WO2019065797A1 - ハニカム触媒 - Google Patents

ハニカム触媒 Download PDF

Info

Publication number
WO2019065797A1
WO2019065797A1 PCT/JP2018/035835 JP2018035835W WO2019065797A1 WO 2019065797 A1 WO2019065797 A1 WO 2019065797A1 JP 2018035835 W JP2018035835 W JP 2018035835W WO 2019065797 A1 WO2019065797 A1 WO 2019065797A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb
honeycomb catalyst
concentration
noble metal
partition
Prior art date
Application number
PCT/JP2018/035835
Other languages
English (en)
French (fr)
Inventor
真之助 後藤
吉田 健
巧 東條
鈴木 宏昌
Original Assignee
イビデン株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社, トヨタ自動車株式会社 filed Critical イビデン株式会社
Publication of WO2019065797A1 publication Critical patent/WO2019065797A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present invention relates to a honeycomb catalyst.
  • Exhaust gases emitted from internal combustion engines such as automobiles include harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons (HC).
  • harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons (HC).
  • CO carbon monoxide
  • NOx nitrogen oxides
  • HC hydrocarbons
  • Such an exhaust gas purification catalyst that decomposes harmful gases is also called a three-way catalyst, and a catalyst layer is provided by washcoating a slurry containing noble metal particles having catalytic activity on a honeycomb monolith substrate made of cordierite or the like.
  • Patent Document 1 discloses an exhaust gas purification catalyst in which a monolith substrate contains ceria-zirconia mixed oxide particles and alumina particles of ⁇ phase, and the above-mentioned monolith substrate carries noble metal particles.
  • the present invention is an invention made to solve the above-mentioned problems, and an object of the present invention is to provide a honeycomb catalyst having a sufficient exhaust gas purification performance even when the activity of the catalyst is low as in warm-up operation. It is to provide.
  • the honeycomb catalyst according to the present invention is a honeycomb catalyst in which a noble metal is supported on a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction across partitions.
  • the body is formed of an extrusion-molded body containing ceria-zirconia mixed oxide particles and alumina particles, and the noble metal is supported on the partition wall, and the concentration of the noble metal on the surface of the partition wall is in the thickness direction of the partition wall Higher than the concentration of the above-mentioned noble metal in the central part of
  • honeycomb catalyst of the present invention a large amount of noble metal is supported on the surfaces of the partition walls, so that the exhaust gas purification performance can be sufficiently exhibited even in the warm-up operation where the temperature of the exhaust gas is low and the catalytic activity is low.
  • the concentration of the noble metal on the surface of the partition wall is higher than the concentration of the noble metal at the central portion in the thickness direction of the partition wall, one of the elements if the noble metal consists of two or more elements Meet the above conditions.
  • the concentration of A at the surface of the partition is higher than the concentration of A at the central portion in the thickness direction of the partition, and / or the concentration of B at the surface of the partition is the partition It means that it is higher than the concentration of B in the central part in the thickness direction of.
  • the fact that the concentration of the noble metal on the surface of the partition wall is higher than the concentration of the noble metal at the central portion in the thickness direction of the partition wall means that the electron probe microanalyzer (cut surface when cutting the partition wall in the direction perpendicular to the longitudinal direction of the honeycomb catalyst) It can confirm by carrying out element mapping by EPMA etc.). Specifically, first, a region of 10 ⁇ m ⁇ 10 ⁇ m at the center in the thickness direction of the partition wall from the partition wall portion of the elemental mapping image of the partition wall (image for each element when there are a plurality of noble metals) A combination of 10 ⁇ m ⁇ 10 ⁇ m regions on the surface of the partition located on the surface side in the thickness direction of the partition is randomly selected at 10 points.
  • the element concentration in the 10 ⁇ m ⁇ 10 ⁇ m region at the center of the partition is compared with the element concentration in the 10 ⁇ m ⁇ 10 ⁇ m region on the surface of the partition.
  • the concentration of the noble metal on the surface of the partition is in the thickness direction of the partition Higher than the concentration of precious metals in the central part of
  • the honeycomb fired body desirably further includes an inorganic binder.
  • the mechanical strength of the honeycomb fired body can be improved.
  • the noble metal contains at least Pd, and the Pd concentration on the surface of the partition is higher than the Pd concentration in the central portion of the partition.
  • the exhaust gas contains a large amount of HC and CO because the engine is not warmed up and the required fuel amount is increased or the combustion is not stable.
  • the noble metal contains at least Pd, HC and CO can be purified, so the exhaust gas purification performance (hereinafter also referred to as warm-up performance) during warm-up operation can be improved.
  • the thickness of the partition walls is preferably 0.05 to 0.25 mm.
  • the ratio of length to diameter (length / diameter) of the honeycomb catalyst is desirably 0.5 to 1.1.
  • the diameter of the honeycomb catalyst is desirably 130 mm or less. By setting the diameter of the honeycomb catalyst to 130 mm or less, breakage due to thermal shock can be less likely to occur.
  • the ratio of the ceria-zirconia mixed oxide in the honeycomb catalyst is desirably 25 to 75% by weight.
  • the oxygen storage capacity (OSC) of the honeycomb catalyst can be enhanced by setting the proportion of the ceria-zirconia composite oxide in the above range.
  • FIG. 1 is a perspective view schematically showing an example of the honeycomb catalyst of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of partition walls constituting the honeycomb catalyst of the present invention.
  • FIG. 3 is an EPMA image of partition walls of the honeycomb catalyst according to Example 1.
  • FIG. 4 is an EPMA image of partition walls of a honeycomb catalyst according to Comparative Example 1.
  • a noble metal is supported on a honeycomb structure provided with a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction across partition walls.
  • the honeycomb fired body (honeycomb structure) is an extruded body containing ceria-zirconia mixed oxide particles (hereinafter also referred to as CZ particles) and alumina particles. As described later, the honeycomb fired body is produced by extruding and then firing a raw material paste containing CZ particles and alumina particles.
  • CZ particles ceria-zirconia mixed oxide particles
  • alumina particles a raw material paste containing CZ particles and alumina particles.
  • the honeycomb catalyst of the present invention may comprise a single honeycomb fired body, may comprise a plurality of honeycomb fired bodies, and even when a plurality of honeycomb fired bodies are bonded by an adhesive layer. Good.
  • FIG. 1 is a perspective view schematically showing an example of the honeycomb catalyst of the present invention.
  • the honeycomb catalyst 10 shown in FIG. 1 includes a single honeycomb fired body 11 in which a plurality of through holes 12 are arranged in parallel in the longitudinal direction across the partition walls 13.
  • the honeycomb fired body 11 includes CZ particles and alumina particles, and has a shape of an extrusion-molded body.
  • the honeycomb fired body 11 is also a honeycomb structure.
  • FIG. 2 is a cross-sectional view schematically showing an example of partition walls constituting the honeycomb catalyst of the present invention.
  • the noble metal 14 is carried on the partition 13, and the concentration of the noble metal 14 on the surface (the through hole 12 side) of the partition 13 is the thickness direction of the partition 13 (double arrow t in FIG. 2). Higher than the concentration of the noble metal 14 in the central part of the direction
  • a large amount of noble metal is supported on the surfaces of the partition walls, so that the exhaust gas purification performance can be sufficiently exhibited even in the warm-up operation where the temperature of the exhaust gas is low and the catalytic activity is low.
  • the fact that the concentration of the noble metal on the surface of the partition wall is higher than the concentration of the noble metal in the central portion in the thickness direction of the partition wall means that the cut surface when cutting the partition wall in the direction perpendicular to the longitudinal direction of the honeycomb catalyst This can be confirmed by elemental mapping. Specifically, first, a region of 10 ⁇ m ⁇ 10 ⁇ m at the center in the thickness direction of the partition wall from the partition wall portion of the elemental mapping image of the partition wall (image for each element when there are a plurality of noble metals) A combination of 10 ⁇ m ⁇ 10 ⁇ m regions on the surface of the partition located on the surface side in the thickness direction of the partition is randomly selected at 10 points.
  • the element concentration in the 10 ⁇ m ⁇ 10 ⁇ m region at the center of the partition is compared with the element concentration in the 10 ⁇ m ⁇ 10 ⁇ m region on the surface of the partition.
  • the concentration of the noble metal on the surface of the partition is in the thickness direction of the partition Higher than the concentration of precious metals in the central part of The concentration of the noble metal can be determined by the hue and density of the elemental mapping image.
  • the average particle diameter of the CZ particles constituting the honeycomb catalyst of the present invention is preferably 1 to 50 ⁇ m from the viewpoint of improving the thermal shock resistance.
  • the average particle size of the CZ particles is more preferably 1 to 30 ⁇ m.
  • the surface area is increased when the honeycomb catalyst is formed, so that the OSC can be increased.
  • the average particle diameter of the alumina particles constituting the honeycomb catalyst of the present invention is not particularly limited, but is preferably 1 to 10 ⁇ m, more preferably 1 to 5 ⁇ m from the viewpoint of improving exhaust gas purification performance and warm-up performance. desirable.
  • the average particle diameter of the CZ particles and alumina particles constituting the honeycomb catalyst can be determined by taking a SEM photograph of the honeycomb catalyst using a scanning electron microscope (SEM, S-4800 manufactured by Hitachi High-Tech Co., Ltd.).
  • the proportion of the ceria-zirconia mixed oxide is desirably 25 to 75% by weight.
  • the content of alumina particles is preferably 15 to 35% by weight.
  • ceria has OSC in the ceria-zirconia mixed oxide that constitutes CZ particles.
  • ceria-zirconia mixed oxide it is desirable that ceria and zirconia form a solid solution.
  • the ceria-zirconia mixed oxide desirably contains 30 wt% or more of ceria, more desirably 40 wt% or more, and desirably 90 wt% or less of ceria. It is more desirable to contain by weight or less.
  • the ceria-zirconia composite oxide desirably contains 60 wt% or less of zirconia, and more desirably 50 wt% or less.
  • Such ceria-zirconia mixed oxide has a high ceria ratio, so the OSC is high.
  • the type of alumina particles is not particularly limited, but it is desirable that the alumina particles are ⁇ -phase alumina particles (hereinafter also referred to as ⁇ -alumina particles).
  • ⁇ -alumina particles ⁇ -phase alumina particles
  • alumina particles of the ⁇ phase as a partition material of the ceria-zirconia composite oxide, it is possible to suppress the sintering of the alumina particles with each other during use, so that the catalytic function can be maintained.
  • heat resistance can be enhanced by making alumina particles into the ⁇ phase.
  • the honeycomb catalyst of the present invention preferably contains inorganic particles used as an inorganic binder at the time of production, and more preferably contains ⁇ -alumina particles derived from boehmite.
  • the honeycomb catalyst of the present invention desirably contains inorganic fibers, and more desirably contains alumina fibers.
  • the honeycomb catalyst contains inorganic fibers such as alumina fibers, the mechanical properties of the honeycomb catalyst can be improved.
  • an inorganic fiber means that whose aspect ratio is 5 or more
  • an inorganic particle means that whose aspect ratio is less than 5.
  • the ratio of length to diameter (length / diameter) of the honeycomb catalyst is desirably 0.5 to 1.1, and more desirably 0.6 to 0.8. .
  • the diameter of the honeycomb catalyst is desirably 130 mm or less, and more desirably 125 mm or less.
  • the diameter of the honeycomb catalyst is preferably 85 mm or more.
  • the length of the honeycomb catalyst is desirably 65 to 120 mm, and more desirably 70 to 110 mm.
  • the shape of the honeycomb catalyst of the present invention is not limited to a cylindrical shape, and may include a prismatic shape, an elliptic cylindrical shape, a long cylindrical shape, and a prismatic columnar shape which is chamfered (for example, a triangular prismatic shape which is chamfered).
  • the thickness of the partition walls is desirably uniform.
  • the thickness of the partition walls of the honeycomb fired body is preferably 0.05 to 0.25 mm, and more preferably 0.05 to 0.15 mm.
  • the shape of the through hole is not limited to the square column, and may be a triangular column, a hexagonal column, or the like.
  • the density of the through holes in the cross section perpendicular to the longitudinal direction of the honeycomb catalyst is 31 to 155 / cm 2 .
  • the porosity of the honeycomb catalyst of the present invention is desirably 40 to 70%.
  • the porosity of the honeycomb catalyst can be measured by the weight method described below.
  • the honeycomb catalyst is cut into a size of 10 cells ⁇ 10 cells ⁇ 10 mm to obtain a measurement sample.
  • the measurement sample is subjected to ultrasonic cleaning with ion-exchanged water and acetone, and then dried at 100 ° C. using an oven.
  • the measurement sample of 10 cells ⁇ 10 cells ⁇ 10 mm includes the outermost through holes and the partition walls constituting the through holes in a state in which ten through holes are arranged in the longitudinal direction and ten in the lateral direction. It refers to a sample cut out so that the length in the longitudinal direction is 10 mm.
  • the true density is measured in accordance with JIS R 1620 (1995) using an Auto Pycnometer 1320 manufactured by Micromeritics.
  • the evacuation time is 40 minutes.
  • the actual weight of the measurement sample is measured with an electronic balance (HR 202i manufactured by A & D).
  • an outer peripheral coat layer may be formed on the outer peripheral surface of the honeycomb fired body.
  • the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
  • the noble metal is supported on the partition walls, and the concentration of the noble metal on the surface of the partition walls is higher than the concentration of the noble metal in the central portion in the thickness direction of the partition walls.
  • the noble metal include platinum group metals such as Pt, Pd, Rh and the like. If the concentration of the noble metal on the surface of the partition wall is higher than the concentration of the noble metal at the central portion in the thickness direction of the partition wall, many noble metals are supported on the surface of the partition wall, so the exhaust gas temperature is low and the catalyst activity is low Even during operation, sufficient exhaust gas purification performance can be exhibited.
  • the honeycomb catalyst of the present invention it is desirable to include at least Pd as a noble metal, and it is desirable that the Pd concentration at the surface of the partition is higher than the Pd concentration at the central portion of the partition.
  • the noble metal contains at least Pd
  • HC and CO can be purified, so that the exhaust gas purification performance at the time of warm-up operation can be improved.
  • more Pd can be brought into contact with the exhaust gas if the Pd concentration on the surface of the partition wall is higher than the Pd concentration in the central portion of the partition wall.
  • the exhaust gas purification performance at the time of machine operation can be further improved.
  • the loading amount of the noble metal is desirably 0.1 to 15 g / L, and more desirably 0.5 to 10 g / L.
  • the supported amount of the noble metal refers to the weight of the noble metal per apparent volume of the honeycomb catalyst.
  • the apparent volume of the honeycomb catalyst is a volume including the volume of the void, and includes the volume of the outer peripheral coat layer and / or the adhesive layer.
  • honeycomb catalyst of the present invention a method of producing the honeycomb catalyst of the present invention will be described.
  • the noble metal is supported on the surface of the partition walls preferentially to the honeycomb fired body (honeycomb structure) produced by the following method. And a method of carrying out the loading step.
  • honeycomb fired body for example, by forming a raw material paste containing CZ particles and alumina particles, a honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction across partition walls is manufactured. There is a method including a forming step and a firing step of producing a honeycomb fired body by firing the honeycomb formed body.
  • the average particle diameter of the CZ particles and the alumina particles which are raw materials of the honeycomb catalyst, can be determined by a laser diffraction type particle size distribution measuring device (MASTER SIZER 2000 manufactured by MALVERN).
  • an inorganic fiber As another raw material used when preparing a raw material paste, an inorganic fiber, an inorganic binder, an organic binder, a pore making agent, a shaping
  • alumina a silica, a silicon carbide, a silica alumina, glass, a potassium titanate, aluminum borate etc.
  • the aspect ratio of the inorganic fiber is preferably 5 to 300, more preferably 10 to 200, and still more preferably 10 to 100.
  • the inorganic binder is not particularly limited, and examples thereof include solids contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, boehmite and the like. These inorganic binders may be used in combination of two or more.
  • Boehmite is desirable.
  • Boehmite is an alumina monohydrate represented by the composition of AlOOH, and is well dispersed in a medium such as water, so it is desirable to use boehmite as an inorganic binder.
  • the organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, epoxy resin and the like, and two or more kinds may be used in combination.
  • the pore forming agent is not particularly limited, and examples thereof include acrylic resin, coke, starch and the like, and in the present invention, it is desirable to use two or more of acrylic resin, coke and starch.
  • the pore forming agent refers to one used to introduce pores into the inside of the fired body when the fired body is manufactured.
  • the shaping aid is not particularly limited, and ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like can be mentioned, and two or more kinds may be used in combination.
  • the dispersion medium is not particularly limited, and examples thereof include water, organic solvents such as benzene, alcohols such as methanol, and the like, and two or more types may be used in combination.
  • the blending ratio thereof is 25 to 75% by weight of CZ particles with respect to the total solid content remaining after the firing step in the raw materials, alumina particles 15 to 35% by weight, alumina fiber: 5 to 15% by weight and boehmite: 5 to 20% by weight are desirable.
  • the raw material paste is formed to produce a honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction across the partition walls.
  • a honeycomb molded body is produced by extrusion molding using the above-mentioned raw material paste. That is, by passing the paste through a mold of a predetermined shape, a continuous body of a honeycomb formed body having through holes of a predetermined shape is formed, and the honeycomb formed body is obtained by cutting into a predetermined length.
  • the honeycomb formed body is dried using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer or the like to produce a honeycomb dried body.
  • a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer or the like to produce a honeycomb dried body.
  • honeycomb formed body and the honeycomb dried body before the firing step are collectively referred to as a honeycomb formed body.
  • the honeycomb formed body is fired to produce a honeycomb fired body.
  • degreasing and firing of the honeycomb formed body are performed in this step, it may be referred to as “defatting and firing step” but for convenience, it is referred to as “firing step”.
  • the temperature of the firing step is preferably 800 to 1300 ° C., and more preferably 900 to 1200 ° C.
  • the time of the firing step is preferably 1 to 24 hours, and more preferably 3 to 18 hours.
  • the atmosphere in the firing step is not particularly limited, but it is desirable that the oxygen concentration be 1 to 20%.
  • a honeycomb structure can be manufactured by the above steps. Subsequently, a supporting step of supporting a noble metal on partition walls of the honeycomb structure will be described.
  • a method of manufacturing the honeycomb catalyst of the present invention a method including a supporting step of supporting a noble metal preferentially on the surface of the partition wall with respect to the above-mentioned honeycomb structure can be mentioned.
  • a method of preferentially supporting a noble metal on the surface of the partition wall a method of impregnating the honeycomb structure with a solution of a noble metal which is easily adsorbed to the surface of the partition wall, pulling it up and heating or drying it can be mentioned.
  • a noble metal may be carried on the honeycomb fired body before forming the outer peripheral coat layer, or the noble metal may be supported on the honeycomb fired body or honeycomb structure after forming the outer peripheral coat layer. You may carry.
  • a noble metal may be supported on the honeycomb fired body before forming the adhesive layer, or a noble metal may be supported on the honeycomb fired body or honeycomb structure after forming the adhesive layer.
  • the noble metal solution which is easily adsorbed to the partition surface includes a solution containing a noble metal complex, and as the noble metal complex, dinitrodiammine palladium ([Pd (NH 3 ) 2 (NO 2 ) 2 ]), tetraammine palladium dichloride ([Pd (NH 3 ) 3 ) 4 ] Cl 2 ) and the like.
  • These complexes can be used as a nitric acid solution or an aqueous solution.
  • the pH of the above solution can be adjusted by adding a pH adjuster. It is desirable that the pH adjuster does not contain halogen and sulfur such as fluorine, chlorine, and bromine which become catalyst poisons, and examples thereof include nitric acid and oxalic acid.
  • the loading amount of the precious metal loaded in the loading step is desirably 0.1 to 15 g / L, and more desirably 0.5 to 10 g / L.
  • the outer peripheral coat layer is obtained by applying the outer peripheral coat layer paste on the outer peripheral surface excluding both end surfaces of the honeycomb fired body Then, it can be formed by drying and solidification.
  • the peripheral coating layer paste include those having the same composition as the raw material paste.
  • a honeycomb structure in which a plurality of honeycomb fired bodies are bonded via an adhesive layer is a paste for an adhesive layer on an outer peripheral surface excluding both end surfaces of the plurality of honeycomb fired bodies. After application, adhesion, and then drying and solidification, they can be produced.
  • the adhesive layer paste include those having the same composition as the raw material paste.
  • honeycomb structure Body The honeycomb fired body had a cylindrical shape with a diameter of 103 mm and a length of 105 mm, the density of through holes was 77.5 pieces / cm 2 (500 cpsi), and the thickness of partition walls was 0.127 mm (5 mil).
  • Example 1 Dinitrodiammine palladium nitrate solution ([Pd (NH 3 ) 2 (NO 2 ) 2 ] HNO 3 , Pd concentration 100 g / L) and rhodium nitrate solution (Rh (NO 3 ) 3 , rhodium concentration 50 g / L) 3: 1
  • the pH of the mixed solution was adjusted to 2.3 by mixing with the following volume ratio and further adding nitric acid.
  • the honeycomb structure produced in Production Example 1 was immersed in this mixed solution and held for 24 hours. Thereafter, the honeycomb structure was pulled out of the mixed solution, dried at 110 ° C. for 2 hours, and fired at 500 ° C.
  • honeycomb catalyst having Pd and Rh supported on the honeycomb fired body.
  • the amount of the supported catalyst was 1.2 g / L for Pd and 0.4 g / L for Rh per total apparent volume of the honeycomb structure, and the total was 1.6 g / L.
  • the honeycomb catalyst according to Example 1 and Comparative Example 1 is cut in the direction perpendicular to the longitudinal direction, and the partition exposed on the cut surface is observed by EPMA, and the concentration of the noble metal on the surface of the partition and the concentration of the noble metal in the central part of the partition Compared with.
  • the results are shown in Table 1, FIG. 3 and FIG. Specifically, the honeycomb catalyst was processed into 3 cells ⁇ 3 cells ⁇ 10 mm, solidified with an epoxy resin and then mirror-polished, and platinum was deposited on the observation surface to obtain an observation sample.
  • the equipment used was JEOL's JXA8500F.
  • the acceleration voltage was 25 kV
  • the irradiation current was 4 ⁇ 10 -8 A
  • the beam shape was 10 ⁇ m
  • the irradiation time was 40 ms
  • the elemental distribution of Pd and Rh was mapped.
  • the observation sample of 3 cells ⁇ 3 cells ⁇ 10 mm includes the outermost through holes and the partition walls forming the through holes in a state in which three through holes are arranged in the longitudinal direction and three in the lateral direction. It refers to a sample cut out so that the length in the longitudinal direction is 10 mm.
  • FIG. 3 is an EPMA image of partition walls of the honeycomb catalyst according to Example 1
  • FIG. 4 is an EPMA image of partition walls of the honeycomb catalyst according to Comparative Example 1. In FIG. 3 and FIG.
  • the photograph on the left in FIGS. 3 and 4 is an elemental mapping photograph of Pd, and the photograph on the right is an elemental mapping photograph of Rh.
  • FIG. 3 in the honeycomb catalyst according to Example 1, it can be confirmed that the concentration of the noble metal on the surface of the partition wall is higher than the concentration of the noble metal in the central portion of the partition wall.
  • FIG. 4 it can be confirmed from FIG. 4 that, in the honeycomb catalyst according to Comparative Example 1, the noble metal is dispersed almost uniformly in the partition walls.
  • Rh is unevenly distributed on the surface of the partition wall in Example 1, while Rh is uniform in the inside of the partition wall in Comparative Example 1. It was dispersed. Although the reason for this is not clear, it may be considered that the influence may be due to the Pd complex which is preferentially adsorbed on the partition wall surface.
  • Example 1 Evaluation of warm-up performance
  • the honeycomb catalyst according to Example 1 and Comparative Example 1 is set in a V-type 6-cylinder 3.5 L engine, and HC concentration ((HC inflow-HC outflow) / (HC inflow) from the start of the stoichiometric engine The time until x100) became 50% or less was measured to evaluate the warm-up performance of the honeycomb catalyst. The shorter the time until the HC concentration becomes 50% or less, the better is the warm-up performance.
  • the honeycomb catalyst according to Example 1 in which the concentration of the noble metal on the surface of the partition wall is higher than the concentration of the noble metal in the central portion of the partition wall is the honeycomb catalyst according to Comparative Example 1 in which the concentration of the noble metal in the partition wall is substantially uniform It turned out that the exhaust gas purification characteristic at the time of warm-up operation is excellent.
  • honeycomb catalyst 11 honeycomb fired body (honeycomb structure) 12 through hole 13 partition wall 14 precious metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本発明は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体に貴金属が担持されてなるハニカム触媒であって、上記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む押出成形体からなり、上記貴金属は上記隔壁に担持されており、上記隔壁の表面における上記貴金属の濃度が、上記隔壁の厚さ方向の中央部における上記貴金属の濃度よりも高いことを特徴とするハニカム触媒に関する。

Description

ハニカム触媒
本発明は、ハニカム触媒に関する。
自動車等の内燃機関から排出される排ガスには、一酸化炭素(CO)、窒素酸化物(NOx)、炭化水素(HC)等の有害ガスが含まれている。そのような有害ガスを分解する排ガス浄化触媒は三元触媒とも称され、コージェライト等からなるハニカム状のモノリス基材に触媒活性を有する貴金属粒子を含むスラリーをウォッシュコートして触媒層を設けたものが一般的である。
一方、特許文献1には、モノリス基材がセリア-ジルコニア複合酸化物粒子とθ相のアルミナ粒子とを含み、上記モノリス基材に貴金属粒子が担持された排ガス浄化触媒が開示されている。
特開2015-85241号公報
しかしながら、特許文献1に記載されたような排ガス浄化触媒よりも、さらに暖機運転時の排ガス浄化特性が高いハニカム触媒が求められていた。
発明者が上記問題について鋭意検討した結果、特許文献1に記載された排ガス浄化触媒では、触媒活性を有する貴金属がモノリス基材の全体にほぼ均一に分散しているため、暖機運転のような、触媒活性が低い時には、ガソリンエンジンから排出されるような排ガスの空間速度が高い条件では、排ガスが隔壁の内部に担持された貴金属と充分に接触することができず、充分な排ガス浄化性能を発揮できないことを見出した。
本発明は、上記課題を解決するためになされた発明であり、本発明の目的は、暖機運転時のような触媒の活性が低い場合であっても充分な排ガス浄化性能を有するハニカム触媒を提供することである。
すなわち、本発明のハニカム触媒は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体に貴金属が担持されてなるハニカム触媒であって、上記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む押出成形体からなり、上記貴金属は上記隔壁に担持されており、上記隔壁の表面における上記貴金属の濃度が、上記隔壁の厚さ方向の中央部における上記貴金属の濃度よりも高いことを特徴とする。
本発明のハニカム触媒では、隔壁の表面に貴金属が多く担持されているため、排ガスの温度が低く、触媒活性が低い暖機運転時においても、充分な排ガス浄化性能を発揮することができる。
なお、本明細書において、隔壁の表面における貴金属の濃度が隔壁の厚さ方向の中央部における貴金属の濃度よりも高いとは、貴金属が2つ以上の元素からなる場合には、いずれかの元素について上記条件を満たすことをいう。
例えば、貴金属としてA及びBを含む場合には、隔壁の表面におけるAの濃度が隔壁の厚さ方向の中央部におけるAの濃度よりも高い、及び/又は、隔壁の表面におけるBの濃度が隔壁の厚さ方向の中央部におけるBの濃度よりも高いことを意味する。
隔壁の表面における貴金属の濃度が隔壁の厚さ方向の中央部における貴金属の濃度よりも高いことは、隔壁をハニカム触媒の長手方向に垂直な方向に切断した際の切断面を電子プローブマイクロアナライザ(EPMAともいう)等によって元素マッピングすることにより確認することができる。
具体的には、まず、隔壁の元素マッピング画像(貴金属が複数ある場合には、各元素毎の画像)の隔壁部分から、隔壁の厚さ方向の中央における10μm×10μmの領域と、該領域から隔壁の厚さ方向の表面側に位置する隔壁の表面における10μm×10μmの領域との組み合わせを無作為に10点選択する。続いて、領域の各組み合わせで、隔壁の中央における10μm×10μmの領域の元素濃度と、隔壁の表面における10μm×10μmの領域の元素濃度とを比較する。全ての組み合わせにおいて、隔壁の中央における10μm×10μmの領域の元素濃度よりも、隔壁の表面における10μm×10μmの領域の元素濃度のほうが高い場合、隔壁の表面における貴金属の濃度が隔壁の厚さ方向の中央部における貴金属の濃度よりも高いものとする。
本発明のハニカム触媒では、上記ハニカム焼成体は、無機バインダをさらに含むことが望ましい。
ハニカム焼成体が無機バインダをさらに含むと、ハニカム焼成体の機械的強度を向上させることができる。
本発明のハニカム触媒では、上記貴金属は、少なくともPdを含み、上記隔壁の表面における上記Pd濃度が、上記隔壁の中央部における上記Pd濃度より高いことが望ましい。
暖機運転時にはエンジンが温まっておらず、必要となる燃料量が増加することや、燃焼が安定しない等の理由により、排気ガスにはHCやCOが多く含まれることとなる。貴金属が少なくともPdを含むと、HCやCOを浄化することができるため、暖機運転時の排ガス浄化性能(以下、暖機性能ともいう)を向上させることができる。
さらに、温度の低い排ガスは隔壁の奥まで到達しにくいため、隔壁の表面におけるPd濃度が隔壁の中央部におけるPd濃度よりも高いと、より多くのPdを排ガスと接触させることができるため、暖機運転時の排ガス浄化性能をより向上させることができる。
本発明のハニカム触媒において、上記隔壁の厚さは0.05~0.25mmであることが望ましい。
隔壁の厚さを上記範囲にすることで、ハニカム触媒の機械的強度と排ガス浄化性能とを両立させやすい。
本発明のハニカム触媒において、上記ハニカム触媒の直径に対する長さの比(長さ/直径)は、0.5~1.1であることが望ましい。
ハニカム触媒の形状が上記範囲であると、ハニカム触媒の圧力損失を低く抑えつつ、必要な排ガス浄化性能を満たしやすい。
本発明のハニカム触媒において、上記ハニカム触媒の直径は、130mm以下であることが望ましい。
ハニカム触媒の直径を130mm以下にすることで、熱衝撃による破損を起こりにくくすることができる。
本発明のハニカム触媒において、上記ハニカム触媒におけるセリア-ジルコニア複合酸化物の占める割合は、25~75重量%であることが望ましい。
セリア-ジルコニア複合酸化物の占める割合を上記範囲に設定することで、ハニカム触媒の酸素吸蔵能(OSC)を高めることができる。
図1は、本発明のハニカム触媒の一例を模式的に示す斜視図である。 図2は、本発明のハニカム触媒を構成する隔壁の一例を模式的に示す断面図である。 図3は、実施例1に係るハニカム触媒の隔壁のEPMA画像である。 図4は、比較例1に係るハニカム触媒の隔壁のEPMA画像である。
(発明の詳細な説明)
[ハニカム触媒]
まず、本発明のハニカム触媒について説明する。
本発明のハニカム触媒は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体に貴金属が担持されてなる。
本発明のハニカム触媒において、ハニカム焼成体(ハニカム構造体)は、セリア-ジルコニア複合酸化物粒子(以下、CZ粒子ともいう)とアルミナ粒子とを含む押出成形体からなる。後述するように、ハニカム焼成体は、CZ粒子とアルミナ粒子とを含む原料ペーストを押出成形した後、焼成することにより作製されている。
本発明のハニカム触媒が上記した成分を有していることは、X線回折(XRD)にて確認することができる。
本発明のハニカム触媒は、単一のハニカム焼成体を備えていてもよいし、複数個のハニカム焼成体を備えていてもよく、複数個のハニカム焼成体が接着剤層により結合されていてもよい。
図1は、本発明のハニカム触媒の一例を模式的に示す斜視図である。
図1に示すハニカム触媒10は、複数の貫通孔12が隔壁13を隔てて長手方向に並設された単一のハニカム焼成体11を備えている。ハニカム焼成体11は、CZ粒子とアルミナ粒子とを含み、押出成形体の形状を有している。
図1に示すように、ハニカム触媒10が単一のハニカム焼成体11からなる場合、ハニカム焼成体11はハニカム構造体でもある。
図2は、本発明のハニカム触媒を構成する隔壁の一例を模式的に示す断面図である。
図2に示すように、隔壁13には貴金属14が担持されており、隔壁13の表面(貫通孔12側)における貴金属14の濃度が、隔壁13の厚さ方向(図2中、両矢印tで示す方向)の中央部における貴金属14の濃度よりも高い。
本発明のハニカム触媒では、隔壁の表面に貴金属が多く担持されているため、排ガスの温度が低く、触媒活性が低い暖機運転時においても、充分な排ガス浄化性能を発揮することができる。
なお、隔壁の表面における貴金属の濃度が隔壁の厚さ方向の中央部における貴金属の濃度よりも高いことは、隔壁をハニカム触媒の長手方向に垂直な方向に切断した際の切断面をEPMA等によって元素マッピングすることにより確認することができる。
具体的には、まず、隔壁の元素マッピング画像(貴金属が複数ある場合には、各元素毎の画像)の隔壁部分から、隔壁の厚さ方向の中央における10μm×10μmの領域と、該領域から隔壁の厚さ方向の表面側に位置する隔壁の表面における10μm×10μmの領域との組み合わせを無作為に10点選択する。続いて、領域の各組み合わせで、隔壁の中央における10μm×10μmの領域の元素濃度と、隔壁の表面における10μm×10μmの領域の元素濃度とを比較する。全ての組み合わせにおいて、隔壁の中央における10μm×10μmの領域の元素濃度よりも、隔壁の表面における10μm×10μmの領域の元素濃度のほうが高い場合、隔壁の表面における貴金属の濃度が隔壁の厚さ方向の中央部における貴金属の濃度よりも高いものとする。なお、貴金属の濃度は元素マッピング画像の色相及び濃淡によって判断することができる。
本発明のハニカム触媒を構成するCZ粒子の平均粒子径は耐熱衝撃性を向上させる観点から、1~50μmであることが望ましい。また、CZ粒子の平均粒子径は1~30μmであることがより望ましい。
CZ粒子の平均粒子径が1~50μmであると、ハニカム触媒とした際に、表面積が大きくなるため、OSCを高くすることができる。
本発明のハニカム触媒を構成するアルミナ粒子の平均粒子径は特に限定されないが、排ガス浄化性能及び暖機性能を向上させる観点から、1~10μmであることが望ましく、1~5μmであることがより望ましい。
ハニカム触媒を構成するCZ粒子及びアルミナ粒子の平均粒子径は走査型電子顕微鏡(SEM、日立ハイテク社製 S-4800)を用いて、ハニカム触媒のSEM写真を撮影することにより求めることができる。
本発明のハニカム触媒において、セリア-ジルコニア複合酸化物の占める割合は、25~75重量%であることが望ましい。
本発明のハニカム触媒において、アルミナ粒子の含有割合は、15~35重量%であることが望ましい。
本発明のハニカム触媒において、CZ粒子を構成するセリア-ジルコニア複合酸化物では、セリアがOSCを有する。セリア-ジルコニア複合酸化物は、セリアとジルコニアが固溶体を形成していることが望ましい。
本発明のハニカム触媒において、セリア-ジルコニア複合酸化物は、セリアを30重量%以上含むことが望ましく、40重量%以上含むことがより望ましく、一方、セリアを90重量%以下含むことが望ましく、80重量%以下含むことがより望ましい。また、セリア-ジルコニア複合酸化物は、ジルコニアを60重量%以下含むことが望ましく、50重量%以下含むことがより望ましい。このようなセリア-ジルコニア複合酸化物はセリア比率が高いため、OSCが高い。
本発明のハニカム触媒において、上記アルミナ粒子の種類は特に限定されないが、θ相のアルミナ粒子(以下、θ-アルミナ粒子ともいう)であることが望ましい。
θ相のアルミナ粒子をセリア-ジルコニア複合酸化物の仕切り材として用いることにより、アルミナ粒子が使用中に熱によって互いに焼結することを抑制できるため、触媒機能を維持することが可能となる。さらに、アルミナ粒子をθ相とすることにより、耐熱性を高くすることができる。
本発明のハニカム触媒は、製造時に無機バインダとして用いられた無機粒子を含むことが望ましく、ベーマイトに由来するγ-アルミナ粒子を含むことがより望ましい。
本発明のハニカム触媒は、無機繊維を含むことが望ましく、アルミナ繊維を含むことがより望ましい。
ハニカム触媒がアルミナ繊維等の無機繊維を含んでいると、ハニカム触媒の機械的特性を改善することができる。
なお、無機繊維とは、アスペクト比が5以上のものをいい、無機粒子とは、アスペクト比が5未満のものをいう。
本発明のハニカム触媒において、ハニカム触媒の直径に対する長さの比(長さ/直径)は、0.5~1.1であることが望ましく、0.6~0.8であることがより望ましい。
本発明のハニカム触媒において、ハニカム触媒の直径は、130mm以下であることが望ましく、125mm以下であることがより望ましい。また、ハニカム触媒の直径は、85mm以上であることが望ましい。
本発明のハニカム触媒において、ハニカム触媒の長さは、65~120mmであることが望ましく、70~110mmであることがより望ましい。
本発明のハニカム触媒の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。
本発明のハニカム触媒において、隔壁の厚さは、均一であることが望ましい。具体的には、ハニカム焼成体の隔壁の厚さは、0.05~0.25mmであることが望ましく、0.05~0.15mmであることがより望ましい。
本発明のハニカム触媒において、貫通孔の形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。
本発明のハニカム触媒において、ハニカム触媒の長手方向に垂直な断面の貫通孔の密度は、31~155個/cmであることが望ましい。
本発明のハニカム触媒における気孔率は、40~70%であることが望ましい。ハニカム焼成体の気孔率を上記範囲とすることにより、ハニカム触媒の強度を維持しつつ、高い排ガス浄化性能を発揮することができる。
ハニカム触媒の気孔率は、以下に説明する重量法にて測定することができる。
(1)ハニカム触媒を10セル×10セル×10mmの大きさに切断して、測定試料とする。この測定試料をイオン交換水及びアセトンを用いて超音波洗浄した後、オーブンを用いて100℃で乾燥する。なお、10セル×10セル×10mmの測定試料とは、貫通孔が縦方向に10個、横方向に10個並んだ状態で、最も外側の貫通孔とその貫通孔を構成する隔壁を含み、長手方向の長さが10mmとなるように切り出した試料を指す。
(2)測定顕微鏡(ニコン社製Measuring Microscope MM-40 倍率:100倍)を用いて、測定試料の断面形状の寸法を測定し、幾何学的な計算から体積を求める(なお、幾何学的な計算から体積を求めることができない場合は、飽水重量と水中重量とを実測して体積を測定する)。
(3)計算から求められた体積及びピクノメータで測定した測定試料の真密度から、測定試料が完全な緻密体であると仮定した場合の重量を計算する。なお、ピクノメータでの測定手順は(4)に示す通りとする。
(4)ハニカム焼成体を粉砕し、23.6ccの粉末を準備する。得られた粉末を200℃で8時間乾燥させる。その後、Micromeritics社製 Auto Pycnometer1320を用いて、JIS R 1620(1995)に準拠して真密度を測定する。排気時間は40分とする。
(5)測定試料の実際の重量を電子天秤(A&D社製 HR202i)で測定する。
(6)以下の式から、ハニカム触媒の気孔率を求める。
(ハニカム触媒の気孔率)=100-(測定試料の実際の重量/測定試料が完全な緻密体であると仮定した場合の重量)×100[%]
本発明のハニカム触媒において、ハニカム焼成体の外周面には、外周コート層が形成されていてもよい。
外周コート層の厚さは、0.1~2.0mmであることが望ましい。
本発明のハニカム触媒においては、貴金属が隔壁に担持されており、隔壁の表面における貴金属の濃度が、隔壁の厚さ方向の中央部における貴金属の濃度よりも高い。
貴金属としては、例えば、Pt、Pd、Rh等の白金族金属が挙げられる。
隔壁の表面における貴金属の濃度が、隔壁の厚さ方向の中央部における貴金属の濃度よりも高いと、隔壁の表面に貴金属が多く担持されるため、排ガスの温度が低く、触媒活性が低い暖機運転時においても、充分な排ガス浄化性能を発揮することができる。
本発明のハニカム触媒において、貴金属として少なくともPdを含むことが望ましく、隔壁の表面におけるPd濃度が、隔壁の中央部におけるPd濃度より高いことが望ましい。
貴金属が少なくともPdを含むと、HCやCOを浄化することができるため、暖機運転時の排ガス浄化性能を向上させることができる。
さらに、温度の低い排ガスは隔壁の奥まで到達しにくいため、隔壁の表面におけるPd濃度が隔壁の中央部におけるPd濃度よりも高いと、より多くのPdを排ガスと接触させることができるため、暖機運転時の排ガス浄化性能をより向上させることができる。
本発明のハニカム触媒において、貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
本明細書において、貴金属の担持量とは、ハニカム触媒の見掛けの体積当たりの貴金属の重量をいう。なお、ハニカム触媒の見掛けの体積は、空隙の体積を含む体積であり、外周コート層及び/又は接着層の体積を含むこととする。
[ハニカム触媒の製造方法]
次に、本発明のハニカム触媒を製造する方法について説明する。
本発明のハニカム触媒を製造する方法としては、例えば、以下の方法で製造したハニカム焼成体(ハニカム構造体)に対して、隔壁の表面に貴金属が優先的に吸着するような条件で貴金属を担持させる担持工程を行う方法が挙げられる。
(ハニカム構造体の作製)
まず、ハニカム焼成体(ハニカム構造体)を製造する方法について説明する。
ハニカム構造体を製造する方法としては、例えば、CZ粒子とアルミナ粒子とを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含む方法が挙げられる。
(成形工程)
成形工程では、まずCZ粒子とアルミナ粒子とを含む原料ペーストを調製する。
CZ粒子及びアルミナ粒子の種類、平均粒子径等については、[ハニカム触媒]の項目で説明したため、詳細な説明は省略する。
ただし、ハニカム触媒の原料となるCZ粒子及びアルミナ粒子の平均粒子径は、レーザー回折式粒度分布測定装置(MALVERN社製 MASTERSIZER2000)により求めることができる。
原料ペーストを調製する際に用いる他の原料としては、無機繊維、無機バインダ、有機バインダ、造孔剤、成形助剤、分散媒等が挙げられる。
無機繊維を構成する材料としては、特に限定されないが、例えば、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム等が挙げられ、二種以上併用してもよい。これらの中では、アルミナ繊維が望ましい。
無機繊維のアスペクト比は、5~300であることが望ましく、10~200であることがより望ましく、10~100であることがさらに望ましい。
無機バインダとしては、特に限定されないが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベーマイト等に含まれる固形分が挙げられる。これらの無機バインダは、二種以上併用してもよい。
無機バインダの中では、ベーマイトが望ましい。ベーマイトは、AlOOHの組成で示されるアルミナ1水和物であり、水等の媒体に良好に分散するので、ベーマイトを無機バインダとして用いることが望ましい。
有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。
造孔剤としては、特に限定されないが、例えば、アクリル樹脂、コークス、デンプン等が挙げられ、本発明では、アクリル樹脂、コークス及びデンプンのうち2種類以上を用いることが望ましい。
造孔剤とは、焼成体を製造する際、焼成体の内部に気孔を導入するために用いられるものをいう。
成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。
分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。
上記した原料としてCZ粒子、アルミナ粒子、アルミナ繊維及びベーマイトを使用した際、これらの配合割合は、原料中の焼成工程後に残存する全固形分に対し、CZ粒子:25~75重量%、アルミナ粒子:15~35重量%、アルミナ繊維:5~15重量%、ベーマイト:5~20重量%が望ましい。
原料ペーストを調製する際には、混合混練することが望ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。
上記方法により原料ペーストを調製した後、原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する。
具体的には、上記原料ペーストを用いて押出成形することにより、ハニカム成形体を作製する。つまり、所定の形状の金型に上記ペーストを通過させることにより、所定の形状の貫通孔を有するハニカム成形体の連続体を形成し、所定の長さにカットすることにより、ハニカム成形体が得られる。
次に、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥してハニカム乾燥体を作製することが望ましい。
本明細書においては、焼成工程を行う前のハニカム成形体及びハニカム乾燥体をまとめてハニカム成形体とも呼ぶ。
(焼成工程)
本発明のハニカム構造体の製造方法において、焼成工程では、ハニカム成形体を焼成することにより、ハニカム焼成体を作製する。なお、この工程は、ハニカム成形体の脱脂及び焼成が行われるため、「脱脂・焼成工程」ということもできるが、便宜上「焼成工程」という。
焼成工程の温度は、800~1300℃であることが望ましく、900~1200℃であることがより望ましい。また、焼成工程の時間は、1~24時間であることが望ましく、3~18時間であることがより望ましい。焼成工程の雰囲気は特に限定されないが、酸素濃度が1~20%であることが望ましい。
以上の工程により、ハニカム構造体を製造することができる。
続いて、該ハニカム構造体の隔壁に対して貴金属を担持させる担持工程について説明する。
(担持工程)
本発明のハニカム触媒を製造する方法としては、上記ハニカム構造体に対して、隔壁の表面に優先的に貴金属を担持させる担持工程を含む方法が挙げられる。
隔壁の表面に貴金属を優先的に担持させる方法としては、隔壁表面に吸着しやすい貴金属溶液にハニカム構造体を含浸させ、引き上げた後に加熱又は乾燥する方法が挙げられる。
ハニカム構造体が外周コート層を備える場合、外周コート層を形成する前のハニカム焼成体に貴金属を担持してもよいし、外周コート層を形成した後のハニカム焼成体又はハニカム構造体に貴金属を担持してもよい。また、ハニカム構造体が接着層を備える場合、接着層を形成する前のハニカム焼成体に貴金属を担持してもよいし、接着層を形成した後のハニカム焼成体又はハニカム構造体に貴金属を担持してもよい。
隔壁表面に吸着しやすい貴金属溶液としては貴金属錯体を含む溶液が挙げられ、貴金属錯体としてはジニトロジアンミンパラジウム([Pd(NH(NO])、テトラアンミンパラジウムジクロライド([Pd(NH]Cl)等が挙げられる。これらの錯体は、硝酸溶液や水溶液として用いることができる。
このとき、上記溶液のpHを1.5~5.0に調整することで、隔壁表面に対する貴金属の吸着がより起こりやすくなる。
上記溶液のpHはpH調整剤を添加することにより調整することができる。pH調整剤としては、触媒毒となるフッ素、塩素、臭素などのハロゲン及び硫黄を含有しないことが望ましく、例えば硝酸やシュウ酸などが挙げられる。
担持工程で担持される貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
(その他の工程)
本発明のハニカム触媒を製造する方法において、ハニカム焼成体の外周面に外周コート層を形成する場合、外周コート層は、ハニカム焼成体の両端面を除く外周面に外周コート層用ペーストを塗布した後、乾燥固化することにより形成することができる。外周コート層用ペーストとしては、原料ペーストと同じ組成のものが挙げられる。
本発明のハニカム触媒を製造する方法において、複数個のハニカム焼成体が接着層を介して接着されてなるハニカム構造体は、複数個のハニカム焼成体の両端面を除く外周面に接着層用ペーストを塗布して、接着させた後、乾燥固化することにより作製することができる。接着層用ペーストとしては、原料ペーストと同じ組成のものが挙げられる。
(実施例)
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、以下の実施例のみに限定されるものではない。
[ハニカム構造体の作製]
(製造例1)
CZ粒子(平均粒子径:2μm)を26.4重量%、θ-アルミナ粒子(平均粒子径:2μm)を13.2重量%、アルミナ繊維(平均繊維径:3μm、平均繊維長:60μm)を5.3重量%、無機バインダとしてベーマイトを11.3重量%、有機バインダとしてメチルセルロースを5.3重量%、造孔剤としてアクリル樹脂を2.1重量%、同じく造孔剤としてコークスを2.6重量%、成形助剤として界面活性剤であるポリオキシエチレンオレイルエーテルを4.2重量%、及び、イオン交換水を29.6重量%混合混練して、原料ペーストを調製した。
押出成形機を用いて、原料ペーストを押出成形して、円柱状のハニカム成形体を作製した。そして、減圧マイクロ波乾燥機を用いて、ハニカム成形体を出力1.74kW、減圧6.7kPaで12分間乾燥させた後、1100℃で10時間脱脂・焼成することにより、ハニカム焼成体(ハニカム構造体)を作製した。ハニカム焼成体は直径が103mm、長さが105mmの円柱状であり、貫通孔の密度が77.5個/cm(500cpsi)、隔壁の厚さが0.127mm(5mil)であった。
(実施例1)
ジニトロジアンミンパラジウム硝酸溶液([Pd(NH(NO]HNO、Pd濃度100g/L)と硝酸ロジウム溶液(Rh(NO、ロジウム濃度50g/L)を3:1の体積割合で混合し、さらに硝酸を添加することで混合溶液のpHを2.3に調整した。
この混合溶液中に、製造例1で製造されたハニカム構造体を浸漬し、24時間保持した。その後、ハニカム構造体を混合溶液から引き上げ、110℃で2時間乾燥し、窒素雰囲気中500℃で1時間焼成することによって、ハニカム焼成体にPdとRhを担持させたハニカム触媒を得た。
触媒の担持量はハニカム構造体の見掛けの体積当たり、Pdが1.2g/L、Rhが0.4g/L、合計で1.6g/Lとした。
(比較例1)
硝酸パラジウム溶液Pd(NO(Pd濃度100g/L)と硝酸ロジウム溶液Rh(NO(ロジウム濃度50g/L)を3:1の体積割合で混合して混合溶液(pH:2.3)を準備した他は、実施例1と同様の手順で比較例1に係るハニカム触媒を得た。
(隔壁の貴金属濃度の観察)
実施例1及び比較例1に係るハニカム触媒を長手方向に垂直な方向に切断し、切断面に露出した隔壁をEPMAで観察し、隔壁の表面における貴金属の濃度と隔壁の中央部における貴金属の濃度とを比較した。結果を表1、図3及び図4に示す。
具体的には、ハニカム触媒を3セル×3セル×10mmに加工し、エポキシ樹脂で固めた後鏡面研磨し、観察面にプラチナを蒸着させて観察試料とした。使用した装置は、JEOL社製JXA8500F。加速電圧は25kV、照射電流は4×10-8A、ビーム形は10μm、照射時間は40msとし、PdとRhの元素分布をマッピングした。
なお、3セル×3セル×10mmの観察試料とは、貫通孔が縦方向に3個、横方向に3個並んだ状態で、最も外側の貫通孔とその貫通孔を構成する隔壁を含み、長手方向の長さが10mmとなるように切り出した試料を指す。
図3は、実施例1に係るハニカム触媒の隔壁のEPMA画像であり、図4は、比較例1に係るハニカム触媒の隔壁のEPMA画像である。図3及び図4では、対象となる元素濃度が高い部分ほど白く表示されている。図3及び図4における左側の写真がPdの元素マッピング写真であり、右側の写真がRhの元素マッピング写真である。
図3から、実施例1に係るハニカム触媒では、隔壁の表面における貴金属の濃度が、隔壁の中央部における貴金属の濃度よりも高いことが確認できる。
一方、図4から、比較例1に係るハニカム触媒では、貴金属が隔壁内にほぼ均一に分散していることが確認できる。なお、Rhについては実施例1及び比較例1で条件を変えていないが、実施例1ではRhが隔壁の表面に偏在していたのに対して、比較例1ではRhが隔壁の内部に均一に分散していた。この理由は定かではないが、隔壁表面に優先的に吸着しやすいPd錯体の影響を受けた可能性も考えられる。
(暖機性能の評価)
V型6気筒3.5Lエンジンに、実施例1及び比較例1に係るハニカム触媒をセットし、ストイキエンジン始動からHC濃度((HCの流入量-HCの流出量)/(HCの流入量)×100)が50%以下となるまでの時間を測定し、ハニカム触媒の暖機性能を評価した。
HC濃度が50%以下となるまでの時間が短いほど、暖機性能に優れていることを意味する。HC濃度が50%以下となるまでの時間が15秒以下の場合には、暖機性能が優れていると評価(評価:○)し、HC濃度が50%以下となるまでの時間が15秒を超える場合には、暖機性能が優れていないと評価(評価:×)とした。
Figure JPOXMLDOC01-appb-T000001
表1の結果から、隔壁の表面における貴金属の濃度が隔壁の中央部における貴金属の濃度よりも高い実施例1に係るハニカム触媒が、隔壁の貴金属の濃度がほぼ均一な比較例1に係るハニカム触媒よりも、暖機運転時の排ガス浄化特性に優れることがわかった。
10  ハニカム触媒
11  ハニカム焼成体(ハニカム構造体)
12  貫通孔
13  隔壁
14  貴金属

Claims (7)

  1. 複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体に貴金属が担持されてなるハニカム触媒であって、
    前記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む押出成形体からなり、
    前記貴金属は前記隔壁に担持されており、
    前記隔壁の表面における前記貴金属の濃度が、前記隔壁の厚さ方向の中央部における前記貴金属の濃度よりも高いことを特徴とするハニカム触媒。
  2. 前記ハニカム焼成体は、無機バインダをさらに含む請求項1に記載のハニカム触媒。
  3. 前記貴金属は、少なくともPdを含み、
    前記隔壁の表面における前記Pd濃度が、前記隔壁の中央部における前記Pd濃度より高い請求項1又は2に記載のハニカム触媒。
  4. 前記隔壁の厚さは0.05~0.25mmである請求項1~3のいずれかに記載のハニカム触媒。
  5. 前記ハニカム触媒の直径に対する長さの比(長さ/直径)は、0.5~1.1である請求項1~4のいずれかに記載のハニカム触媒。
  6. 前記ハニカム触媒の直径は、130mm以下である請求項1~5のいずれかに記載のハニカム触媒。
  7. 前記ハニカム触媒におけるセリア-ジルコニア複合酸化物の占める割合は、25~75重量%である請求項1~6のいずれかに記載のハニカム触媒。
PCT/JP2018/035835 2017-09-27 2018-09-27 ハニカム触媒 WO2019065797A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017186471A JP2019058870A (ja) 2017-09-27 2017-09-27 ハニカム触媒
JP2017-186471 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019065797A1 true WO2019065797A1 (ja) 2019-04-04

Family

ID=65902926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035835 WO2019065797A1 (ja) 2017-09-27 2018-09-27 ハニカム触媒

Country Status (2)

Country Link
JP (1) JP2019058870A (ja)
WO (1) WO2019065797A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020182915A (ja) * 2019-05-09 2020-11-12 トヨタ自動車株式会社 排ガス浄化用触媒
CN113825565A (zh) * 2019-05-15 2021-12-21 株式会社科特拉 排气净化催化剂装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220016601A1 (en) * 2018-11-21 2022-01-20 Cataler Corporation Exhaust-gas purification apparatus and method for manufacturing same
JP7340954B2 (ja) * 2018-11-21 2023-09-08 株式会社キャタラー 排ガス浄化装置及びその製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136589A (en) * 1978-04-17 1979-10-23 Toyota Motor Corp Production of palladium catalyst
JPS54149391A (en) * 1978-05-16 1979-11-22 Toyota Motor Corp Supporting method for platinum group catalyst
JPS63205141A (ja) * 1987-02-23 1988-08-24 Nissan Motor Co Ltd 排ガス浄化用触媒
JPH09108570A (ja) * 1995-10-19 1997-04-28 Toyota Motor Corp 排ガス浄化用酸化触媒及びその製造方法
JP2006192365A (ja) * 2005-01-13 2006-07-27 Hitachi Ltd 内燃機関用排ガス浄化触媒とその製造方法および排ガス浄化装置
JP2009255032A (ja) * 2008-03-27 2009-11-05 Ibiden Co Ltd ハニカム構造体
JP2015085241A (ja) * 2013-10-29 2015-05-07 トヨタ自動車株式会社 排ガス浄化触媒
JP2016513014A (ja) * 2013-02-26 2016-05-12 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 内燃機関排気ガス処理用の酸化触媒
JP2017039069A (ja) * 2015-08-18 2017-02-23 株式会社デンソー 排ガス浄化触媒

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5528691B2 (ja) * 2008-03-27 2014-06-25 イビデン株式会社 ハニカム構造体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136589A (en) * 1978-04-17 1979-10-23 Toyota Motor Corp Production of palladium catalyst
JPS54149391A (en) * 1978-05-16 1979-11-22 Toyota Motor Corp Supporting method for platinum group catalyst
JPS63205141A (ja) * 1987-02-23 1988-08-24 Nissan Motor Co Ltd 排ガス浄化用触媒
JPH09108570A (ja) * 1995-10-19 1997-04-28 Toyota Motor Corp 排ガス浄化用酸化触媒及びその製造方法
JP2006192365A (ja) * 2005-01-13 2006-07-27 Hitachi Ltd 内燃機関用排ガス浄化触媒とその製造方法および排ガス浄化装置
JP2009255032A (ja) * 2008-03-27 2009-11-05 Ibiden Co Ltd ハニカム構造体
JP2016513014A (ja) * 2013-02-26 2016-05-12 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 内燃機関排気ガス処理用の酸化触媒
JP2015085241A (ja) * 2013-10-29 2015-05-07 トヨタ自動車株式会社 排ガス浄化触媒
JP2017039069A (ja) * 2015-08-18 2017-02-23 株式会社デンソー 排ガス浄化触媒

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020182915A (ja) * 2019-05-09 2020-11-12 トヨタ自動車株式会社 排ガス浄化用触媒
JP7168520B2 (ja) 2019-05-09 2022-11-09 トヨタ自動車株式会社 排ガス浄化用触媒
CN113825565A (zh) * 2019-05-15 2021-12-21 株式会社科特拉 排气净化催化剂装置

Also Published As

Publication number Publication date
JP2019058870A (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6998871B2 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
WO2018012565A1 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
JP6684257B2 (ja) 排ガス浄化用ハニカム触媒
JP6698602B2 (ja) 排ガス浄化用ハニカム触媒
JP6698601B2 (ja) 排ガス浄化用ハニカム触媒
US11298687B2 (en) Honeycomb catalytic converter
WO2019065797A1 (ja) ハニカム触媒
JPWO2018012562A1 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
US20200222890A1 (en) Honeycomb catalytic converter
JP2020040033A (ja) ハニカム構造体
JP6949019B2 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
JP7186031B2 (ja) ハニカム構造体
JP2019063683A (ja) ハニカム触媒の製造方法
WO2019026645A1 (ja) ハニカム構造体の製造方法及びハニカム構造体
JP6944833B2 (ja) ハニカム構造体の製造方法
WO2020105666A1 (ja) ハニカム構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860971

Country of ref document: EP

Kind code of ref document: A1