina particles (average particle diameter: 2.5 ⁇ m, D10: 0.8 ⁇ m, D90: 3.7 ⁇ m) , 2262 parts by weight of boehmite as an inorganic binder, 1056 parts by weight of ⁇ -alumina fiber having an average fiber diameter of 3 ⁇ m and an average fiber length of 60 ⁇ m, 1060 parts by weight of methyl cellulose as an organic binder, and 422 parts by weight of acrylic resin as a pore former Similarly, 528 parts by weight of coke as a pore-forming agent, 845 parts by weight of polyoxyethylene oleyl ether as a surfactant as a forming aid, and 5820 parts by weight of ion-exchanged water were mixed and kneaded to prepare a raw material paste.
  • the molding aid 528 parts by weight of
  • the average particle diameter and D10, D90 of the alumina particles and CZ particles were measured using a laser diffraction particle size distribution measuring apparatus (MALSTERSIZER manufactured by MALVERN).
  • honeycomb fired body The raw material paste was extruded using an extruder, and a cylindrical honeycomb formed body was produced.
  • the honeycomb molded body was dried at an output of 1.74 kW and a reduced pressure of 6.7 kPa for 12 minutes using a vacuum microwave dryer, and then degreased and fired at 1100 ° C. for 10 hours to obtain a honeycomb fired body (honeycomb structure).
  • the honeycomb fired body had a cylindrical shape with a diameter of 103 mm and a length of 80 mm, a density of through holes of 77.5 holes / cm 2 (500 cpsi), and a partition wall thickness of 0.127 mm (5 mil).
  • Example 2 At the time of drying, the honeycomb formed body is frozen at a temperature of ⁇ 50 ° C. using a freeze dryer and then sublimated by holding at 10 Pa for 72 hours, followed by degreasing and firing at 1100 ° C. for 10 hours.
  • a honeycomb fired body honeycomb structure
  • Example 2 At the time of drying, the honeycomb formed body is frozen at a temperature of ⁇ 50 ° C. using a freeze dryer and then sublimated by holding at 10 Pa for 72 hours, followed by degreasing and firing at 1100 ° C. for 10 hours.
  • a honeycomb fired body honeycomb structure
  • the amount of catalyst supported was 0.14 g / L per apparent volume of the honeycomb fired body in total of palladium and rhodium.
  • the measurement range at that time was 0.006 to 500 ⁇ m, 100 ⁇ m to 500 ⁇ m were measured for each pressure of 0.1 psia, and 0.006 ⁇ m to 100 ⁇ m were measured for each pressure of 0.25 psia.
  • the contact angle was 130 ° and the surface tension was 485 mN / m.
  • the ratio [volume%] of the volume of pores having a pore diameter of 0.1 ⁇ m or less to the volume of all pores was calculated.
  • FIGS. 2 to 4 The measurement results are shown in FIGS. 2 to 4 and Table 1.
  • the vertical axis represents log differential pore volume (ml), and the horizontal axis represents pore diameter ( ⁇ m).
  • 2 shows the result of Example 2
  • FIG. 3 shows the result of Example 1
  • FIG. 4 shows the result of Comparative Example 1.
  • Table 1 the ratio of the pore volume having a pore diameter of 0.1 ⁇ m or less to the total pore volume is described as “the ratio of pores having a pore diameter of 0.1 ⁇ m or less [volume%]”. 2 to 4 have the same meaning as the pore diameter.
  • the honeycomb fired bodies according to Examples 1 and 2 have pore diameters in the range of 0.01 to 0.1 ⁇ m and in the range of 0.1 to 5 ⁇ m. Each had one peak.
  • the temperature at which the purification rate reached 50% was 250 ° C. in Example 1 and 230 ° C. in Example 2.
  • the honeycomb fired body according to Comparative Example 1 did not have a peak in the range of 0.1 to 5 ⁇ m, and the purification rate reached 50%.
  • the temperature is 340 ° C. in Comparative Example 1, and in Examples 1 and 2, the purification rate reaches 50% at a lower temperature than in Comparative Example 1, and the fired bodies according to Examples 1 and 2 are It was found that it was excellent in warm-up performance and purification performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Nanotechnology (AREA)

Abstract

本発明は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体であって、前記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む押出成形体からなり、前記ハニカム焼成体の隔壁の気孔径を水銀圧入法により測定し、その測定結果を、横軸が気孔径(μm)、縦軸がlog微分細孔容積(ml)からなる気孔径分布曲線として表示した際、前記気孔径が0.01~0.1μmの範囲及び0.1~5μmの範囲に、それぞれ1つ以上のピークが形成されていることを特徴とするハニカム構造体に関する。

Description

ハニカム構造体及び該ハニカム構造体の製造方法
本発明は、ハニカム構造体及び該ハニカム構造体の製造方法に関する。
自動車等の内燃機関から排出される排ガスには、一酸化炭素(CO)、窒素酸化物(NOx)、炭化水素(HC)等の有害ガスが含まれている。そのような有害ガスを分解する排ガス浄化触媒は三元触媒とも称され、コージェライト等からなるハニカム状のモノリス基材に触媒活性を有する貴金属粒子を含むスラリーをウォッシュコートして触媒層を設けたものが一般的である。
一方、特許文献1には、モノリス基材がセリア-ジルコニア複合酸化物粒子とθ相のアルミナ粒子とを含み、上記モノリス基材に貴金属が担持された排ガス浄化触媒が開示されている。
特許文献2には、ゼオライトを主原料としたハニカム触媒であって、0.006~0.06μmの範囲と0.06~1μmの範囲に気孔分布のピークを有するハニカム触媒が開示されている。
特開2015-85241号公報 国際公開第2009/141874号
特許文献1に記載の排ガス浄化触媒では、モノリス基材の材料としてコージェライトを用いず、自らが触媒担体機能及び助触媒機能を有する材料を用いることによって、嵩密度が小さくなり、モノリス基材の温度が上がりやすくなるため、触媒の暖機性能を向上させることができるとされている。しかし、特許文献1においては、排ガスが充分に拡散できるような特定の大きさの気孔がセル壁に形成されていないため、充分に高い浄化性能を有する排ガス浄化触媒とすることができなかった。
また、特許文献2に記載のハニカム触媒は、特定の気孔分布を有するので、高い浄化性能を有するハニカム触媒とすることが可能である。しかしながら、特許文献2に記載のような気孔構造を有するハニカム触媒を得ようとしても、特許文献1に記載のハニカム触媒は、セリア-ジルコニア複合酸化物粒子とθ相のアルミナ粒子の2種類の粒子からなるため、特許文献2に記載のゼオライトの単一粒子からなるものと異なり、上記したような気孔構造を形成することが容易ではなく、さらにある程度の気孔径を有する気孔が形成されていても、ミクロ気孔の容積の割合を大きくすることが難しいため、充分な排ガス浄化性能を有するハニカム触媒を実現させることが難しかった。
本発明は、上記の問題を解決するためになされたものであり、複数の種類の粒子を組み合わせたハニカム構造体であっても、気孔径分布を調節することが可能であり、隔壁の内部まで排ガスを拡散させ、担持触媒との接触機会を増加させ、排ガス浄化性能を高めることが可能なハニカム構造体及び該ハニカム構造体の製造方法を提供することを目的とする。
上記目的を達成するための本発明のハニカム構造体は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体であって、上記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む押出成形体からなり、上記ハニカム焼成体の隔壁の気孔径を水銀圧入法により測定し、その測定結果を、横軸が気孔径(μm)、縦軸がlog微分細孔容積(ml)からなる気孔径分布曲線として表示した際、上記気孔径が0.01~0.1μmの範囲及び0.1~5μmの範囲に、それぞれ1つ以上のピークが形成されていることを特徴とする。
以下、本明細書では、気孔径が0.01~0.1μmの範囲の気孔を「ミクロ気孔」といい、気孔径が0.1~5μmの範囲の気孔を「マクロ気孔」ということとする。
上記ハニカム構造体によれば、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む押出成形体によってハニカム焼成体が構成されている。そのため、ハニカム焼成体の材料としてコージェライトを用いた場合に比べて熱容量が小さく、暖機性能を高めることができる。
なお、本明細書において、触媒の暖機性能とは、エンジンの始動後、触媒として充分な排ガス浄化性能を発揮できるようになるまでの時間の長短をいい、暖機性能に優れているとは、エンジンの始動後、短時間で触媒として排ガス浄化性能を充分に発揮できることをいう。
また、上記ハニカム構造体によれば、上記ハニカム焼成体に貴金属等を担持させ、ハニカム触媒として使用する際、まず、上記気孔径が0.1~5μmの範囲にピークを有するマクロ気孔が形成されているので、周囲の排ガスが気孔の内部、すなわち隔壁の内部まで拡散し易くなる。
さらに、上記ハニカム構造体は、上記気孔径が0.01~0.1μmの範囲にピークを有するミクロ気孔も形成されているので、マクロ気孔の内部にミクロ気孔に起因する凹凸が多数形成されており、触媒である貴金属が担持されている表面の表面積が大きくなり、気孔内で貴金属と排ガスとが接触する機会が増加する。このため、本発明のハニカム構造体を用いたハニカム触媒は、高い浄化性能を発揮することができる。
本発明のハニカム構造体において、0.1μm以下の気孔の細孔容積は、全細孔容積に対して、50体積%以上であることが望ましい。
上記ハニカム構造体において、全体の気孔の容積に対する0.1μm以下のミクロ気孔の容積の割合が50体積%以上と大きいと、ハニカム構造体の表面積がより大きくなり、ハニカム触媒として用いた際、より高い浄化性能を発揮することができる。
本発明のハニカム構造体において、0.1μm以下の気孔の細孔容積は、全細孔容積に対して、70体積%以上であることがより望ましい。
上記ハニカム構造体において、全細孔容積に対し、0.1μm以下のミクロ気孔の容積の割合が70体積%以上と大きいと、さらに表面積が大きくなり、ハニカム触媒として用いた際、さらに高い浄化性能を発揮することができる。
ただし、0.1μm以下の気孔の細孔容積は、全細孔容積に対して、80体積%以下であることが望ましい。
0.1μm以下のミクロ気孔の細孔容積が全細孔容積に対して、80体積%を超えると、マクロ気孔の割合が小さくなるため、排ガスが気孔の内部に拡散しにくくなるからである。
本発明のハニカム構造体において、上記ハニカム焼成体の気孔率は、55~70%であることが望ましい。
上記ハニカム構造体において、上記ハニカム焼成体の気孔率が55~70%であると、気孔が殆ど開気孔となるため、表面積が大きくなるとともに、周囲の排ガスが気孔の内部に、より拡散し易くなり、ハニカム触媒として用いた際、さらに高い浄化性能を発揮することができる。
なお、気孔径、気孔率は、水銀圧入法にて接触角を130°、表面張力を485mN/mの条件で測定することができる。
上記ハニカム焼成体の気孔率が55%未満であると、閉気孔の割合が大きくなり、ハニカム構造体の表面積が大きくなりにくいため、浄化性能を高くすることが難しくなる。一方、上記ハニカム焼成体の気孔率が70%を超えると、気孔率が高くなりすぎるため、ハニカム構造体の機械的特性が劣化し、ハニカム構造体を使用中、クラックや破壊等が発生し易くなる。
本発明のハニカム構造体において、アルミナ粒子は、θ相のアルミナ粒子であることが望ましい。
上記ハニカム構造体において、アルミナ粒子がθ相のアルミナ粒子であると、マクロ気孔のサイズの三次元網目状細孔の割合を大きくすることができるとともに、ミクロ気孔の割合を大きくすることができ、ハニカム触媒としたときの浄化性能を高めることができる。また、θ相のアルミナ粒子を用いることにより、排ガス中でのアルミナ相の相変化を抑制することができ、より高い耐熱性を実現することができる。
本発明のハニカム構造体において、上記ハニカム焼成体に貴金属が担持されていることが望ましい。
上記ハニカム構造体において、上記ハニカム焼成体に触媒として機能する貴金属が担持されていると、排ガス浄化用のハニカム触媒として使用することができる。
本発明のハニカム構造体の製造方法は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体の製造方法であって、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記成形工程により成形されたハニカム成形体を乾燥する乾燥工程と、上記乾燥工程により乾燥されたハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含み、上記原料ペーストを調製する際に使用する上記アルミナ粒子の平均粒子径は、1~5μm、上記アルミナ粒子の粒子径の累積分布は、D10:0.5~2μm、D90:2~10μmであり、上記セリア-ジルコニア複合酸化物粒子の平均粒子径は、1~5μm、セリア-ジルコニア複合酸化物粒子の粒子径の累積分布は、D10:0.5~2μm、D90:2~10μmであり、かつ、上記アルミナ粒子の平均粒子径は、上記セリア-ジルコニア複合酸化物粒子の平均粒子径よりも大きいことを特徴とする。
上記ハニカム構造体の製造方法では、原料として使用するアルミナ粒子とセリア-ジルコニア複合酸化物粒子の粒径及び粒径分布を上記のように設定しているので、マクロ気孔とミクロ気孔とがバランスよく分布し、ハニカム触媒として使用した場合に浄化性能に優れたハニカム構造体を製造することができる。
本発明のハニカム構造体の製造方法では、上記乾燥工程において、上記成形工程により成形されたハニカム成形体を凍結乾燥することが望ましい。
上記ハニカム構造体の製造方法によれば、上記ハニカム成形体を凍結乾燥することにより、原料ペースト中の多くの水分が凍結状態のまま昇華するので、マクロ気孔が形成され易く、マクロ気孔の気孔径を大きくすることができる。そのため、ハニカム触媒として使用した場合に、周囲の排ガスが気孔の内部に拡散し易く、より浄化性能に優れたハニカム構造体を製造することができる。
本発明のハニカム構造体の製造方法において、上記原料ペーストを調製する際に使用する上記アルミナ粒子に対する上記セリア-ジルコニア複合酸化物粒子の重量比(セリア-ジルコニア複合酸化物粒子/アルミナ粒子)は、1.0~3.0であることが望ましい。
上記ハニカム構造体の製造方法において、重量比(セリア-ジルコニア複合酸化物粒子/アルミナ粒子)が1.0~3.0であると、セリア-ジルコニア複合酸化物粒子の含有率が高く、このセリア-ジルコニア複合酸化物粒子は、助触媒として使用されるものであるので、担持される触媒の触媒作用を強化することができ、ハニカム触媒としての性能をより高めることができる。
本発明のハニカム構造体の製造方法において、上記ハニカム焼成体に貴金属を担持させる担持工程をさらに含むことが望ましい。
上記ハニカム構造体の製造方法によれば、ハニカム焼成体に貴金属を担持させることにより、排ガス浄化用のハニカム触媒として使用することが可能となる。
図1は、本発明のハニカム構造体の一例を模式的に示す斜視図である。 図2は、本発明のハニカム構造体の一例の気孔径を水銀圧入法により測定した結果(実施例2の結果)を示すグラフである。 図3は、本発明のハニカム構造体の一例の気孔径を水銀圧入法により測定した結果(実施例1の結果)を示すグラフである。 図4は、比較例1に係るハニカム構造体の気孔径を水銀圧入法により測定した結果を示すグラフである。
(発明の詳細な説明)
[ハニカム構造体]
まず、本発明のハニカム構造体について説明する。
本発明のハニカム構造体は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えている。
本発明のハニカム構造体において、ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子(以下、CZ粒子という)とアルミナ粒子とを含む押出成形体の形状からなる。後述するように、ハニカム焼成体は、CZ粒子とアルミナ粒子と無機バインダとを含む原料ペーストを押出成形した後、焼成することにより作製されている。
本発明のハニカム構造体が上記した成分を有しているか否かについては、X線回折(XRD)にて確認できる。
本発明のハニカム構造体は、単一のハニカム焼成体を備えていてもよいし、複数個のハニカム焼成体を備えていてもよく、複数個のハニカム焼成体が接着剤層により結合されていてもよい。
本発明のハニカム構造体において、ハニカム焼成体の外周面には、外周コート層が形成されていてもよい。
図1は、本発明のハニカム構造体の一例を模式的に示す斜視図である。
図1に示すハニカム構造体10は、複数の貫通孔11aが隔壁11bを隔てて長手方向に並設された単一のハニカム焼成体11を備えている。ハニカム焼成体11は、CZ粒子とアルミナ粒子とを含み、押出成形体の形状を有している。
本発明のハニカム構造体においては、上記ハニカム焼成体の隔壁の気孔径を水銀圧入法により測定し、その測定結果を、横軸が気孔径(μm)、縦軸がlog微分細孔容積(ml)からなる気孔径分布曲線として表示した際、上記気孔径が0.01~0.1μmの範囲及び0.1~5μmの範囲に、それぞれ1つ以上のピークが形成されている。
0.01~0.1μmの範囲に形成されているピークの数は、特に限定されるものではないが、1が望ましく、0.1~5μmの範囲に形成されているピークの数は、特に限定されるものではないが、1が望ましい。
図2は、本発明のハニカム構造体の一例の気孔径を水銀圧入法により測定した結果(実施例2の結果)を示すグラフである。図2に示すグラフでは、縦軸にlog微分細孔容積(ml)を、横軸に気孔径(μm)をとっている。なお、図2に記載の細孔直径は、気孔径と同じ意味である。
また、上記気孔径分布は、水銀圧入法にて接触角を130°、表面張力を485mN/mの条件で測定することができる。
図2に示すように、このグラフでは、気孔径が0.01~0.1μmの範囲及び0.1~5μmの範囲に、それぞれピークが形成されている。
本発明においては、0.1μm以下のミクロ気孔の細孔容積は、全細孔容積に対して、50体積%以上であることが望ましいが、図2に示すグラフでは、実際に、ミクロ気孔の細孔容積は、全細孔容積に対して、50体積%以上を占めている。
本発明のハニカム構造体では、まず、上記気孔径が0.1~5μmの範囲にピークを有するマクロ気孔が形成されているので、上記ハニカム焼成体に貴金属を担持させ、ハニカム触媒として使用する際、周囲の排ガスがハニカム構造体の隔壁の内部まで拡散し易くなる。
また、上記ハニカム構造体は、上記気孔径が0.01~0.1μmの範囲にピークを有するミクロ気孔も形成されているので、マクロ気孔の内部にミクロ気孔に起因する凹凸が多数形成されており、触媒である貴金属が担持される表面の表面積が大きくなり、気孔内で貴金属と排ガスが接触する機会が増加する。このため、本発明のハニカム構造体を用いたハニカム触媒は、高い浄化性能を発揮することができる。
本発明のハニカム構造体において、表面積をより大きくするという観点から、0.1μm以下の気孔の細孔容積は、全細孔容積に対して、70体積%以上であることがより望ましい。
ただし、0.1μm以下の気孔の細孔容積は、全細孔容積に対して、80体積%以下であることが望ましい。0.1μm以下の気孔の細孔容積が全細孔容積に対して、80体積%を超えると、マクロ気孔の割合が小さくなるため、排ガスがハニカム構造体の隔壁の内部に拡散しにくくなるからである。
本発明のハニカム構造体において、上記ハニカム焼成体の気孔率は、55~70%であることが望ましい。
上記ハニカム構造体において、上記ハニカム焼成体の気孔率が55~70%であると、気孔が殆ど開気孔となるため、表面積が大きくなるとともに、周囲の排ガスが気孔の内部により拡散し易くなり、ハニカム触媒として用いた際、さらに高い浄化性能を発揮することができる。
なお、気孔率も、気孔径の場合と同様に、水銀圧入法にて接触角を130°、表面張力を485mN/mの条件で測定することができる。
上記ハニカム焼成体の気孔率が55%未満であると、閉気孔の割合が大きくなり、ハニカム構造体の表面積が大きくなりにくいため、浄化性能を高くすることが難しくなる。一方、上記ハニカム焼成体の気孔率が70%を超えると、気孔率が高くなりすぎるため、ハニカム構造体の機械的特性が劣化し、ハニカム構造体を使用中、クラックや破壊等が発生し易くなる。
本発明のハニカム構造体において、加熱された際の温度分布を少なくするとの観点から、ハニカム構造体の直径に対する長さの比(長さ/直径)は、0.5~0.9であることが望ましく、ハニカム構造体の直径は、130mm以下であることが望ましい。
本発明のハニカム構造体において、ハニカム焼成体を構成するCZ粒子の平均粒子径は、1~10μmであることが望ましく、CZ粒子は、クラックが存在している粒子を含むことが望ましい。
CZ粒子は熱膨脹係数の大きな粒子であるが、平均粒子径が1~10μmで、粒子内にクラックが形成されていると、CZ粒子が熱膨張もしくは熱収縮しても粒子内のクラックが吸収することができる。その結果、ハニカム構造体全体に熱衝撃による破損が生じることを防止し、耐熱衝撃性の高いハニカム構造体とすることができる。
ハニカム焼成体を構成するCZ粒子及びアルミナ粒子の平均粒子径は、走査型電子顕微鏡(SEM、日立ハイテク社製、S-4800)を用いて、ハニカム焼成体のSEM写真を撮影することにより求めることができる。
CZ粒子がクラック存在粒子を含むかどうかは、ハニカム焼成体の電子顕微鏡画像を観察することで確認することができる。ハニカム焼成体の電子顕微鏡画像においてセリア-ジルコニア複合酸化物の10個の粒子のうち3個以上の粒子にクラックが観察されれば、CZ粒子がクラック存在粒子を含むと判断する。
本発明のハニカム構造体を構成するアルミナ粒子は、θ相のアルミナ粒子(θアルミナ粒子)であることが望ましい。
上記ハニカム構造体において、アルミナ粒子は、θ相のアルミナ粒子であると、マクロ気孔のサイズの三次元網目状細孔の割合を大きくすることができるとともに、ミクロ気孔の割合を大きくすることができ、ハニカム触媒としたときの浄化性能を高めることができる。また、θ相のアルミナ粒子を用いることにより、排ガス中でのアルミナ相の相変化を抑制することができ、より高い耐熱性を実現することができる。
本発明のハニカム構造体において、θアルミナ粒子の含有割合は、15~35重量%であることが望ましい。
また、本発明のハニカム構造体において、CZ粒子の含有割合は、35~65重量%であることが望ましい。
本発明のハニカム構造体には、製造時にバンイダとして用いられたγアルミナを含んでいることが望ましく、さらに、αアルミナファイバを含んでいることが望ましい。
ハニカム構造体の製造時には、バインダが必要となるが、バインダとして、ベーマイトを添加すると、焼成後は、ベーマイトの大部分がγアルミナとなるからである。また、αアルミナファイバを含んでいると、ハニカム構造体の機械的特性を改善することができるからである。
γアルミナの含有割合は、10~20重量%であること望ましく、αアルミナファイバの含有割合は、5~15重量%であることが望ましい。
本発明のハニカム構造体の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。
本発明のハニカム構造体において、ハニカム焼成体の貫通孔の形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。
本発明のハニカム構造体において、ハニカム焼成体の長手方向に垂直な断面の貫通孔の密度は、31~155個/cmであることが望ましい。
本発明のハニカム構造体において、ハニカム焼成体の隔壁の厚さは、0.05~0.50mmであることが望ましく、0.10~0.30mmであることがより望ましい。
本発明のハニカム構造体において、ハニカム焼成体の外周面に外周コート層が形成されている場合、外周コート層の厚さは、0.1~2.0mmであることが望ましい。
本発明のハニカム構造体において、上記ハニカム焼成体に貴金属が担持されていることが望ましい。
上記ハニカム構造体において、上記ハニカム焼成体に触媒として機能する貴金属が担持されていると、排ガス浄化用のハニカム触媒として使用することができる。
上記貴金属触媒としては、三元触媒が望ましい。
三元触媒とは、主に炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NOx)を浄化する触媒をいう。三元触媒として用いられる貴金属としては、例えば、白金、パラジウム、ロジウム等の貴金属が挙げられる。
本発明のハニカム構造体において、貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
本明細書において、貴金属の担持量とは、ハニカム構造体の見掛けの体積当たりの貴金属の重量をいう。なお、ハニカム構造体の見掛けの体積とは、空隙の体積を含む体積であり、外周コート層及び/又は接着層の体積を含むこととする。
[ハニカム構造体の製造方法]
次に、本発明のハニカム構造体の製造方法について説明する。
本発明のハニカム構造体の製造方法は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体の製造方法であって、
CZ粒子とアルミナ粒子とを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記成形工程により成形されたハニカム成形体を乾燥する乾燥工程と、上記乾燥工程により乾燥されたハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含み、
上記原料ペーストを調製する際に使用する上記アルミナ粒子の平均粒子径は、1~5μm、上記アルミナ粒子の粒子径の累積分布は、D10:0.5~2μm、D90:2~10μmであり、上記CZ粒子の平均粒子径は、1~5μm、CZ粒子の粒子径の累積分布は、D10:0.5~2μm、D90:2~10μmであり、かつ、上記アルミナ粒子の平均粒子径は、上記CZ粒子の平均粒子径よりも大きいことを特徴とする。
(成形工程)
本発明のハニカム構造体の製造方法においては、まず、成形工程として、CZ粒子とアルミナ粒子とを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する。
上記成形工程では、まず、最初にCZ粒子とアルミナ粒子とを含む原料ペーストを調製する。
アルミナ粒子として、その平均粒子径が1~5μm、その粒子径の累積分布がD10:0.5~2μm、D90:2~10μmのものを使用する。
また、CZ粒子として、その平均粒子径が1~5μm、その粒子径の累積分布がD10:0.5~2μm、D90:2~10μmのものを使用する。
さらに、使用するアルミナ粒子の平均粒子径は、CZ粒子の平均粒子径よりも大きい必要がある。
アルミナ粒子及びCZ粒子の平均粒子径およびD10、D90は、レーザー回折式粒度分布測定装置(MALVERN社製 MASTERSIZER2000)を用いて測定することができる。
上記した粒子径に関する特性を有するアルミナ粒子と上記した粒子径に関する特性を有するCZ粒子とを使用することにより、本発明の上記した特性を有するハニカム焼成体、すなわち、該ハニカム焼成体の隔壁の気孔径を水銀圧入法により測定し、その測定結果を、横軸が気孔径(μm)、縦軸がlog微分細孔容積(ml)からなる気孔径分布曲線として表示した際、上記気孔径が0.01~0.1μmの範囲及び0.1~5μmの範囲に、それぞれ1つ以上のピークが形成されている焼成体を製造することが可能となる。
ここで、粒子径の累積分布に関するD10とは、粒子径の小さい方から累積体積が10体積%にあたる粒子径をいい、D90とは、粒子径の小さい方から累積体積が90体積%にあたる粒子径をいう。
上記した粒子径及び粒子径分布を有するCZ粒子とアルミナ粒子を用いることにより、適切な粒径分布を有する粒子同士が組み合わされた状態で、ハニカム構造体の隔壁を構成し、マクロ気孔とミクロ気孔とがバランスよく分布し、ハニカム触媒として使用した場合に浄化性能に優れたハニカム構造体を製造することができる。
上記した特性を有する主成分となるアルミナ粒子としては、θ相のアルミナ粒子が望ましい。
原料ペーストを調製する際に用いる他の原料としては、無機ファイバ、無機バインダ、有機バインダ、造孔剤、成形助剤、分散媒等が挙げられる。
上記無機ファイバを構成する材料としては、特に限定されないが、例えば、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム等が挙げられ、二種以上併用してもよい。これらのなかでは、アルミナファイバが望ましく、特にαアルミナファイバが望ましい。
上記無機ファイバのアスペクト比は、5~300であることが望ましく、10~200であることがより望ましく、10~100であることがさらに望ましい。
上記無機バインダとしては、特に限定されないが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベーマイト等に含まれる固形分が挙げられ、これらの無機バインダは、二種以上併用してもよい。これらのなかでは、ベーマイトが望ましい。
ベーマイトは、AlOOHの組成で示されるアルミナ1水和物であり、水等の媒体に良好に分散するので、本発明のハニカム構造体の製造方法では、ベーマイトをバインダとして用いることが望ましい。
上記造孔剤としては、特に限定されないが、例えば、アクリル樹脂、コークス、デンプン等が挙げられる。本発明では、アクリル樹脂、コークス及びデンプンのうち2種類以上を用いることが望ましい。
造孔剤とは、焼成体を製造する際、焼成体の内部に気孔を導入するために用いられるものをいう。
有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。
分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。
成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。
上記した原料としてCZ粒子、アルミナ粒子、αアルミナファイバ及びベーマイトを使用した際、これらの配合割合は、原料中の焼成工程後に残存する全固形分に対し、CZ粒子:40~60重量%、アルミナ粒子:15~35重量%、αアルミナファイバ:5~15重量%、ベーマイト:10~20重量%が望ましい。
また、アルミナ粒子に対するCZ粒子の重量比(CZ粒子/アルミナ粒子)は、1.0~3.0であることが望ましい。
重量比(CZ粒子/アルミナ粒子)が1.0~3.0であると、CZ粒子の含有率が高く、このCZ粒子は、助触媒として使用されるものであるので、担持される触媒の触媒作用を強化することができ、ハニカム触媒としての性能をより高めることができる。
原料ペーストを調製する際には、混合混練することが望ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。
本発明のハニカム構造体の製造方法において、上記方法により調製した原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する。具体的には、上記原料ペーストを用いて押出成形することにより、ハニカム成形体を作製する。
具体的には、所定の形状の金型を通過させることにより、所定の形状の貫通孔を有するハニカム成形体の連続体を形成し、所定の長さにカットすることにより、ハニカム成形体とする。
(乾燥工程)
本発明のハニカム構造体の製造方法では、上記成形工程により成形されたハニカム成形体を乾燥する。 
この際、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥し、ハニカム乾燥体を作製することが望ましい。これらのなかでは、凍結乾燥機を用いた凍結乾燥方法が望ましい。凍結乾燥においては、ハニカム成形体を凍結した後に、減圧することがさらに望ましい。
凍結乾燥を行う際の凍結の条件としては、-30℃以下の温度で1~48時間凍結させ、その後、凍結した状態のハニカム成形体を1~600Paに減圧し、1~120時間、減圧環境下で水分を昇華させることが望ましい。
上記ハニカム成形体を凍結乾燥することにより、原料ペースト中の多くの水分が凍結状態のまま昇華するので、マクロ気孔が形成され易く、マクロ気孔の気孔径を大きくすることができる。そのため、ハニカム触媒として使用した場合に、周囲の排ガスが気孔の内部に拡散し易く、より浄化性能に優れたハニカム構造体を製造することができる。
本明細書においては、焼成工程を行う前のハニカム成形体及びハニカム乾燥体をまとめてハニカム成形体とも呼ぶ。
(焼成工程)
本発明のハニカム構造体の製造方法において、焼成工程として、乾燥工程により乾燥されたハニカム成形体を焼成することにより、ハニカム焼成体を作製する。なお、この工程は、ハニカム成形体の脱脂及び焼成が行われるため、「脱脂・焼成工程」ということもできるが、便宜上「焼成工程」という。
焼成工程の温度は、800~1300℃であることが望ましく、900~1200℃であることがより望ましい。また、焼成工程の時間は、1~24時間であることが望ましく、
3~18時間であることがより望ましい。焼成工程の雰囲気は特に限定されないが、酸素濃度が1~20体積%であることが望ましい。
以上の工程により、本発明のハニカム構造体を製造することができる。
(担持工程)
本発明のハニカム構造体の製造方法は、上記ハニカム焼成体に貴金属を担持させる担持工程をさらに含むことが望ましい。
ハニカム焼成体に貴金属を担持する方法としては、例えば、貴金属粒子もしくは錯体を含む溶液にハニカム焼成体又はハニカム構造体を浸漬した後、引き上げて加熱する方法等が挙げられる。
ハニカム構造体が外周コート層を備える場合、外周コート層を形成する前のハニカム焼成体に貴金属を担持してもよいし、外周コート層を形成した後のハニカム焼成体又はハニカム構造体に貴金属を担持してもよい。
本発明のハニカム構造体の製造方法において、上記担持工程で担持した貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
(その他の工程)
本発明のハニカム構造体の製造方法において、ハニカム焼成体の外周面に外周コート層を形成する場合、外周コート層は、ハニカム焼成体の両端面を除く外周面に外周コート層用ペーストを塗布した後、乾燥固化することにより形成することができる。外周コート層用ペーストとしては、原料ペーストと同じ組成のものが挙げられる。
(実施例)
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、以下の実施例のみに限定されるものではない。
[評価用サンプルの作製]
(実施例1)
CZ粒子(平均粒子径:2μm、D10:1μm、D90:3μm)を5279重量部、θアルミナ粒子(平均粒子径:2.5μm、D10:0.8μm、D90:3.7μm)を2640重量部、無機バインダとしてベーマイトを2262重量部、平均繊維径が3μm、平均繊維長が60μmのαアルミナファイバを1056重量部、有機バインダとしてメチルセルロースを1060重量部、造孔剤として、アクリル樹脂を422重量部、同じく造孔剤として、コークスを528重量部、成形助剤として界面活性剤であるポリオキシエチレンオレイルエーテルを845重量部及びイオン交換水を5820重量部混合混練して、原料ペーストを調製した。なお、上記成形助剤は、30℃における粘度が50mPa・sである。
上記原料ペーストにおける重量比(CZ粒子/アルミナ粒子)は、2.0であった。
なお、アルミナ粒子及びCZ粒子の平均粒子径およびD10、D90は、レーザー回折式粒度分布測定装置(MALVERN社製 MASTERSIZER2000)を用いて測定した。
押出成形機を用いて、原料ペーストを押出成形して、円柱状のハニカム成形体を作製した。そして、減圧マイクロ波乾燥機を用いて、ハニカム成形体を出力1.74kW、減圧6.7kPaで12分間乾燥させた後、1100℃で10時間脱脂・焼成することにより、ハニカム焼成体(ハニカム構造体)を作製した。ハニカム焼成体は、直径が103mm、長さが80mmの円柱状であり、貫通孔の密度が77.5個/cm(500cpsi)、隔壁の厚さが0.127mm(5mil)であった。
(実施例2)
乾燥の際、凍結乾燥機を用いて、ハニカム成形体を温度-50℃で凍結し、その後、10Paで72時間保持させることで水分を昇華した後、1100℃で10時間、脱脂・焼成することにより、ハニカム焼成体を作製したほかは、実施例1と同様にしてハニカム焼成体(ハニカム構造体)を製造した。
(比較例1)
原料ペーストを調製する際、CZ粒子(平均粒子径:2μm、D10:0.4μm、D90:4.2μm)を5279重量部、θアルミナ粒子(平均粒子径:2μm、D10:0.3μm、D90:4.5μm)を2640重量部、無機バインダとしてベーマイトを2262重量部、平均繊維径が3μm、平均繊維長が60μmのαアルミナファイバを1056重量部、有機バインダとしてメチルセルロースを1060重量部、造孔剤として、アクリル樹脂を422重量部、同じく造孔剤として、コークスを528重量部、成形助剤として界面活性剤であるポリオキシエチレンアルキルエーテルを1400重量部及びイオン交換水を5340重量部混合混練して、原料ペーストを調製したほかは、実施例1と同様にしてハニカム焼成体を製造した。なお、成形助剤は、20℃における粘度が1200mPa・sである。
(貴金属の担持)
ジニトロジアンミンパラジウム硝酸溶液([Pd(NH(NO]HNO、パラジウム濃度100g/L)溶液と硝酸ロジウム溶液([Rh(NO]、ロジウム濃度50g/L)を3:1の溶液の体積割合で混合調製した。この混合溶液中に、上記工程により製造された実施例1、実施例2及び比較例1のハニカム焼成体を浸漬し、15分間保持した。その後、ハニカム焼成体を110℃で2時間乾燥し、窒素雰囲気中500℃で1時間焼成することによって、ハニカム焼成体にパラジウムとロジウム触媒を担持させた。
触媒の担持量は、パラジウムとロジウムの合計でハニカム焼成体の見掛けの体積当たり0.14g/Lとした。
[気孔率及び気孔径分布の測定]
実施例1~2及び比較例1で作製した焼成体について、水銀圧入法を用いて気孔率及び気孔径分布を測定した。
水銀圧入法による具体的な測定手順としては、各ハニカム焼成体を0.8cm程度の立方体に切断し、イオン交換水で超音波洗浄し、十分乾燥して測定用サンプルとした。次に、これらハニカム焼成体のサンプルそれぞれについて、それらの細孔径を水銀圧入法(JISR1655:2003に準じる)によって測定した。すなわち、得られたサンプルを、島津製作所社製、マイクロメリティックス自動ポロシメータオートポアIII9405を用いて細孔径の測定を行った。その時の測定範囲は、0.006~500μmとし、100μm~500μmは、0.1psiaの圧力毎に測定し、0.006μm~100μmは、0.25psiaの圧力毎に測定した。その際、接触角を130°、表面張力を485mN/mとして測定した。さらに、全気孔の容積に対する0.1μm以下の気孔径を有する気孔の容積の割合[体積%]を算出した。
これらの測定結果を図2~図4及び表1に示す。図2~図4に示すグラフでは、縦軸にlog微分細孔容積(ml)を、横軸に気孔径(μm)をとっている。なお、図2は、実施例2の結果、図3は、実施例1の結果、図4は、比較例1の結果を示している。また、表1では、全気孔の容積に対する0.1μm以下の気孔径を有する気孔の容積の割合を「気孔径0.1μm以下の気孔の割合[体積%]」と記載している。なお、図2~4に記載の細孔直径は、気孔径と同じ意味である。
[排ガスの浄化率の測定]
実施例1~2及び比較例1で作製したハニカム焼成体から、ダイヤモンドカッターを用いて、一辺27mm、長さ25mmの四角柱状試験片を切り出した。これらの試験片に、模擬ガスを流量20L/min、空間速度(SV)68000/hr、昇温速度30℃/minで流しながら、触媒評価装置(堀場製作所社製、自動排ガス測定装置 MEXA-7000)を用いて、試料から流出するHC(炭化水素)の流出量及びそのときの温度を測定した。
そして、このデータに基づき、下記の式
 (HCの流入量-HCの流出量)/(HCの流入量)×100
で表されるHCの浄化率[%]を算出するとともに、温度データに基づき、THCの浄化率が50%に達した温度を測定した。その結果を下記の表1に示す。表1では、「HCの浄化率:50%の温度[℃]」と記載している。なお、模擬ガスの構成成分は、NO:1200ppm、O:6460ppm、CO:9330ppm、THC(トータルの炭化水素):1554ppm、CO:1%、HO:0.3%、窒素(balance)である。
Figure JPOXMLDOC01-appb-T000001
図2~3に示した気孔径分布のグラフによれば、実施例1~2に係るハニカム焼成体は、気孔径が0.01~0.1μmの範囲及び0.1~5μmの範囲に、それぞれ1つピークを有しており、表1に示すように、浄化率が50%に達した温度は、実施例1では、250℃、実施例2では、230℃であった。
一方、図4に示した気孔径分布のグラフによれば、比較例1に係るハニカム焼成体は、0.1~5μmの範囲にピークを有しておらず、浄化率が50%に達した温度は、比較例1では、340℃であり、比較例1に比べて、実施例1、2では、より低温で浄化率が50%に達しており、実施例1、2に係る焼成体は、暖機性能及び浄化性能に優れていることが分かった。
 10 ハニカム構造体
 11 ハニカム焼成体
 11a 貫通孔
 11b 隔壁

Claims (10)

  1. 複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体であって、
    前記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む押出成形体からなり、
    前記ハニカム焼成体の隔壁の気孔径を水銀圧入法により測定し、その測定結果を、横軸が気孔径(μm)、縦軸がlog微分細孔容積(ml)からなる気孔径分布曲線として表示した際、
    前記気孔径が0.01~0.1μmの範囲及び0.1~5μmの範囲に、それぞれ1つ以上のピークが形成されていることを特徴とするハニカム構造体。
  2. 0.1μm以下の気孔の細孔容積は、全細孔容積に対して、50体積%以上である請求項1に記載のハニカム構造体。
  3. 0.1μm以下の気孔の細孔容積は、全細孔容積に対して、70体積%以上である請求項2に記載のハニカム構造体。
  4. 前記ハニカム焼成体の気孔率は、55~70%である請求項1~3のいずれか1項に記載のハニカム構造体。
  5. 前記アルミナ粒子は、θ相のアルミナ粒子である請求項1~4のいずれか1項に記載のハニカム構造体。
  6. 前記ハニカム焼成体に貴金属が担持されている請求項1~5のいずれか1項に記載のハニカム構造体。
  7. 複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体の製造方法であって、
    セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、
    前記成形工程により成形されたハニカム成形体を乾燥する乾燥工程と、
    前記乾燥工程により乾燥されたハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含み、
    前記原料ペーストを調製する際に使用する前記アルミナ粒子の平均粒子径は、1~5μm、前記アルミナ粒子の粒子径の累積分布は、D10:0.5~2μm、D90:2~10μmであり、
    前記セリア-ジルコニア複合酸化物粒子の平均粒子径は、1~5μm、セリア-ジルコニア複合酸化物粒子の粒子径の累積分布は、D10:0.5~2μm、D90:2~10μmであり、かつ、
    前記アルミナ粒子の平均粒子径は、前記セリア-ジルコニア複合酸化物粒子の平均粒子径よりも大きいことを特徴とするハニカム構造体の製造方法。
  8. 前記乾燥工程において、前記成形工程により成形されたハニカム成形体を凍結乾燥する請求項7に記載のハニカム構造体の製造方法。
  9. 前記原料ペーストを調製する際に使用する前記アルミナ粒子に対する前記セリア-ジルコニア複合酸化物粒子の重量比(セリア-ジルコニア複合酸化物粒子/アルミナ粒子)は、1.0~3.0である請求項7又は8に記載のハニカム構造体の製造方法。
  10. 前記ハニカム焼成体に貴金属を担持させる担持工程をさらに含む請求項7~9のいずれか1項に記載のハニカム構造体の製造方法。
PCT/JP2017/025478 2016-07-14 2017-07-13 ハニカム構造体及び該ハニカム構造体の製造方法 WO2018012565A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780039828.XA CN109414689A (zh) 2016-07-14 2017-07-13 蜂窝结构体和该蜂窝结构体的制造方法
JP2018527649A JP6998870B2 (ja) 2016-07-14 2017-07-13 ハニカム構造体及び該ハニカム構造体の製造方法
US16/245,257 US10472290B2 (en) 2016-07-14 2019-01-11 Honeycomb structure and production method for said honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016139685 2016-07-14
JP2016-139685 2016-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/245,257 Continuation US10472290B2 (en) 2016-07-14 2019-01-11 Honeycomb structure and production method for said honeycomb structure

Publications (1)

Publication Number Publication Date
WO2018012565A1 true WO2018012565A1 (ja) 2018-01-18

Family

ID=60953124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025478 WO2018012565A1 (ja) 2016-07-14 2017-07-13 ハニカム構造体及び該ハニカム構造体の製造方法

Country Status (4)

Country Link
US (1) US10472290B2 (ja)
JP (1) JP6998870B2 (ja)
CN (1) CN109414689A (ja)
WO (1) WO2018012565A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164069A1 (ja) * 2017-03-06 2018-09-13 イビデン 株式会社 ハニカムフィルタ
WO2018164070A1 (ja) * 2017-03-06 2018-09-13 イビデン 株式会社 ハニカムフィルタ
JP2019150754A (ja) * 2018-03-01 2019-09-12 イビデン株式会社 ハニカム構造体の製造方法
JP2019151508A (ja) * 2018-03-01 2019-09-12 イビデン株式会社 ハニカム構造体の製造方法
WO2020039903A1 (ja) * 2018-08-22 2020-02-27 三井金属鉱業株式会社 排ガス浄化触媒用多孔質構造体及びそれを用いた排ガス浄化触媒並びに排ガス浄化方法
JP2020040034A (ja) * 2018-09-12 2020-03-19 イビデン株式会社 ハニカム構造体の製造方法
JP2020040033A (ja) * 2018-09-12 2020-03-19 イビデン株式会社 ハニカム構造体
JP2020040035A (ja) * 2018-09-12 2020-03-19 イビデン株式会社 ハニカム構造体の製造方法
WO2020105667A1 (ja) * 2018-11-22 2020-05-28 イビデン株式会社 ハニカム構造体
WO2020105666A1 (ja) * 2018-11-22 2020-05-28 イビデン株式会社 ハニカム構造体
JP2021031324A (ja) * 2019-08-21 2021-03-01 株式会社Lixil 無機多孔質成形体
EP3766566A4 (en) * 2018-03-13 2021-11-17 Ibiden Co., Ltd. HONEYCOMB FILTER AND PROCESS FOR MANUFACTURING HONEYCOMB FILTERS
US11187130B2 (en) * 2019-01-17 2021-11-30 Ibiden Co., Ltd. Honeycomb structured body

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6684257B2 (ja) * 2017-09-27 2020-04-22 イビデン株式会社 排ガス浄化用ハニカム触媒
JP2019058876A (ja) 2017-09-27 2019-04-18 イビデン株式会社 ハニカム触媒
JP6698602B2 (ja) * 2017-09-27 2020-05-27 イビデン株式会社 排ガス浄化用ハニカム触媒
JP2019058875A (ja) * 2017-09-27 2019-04-18 イビデン株式会社 ハニカム触媒
BR112022016556A2 (pt) * 2020-02-21 2022-10-11 Neo Performance Mat Singapore Pte Ltd Composições que contêm cério e zircônio e métodos para preparar as mesmas com uso de ácido oxálico
BR112022017109A2 (pt) * 2020-02-27 2022-11-16 Neo Performance Mat Singapore Pte Ltd Composições contendo zircônio e cério e métodos para a preparação das mesmas usando ácido oxálico e um álcool
CN115362019B (zh) * 2020-03-16 2024-08-20 新性能材料(新加坡)私人有限公司 含有锆和铈的组合物和使用草酸和超临界干燥制造该组合物的方法
CN117177813A (zh) * 2021-06-10 2023-12-05 庄信万丰股份有限公司 使用铑/铂和鞣酸作为络合和还原剂的改进的twc活性
WO2022258962A1 (en) * 2021-06-10 2022-12-15 Johnson Matthey Public Limited Company Palladium fixing and low fresh oxygen storage capacity using tannic acid as a complexing and reducing agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123820A (en) * 1981-01-19 1982-08-02 Mitsubishi Chem Ind Ltd Production of formed body of porous activated alumina
WO2006070540A1 (ja) * 2004-12-27 2006-07-06 Ibiden Co., Ltd. セラミックハニカム構造体
JP2009255047A (ja) * 2008-03-24 2009-11-05 Ibiden Co Ltd ハニカム構造体
JP2011207749A (ja) * 2010-03-12 2011-10-20 Ngk Insulators Ltd ゼオライト構造体及びその製造方法
JP2015085241A (ja) * 2013-10-29 2015-05-07 トヨタ自動車株式会社 排ガス浄化触媒

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010026838A1 (en) * 1996-06-21 2001-10-04 Engelhard Corporation Monolithic catalysts and related process for manufacture
KR100641549B1 (ko) * 1999-11-16 2006-10-31 이비덴 가부시키가이샤 촉매 및 그의 제조방법
US7276212B2 (en) * 2001-10-01 2007-10-02 Engelhard Corporation Exhaust articles for internal combustion engines
WO2006041174A1 (ja) * 2004-10-12 2006-04-20 Ibiden Co., Ltd. セラミックハニカム構造体
BRPI0808159A2 (pt) * 2007-01-31 2014-07-08 Basf Catalysts Llc Artigo de tratamento de gás
US8038951B2 (en) * 2007-08-09 2011-10-18 Basf Corporation Catalyst compositions
WO2009118816A1 (ja) * 2008-03-24 2009-10-01 イビデン株式会社 ハニカム構造体
WO2009141874A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
US8691361B2 (en) * 2008-07-28 2014-04-08 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
US8833064B2 (en) * 2009-11-06 2014-09-16 Basf Corporation Small engine layered catalyst article and method of making
CN105032415A (zh) * 2015-05-08 2015-11-11 湖南凯美达环保科技有限公司 机动车尾气催化剂及其制备方法和使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123820A (en) * 1981-01-19 1982-08-02 Mitsubishi Chem Ind Ltd Production of formed body of porous activated alumina
WO2006070540A1 (ja) * 2004-12-27 2006-07-06 Ibiden Co., Ltd. セラミックハニカム構造体
JP2009255047A (ja) * 2008-03-24 2009-11-05 Ibiden Co Ltd ハニカム構造体
JP2011207749A (ja) * 2010-03-12 2011-10-20 Ngk Insulators Ltd ゼオライト構造体及びその製造方法
JP2015085241A (ja) * 2013-10-29 2015-05-07 トヨタ自動車株式会社 排ガス浄化触媒

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164069A1 (ja) * 2017-03-06 2018-09-13 イビデン 株式会社 ハニカムフィルタ
WO2018164070A1 (ja) * 2017-03-06 2018-09-13 イビデン 株式会社 ハニカムフィルタ
JP2018143955A (ja) * 2017-03-06 2018-09-20 イビデン株式会社 ハニカムフィルタ
JP2018143956A (ja) * 2017-03-06 2018-09-20 イビデン株式会社 ハニカムフィルタ
JP2019150754A (ja) * 2018-03-01 2019-09-12 イビデン株式会社 ハニカム構造体の製造方法
JP2019151508A (ja) * 2018-03-01 2019-09-12 イビデン株式会社 ハニカム構造体の製造方法
JP7112212B2 (ja) 2018-03-01 2022-08-03 イビデン株式会社 ハニカム構造体の製造方法
EP3766566A4 (en) * 2018-03-13 2021-11-17 Ibiden Co., Ltd. HONEYCOMB FILTER AND PROCESS FOR MANUFACTURING HONEYCOMB FILTERS
US11433382B2 (en) 2018-03-13 2022-09-06 Ibiden Co., Ltd. Honeycomb filter and method for manufacturing honeycomb filters
WO2020039903A1 (ja) * 2018-08-22 2020-02-27 三井金属鉱業株式会社 排ガス浄化触媒用多孔質構造体及びそれを用いた排ガス浄化触媒並びに排ガス浄化方法
US11141721B2 (en) 2018-08-22 2021-10-12 Mitsui Mining & Smelting Co., Ltd. Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using porous structure, and exhaust gas purification method
JPWO2020039903A1 (ja) * 2018-08-22 2020-10-22 三井金属鉱業株式会社 排ガス浄化触媒用多孔質構造体及びそれを用いた排ガス浄化触媒並びに排ガス浄化方法
CN110894155A (zh) * 2018-09-12 2020-03-20 揖斐电株式会社 蜂窝结构体的制造方法
US10603658B1 (en) 2018-09-12 2020-03-31 Ibiden Co., Ltd. Honeycomb structured body
CN110894157A (zh) * 2018-09-12 2020-03-20 揖斐电株式会社 蜂窝结构体的制造方法
US11511458B2 (en) 2018-09-12 2022-11-29 Ibiden Co., Ltd. Method of producing honeycomb structured body
US11511459B2 (en) 2018-09-12 2022-11-29 Ibiden Co., Ltd. Method of producing honeycomb structured body
CN110894156A (zh) * 2018-09-12 2020-03-20 揖斐电株式会社 蜂窝结构体
CN110894156B (zh) * 2018-09-12 2022-04-19 揖斐电株式会社 蜂窝结构体
JP2020040035A (ja) * 2018-09-12 2020-03-19 イビデン株式会社 ハニカム構造体の製造方法
JP2020040033A (ja) * 2018-09-12 2020-03-19 イビデン株式会社 ハニカム構造体
JP2020040034A (ja) * 2018-09-12 2020-03-19 イビデン株式会社 ハニカム構造体の製造方法
WO2020105667A1 (ja) * 2018-11-22 2020-05-28 イビデン株式会社 ハニカム構造体
JP2020081954A (ja) * 2018-11-22 2020-06-04 イビデン株式会社 ハニカム構造体
WO2020105666A1 (ja) * 2018-11-22 2020-05-28 イビデン株式会社 ハニカム構造体
JP7304147B2 (ja) 2018-11-22 2023-07-06 イビデン株式会社 ハニカム構造体
US11187130B2 (en) * 2019-01-17 2021-11-30 Ibiden Co., Ltd. Honeycomb structured body
JP2021031324A (ja) * 2019-08-21 2021-03-01 株式会社Lixil 無機多孔質成形体
JP7304237B2 (ja) 2019-08-21 2023-07-06 株式会社Lixil 無機多孔質成形体

Also Published As

Publication number Publication date
JPWO2018012565A1 (ja) 2019-04-25
CN109414689A (zh) 2019-03-01
JP6998870B2 (ja) 2022-02-04
US20190144342A1 (en) 2019-05-16
US10472290B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2018012565A1 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
JP6998871B2 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
US11298687B2 (en) Honeycomb catalytic converter
JP6698602B2 (ja) 排ガス浄化用ハニカム触媒
WO2018012562A1 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
JP6781742B2 (ja) ハニカム構造体
CN111107932B (zh) 蜂窝催化剂
US11433382B2 (en) Honeycomb filter and method for manufacturing honeycomb filters
JP6698601B2 (ja) 排ガス浄化用ハニカム触媒
US20200222890A1 (en) Honeycomb catalytic converter
WO2019065797A1 (ja) ハニカム触媒
JP2020114786A (ja) ハニカム構造体
JP6949019B2 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
JP6782571B2 (ja) ハニカム構造体
JP2012197186A (ja) ハニカム構造体の製造方法
JP6985842B2 (ja) ハニカム触媒
JP6944833B2 (ja) ハニカム構造体の製造方法
JP2019155277A (ja) ハニカムフィルタ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527649

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827688

Country of ref document: EP

Kind code of ref document: A1