CN111943649B - 一种用于蒸镀的烧结体及其制备方法 - Google Patents

一种用于蒸镀的烧结体及其制备方法 Download PDF

Info

Publication number
CN111943649B
CN111943649B CN202010709835.XA CN202010709835A CN111943649B CN 111943649 B CN111943649 B CN 111943649B CN 202010709835 A CN202010709835 A CN 202010709835A CN 111943649 B CN111943649 B CN 111943649B
Authority
CN
China
Prior art keywords
sintered body
indium oxide
oxide
powder
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010709835.XA
Other languages
English (en)
Other versions
CN111943649A (zh
Inventor
陈明飞
刘永成
江长久
陈明高
徐胜利
郭梓旋
莫国仁
李跃辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enam Optoelectronic Material Co ltd
Original Assignee
Enam Optoelectronic Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enam Optoelectronic Material Co ltd filed Critical Enam Optoelectronic Material Co ltd
Priority to CN202010709835.XA priority Critical patent/CN111943649B/zh
Publication of CN111943649A publication Critical patent/CN111943649A/zh
Application granted granted Critical
Publication of CN111943649B publication Critical patent/CN111943649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供了一种用于蒸镀的烧结体及其制备方法。该烧结体,由氧化铟、掺杂元素x和硅元素制备得到,其中掺杂元素x的含量以x的氧化物/(氧化铟+x的氧化物)的重量比为0.2~5.0%,硅元素在所述烧结体中的含量为5~600ppm,硅元素为纳米氧化硅粉末和二氧化硅溶胶中的至少一种。将氧化铟与掺杂元素x的氧化物混合物料在高温获得具有方铁锰矿结构的、固溶有元素x的氧化铟单一晶相粉末,再与硅元素混合后压制成所需尺寸的胚体,再进行烧结得到烧结体。此烧结体进行RPD镀膜可获得高的迁移率,同时解决了烧结体由于密度低而在使用过程中掉粉影响镀膜过程连续进行而导致生产效率降低的问题,无需再停机针对掉粉问题进行清理,实现了持续的生产,提高了生产效率。

Description

一种用于蒸镀的烧结体及其制备方法
技术领域
本发明属于活化等离子体沉积技术领域,具体涉及一种用于蒸镀的烧结体及其制备方法,可应用于太阳能电池等用高导电性透明氧化物膜。
背景技术
各种薄膜材料中,透明导电薄膜可广泛应用于太阳能电池,建筑节能玻璃、各类传感器及平板显示等领域。其中氧化铟材料是一种n型半导体材料,因其接近金属的导电率、高可见光透过率等独特的物理性能而被广泛应用于太阳能电池。氧化铟材料薄膜的制备方法很多,常见的有真空热蒸发、电子束蒸发、磁控溅射、等离子体增强化学气相沉积、喷涂法和溶胶-凝胶法。前四种方法需要在真空环境下完成,由于不受空气中各种杂质的影响,可以获得比较纯净的材料,成膜质量较高,相应的成本较高,大面积制备比较困难。后面两种方法可以在大气压下完成,大面积制备比较容易,成本比较低,但是要获得比较纯净的高质量薄膜比较困难。
活化等离子体沉积(Reactive Plasma Deposition,RPD)是最近发展起来的一种优势明显的薄膜沉积方法。其主要优势包括:(1)对衬底的低轰击损伤,RPD镀膜本质上可认为是一种离子辅助蒸发技术,镀膜过程中粒子能量小,几乎不存在高能粒子,低能量的粒子避免了对衬底表面的损伤;(2)可低温获得高质量薄膜,RPD沉积过程的特殊性使得低温条件下也可以获得高质量的薄膜;(3)源材料利用率高,RPD镀膜可控制到达坩埚的等离子束功率密度,最终提高蒸发源材料的利用率,远远高于溅射靶材料的利用率,为降低成本奠定了基础;(4)用途广泛,RPD设备可用于制备IWO、AZO、GZO等透明导电薄膜。
RPD镀膜是利用等离子体将烧结体进行气化、离解,在衬底上反应成膜。与溅射过程相比,烧结体物质是靠等离子体的热能使之气化,并以离子的形式扩散到衬底表面,对衬底的轰击作用弱。与反应磁控溅射不同,反应磁控溅射中的“反应”,是指通入反应气体来获得化合物薄膜,例如在制备铟锡氧化物薄膜时通入氧气,而RPD中的反应物质是利用源物质本身,是以离子的形式到达衬底发生化学反应的。
现有技术中,由于烧结体本身为密度较低的非致密体,在使用过程中存在掉粉的问题,出现掉粉问题后,需要停机将轨道清理干净后才能继续生产,降低了生产效率。此前有专利CN103347836A说明了一种掺杂钨的氧化铟烧结体应用于RPD技术进行镀膜,其核心是采用具有方铁锰矿结构的、固溶有钨的氧化铟晶相粉末和氧化铟粉末混合烧结得到双相结构的烧结体来规避烧结体在镀膜过程中的开裂与喷溅问题。但客户在使用过程还是会发生少量粉末掉落的问题,对连续生产会带来隐患。
同时,作为太阳能作为一种清洁能源,已广泛应用于我们生活,成为最有应用前景的新能源之一。太阳能电池的关键是将太阳能更好的转换成电能,其中关键的是需实现对截止波长在1200纳米内的光有良好透过率,且能将转化出的电能更高效率的导出,实现更高的光电转换效率,从而制备性能优异的太阳能电池产品;同时要提高生产效率,降低太阳能电池的成本,实现更大规模的应用。
发明内容
本发明要解决的问题
本发明提供了一种用于蒸镀的烧结体及其制备方法。本发明在于通过掺杂元素x来制作烧结体,该烧结体进行RPD镀膜可以获得高的迁移率。同时为解决烧结体由于密度低而导致在使用过程中的掉粉问题而影响镀膜过程的连续进行而导致生产效率降低的问题。本发明通过加入极微量的硅元素,在烧结后形成粘结相,在不降低镀膜质量的前提下,解决了镀膜过程中烧结体掉粉问题。
用于解决问题的方案
为此,本发明提出一种用于蒸镀的烧结体及其制备方法。
本发明第一方面提供了用于蒸镀的烧结体,所述用于蒸镀的烧结体由氧化铟、掺杂元素x和硅元素制备得到;掺杂元素x的含量以x的氧化物/(氧化铟+x的氧化物)的重量比为0.2~5.0%;所述硅元素在所述烧结体中的含量为5~600ppm,所述硅元素的加入方式为纳米氧化硅粉末和二氧化硅溶胶中的至少一种。
根据本发明的一些实施方式,所述掺杂元素x选自铈(Ce)锆(Zr)和钛(Ti)中的至少一种。
掺杂元素x中,Ce具有与In原子半径近似的特点,Ce离子取代In离子的固溶对于晶格的畸变小,从而对于载流子的迁移率提高是有利的。Zr和Ti原理相同。
根据本发明的一些实施方式,所述硅元素在所述烧结体中的含量为5~600ppm。
根据本发明的一些实施方式,所述硅元素在所述烧结体中的含量为20~60ppm。
本发明第二方面提供了制备上述用于蒸镀的烧结体的方法,包括以下步骤:
S1:按配比称取所述氧化铟、掺杂元素x的氧化物,将所述氧化铟和掺杂元素x的氧化物混匀后高温处理,得到固溶有掺杂元素x的氧化铟晶相粉末;
S2:将所述硅元素加入步骤S1得到的固溶有掺杂元素x的氧化铟晶相粉末中,混匀后压制成型成所需尺寸的坯体;
S3:将步骤S2得到的坯体进行烧结,即得所述的用于蒸镀的烧结体。
根据本发明的一些实施方式,步骤S1中,所述高温处理的温度为1300~1550℃。
根据本发明的一些实施方式,步骤S1中,所述高温处理的时间为2~72h。
根据本发明的一些实施方式,步骤S3中,所述烧结的温度为650~1450℃。
根据本发明的一些实施方式,步骤S3中,所述烧结的温度为700~1100℃。
根据本发明的一些实施方式,步骤S3中,所述烧结的时间为3~72h。
根据本发明实施方式的用于蒸镀的烧结体,至少具有如下技术效果:
本发明的技术方案中,选取具有与铟原子半径近似的铈(Ce)、锆(Zr)和钛(Ti)中的一种或多种的组合作为掺杂元素,掺杂离子取代铟离子的固溶对于晶格的畸变小,从而提高载流子的迁移率,从而可制备高载流子迁移率且适合RPD蒸镀烧结体。把这种烧结体通过RPD(活化等离子沉积技术)技术进行蒸镀,可连续稳定地获得低的电阻率和高的红外光透射率的晶质的透明导电膜,此薄膜在940-1200纳米范围内更高的光透过率,应用于太阳能电池具有相比于采用测控溅射或RPD(活化等离子沉积技术)技术蒸镀的ITO薄膜制作的太阳能电池具有更高的光电转化效率,从而可制备性能更加优异的太阳能电池。
本发明的技术方案中,通过添加极微量的硅元素,在烧结后形成粘结相,在不降低镀膜质量的前提下,解决了使用过程中烧结体掉粉的问题。硅元素的添加量为5~600ppm,优选10~600ppm,更优选20~60ppm。
本发明的技术方案中,烧结体密度为60%左右(理论密度以7.18g/cm3计)的非致密体,适合RPD蒸镀。
附图说明
图1是具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末的XRD测试图谱。
图2是具有方铁锰矿结构的、固溶有锆的氧化铟晶相粉末的XRD测试图谱。
图3是具有方铁锰矿结构的、固溶有钛的氧化铟晶相粉末的XRD测试图谱。
具体实施方式
以下是本发明的具体实施例,并结合实施例对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1
本例以CeO2/(In2O3+CeO2)的重量比为0.1%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,如图1所示。再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在900℃下,进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。对膜的迁移率进行测量,迁移率为99.6cm2/V.S。
实施例2
本例与实施例1的区别在于,CeO2/(In2O3+CeO2)的重量比为0.2%,将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。对膜的迁移率进行测量,迁移率为121.5cm2/V.S。
实施例3
本例与实施例1的区别在于,CeO2/(In2O3+CeO2)的重量比为1.0%,将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。对膜的迁移率进行测量,迁移率为119.4cm2/V.S。
实施例4
本例与实施例1的区别在于,CeO2/(In2O3+CeO2)的重量比为2.0%,将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。对膜的迁移率进行测量,迁移率为116.7cm2/V.S。
实施例5
本例与实施例1的区别在于,CeO2/(In2O3+CeO2)的重量比为3.0%,将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。对膜的迁移率进行测量,迁移率为113.2cm2/V.S。
实施例6
本例与实施例1的区别在于,CeO2/(In2O3+CeO2)的重量比为4.0%,将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。对膜的迁移率进行测量,迁移率为109.8cm2/V.S。
实施例7
本例与实施例1的区别在于,CeO2/(In2O3+CeO2)的重量比为5.0%,将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。对膜的迁移率进行测量,迁移率为106.5cm2/V.S。
实施例8
本例与实施例1的区别在于,CeO2/(In2O3+CeO2)的重量比为5.5%,将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。对膜的迁移率进行测量,迁移率为102.5cm2/V.S。
实施例9
本例以CeO2/(In2O3+CeO2)的重量比为2.0%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在650℃下进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例10
本例以CeO2/(In2O3+CeO2)的重量比为2.0%,将氧化铟与氧化铈混合物料在高温1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在750℃下进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例11
本例以CeO2/(In2O3+CeO2)的重量比为2.0%,将氧化铟与氧化铈混合物料在高温1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在850℃下进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例12
本例以CeO2/(In2O3+CeO2)的重量比为2.0%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在950℃下进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例13
本例以CeO2/(In2O3+CeO2)的重量比为2.0%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在1050℃下,烧结6小时,进行烧结得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例14
本例以CeO2/(In2O3+CeO2)的重量比为2.0%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在1250℃下进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例15
本例以CeO2/(In2O3+CeO2)的重量比为2.0%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在1450℃下进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例16
本例以CeO2/(In2O3+CeO2)的重量比为2.0%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为100ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在950℃下进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例17
本例以CeO2/(In2O3+CeO2)的重量比为2.0%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为100ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在950℃下进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例18
本例以CeO2/(In2O3+CeO2)的重量比为2.0%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为200ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在950℃下进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例19
本例以CeO2/(In2O3+CeO2)的重量比为2.0%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为300ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在950℃下进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例20
本例以CeO2/(In2O3+CeO2)的重量比为2.0%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为400ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在950℃下进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例21
本例以CeO2/(In2O3+CeO2)的重量比为2.0%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为600ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在950℃下进行烧结6小时,得到烧结密度为64.0%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
对比例1
本例与实施例2的区别在于,其中未添加氧化硅。将该烧结体进行RPD蒸镀实验,没有发现喷溅,但使用时有掉粉现象。
对比例2
本例与实施例7的区别在于,其中未添加氧化硅。将该烧结体进行RPD蒸镀实验,没有发现喷溅,但使用时有掉粉现象。
对比例3
本例与实施例16的区别在于,其中未添加氧化硅。将该烧结体进行RPD蒸镀实验,没有发现喷溅,但使用时有掉粉现象。
检测例1
将实施例1~21及对比例1~3的烧结体的配比明细和检测结果汇总如表1所示。
表1
Figure BDA0002596140810000091
备注:表中OK表示合格,NG表示不合格。
实施例1~8中,将氧化铟粉末以及氧化铈粉末用作原料粉末,以氧化铟为主要成分,含有铈作为添加元素,铈的含量以CeO2/(In2O3+CeO2)的重量比计为0.1~5.5%将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟晶相粉末,再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在900度下进行烧结6小时,得到烧结体。其中,在实施例1~8中,烧结体的强度良好,无掉粉情况,进行RPD蒸镀实验,没有发现喷溅,也不掉粉。实施例1,铈的含量以CeO2/(In2O3+CeO2)的重量比计为0.1%时,迁移率仅为99.6cm2/V.S;实施例8中,铈的含量为5.5%时,迁移率已经降为102.5cm2/V.S,优选0.2-5.0%的掺杂量。
实施例9~13中,以氧化铟为主要成分,含有铈作为添加元素,铈的含量以CeO2/(In2O3+CeO2)的重量比计2.0%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟单一晶相粉末,再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在650~1450℃下进行烧结6小时,得到烧结体。烧结体的强度良好,进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例14~21中,以氧化铟为主要成分,含有铈作为添加元素,铈的含量以CeO2/(In2O3+CeO2)的重量比计2.0%,将氧化铟与氧化铈混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有铈的氧化铟单一晶相粉末,再与总重量含量为5-600ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在950℃下进行烧结6小时,得到烧结体。实施例15~20的烧结体,进行RPD蒸镀实验,没有发现喷溅,也不掉粉。进行RPD蒸镀实验,没有发现喷溅,但有掉粉现象。
实施例22
本例以ZrO2/(In2O3+ZrO2)的重量比为0.1%,将氧化铟与氧化锆混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有锆的氧化铟晶相粉末,如图2所示。再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在900℃下进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。对膜的迁移率进行测量,迁移率为98.1cm2/V.S。
实施例23~42
实施例23~42分别与实施例2~21相对应,不同之处仅在于将掺杂元素铈替换为掺杂元素锆。
对比例4
本例与实施例22的区别在于,其中未添加氧化硅。将该烧结体进行RPD蒸镀实验,没有发现喷溅,但使用时有掉粉现象,不利于连续生产。
对比例5
本例与实施例29的区别在于,其中未添加氧化硅。将该烧结体进行RPD蒸镀实验,没有发现喷溅,但使用时有掉粉现象,不利于连续生产。
对比例6
本例与实施例33的区别在于,其中未添加氧化硅。将该烧结体进行RPD蒸镀实验,没有发现喷溅,但使用时有掉粉现象,不利于连续生产。
检测例2
将实施例22~42及对比例4~6的烧结体的配比明细和检测结果汇总如表2所示。
表2
Figure BDA0002596140810000111
Figure BDA0002596140810000121
备注:表中OK表示合格,NG表示不合格。
实施例22~29中,将氧化铟粉末以及氧化锆粉末用作原料粉末,以氧化铟为主要成分,含有锆作为添加元素,锆的含量以ZrO2/(In2O3+ZrO2)的重量比计为0.1~5.5%将氧化铟与氧化锆混合物料在在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有锆的氧化铟晶相粉末,再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在900度下进行烧结6小时,得到烧结体。其中,在实施例22~29中,烧结体的强度良好,进行RPD蒸镀实验,没有发现喷溅,也不掉粉。实施例22,锆的含量以ZrO2/(In2O3+ZrO2)的重量比计为0.2%时,迁移率为98.1cm2/V.S;实施例29中,锆的含量为5.5%时,迁移率已经降为97.0cm2/V.S,优选0.2-5.0%的掺杂量。
实施例30~34中,以氧化铟为主要成分,含有锆作为添加元素,锆的含量以ZrO2/(In2O3+ZrO2)的重量比计2.0%,将氧化铟与氧化锆混合物料在在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有锆的氧化铟单一晶相粉末,再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再分别在650~1450℃下进行烧结6小时,得到烧结体。烧结体的强度良好,进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例35~42中,以氧化铟为主要成分,含有锆作为添加元素,锆的含量以ZrO2/(In2O3+ZrO2)的重量比计2.0%,将氧化铟与氧化锆混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有锆的氧化铟单一晶相粉末,再与总重量含量为5-600ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在950℃下进行烧结6小时,得到烧结体。实施例36~41的烧结体,进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例43
本例以TiO2/(In2O3+TiO2)的重量比为0.1%,将氧化铟与氧化钛混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有钛的氧化铟晶相粉末,如图3所示。再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在900℃下进行烧结6小时,得到烧结密度为60%左右的烧结体。将该烧结体进行RPD蒸镀实验,没有发现喷溅,也不掉粉。对膜的迁移率进行测量,迁移率为98.7cm2/V.S
实施例44~63
实施例44~63分别与实施例2~21相对应,不同之处仅在于将掺杂元素铈替换为掺杂元素钛。
对比例7
本例与实施例44的区别在于,其中未添加氧化硅。将该烧结体进行RPD蒸镀实验,没有发现喷溅,但使用时有掉粉现象,不利于连续生产。
对比例8
本例与实施例49的区别在于,其中未添加氧化硅。将该烧结体进行RPD蒸镀实验,没有发现喷溅,但使用时有掉粉现象,不利于连续生产。
对比例9
本例与实施例58的区别在于,其中未添加氧化硅。将该烧结体进行RPD蒸镀实验,没有发现喷溅,但使用时有掉粉现象,不利于连续生产。
检测例3
将实施例44~63及对比例7~9的烧结体的配比明细和检测结果汇总如表3所示。
表3
Figure BDA0002596140810000131
Figure BDA0002596140810000141
备注:表中OK表示合格,NG表示不合格。
实施例43~50中,将氧化铟粉末以及氧化钛粉末用作原料粉末,以氧化铟为主要成分,含有钛作为添加元素,钛的含量以TiO2/(In2O3+TiO2)的重量比计为0.1~5.5%将氧化铟与氧化钛混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有钛的氧化铟晶相粉末,再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在900度下进行烧结6小时,得到烧结体。其中,在实施例43~50中,烧结体的强度良好,进行RPD蒸镀实验,没有发现喷溅,也不掉粉。实施例43,钛的含量以TiO2/(In2O3+TiO2)的重量比计为0.1%时,迁移率为98.7cm2/V.S;实施例50中,钛的含量为5.5%时,迁移率已经降为98.4cm2/V.S,优选0.2-5.0%的掺杂量。
实施例51~57中,以氧化铟为主要成分,含有钛作为添加元素,钛的含量以TiO2/(In2O3+TiO2)的重量比计2.0%,将氧化铟与氧化钛混合物料在1500℃,处理5小时,获得具有方铁锰矿结构的、固溶有钛的氧化铟单一晶相粉末,再与总重量含量为50ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再分别在650~1450℃下进行烧结6小时,得到烧结体。烧结体的强度良好,进行RPD蒸镀实验,没有发现喷溅,也不掉粉。
实施例58~63中,以氧化铟为主要成分,含有钛作为添加元素,钛的含量以TiO2/(In2O3+TiO2)的重量比计2.0%,将氧化铟与氧化钛混合物料在高温获得具有方铁锰矿结构的、固溶有钛的氧化铟单一晶相粉末,再与总重量含量为5-600ppm的二氧化硅溶胶混合后压制成密度在58%相对密度的胚体,再在950℃下进行烧结得到烧结体。实施例37~42的烧结体,进行RPD蒸镀实验,没有发现喷溅,也不掉粉。

Claims (9)

1.一种用于蒸镀的烧结体,其特征在于,包含有氧化铟、掺杂元素x;所述掺杂元素x的含量以x的氧化物/(氧化铟+x的氧化物)的重量比计为0.2~5.0%;所述烧结体还包含有占所述烧结体的总重量比计为5~600 ppm的硅元素;
所述掺杂元素x选自锆和钛中的至少一种。
2.根据权利要求1所述的用于蒸镀的烧结体,其特征在于,所述硅元素的加入方式为纳米氧化硅粉末和二氧化硅溶胶中的至少一种。
3.根据权利要求2所述的用于蒸镀的烧结体,其特征在于,所述硅元素在所述烧结体中的含量为20~60 ppm。
4.一种制备如权利要求1~3任一项所述的用于蒸镀的烧结体的方法,其特征在于,包括以下步骤:
S1:按配比称取所述氧化铟、掺杂元素x的氧化物,将所述氧化铟和掺杂元素x的氧化物混匀后高温处理,得到固溶有掺杂元素x的氧化铟晶相粉末;
S2:将所述硅元素加入步骤S1得到的固溶有掺杂元素x的氧化铟晶相粉末中,混匀后压制成型得到所需尺寸的坯体;
S3:将步骤S2得到的坯体进行烧结,即得所述的用于蒸镀的烧结体。
5.根据权利要求4所述的方法,其特征在于,步骤S1中,所述高温处理的温度为1300~1550℃。
6.根据权利要求4所述的方法,其特征在于,步骤S1中,所述高温处理的时间为2~72h。
7.根据权利要求4所述的方法,其特征在于,步骤S3中,所述烧结的温度为650~1450℃。
8.根据权利要求7所述的方法,其特征在于,步骤S3中,所述烧结的温度为700~1100℃。
9.根据权利要求4所述的方法,其特征在于,步骤S3中,所述烧结的时间为3~72h。
CN202010709835.XA 2020-07-22 2020-07-22 一种用于蒸镀的烧结体及其制备方法 Active CN111943649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010709835.XA CN111943649B (zh) 2020-07-22 2020-07-22 一种用于蒸镀的烧结体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010709835.XA CN111943649B (zh) 2020-07-22 2020-07-22 一种用于蒸镀的烧结体及其制备方法

Publications (2)

Publication Number Publication Date
CN111943649A CN111943649A (zh) 2020-11-17
CN111943649B true CN111943649B (zh) 2022-08-26

Family

ID=73341151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010709835.XA Active CN111943649B (zh) 2020-07-22 2020-07-22 一种用于蒸镀的烧结体及其制备方法

Country Status (1)

Country Link
CN (1) CN111943649B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807870A (zh) * 2022-04-18 2022-07-29 长沙壹纳光电材料有限公司 一种用于rpd的靶材、透明导电薄膜及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1905864A1 (en) * 2005-07-15 2008-04-02 Idemitsu Kosan Company Limited In Sm OXIDE SPUTTERING TARGET
US20110168994A1 (en) * 2008-06-06 2011-07-14 Hirokazu Kawashima Sputtering target for oxide thin film and process for producing the sputtering target
CN102781838A (zh) * 2010-02-25 2012-11-14 康宁股份有限公司 制造掺杂型或非掺杂型ZnO材料的方法及所述材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344594B1 (ko) * 2008-05-22 2013-12-26 이데미쓰 고산 가부시키가이샤 스퍼터링 타겟, 그것을 이용한 비정질 산화물 박막의 형성 방법, 및 박막 트랜지스터의 제조 방법
KR101768833B1 (ko) * 2009-08-05 2017-08-16 스미토모 긴조쿠 고잔 가부시키가이샤 산화물 소결물체와 그 제조 방법, 타겟 및 투명 도전막
JP5472655B2 (ja) * 2009-08-07 2014-04-16 住友金属鉱山株式会社 蒸着用タブレットとその製造方法
JPWO2011040028A1 (ja) * 2009-09-30 2013-02-21 出光興産株式会社 In−Ga−Zn−O系酸化物焼結体
US8771557B2 (en) * 2009-10-06 2014-07-08 Jx Nippon Mining & Metals Corporation Indium oxide sintered compact, indium oxide transparent conductive film, and manufacturing method of indium oxide transparent conductive film
CN101811871B (zh) * 2010-01-07 2012-11-21 中国科学院半导体研究所 用于金属有机物化学沉积设备的衬托盘及其制作工艺
WO2011115177A1 (ja) * 2010-03-19 2011-09-22 住友金属鉱山株式会社 透明導電膜
CN106435490B (zh) * 2015-08-06 2018-11-30 清华大学 溅射靶及氧化物半导体膜以及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1905864A1 (en) * 2005-07-15 2008-04-02 Idemitsu Kosan Company Limited In Sm OXIDE SPUTTERING TARGET
US20110168994A1 (en) * 2008-06-06 2011-07-14 Hirokazu Kawashima Sputtering target for oxide thin film and process for producing the sputtering target
CN102781838A (zh) * 2010-02-25 2012-11-14 康宁股份有限公司 制造掺杂型或非掺杂型ZnO材料的方法及所述材料

Also Published As

Publication number Publication date
CN111943649A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
Zhu et al. Sputtering deposition of transparent conductive F-doped SnO2 (FTO) thin films in hydrogen-containing atmosphere
Manavizadeh et al. Influence of substrates on the structural and morphological properties of RF sputtered ITO thin films for photovoltaic application
CN102747334A (zh) 一种氧化锌基透明导电薄膜及其制备方法
Chen et al. Fabrication of transparent conducting ATO films using the ATO sintered targets by pulsed laser deposition
CN108002428B (zh) 一种蒸镀用ito颗粒的制备方法及由该方法制备的ito颗粒
CN111943649B (zh) 一种用于蒸镀的烧结体及其制备方法
CN114524664A (zh) 一种太阳能电池用陶瓷靶材及其制备方法
CN111943650B (zh) 一种用于活化等离子沉积技术的iwo靶材及其制备方法
Gan et al. High carrier mobility tungsten-doped indium oxide films prepared by reactive plasma deposition in pure argon and post annealing
CN102586741A (zh) 一种掺杂氧化锌薄膜的制备方法
EP2690192B1 (en) Multi-elements-doped zinc oxide film, manufacturing method and application thereof
Chen et al. Optimization of the process for preparing Al-doped ZnO thin films by sol-gel method
JP5952031B2 (ja) 酸化物焼結体の製造方法およびターゲットの製造方法
KR101240197B1 (ko) 열 안정성이 우수한 투명도전막, 투명도전막용 타겟 및 투명도전막용 타겟의 제조방법
JP2011207742A (ja) 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法
Zhai et al. Influence of Bi2O3, TiO2 additives and sintering process on the performance of ITO target based on normal pressure sintering method
KR101264111B1 (ko) 투명도전막, 투명도전막용 타겟 및 투명도전막용 타겟의 제조방법
JP2012197216A (ja) 酸化物焼結体、その製造方法およびそれを用いたターゲット
KR20110111230A (ko) 투명전극 소재 및 그 제조방법과 투명전극의 제조방법
Punitha et al. Structural and surface morphological studies of magnesium tin oxide thin films
CN103993281A (zh) 一种制备fto透明导电薄膜的制备方法
Shi Research Progress on the Photoelectric Properties of Indium-Doped Cadmium Oxide Transparent Conductive Films
CN103911048A (zh) 一种高性能透明导电氧化铟锡纳米晶墨水及其制备方法
KR101297581B1 (ko) Izto 미세분말 및 이의 제조방법
KR20130078156A (ko) Izto 미세분말로 제조된 소결체

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant