WO2018164070A1 - ハニカムフィルタ - Google Patents

ハニカムフィルタ Download PDF

Info

Publication number
WO2018164070A1
WO2018164070A1 PCT/JP2018/008388 JP2018008388W WO2018164070A1 WO 2018164070 A1 WO2018164070 A1 WO 2018164070A1 JP 2018008388 W JP2018008388 W JP 2018008388W WO 2018164070 A1 WO2018164070 A1 WO 2018164070A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb filter
cell
honeycomb
wall
wall portion
Prior art date
Application number
PCT/JP2018/008388
Other languages
English (en)
French (fr)
Inventor
真之助 後藤
Original Assignee
イビデン 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン 株式会社 filed Critical イビデン 株式会社
Priority to CN201880015019.XA priority Critical patent/CN110366442A/zh
Priority to US16/491,148 priority patent/US11213778B2/en
Priority to EP18763620.4A priority patent/EP3593884A4/en
Publication of WO2018164070A1 publication Critical patent/WO2018164070A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2459Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a honeycomb filter used for collecting fine particles.
  • Patent Document 1 discloses a honeycomb filter made of silicon carbide as a honeycomb filter used for collecting fine particles.
  • Patent Document 2 discloses an exhaust gas purification catalyst in which a noble metal is supported on a monolith substrate containing ceria-zirconia composite oxide particles. It is described that the base material is composed of ceria-zirconia composite oxide particles to reduce the heat capacity, to easily raise the temperature of the monolith base material, and to improve the warm-up performance of the catalyst.
  • a substrate containing ceria-zirconia composite oxide particles disclosed in Patent Document 2 is adopted as the wall portion of the honeycomb filter.
  • the base material containing the ceria-zirconia composite oxide particles disclosed in Patent Document 2 hardly allows gas containing fine particles to pass therethrough, as the wall portion of the honeycomb filter that collects fine particles, Is unsuitable.
  • the silicon carbide particles are recrystallized to form pores between the particles, but the ceria-zirconia composite oxide particles are bonded with an inorganic binder. This is because no pores are formed.
  • a configuration in which a wall portion made of a substrate such as silicon carbide is covered with a ceria-zirconia composite oxide is also conceivable, but the supported amount of the ceria-zirconia composite oxide is limited to a range in which the wall portion can be covered.
  • the effect of improving exhaust gas purification performance is small.
  • the weight of the honeycomb filter also increases, so that the warm-up performance decreases.
  • the present invention has been made in view of these circumstances, and an object thereof is to provide a honeycomb filter having excellent warm-up performance.
  • a honeycomb filter of the present invention for solving the above problems is a honeycomb filter used for collecting fine particles, and includes a wall portion made of a base material containing ceria-zirconia composite oxide and an inorganic binder as constituent components,
  • the gist is that the gas permeability coefficient of the wall is 1.0 ⁇ m 2 or more and 3.0 ⁇ m 2 or less.
  • the honeycomb filter has the wall portion made of the base material containing the ceria-zirconia composite oxide as a constituent component so that the wall portion made of the base material such as silicon carbide is covered with the ceria-zirconia composite oxide.
  • the heat capacity of the wall can be reduced if the content of the same ceria-zirconia composite oxide is the same.
  • the temperature of the honeycomb filter is easily increased by the heat of the gas to be processed, so that the warm-up performance is improved.
  • the gas permeability coefficient of the wall is 1.0 ⁇ m 2 or more and 3.0 ⁇ m 2 or less, the gas permeability of the wall made of a base material containing ceria-zirconia composite oxide is improved. Become. As a result, the pressure loss can be kept low while providing a function as a filter for collecting fine particles. Furthermore, since the gas to be treated can penetrate into the walls of the honeycomb filter, the gas purification performance is improved.
  • “warm-up performance” means the ease with which the honeycomb filter can be raised to a temperature at which sufficient purification performance can be obtained. That is, when the weight per unit volume is small and the purification performance is high like the honeycomb filter of the present invention, the “warm-up performance” is good.
  • the wall portion preferably has linear pores having a diameter of 1 ⁇ m or more and 200 ⁇ m or less penetrating the wall portion. According to this configuration, gas easily passes through the wall portion through the pores penetrating the wall portion, so that the gas permeability of the wall portion is preferably improved.
  • the base material of the honeycomb filter of the present invention preferably contains alumina as a constituent component. According to this configuration, by including alumina as a constituent component of the base material, the catalyst can be highly dispersed when the base material is supported on the base material, and the purification performance of the gas to be processed can be improved. Moreover, the mechanical strength of the wall part in a high temperature state can be improved.
  • the honeycomb filter of the present invention it is preferable that a catalyst is supported on the substrate.
  • the honeycomb filter can exhibit not only a function of collecting fine particles but also a function based on a catalyst such as a purification action of a gas to be processed. And since wall part itself is excellent in warm-up property, it can heat up rapidly to the temperature suitable for a catalyst.
  • the catalyst is preferably a noble metal.
  • the ceria-zirconia composite oxide has a function as a co-catalyst that promotes the catalytic action of a catalyst made of a noble metal. Therefore, the honeycomb filter of the present invention can exhibit a high catalytic action when combined with a catalyst made of a noble metal.
  • the honeycomb filter of the present invention preferably includes a plurality of cells which are partitioned by the wall portion and extend from a first end portion which is one end side of the honeycomb filter to a second end portion which is the other end side.
  • the cell includes a first cell in which an end on the first end side is opened and an end on the second end side is sealed, and the first end adjacent to the first cell.
  • a second cell whose end on the side is sealed and whose end on the second end side is open, and adjacent to at least one of the first cell and the second cell, the first end side It is preferable to provide the 3rd cell by which both the edge part of this and the edge part by the side of the said 2nd edge part were open
  • fine particles can be collected at the wall portion between the first cell and the second cell.
  • the pressure loss of a honey-comb filter can be reduced by providing the 3rd cell by which both the edge part by the side of a 1st edge part and the edge part by the side of a 2nd edge part were open
  • a honeycomb filter having excellent warm-up performance can be provided.
  • FIG. 2 is a sectional view taken along line 2-2 of FIG.
  • (A) is a perspective view of a jig for forming pores in the honeycomb filter
  • (b) is a front view of the jig for forming pores in the honeycomb filter
  • (c) is formed in the honeycomb filter by the jig.
  • (A)) is a schematic diagram which shows the direction which penetrates a needle.
  • the graph which shows the pore diameter distribution of the wall part of an Example.
  • the schematic diagram of a pressure loss measuring apparatus is a pressure loss measuring apparatus.
  • the honeycomb filter 10 of the present embodiment includes a cylindrical peripheral wall 11 and a partition wall 12 having a honeycomb shape in section that partitions the inside of the peripheral wall 11 into a plurality of cells S.
  • Each cell S extends from one end side in the axial direction of the peripheral wall 11 to the other end side, that is, from a first end portion that is one end side of the honeycomb filter 10 to a second end portion that is the other end side.
  • a wall portion 13 is constituted by the peripheral wall 11 and the partition wall 12.
  • the cell structure of the honeycomb filter 10 is not particularly limited.
  • the wall portion 13 is formed of a base material containing ceria-zirconia composite oxide (hereinafter also referred to as “CZ composite oxide”), an inorganic binder, and alumina as constituent components. That is, the base material constituting the wall portion 13 contains a CZ composite oxide, an inorganic binder, and alumina. And the catalyst is carry
  • CZ composite oxide ceria-zirconia composite oxide
  • the CZ composite oxide constituting the base material of the honeycomb filter of the present invention preferably contains 10% by mass or more, more preferably 20% by mass or more of ceria. Moreover, it is preferable to contain 70 mass% or less of ceria, and it is more preferable to contain 60 mass% or less. By containing 10% by mass or more of ceria, the ability to occlude and release oxygen in the exhaust gas is increased, and by setting it to 70% by mass or less, thermal durability is increased.
  • the CZ composite oxide may further contain an element selected from rare earth elements other than cerium.
  • rare earth elements other than cerium include scandium (Sc), yttrium (Y), lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium ( Dy), ytterbium (Yb), lutetium (Lu) and the like.
  • the content of the CZ composite oxide in the substrate is preferably 15 to 60% by mass.
  • the inorganic binder include alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgyro, bentonite, and boehmite.
  • the content of the inorganic binder in the substrate is not particularly limited, but it is preferably 10 to 30% by mass with respect to the substrate.
  • alumina particles are included as the alumina.
  • a noble metal used as the catalyst is easily dispersed and supported, and the mechanical strength of the wall portion 13 can be improved.
  • the type of alumina particles is not particularly limited, but it is preferable to use ⁇ -phase alumina (hereinafter also referred to as “ ⁇ -alumina”) or ⁇ -phase alumina (hereinafter also referred to as “ ⁇ -alumina”). . Since ⁇ -alumina suppresses phase transition even when exposed to a high temperature of about 1000 ° C., the mechanical strength of the honeycomb filter 10 at a high temperature is improved by using ⁇ -alumina as a constituent component of the substrate. . Since ⁇ -alumina has a large specific surface area, the precious metal used as a catalyst can be highly dispersed.
  • the content of alumina particles in the substrate is not particularly limited, but it is preferably 15 to 60% by mass based on the substrate.
  • the base material may contain other components other than CZ composite oxide, inorganic binder, and alumina.
  • other components include other inorganic particles such as particles having a smaller coefficient of thermal expansion than CZ composite oxide and alumina (hereinafter also referred to as “low thermal expansion coefficient particles”).
  • the thermal expansion coefficient of the substrate can be reduced, so that the thermal shock resistance of the honeycomb filter 10 is improved.
  • the low thermal expansion coefficient particles include cordierite, aluminum titanate, and lithium aluminosilicate material particles.
  • lithium aluminosilicate materials include ⁇ -spodumene and ⁇ -eucryptite.
  • the content of the low thermal expansion coefficient particles is not particularly limited, but is preferably 5 to 30% by mass with respect to the base material.
  • the catalyst supported on the base material examples include noble metals, alkali metals (element periodic table group 1), alkaline earth metals (element periodic table group 2), rare earth elements (element periodic table group 3), and transition metal elements. Is preferably a noble metal.
  • the noble metal include platinum group metals such as platinum, palladium, and rhodium.
  • the amount of the noble metal supported is not particularly limited, but is preferably 0.1 to 20 g / L, more preferably 0.5 to 15 g / L with respect to the apparent volume (L) of the honeycomb filter 10. .
  • the honeycomb filter 10 includes the first cell S1 in which the end on the first end side (one end side) of the honeycomb filter 10 is opened and the end on the second end side (other end side) is sealed.
  • the second cell S2 is adjacent to the first cell S1, and the end on the first end side is sealed and the end on the second end side is open. Since the ends of the first cell S1 and the second cell S2 are different from each other, the gas flowing into the first cell S1 on one end side of the honeycomb filter 10 as shown by an arrow in FIG.
  • the honeycomb filter 10 is adjacent to at least one of the first cell S1 and the second cell S2, and the third cell S3 in which both the end on one end side and the end on the other end side of the honeycomb filter 10 are opened. May be further provided. That is, some of the plurality of cells S may not be sealed at both ends.
  • the gas that has flowed into the third cell S3 on one end side of the honeycomb filter 10 can pass through the same third cell S3 as it is and flow out of the honeycomb filter 10 on the other end side of the honeycomb filter 10.
  • the third cell S3 is adjacent to the first cell S1
  • the gas that has flowed into the first cell S1 on one end side of the honeycomb filter 10 flows into the wall portion 13 between the first cell S1 and the third cell S3. It can also flow into the third cell S3 through the inside, and then flow out of the honeycomb filter 10 on the other end side of the honeycomb filter 10.
  • the arrangement position of the third cell S3 is appropriately selected in a range adjacent to at least one of the first cell S1 and the second cell S2.
  • a cell S having a small cross-sectional area on the outer peripheral side of the honeycomb filter 10 can be set as the third cell S3.
  • the ratio of the third cells S3 to all the cells S is not particularly limited, but is preferably 1/3 or less.
  • the length T of the sealing part 14 shown in FIG. 2 is not particularly limited, it is preferably thicker than the wall thickness of the partition wall 12.
  • the length T of the sealing portion 14 is preferably 1 to 10 mm.
  • the honeycomb filter 10 of the present embodiment is used for collecting fine particles contained in a gas discharged from an internal combustion engine such as a vehicle or a construction machine. For this reason, the partition wall 12 of the honeycomb filter 10 has pores for allowing the gas to be processed to pass therethrough.
  • the partition wall 12 is a wall that satisfies a specific gas permeability coefficient, and the specific gas permeability coefficient is 1.0 ⁇ m 2 or more and 3.0 ⁇ m 2 or less. When the gas permeability coefficient is 1.0 ⁇ m 2 or more, the gas permeability of the partition wall 12 is improved.
  • the collection efficiency can be improved when the honeycomb filter 10 is used as a filter for collecting fine particles.
  • the gas permeability coefficient can be measured by, for example, the following method using a known mass flow meter.
  • the honeycomb filter 10 is placed in an airtight state in the metal tube, and air is circulated through the honeycomb filter 10 through the metal tube. Then, an air pressure difference ⁇ P before and after the honeycomb filter 10 is measured.
  • the measurement of the pressure difference ⁇ P is performed with respect to the air flow rate at 20 points by changing the air flow rate Q flowing into the honeycomb filter 10 in a range of 0 to 80 L / min using a known mass flow meter.
  • the obtained 20 points of data are plotted on a graph with Q as the horizontal axis and ⁇ P / Q as the vertical axis, and the gas permeation coefficient is obtained from the intercept of the straight line connecting the plots.
  • the partition wall 12 has linear pores having a diameter of 1 ⁇ m or more and 200 ⁇ m or less that penetrate the partition wall 12.
  • the linear pores penetrating the partition wall 12 can be confirmed by observing the fracture surface of the partition wall 12 using an electron microscope.
  • 80% or more of the pores are preferably linear pores penetrating the partition wall 12.
  • the shape of the linear pores may be any of a linear shape, a curved shape, and a broken line shape.
  • the porosity of the partition wall 12 is not particularly limited, but is preferably 40 to 80%, and more preferably 55 to 75%.
  • the porosity of the sealing portion 14 is not particularly limited, but is preferably 40 to 80%, and more preferably 55 to 75%.
  • the porosity of the partition wall 12 can be measured by a mercury intrusion method with a contact angle of 130 ° and a surface tension of 485 mN / m.
  • the honeycomb filter 10 is manufactured by sequentially performing a mixing process, a forming process, a sealing process, a degreasing process, a firing process, and a supporting process described below.
  • the mixing step is a step of preparing a raw material mixture by mixing raw materials such as CZ composite oxide particles, inorganic binder, alumina particles, and organic fibers.
  • the CZ composite oxide particles it is preferable to use a solid solution of ceria and zirconia.
  • the solid solution of ceria and zirconia is, for example, by adding ammonia water to an aqueous solution in which a cerium salt such as cerium nitrate and a zirconium salt such as zirconium oxynitrate is dissolved to form a coprecipitate, and the resulting precipitate is dried. And then calcining at 400 to 500 ° C. for about 5 hours.
  • the average particle size of the CZ composite oxide particles that are one of the raw materials is not particularly limited, but is preferably 1 to 10 ⁇ m, and more preferably 1 to 5 ⁇ m.
  • the average particle diameter can be measured with a laser diffraction particle size distribution analyzer.
  • the inorganic binder any one of the specific examples of the inorganic binder described above can be used.
  • the proportion of the inorganic binder in the raw material mixture is not particularly limited, but is preferably 10 to 30% by mass as the solid content.
  • ⁇ -alumina particles and ⁇ -alumina particles can be used as the alumina particles.
  • the proportion of the alumina particles in the raw material mixture is not particularly limited, but is preferably 10 to 50% by mass as the solid content.
  • the average particle diameter of the alumina particles is not particularly limited, but the secondary particles are preferably 1 to 10 ⁇ m, and more preferably 1 to 5 ⁇ m.
  • organic fibers examples include acrylic fibers and polyester fibers.
  • the size of the organic fiber is not particularly limited, but the diameter is preferably 1 to 50 ⁇ m, and more preferably 3 to 40 ⁇ m.
  • the length is preferably 0.1 to 30 mm, and more preferably 0.1 to 10 mm.
  • the ratio of the organic fiber in the raw material mixture is not particularly limited, but is preferably 10 to 50% by mass as a solid content.
  • the raw material mixture may contain low thermal expansion coefficient particles as described above, or inorganic fibers, organic binders, pore formers, molding aids, and dispersion media.
  • the average particle diameter of the low thermal expansion coefficient particles is not particularly limited, but is preferably 1 to 10 ⁇ m, and more preferably 1 to 5 ⁇ m.
  • Examples of the material constituting the inorganic fiber include alumina, silica, silica alumina, and glass.
  • Examples of the organic binder include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin.
  • the pore former may be in the form of particles, and examples of such pore former include acrylic resin, coke, and starch.
  • examples of the molding aid include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol, and surfactant.
  • dispersion medium examples include water, organic solvents such as benzene, and alcohols such as methanol. These raw materials may be mixed using a known mixer or attritor, and further kneaded with a kneader.
  • the forming step is a step of forming a honeycomb formed body by forming the raw material mixture obtained in the mixing step.
  • the honeycomb formed body is produced by, for example, extruding a raw material mixture using an extrusion die and cutting it to a predetermined length so as to have the same shape as the honeycomb filter 10 through firing shrinkage in a subsequent firing step. . That is, the wall part 13 which comprises the surrounding wall 11 and the partition wall 12 of the honey-comb filter 10 is produced by extruding at once.
  • the sealing step is a step of forming the sealing portion 14 by filling the end portion of the cell S of the honeycomb formed body obtained by the forming step with a sealing material paste.
  • a sealing material paste the same paste as the above raw material mixture can be used, but it is preferable that no organic fiber is contained. By not using the organic fiber, the porosity of the sealing portion 14 can be reduced.
  • the honeycomb formed body in which the sealing portion 14 is formed by the sealing process is dried as necessary. Note that the sealing step may be performed after a degreasing step or a firing step described later.
  • the degreasing step is a step of producing a degreased body by degreasing the honeycomb formed body on which the sealing portion 14 is formed, in other words, a step of heating the honeycomb formed body to remove organic components contained in the honeycomb formed body. .
  • a degreasing process can be performed using a well-known single furnace, what is called a batch furnace, and a continuous furnace.
  • the degreasing temperature is not particularly limited, but is preferably 300 to 800 ° C, more preferably 400 to 750 ° C.
  • the degreasing time is not particularly limited, but the degreasing temperature is preferably maintained for 1 to 10 hours, more preferably 2 to 5 hours.
  • the degreasing atmosphere is not particularly limited, but the oxygen concentration is preferably 0.1 to 20%.
  • the firing process is a process for producing the honeycomb filter 10 by firing the degreased body obtained in the degreasing process.
  • the mechanical strength of the honeycomb filter 10 is improved by bonding particles such as CZ composite oxide with an inorganic binder by firing.
  • the firing step can be performed using a known single furnace, a so-called batch furnace, or a continuous furnace.
  • the firing temperature is not particularly limited, but is preferably 800 to 1300 ° C, more preferably 900 to 1200 ° C.
  • the firing time is not particularly limited, but it is preferably held for 1 to 20 hours, more preferably 1 to 15 hours, at the above firing temperature.
  • the firing atmosphere is not particularly limited, but the oxygen concentration is preferably 1 to 20%.
  • the firing process may be performed separately using a furnace different from the degreasing process, or may be performed continuously using the same furnace as the degreasing process.
  • the honeycomb filter 10 of the present embodiment having the wall portion 13 made of a CZ composite oxide and having a specific pore size distribution is manufactured through the mixing step, the forming step, the sealing step, the degreasing step, and the firing step. be able to.
  • the supporting step is a step of supporting the catalyst on the honeycomb filter 10 obtained by the firing step.
  • the method for supporting the catalyst include a method in which the honeycomb filter 10 is immersed in a solution containing catalyst particles and a complex, and then the honeycomb filter 10 is pulled up and heated.
  • the wall portion 13 of the honeycomb filter 10 includes a base material containing a CZ composite oxide as a constituent component and a catalyst supported on the base material.
  • the second manufacturing method is different from the first manufacturing method in that the organic fiber is omitted from the raw material and instead has a pore forming step.
  • the pore forming process will be described below.
  • the pore forming step is performed either after the molding step, after the degreasing step, or after the firing step.
  • the specific method of the pore forming step is the same when performed at any of the above timings.
  • the pore forming step performed after the molding step will be described as an example.
  • a pair of jigs 20 provided with 22 is used.
  • the thickness of the vertical wall 12A when the walls extending in one direction in the radial direction of the honeycomb formed body 10A, specifically, the walls extending in one direction are the vertical walls 12A and the walls intersecting the vertical walls 12A are the horizontal walls 12B.
  • the honeycomb formed body 10A is sandwiched between the pair of jigs 20 from both sides in the vertical direction.
  • the operation of sandwiching the honeycomb molded body 10A with the pair of jigs 20 is performed in the same manner from both sides of the partition wall 12 in the thickness direction of the lateral wall 12B.
  • the pores penetrating the lateral wall 12B of the partition wall 12 in the thickness direction may be formed.
  • the diameter of the needle 22 of the jig 20 is set to 50 to 200 ⁇ m. Therefore, the diameter of the pores penetrating the partition wall 12 formed by the needle 22 is also 50 to 200 ⁇ m. Since the honeycomb formed body 10A shrinks in the firing step, pores having a diameter of, for example, 40 to 190 ⁇ m are formed in the honeycomb filter 10 according to the shrinkage. When the pore forming process is performed on the honeycomb filter 10, pores based on the diameter of the needle 22 can be formed, so that pores having a diameter of 50 to 200 ⁇ m can be formed. By selecting the diameter of the needle 22, the diameter of the pores to be formed can be adjusted. The diameters of the needles 22 may all be the same, or may be different within the above range. The diameter of the pores can be measured by observing the surface of the partition wall 12 with an electron microscope.
  • the number of pores formed in this step is not particularly limited. For example, it is preferably 1 per 0.25 to 10 mm 2 on the surface of the partition wall 12. Moreover, you may change suitably the position and the number of the needles 22 with which the jig
  • the pores can be formed at intervals.
  • the honeycomb filter is provided with a wall portion made of a base material containing CZ composite oxide and an inorganic binder as constituents, so that the wall portion made of a base material such as silicon carbide is coated with the CZ composite oxide.
  • the heat capacity of the wall portion can be reduced.
  • the gas permeability coefficient of the wall portion is 1.0 ⁇ m 2 or more and 3.0 ⁇ m 2 or less, the gas permeability of the wall portion made of the base material containing CZ composite oxide as a constituent component is improved.
  • pressure loss can be kept low while providing a function as a filter for collecting fine particles.
  • the wall portion has linear pores having a diameter of 1 ⁇ m or more and 200 ⁇ m or less penetrating the wall portion. Therefore, the gas easily passes through the wall through the pores penetrating the wall, so that the pressure loss can be reduced.
  • the base material of the wall portion contains alumina as a constituent component. Therefore, since the supported catalyst can be highly dispersed, the purification performance of the gas to be processed can be improved. Moreover, the mechanical strength of the wall part in a high temperature state can be improved.
  • the base material of the wall is provided with a supported catalyst. Therefore, the honeycomb filter can exhibit not only a function of collecting fine particles but also a function based on a catalyst such as a purification action of a gas to be processed.
  • the honeycomb filter can exhibit high catalytic action.
  • the honeycomb filter has a plurality of cells which are partitioned by the wall portion and extend from the first end portion which is one end side of the honeycomb filter to the second end portion which is the other end side.
  • the cell has an end on the first end side opened, a first cell on which the end on the second end side is sealed, and an end on the first end side adjacent to the first cell.
  • the pressure loss of a honey-comb filter can be reduced by providing the 3rd cell by which both the edge part by the side of a 2nd edge part and the edge part by the side of a 2nd edge part were open
  • a linear pore having a diameter of 1 ⁇ m or more and 50 ⁇ m or less penetrating through the wall portion of the honeycomb filter can be formed by including organic fiber in the raw material mixture of the honeycomb filter and eliminating the organic fiber in the degreasing step. it can.
  • a linear pore having a diameter of 40 ⁇ m or more and 200 ⁇ m or less penetrating the wall can be formed by forming the pore using a jig in which a plurality of needles are arranged.
  • the present embodiment can be implemented with the following modifications. Moreover, it is also possible to implement combining the structure of the said embodiment and the structure shown in the following modified examples suitably.
  • the wall part was comprised with the surrounding wall and the partition wall, you may be comprised only with the partition wall.
  • the honeycomb filter may be formed by forming an outer peripheral coat layer on the outer periphery of the partition wall.
  • the wall portion has a pore diameter distribution of 0.01 ⁇ m or more and less than 1 ⁇ m in the pore diameter distribution with the horizontal axis and the vertical axis representing the pore diameter and log differential pore volume measured by the mercury intrusion method. Each may have a peak in the range and in the range of the pore diameter of 1 ⁇ m to 50 ⁇ m.
  • the gas permeability coefficient of the wall portion tends to be 1.0 ⁇ m 2 or more and 3.0 ⁇ m 2 or less.
  • the honeycomb molded body which performs a pore formation process may pass through the sealing process.
  • the needle can be pierced while vaporizing the volatile component, so that resistance when the needle is pierced Can be reduced.
  • the voids are not formed between the ceria and zirconia particles in the wall portion in the honeycomb formed body, the strength as a base material is high, and when the needle is stuck, the pore shape is maintained while maintaining the shape of the wall portion suitably. Can be formed.
  • the heating temperature of the needle is not particularly limited, but is preferably 200 to 500 ° C.
  • the base material which comprises a wall part does not necessarily need to contain an alumina as a structural component. Further, the raw material for the honeycomb filter does not necessarily include alumina particles.
  • the honeycomb filter does not necessarily have the third cell. That is, all the cells may have a configuration in which either one of both end portions is sealed. With this configuration, the collection efficiency of the honeycomb filter can be improved.
  • Example 1 The following raw materials were mixed to prepare a raw material mixture.
  • CZ composite oxide particles having an average particle diameter of 2 ⁇ m: 24.0% by mass ⁇ -alumina particles with an average particle diameter of 2 ⁇ m: 12.0% by mass ⁇ -alumina fiber (inorganic fiber) having an average fiber diameter of 3 ⁇ m and an average fiber length of 60 ⁇ m: 5.0% by mass Acrylic fiber (organic fiber) having an average fiber diameter of 30 ⁇ m and an average fiber length of 1 mm: 13.0% by mass Boehmite (inorganic binder): 10.0% by mass Methyl cellulose (organic binder): 7.0% by mass Polyoxyethylene oleyl ether (molding aid): 4.0% by mass Ion exchange water (dispersion medium): 25.0% by mass Using this raw material mixture, a cylindrical molded body was formed by an extruder.
  • this molded body is cut to a predetermined length to produce a honeycomb molded body, and then the end of a predetermined cell is sealed with a sealing agent to form a sealed portion as shown in FIG. did.
  • the composition of the sealing agent is the same as that of the raw material mixture except that it does not contain organic fibers. Moreover, the length of the sealing part was about 3 mm.
  • the honeycomb formed body was dried, degreased at 700 ° C. for 3 hours, and fired at 1100 ° C. for 10 hours to produce a honeycomb filter.
  • dinitrodiammine palladium nitrate solution [Pd (NH 3 ) 2 (NO 2 ) 2 ] HNO 3 , palladium concentration 100 g / L
  • rhodium nitrate solution [Rd (NO 3 ) 3 ], rhodium concentration 50 g / L)
  • the honeycomb filter manufactured by the above process was immersed in this mixed solution and held for 15 minutes. Then, it dried at 110 degreeC for 2 hours, and baked at 500 degreeC in nitrogen atmosphere for 1 hour, and carried the palladium catalyst and the rhodium catalyst on the honeycomb filter.
  • the amount of catalyst supported was 0.14 g / L per apparent volume of the honeycomb filter in total of palladium and rhodium.
  • the obtained honeycomb filter had a cylindrical shape with a diameter of 117 mm and a length of 80 mm, a cell density of 46 cells / cm 2 (300 cpsi), and a wall thickness of 0.254 mm (10 mil).
  • Example 2 The following raw materials were mixed to prepare a raw material mixture.
  • a cylindrical molded body was formed by an extruder.
  • this molded body is cut to a predetermined length to produce a honeycomb molded body, and then the end of a predetermined cell is sealed with a sealing agent to form a sealed portion as shown in FIG. did.
  • the composition of the sealing agent is the same as that of the raw material mixture except that it does not contain organic fibers. Moreover, the length of the sealing part was about 3 mm.
  • the honeycomb formed body was sandwiched from both sides in the radial direction with the jigs, and the needles were passed through the wall portions.
  • the interval between the needles was 1 cm along the longitudinal direction of the honeycomb formed body, and the needles were penetrated from the direction intersecting each cell at 90 degrees.
  • honeycomb formed body was dried, degreased at 700 ° C. for 3 hours, and fired at 1100 ° C. for 10 hours to produce a honeycomb filter.
  • the catalyst was supported on the obtained honeycomb filter by the same method as in Example 1.
  • the obtained honeycomb filter has a cylindrical shape with a diameter of 117 mm and a length of 80 mm, a cell density of 46.5 cells / cm 2 (300 cpsi), and a wall thickness of 0.254 mm (10 mil). It was.
  • Comparative Example 1 A honeycomb filter of Comparative Example 1 was produced by omitting organic fibers from the raw material of Example 1 and following the same procedure as in Example 1 with the other raw material blend ratios unchanged.
  • the cells were alternately plugged with a plugging agent having the same composition as that of the raw material mixture.
  • the cut end of the honeycomb molded body is used as a support material, and the honeycomb molded body is heated at 450 ° C. for 5 hours in a state where the honeycomb molded body is placed on the support material.
  • a degreased body from which was removed was obtained.
  • the honeycomb fired body was obtained by holding at 2000 ° C. for 4.5 hours in an argon atmosphere. Next, the honeycomb fired body is held at 800 ° C.
  • a honeycomb structure mainly composed of silicon carbide having a thickness of 46.5 pieces / cm 2 (300 cpsi) and a wall thickness of 0.254 mm was manufactured.
  • the obtained honeycomb structure had an average pore diameter of 20 ⁇ m and a porosity of 60%.
  • This honeycomb structure was bonded with an inorganic adhesive and subjected to outer peripheral processing to produce a cylindrical honeycomb structure having a diameter of 117 mm and a length of 80 mm.
  • Gas permeability coefficients were measured using the honeycomb filters of Examples 1 and 2 and Comparative Example 1.
  • the honeycomb filter was disposed in an airtight state in a metal tube, and air was circulated through the honeycomb tube through the metal tube.
  • the air pressure difference ⁇ P before and after the honeycomb filter was measured.
  • the measurement of the pressure difference ⁇ P was performed with respect to the air flow rate at 20 points by changing the air flow rate Q flowing into the honeycomb filter in a range of 0 to 80 L / min using a known mass flow meter.
  • the metal pipe in which the honeycomb filters of Examples 1 and 2 and Comparative Examples 1 and 2 are arranged in an airtight state is connected to the exhaust pipe of a V-type 6-cylinder 3.5L engine, and the HC concentration ((HC The time required for the inflow amount ⁇ HC outflow amount) / (HC inflow amount) ⁇ 100) to reach 50% or less was measured to evaluate the warm-up performance.
  • FIG. 6 is a cross-sectional view schematically showing a pressure loss measuring method.
  • the honeycomb filter 10 is disposed in an airtight state in the metal tube 31.
  • the metal pipe 33 connected to the blower 32 is connected to the metal pipe 31.
  • air having a flow rate of 10 m / s was passed through the honeycomb filter 10 from the blower 32, and the differential pressure (pressure loss) before and after the honeycomb filter 10 was measured with the pressure gauge 34.
  • Table 2 shows the results of warm-up performance measurement and pressure loss measurement.
  • the honeycomb filters of Example 1 and Example 2 have gas permeability coefficients of 1.5 ⁇ m 2 and 2.8 ⁇ m 2 , respectively, and the walls are made of ceria / zirconia composite oxide. It was confirmed that the warm-up performance was good (the time until the hydrocarbon (HC) purification rate reached 50% was short) and the pressure loss was low. On the other hand, since the gas permeability coefficient of the honeycomb filter of Comparative Example 1 was as low as 0.1 ⁇ m 2 , it was confirmed that gas diffusion in the wall portion was poor, warm-up performance was poor, and pressure loss was high. Since the honeycomb filter of Comparative Example 2 uses a SiC base material, it was confirmed that the warm-up performance was poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

ハニカムフィルタは、微粒子の捕集に用いられ、セリア-ジルコニア複合酸化物と無機バインダを構成成分とする基材からなる壁部を備える。壁部のガス透過係数は1.0μm2以上3.0μm2以下である。

Description

ハニカムフィルタ
 本発明は、微粒子の捕集に用いられるハニカムフィルタに関する。
 特許文献1には、微粒子の捕集に用いられるハニカムフィルタとして、炭化ケイ素からなるハニカムフィルタが開示されている。特許文献2には、セリア-ジルコニア複合酸化物粒子を含むモノリス基材に貴金属が担持された排ガス浄化触媒が開示されている。セリア-ジルコニア複合酸化物粒子で基材を構成することで熱容量を小さくし、モノリス基材の温度を上げやすくして、触媒の暖機性能を向上させることが記載されている。
国際公開第2006/041174号 特開2015-85241号公報
 ところで、特許文献1に開示されるハニカムフィルタの暖機性能を向上させるために、ハニカムフィルタの壁部として、特許文献2に開示されるセリア-ジルコニア複合酸化物粒子を含む基材を採用することが考えられる。しかしながら、特許文献2に開示されるセリア-ジルコニア複合酸化物粒子を含む基材は、壁部が微粒子を含むガスをほとんど通過させることができないために、微粒子を捕集するハニカムフィルタの壁部としては不適である。炭化ケイ素粒子は再結晶することで、粒子間に気孔(pore)が形成されるが、セリア-ジルコニア複合酸化物粒子は無機バインダで結合しているため、粒子間にガスが通過する適当なサイズの気孔が形成されないためである。また、炭化ケイ素等の基材からなる壁部をセリア-ジルコニア複合酸化物により被覆する構成も考えられるが、セリア-ジルコニア複合酸化物の担持量が壁部に被覆可能な範囲に限定されるため、排ガスの浄化性能の向上効果は小さい。加えて、基材に被覆する構造とすることでは、ハニカムフィルタの重量も増加するため、暖機性能が低下する。この発明は、こうした実情に鑑みてなされたものであり、その目的は、暖機性能に優れるハニカムフィルタを提供することにある。
 上記課題を解決するための本発明のハニカムフィルタは、微粒子の捕集に用いられるハニカムフィルタであって、セリア-ジルコニア複合酸化物と無機バインダを構成成分とする基材からなる壁部を備え、上記壁部のガス透過係数が1.0μm以上3.0μm以下であることを要旨とする。
 この構成によれば、セリア-ジルコニア複合酸化物を構成成分とする基材からなる壁部をハニカムフィルタが備えることにより、炭化ケイ素等の基材からなる壁部にセリア-ジルコニア複合酸化物が被覆された構成に比べて、同じセリア-ジルコニア複合酸化物の含有量であれば、壁部の熱容量を小さくすることができる。これにより、処理対象となるガスの熱によってハニカムフィルタの温度が上がりやすくなるため、暖機性能が向上する。また、壁部のガス透過係数が1.0μm以上3.0μm以下であることにより、セリア-ジルコニア複合酸化物を構成成分とする基材からなる壁部のガス透過性が向上したものとなる。これにより、微粒子を捕集するフィルタとしての機能を持たせつつ圧力損失を低く抑えることができる。さらに、処理対象のガスをハニカムフィルタの壁部の内部まで浸透させることができるため、ガスの浄化性能が向上する。ここで、「暖機性能」とは、ハニカムフィルタの十分な浄化性能が得られる温度までの上がりやすさを意味するものである。すなわち本発明のハニカムフィルタのように単位体積当たりの重量が小さく、浄化性能が高いと「暖機性能」がよい。
 本発明のハニカムフィルタについて、上記壁部は、当該壁部を貫通する直径1μm以上200μm以下の線状の気孔を有することが好ましい。この構成によれば、壁部を貫通する気孔を通じてガスが壁部を通過しやすくなるため、壁部のガス透過性が好適に向上する。
 本発明のハニカムフィルタの基材は、構成成分としてアルミナを含むことが好ましい。この構成によれば、基材の構成成分としてアルミナを含むことにより、触媒を基材に担持させたときに高分散させることができ、処理対象となるガスの浄化性能を向上させることができる。また、高温状態における壁部の機械的強度を向上させることができる。
 本発明のハニカムフィルタについて、上記基材に触媒が担持されていることが好ましい。この構成によれば、ハニカムフィルタは、微粒子を捕集する機能だけでなく、処理対象となるガスの浄化作用等の触媒に基づく機能も発揮することができる。そして、壁部自体が暖機性に優れているため、触媒に適した温度まで速やかに昇温することができる。
 本発明のハニカムフィルタについて、上記触媒は、貴金属であることが好ましい。セリア-ジルコニア複合酸化物は、貴金属からなる触媒の触媒作用を促進させる助触媒としての機能を有する。そのため、本発明のハニカムフィルタは、貴金属からなる触媒と組み合わせることにより、高い触媒作用を発揮することができる。
 本発明のハニカムフィルタは、上記壁部によって区画されるとともに、上記ハニカムフィルタの一端側である第1端部から他端側である第2端部に延びる複数のセルを有することが好ましい。上記セルは、上記第1端部側の端部が開放され、上記第2端部側の端部が封止された第1セルと、上記第1セルに隣接して、上記第1端部側の端部が封止され、上記第2端部側の端部が開放された第2セルと、上記第1セル及び上記第2セルの少なくとも一方に隣接して、上記第1端部側の端部及び上記第2端部側の端部の両方が開放された第3セルとを備えることが好ましい。この構成によれば、第1セルと第2セルの間の壁部で微粒子を捕集することができる。また、第1端部側の端部と第2端部側の端部の両方が開放された第3セルを備えることにより、ハニカムフィルタの圧力損失を低下させることができる。
 本発明によれば、暖機性能に優れるハニカムフィルタを提供することができる。
ハニカムフィルタの斜視図。 図1の2-2線断面図。 (a)は、ハニカムフィルタに気孔を形成する治具の斜視図、(b)は、ハニカムフィルタに気孔を形成する治具の正面図、(c)は、治具によりハニカムフィルタに形成された気孔を示す説明図。 (a)、(b)は、ニードルを貫通させる方向を示す模式図。 実施例の壁部の気孔径分布を示すグラフ。 圧力損失測定装置の模式図。
 以下、本発明の一実施形態を説明する。
 図1に示すように、本実施形態のハニカムフィルタ10は、筒状の周壁11と、周壁11の内部を複数のセルSに区画する断面ハニカム形状の区画壁12とを備えている。各セルSは、周壁11の軸方向の一端側から他端側、すなわち、ハニカムフィルタ10の一端側である第1端部から他端側である第2端部に延びている。周壁11と区画壁12とによって壁部13が構成されている。ハニカムフィルタ10のセル構造は特に限定されるものではないが、例えば、区画壁12の壁厚が0.1~0.7mmであり、セル密度が1cmあたり15.5~124セルであるセル構造とすることができる。なお、上記「0.1~0.7mm」は、「0.1mm以上0.7mm以下」を意味し、上記「15.5~124セル」は、「15.5セル以上124セル以下」を意味する。すなわち、本明細書中、「A~B」とは「A以上B以下」を意味するものとする。
 壁部13は、セリア-ジルコニア複合酸化物(以下、「CZ複合酸化物」ともいう。)と無機バインダとアルミナを構成成分とする基材によって形成されている。すなわち、壁部13を構成する基材には、CZ複合酸化物と無機バインダとアルミナが含まれている。そして、基材を構成する粒子の表面には触媒が担持されている。
 本発明のハニカムフィルタの基材を構成するCZ複合酸化物は、セリアを10質量%以上含むことが好ましく、20質量%以上含むことがより好ましい。また、セリアを70質量%以下含むことが好ましく、60質量%以下含むことがより好ましい。セリアを10質量%以上含むことで、排ガス中の酸素の吸蔵放出能が高くなり、70質量%以下とすることで熱耐久性が高くなる。
 CZ複合酸化物は、セリウム以外の希土類元素から選択される元素をさらに含んでいてもよい。セリウム以外の希土類元素としては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、イッテルビウム(Yb)、ルテチウム(Lu)などが挙げられる。
 基材におけるCZ複合酸化物の含有率は15~60質量%であることが好ましい。
 上記無機バインダとしては、例えば、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイロ、ベントナイト、ベーマイトを用いることができる。基材における無機バインダの含有量は特に限定されないが、基材に対して、10~30質量%含有していることが好ましい。
 上記アルミナとして、アルミナ粒子が含まれていることが好ましい。アルミナ粒子が含まれていると、上記触媒として用いられる例えば貴金属が分散担持されやすく、また、壁部13の機械的強度を向上させることができる。アルミナ粒子の種類としては、特に限定されないが、θ相のアルミナ(以下、「θ-アルミナ」ともいう。)や、γ相のアルミナ(以下、「γ-アルミナ」ともいう)を用いることが好ましい。θ-アルミナは、1000℃程度の高温に曝されても相転移が抑制されるため、θ-アルミナを基材の構成成分に用いることにより、高温状態におけるハニカムフィルタ10の機械的強度が向上する。γ-アルミナは比表面積が大きいため、触媒として用いる貴金属を高分散させることができる。基材におけるアルミナ粒子の含有量は特に限定されないが、基材に対して、15~60質量%含有していることが好ましい。
 基材には、CZ複合酸化物、無機バインダ、アルミナ以外のその他の成分が含まれていてもよい。その他の成分としては、例えば、CZ複合酸化物やアルミナよりも熱膨張係数が小さい粒子(以下、「低熱膨張係数粒子」ともいう。)等のその他の無機粒子が挙げられる。
 その他の成分として、低熱膨張係数粒子を含有させた場合には、基材の熱膨張係数を小さくすることができるため、ハニカムフィルタ10の耐熱衝撃性が向上する。低熱膨張係数粒子としては、例えば、コージェライト、チタン酸アルミニウム、リチウムアルミノケイ酸塩系材料の粒子が挙げられる。リチウムアルミノケイ酸塩系材料としては、例えば、βスポジュメンやβユークリプタイトが挙げられる。低熱膨張係数粒子の含有量は特に限定されるものではないが、基材に対して、5~30質量%含有していることが好ましい。
 基材に担持される触媒としては、貴金属、アルカリ金属(元素周期表1族)、アルカリ土類金属(元素周期表2族)、希土類元素(元素周期表3族)、遷移金属元素が挙げられるが、貴金属であることが好ましい。貴金属としては、例えば、白金、パラジウム、ロジウム等の白金族金属が挙げられる。貴金属の担持量は特に限定されないが、ハニカムフィルタ10の見掛けの体積(L)に対して、0.1~20g/Lであることが好ましく、0.5~15g/Lであることがより好ましい。
 図2に示すように、複数のセルSのうち所定のいくつかのセルSは、端部が封止部14により封止されている。すなわち、ハニカムフィルタ10は、ハニカムフィルタ10の第1端部側(一端側)の端部が開放され、第2端部側(他端側)の端部が封止された第1セルS1と、第1セルS1に隣接して第1端部側の端部が封止され、第2端部側の端部が開放された第2セルS2とを備えている。第1セルS1と第2セルS2は互いに異なる側の端部が封止されているため、図2中の矢印で示すように、ハニカムフィルタ10の一端側において第1セルS1内に流入したガスは、第1セルS1と第2セルS2の間の壁部13の内部を通過して第2セルS2内に流入し、その後、ハニカムフィルタ10の他端側でハニカムフィルタ10の外に流出する。この際、壁部13における第1セルS1側の表面に、ガス中に含まれる微粒子が捕集される。
 また、ハニカムフィルタ10は、第1セルS1及び第2セルS2の少なくとも一方に隣接して、ハニカムフィルタ10の一端側の端部と他端側の端部の両方が開放された第3セルS3を更に備えてもよい。すなわち、複数のセルSのうちのいくつかは、両端部がともに封止されていなくてもよい。ハニカムフィルタ10の一端側において第3セルS3内に流入したガスは、そのまま同じ第3セルS3内を通過してハニカムフィルタ10の他端側でハニカムフィルタ10の外に流出することができる。第3セルS3が第1セルS1に隣接している場合、ハニカムフィルタ10の一端側において第1セルS1内に流入したガスは、第1セルS1と第3セルS3の間の壁部13の内部を通過して第3セルS3内に流入し、その後、ハニカムフィルタ10の他端側でハニカムフィルタ10の外に流出することもできる。
 第3セルS3の配置位置は、第1セルS1及び第2セルS2の少なくとも一方に隣接している範囲において適宜選択される。例えば、図2に示すように、ハニカムフィルタ10の外周側における断面積が小さいセルSを第3セルS3とすることができる。また、全てのセルSに占める第3セルS3の割合は特に限定されるものではないが、1/3以下であることが好ましい。
 図2に示す封止部14の長さTは特に限定されるものではないが、区画壁12の壁厚よりも厚いことが好ましい。区画壁12の壁厚が0.1~0.7mmである場合、封止部14の長さTは、1~10mmであることが好ましい。
 次に、ハニカムフィルタ10の壁部13のガス透過性に関わる気孔構造について説明する。
 本実施形態のハニカムフィルタ10は、車両や建設機械等の内燃機関から排出されるガスに含まれる微粒子の捕集に用いられる。そのため、ハニカムフィルタ10の区画壁12は、処理対象のガスを通過させるための気孔(pore)を有している。区画壁12は、特定のガス透過係数を満たす壁部であり、上記特定のガス透過係数は、1.0μm以上3.0μm以下である。ガス透過係数が1.0μm以上であることにより、区画壁12のガス透過性が向上したものとなる。ガス透過係数が3.0μm以下であることにより、微粒子を捕集するフィルタとしてハニカムフィルタ10を用いた際に、捕集効率を向上させることができる。ガス透過係数は、例えば、公知のマスフロメータを用いて以下の方法により測定することができる。
 まず、ハニカムフィルタ10を金属管の中に気密状態に配置し、金属管を通じてハニカムフィルタ10に空気を流通させる。そして、ハニカムフィルタ10の前後における空気の圧力差ΔPを測定する。圧力差ΔPの測定は、ハニカムフィルタ10に流入させる空気流量Qを公知のマスフロメータを用いて0~80L/minの範囲で変化させて、20点の空気流量に対して実施する。得られた20点のデータを、Qを横軸、ΔP/Qを縦軸としたグラフ上にプロットし、プロットを結ぶ直線の切片からガス透過係数を求める。
 区画壁12は、区画壁12を貫通する直径1μm以上200μm以下の線状の気孔を有している。なお、区画壁12を貫通する線状の気孔は、区画壁12の破断面を電子顕微鏡を用いて観察することによって確認することができる。電子顕微鏡を用いて観察される直径1μm以上200μm以下の気孔のうち、80%以上の気孔が、区画壁12を貫通する線状の気孔であることが好ましい。線状の気孔の形状は、直線状、曲線状、折れ線状のいずれであってもよい。
 区画壁12の気孔率は特に限定されないが、40~80%であることが好ましく、55~75%であることがより好ましい。封止部14の気孔率は特に限定されないが、40~80%であることが好ましく、55~75%であることがより好ましい。区画壁12の気孔率は、水銀圧入法にて、接触角を130°、表面張力を485mN/mの条件で測定することができる。
 次に、本実施形態のハニカムフィルタ10の第1の製造方法について説明する。第1の製造方法において、ハニカムフィルタ10は、以下に記載する混合工程、成形工程、封止工程、脱脂工程、焼成工程、担持工程を順に経ることにより製造される。
 (混合工程)
 混合工程は、CZ複合酸化物粒子、無機バインダ、アルミナ粒子、有機繊維などの原料を混合して原料混合物を作製する工程である。CZ複合酸化物粒子としては、セリアとジルコニアの固溶体を用いることが好ましい。セリアとジルコニアの固溶体は、例えば、硝酸セリウムなどのセリウム塩と、オキシ硝酸ジルコニウムなどのジルコニウム塩を溶解させた水溶液に、アンモニア水を加えて共沈殿を生成させ、得られた沈殿物を乾燥させた後に400~500℃で5時間程度焼成することにより調製することができる。
 原料の1つであるCZ複合酸化物粒子の平均粒子径は特に限定されるものではないが、1~10μmであることが好ましく、1~5μmであることがより好ましい。平均粒子径は、レーザー回折式粒度分布測定装置にて測定することができる。
 無機バインダとしては、上記した無機バインダの具体例のうちのいずれかを用いることができる。原料混合物中の無機バインダの割合は特に限定されないが、固形分として10~30質量%であることが好ましい。
 アルミナ粒子としては、上記したようにθ-アルミナ粒子やγ-アルミナ粒子を用いることができる。原料混合物中のアルミナ粒子の割合は特に限定されないが、固形分として10~50質量%であることが好ましい。アルミナ粒子の平均粒子径は特に限定されないが、二次粒子として1~10μmであることが好ましく、1~5μmであることがより好ましい。
 有機繊維としては、例えば、アクリル繊維、ポリエステル繊維などを用いることができる。有機繊維の寸法は特に限定されるものではないが、直径が1~50μmであることが好ましく、3~40μmであることがより好ましい。また、長さが0.1~30mmであることが好ましく、0.1~10mmであることがより好ましい。原料混合物中の有機繊維の割合は特に限定されないが、固形分として10~50質量%であることが好ましい。
 上記原料混合物には、必要に応じて、上記したような低熱膨張係数粒子、あるいは、無機繊維、有機バインダ、造孔剤、成形助剤、分散媒を加えてもよい。
 低熱膨張係数粒子の平均粒子径は特に限定されるものではないが、1~10μmであることが好ましく、1~5μmであることがより好ましい。
 無機繊維を構成する材料としては、例えば、アルミナ、シリカ、シリカアルミナ、ガラス、が挙げられる。
 有機バインダとしては、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂が挙げられる。
 造孔剤は、有機繊維とは異なり粒子状であってもよく、そのような造孔剤としては、アクリル樹脂、コークス、デンプンが挙げられる。
 成形助剤としては、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール、界面活性剤が挙げられる。
 分散媒としては、水、ベンゼン等の有機溶媒、メタノール等のアルコールが挙げられる。
 これらの原料は、公知のミキサーやアトライタなどを用いて混合してもよく、さらにニーダーなどで混練してもよい。
 (成形工程)
 成形工程は、混合工程により得られた原料混合物を成形してハニカム成形体を作製する工程である。ハニカム成形体は、後の焼成工程における焼成収縮を経てハニカムフィルタ10と同一形状となるよう、例えば、原料混合物を押出金型を用いて押出成形し、所定の長さに切断することにより作製する。すなわち、ハニカムフィルタ10の周壁11と区画壁12とを構成する壁部13を一度に押出成形することにより作製する。
 (封止工程)
 封止工程は、成形工程により得られたハニカム成形体のセルSの端部に封止材ペーストを充填して、封止部14を形成する工程である。封止材ペーストとしては、上記の原料混合物と同様のものを用いることができるが、有機繊維を含まないことが好ましい。有機繊維を用いないことにより、封止部14の気孔率を小さくすることができる。封止工程によって封止部14を形成したハニカム成形体は、必要に応じて乾燥を行う。なお、封止工程は後述する脱脂工程又は焼成工程の後で行われてもよい。
 (脱脂工程)
 脱脂工程は、封止部14を形成したハニカム成形体を脱脂して脱脂体を作製する工程、換言すれば、ハニカム成形体を加熱してハニカム成形体に含まれる有機分を除去する工程である。脱脂工程において長尺状の有機繊維が消失することにより、壁部13に線状の気孔を形成することができる。脱脂工程は、公知の単独炉、いわゆるバッチ炉や、連続炉を用いて行うことができる。脱脂温度は特に限定されないが、300~800℃が好ましく、400~750℃であることがより好ましい。脱脂時間は特に限定されないが、上記の脱脂温度において1~10時間保持することが好ましく、2~5時間保持することがより好ましい。脱脂雰囲気は特に限定されないが、酸素濃度が0.1~20%であることが好ましい。
 (焼成工程)
 焼成工程は、脱脂工程により得られた脱脂体を焼成してハニカムフィルタ10を作製する工程である。焼成によって、CZ複合酸化物等の粒子間が無機バインダで結合されることにより、ハニカムフィルタ10の機械的強度が向上する。焼成工程は、公知の単独炉、いわゆるバッチ炉や、連続炉を用いて行うことができる。焼成温度は特に限定されないが、800~1300℃が好ましく、900~1200℃であることがより好ましい。焼成時間は特に限定されないが、上記の焼成温度において1~20時間保持することが好ましく、1~15時間保持することがより好ましい。焼成雰囲気は特に限定されないが、酸素濃度が1~20%であることが好ましい。焼成工程は、脱脂工程とは別の炉を用いて別途行ってもよいし、脱脂工程と同じ炉を用いて連続的に行ってもよい。上記の混合工程、成形工程、封止工程、脱脂工程、焼成工程を経ることにより、CZ複合酸化物からなり特定の気孔径分布を示す壁部13を有する本実施形態のハニカムフィルタ10を製造することができる。
 (担持工程)
 担持工程は、焼成工程により得られたハニカムフィルタ10に触媒を担持する工程である。触媒を担持する方法としては、例えば、触媒の粒子や錯体を含む溶液にハニカムフィルタ10を浸漬した後、ハニカムフィルタ10を引き上げて、加熱する方法が挙げられる。触媒を担持することによって、ハニカムフィルタ10の壁部13は、CZ複合酸化物を構成成分とする基材と、この基材に担持された触媒とを備えるものとなる。
 次に、本実施形態のハニカムフィルタ10の第2の製造方法について説明する。
 第2の製造方法は、原料から有機繊維を省き、その代わりに、気孔形成工程を有している点において第1の製造方法と相違している。気孔形成工程について以下に説明する。
 (気孔形成工程)
 気孔形成工程は、成形工程後、脱脂工程後、焼成工程後のいずれかにおいて行われる。気孔形成工程の具体的な方法は、上記のいずれのタイミングで行った場合にも同様であり、以下では、一例として、成形工程後に行う気孔形成工程について説明する。
 図3(a)及び図3(b)に示すように、気孔形成工程では、ハニカム成形体10Aの外周面の一部(半周)に沿った基部21と、この基部21から突出する複数のニードル22とを備える一対の治具20を用いる。ハニカム成形体10Aの径方向の両側、具体的には、区画壁12における一方向に延びる壁を縦壁12Aとし、縦壁12Aに交差する壁を横壁12Bとした場合における、縦壁12Aの厚さ方向の両側から一対の治具20でハニカム成形体10Aを挟み込む。そして、図4(a)に示すように、各縦壁12Aをニードル22が貫通するように、ニードル22を突き刺した後、ハニカム成形体10Aから治具20を取り外す。これにより、ハニカム成形体10Aの区画壁12の縦壁12Aを厚さ方向に貫通する気孔が形成される。
 また、図4(b)に示すように、必要に応じて、区画壁12の横壁12Bの厚さ方向の両側からも一対の治具20でハニカム成形体10Aを挟み込む操作を同様に行うことにより、区画壁12の横壁12Bを厚さ方向に貫通する気孔を形成してもよい。
 治具20のニードル22の直径は、50~200μmに設定されている。したがって、ニードル22により形成された区画壁12を貫通する気孔の直径も50~200μmとなる。ハニカム成形体10Aは焼成工程において収縮するため、ハニカムフィルタ10には、収縮に応じて、例えば直径40~190μmの気孔が形成される。なお、ハニカムフィルタ10に対して気孔形成工程を行った場合は、ニードル22の直径に基づいた気孔を形成することができるため、直径50~200μmの気孔を形成することができる。ニードル22の直径を選択することにより、形成される気孔の直径を調整することができる。ニードル22の直径は、全て同じであってもよいし、上記範囲内において、それぞれ異なっていてもよい。なお、気孔の直径は、区画壁12の表面を電子顕微鏡で観察することによって測定することができる。
 また、本工程において形成される上記気孔の数は特に限定されるものではないが、例えば、区画壁12の表面に、0.25~10mmあたりに1個であることが好ましい。
 また、治具20に備えられるニードル22の位置や本数は適宜変更してもよい。例えば、図3(c)に示すように、個々のニードル22の間隔Lを約1cmにし、セルSの延びる方向とニードル22の並列方向とを揃えると、セルSの延びる方向に沿って約1cm間隔で気孔を形成することができる。
 本実施形態の作用及び効果を説明する。
 (1)CZ複合酸化物と無機バインダを構成成分とする基材からなる壁部をハニカムフィルタが備えることにより、炭化ケイ素等の基材からなる壁部にCZ複合酸化物が被覆された構成に比べて、同じCZ複合酸化物の含有量であれば、壁部の熱容量を小さくすることができる。これにより、処理対象となるガスの熱によってハニカムフィルタの温度が上がりやすくなるため、処理対象となるガスの浄化性能が向上する。また、壁部のガス透過係数が1.0μm以上3.0μm以下であることにより、CZ複合酸化物を構成成分とする基材からなる壁部のガス透過性が向上したものとなるため、微粒子を捕集するフィルタとしての機能を持たせつつ圧力損失を低く抑えることができる。
 (2)壁部は、壁部を貫通する直径1μm以上200μm以下の線状の気孔を有する。したがって、壁部を貫通する気孔を通じてガスが壁部を通過しやすくなるため、圧力損失を低減することができる。
 (3)壁部の基材が、構成成分としてアルミナを含む。したがって、担持した触媒を高分散させることができるため、処理対象となるガスの浄化性能を向上させることができる。また、高温状態における壁部の機械的強度を向上させることができる。
 (4)壁部の基材は担持された触媒を備える。したがって、ハニカムフィルタは、微粒子を捕集する機能だけでなく、処理対象となるガスの浄化作用等の触媒に基づく機能も発揮することができる。
 (5)触媒が貴金属である場合、貴金属からなる触媒の触媒作用を促進させる助触媒としての機能をセリア-ジルコニア複合酸化物が有することから、ハニカムフィルタは高い触媒作用を発揮することができる。
 (6)ハニカムフィルタは、壁部によって区画されるとともに、ハニカムフィルタの一端側である第1端部から他端側である第2端部に延びる複数のセルを有する。セルは、第1端部側の端部が開放され、第2端部側の端部が封止された第1セルと、第1セルに隣接して、第1端部側の端部が封止され、第2端部側の端部が開放された第2セルと、第1セル及び第2セルの少なくとも一方に隣接して、第1端部側の端部及び第2端部側の端部の両方が開放された第3セルとを備える。したがって、第1セルと第2セルの間の壁部で微粒子を捕集することができる。また、第2端部側の端部と第2端部側の端部の両方が開放された第3セルを備えることにより、ハニカムフィルタの圧力損失を低下させることができる。
 (7)ハニカムフィルタの原料混合物中に有機繊維を含有させ、脱脂工程で有機繊維を消失させることにより、ハニカムフィルタの壁部を貫通する直径1μm以上50μm以下の線状の気孔を形成することができる。
 (8)気孔形成工程において、ニードルが複数配置された治具を用いて気孔を形成することにより、壁部を貫通する直径40μm以上200μm以下の線状の気孔を形成することができる。
 本実施形態は、次のように変更して実施することも可能である。また、上記実施形態の構成や以下の変更例に示す構成を適宜組み合わせて実施することも可能である。
 ・本実施形態では、壁部は周壁と区画壁とで構成されていたが、区画壁のみで構成されていてもよい。この場合、区画壁の外周に外周コート層を形成することによりハニカムフィルタが形成されていてもよい。
 ・壁部は、図5に示すように、水銀圧入法で測定される気孔径及びlog微分細孔容積をそれぞれ横軸及び縦軸とする気孔径分布において、気孔径0.01μm以上1μm未満の範囲と、気孔径1μm以上50μm以下の範囲とに、それぞれピークを有するものであってもよい。壁部がこのような気孔径分布を有することにより、壁部のガス透過係数は、1.0μm以上3.0μm以下となりやすい。
 ・気孔形成工程を行うハニカム成形体は、封止工程を経たものであってもよい。また、ハニカム成形体に対して気孔形成工程を行う場合には、ハニカム成形体に対して、加熱したニードルを突き刺して気孔を形成することが好ましい。この場合、ハニカム成形体に含まれる有機成分等の揮発性成分が気化する温度以上に加熱したニードルを用いると、揮発性成分を気化させながらニードルを突き刺すことができるため、ニードルを突き刺す際の抵抗を低減することができる。また、ハニカム成形体には壁部内のセリア-ジルコニア粒子間に空隙が形成されていないため、基材としての強度が高く、ニードルを付き刺した際に、壁部の形状を好適に保ちつつ気孔を形成することができる。ニードルの加熱温度は特に限定されないが、200~500℃であることが好ましい。
 ・第1の製造方法における原料混合物中に有機繊維を含有させることと、第2の製造方法における気孔形成工程とを併用して行ってもよい。
 ・壁部を構成する基材は、必ずしもアルミナを構成成分として含まなくてもよい。また、ハニカムフィルタの原料には、必ずしもアルミナ粒子が含まれなくてもよい。
 ・ハニカムフィルタは必ずしも第3セルを備えていなくてもよい。すなわち、全てのセルがその両端部のいずれか一方を封止された構成であってもよい。この構成により、ハニカムフィルタの捕集効率を向上させることができる。
 以下、上記実施形態をさらに具体化した実施例について説明する。
 (実施例1)
 下記原料を混合して原料混合物を調製した。
 平均粒子径2μmのCZ複合酸化物粒子:24.0質量%
 平均粒子径2μmのθ-アルミナ粒子:12.0質量%
 平均繊維径3μm、平均繊維長60μmのαアルミナ繊維(無機繊維):5.0質量%
 平均繊維径30μm、平均繊維長1mmのアクリル繊維(有機繊維):13.0質量%
 ベーマイト(無機バインダ):10.0質量%
 メチルセルロース(有機バインダ):7.0質量%
 ポリオキシエチレンオレイルエーテル(成形助剤):4.0質量%
 イオン交換水(分散媒):25.0質量%
 この原料混合物を用いて、押出成形機によって円柱状の成形体を成形した。次に、この成形体を所定の長さに切断してハニカム成形体を作製した後、図2に示すように所定のセルの端部を封止剤にて封止して封止部を形成した。封止剤の組成は、有機繊維を含まないこと以外は上記の原料混合物と同じ組成である。また、封止部の長さは約3mmとした。次に、ハニカム成形体を乾燥させた後、700℃で3時間脱脂し、1100℃で10時間焼成することにより、ハニカムフィルタを作製した。
 次に、ジニトロジアンミンパラジウム硝酸溶液([Pd(NH(NO]HNO、パラジウム濃度100g/L)と硝酸ロジウム溶液([Rd(NO]、ロジウム濃度50g/L)を3:1の体積割合で混合して、混合溶液を調製した。この混合溶液中に、上記工程により製造されたハニカムフィルタを浸漬し、15分間保持した。その後、110℃で2時間乾燥し、窒素雰囲気中500℃で1時間焼成することによって、ハニカムフィルタにパラジウム触媒とロジウム触媒を担持した。触媒の担持量は、パラジウムとロジウムの合計でハニカムフィルタの見掛けの体積当たり0.14g/Lとした。得られたハニカムフィルタは、直径が117mm、長さが80mmの円柱状であり、セルの密度が46個/cm(300cpsi)、壁部の厚さが0.254mm(10mil)であった。
 (実施例2)
 下記原料を混合して原料混合物を調製した。
 平均粒子径2μmのCZ複合酸化物粒子:28.0質量%
 平均粒子径2μmのθ-アルミナ粒子:14.0質量%
 平均繊維径3μm、平均繊維長60μmのαアルミナ繊維(無機繊維):6.0質量%
 ベーマイト(無機バインダ):11.0質量%
 メチルセルロース(有機バインダ):8.0質量%
 ポリオキシエチレンオレイルエーテル(成形助剤):5.0質量%
 イオン交換水(分散媒):28.0質量%
 この原料混合物を用いて、押出成形機によって円柱状の成形体を成形した。次に、この成形体を所定の長さに切断してハニカム成形体を作製した後、図2に示すように所定のセルの端部を封止剤にて封止して封止部を形成した。封止剤の組成は、有機繊維を含まないこと以外は上記の原料混合物と同じ組成である。また、封止部の長さは約3mmとした。
 次に、直径100μmのニードルが複数配置された一対の治具を用い、この治具でハニカム成形体を径方向の両側から挟み込み、壁部にニードルを貫通させた。ニードルの間隔はハニカム成形体の長手方向に沿って1cm間隔であり、各セルに90度で交差する方向からニードルを貫通させた。
 次に、ハニカム成形体を乾燥させた後、700℃で3時間脱脂し、1100℃で10時間焼成することにより、ハニカムフィルタを作製した。得られたハニカムフィルタに、上記実施例1と同じ方法で触媒を担持した。得られたハニカムフィルタは、直径が117mm、長さが80mmの円柱状であり、セルの密度が46.5個/cm(300cpsi)、壁部の厚さが0.254mm(10mil)であった。
 (比較例1)
 実施例1の原料から有機繊維を省き、それ以外の原料の配合比はそのままで実施例1と同様の手順を踏むことにより、比較例1のハニカムフィルタを作製した。
 (比較例2)
 まず、下記原料を混合して原料混合物を調製した。
 平均粒子径15μmの炭化ケイ素粒子:28質量%
 平均粒子径0.95μmの炭化ケイ素粒子:19質量%
 平均粒子径34μmのシラスバルーン(造孔剤):9質量%
 平均粒子径28μmのデンプン(造孔剤):16質量%
 メチルセルロース(有機バインダー):5質量%
 ソルビタン脂肪酸エステル(分散剤):3質量%
 ポリオキシアルキレン系化合物(可塑剤):2質量%
 水(分散媒):18質量%
 この原料混合物を用いて、押出成形機によって角柱状の成形体を成形した。次に、この成形体を切断してハニカム成形体を作製した後、セルを互い違いに上記原料混合物と同じ組成の目封止剤にて目封止した。次に、ハニカム成形体を切断した際の切れ端を支持材として用い、この支持材の上にハニカム成形体を載置した状態で、ハニカム成形体を450℃で5時間加熱することにより、有機分が除去された脱脂体を得た。さらに、脱脂体を支持材の上に載置したままの状態で、アルゴン雰囲気下2000℃で4.5時間保持してハニカム焼成体を得た。次に、ハニカム焼成体を窒素分圧10kPaの窒素雰囲気下800℃で4.5時間保持して窒化工程を行うことにより、縦34.4mm×横34.3mm×長さ80mmでセルの密度が46.5個/cm(300cpsi)、壁部の厚さが0.254mmの炭化ケイ素を主成分とするハニカム構造体を作製した。得られたハニカム構造体は、平均気孔径が20μm、気孔率が60%であった。このハニカム構造体を、無機接着材で接着し、外周加工を施すことで、直径が117mm、長さが80mmの円柱状のハニカム構造体を作製した。
 次に、γ-アルミナ粒子にパラジウムを担持した粒子とCZ複合酸化物にロジウムを担持した粒子を1:2で混合して、上記円柱状のハニカム構造体にウォッシュコートして、ハニカムフィルタを作製した。この時の触媒の担持量は、パラジウムとロジウムの合計でハニカムフィルタの見掛けの体積当たり0.14g/Lとした。
 (評価試験)
 実施例及び比較例のハニカムフィルタについて、以下の方法により、ガス透過係数、暖機性能及び圧力損失を測定した。
 (ガス透過係数測定)
 実施例1、2及び比較例1のハニカムフィルタを使用してガス透過係数を測定した。まず、ハニカムフィルタを金属管の中に気密状態に配置し、金属管を通じてハニカムフィルタに空気を流通させた。そして、ハニカムフィルタの前後における空気の圧力差ΔPを測定した。圧力差ΔPの測定は、ハニカムフィルタに流入させる空気流量Qを公知のマスフロメータを用いて0~80L/minの範囲で変化させて、20点の空気流量に対して実施した。得られた20点のデータを、Qを横軸、ΔP/Qを縦軸としたグラフ上にプロットし、プロットを結ぶ直線の切片からガス透過係数kを求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (暖機性能測定)
 実施例1,2及び比較例1,2の各ハニカムフィルタが気密状態で配置された金属管をV型6気筒3.5Lエンジンの排気管に接続し、ストイキエンジン始動からHC濃度((HCの流入量-HCの流出量)/(HCの流入量)×100)が50%以下となるまでに要する時間を測定し、暖気性能を評価した。
 (圧力損失測定)
 図6に示したような圧力損失測定装置30を用いて実施例1,2及び比較例1,2のハニカムフィルタの圧力損失を測定した。図6は、圧力損失測定方法を模式的に示す断面図である。まず、ハニカムフィルタ10を金属管31の中に気密状態に配置する。この金属管31に、送風機32に接続された金属管33を接続する。そして、送風機32から流速が10m/sの空気をハニカムフィルタ10に流通させ、ハニカムフィルタ10の前後における差圧(圧力損失)を圧力計34で測定した。
 暖機性能測定と圧力損失測定の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2の結果より、実施例1及び実施例2のハニカムフィルタは、ガス透過係数がそれぞれ1.5μm及び2.8μmであり、壁部がセリア・ジルコニア複合酸化物からなるため、暖機性能がよく(炭化水素(HC)の浄化率が50%に到達するまでの時間が短く)、圧力損失が低いことが確認された。一方、比較例1のハニカムフィルタは、ガス透過係数が0.1μmと低すぎるため、壁部内でのガスの拡散が悪く、暖機性能が悪いうえ、圧力損失が高いことが確認された。比較例2のハニカムフィルタは、SiC基材を用いているため、暖機性能が悪いことが確認された。
 10…ハニカムフィルタ、11…周壁、12…区画壁、13…壁部、14…封止部、S…セル。

Claims (6)

  1.  微粒子の捕集に用いられるハニカムフィルタであって、
     セリア-ジルコニア複合酸化物と無機バインダを構成成分とする基材からなる壁部を備え、
     前記壁部のガス透過係数が1.0μm以上3.0μm以下であることを特徴とするハニカムフィルタ。
  2.  前記壁部は、当該壁部を貫通する直径1μm以上200μm以下の線状の気孔を有する請求項1に記載のハニカムフィルタ。
  3.  前記基材は、構成成分としてアルミナを含む請求項1又は2に記載のハニカムフィルタ。
  4.  前記基材に触媒が担持されている請求項1~3のいずれか一項に記載のハニカムフィルタ。
  5.  前記触媒は、貴金属である請求項4に記載のハニカムフィルタ。
  6.  前記壁部によって区画されるとともに、前記ハニカムフィルタの一端側である第1端部から他端側である第2端部に延びる複数のセルを有し、
     前記セルは、前記第1端部側の端部が開放され、前記第2端部側の端部が封止された第1セルと、
     前記第1セルに隣接して、前記第1端部側の端部が封止され、前記第2端部側の端部が開放された第2セルと、
     前記第1セル及び前記第2セルの少なくとも一方に隣接して、前記第1端部側の端部及び前記第2端部側の端部の両方が開放された第3セルとを備える請求項1~5のいずれか一項に記載のハニカムフィルタ。
PCT/JP2018/008388 2017-03-06 2018-03-05 ハニカムフィルタ WO2018164070A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880015019.XA CN110366442A (zh) 2017-03-06 2018-03-05 蜂窝过滤器
US16/491,148 US11213778B2 (en) 2017-03-06 2018-03-05 Honeycomb filter
EP18763620.4A EP3593884A4 (en) 2017-03-06 2018-03-05 HONEYCOMB FILTER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017041791A JP2018143956A (ja) 2017-03-06 2017-03-06 ハニカムフィルタ
JP2017-041791 2017-03-06

Publications (1)

Publication Number Publication Date
WO2018164070A1 true WO2018164070A1 (ja) 2018-09-13

Family

ID=63448217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008388 WO2018164070A1 (ja) 2017-03-06 2018-03-05 ハニカムフィルタ

Country Status (5)

Country Link
US (1) US11213778B2 (ja)
EP (1) EP3593884A4 (ja)
JP (1) JP2018143956A (ja)
CN (1) CN110366442A (ja)
WO (1) WO2018164070A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022123542A (ja) 2021-02-12 2022-08-24 日本碍子株式会社 目封止ハニカム構造体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041174A1 (ja) 2004-10-12 2006-04-20 Ibiden Co., Ltd. セラミックハニカム構造体
JP2010221155A (ja) * 2009-03-24 2010-10-07 Ngk Insulators Ltd ハニカム構造体の製造方法及びハニカム触媒体の製造方法
JP2010221154A (ja) * 2009-03-24 2010-10-07 Ngk Insulators Ltd ハニカム触媒体
JP2011183360A (ja) * 2010-03-11 2011-09-22 Ngk Insulators Ltd ハニカム触媒体
JP2013518703A (ja) * 2010-02-01 2013-05-23 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 結合された媒煙酸化及びnh3−scr触媒を含むフィルタ
JP2014024058A (ja) * 2012-06-20 2014-02-06 Toyota Central R&D Labs Inc 排ガス浄化用触媒担体、それを用いた排ガス浄化用触媒、及び排ガス浄化用触媒担体の製造方法
JP2015085241A (ja) 2013-10-29 2015-05-07 トヨタ自動車株式会社 排ガス浄化触媒
JP2016055233A (ja) * 2014-09-08 2016-04-21 株式会社デンソー ハニカム構造体及びその製造方法
WO2017110313A1 (ja) * 2015-12-25 2017-06-29 株式会社デンソー 排ガスフィルタ
WO2018012565A1 (ja) * 2016-07-14 2018-01-18 イビデン株式会社 ハニカム構造体及び該ハニカム構造体の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3827157B2 (ja) * 2002-09-30 2006-09-27 トヨタ自動車株式会社 排ガス浄化装置及び排ガス浄化方法
WO2006030811A1 (ja) * 2004-09-14 2006-03-23 Ngk Insulators, Ltd. 多孔質ハニカムフィルター
KR20080042902A (ko) * 2004-12-27 2008-05-15 이비덴 가부시키가이샤 세라믹 허니컴 구조체
KR100820619B1 (ko) * 2004-12-28 2008-04-08 이비덴 가부시키가이샤 필터 및 필터 집합체
EP1899280B1 (de) * 2005-07-05 2015-09-02 MANN+HUMMEL Innenraumfilter GmbH & Co. KG PORÖSER ß-SIC-HALTIGER KERAMISCHER FORMKÖRPER MIT EINER ALUMINIUMOXIDBESCHICHTUNG UND VERFAHREN ZU DESSEN HERSTELLUNG
JPWO2007097056A1 (ja) * 2006-02-23 2009-07-09 イビデン株式会社 ハニカム構造体および排ガス浄化装置
WO2008126332A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカムフィルタ
JP2009154124A (ja) * 2007-12-27 2009-07-16 Ngk Insulators Ltd 部分目封止レスdpf
WO2011067823A1 (ja) * 2009-12-01 2011-06-09 イビデン株式会社 ハニカムフィルタ及び排ガス浄化装置
WO2014085325A1 (en) * 2012-11-30 2014-06-05 Dow Global Technologies Llc Filtration of gasoline direct injection engine exhausts with honeycomb filters
CN103191711B (zh) * 2013-04-03 2014-08-27 潮州三环(集团)股份有限公司 一种高比表面积、高储氧能力的氧化铈氧化锆基复合稀土氧化物及其制备方法
CN103386320B (zh) * 2013-07-11 2015-07-08 湖南省吉安特技术有限公司 一种柴油车用尾气净化催化剂涂覆材料及制备方法
JP6542549B2 (ja) * 2015-03-13 2019-07-10 日野自動車株式会社 ハニカム構造体の製造方法
JP6380249B2 (ja) * 2015-06-18 2018-08-29 株式会社デンソー ハニカム構造体の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041174A1 (ja) 2004-10-12 2006-04-20 Ibiden Co., Ltd. セラミックハニカム構造体
JP2010221155A (ja) * 2009-03-24 2010-10-07 Ngk Insulators Ltd ハニカム構造体の製造方法及びハニカム触媒体の製造方法
JP2010221154A (ja) * 2009-03-24 2010-10-07 Ngk Insulators Ltd ハニカム触媒体
JP2013518703A (ja) * 2010-02-01 2013-05-23 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 結合された媒煙酸化及びnh3−scr触媒を含むフィルタ
JP2011183360A (ja) * 2010-03-11 2011-09-22 Ngk Insulators Ltd ハニカム触媒体
JP2014024058A (ja) * 2012-06-20 2014-02-06 Toyota Central R&D Labs Inc 排ガス浄化用触媒担体、それを用いた排ガス浄化用触媒、及び排ガス浄化用触媒担体の製造方法
JP2015085241A (ja) 2013-10-29 2015-05-07 トヨタ自動車株式会社 排ガス浄化触媒
JP2016055233A (ja) * 2014-09-08 2016-04-21 株式会社デンソー ハニカム構造体及びその製造方法
WO2017110313A1 (ja) * 2015-12-25 2017-06-29 株式会社デンソー 排ガスフィルタ
WO2018012565A1 (ja) * 2016-07-14 2018-01-18 イビデン株式会社 ハニカム構造体及び該ハニカム構造体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3593884A4

Also Published As

Publication number Publication date
EP3593884A4 (en) 2021-01-13
US11213778B2 (en) 2022-01-04
JP2018143956A (ja) 2018-09-20
EP3593884A1 (en) 2020-01-15
CN110366442A (zh) 2019-10-22
US20200030730A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2018164069A1 (ja) ハニカムフィルタ
JP6998870B2 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
JP6934007B2 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
EP1785603A1 (en) Exhaust gas purification system
WO2006070540A1 (ja) セラミックハニカム構造体
EP3689458A1 (en) Honeycomb catalyst
JP2007253144A (ja) ハニカム構造体及び排ガス浄化装置
WO2019176868A1 (ja) ハニカムフィルタ及びハニカムフィルタの製造方法
JP2020114786A (ja) ハニカム構造体
JP6949019B2 (ja) ハニカム構造体及び該ハニカム構造体の製造方法
WO2018164070A1 (ja) ハニカムフィルタ
JP6845777B2 (ja) ハニカム触媒の製造方法
JP6782571B2 (ja) ハニカム構造体
JP2020115001A (ja) ハニカム構造体
JP6811121B2 (ja) ハニカムフィルタの製造方法
JP6781080B2 (ja) ハニカムフィルタ
JP2007275874A (ja) 触媒及びパティキュレートフィルター型排ガス浄化触媒
WO2019026645A1 (ja) ハニカム構造体の製造方法及びハニカム構造体
JP2018143959A (ja) ハニカム構造体
WO2020105666A1 (ja) ハニカム構造体
WO2020105665A1 (ja) ハニカム構造体
JP2021037484A (ja) ハニカム構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018763620

Country of ref document: EP

Effective date: 20191007