WO2011115177A1 - 透明導電膜 - Google Patents

透明導電膜 Download PDF

Info

Publication number
WO2011115177A1
WO2011115177A1 PCT/JP2011/056245 JP2011056245W WO2011115177A1 WO 2011115177 A1 WO2011115177 A1 WO 2011115177A1 JP 2011056245 W JP2011056245 W JP 2011056245W WO 2011115177 A1 WO2011115177 A1 WO 2011115177A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent conductive
conductive film
cerium
sintered body
Prior art date
Application number
PCT/JP2011/056245
Other languages
English (en)
French (fr)
Inventor
中山 徳行
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201180013835.5A priority Critical patent/CN102792387B/zh
Priority to JP2012505728A priority patent/JP5561358B2/ja
Priority to DE112011100972T priority patent/DE112011100972T5/de
Priority to KR1020127023422A priority patent/KR101789347B1/ko
Priority to US13/580,196 priority patent/US9493869B2/en
Publication of WO2011115177A1 publication Critical patent/WO2011115177A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • C04B2235/783Bimodal, multi-modal or multi-fractional
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to a transparent conductive film, and more specifically, an ion plate comprising indium oxide as a main component, containing cerium, exhibiting low resistance derived from a high refractive index and high carrier electron mobility, and having a small surface roughness.
  • the present invention relates to a crystalline transparent conductive film formed by a ting method.
  • Transparent conductive films have high conductivity and high transmittance in the visible light region, so they are used for electrodes of flat panel displays, solar cells, and other light receiving elements, as well as automotive windows and building heat rays. It is also used as various antifogging transparent heating elements for reflective films, antistatic films, frozen showcases, and the like.
  • Practical transparent conductive films include tin oxide (SnO 2 ) -based, zinc oxide (ZnO) -based, and indium oxide (In 2 O 3 ) -based thin films.
  • the transparent conductive film most widely used industrially is based on indium oxide.
  • indium oxide containing tin as a dopant is called an ITO (Indium-Tin-Oxide) film and is widely used because a film having a particularly low resistance can be easily obtained.
  • ITO Indium-Tin-Oxide
  • Many of the transparent conductive films are n-type degenerated semiconductors, and electrons serving as carriers greatly contribute to enhancing electrical conduction. Therefore, conventionally, efforts have been made to increase the carrier electron concentration as much as possible in order to reduce the resistance of the ITO film.
  • the ITO film is generally known to have a crystallization temperature of about 190 to 200 ° C., and at this temperature, an amorphous film is formed on the low temperature side and a crystalline film is formed on the high temperature side.
  • a crystallization temperature of about 190 to 200 ° C.
  • a thermal film necessary for crystallization is not given and an amorphous film is formed.
  • a substrate temperature of about 300 ° C.
  • a crystalline film is formed.
  • the generation mechanism of carrier electrons differs between the amorphous and crystalline films of ITO.
  • Indium oxide has a crystal structure called a big byte of a cubic crystal phase that is stable at normal pressure or lower.
  • Carrier electrons are generated by replacing tetravalent tin with lattice points of trivalent indium in the bixbite structure.
  • Tin is an element that can increase the carrier electron concentration most as a dopant, and it is known that the addition of 10% by weight in terms of tin oxide provides the lowest resistance.
  • a transparent conductive film having a higher refractive index than an ITO film and a low electric resistance comparable to that of ITO has been required.
  • Typical examples of the use of such a transparent conductive film include blue LEDs and solar cells.
  • a gallium nitride layer is used for the light emitting layer of the blue LED.
  • the optical characteristic of this gallium nitride layer is that its refractive index is as high as about 2.4.
  • the transparent conductive film is required to have a refractive index close to 2.4. .
  • the refractive index is a value unique to the substance, and the refractive index of indium oxide, which is generally known, is as low as 1.9 to 2.0. Moreover, low surface resistance is calculated
  • the ITO film is a material in which the carrier (electron) concentration is remarkably increased by tin as a dopant, so that it is a problem that the refractive index decreases when an attempt is made to obtain a low-resistance crystal film. It was.
  • the blue LED described above in addition to the refractive index and specific resistance, characteristics superior to ITO in patterning properties by wet etching may be required. Therefore, it is preferable to use a manufacturing process in which an amorphous transparent conductive film formed at a low temperature is subjected to patterning by wet etching with a weak acid and then crystallized by heat treatment in a non-oxidizing atmosphere to reduce resistance. By using this process, it is possible to form a transparent electrode patterned with high definition.
  • Other applications where the transparent conductive film is required to have characteristics superior to those of the ITO film include solar cells.
  • a transparent conductive film having a high transmittance of not only visible light but also infrared light is used as the surface electrode of the solar cell, sunlight can be taken in efficiently.
  • the specific resistance can be lowered, but since the carrier electron concentration is high, there is a problem that the reflectance and absorption of infrared light are high and the transmittance is low.
  • the transparent conductive film which raised the refractive index may be used in order to raise the taking-in efficiency of sunlight, and to adjust the refractive index of the whole module. Also in this case, for the same reason as that for the blue LED application, the ITO film could not provide a sufficient effect.
  • low specific resistance is emphasized, and high-definition patterning by wet etching with a weak acid is not required unlike blue LEDs.
  • Patent Document 1 proposes a sputtering target in which a transparent thin film having excellent moisture resistance can be efficiently formed, and the silver-based thin film is hardly damaged during the film formation.
  • This metal is composed of a conductive transparent metal oxide containing an oxide of a metal element that does not substantially have a solid solution region with silver, and has substantially no solid solution region with silver.
  • a sputtering target having an element content of 5 to 40 atom% (atomic%) with respect to the metal element of the conductive transparent metal oxide is described, preferably as a metal element substantially having no solid solution region with silver At least titanium element or cerium element is described, and indium oxide is described as the conductive transparent metal oxide.
  • Patent Document 1 discloses that a metal oxide of a titanium element or a cerium element which has substantially no solid solution region with silver has a high refractive index of 2.3 or more, and such Since the high refractive index material is contained in an amount such that the total content of titanium element and cerium element is 5 to 40 atom% with respect to the metal element of the conductive transparent metal oxide, the film is formed using this sputtering target. It is described that the refractive index of a transparent thin film can be increased to about 2.1 to 2.3.
  • Patent Document 2 discloses that when forming a transparent thin film of a conductive film configured to sandwich a silver-based thin film, a transparent thin film excellent in moisture resistance can be efficiently formed.
  • a mixed oxide based on indium oxide and cerium oxide contains tin oxide and / or titanium oxide in an amount less than the mixing ratio of the base materials.
  • a sputtering target that is a sintered body of a mixed oxide has been proposed.
  • cerium oxide has a high refractive index, it is described that the refractive index of the mixed oxide of indium oxide and cerium oxide also becomes high according to the content ratio of cerium oxide. Has been.
  • the mixed oxide of indium oxide and cerium oxide does not have sufficient conductivity, so as the mixing ratio of cerium oxide is increased, the conductivity of the target of the mixed oxide decreases rapidly. In addition, it is described that the target becomes a low conductivity target that is difficult to perform direct current sputtering.
  • Patent Document 3 discloses a 5 to 20 nm-thick silver-based thin film as a transparent oxide thin film as a transparent conductive film having high conductivity and visible light transmittance, having no deterioration over time and excellent storage stability.
  • a transparent conductive film having a three-layer structure to be sandwiched has been proposed.
  • the transparent oxide thin film includes a first base material containing one or more metal oxides that are easily dissolved in silver, and a second base material containing one or more metal oxides that are difficult to dissolve in silver.
  • a transparent conductive film preferably a first substrate made of indium oxide, and a second substrate made of cerium oxide.
  • Patent Documents 1 and 2 describe that it is desirable to set the film formation temperature to 180 ° C.
  • the film formation temperature is 180 ° C. or lower, and the heat treatment after film formation is at most. It is 220 degreeC, Comprising: It heats at low temperature compared with the crystallization temperature of the transparent thin film of the composition shown by the Example.
  • These high refractive index transparent thin films disclosed in Patent Documents 1 to 3 are all amorphous films.
  • the transparent thin film must be amorphous like the moisture-proof thin film SiO 2 listed in Patent Document 1. . This is because if the film is crystalline, moisture enters through the crystal grain boundaries and the silver thin film is damaged.
  • Patent Document 3 describes that the conductivity of the entire three-layer film can be increased by performing an annealing process at a temperature of 200 ° C. or higher.
  • the purpose of this annealing treatment is to reduce the resistance of the silver-based thin film constituting the three-layer film, and not to make the transparent thin film crystalline.
  • the transparent thin film crystalline for example, when the heat treatment is forcibly performed at a high temperature exceeding 300 ° C., the silver thin film is damaged even by thermal oxidation.
  • Patent Document 1 discloses the electrical resistance of a thin film having a three-layer structure of transparent thin film / silver thin film / transparent thin film, but does not disclose the electrical resistance of the transparent thin film alone.
  • 10 atomic% of cerium element with respect to indium element is in a preferable composition range, but when an amorphous transparent conductive film having this composition is formed to a film thickness of 200 nm at room temperature, the surface resistance is 100 ⁇ / ⁇ ( It is confirmed that the specific resistance is 2.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • the transparent electrode of the blue LED is required to have a low specific resistance of at least 8.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the amorphous film of Patent Document 1 has a high electrical resistance as described above, and thus is applied. Difficult to do.
  • Patent Document 4 discloses a transparent conductive thin film that is extremely smooth, has a high work function, and is amorphous, and an oxide sintered body that can stably form the transparent conductive thin film.
  • a sputtering target using the same has been proposed.
  • the oxide sintered body contains 3% to 20% by mass of cerium, 0.1% to 4% by mass of tin, and 0.1% to 0.6% by mass of titanium, with the balance being It consists essentially of indium and oxygen, and cerium, tin, and titanium are solid-solved at the indium site, the sintered density is 7.0 g / cm 3 or more, and the average crystal grain size is 3 ⁇ m or less. It is stated that this is desirable.
  • Patent Document 4 only an amorphous film is shown, and no consideration is given to the formation of a crystalline transparent conductive film using the above sputtering target and the increase of the refractive index thereby. Absent. Moreover, although the oxide sintered compact of patent document 4 contains tin, there is no mention about the bad influence to the low refractive index reduction which tin exerts.
  • Patent Document 7 proposes a transparent conductive film made of only indium oxide and cerium oxide without containing tin or titanium as described above.
  • Patent Document 7 when a crystal peak is observed by X-ray diffraction, the presence of a peak derived from indium oxide and cerium oxide is observed, and when EPMA measurement is performed, cerium oxide particles dispersed in indium oxide
  • [Ce] / ([In] + [Ce]) is 0.005 to 0.00.
  • a sputtering target characterized by 15 is proposed, and it is described that a transparent conductive film is formed by sputtering using this sputtering target.
  • the transparent conductive film of Patent Document 7 contains 0.005 to 0.15 cerium as [Ce] / ([In] + [Ce]).
  • the surface roughness of the transparent conductive film there is no mention of the surface roughness of the transparent conductive film.
  • the transparent conductive film is formed by a sputtering method, the surface smoothness is impaired, resulting in a rough surface. The problem is that the scattering of light increases in the applications.
  • Patent Document 5 proposes a transparent metal material and a transparent electrode that are made of a material that is transparent, conductive, can be stably supplied, and has excellent chemical resistance.
  • a metal oxide layer having an anatase type crystal structure is formed, and by constituting the metal oxide layer with M: TiO 2 , low resistivity is expressed while maintaining internal transmittance,
  • M: TiO 2 obtained as a result of substituting the Ti site of the anatase TiO 2 with other atoms (Nb, Ta, Mo, As, Sb, W, etc.) can be used to conduct electricity while maintaining transparency. It is described that the degree can be remarkably improved. Since the refractive index of anatase TiO 2 is about 2.4, the material of Patent Document 5 is optimal for matching the refractive index with the gallium nitride layer of the blue LED.
  • the specific resistance is about an order of magnitude higher than that of the ITO film, and sufficient characteristics as a transparent electrode of a blue LED are not obtained.
  • the deposition rate is slower than that of the ITO film and the production efficiency is lowered.
  • JP-A-8-260134 Japanese Patent Laid-Open No. 9-176841 Japanese Patent Laid-Open No. 9-176837 JP 2005-320192 A No. 2006/016608 Japanese Patent Laid-Open No. 9-59787 JP 2005-290458 A
  • An object of the present invention is to form a film by an ion plating method that contains indium oxide as a main component, contains cerium, exhibits low resistance derived from a high refractive index and high carrier electron mobility, and has a small surface roughness.
  • the object is to provide a crystalline transparent conductive film.
  • a transparent conductive film containing a specific amount of cerium in indium oxide or an indium oxide system containing a specific amount of tetravalent elements such as cerium and titanium has found that a transparent conductive film containing a specific amount of cerium in indium oxide or an indium oxide system containing a specific amount of tetravalent elements such as cerium and titanium.
  • the transparent conductive film is not very useful because it cannot achieve both a low specific resistance and a high refractive index when it is amorphous. However, when it is made crystalline, it has a low specific resistance and high refractive index derived from high carrier electron mobility. It came to show, and it discovered that it became a very useful thing in the use of blue LED or a solar cell.
  • a transparent electrode film of a blue LED or a solar cell is required to have a high light transmittance, but the surface of the film becomes rough in the conventional sputtering method, whereas when the film is formed by the ion plating method, It has been found that the surface of the transparent conductive film made of the crystalline material becomes extremely smooth, and the present invention has been completed.
  • the metal element group comprising titanium, zirconium, hafnium, molybdenum, and tungsten as a metal element (M element) containing indium oxide as a main component and containing cerium.
  • M element metal element
  • a transparent conductive film according to the second aspect wherein the M element is titanium.
  • the transparent conductive film according to any one of the first to third aspects wherein the film does not contain tin.
  • the transparent conductive film according to any one of the first to fourth aspects wherein the refractive index at a wavelength of 460 nm is 2.1 or more.
  • the transparent conductive film according to any one of the first to fifth aspects wherein the specific resistance is 8.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less. Is done.
  • the cerium content is 0.3 to 5 atomic% in Ce / (In + Ce) atomic ratio, and the specific resistance is 5.0.
  • a transparent conductive film characterized by having a density of 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the cerium content is 0.8 to 5 atomic% in Ce / (In + Ce) atomic ratio, and the specific resistance is 4.0.
  • a transparent conductive film characterized in that it is not more than ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the cerium content is 0.3 to 5 atomic% in terms of Ce / (In + Ce + M) atomic ratio, and the content of M element is M /
  • a transparent conductive film characterized by having an (In + Ce + M) atomic ratio of 1 atomic% or less and a specific resistance of 5.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less is provided.
  • the transparent conductive film of the present invention is a crystalline transparent conductive film formed by an ion plating method that contains indium oxide as a main component, contains a specific amount of cerium, and can contain a specific amount of X element. Because the film is crystalline, it not only exhibits low resistivity and high refractive index due to high carrier electron mobility, which could not be obtained with conventional ITO films, but also with conventional sputtering films. It has a very smooth film surface that was not present.
  • this transparent conductive film When this transparent conductive film is used for a blue LED, the refractive index of the transparent conductive film and the gallium nitride layer that is the light emitting layer of the blue LED can be matched, and light is extracted from the gallium nitride layer that is the light emitting layer. Efficiency can be increased.
  • the transparent conductive film of the present invention can increase the refractive index. Therefore, it is possible to improve the efficiency of capturing sunlight.
  • the ITO film when using a transparent conductive film as a surface electrode of a solar cell, the ITO film has a low specific resistance, but has a high carrier electron concentration, a high reflectance and absorption of infrared light, and a low transmittance.
  • the transparent conductive film of the invention the ITO film has a low specific resistance and a high refractive index, has a high transmittance of not only visible light but also infrared light, and has a smooth film surface, thereby suppressing light scattering. It can be substituted as a material that exceeds these characteristics.
  • FIG. 1 is a chart showing X-ray diffraction measurement results of the oxide sintered body used in Reference Example 1.
  • FIG. 2 is a chart showing X-ray diffraction measurement results of the crystalline transparent conductive film formed in Reference Example 1.
  • FIG. 3 shows the temperature at which the amorphous transparent conductive film formed at room temperature in the Reference Example 13 begins to change into a crystalline state, ie, the crystallization temperature, by performing X-ray diffraction measurement while heating the temperature. It is a chart which shows the X-ray-diffraction measurement result.
  • FIG. 1 is a chart showing X-ray diffraction measurement results of the oxide sintered body used in Reference Example 1.
  • FIG. 2 is a chart showing X-ray diffraction measurement results of the crystalline transparent conductive film formed in Reference Example 1.
  • FIG. 3 shows the temperature at which the amorphous transparent conductive film formed at room temperature in the Reference Example 13 begins to change into a crystalline state, ie, the crystall
  • FIG. 4 shows, for comparison, the X-ray diffraction measurement result obtained by examining the crystallization temperature in Comparative Example 5 by performing X-ray diffraction measurement while heating and heating an amorphous transparent conductive film formed at room temperature. It is a chart to show.
  • FIG. 5 is a chart showing X-ray diffraction measurement results of the oxide sintered body used in the present invention (Example 1).
  • the transparent conductive film of the present invention is a crystalline transparent conductive film formed by an ion plating method containing indium oxide as a main component and containing a specific amount of cerium, or a metal element (M Element) as a crystalline transparent conductive film formed by an ion plating method including a specific amount of one or more metal elements selected from the group of metal elements consisting of titanium, zirconium, hafnium, molybdenum, and tungsten,
  • the former may be referred to as a first transparent conductive film, and the latter may be referred to as a second transparent conductive film.
  • the first transparent conductive film of the present invention is a crystalline transparent conductive film containing indium oxide as a main component and containing cerium, and the content of cerium is Ce / ( (In + Ce)
  • the atomic ratio is 0.3 to 9 atomic%
  • the film is formed by an ion plating method, and the arithmetic average height (Ra) is 1.0 nm or less.
  • the cerium content needs to be 0.3 to 9 atomic% in terms of Ce / (In + Ce) atomic ratio. If the atomic ratio of cerium is less than 0.3 atomic%, the minimum necessary carrier electrons are not generated, and therefore the specific resistance of the transparent conductive film is preferably higher than 8.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Absent. On the other hand, when the content of cerium exceeds 9 atomic% in terms of the number of atoms, the carrier electron mobility is lowered and the specific resistance is increased.
  • the content of cerium is preferably 0.5 to 8 atomic%, more preferably 0.8 to 7 atomic% in terms of Ce / (In + Ce) atomic ratio.
  • the transparent conductive film of the present invention is preferably a crystalline transparent conductive film in which only a diffraction peak due to a crystalline indium oxide phase is observed in X-ray diffraction measurement (2 ⁇ / ⁇ ).
  • FIG. 2 shows the X-ray diffraction measurement results of the crystalline transparent conductive film.
  • the composition of this film is such that the cerium content is 9 atomic% in terms of Ce / (In + Ce) atomic ratio. It is formed by DC sputtering at a substrate temperature of 500 ° C., and the film thickness is about 200 nm.
  • the film Since peaks are observed at 2 ⁇ 30.5 ° ((222) plane), 22 ° ((211) plane), and 42 ° ((332) plane) of the chart, the film is sufficiently crystallized. It can be seen that the crystallinity is relatively high. This also applies to the transparent conductive film of the present invention formed by ion plating using tablets having the same component composition.
  • the transparent conductive film is crystalline.
  • the effect of lowering the specific resistance by adding cerium in the crystalline film will be described.
  • tetravalent cerium is considered to replace the lattice point of trivalent indium having a bixbite structure as described above, but unlike other tetravalent elements such as tin, it generates carrier electrons. The effect is extremely low. The behavior of cerium in such a crystalline film has not been known at all.
  • the transparent conductive film finally has a three-layer laminated structure in which the silver-based thin film is sandwiched between the transparent conductive film mainly composed of indium oxide and added with cerium. Therefore, the transparent conductive film is a barrier that protects the silver-based thin film from moisture damage. It is required to have excellent properties.
  • a transparent conductive film in which cerium is added with indium oxide as a main component by the same etchant as a silver-based thin film having low chemical resistance is used. Need to be etched.
  • Patent Document 1 describes that it is desirable to form an amorphous transparent conductive film at a substrate temperature of 180 ° C. or lower or room temperature.
  • Example 2 a mixture of indium oxide, titanium oxide and cerium oxide was used, the content of indium element was 80 atom%, the content of titanium element was 16 atom% (20 atom% relative to the indium element), and the content of cerium element was Using a sputtering target having 4 atom% (5 atom% with respect to indium element), that is, a cerium content of 4.8 atomic% in Ce / (In + Ce) atomic ratio, the temperature is reduced to 180 ° C. or lower with a DC magnetron sputtering apparatus. A transparent conductive film is formed on the maintained glass substrate.
  • a transparent thin film with a thickness of 37.5 nm, a silver thin film with a thickness of 15 nm, and a transparent thin film with a thickness of 37.5 nm were successively formed.
  • these glass substrates with thin films were subjected to conditions of 220 ° C. for 1 hour. The fact that it was heat-treated in is described.
  • the substrate heating heater of a general sputtering apparatus usually has a maximum heating temperature of 250 ° C., which is 300 ° C. at the highest, which is why the crystalline transparent conductive film has not been studied conventionally.
  • the transparent conductive film of the present invention even when cerium is added up to a maximum of 9 atomic% in the Ce / (In + Ce) atomic ratio, the generation of carrier electrons is small as described above. On the other hand, the mobility of carrier electrons is remarkably increased by becoming a crystalline film, and the specific resistance is lower than that of an amorphous film. It has not been conventionally known that the mobility of such carrier electrons is improved and the specific resistance is lowered.
  • cerium provides an optical effect, that is, an effect of increasing the refractive index, in addition to the above-described decrease in specific resistance.
  • Patent Documents 1 to 3 an effect of increasing the refractive index by cerium can be obtained even in an amorphous film.
  • a crystalline film is more effective than an amorphous film.
  • the lower the generation amount of carrier electrons the higher the reflectance, that is, the higher the refractive index.
  • the refractive index is high because only the minimum necessary carrier electrons are generated to exhibit a low specific resistance.
  • the ability to generate carrier electrons of cerium is low as in the case of the crystalline, and unlike the crystalline, it does not show high mobility.
  • cerium itself is not only effective for increasing the refractive index, but also reduces the specific resistance without generating so much carrier electrons, so it can be said that it is advantageous for increasing the refractive index.
  • cerium contained in a crystalline transparent conductive film containing indium oxide as a main component has a very low effect of generating carrier electrons, and it has been reported in the past that the mobility of carrier electrons increases. It is a fact that has not been found.
  • the first transparent conductive film of the present invention is formed by an ion plating method, and contains a film having high smoothness on the film surface while being crystalline because it contains indium oxide as a main component and contains cerium. Become.
  • the smoothness of the film surface is 1.0 nm or less in terms of arithmetic average height (Ra), and the smoothness increases as this value decreases.
  • Ra arithmetic average height
  • the reason why the film surface exhibits smoothness as described above is considered to be that the transparent conductive film of the present invention is formed by an ion plating method and that the crystallization temperature is increased by containing cerium.
  • the transparent conductive film of the present invention is greatly different from the transparent conductive film proposed in Patent Document 7.
  • the cerium content can be appropriately selected from the range of the cerium atom number ratio of 0.3 to 9 atomic% depending on the application.
  • Patent Document 1 describes that a metal oxide SnO 2 can be included in a film.
  • tin should not be contained in the transparent conductive film of the present invention. This is because when tin is contained, the carrier electron concentration is significantly increased even in a small amount, so that the refractive index is lowered and the characteristics of the transparent conductive film of the present invention are impaired. It should be noted that a very slight amount of inevitable impurities is not a problem because it hardly affects the characteristics.
  • the first transparent conductive film of the present invention preferably has a refractive index of 2.1 or more at a wavelength of 460 nm.
  • the refractive index is 2.1.
  • the first transparent conductive film of the present invention preferably has a specific resistance of 8.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the transparent conductive film of the present invention preferably has a carrier electron mobility of 35 cm 2 / Vs or higher. This is because by increasing the carrier electron mobility and keeping the carrier electron concentration low, it is possible to achieve both the low specific resistance and the high refractive index.
  • the cerium content is 0.3 to 5 atomic% in Ce / (In + Ce) atomic ratio, and the specific resistance is 5 Those of 0.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less are preferable. Furthermore, if the content of cerium is in the range of 0.8 to 5 atomic% in terms of Ce / (In + Ce) atomic ratio, the specific resistance can be 4.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the second transparent conductive film of the present invention contains indium oxide as a main component, contains cerium, and further includes titanium, zirconium, hafnium, molybdenum, as a metal element (M element). And a transparent conductive film containing one or more metal elements selected from the metal element group consisting of tungsten, the cerium content being 0.3 to 9 atomic% in terms of Ce / (In + Ce + M) atomic ratio, A crystalline transparent conductive film having a content of M / (In + Ce + M) atomic ratio of 1 atomic% or less and a film formed by an ion plating method and having an arithmetic average height (Ra) of 1.0 nm or less. It is characterized by that.
  • the cerium content in the second transparent conductive film is 0.3 to 9 atomic% in terms of Ce / (In + Ce + M) atomic ratio.
  • the atomic ratio of cerium is less than 0.3 atomic%, the minimum necessary carrier electrons are not generated, and the specific resistance of the transparent conductive film is preferably higher than 8.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Absent.
  • the atomic ratio of cerium exceeds 9 atomic%, the carrier electron mobility is lowered and the specific resistance is increased.
  • the element M has a function of increasing the carrier electron concentration in a crystalline transparent conductive film containing indium oxide as a main component and containing cerium.
  • the content is preferably 1 atomic% or less in terms of M / (In + Ce + M) atomic ratio.
  • the element M contained in the indium oxide-based thin film is easier to generate carrier electrons than cerium. If the M / (In + Ce + M) atomic ratio exceeds 1 atomic%, the carrier electron concentration becomes too high, and refraction occurs. The rate will drop. For this reason, the atomic ratio of the M element is preferably 1 atomic% or less.
  • the M element is particularly preferably titanium.
  • the M element is titanium, the cerium content is 0.3 to 9 atomic% in Ce / (In + Ce + Ti) atomic ratio, and the M element content is 1 atomic% or less in Ti / (In + Ce + Ti) atomic ratio. .
  • Patent Document 1 describes that metal oxides SiO 2 , GeO 2 , Sb 2 O 5 , and BiO 2 , or metal oxide SnO 2 can be included.
  • the transparent conductive film of the present invention may contain titanium, zirconium, hafnium, molybdenum, and tungsten, but must not contain oxides of tetravalent or higher metal elements.
  • a metalloid oxide SiO 2 or the like is included, the carrier electron concentration is significantly increased even with a small amount, so that the refractive index is lowered, and the characteristics of the transparent conductive film of the present invention are impaired. It should be noted that a very small amount of inevitable impurities is not a problem because it hardly affects the characteristics.
  • the second transparent conductive film of the present invention preferably has a refractive index at a wavelength of 460 nm of 2.1 or more.
  • a general ITO film reffractive index 1.9 to 2.0
  • an ITO film exhibiting a low specific resistance refractive index 1.8 to 1.
  • the second transparent conductive film of the present invention preferably has a specific resistance of 8.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the gallium nitride layer has a low current diffusion capability in the film surface direction as an electrical feature, it is necessary to efficiently emit light from the entire surface of the element by sufficiently reducing the specific resistance of the transparent conductive film.
  • the carrier electron mobility is preferably 35 cm 2 / Vs or more. By increasing the carrier electron mobility and keeping the carrier electron concentration low, it is possible to achieve both the low specific resistance and the high refractive index.
  • the second transparent conductive film of the present invention is the same as the first transparent conductive film, and is formed of a crystalline material by being formed by an ion plating method and containing cerium as a main component of indium oxide. Although it is, the smoothness of the film surface is high.
  • the second transparent conductive film also contains M element, but cerium is remarkably higher than M element in the effect of increasing the crystallization temperature, and thus has the same characteristics as the first transparent conductive film. Indicates. That is, even when the second transparent conductive film of the present invention is used as a transparent electrode, light scattering is suppressed due to the high smoothness of the film surface, and as a result, the efficiency of blue LEDs and solar cells can be increased. become.
  • the cerium content is 0.3 to 5 atomic% in terms of Ce / (In + Ce + M) atomic ratio, and the content of M element is It is preferable that the M / (In + Ce + M) atomic ratio is 1 atomic% or less and the specific resistance is 5.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the transparent conductive film of the present invention contains indium oxide as a main component and further contains cerium or a metal element in addition to cerium, and the crystallization temperature is improved by controlling to such a composition.
  • the arithmetic average height (Ra) of the film surface is 1.0 nm or less. High smoothness is achieved.
  • an arithmetic average height (Ra) of 2.0 nm or less is generally smooth, but in comparison with this, It can be said that the transparent conductive film of the invention is extremely smooth. Further, the smoothness of the film surface can be reduced to 1.0 nm or less in terms of arithmetic average height (Ra) even by vacuum deposition.
  • the substrate temperature needs to be higher than that of the ion plating method.
  • the sputtering method that has been adopted as a method for manufacturing an ITO film or the like cannot reduce the smoothness of the film surface to an arithmetic average height (Ra) of 1.0 nm or less.
  • a sputtering method an oxide sintered body target containing indium oxide as a main component and containing cerium, or an oxide sintered body target containing a metal element (M element) in addition to cerium is used.
  • a substrate and the target are arranged, and the substrate is maintained at a predetermined temperature in an argon inert gas atmosphere containing oxygen gas, and an electric field is applied between the substrate and the target to generate plasma between the target substrates.
  • a crystalline or amorphous transparent conductive film is formed on the substrate.
  • argon ions in plasma intensively collide with a specific area of a target due to a magnetic field. This area is intensively cut, and this is generally called an erosion area.
  • a metal ion such as indium constituting the oxide sintered body target is ejected mainly from the erosion region, and a film is deposited.
  • high-speed oxygen ions are also irradiated. However, this oxygen ion damages the crystalline or amorphous transparent conductive film, loses the smoothness of the film surface, and increases the arithmetic average height (Ra).
  • the substrate is set in a range of room temperature to about 300 ° C., and a crystalline film is formed on the substrate by an ion plating method.
  • a crystalline film is formed on the substrate by an ion plating method.
  • the ion plating method since the kinetic energy of the particles is higher than that in the sputtering method, crystallization proceeds sufficiently even when the substrate temperature is in the low temperature range as described above, and the electron mobility serving as carriers is increased.
  • a transparent conductive film of the present invention having a high value can be formed.
  • an ion plating method is employed.
  • a transparent conductive film is formed on a substrate using a tablet (also referred to as a pellet) made from the oxide sintered body.
  • a tablet also referred to as a pellet
  • an oxide sintered body containing indium oxide as a main component and containing cerium in a Ce / (In + Ce) atomic ratio of 0.3 to 9 atomic% was processed.
  • the cerium content is 0.3 to 9 atomic% in terms of Ce / (In + Ce + M) atomic ratio, and the content of M element is M / (In + Ce + M)
  • the tablet which processed the oxide sintered compact whose atomic ratio is 1 atomic% or less is used. It is preferable that the oxide sintered compact used by this invention is the same composition as the transparent conductive film of this invention. This is based on the premise that the composition of the raw material oxide sintered body is reflected in the formed transparent conductive film.
  • FIG. 1 shows the phase identification result of the oxide sintered body by X-ray diffraction measurement
  • the In 2 O 3 phase having a bixbite type structure is the main crystal phase, and fluorite is included therein.
  • the CeO 2 phase having a mold structure is finely dispersed as crystal grains having an average grain size of 3 ⁇ m or less.
  • cerium hardly dissolves.
  • indium hardly dissolves in the dispersed phase CeO 2 phase having a fluorite structure.
  • a part of indium may be replaced by cerium in a non-equilibrium manner, or a part of cerium may be replaced by indium. Deficiency or oxygen deficiency may be included.
  • the In 2 O 3 phase which is the main crystal phase of such an oxide sintered body, has an average particle size of two types, and one type has an average particle size of 2 ⁇ m or less, more preferably 1.5 ⁇ m or less, and still more preferably Is a relatively small crystal grain of 1 ⁇ m or less, and the other is preferably a relatively large crystal grain having an average particle diameter of 2.5 ⁇ m or more, more preferably 3 to 6 ⁇ m.
  • the crystal grains from the In 2 O 3 phase with different average particle sizes, it becomes possible to achieve both strength securing and density adjustment (reduction in density) of the sintered body. As a result, the film can be formed without cracks, cracks or splash.
  • the relationship between the crystal grain size and the dispersion state of the In 2 O 3 phase of the bixbite type structure and the CeO 2 phase of the fluorite type structure, which is the main phase of the oxide sintered body is expressed by the following formula (
  • the X-ray diffraction peak intensity ratio defined in 1) is preferably 25% or less. This is because if the X-ray diffraction peak intensity ratio exceeds 25%, cracks, cracks, or splash frequently occur with the progress of film formation by the ion plating method, which also adversely affects the crystallinity of the film.
  • the X-ray diffraction peak intensity ratio is preferably 20% or less.
  • Such an oxide sintered body is described in detail in the specification of the international application (PCT / JP2010 / 062816) by the present applicant.
  • I CeO 2 phase (111) / In 2 O 3 phase (222) ⁇ 100 [%]
  • the substrate and the tablet are placed in a copper hearth in an ion plating apparatus, and the substrate is placed in a predetermined atmosphere in an argon inert gas atmosphere containing oxygen gas as necessary.
  • the tablet vapor is ionized to form a crystalline transparent conductive film on the substrate.
  • the tablet for ion plating (also referred to as pellet) is preferably obtained by processing an oxide sintered body having a density of 3.4 to 5.5 g / cm 3 .
  • Such an oxide sintered body is also described in detail in the specification of PCT / JP2010 / 062816 by the present applicant.
  • the composition of the tablet is basically reproduced in the film composition to be formed, and the content of each element in the film can be changed by changing the content of each element in the tablet.
  • a crystalline transparent conductive film is formed on a substrate set at room temperature, that is, a temperature of 20 ° C. or higher to about 300 ° C.
  • the substrate temperature is preferably set to 100 ° C. or higher.
  • the crystallinity of the formed film depends on film formation conditions such as the content of each element in the film, the oxygen partial pressure in the inert gas atmosphere, and the film formation speed.
  • this invention can be set as a transparent conductive base material by forming said transparent conductive film in a heat resistant board
  • the substrate various kinds of plates or films can be used depending on applications such as glass, synthetic quartz, synthetic resin such as polyimide, and metal foil such as stainless steel.
  • a heat resistant substrate such as glass or synthetic quartz is preferable.
  • a roll-to-roll process or the like may be applied for solar cell applications, and a heat-resistant substrate such as a roll-shaped polyimide film or stainless steel is preferably used.
  • a crystalline transparent conductive film containing a specific amount of one or more metal elements selected from the metal element group consisting of can be suitably used for functional elements such as blue LEDs and solar cells.
  • optical communication devices such as waveguide-type light control elements that use relatively low specific resistance and high transmittance in the infrared region and light modulation elements that use liquid crystals, as well as liquid crystal panels, plasma displays, and organic EL It can also be applied to functional elements such as inorganic EL or electronic paper.
  • the composition of the obtained transparent conductive film was examined by ICP emission spectroscopy.
  • the film thickness of the transparent conductive film was measured with a surface roughness meter (Alpha-Step IQ manufactured by Tencor).
  • the film formation rate was calculated from the film thickness and the film formation time.
  • the surface resistance of the film was measured by a four-probe method using a resistivity meter (Loresta EP MCP-T360, manufactured by Dia Instruments).
  • the specific resistance of the film was calculated from the product of the surface resistance of the film and the film thickness.
  • the carrier electron concentration and mobility of the film were determined by Hall effect measurement.
  • the refractive index of the film was measured using a spectroscopic ellipsometer (VASE manufactured by JA Woollam).
  • the formation phase of the film was identified by 2 ⁇ / ⁇ measurement using an X-ray diffractometer (X'Pert PRO MPD manufactured by Philips).
  • the surface roughness of the film was obtained from the arithmetic average height Ra by using AFM (Nanoscope III and D5000 manufactured by Digital Instruments).
  • Indium oxide powder and cerium oxide powder were adjusted to have an average particle size of 1 ⁇ m or less to obtain raw material powder. These powders were prepared so that the cerium content was 9 atomic% in terms of Ce / (In + Ce) atomic ratio, put into a resin pot together with water, and mixed by a wet ball mill. At this time, hard ZrO 2 balls were used and the mixing time was 18 hours. After mixing, the slurry was taken out, filtered, dried and granulated. The granulated product was molded by applying a pressure of 3 ton / cm 2 with a cold isostatic press. Next, the compact was sintered for 20 hours at a sintering temperature of 1400 ° C.
  • the obtained oxide sintered body was processed into a size of 152 mm in diameter and 5 mm in thickness, and the sputtering surface was polished with a cup grindstone so that the maximum height Rz was 3.0 ⁇ m or less.
  • the processed oxide sintered body was bonded to a backing plate made of oxygen-free copper using metallic indium to obtain a sputtering target.
  • composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder. Then, was carried out phase identification of the oxide sintered body by X-ray diffraction measurement, it is composed of CeO 2 phases of In 2 O 3 phase and fluorite structure of the street, bixbyite structure shown in FIG. 1 It was confirmed that When the density of the oxide sintered body was measured, it was 6.87 g / cm 3 . Subsequently, when the structure of the oxide sintered body was observed by SEM, the average particle size of the CeO 2 phase was 1.1 ⁇ m.
  • the sputtering target was attached to a cathode for a non-magnetic target of a DC magnetron sputtering apparatus (SPEC-530H made by Anelva) equipped with a DC power source without an arcing suppression function.
  • This sputtering apparatus has a high temperature specification especially for the substrate heater, and can increase the substrate temperature up to 650 ° C.
  • the substrate was made of synthetic quartz having a thickness of 0.5 mm, and the target-substrate distance was fixed at 49 mm.
  • a DC plasma is generated by applying a DC power of 200 W, and after pre-sputtering for 10 minutes, the substrate is placed immediately above the sputtering target, that is, at a stationary facing position, and the inside of the chamber of the sputtering apparatus is vacuum of 1 ⁇ 10 ⁇ 4 Pa or less After confirming that the substrate temperature reached 500 ° C., a mixed gas of argon and oxygen was introduced so that the oxygen ratio was 1.0%, and the gas pressure was adjusted to 0.3 Pa. did. It is clear that the obtained film exhibits the lowest specific resistance at the oxygen ratio of 1.0%. By carrying out sputtering, a 200 nm-thick transparent conductive film was formed on a 500 ° C. substrate.
  • the composition of the obtained transparent conductive film was almost the same as that of the target.
  • the specific resistance of the film was measured and found to be 6.6 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.6 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 36 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.21.
  • the arithmetic average height Ra was 1.3 nm.
  • the composition of the transparent conductive film and the film forming conditions are shown in Table 1, and the characteristics of the transparent conductive film are shown in Table 2. The same applies to Reference Example 2 and later.
  • Reference Example 2 A transparent conductive film was formed in the same manner as in Reference Example 1 except that a sputtering target composed of an oxide sintered body having a cerium content of 7 atomic% in terms of Ce / (In + Ce) atomic ratio was used. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the target. The specific resistance of the film was measured and found to be 5.9 ⁇ 10 ⁇ 4 ⁇ cm. When the Hall effect was measured, the carrier electron concentration was 2.5 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 42 cm 2 V ⁇ 1 s ⁇ 1 . The refractive index at a wavelength of 460 nm was 2.20.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 1.3 nm.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 1.4 nm.
  • Reference Example 4 Reference Example 1 except that a sputtering target made of an oxide sintered body having a Ce / (In + Ce) atomic ratio of 4 atomic% was used and that the substrate temperature was set to 400 ° C. A transparent conductive film was formed in the same manner as described above. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the target. The specific resistance of the film was measured and found to be 4.2 ⁇ 10 ⁇ 4 ⁇ cm. When the Hall effect was measured, the carrier electron concentration was 2.3 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 65 cm 2 V ⁇ 1 s ⁇ 1 . The refractive index at a wavelength of 460 nm was 2.17.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the arithmetic average height Ra was 1.6 nm.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the arithmetic average height Ra was 1.8 nm.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the arithmetic average height Ra was 1.8 nm.
  • the carrier electron concentration was 3.1 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 36 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.14.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 1.3 nm. Trials were made by adding zirconium, hafnium, molybdenum, and tungsten instead of titanium, and almost the same results were obtained.
  • Reference Example 8 An oxide sintered body containing indium oxide as a main component and containing titanium in addition to cerium, and having a cerium content of 5 atomic% by Ce / (In + Ce + Ti) atomic ratio, and a titanium content of Ti /
  • the transparent conductive material is the same as in Reference Example 1 except that a sputtering target made of an oxide sintered body having an atomic ratio of (In + Ce + Ti) of 0.5 atomic% is used and the substrate temperature is 400 ° C. A film was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the target. The specific resistance of the obtained transparent conductive film was measured and found to be 5.2 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.7 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 45 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.17.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the arithmetic average height Ra was 1.3 nm.
  • the carrier electron concentration was 3.0 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 43 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.16.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the arithmetic average height Ra was 1.4 nm.
  • the carrier electron concentration was 1.7 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 83 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.12.
  • the arithmetic average height Ra was 1.8 nm.
  • the carrier electron concentration was 1.6 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 80 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.12.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 1.8 nm.
  • hafnium, molybdenum, or tungsten was added in the same composition, almost the same results were obtained as when titanium or zirconium was added.
  • Reference Example 12 A transparent conductive film was formed in the same manner as in Reference Example 1 except that the substrate temperature was room temperature, that is, 25 ° C. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the target. As a result of examining the crystallinity of the film by X-ray diffraction measurement, it was confirmed to be an amorphous film. When the specific resistance of the film was measured, it showed a low value of 1.9 ⁇ 10 ⁇ 3 ⁇ cm. As a result of measuring the Hall effect, the carrier electron concentration was 2.5 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 15 cm 2 V ⁇ 1 s ⁇ 1 .
  • the low carrier electron mobility peculiar to the amorphous film was found to be the cause of the high specific resistance.
  • this amorphous film was heat-treated at 500 ° C. for 30 minutes in a nitrogen atmosphere.
  • the specific resistance of the film was 6.9 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.4 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 38 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.22.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 1.3 nm.
  • a patterning test by wet etching using a weak acid was performed.
  • ITO-06N manufactured by Kanto Chemical whose main component is oxalic acid, which is a weak organic acid, was used.
  • the carrier electron concentration was 4.4 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 17 cm 2 V ⁇ 1 s ⁇ 1 . That is, in addition to the carrier electron concentration not being so high, the low carrier electron mobility peculiar to the amorphous film was found to be the cause of the high specific resistance. Subsequently, the amorphous film was heat-treated at 400 ° C. for 30 minutes in a nitrogen atmosphere. As a result, the specific resistance of the film was 4.9 ⁇ 10 ⁇ 4 ⁇ cm. When the Hall effect was measured, the carrier electron concentration was 2.2 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 58 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.20.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 1.3 nm.
  • the crystallization temperature was measured by high temperature X-ray diffraction measurement using another amorphous film as described above. As a result, as shown in FIG. 3, it was found that the crystallization temperature was 220 to 225 ° C. higher than the heat treatment temperature.
  • a patterning test by wet etching using a weak acid was performed.
  • an etchant ITO-06N manufactured by Kanto Chemical, whose main component is oxalic acid, which is a weak organic acid, was used. Attempts were made to form a predetermined pattern at an etchant temperature of 40 ° C., but it was found that patterning was not possible because it was hardly etched. As a result of SEM observation, microcrystals were observed in the amorphous film, and it became clear that this microcrystal was the cause of the inability to pattern.
  • Example 1 Comparative Example 1 Except that a sputtering target made of an oxide sintered body having a Ce / (In + Ce) atomic ratio of 0.1 atomic% in terms of the cerium content was used, and that the substrate temperature was 300 ° C. A transparent conductive film was formed in the same manner as in Example 1. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the target. When the specific resistance of the film was measured, it showed a relatively high value of 1.5 ⁇ 10 ⁇ 3 ⁇ cm. When the Hall effect was measured, the carrier electron concentration was 6.2 ⁇ 10 19 cm ⁇ 3 and the carrier electron mobility was 68 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.12.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 1.9 nm.
  • the refractive index at a wavelength of 460 nm was 2.18.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the arithmetic average height Ra was 1.3 nm.
  • the carrier electron concentration was 6.2 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 24 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.07.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the arithmetic average height Ra was 1.3 nm.
  • the carrier electron concentration was 7.3 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 33 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.04.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite type structure.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 1.7 nm.
  • the sputtering target made of an oxide sintered body having a cerium content of 20 atomic% in terms of Ce / (In + Ce) atomic ratio was used, the substrate temperature was room temperature, that is, 25 ° C., and the oxygen ratio was A transparent conductive film was formed in the same manner as in Reference Example 1 except that a mixed gas of argon and oxygen adjusted to 0.2% was introduced as a sputtering gas. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the target. When the specific resistance of the film was measured, it showed a very high value of 2.6 ⁇ 10 ⁇ 2 ⁇ cm.
  • the carrier electron concentration was 3.0 ⁇ 10 19 cm ⁇ 3 and the carrier electron mobility was 8 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.25.
  • this amorphous film was heat-treated at 220 ° C. for 60 minutes in a nitrogen atmosphere, and the specific resistance of the film was 1.5 ⁇ 10 ⁇ 2 ⁇ cm. A high specific resistance of the order of 10 ⁇ 2 ⁇ cm was exhibited.
  • the film As a result of examining the crystallinity of the film by X-ray diffraction measurement, it was confirmed that the film remained amorphous.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.3 nm.
  • this film was heat-treated at 300 ° C. for 60 minutes in a nitrogen atmosphere.
  • the specific resistance of the film was 1.2 ⁇ 10 ⁇ 2 ⁇ cm, and although it was slightly lowered, it was still a high value.
  • the carrier electron concentration was 5.2 ⁇ 10 19 cm ⁇ 3 and the carrier electron mobility was 10 cm 2 V ⁇ 1 s ⁇ 1 .
  • the crystallization temperature was measured by high temperature X-ray diffraction measurement using another amorphous film as described above. As a result, as shown in FIG. 4, it was found that the crystallization temperature was higher than the heat treatment temperature and was 445 to 450 ° C.
  • Example 1 The film formation method of the above reference example was changed to an ion plating method, and a tablet made of an oxide sintered body having a cerium content of 0.8 atomic% in terms of the atomic number ratio represented by Ce / (In + Ce) was used. Then, a transparent conductive film was formed.
  • the manufacturing method of the oxide sintered body is almost the same as that of the sputtering target of Reference Example 1.
  • two types of indium oxide powder having an average particle diameter are used, and in addition to the indium oxide powder adjusted to an average particle diameter of 1 ⁇ m or less, an indium oxide powder adjusted to an average particle diameter of 3 ⁇ m is selected.
  • the sintering temperature was set to 1100 ° C.
  • the tablet was molded in advance so that the dimensions after sintering were 30 mm in diameter and 40 mm in height.
  • Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • phase identification of the oxide sintered body was performed by X-ray diffraction measurement. As a result, cerium did not dissolve in the indium oxide phase, and as shown in FIG. 5, the In 2 O 3 phase having a bixbite structure and It was confirmed to be composed of CeO 2 phase having a fluorite structure.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed.
  • the substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed.
  • the composition of the obtained transparent conductive film was almost the same as that of the tablet.
  • the specific resistance of the film was measured and found to be 3.6 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 1.9 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 91 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.12.
  • cerium was dissolved in the indium oxide phase and was a crystalline film composed only of an indium oxide phase having a bixbite structure. That is, the same result (FIG. 2) as the transparent conductive film formed with the sputtering target of Reference Example 1 was obtained.
  • the arithmetic average height Ra was 0.8 nm.
  • Example 2 Example 1 except that a tablet made of an oxide sintered body having a cerium content of 2 atomic% in terms of the atomic ratio represented by Ce / (In + Ce) was used, and that the substrate temperature was 300 ° C. In the same manner as above, film formation was performed by an ion plating method. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 300 ° C., and a transparent conductive film with a thickness of 200 nm was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 3.3 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.1 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 90 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.13.
  • cerium is a solid solution in the indium oxide phase, and is a crystalline film composed of only an indium oxide phase having a bixbite structure, as in Example 1. It was confirmed.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.8 nm.
  • Example 3 Example 1 except that a tablet made of an oxide sintered body having a cerium content of 9 atomic% in terms of the atomic ratio represented by Ce / (In + Ce) was used, and that the substrate temperature was 300 ° C. In the same manner as above, film formation was carried out by ion plating. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 300 ° C., and a transparent conductive film with a thickness of 200 nm was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 5.4 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.9 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 40 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.19.
  • cerium is a solid solution in the indium oxide phase, and is a crystalline film composed of only an indium oxide phase having a bixbite structure, as in Example 1. It was confirmed.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.5 nm.
  • Example 4 Except that a tablet made of an oxide sintered body having a cerium content of 5 atomic% in terms of the atomic ratio represented by Ce / (In + Ce) was used, an ion plating method was used as in Example 1. Membrane was performed. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder. Next, when the phase of the oxide sintered body was identified by X-ray diffraction measurement, cerium was not dissolved in the indium oxide phase, and the In 2 O 3 phase and the phosphor having a bixbite type structure as in FIG.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed.
  • the substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed.
  • the composition of the obtained transparent conductive film was almost the same as that of the tablet.
  • the specific resistance of the film was measured and found to be 3.8 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.6 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 64 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.17.
  • cerium is a solid solution in the indium oxide phase, and is a crystalline film composed of only an indium oxide phase having a bixbite structure, as in Example 1. It was confirmed.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.6 nm.
  • Example 5 Except that a tablet made of an oxide sintered body having a cerium content of 4 atomic% in terms of the atomic ratio represented by Ce / (In + Ce) was used, the ion plating method was used in the same manner as in Example 1. Membrane was performed. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 3.4 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.5 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 73 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.15.
  • cerium is a solid solution in the indium oxide phase, and is a crystalline film composed of only an indium oxide phase having a bixbite structure, as in Example 1. It was confirmed.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.7 nm.
  • Example 6 The ion plating method was used in the same manner as in Example 1 except that a tablet made of an oxide sintered body having a cerium content of 2.4 atomic% in terms of the atomic ratio represented by Ce / (In + Ce) was used. A film was formed. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the phase of the oxide sintered body was identified by X-ray diffraction measurement, cerium was not dissolved in the indium oxide phase, and the In 2 O 3 phase and the phosphor having a bixbite type structure as in FIG. It was confirmed to be composed of a CeO 2 phase having a stone structure.
  • the density of the oxide sintered body was measured and found to be 4.68 g / cm 3 .
  • the structure of the oxide sintered body was observed by SEM, the average grain size of the crystal grains composed of the CeO 2 phase was 1.0 ⁇ m.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 3.6 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.2 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 79 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.14.
  • cerium is a solid solution in the indium oxide phase, and is a crystalline film composed of only an indium oxide phase having a bixbite structure, as in Example 1. It was confirmed.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.8 nm.
  • Example 7 The ion plating method was used in the same manner as in Example 1 except that a tablet made of an oxide sintered body having a cerium content of 1.6 atomic% in terms of the atomic ratio represented by Ce / (In + Ce) was used. A film was formed. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the phase of the oxide sintered body was identified by X-ray diffraction measurement, cerium was not dissolved in the indium oxide phase, and the In 2 O 3 phase and the phosphor having a bixbite type structure as in FIG. It was confirmed to be composed of a CeO 2 phase having a stone structure.
  • the density of the oxide sintered body was measured and found to be 4.64 g / cm 3 .
  • the structure of the oxide sintered body was observed by SEM, the average grain size of the crystal grains composed of the CeO 2 phase was 1.0 ⁇ m.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 3.4 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.1 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 87 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.12.
  • cerium is a solid solution in the indium oxide phase, and is a crystalline film composed of only an indium oxide phase having a bixbite structure, as in Example 1. It was confirmed.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.8 nm.
  • Example 8 Except that a tablet made of an oxide sintered body having a cerium content of 1 atomic% in terms of the atomic ratio represented by Ce / (In + Ce) was used, an ion plating method was used as in Example 1. Membrane was performed. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder. Next, when the phase of the oxide sintered body was identified by X-ray diffraction measurement, cerium was not dissolved in the indium oxide phase, and the In 2 O 3 phase and the phosphor having a bixbite type structure as in FIG.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed.
  • the substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed.
  • the composition of the obtained transparent conductive film was almost the same as that of the tablet.
  • the specific resistance of the film was measured and found to be 3.4 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.0 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 93 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.12.
  • cerium is a solid solution in the indium oxide phase, and is a crystalline film composed of only an indium oxide phase having a bixbite structure, as in Example 1. It was confirmed.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.8 nm.
  • Example 9 The ion plating method was used in the same manner as in Example 1 except that a tablet made of an oxide sintered body having a cerium content of 0.3 atomic% in terms of the atomic ratio represented by Ce / (In + Ce) was used. A film was formed. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder. Next, when the phase of the oxide sintered body was identified by X-ray diffraction measurement, cerium was not dissolved in the indium oxide phase, and the In 2 O 3 phase and the phosphor having a bixbite type structure as in FIG.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed.
  • the substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed.
  • the composition of the obtained transparent conductive film was almost the same as that of the tablet.
  • the specific resistance of the film was measured and found to be 4.3 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 1.6 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 90 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.13.
  • cerium is a solid solution in the indium oxide phase, and is a crystalline film composed of only an indium oxide phase having a bixbite structure, as in Example 1. It was confirmed.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.8 nm.
  • Example 10 In addition to cerium, it is an oxide sintered body containing titanium, and the cerium content is Ce / (In + Ce + Ti) atomic ratio and the atomic ratio is Ti / (In + Ce + Ti) atomic ratio.
  • Film formation was performed by the ion plating method in the same manner as in Example 1 except that a tablet made of an oxide sintered body of 1 atomic% was used and the substrate temperature was 300 ° C.
  • An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 300 ° C., and a transparent conductive film with a thickness of 200 nm was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 5.1 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 3.2 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 38 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.11.
  • cerium and titanium are in solid solution in the indium oxide phase, and as in Example 1, a crystalline film consisting only of an indium oxide phase having a bixbite structure. It was confirmed that.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.6 nm.
  • Example 11 In addition to cerium, it is an oxide sintered body containing titanium, and the cerium content is 5 atomic% in Ce / (In + Ce + Ti) atomic ratio, and the titanium content is in Ti / (In + Ce + Ti) atomic ratio.
  • Film formation was performed by an ion plating method in the same manner as in Example 1 except that a tablet made of an oxide sintered body of 0.5 atomic% was used.
  • An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 4.1 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.7 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 57 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.16.
  • cerium and titanium are in solid solution in the indium oxide phase, and as in Example 1, a crystalline film consisting only of an indium oxide phase having a bixbite structure. It was confirmed that.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.6 nm.
  • Example 12 In addition to cerium, it is an oxide sintered body containing titanium, and the cerium content is 4 atomic% in Ce / (In + Ce + Ti) atomic ratio, and the titanium content is in Ti / (In + Ce + Ti) atomic ratio.
  • Film formation was performed by an ion plating method in the same manner as in Example 1 except that a tablet made of an oxide sintered body of 1 atomic% was used.
  • An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 3.5 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.9 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 61 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.15.
  • cerium and titanium are in solid solution in the indium oxide phase, and as in Example 1, a crystalline film consisting only of an indium oxide phase having a bixbite structure. It was confirmed that.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.7 nm.
  • Example 13 In addition to cerium, it is an oxide sintered body containing titanium, and the cerium content is 0.3 atomic% in Ce / (In + Ce + Ti) atomic ratio, and the titanium content is Ti / (In + Ce + Ti) atomic number. Film formation was performed by an ion plating method in the same manner as in Example 1 except that a tablet made of an oxide sintered body having a ratio of 0.3 atomic% was used. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 3.7 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 1.9 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 89 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.12.
  • cerium and titanium are in solid solution in the indium oxide phase, and as in Example 1, a crystalline film consisting only of an indium oxide phase having a bixbite structure. It was confirmed that.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.8 nm.
  • Example 14 In addition to cerium, it is an oxide sintered body containing zirconium, and the cerium content is 0.3 atomic% in terms of Ce / (In + Ce + Zr) atomic ratio, and the zirconium content is Zr / (In + Ce + Zr) atomic number. Film formation was performed by an ion plating method in the same manner as in Example 1 except that a tablet made of an oxide sintered body having a ratio of 0.3 atomic% was used. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 3.9 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 1.8 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 88 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.12.
  • cerium and zirconium were dissolved in the indium oxide phase, and as in Example 1, a crystalline film consisting only of an indium oxide phase having a bixbite structure. It was confirmed that.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.8 nm.
  • Example 15 Example 1 except that a tablet made of an oxide sintered body having a cerium content of 9 atomic% in terms of the atomic ratio represented by Ce / (In + Ce) was used and that the substrate temperature was room temperature. Similarly, film formation was performed by an ion plating method. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 25 ° C., and a transparent conductive film having a thickness of 200 nm was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 6.0 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.8 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 37 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.18.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite structure.
  • the arithmetic average height Ra was 0.5 nm.
  • Example 16 Example 1 except that a tablet made of an oxide sintered body having a cerium content of 5 atomic% in terms of the atomic ratio represented by Ce / (In + Ce) was used, and that the substrate temperature was room temperature. Similarly, film formation was performed by an ion plating method. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 25 ° C., and a transparent conductive film having a thickness of 200 nm was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 4.0 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.5 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 62 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.14.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite structure.
  • the arithmetic average height Ra was 0.7 nm.
  • Example 17 Except that the tablet made of an oxide sintered body having a cerium content of 1.6 atomic% in terms of the atomic ratio represented by Ce / (In + Ce) was used, and that the substrate temperature was room temperature. In the same manner as in No. 1, film formation was performed by an ion plating method. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the phase of the oxide sintered body was identified by X-ray diffraction measurement, cerium was not dissolved in the indium oxide phase, and the In 2 O 3 phase and the phosphor having a bixbite type structure as in FIG. It was confirmed to be composed of a CeO 2 phase having a stone structure.
  • the density of the oxide sintered body was measured and found to be 4.64 g / cm 3 .
  • the structure of the oxide sintered body was observed by SEM, the average grain size of the crystal grains composed of the CeO 2 phase was 1.0 ⁇ m.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 25 ° C., and a transparent conductive film having a thickness of 200 nm was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 3.6 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 2.0 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 88 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.12.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite structure.
  • the arithmetic average height Ra was 0.8 nm.
  • Example 6 Film formation was performed by an ion plating method using a tablet made of an oxide sintered body having a cerium content of 0.1 atomic% in terms of the atomic ratio represented by Ce / (In + Ce).
  • An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder. Next, when the phase identification of the oxide sintered body was performed by X-ray diffraction measurement, it was confirmed that unlike the case of FIG. 5, the oxide sintered body was composed only of the In 2 O 3 phase having a bixbite type structure.
  • the density of the oxide sintered body was measured, it was 4.49 g / cm 3 . Subsequently, when the structure of the oxide sintered body was observed by SEM, it was observed that a very small amount of CeO 2 phase was scattered.
  • the average grain size of the crystal grains made of CeO 2 phase was 1.0 ⁇ m.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed.
  • the substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed.
  • the composition of the obtained transparent conductive film was almost the same as that of the tablet.
  • the specific resistance of the film was measured and found to be 9.9 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 8.3 ⁇ 10 19 cm ⁇ 3 and the carrier electron mobility was 76 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.11.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite structure.
  • the surface roughness of the film was measured by AFM, the arithmetic average height Ra was 0.8 nm.
  • Example 7 Example 1 except that a tablet made of an oxide sintered body having a cerium content of 11 atomic% in terms of the atomic ratio represented by Ce / (In + Ce) was used, and that the substrate temperature was 300 ° C. In the same manner as above, film formation was performed by an ion plating method. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2. It was confirmed that they were satisfied with relatively large crystal grains of 5 ⁇ m or more.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed. The substrate temperature was 300 ° C., and a transparent conductive film with a thickness of 200 nm was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet. The specific resistance of the film was measured and found to be 8.4 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 3.1 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 24 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.18.
  • the film was a crystalline film composed only of an indium oxide phase having a bixbite structure.
  • the arithmetic average height Ra was 0.5 nm.
  • (Comparative Example 8) In addition to cerium, it is an oxide sintered body containing titanium, and the cerium content is 0.3 atomic% in Ce / (In + Ce + Ti) atomic ratio, and the titanium content is Ti / (In + Ce + Ti) atomic number. Film formation was performed by an ion plating method in the same manner as in Example 1 except that a tablet made of an oxide sintered body having a ratio of 3 atomic% was used. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the oxide sintered body was not dissolved in the indium oxide phase, but only titanium was dissolved in the indium oxide phase. It was confirmed that it was composed only of an In 2 O 3 phase having a bixbite structure. When the density of the oxide sintered body was measured, it was 4.55 g / cm 3 . Subsequently, was subjected to structural observation of the oxide sintered body according to SEM, the crystal grain consisting of CeO 2 phase was not confirmed.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed.
  • the substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet.
  • the specific resistance of the film was measured and found to be 4.1 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 6.9 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 22 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.05.
  • (Comparative Example 9) In addition to cerium, it is an oxide sintered body containing tin, and the cerium content is 0.3 atomic% in terms of Ce / (In + Ce + Sn) atomic ratio, and the tin content is Ti / (In + Ce + Sn) atomic number. Film formation was performed by an ion plating method in the same manner as in Example 1 except that a tablet made of an oxide sintered body having a ratio of 3 atomic% was used. An oxide sintered body was produced in the same manner as in Example 1. Composition analysis of the obtained oxide sintered body was performed by ICP emission spectroscopy, and it was confirmed that it was almost the same as the charged composition at the time of blending the raw material powder.
  • the oxide sintered body was composed only of the In 2 O 3 phase having a bixbite type structure.
  • the density of the oxide sintered body was measured, it was 4.61 g / cm 3 .
  • the crystal grain consisting of CeO 2 phase was not confirmed.
  • the In 2 O 3 phase crystal grains have an average grain size of two types, one type is a relatively small crystal grain having an average grain size of 2 ⁇ m or less, and the other type has an average grain size of 2.
  • Such an oxide sintered body was processed and used as a tablet, and discharge using a plasma gun by an ion plating method was continued until the tablet became unusable.
  • a reactive plasma deposition apparatus capable of high density plasma assisted deposition (HDPE method) was used.
  • the film forming conditions were such that the distance between the evaporation source and the substrate was 0.6 m, the discharge current of the plasma gun was 100 A, the Ar flow rate was 30 sccm, and the O 2 flow rate was 10 sccm. Splash and other problems did not occur until the tablet was disabled. After changing the tablet, film formation was performed.
  • the substrate temperature was 200 ° C., and a 200 nm thick transparent conductive film was formed. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the tablet.
  • the specific resistance of the film was measured and found to be 2.3 ⁇ 10 ⁇ 4 ⁇ cm.
  • the carrier electron concentration was 7.6 ⁇ 10 20 cm ⁇ 3 and the carrier electron mobility was 36 cm 2 V ⁇ 1 s ⁇ 1 .
  • the refractive index at a wavelength of 460 nm was 2.02.
  • Examples 1 to 9 and 15 to 17 are mainly composed of indium oxide, and the cerium content is 0.3 to 9 atomic% in Ce / (In + Ce) atomic ratio.
  • the film surface is smooth with an arithmetic average height (Ra) of 1.0 nm or less.
  • the film surface is obtained by adding only cerium containing indium oxide as a main component and adopting an ion plating method as a film forming method.
  • the optical characteristics as a result of the carrier electron concentration being suppressed low, a high value in which the refractive index at a wavelength of 460 nm exceeds 2.1 is obtained.
  • Examples 10 to 14 have a cerium content of 0.3 to 8 atomic% in Ce / (In + Ce) atomic ratio, and are selected from a metal element group consisting of titanium, zirconium, hafnium, molybdenum, and tungsten.
  • the thin film structure is the same as that of the transparent conductive films of Examples 1 to 9 and 15 to 17, and has excellent film surface smoothness, optical characteristics, and electrical characteristics.
  • Reference Examples 1 to 13 and Comparative Examples 1 and 2 are crystalline transparent conductive films having compositions similar to those of Examples 1 to 17, and have optical and electrical characteristics equivalent to those of Examples 1 to 17.
  • the film is formed by the sputtering method, the arithmetic average height (Ra) of the film surface exceeds 1.0 nm, indicating that the smoothness is lost.
  • Comparative Example 3 because the film was formed by sputtering, not only the film surface was inferior in smoothness, but also the M element was titanium, and the Ti / (In + Ce + Ti) atomic ratio was too high at 3 atomic%.
  • the crystalline transparent conductive film thus formed had a high carrier electron concentration, and as a result, the refractive index required for blue LED applications and the like did not exceed 2.1.
  • the crystalline transparent conductive film of Comparative Example 4 contains 3 atomic% of tin different from the constituent elements of the transparent conductive film of the present invention in a Sn / (In + Ce + Sn) atomic ratio. Yes.
  • tin is contained, film formation by sputtering is not only inferior in smoothness of the film surface, but also the formed crystalline transparent conductive film has an excessively high carrier electron concentration and a refractive index of 2. 04, and the refractive index was not higher than 2.1, which is necessary for blue LED applications.
  • Comparative Example 5 has a higher cerium content than Comparative Example 2, and the Ce / (In + Ce) atomic ratio is 20 atomic%.
  • the crystallization temperature is increased to 445 to 450 ° C., so that the transparent conductive film formed at a low temperature around room temperature becomes amorphous.
  • it remains amorphous and no improvement in characteristics such as a decrease in specific resistance was observed.
  • the amorphous transparent conductive film of Comparative Example 5 has a typical composition disclosed in, for example, Patent Document 1, and has a crystallization temperature as disclosed in Examples of Patent Documents 1 to 3. It can be seen that since the heat treatment is performed at a lower temperature of 220 ° C., it does not become crystalline and the electrical characteristics and optical characteristics are not improved.
  • the cerium content is 0.1 atomic% in Ce / (In + Ce) atomic ratio, which is outside the scope of the present invention. Since the cerium content is too low, even a crystalline transparent conductive film formed by the ion plating method cannot generate a sufficient carrier electron concentration, and the specific resistance is 9.9 ⁇ 10 ⁇ . The specific resistance was 4 ⁇ ⁇ cm, which was not less than 8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, which is necessary for blue LED and solar cell applications. Similarly, in Comparative Example 7, the cerium content is 11 atomic% in terms of the Ce / (In + Ce) atomic ratio, which is outside the scope of the present invention.
  • the crystalline transparent conductive film formed by the ion plating method has decreased carrier electron mobility and a specific resistance of 8.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the specific resistance required for blue LED and solar cell applications was not less than 8.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • Comparative Example 8 although the film was formed by the ion plating method, it was formed because the M element contained in addition to cerium was titanium, and the Ti / (In + Ce + Ti) atomic ratio was too high at 3 atomic%.
  • the crystalline transparent conductive film is inferior in the smoothness of the film surface and further has a high carrier electron concentration.
  • the refractive index required for the use of a blue LED or the like does not become 2.1 or more.
  • the crystalline transparent conductive film of Comparative Example 9 contains 3 atomic% of tin different from the constituent elements of the transparent conductive film of the present invention in a Sn / (In + Ce + Sn) atomic ratio. Yes. Since tin is included in addition to cerium, the film is formed by an ion plating method, but the film surface is inferior in smoothness, and the formed crystalline transparent conductive film has a too high carrier electron concentration and is refracted. The refractive index was 2.02, and the refractive index was not higher than 2.1, which is necessary for blue LED applications.
  • the transparent conductive film of the present invention can be used for a blue LED.
  • the refractive index of the transparent conductive film and the gallium nitride layer that is the light emitting layer of the blue LED can be matched.
  • the light extraction efficiency can be increased.
  • the transparent conductive film of the present invention can be used as a part of the back electrode of the solar cell, and the conventional ITO film has a low sunlight capturing efficiency. Since it can raise, it becomes possible to improve the taking-in efficiency of sunlight.
  • this transparent conductive film can be used as a surface electrode of a solar cell.
  • the specific resistance is low, but the carrier electron concentration is high, the infrared light reflectivity and absorption are high, and the transmittance is low, whereas according to the transparent conductive film of the present invention, it is low. It has high resistivity, high refractive index, high transmittance of not only visible light but also infrared light, and the film surface is smooth, so light scattering is suppressed, and it should be replaced as a material exceeding the various characteristics of ITO film. Can do.

Abstract

 酸化インジウムを主成分とし、セリウムを含む、結晶質の透明導電膜であって、セリウムの含有量がCe/(In+Ce)原子数比で0.3~9原子%であり、イオンプレーティング法で成膜され、かつ算術平均高さ(Ra)が1.0nm以下であることを特徴とする透明導電膜;酸化インジウムを主成分とし、セリウムを含み、さらに、金属元素(M元素)として、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上の金属元素を含む、結晶質の透明導電膜であって、セリウムの含有量がCe/(In+Ce+M)原子数比で0.3~9原子%、かつM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下であり、イオンプレーティング法で成膜され、かつ算術平均高さ(Ra)が1.0nm以下であることを特徴とする透明導電膜などによって提供。

Description

透明導電膜
 本発明は、透明導電膜に関し、より詳しくは、酸化インジウムを主成分とし、セリウムを含み、高い屈折率と高いキャリア電子移動度に由来する低抵抗を示し、かつ表面粗さが小さい、イオンプレーティング法で成膜された結晶質の透明導電膜に関する。
 透明導電膜は、高い導電性と可視光領域での高い透過率とを有するため、フラットパネルディスプレイや太陽電池、その他各種受光素子の電極などに利用されているほか、自動車窓や建築用の熱線反射膜、帯電防止膜、冷凍ショーケースなどのための各種の防曇用の透明発熱体としても利用されている。
 実用的な透明導電膜としては、酸化スズ(SnO)系、酸化亜鉛(ZnO)系、酸化インジウム(In)系の薄膜がある。酸化スズ系では、アンチモンをドーパントとして含むもの(ATO)やフッ素をドーパントとして含むもの(FTO)、酸化亜鉛系では、アルミニウムをドーパントとして含むもの(AZO)やガリウムをドーパントとして含むもの(GZO)がよく知られている。しかし、最も工業的に広く利用されている透明導電膜は、酸化インジウム系である。その中でもスズをドーパントとして含む酸化インジウムは、ITO(Indium-Tin-Oxide)膜と称され、特に低抵抗の膜が容易に得られることから、幅広く利用されている。
 透明導電膜の多くは、n型の縮退した半導体であり、キャリアである電子が電気伝導を高めるうえで大きく寄与する。したがって、従来から、ITO膜を低抵抗化させるために、キャリア電子濃度をできるだけ高めることに注力されてきた。
 ITO膜は、一般に結晶化温度が190~200℃程度であることが知られ、この温度を境として、低温側では非晶質の膜が、高温側では結晶質の膜が形成される。例えば、基板を室温に維持してスパッタリング法で形成された場合には、結晶化に必要な熱エネルギーが与えられずに非晶質の膜となる。しかし、結晶化温度以上の温度、例えば300℃程度の基板温度の場合には、結晶質の膜が形成される。
 ITOの非晶質と結晶質の膜では、キャリア電子の生成機構が異なる。一般に、非晶質ITOの場合は、キャリア電子のほとんど全てが酸素欠損によって生成するのに対して、結晶質ITOの場合には、酸素欠損だけでなく、スズのドーパントによるキャリア電子の生成が期待できる。酸化インジウムは、常圧あるいはそれよりも低い圧力で安定な立方晶系の結晶相のビッグスバイト(bixbyte)と呼ばれる結晶構造をとる。ビックスバイト構造における3価のインジウムの格子点に、4価のスズが置き換わることでキャリア電子が生成する。スズはドーパントとして最もキャリア電子濃度を高めることが可能な元素であり、酸化スズ換算で10重量%添加すると最も低抵抗になることが知られている。すなわち、ITOを結晶質とすることによって、酸素欠損とスズのドーパントの双方によってキャリア電子が多量に生成するため、酸素欠損のみの非晶質の膜より低い電気抵抗を示す膜を形成することが可能である。
 しかし、近年、電子デバイスが多様化するなかで、ITO膜より高い屈折率とITOに匹敵する低い電気抵抗を示す透明導電膜が必要とされるようになった。このような透明導電膜の用途としては、青色LEDや太陽電池がその代表例に挙げられる。青色LEDの発光層には窒化ガリウム層を用いるが、この窒化ガリウム層の光学的な特徴は、屈折率が約2.4と高いことである。発光層からの光の取り出し効率を高めるためには、透明導電膜と窒化ガリウム層との屈折率の整合性をよくする必要があり、透明導電膜には2.4に近い屈折率が求められる。屈折率は物質固有の値であり、一般に知られる酸化インジウムの屈折率は1.9~2.0と低い。また、透明導電膜には低い表面抵抗が求められる。窒化ガリウム層の電気的な特徴として、膜面方向の電流拡散が十分でないことがその理由である。しかし、キャリア電子濃度を高めて電気抵抗を下げようとすると、酸化インジウム系の透明導電膜の屈折率は1.9よりもさらに低下する。前記の通り、ITO膜は、ドーパントであるスズによってキャリア(電子)濃度が著しく高められた材料であるため、低抵抗の結晶膜を得ようとすると屈折率が低下してしまうことが問題であった。
 また、前述の青色LEDにおいては、屈折率や比抵抗以外にも、ウエットエッチングによるパターニング性などにおいてITOより優れた特性が要求される場合がある。そのため、低温で形成された非晶質の透明導電膜に弱酸によるウエットエッチングによるパターニングを施し、その後、非酸化性雰囲気中の熱処理によって結晶化させて低抵抗化させる製造プロセスが好ましい。このプロセスを用いることによって、高精細にパターニングされた透明電極を形成することが可能である。
 ITO膜よりも優れた特性が透明導電膜に要求される用途としては、他に太陽電池が挙げられる。太陽電池の表面電極として、可視光だけでなく、赤外光の透過率が高い透明導電膜を用いれば、太陽光を効率よく取り込むことができる。ところが、ITO膜の場合、比抵抗を低くすることができるが、キャリア電子濃度が高いため、赤外光の反射率や吸収が高く、透過率が低くなってしまう問題があった。
 また、裏面電極の一部として用いる場合には、太陽光の取り込み効率を高め、モジュール全体の屈折率調整を行うために屈折率を高めた透明導電膜を用いることがある。この場合も、青色LED用途と同じ理由から、ITO膜では十分な効果が得られなかった。ただし、太陽電池用途では、低比抵抗が重視され、青色LEDのように、弱酸によるウエットエッチングによる高精細なパターニングは必要とはされない。
 酸化インジウム系透明導電膜の屈折率を高める方法の一つとして、高い屈折率を示す酸化物を添加する方法がある。
 例えば特許文献1には、防湿性に優れた透明薄膜を効率的に成膜でき、しかもこの成膜時に上記銀系薄膜が損傷を受け難くしたスパッタリングターゲットが提案されている。ここには銀との固溶域を実質的に持たない金属元素の酸化物を含有する導電性透明金属酸化物にて構成され、かつ、銀との固溶域を実質的に持たない上記金属元素の含有割合が導電性透明金属酸化物の金属元素に対し5~40atom%(原子%)であるスパッタリングターゲットが記載され、好ましくは、銀との固溶域を実質的に持たない金属元素として少なくともチタン元素又はセリウム元素が、また導電性透明金属酸化物として酸化インジウムが記載されている。
 さらに、特許文献1には、銀との固溶域を実質的に持たない金属元素のチタン元素又はセリウム元素の金属酸化物が2.3以上の高屈折率を有し、かつ、このような高屈折率材料をチタン元素とセリウム元素の合計の含有割合が導電性透明金属酸化物の金属元素に対し5~40atom%となる量含有しているため、このスパッタリングターゲットを用いて成膜される透明薄膜の屈折率を約2.1~2.3まで増大しうることが記載されている。
 また、特許文献2には、銀系薄膜を狭持する構成の導電膜の透明薄膜を成膜する際、耐湿性に優れた透明薄膜を効率的に成膜でき、しかもこの成膜時に上記銀系薄膜が損傷を受け難いスパッタリングターゲットを提供するため、酸化インジウムと酸化セリウムを基材とする混合酸化物に、各々基材の混合割合より少ない量の酸化スズあるいは/および酸化チタンを含有せしめた混合酸化物の焼結体であるスパッタリングターゲットが提案されている。
 ここにも、特許文献1と同様に、酸化セリウムが高屈折率であることから、酸化インジウムと酸化セリウムの混合酸化物の屈折率も、酸化セリウムの含有割合に従って高屈折率となる旨が記載されている。さらに、酸化インジウムと酸化セリウムの混合酸化物は、酸化セリウムが十分な導電性をもたないことから、酸化セリウムの混合比率を高めるに従い、その混合酸化物のターゲットの導電性が急激に低下し、直流スパッタリングが困難な導電性の低いターゲットとなる旨が記載されている。
 また、特許文献3には、導電性と可視光線透過率が高く、しかも経時劣化がなく保存安定性に優れた透明導電膜として、厚さ5~20nmの銀系薄膜を透明酸化物薄膜にて挟持する3層構造の透明導電膜が提案されている。ここには、上記透明酸化物薄膜が、銀と固溶しやすい金属の酸化物を一種以上含む第1の基材と、銀と固溶しにくい金属の酸化物を一種以上含む第2の基材との混合酸化物であり、かつ銀系薄膜が少なくとも金を含有する銀合金である透明導電膜、好ましくは第1の基材が、酸化インジウムであり、第2の基材が、酸化セリウムである透明導電膜が記載されている。
 上記特許文献1および2では、成膜温度を180℃以下又は室温とすることが望ましい旨が記載されており、実施例においても、成膜温度は180℃以下、成膜後の加熱処理も高々220℃であって、実施例に示される組成の透明薄膜の結晶化温度に比べて低温で加熱されている。
 これら特許文献1~3で開示されている高屈折率の透明薄膜は、いずれも非晶質膜である。そもそも、特許文献1および2は、防湿性に優れた透明薄膜に関する提案であることから、特許文献1で挙げられている防湿性薄膜SiOと同様に、透明薄膜は非晶質でなければならない。膜が結晶質であると、結晶粒界を介して水分が侵入し、銀薄膜が損傷を受けてしまうからである。また、特許文献3では、200℃以上の温度でアニーリング処理を施すことにより、三層膜全体の導電性を増大しうることが記載されている。しかしながら、このアニーリング処理を施す目的は、三層膜を構成する銀系薄膜の低抵抗化であり、透明薄膜を結晶質にすることではない。仮に透明薄膜を結晶質にするため、例えば300℃を超えるような高い温度で無理に加熱処理した場合には、熱酸化によっても銀薄膜が損傷を受けてしまう。
 以上のとおり、特許文献1~3で開示されている高屈折率の透明薄膜は、非晶質膜のみであって、結晶質の透明薄膜については何も開示されていない。
 しかも、特許文献1には、透明薄膜/銀薄膜/透明薄膜の三層構造からなる薄膜の電気抵抗は開示されているが、透明薄膜単独の電気抵抗は開示されていない。
 特許文献1では、インジウム元素に対するセリウム元素10原子%が好ましい組成範囲になるが、この組成の非晶質透明導電膜を室温にて膜厚200nmとなるよう形成すると、表面抵抗は100Ω/□(オーム・パースクエアと読む)となり、比抵抗にして2.0×10-3Ω・cmを示すことが確認されている。青色LEDの透明電極には、少なくとも8.0×10-4Ω・cm以下の低い比抵抗が求められるが、特許文献1の非晶質膜は、上記のように電気抵抗が高いため、適用することが困難である。
 これに対して、特許文献4には、極めて平滑で、仕事関数が高く、非晶質である透明導電性薄膜と、該透明導電性薄膜を安定的に成膜可能な、酸化物焼結体、これを用いたスパッタリングターゲットが提案されている。そして、該酸化物焼結体は、セリウムを3質量%~20質量%、スズを0.1質量%~4質量%、およびチタンを0.1質量%~0.6質量%含み、残部が実質的にインジウムおよび酸素からなり、さらにセリウム、スズおよびチタンが、インジウムサイトに固溶しており、焼結密度が7.0g/cm以上であって、平均結晶粒径が3μm以下であることが望ましい旨が記載されている。
 この特許文献4には、非晶質の膜のみが示されており、上記スパッタリングターゲットを用いて結晶質の透明導電膜を形成することや、それにより屈折率を高めることに関しては何ら検討されていない。また、特許文献4の酸化物焼結体には、スズが含まれているが、スズが及ぼす低屈折率化への悪影響については何ら言及がない。
 また、上記のようなスズやチタンを含まずに、酸化インジウムと酸化セリウムのみからなる透明導電膜が特許文献7に提案されている。特許文献7には、X線回折により結晶ピークを観察した場合、酸化インジウム及び酸化セリウムに由来するピークの存在が観察され、且つ、EPMA測定を行った場合、酸化インジウム中に分散した酸化セリウム粒子の直径が、5μm以下であると測定されることを特徴とし、さらには酸化インジウムと酸化セリウムからなるスパッタリングターゲットにおいて、[Ce]/([In]+[Ce])として0.005~0.15であることを特徴とするスパッタリングターゲットが提案され、このスパッタリングターゲットを用いてスパッタ法により透明導電膜を成膜することが記載されている。すなわち、特許文献7の透明導電膜は、セリウムを、[Ce]/([In]+[Ce])として0.005~0.15含有する。
 特許文献7では、透明導電膜の表面粗さについて何ら言及がないが、透明導電膜がスパッタ法により成膜されるために表面平滑性が損なわれて粗雑になる結果、青色LEDや太陽電池などの用途において光の散乱が大きくなる点が問題であった。
 また、特許文献7では、上記のスパッタリングターゲットを用いてスパッタ法により透明導電膜を成膜するステップと、成膜した前記透明導電膜を200℃~250℃の温度範囲で加熱することによって結晶化するステップとを含む製造方法によって透明導電膜を製造することが記載されている。しかし、酸化インジウムを主成分とし、セリウムを含んだ場合、透明導電膜の結晶化温度が高くなるため、200℃~250℃という比較的低い温度範囲での加熱だけでは、結晶化が起こる場合はあっても、十分に結晶化が進行した状態には到達しない。十分に結晶化が進行するためには、少なくとも結晶化温度を50℃超える温度範囲、すなわち250℃を超える温度範囲での加熱が必要である。十分結晶化が進行した場合には、青色LEDや太陽電池などの用途に有用な、キャリアとなる電子の移動度の高い透明導電膜となる。しかし、特許文献7のような膜では、低い温度範囲での加熱では十分に結晶化が進行せず、キャリア移動度は向上しないため、青色LEDや太陽電池などの用途を考慮した場合、透明導電膜としては十分な特性を示すことができなかった。
 一方、屈折率を高めた透明導電膜を得る他の方法として、酸化インジウムより高い屈折率を示す材料を選択する方法もある。
 例えば特許文献5には、透明かつ導電性で、安定して供給可能であって、かつ耐薬品性等に優れた素材で構成した透明金属材料並びに透明電極が提案されている。ここには、アナターゼ型の結晶構造からなる金属酸化物層を形成させ、金属酸化物層をM:TiOで構成することにより、内部透過率を維持しつつ、低抵抗率を発現させること、ならびにアナターゼ型TiOのTiサイトを他の原子(Nb、Ta、Mo、As、Sb、Wなど)で置換した結果得られるM:TiOを作製することにより、透明度を維持しつつ、電気伝導度を著しく向上できる旨が記載されている。
 アナターゼ型TiOの屈折率は2.4程度であるので、特許文献5の材料は、前記の青色LEDの窒化ガリウム層との屈折率の整合をとるうえでは最適である。しかしながら、ITO膜に比べて比抵抗が一桁程度高く、青色LEDの透明電極としては十分な特性が得られていない。また、成膜速度がITO膜に比べて遅く、生産効率が低くなるという問題もある。
特開平8-260134号公報 特開平9-176841号公報 特開平9-176837号公報 特開2005-320192号公報 再表2006/016608号公報 特開平9-59787号公報 特開2005-290458号公報
透明導電膜の技術(改訂2版)」、オーム社、2006年刊、p.56~60
 本発明の目的は、酸化インジウムを主成分とし、セリウムを含み、高い屈折率と高いキャリア電子移動度に由来する低抵抗を示し、かつ表面粗さが小さい、イオンプレーティング法で成膜された結晶質の透明導電膜を提供することにある。
 本発明者らは、前述した課題を解決するために鋭意検討した結果、酸化インジウムに特定量のセリウムを含有する透明導電膜、あるいはセリウムとチタンなどの4価元素を特定量含有した酸化インジウム系の透明導電膜は、非晶質では低い比抵抗ならびに高い屈折率を両立できないので、さほど有用性がないが、結晶質にすると高いキャリア電子移動度に由来する低い比抵抗、並びに高い屈折率を示すようになり、青色LEDや太陽電池の用途において極めて有用なものとなることを見出した。さらに青色LEDや太陽電池の透明電極膜には、高い光透過率が要求されるが、従来のスパッタリング法では膜の表面が粗雑になるのに対して、イオンプレーティング法で成膜すると、前記の結晶質からなる透明導電膜の表面が極めて平滑になることを見出し、本発明を完成するに至った。
 すなわち、本発明の第1の発明によれば、酸化インジウムを主成分とし、セリウムを含む、結晶質の透明導電膜であって、セリウムの含有量がCe/(In+Ce)原子数比で0.3~9原子%であり、イオンプレーティング法で成膜され、かつ算術平均高さ(Ra)が1.0nm以下であることを特徴とする透明導電膜が提供される。
 また、本発明の第2の発明によれば、酸化インジウムを主成分とし、セリウムを含み、さらに、金属元素(M元素)として、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上の金属元素を含む、結晶質の透明導電膜であって、セリウムの含有量がCe/(In+Ce+M)原子数比で0.3~9原子%、かつM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下であり、イオンプレーティング法で成膜され、かつ算術平均高さ(Ra)が1.0nm以下であることを特徴とする透明導電膜が提供される。
 また、本発明の第3の発明によれば、第2の発明において、M元素が、チタンであることを特徴とする透明導電膜が提供される。
 また、本発明の第4の発明によれば、第1~3のいずれかの発明において、膜中にスズを含まないことを特徴とする透明導電膜が提供される。
 また、本発明の第5の発明によれば、第1~4のいずれかの発明において、波長460nmの屈折率が2.1以上であることを特徴とする透明導電膜が提供される。
 また、本発明の第6の発明によれば、第1~5のいずれかの発明において、比抵抗が8.0×10-4Ω・cm以下であることを特徴とする透明導電膜が提供される。
 また、本発明の第7の発明によれば、第1~6のいずれかの発明において、キャリア電子移動度が35cm-1-1以上であることを特徴とする透明導電膜が提供される。
 また、本発明の第8の発明によれば、第1の発明において、セリウムの含有量がCe/(In+Ce)原子数比で0.3~5原子%であり、かつ比抵抗が5.0×10-4Ω・cm以下であることを特徴とする透明導電膜が提供される。
 また、本発明の第9の発明によれば、第8の発明において、セリウムの含有量がCe/(In+Ce)原子数比で0.8~5原子%であり、かつ比抵抗が4.0×10-4Ω・cm以下であることを特徴とする透明導電膜が提供される。
 また、本発明の第10の発明によれば、第2の発明において、セリウムの含有量がCe/(In+Ce+M)原子数比で0.3~5原子%、かつM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下であって、比抵抗が5.0×10-4Ω・cm以下であることを特徴とする透明導電膜が提供される。
 本発明の透明導電膜は、酸化インジウムを主成分とし、特定量のセリウムを含み、特定量のX元素を含むことができるイオンプレーティング法で成膜された結晶質の透明導電膜であって、膜が結晶質であることから、従来のITO膜では得られなかった、高いキャリア電子移動度に由来する低い比抵抗、ならびに高い屈折率を示すだけでなく、従来スパッタリング法の膜では得られなかった極めて平滑な膜表面を有する。
 この透明導電膜を青色LEDに用いると、透明導電膜と青色LEDの発光層である窒化ガリウム層との屈折率の整合性をとることができ、発光層である窒化ガリウム層からの光の取り出し効率を高めることが可能となる。
 また、透明導電膜を太陽電池の裏面電極の一部として用いる場合、従来のITO膜では、太陽光の取り込み効率が低かったが、本発明の上記透明導電膜であれば屈折率を高めることができるため、太陽光の取り込み効率を向上させることが可能になる。さらに、太陽電池の表面電極として透明導電膜を用いる場合、ITO膜では、比抵抗は低いが、キャリア電子濃度が高く、赤外光の反射率や吸収が高く、透過率が低かったが、本発明の透明導電膜によれば、低い比抵抗、高い屈折率を有すると共に、可視光だけでなく赤外光の透過率も高く、さらに膜面が平滑なため光の散乱が抑制され、ITO膜の諸特性を超える材料として代替することができる。
図1は、参考例1で用いた酸化物焼結体のX線回折測定結果を示すチャートである。 図2は、参考例1で形成された結晶質の透明導電膜のX線回折測定結果を示すチャートである。 図3は、参考例13において、室温で形成された非晶質の透明導電膜を加熱昇温しながらX線回折測定を行うことによって、結晶質に変化し始める温度、すなわち結晶化温度を調べたX線回折測定結果を示すチャートである。 図4は、比較用に、室温で形成された非晶質の透明導電膜を加熱昇温しながらX線回折測定を行うことによって結晶化温度を比較例5で調べたX線回折測定結果を示すチャートである。 図5は、本発明(実施例1)で用いた酸化物焼結体のX線回折測定結果を示すチャートである。
 以下に、本発明の透明導電膜について図面を用いて詳細に説明する。
1.透明導電膜
 本発明の透明導電膜は、酸化インジウムを主成分とし、特定量のセリウムを含むイオンプレーティング法で成膜された、結晶質の透明導電膜であるか、さらに、金属元素(M元素)として、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上の金属元素を特定量含むイオンプレーティング法で成膜された、結晶質の透明導電膜であり、前者を第1の透明導電膜といい、後者を第2の透明導電膜ということがある。
(1-1)第1の透明導電膜
 本発明の第1の透明導電膜は、酸化インジウムを主成分とし、セリウムを含む結晶質の透明導電膜であって、セリウムの含有量がCe/(In+Ce)原子数比で0.3~9原子%であり、かつ、イオンプレーティング法で成膜され、算術平均高さ(Ra)が1.0nm以下であることを特徴とする。
 本発明の第1の透明導電膜において、セリウムの含有量は、Ce/(In+Ce)原子数比で0.3~9原子%であることが必要である。セリウムの原子数比が0.3原子%未満であると、最低限必要なキャリア電子が生成されないため、透明導電膜の比抵抗が8.0×10-4Ω・cmよりも高くなるため好ましくない。一方、セリウムの含有量が原子数比で9原子%を超えてしまうと、キャリア電子移動度が低下するようになり、比抵抗が高くなってしまう。セリウムの含有量は、Ce/(In+Ce)原子数比で0.5~8原子%であることが好ましく、0.8~7原子%であることがより好ましい。
 また、本発明の透明導電膜は、X線回折測定(2θ/θ)において、結晶質の酸化インジウム相に起因する回折ピークのみが観察される結晶質の透明導電膜であることが好ましい。図2には、結晶質の透明導電膜のX線回折測定結果を示す。この膜の組成は、セリウムの含有量がCe/(In+Ce)原子数比で9原子%である。基板温度500°Cで直流スパッタリング法によって形成され、膜厚は約200nmである。チャートの2θ≒30.5°((222)面)、22°((211)面)、42°((332)面)の各位置にピークが観察されることから、膜は十分に結晶化しており、比較的結晶性が高いことがわかる。これは、同じ成分組成を有するタブレットを用い、イオンプレーティング法で形成された本発明の透明導電膜でも同様である。
 本発明においては、前記特許文献1と異なり、透明導電膜が結晶質であることが重要である。ここで、結晶質の膜におけるセリウム添加による比抵抗低下の効果について説明する。結晶質の膜において、4価のセリウムは、前記のとおり、ビックスバイト構造の3価インジウムの格子点に置き換わると考えられるが、スズなど他の4価の元素とは異なり、キャリア電子を生成する効果が極めて低い。このような結晶質の膜におけるセリウムの挙動は、従来は全く知られていなかった。
 従来の酸化インジウムを主成分としてセリウムを添加した透明導電膜は、特許文献1~3に記載されたとおり、実質的に非晶質膜であった。ここでは、最終的に酸化インジウムを主成分としてセリウムを添加した透明導電膜が銀系薄膜を挟持する3層積層構造であるため、透明導電膜は、銀系薄膜を水分による損傷から保護するバリア性に優れていることが求められる。また、特許文献6に記載の通り、3層積層構造の配線として加工するためには、耐薬品性の低い銀系薄膜と同じエッチャントによって、酸化インジウムを主成分としてセリウムを添加した透明導電膜がエッチングされる必要がある。このようにバリア性とエッチング性を満足させるためには、非晶質であることが必須となる。結晶質である場合には、十分なバリア性が得られない、あるいは銀系薄膜と同じエッチャントでエッチングされないといった問題が生じる。
 例えば、特許文献1には、180℃以下又は室温の基板温度で非晶質の透明導電膜を成膜することが望ましい旨が記載されている。実施例2では、酸化インジウム、酸化チタン及び酸化セリウムの混合物から成り、インジウム元素の含有量は80atom%、チタン元素の含有量は16atom%(インジウム元素に対し20atom%)、セリウム元素の含有量は4atom%(インジウム元素に対し5atom%)、すなわちセリウムの含有量がCe/(In+Ce)原子数比で4.8原子%であるスパッタリングターゲットを用い、DCマグネトロンスパッタリング装置で、180℃以下の低温に維持されたガラス基板上に透明導電膜を形成している。そして、厚さ37.5nmの透明薄膜、厚さ15nm銀薄膜、厚さ37.5nmの透明薄膜を連続して成膜し、次に、これら薄膜付きガラス基板を、220℃、1時間の条件で加熱処理した旨が記載されている。チタンとセリウムの総含有量を上記の通りに規定することによって、形成された膜は非晶質であり、220℃の加熱処理をした後も非晶質のまま維持することが可能となっている。
 なお、一般的なスパッタリング装置の基板加熱ヒーターは、通常、最高加熱温度が250℃、高くても300℃であることも、従来、結晶質の透明導電膜が検討されなかった理由に挙げられる。
 本発明の透明導電膜は、セリウムがCe/(In+Ce)原子数比で最大9原子%まで添加された場合でも、前記の通りキャリア電子の生成は少量にとどまる。一方で、キャリア電子の移動度は、結晶質の膜となることで著しく高められ、比抵抗が非晶質の膜より低下する。このようなキャリア電子の移動度の向上、さらには、これによる比抵抗が低下することは、従来知られていなかった。
 本発明の結晶質の膜において、セリウムは、上記の比抵抗の低下に加え、光学的な効果、すなわち屈折率を高める効果をもたらす。特許文献1~3に記載された通り、非晶質の膜においてもセリウムによって屈折率を高める効果は得られる。しかし、結晶質の膜では、非晶質の膜以上に高い効果が得られる。非特許文献1に記載の通り、透明な状態であれば、キャリア電子の生成量が低いほうが反射率は高い、すなわち屈折率は高くなる。前記の通り、結晶質の膜にセリウムが適量含有されている場合、低い比抵抗を示すうえで必要最低限のキャリア電子を生成するだけであるため、屈折率は高くなる。
 一方、非晶質の場合は、結晶質と同様にセリウムのキャリア電子を生成する能力は低く、さらに結晶質とは異なり高い移動度を示さないため、結局のところ、低い比抵抗を実現するには酸素欠損によるキャリア電子の多量の生成に依存している。このため、非晶質の膜では、透明な状態での反射率はそれほど高くなく、すなわち屈折率がそれほど高くならない。
 したがって、結晶質の膜では、セリウム自体が屈折率を高める効果があるだけでなく、キャリア電子をそれほど生成させずに比抵抗を低下させるため、屈折率を高めるには好都合であるといえる。
 以上詳細に説明したように、酸化インジウムを主成分とした結晶質の透明導電膜に含有されたセリウムは、キャリア電子を生成する効果が極めて低く、キャリア電子の移動度が高まることは、従来報告されておらず、新たに見出された事実である。
 本発明の第1の透明導電膜は、イオンプレーティング法で成膜されること、ならびに酸化インジウムを主成分とし、セリウムを含むことによって、結晶質でありながら膜表面の平滑性が高い膜となる。膜表面の平滑性は、算術平均高さ(Ra)で1.0nm以下であり、この値が小さくなるほど平滑性が高くなる。透明導電膜の膜表面を平滑とすることによって、光の散乱が抑制され、結果的に青色LEDや太陽電池の効率を高めることが可能になる。
 このように膜表面が平滑性を示す理由は、本発明の透明導電膜がイオンプレーティング法で成膜されることに加え、セリウムを含むことで結晶化温度が高められるためと考えられる。結晶化温度が高められることにより、結晶粒の核生成頻度が低くなり、その結果、比較的粒径の大きい平坦な結晶粒ができるため、算術平均高さ(Ra)が低下すると推察される。これに対して、スパッタリング法で成膜される場合には、セリウムにより結晶化温度が高められても、形成される結晶質の膜が再スパッタされる、あるいは酸化物焼結体ターゲットのエロージョン領域から高速の酸素イオンの照射によりダメージを受けるなどの要因により、膜表面の平滑性が損なわれてしまう。この点において、本発明の透明導電膜は特許文献7で提案されている透明導電膜と大きく異なる。
 本発明の第1の透明導電膜は、その用途に応じて、セリウムの含有量を前記セリウム原子数比0.3~9原子%の範囲から適宜選択することが可能である。
 ところで、特許文献1には、膜中に金属の酸化物SnOを含ませることが可能である旨が記載されている。しかし、本発明の透明導電膜には、スズが含まれてはならない。スズを含ませた場合には、たとえ少量でもキャリア電子濃度が著しく高められるため屈折率が低下してしまい、本発明の透明導電膜の特徴が損なわれるからである。なお、不可避不純物ほどの極僅かな量の混入については、特性に及ぼす影響はほとんどないので問題とはならない。
 本発明の第1の透明導電膜は、波長460nmの屈折率が2.1以上であることが好ましい。このように一般的なITO膜(屈折率1.9~2.0)、特に低い比抵抗を示すITO膜(屈折率1.8~1.9)と比較して、屈折率を2.1以上に高くすることにより、青色LEDでは、発光層である窒化ガリウム層との屈折率の整合性が良好となり、発光効率が向上するものと期待される。
 また、本発明の第1の透明導電膜は、比抵抗が8.0×10-4Ω・cm以下であることが好ましい。特に、p型の窒化ガリウム層は、電気的な特徴として膜面方向の電流拡散能が低いため、透明導電膜の比抵抗を十分低くすることで、素子全面から効率よく発光させる必要がある。
 さらに、本発明の透明導電膜は、キャリア電子移動度が35cm/Vs以上であることが好ましい。キャリア電子移動度を高めて、かつキャリア電子濃度を低く抑えることで、上記の低い比抵抗と高い屈折率の両立が可能となるからである。
 第1の透明導電膜の場合、より低い比抵抗を必要とする用途には、セリウムの含有量がCe/(In+Ce)原子数比で0.3~5原子%であり、かつ比抵抗が5.0×10-4Ω・cm以下であるものが好ましい。さらに、セリウムの含有量をCe/(In+Ce)原子数比で0.8~5原子%の範囲とすれば、比抵抗を4.0×10-4Ω・cm以下とすることができる。
(1-2)第2の透明導電膜
 本発明の第2の透明導電膜は、酸化インジウムを主成分とし、セリウムを含み、さらに金属元素(M元素)として、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上の金属元素を含む透明導電膜であって、セリウムの含有量がCe/(In+Ce+M)原子数比で0.3~9原子%、かつM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下であり、かつイオンプレーティング法で成膜され、算術平均高さ(Ra)が1.0nm以下の結晶質の透明導電膜であることを特徴とする。
 第2の透明導電膜におけるセリウムの含有量は、Ce/(In+Ce+M)原子数比で0.3~9原子%である。セリウムの原子数比が0.3原子%未満であると、最低限必要なキャリア電子が生成されず、透明導電膜の比抵抗が8.0×10-4Ω・cmよりも高くなるため好ましくない。一方、セリウムの原子数比が9原子%を超えてしまうと、キャリア電子移動度が低下するようになり、比抵抗が高くなってしまう。
 また、M元素は、酸化インジウムを主成分とし、セリウムを含んだ結晶質の透明導電膜においてキャリア電子濃度を高める機能がある。その含有量は、M/(In+Ce+M)原子数比で1原子%以下であることが好ましい。酸化インジウム系薄膜に含有されたM元素は、セリウムと比較して、キャリア電子を生成し易く、M/(In+Ce+M)原子数比で1原子%を超えるとキャリア電子濃度が高くなり過ぎて、屈折率が低下してしまう。このため、M元素の原子数比は1原子%以下とすることが好ましい。
 また、本発明の第2の透明導電膜は、上記M元素がチタンであることが特に好ましい。M元素をチタンとし、セリウムの含有量がCe/(In+Ce+Ti)原子数比で0.3~9原子%、かつM元素の含有量がTi/(In+Ce+Ti)原子数比で1原子%以下とする。
 前記特許文献1には、半金属の酸化物SiO、GeO、Sb、およびBiO、あるいは金属の酸化物SnOを含ませうることが記載されている。しかし、本発明の透明導電膜には、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンを含みうるが、それ以外に四価以上の金属元素の酸化物が含まれてはならない。
半金属の酸化物SiOなどを含ませた場合には、少量でもキャリア電子濃度が著しく高められるため屈折率が低下してしまい、本発明の透明導電膜の特徴が損なわれる。なお、不可避不純物ほどの極僅かな量の混入については、特性に及ぼす影響はほとんどなく問題とはならない。
 本発明の第2の透明導電膜は、波長460nmの屈折率が2.1以上であることが好ましい。このように屈折率を2.1以上に高くすることにより、一般的なITO膜(屈折率1.9~2.0)、特に低い比抵抗を示すITO膜(屈折率1.8~1.9)と比較して、青色LEDの発光層である窒化ガリウム層との屈折率の整合性が良好となり、発光効率の向上が期待される。
 また、本発明の第2の透明導電膜は、比抵抗が8.0×10-4Ω・cm以下であることが好ましい。窒化ガリウム層は、電気的な特徴として膜面方向の電流拡散能が低いため、透明導電膜の比抵抗を十分低くすることで、素子全面から効率よく発光させる必要がある。さらに、キャリア電子移動度が35cm/Vs以上であることが好ましい。キャリア電子移動度を高めて、かつキャリア電子濃度を低く抑えることで、上記の低い比抵抗と高い屈折率の両立が可能となる。
 本発明の第2の透明導電膜は、第1の透明導電膜と同様であり、イオンプレーティング法で成膜されること、ならびに酸化インジウムを主成分とし、セリウムを含むことによって、結晶質でありながら膜表面の平滑性が高い。前記した通り、第2の透明導電膜は、他にM元素も含むが、結晶化温度を高める効果においてセリウムはM元素と比較して格段に高いため、第1の透明導電膜と同様の特徴を示す。すなわち、本発明の第2の透明導電膜を透明電極とする場合でも、膜表面の平滑性が高いために光の散乱が抑制され、結果的に青色LEDや太陽電池の効率を高めることが可能になる。
 第2の透明導電膜の場合、より低い比抵抗を必要とする用途には、セリウムの含有量がCe/(In+Ce+M)原子数比で0.3~5原子%、かつM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下であって、比抵抗が5.0×10-4Ω・cm以下であることが好ましい。
2.透明導電膜の製造方法
 本発明の透明導電膜の製造方法としては、イオンプレーティング法を採用する。本発明の透明導電膜は、酸化インジウムを主成分とし、セリウム、あるいはセリウムの他にさらに金属元素を含むが、このような組成に制御することによって結晶化温度を向上させる。本発明では、これに加えて、イオンプレーティング法を採用することにより、透明導電膜が結晶質であっても、膜表面の算術平均高さ(Ra)が1.0nm以下を示すような極めて高い平滑性が実現されるようにする。
 酸化インジウムを主成分とする結晶質の透明導電膜としては、例えば算術平均高さ(Ra)で2.0nm以下であれば平滑とする場合が一般的であるが、これと比較して、本発明の透明導電膜は、格段に平滑であると言える。また、真空蒸着法でも膜表面の平滑性を算術平均高さ(Ra)で1.0nm以下にすることが可能である。ただし、十分に低い比抵抗ならびに高いキャリア移動度を示す結晶質の透明導電膜を形成するためには、基板温度をイオンプレーティング法より高くする必要がある。しかしながら、従来、ITO膜などの製造方法として採用されてきたスパッタリング法では膜表面の平滑性を算術平均高さ(Ra)で1.0nm以下にすることができない。
 スパッタリング法の場合、酸化インジウムを主成分とし、セリウムを含む酸化物焼結体ターゲット、あるいは、セリウムの他にさらに金属元素(M元素)を含む酸化物焼結体ターゲットを用い、スパッタリング装置内に基板と前記ターゲットを配置し、酸素ガスを含むアルゴン不活性ガス雰囲気中で、前記基板を所定の温度に維持し、この基板と前記ターゲットとの間に電界を印加してターゲット基板間にプラズマを発生させることによって、結晶質あるいは非晶質の透明導電膜を基板上に形成している。通常のマグネトロンスパッタリング法では、プラズマ中のアルゴンイオンが、磁場により、ターゲットの特定領域に集中的に衝突する。この領域は集中的に削られていくが、これを一般にエロージョン領域と呼ぶ。主にエロージョン領域から、酸化物焼結体ターゲットを構成するインジウムなどの金属イオンが飛び出して膜が堆積されるが、これとともに高速の酸素イオンも照射される。しかし、この酸素イオンは、結晶質あるいは非晶質の透明導電膜にダメージを与え、膜表面の平滑性を失わせ、算術平均高さ(Ra)が高くなる原因となる。
 これに対して、本発明においては、基板を室温から300℃程度の範囲に設定して、イオンプレーティング法により結晶質の膜を基板上に形成して製造する。なお、イオンプレーティング法では、粒子の運動エネルギーがスパッタリング法と比較して高いため、基板温度が上記のように低い温度範囲であっても十分に結晶化が進行し、キャリアとなる電子移動度の高い本発明の透明導電膜を形成することができる。
 本発明の結晶質の透明導電膜を製造するには、イオンプレーティング法を採用する。イオンプレーティング法では、前記酸化物焼結体から作製されたタブレット(あるいはペレットとも呼ぶ。)を用いて、基板上に透明導電膜を形成する。なお、本発明の第1の透明導電膜を製造する場合は、酸化インジウムを主成分としセリウムをCe/(In+Ce)原子数比で0.3~9原子%含む酸化物焼結体を加工したタブレットを用い、本発明の第2の透明導電膜を製造する場合は、セリウムの含有量がCe/(In+Ce+M)原子数比で0.3~9原子%、かつM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下である酸化物焼結体を加工したタブレットを使用する。
 本発明で用いられる酸化物焼結体は、本発明の透明導電膜と同じ組成であることが好ましい。これは、原料の酸化物焼結体の組成が、形成された透明導電膜に反映されることを前提としている。
 かかる酸化物焼結体は、X線回折測定による酸化物焼結体の相同定結果を図1に示すが、ビックスバイト型構造のIn相が主たる結晶相となり、その中に蛍石型構造のCeO相が平均粒径3μm以下の結晶粒として微細に分散しているものが好ましい。
上記の主相であるビックスバイト型構造のIn相には、セリウムはほとんど固溶しない。一方、分散相である蛍石型構造のCeO相にもインジウムはほとんど固溶しない。ただし、両相において、非平衡的に、インジウムの一部がセリウムによって置換されるか、あるいは、セリウムの一部がインジウムによって置換されていてもよく、化学両論組成からの多少のずれ、金属元素の欠損、または酸素欠損を含んでいても構わない。
 かかる酸化物焼結体の主たる結晶相であるIn相は、2種類の大きさの平均粒径からなり、1種類が平均粒径2μm以下、より好ましくは1.5μm以下、さらに好ましくは1μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上、より好ましくは3~6μmの比較的大きい結晶粒であることが好ましい。このようにIn相から結晶粒を異なる大きさの平均粒径のもので構成することによって、焼結体の強度確保と密度調整(低密度化)を両立させることが可能となり、その結果としてクラック、割れ、あるいはスプラッシュが発生しないで成膜できるようになる。
 また、本発明では、酸化物焼結体の主相であるビックスバイト型構造のIn相と蛍石型構造のCeO相の結晶粒径や分散状態の関係は、下記の式(1)で定義されるX線回折ピーク強度比が25%以下であることが望ましい。X線回折ピーク強度比が25%を超えるとイオンプレーティング法による成膜の進行とともにクラック、割れ、あるいはスプラッシュが頻発するようになり、膜の結晶性にも悪影響を与えるからである。特に、X線回折ピーク強度比は20%以下であることが好ましい。なお、このような酸化物焼結体は、本出願人による国際出願(PCT/JP2010/062816)の明細書に詳細に記載されている。
  I=CeO相(111)/In相(222)×100[%]   ・・・(1)
 このような酸化物焼結体タブレットを用い、イオンプレーティング装置内に基板とタブレットを銅ハース内に配置し、必要に応じて酸素ガスを含むアルゴン不活性ガス雰囲気中で、前記基板を所定の温度に維持し、銅ハースから電子銃を用いてタブレットを蒸発させ、基板付近でプラズマを発生させることによって、タブレット蒸気をイオン化し、結晶質の透明導電膜を基板上に形成する。
 また、イオンプレーティング用のタブレット(あるいはペレットとも呼ぶ。)は、密度が3.4~5.5g/cmの酸化物焼結体を加工して得られるものが好ましい。なお、このような酸化物焼結体も、本出願人による前記PCT/JP2010/062816号の明細書に詳細に記載されている。
 上記タブレットの組成は、基本的には形成される膜組成に再現され、タブレット中の各元素の含有量を変えることにより、膜中の各元素の含有量を変化させることができる。
 イオンプレーティングでは、室温、すなわち20℃以上の温度から300℃程度の温度に設定された基板上に結晶質の透明導電膜が形成される。結晶質の透明導電膜の結晶性を高めて、より低比抵抗の膜を得るためには、基板温度を100℃以上とすることが好ましい。ただし、この時、形成される膜の結晶性は、膜中の各元素の含有量、不活性ガス雰囲気中の酸素分圧、成膜速度等の成膜条件にも依存する。
 本発明においては、上記の透明導電膜を耐熱性基板、必要に応じて透明な耐熱性基板に形成することで、透明導電性基材とすることができる。
 基板としては、ガラス、合成石英、ポリイミドなどの合成樹脂、ステンレスなどの金属箔など用途に応じて各種の板又はフィルムが使用できる。特に、本発明では結晶質の透明導電膜を形成するために加熱する場合は、ガラス、合成石英などの耐熱性基板であることが好ましい。
 また、太陽電池の用途ではロール・トゥ・ロールプロセスなどを適用する場合があり、ロール状のポリイミドフィルム、ステンレスなどの耐熱性基板が好適に使用される。
以上説明した、本発明の、酸化インジウムを主成分とし、特定量のセリウムを含む結晶質の透明導電膜、あるいは、さらに、金属元素(M元素)として、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上の金属元素を特定量含む結晶質の透明導電膜は、青色LEDや太陽電池などの機能素子に好適に用いることができる。また、その他、比較的低い比抵抗、赤外域における高透過率を利用する導波路型光制御素子や液晶を用いた光変調素子などの光通信用デバイス、さらには液晶パネル、プラズマディスプレイ、有機EL、無機EL、あるいは電子ペーパーななどの機能素子にも適用できる。
 以下に、本発明の実施例を用いて、さらに詳細に説明するが、本発明は、これら実施例によって限定されるものではない。
[透明導電膜の基本特性評価]
 得られた透明導電膜の組成は、ICP発光分光法によって調べた。透明導電膜の膜厚は、表面粗さ計(テンコール社製 Alpha-Step IQ)で測定した。成膜速度は、膜厚と成膜時間から算出した。
 膜の表面抵抗は、抵抗率計(ダイアインスツルメンツ社製 ロレスタEP MCP-T360型)による四探針法で測定した。膜の比抵抗は、膜の表面抵抗と膜厚の積から算出した。膜のキャリア電子濃度および移動度は、ホール効果測定より求めた。膜の屈折率は、分光エリプソメーター(J.A.Woolam製 VASE)を用いて測定した。
 膜の生成相は、X線回折装置(フィリップス社製 X´PertPRO MPD)を用いて、2θ/θ測定によって同定した。膜の結晶化温度は、高温X線回折測定によって決定した。成膜した透明導電膜を毎分5℃の速度で昇温させながら、2θ=20~40°の範囲で繰り返しX線回折測定を行い、結晶による回折ピークが現れた温度を結晶化温度とした。
 膜の表面粗さは、AFM(Digital Instruments社製 Nanoscope IIIおよびD5000)を用いて、算術平均高さRaにより求めた。
(参考例1)
 酸化インジウム粉末および酸化セリウム粉末を平均粒径1μm以下となるよう調整して原料粉末とした。セリウム含有量がCe/(In+Ce)原子数比で9原子%となるようにこれらの粉末を調合し、水とともに樹脂製ポットに入れ、湿式ボールミルで混合した。この際、硬質ZrOボールを用い、混合時間を18時間とした。混合後、スラリーを取り出し、濾過、乾燥、造粒した。造粒物を、冷間静水圧プレスで3ton/cmの圧力をかけて成形した。
 次に、炉内容積0.1m当たり5リットル/分の割合で、焼結炉内の大気に酸素を導入する雰囲気で、1400℃の焼結温度でこの成形体を20時間焼結した。この際、1℃/分で昇温し、焼結後の冷却の際は酸素導入を止め、1000℃までを10℃/分で降温した。
 得られた酸化物焼結体を、直径152mm、厚み5mmの大きさに加工し、スパッタリング面をカップ砥石で最大高さRzが3.0μm以下となるように磨いた。加工した酸化物焼結体を、無酸素銅製のバッキングプレートに金属インジウムを用いてボンディングして、スパッタリングターゲットとした。
 得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、図1に示した通り、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、6.87g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相の平均粒径は1.1μmであった。
 次に、アーキング抑制機能のない直流電源を装備した直流マグネトロンスパッタリング装置(アネルバ製特SPF-530H)の非磁性体ターゲット用カソードに、上記スパッタリングターゲットを取り付けた。本スパッタ装置は、特に基板加熱ヒーターに高温仕様にしており、基板温度を最高650℃まで高くすることが可能である。基板には、厚さ0.5mmの合成石英を用い、ターゲット-基板間距離を49mmに固定した。
 直流電力200Wを印加して直流プラズマを発生させ、10分間のプリスパッタリング後、基板をスパッタリングターゲットの直上、すなわち静止対向位置に配置し、スパッタリング装置のチャンバー内が1×10-4Pa以下の真空度になるまで排気し、基板温度が500℃に到達したことを確認後、アルゴンと酸素の混合ガスを酸素の比率が1.0%になるように導入し、ガス圧を0.3Paに調整した。なお、上記の酸素の比率1.0%において、得られる膜が最も低い比抵抗を示すことが明らかとなっている。
 スパッタリングを実施することで、500℃の基板上に膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、6.6×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.6×1020cm-3、キャリア電子移動度36cm-1-1であった。波長460nmの屈折率は、2.21であった。X線回折測定によって膜の結晶性を調べた結果、図2に示した通り、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.3nmであった。
 以上、透明導電膜の組成および成膜条件を表1に示し、透明導電膜の諸特性を表2に示した。なお、参考例2以降についても同様である。
(参考例2)
 セリウムの含有量がCe/(In+Ce)原子数比で7原子%の酸化物焼結体からなるスパッタリングターゲットを用いたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、5.9×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.5×1020cm-3、キャリア電子移動度42cm-1-1であった。波長460nmの屈折率は、2.20であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.3nmであった。
(参考例3)
 セリウムの含有量がCe/(In+Ce)原子数比で7原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を400℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、5.1×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.4×1020cm-3、キャリア電子移動度51cm-1-1であった。波長460nmの屈折率は、2.19であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.4nmであった。
(参考例4)
 セリウムの含有量がCe/(In+Ce)原子数比で4原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を400℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、4.2×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.3×1020cm-3、キャリア電子移動度65cm-1-1であった。波長460nmの屈折率は、2.17であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.6nmであった。
(参考例5)
 セリウムの含有量がCe/(In+Ce)原子数比で1原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を300℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、4.4×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は1.6×1020cm-3、キャリア電子移動度88cm-1-1であった。波長460nmの屈折率は、2.14であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.8nmであった。
(参考例6)
 セリウムの含有量がCe/(In+Ce)原子数比で0.3原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を300℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、7.6×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は1.0×1020cm-3、キャリア電子移動度82cm-1-1であった。波長460nmの屈折率は、2.13であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.8nmであった。
(参考例7)
 酸化インジウムを主成分とし、セリウムの他に、チタンを含む酸化物焼結体であって、かつセリウムの含有量がCe/(In+Ce+Ti)原子数比で8原子%、チタンの含有量がTi/(In+Ce+Ti)原子数比で1原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を400℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 得られた透明導電膜の比抵抗を測定したところ、5.6×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は3.1×1020cm-3、キャリア電子移動度36cm-1-1であった。波長460nmの屈折率は、2.14であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.3nmであった。
 チタンの代わりに、ジルコニウム、ハフニウム、モリブデン、およびタングステンを添加して試したが、ほぼ同様の結果を得た。
(参考例8)
 酸化インジウムを主成分とし、セリウムの他に、チタンを含む酸化物焼結体であって、かつセリウムの含有量がCe/(In+Ce+Ti)原子数比で5原子%、チタンの含有量がTi/(In+Ce+Ti)原子数比で0.5原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を400℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 得られた透明導電膜の比抵抗を測定したところ、5.2×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.7×1020cm-3、キャリア電子移動度45cm-1-1であった。波長460nmの屈折率は、2.17であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.3nmであった。
(参考例9)
 酸化インジウムを主成分とし、セリウムの他に、チタンを含む酸化物焼結体であって、かつセリウムの含有量がCe/(In+Ce+Ti)原子数比で4原子%、チタンの含有量がTi/(In+Ce+Ti)原子数比で1原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を400℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 得られた透明導電膜の比抵抗を測定したところ、4.8×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は3.0×1020cm-3、キャリア電子移動度43cm-1-1であった。波長460nmの屈折率は、2.16であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.4nmであった。
(参考例10)
 酸化インジウムを主成分とし、セリウムの他に、チタンを含む酸化物焼結体であって、かつセリウムの含有量がCe/(In+Ce+Ti)原子数比で0.3原子%、チタンの含有量がTi/(In+Ce+Ti)原子数比で0.3原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を300℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 得られた透明導電膜の比抵抗を測定したところ、4.4×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は1.7×1020cm-3、キャリア電子移動度83cm-1-1であった。波長460nmの屈折率は、2.12であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.8nmであった。
(参考例11)
 酸化インジウムを主成分として、セリウムの他に、ジルコニウムを含む酸化物焼結体であって、セリウムの含有量がCe/(In+Ce+Zr)原子数比で0.3原子%、ジルコニウムの含有量がZr/(In+Ce+Zr)原子数比で0.3原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を300℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 得られた透明導電膜の比抵抗を測定したところ、4.8×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は1.6×1020cm-3、キャリア電子移動度80cm-1-1であった。波長460nmの屈折率は、2.12であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.8nmであった。
 なお、その他に、ハフニウム、モリブデン、あるいはタングステンを同組成添加した場合についても、チタンまたはジルコニウムを添加した場合とほぼ同様の結果を得た。
(参考例12)
 基板温度を室温、すなわち25℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 X線回折測定によって膜の結晶性を調べた結果、非晶質の膜であることが確認された。膜の比抵抗を測定したところ、1.9×10-3Ωcmと低い値を示した。ホール効果測定の結果、キャリア電子濃度は2.5×1020cm-3であり、キャリア電子移動度が15cm-1-1であった。すなわち、キャリア電子濃度がそれほど高くないことに加え、非晶質膜特有のキャリア電子移動度が低いことが、高い比抵抗を示す原因であることがわかった。
 続いて、この非晶質の膜を窒素雰囲気中において、500℃にて、30分間の熱処理を行った。その結果、膜の比抵抗は6.9×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.4×1020cm-3、キャリア電子移動度38cm-1-1であった。波長460nmの屈折率は、2.22であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.3nmであった。
 次に、上記と同様に成膜した非晶質膜の別の試料を用いて、弱酸を用いたウエットエッチングによるパターニング試験を実施した。エッチャントには、弱有機酸である蓚酸を主成分とした関東化学製ITO-06Nを用いた。エッチャント温度40℃において、所定のパターン形状への加工を試みたところ、問題なくパターニングできることが確認された。
(参考例13)
 セリウムの含有量がCe/(In+Ce)原子数比で5原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を室温、すなわち25℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 X線回折測定によって膜の結晶性を調べた結果、非晶質の膜であることが確認された。膜の比抵抗を測定したところ、8.3×10-4Ωcmであった。ホール効果測定の結果、キャリア電子濃度は4.4×1020cm-3であり、キャリア電子移動度が17cm-1-1であった。すなわち、キャリア電子濃度がそれほど高くないことに加え、非晶質膜特有のキャリア電子移動度が低いことが、高い比抵抗を示す原因であることがわかった。
 続いて、この非晶質の膜を窒素雰囲気中において、400℃にて、30分間の熱処理を行った。その結果、膜の比抵抗は4.9×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.2×1020cm-3、キャリア電子移動度58cm-1-1であった。波長460nmの屈折率は、2.20であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.3nmであった。
 なお、別の上記と同じ非晶質の膜を用いて、高温X線回折測定によって結晶化温度を測定した。その結果、図3に示した通り、結晶化温度は、前記の熱処理温度より高く、220~225℃であることが明らかとなった。
 次に、上記と同様に成膜した非晶質膜の別の試料を用いて、弱酸を用いたウエットエッチングによるパターニング試験を実施した。エッチャントには、弱有機酸である蓚酸を主成分とした関東化学製ITO-06Nを用いた。エッチャント温度40℃において、所定のパターン形状への加工を試みたが、ほとんどエッチングされずパターニングできないことが判明した。SEM観察の結果、非晶質膜中には微結晶が観察され、この微結晶がパターニング不可能であることの原因であることが明らかとなった。
(比較例1)
 セリウムの含有量がCe/(In+Ce)原子数比で0.1原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を300℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、1.5×10-3Ωcmと比較的高い値を示した。また、ホール効果測定を行ったところ、キャリア電子濃度は6.2×1019cm-3、キャリア電子移動度68cm-1-1であった。波長460nmの屈折率は、2.12であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.9nmであった。
(比較例2)
 セリウムの含有量がCe/(In+Ce)原子数比で11原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を500℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、1.0×10-3Ωcmと比較的高い値を示した。また、ホール効果測定を行ったところ、キャリア電子濃度は2.8×1020cm-3、キャリア電子移動度22cm-1-1であった。波長460nmの屈折率は、2.18であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.3nmであった。
(比較例3)
 酸化インジウムを主成分とし、セリウムの他に、チタンを含む酸化物焼結体であって、かつセリウムの含有量がCe/(In+Ce+Ti)原子数比で5原子%、チタンの含有量がTi/(In+Ce+Ti)原子数比で3原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を400℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 得られた透明導電膜の比抵抗を測定したところ、4.2×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は6.2×1020cm-3、キャリア電子移動度24cm-1-1であった。波長460nmの屈折率は、2.07であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.3nmであった。
(比較例4)
 酸化インジウムを主成分とし、セリウムの他に、スズを含む酸化物焼結体であって、かつセリウムの含有量がCe/(In+Ce+Sn)原子数比で0.3原子%、スズの含有量がSn/(In+Ce+Sn)原子数比で3原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、ならびに基板温度を300℃としたことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 得られた透明導電膜の比抵抗を測定したところ、2.6×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は7.3×1020cm-3、キャリア電子移動度33cm-1-1であった。波長460nmの屈折率は、2.04であった。X線回折測定によって膜の結晶性を調べた結果、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.7nmであった。
(比較例5)
 セリウムの含有量がCe/(In+Ce)原子数比で20原子%である酸化物焼結体からなるスパッタリングターゲットを用いたこと、基板温度を室温、すなわち25℃としたこと、ならびに酸素の比率を0.2%に調整したアルゴンと酸素の混合ガスをスパッタリングガスとして導入したことを除いては、参考例1と同様に透明導電膜を形成した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、2.6×10-2Ωcmと非常に高い値を示した。ホール効果測定を行ったところ、キャリア電子濃度は3.0×1019cm-3、キャリア電子移動度8cm-1-1であった。また、波長460nmの屈折率は、2.25であった。X線回折測定によって膜の結晶性を調べた結果、非晶質の膜であることが確認された。
 続いて、この非晶質の膜を窒素雰囲気中において、特許文献2と同様に220℃にて、60分間の熱処理を行ったが、膜の比抵抗は1.5×10-2Ωcmを示し、10-2Ωcm台の高い比抵抗を示した。X線回折測定によって膜の結晶性を調べた結果、非晶質の膜のままであることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.3nmであった。
 さらに、この膜を窒素雰囲気中において、300℃にて、60分間の熱処理を行った。膜の比抵抗は1.2×10-2Ωcmであり、わずかに低下したものの、高い値であることには変わりがなかった。キャリア電子濃度は5.2×1019cm-3、キャリア電子移動度10cm-1-1であった。X線回折測定によって膜の結晶性を調べた結果、非晶質の膜のままであることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.4nmであった。
 別の上記と同じ非晶質の膜を用いて、高温X線回折測定によって結晶化温度を測定した。その結果、図4に示した通り、結晶化温度は、前記の熱処理温度より高く、445~450℃であることが明らかとなった。
(実施例1)
 上記参考例の成膜方法をイオンプレーティング法に変更し、セリウム含有量がCe/(In+Ce)で表される原子数比で0.8原子%となる酸化物焼結体からなるタブレットを用いて、透明導電膜の成膜を実施した。
 酸化物焼結体の作製方法は、参考例1のスパッタリングターゲットの場合とほぼ同様であるが、先に述べたように、イオンプレーティング用のタブレットとして用いる場合には、密度を低くする必要があるため、2種類の平均粒径の酸化インジウム粉末を用いることとし、平均粒径1μm以下となるよう調整した前記の酸化インジウム粉末に加え、平均粒径3μmとなるよう調整した酸化インジウム粉末を選択することとした。同様の理由から、焼結温度を1100℃とした。タブレットは、焼結後の寸法が直径30mm、高さ40mmとなるよう予め成形した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、図5に示した通り、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。すなわち、参考例1のスパッタリングターゲットと類似の結果(図1)が得られた。酸化物焼結体の密度を測定したところ、4.56g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.0μmであった。また、In相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体をタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、3.6×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は1.9×1020cm-3、キャリア電子移動度91cm-1-1であった。波長460nmの屈折率は、2.12であった。X線回折測定によって膜の結晶性を調べた結果、セリウムは酸化インジウム相に固溶しており、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。すなわち、参考例1のスパッタリングターゲットで形成された透明導電膜と同様の結果(図2)が得られた。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.8nmであった。
(実施例2)
 セリウム含有量がCe/(In+Ce)で表される原子数比で2原子%となる酸化物焼結体からなるタブレットを用いたこと、ならびに基板温度を300℃としたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.67g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.0μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、3.3×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.1×1020cm-3、キャリア電子移動度90cm-1-1であった。波長460nmの屈折率は、2.13であった。X線回折測定によって膜の結晶性を調べた結果、セリウムは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.8nmであった。
(実施例3)
 セリウム含有量がCe/(In+Ce)で表される原子数比で9原子%となる酸化物焼結体からなるタブレットを用いたこと、ならびに基板温度を300℃としたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.90g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.1μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、5.4×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.9×1020cm-3、キャリア電子移動度40cm-1-1であった。波長460nmの屈折率は、2.19であった。X線回折測定によって膜の結晶性を調べた結果、セリウムは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.5nmであった。
(実施例4)
 セリウム含有量がCe/(In+Ce)で表される原子数比で5原子%となる酸化物焼結体からなるタブレットを用いたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.74g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.1μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、3.8×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.6×1020cm-3、キャリア電子移動度64cm-1-1であった。波長460nmの屈折率は、2.17であった。X線回折測定によって膜の結晶性を調べた結果、セリウムは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.6nmであった。
(実施例5)
 セリウム含有量がCe/(In+Ce)で表される原子数比で4原子%となる酸化物焼結体からなるタブレットを用いたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.71g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.1μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、3.4×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.5×1020cm-3、キャリア電子移動度73cm-1-1であった。波長460nmの屈折率は、2.15であった。X線回折測定によって膜の結晶性を調べた結果、セリウムは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.7nmであった。
(実施例6)
 セリウム含有量がCe/(In+Ce)で表される原子数比で2.4原子%となる酸化物焼結体からなるタブレットを用いたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.68g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.0μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、3.6×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.2×1020cm-3、キャリア電子移動度79cm-1-1であった。波長460nmの屈折率は、2.14であった。X線回折測定によって膜の結晶性を調べた結果、セリウムは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.8nmであった。
(実施例7)
 セリウム含有量がCe/(In+Ce)で表される原子数比で1.6原子%となる酸化物焼結体からなるタブレットを用いたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.64g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.0μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、3.4×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.1×1020cm-3、キャリア電子移動度87cm-1-1であった。波長460nmの屈折率は、2.12であった。X線回折測定によって膜の結晶性を調べた結果、セリウムは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.8nmであった。
(実施例8)
 セリウム含有量がCe/(In+Ce)で表される原子数比で1原子%となる酸化物焼結体からなるタブレットを用いたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.58g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.0μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、3.4×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.0×1020cm-3、キャリア電子移動度93cm-1-1であった。波長460nmの屈折率は、2.12であった。X線回折測定によって膜の結晶性を調べた結果、セリウムは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.8nmであった。
(実施例9)
 セリウム含有量がCe/(In+Ce)で表される原子数比で0.3原子%となる酸化物焼結体からなるタブレットを用いたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.52g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.0μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、4.3×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は1.6×1020cm-3、キャリア電子移動度90cm-1-1であった。波長460nmの屈折率は、2.13であった。X線回折測定によって膜の結晶性を調べた結果、セリウムは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.8nmであった。
(実施例10)
 セリウムの他に、チタンを含む酸化物焼結体であって、かつセリウムの含有量がCe/(In+Ce+Ti)原子数比で8原子%、チタンの含有量がTi/(In+Ce+Ti)原子数比で1原子%である酸化物焼結体からなるタブレットを用いたこと、ならびに基板温度を300℃としたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、チタンのみが酸化インジウム相に固溶して、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.52g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.2μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、5.1×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は3.2×1020cm-3、キャリア電子移動度38cm-1-1であった。波長460nmの屈折率は、2.11であった。X線回折測定によって膜の結晶性を調べた結果、セリウムおよびチタンは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.6nmであった。
(実施例11)
 セリウムの他に、チタンを含む酸化物焼結体であって、かつセリウムの含有量がCe/(In+Ce+Ti)原子数比で5原子%、チタンの含有量がTi/(In+Ce+Ti)原子数比で0.5原子%である酸化物焼結体からなるタブレットを用いたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、チタンのみが酸化インジウム相に固溶して、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.87g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.1μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、4.1×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.7×1020cm-3、キャリア電子移動度57cm-1-1であった。波長460nmの屈折率は、2.16であった。X線回折測定によって膜の結晶性を調べた結果、セリウムおよびチタンは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.6nmであった。
(実施例12)
 セリウムの他に、チタンを含む酸化物焼結体であって、かつセリウムの含有量がCe/(In+Ce+Ti)原子数比で4原子%、チタンの含有量がTi/(In+Ce+Ti)原子数比で1原子%である酸化物焼結体からなるタブレットを用いたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、チタンのみが酸化インジウム相に固溶して、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.84g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.2μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、3.5×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.9×1020cm-3、キャリア電子移動度61cm-1-1であった。波長460nmの屈折率は、2.15であった。X線回折測定によって膜の結晶性を調べた結果、セリウムおよびチタンは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.7nmであった。
(実施例13)
 セリウムの他に、チタンを含む酸化物焼結体であって、かつセリウムの含有量がCe/(In+Ce+Ti)原子数比で0.3原子%、チタンの含有量がTi/(In+Ce+Ti)原子数比で0.3原子%である酸化物焼結体からなるタブレットを用いたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、チタンのみが酸化インジウム相に固溶して、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.55g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.0μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、3.7×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は1.9×1020cm-3、キャリア電子移動度89cm-1-1であった。波長460nmの屈折率は、2.12であった。X線回折測定によって膜の結晶性を調べた結果、セリウムおよびチタンは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.8nmであった。
(実施例14)
 セリウムの他に、ジルコニウムを含む酸化物焼結体であって、かつセリウムの含有量がCe/(In+Ce+Zr)原子数比で0.3原子%、ジルコニウムの含有量がZr/(In+Ce+Zr)原子数比で0.3原子%である酸化物焼結体からなるタブレットを用いたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、ジルコニウムのみが酸化インジウム相に固溶して、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.53g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.0μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、3.9×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は1.8×1020cm-3、キャリア電子移動度88cm-1-1であった。波長460nmの屈折率は、2.12であった。X線回折測定によって膜の結晶性を調べた結果、セリウムおよびジルコニウムは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.8nmであった。
(実施例15)
 セリウム含有量がCe/(In+Ce)で表される原子数比で9原子%となる酸化物焼結体からなるタブレットを用いたこと、ならびに基板温度を室温としたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.90g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.1μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は25℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、6.0×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.8×1020cm-3、キャリア電子移動度37cm-1-1であった。波長460nmの屈折率は、2.18であった。X線回折測定によって膜の結晶性を調べた結果、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.5nmであった。
(実施例16)
 セリウム含有量がCe/(In+Ce)で表される原子数比で5原子%となる酸化物焼結体からなるタブレットを用いたこと、ならびに基板温度を室温としたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.74g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.1μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は25℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、4.0×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.5×1020cm-3、キャリア電子移動度62cm-1-1であった。波長460nmの屈折率は、2.14であった。X線回折測定によって膜の結晶性を調べた結果、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.7nmであった。
(実施例17)
 セリウム含有量がCe/(In+Ce)で表される原子数比で1.6原子%となる酸化物焼結体からなるタブレットを用いたこと、ならびに基板温度を室温としたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.64g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.0μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は25℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、3.6×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は2.0×1020cm-3、キャリア電子移動度88cm-1-1であった。波長460nmの屈折率は、2.12であった。X線回折測定によって膜の結晶性を調べた結果、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.8nmであった。
(比較例6)
 セリウム含有量がCe/(In+Ce)で表される原子数比で0.1原子%となる酸化物焼結体からなるタブレットを用いて、イオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、図5とは異なり、ビックスバイト型構造のIn相のみで構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.49g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、極少量のCeO相が点在している様子が観察された。CeO相からなる結晶粒の平均粒径は1.0μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、9.9×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は8.3×1019cm-3、キャリア電子移動度76cm-1-1であった。波長460nmの屈折率は、2.11であった。X線回折測定によって膜の結晶性を調べた結果、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.8nmであった。
(比較例7)
 セリウム含有量がCe/(In+Ce)で表される原子数比で11原子%となる酸化物焼結体からなるタブレットを用いたこと、ならびに基板温度を300℃としたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、図5と同様に、ビックスバイト型構造のIn相および蛍石型構造のCeO相で構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.96g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒の平均粒径は1.1μmであった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は300℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、8.4×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は3.1×1020cm-3、キャリア電子移動度24cm-1-1であった。波長460nmの屈折率は、2.18であった。X線回折測定によって膜の結晶性を調べた結果、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは0.5nmであった。
(比較例8)
 セリウムの他に、チタンを含む酸化物焼結体であって、かつセリウムの含有量がCe/(In+Ce+Ti)原子数比で0.3原子%、チタンの含有量がTi/(In+Ce+Ti)原子数比で3原子%である酸化物焼結体からなるタブレットを用いたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、セリウムは酸化インジウム相に固溶せず、チタンのみが酸化インジウム相に固溶して、図5と同様に、ビックスバイト型構造のIn相のみで構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.55g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒は確認されなかった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、4.1×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は6.9×1020cm-3、キャリア電子移動度22cm-1-1であった。波長460nmの屈折率は、2.05であった。X線回折測定によって膜の結晶性を調べた結果、セリウムおよびチタンは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.2nmであった。
(比較例9)
 セリウムの他に、スズを含む酸化物焼結体であって、かつセリウムの含有量がCe/(In+Ce+Sn)原子数比で0.3原子%、スズの含有量がTi/(In+Ce+Sn)原子数比で3原子%である酸化物焼結体からなるタブレットを用いたこと以外は、実施例1と同様にイオンプレーティング法にて成膜を実施した。
 実施例1と同様の方法で酸化物焼結体を作製した。得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、原料粉末の配合時の仕込み組成とほぼ同じであることが確認された。次に、X線回折測定による酸化物焼結体の相同定を行ったところ、図5とは異なり、ビックスバイト型構造のIn相のみで構成されていることが確認された。酸化物焼結体の密度を測定したところ、4.61g/cmであった。続いて、SEMによる酸化物焼結体の組織観察を行ったところ、CeO相からなる結晶粒は確認されなかった。またIn相の結晶粒が2種類の大きさの平均粒径からなっており、1種類が平均粒径2μm以下の比較的小さい結晶粒であり、もう1種類が平均粒径2.5μm以上の比較的大きい結晶粒であることを満足していることが確認された。
 このような酸化物焼結体を加工してタブレットとして用い、イオンプレーティング法によるプラズマガンを用いた放電をタブレットが使用不可となるまで継続した。イオンプレーティング装置として、高密度プラズマアシスト蒸着法(HDPE法)が可能な反応性プラズマ蒸着装置を用いた。成膜条件としては、蒸発源と基板間距離を0.6m、プラズマガンの放電電流を100A、Ar流量を30sccm、O流量を10sccmとした。タブレットが使用不可となるまでの間、スプラッシュなどの問題は起こらなかった。
 タブレット交換後、成膜を実施した。なお、基板温度は200℃とし、膜厚200nmの透明導電膜を形成した。得られた透明導電膜の組成は、タブレットとほぼ同じであることが確認された。
 膜の比抵抗を測定したところ、2.3×10-4Ωcmであった。また、ホール効果測定を行ったところ、キャリア電子濃度は7.6×1020cm-3、キャリア電子移動度36cm-1-1であった。波長460nmの屈折率は、2.02であった。X線回折測定によって膜の結晶性を調べた結果、セリウムおよびスズは酸化インジウム相に固溶しており、実施例1と同様に、ビックスバイト型構造の酸化インジウム相のみからなる結晶質の膜であることが確認された。膜の表面粗さをAFMによって測定したところ、算術平均高さRaは1.1nmであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
「評価」
 表1に示した結果から明らかなように、実施例1~9および15~17は、酸化インジウムを主成分とし、セリウム含有量がCe/(In+Ce)原子数比で0.3~9原子%の範囲である、インジウムとセリウムを酸化物として含有するイオンプレーティング法で成膜された結晶質の透明導電膜であり、結晶相がビックスバイト型構造のIn相のみによって形成されており、膜表面が算術平均高さ(Ra)1.0nm以下と平滑である。そのため、波長460nmにおける屈折率が2.1以上、かつ比抵抗が8.0×10-4Ω・cm以下であり、かつ移動度が35cm-1-1以上と優れた特性を有している。特に、酸化インジウムを主成分としてセリウムのみを添加することと、成膜方法としてイオンプレーティング法を採用することによって、膜表面の優れた平滑性が得られている。また、光学特性に関しては、キャリア電子濃度が低く抑制された結果、波長460nmにおける屈折率が2.1を超える高い値が得られている。
 また、実施例10~14は、セリウム含有量をCe/(In+Ce)原子数比で0.3~8原子%、かつ、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上のM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下の範囲組成を有する、インジウム、セリウム、およびM元素を酸化物として含有する結晶質の透明導電膜であり、実施例1~9および15~17の透明導電膜と同様の薄膜構造で、優れた膜表面の平滑性、光学特性及び電気特性を有している。
 一方、参考例1~13ならびに比較例1および2は、実施例1~17と類似の組成を有する結晶質の透明導電膜であり、実施例1~17と同等の光学特性及び電気特性を有するが、スパッタリング法で成膜されているため、膜表面の算術平均高さ(Ra)1.0nmを超えており、平滑性が失われていることがわかる。
 さらに、比較例3では、スパッタリング法による成膜のため、膜表面の平滑性に劣るだけでなく、M元素がチタンであり、Ti/(In+Ce+Ti)原子数比で3原子%と高すぎたために、形成された結晶質の透明導電膜は、キャリア電子濃度が高くなってしまい、その結果、青色LEDの用途などで必要な屈折率が2.1以上にはならなかった。
 また、比較例4の結晶質の透明導電膜は、インジウムおよびセリウムの他に、本発明の透明導電膜の構成元素とは異なるスズをSn/(In+Ce+Sn)原子数比で3原子%含有している。スズを含むため、スパッタリング法による成膜のため、膜表面の平滑性に劣るだけでなく、形成された結晶質の透明導電膜は、キャリア電子濃度が高くなり過ぎてしまい、屈折率は2.04を示し、青色LEDの用途などで必要な屈折率2.1以上にはならなかった。
 比較例5は、比較例2よりさらにセリウム含有量が高い、Ce/(In+Ce)原子数比で20原子%としている。このようにセリウム含有量が高い場合、結晶化温度が445~450℃まで高くなるため、室温付近の低温で形成された透明導電膜は非晶質となる。そして、非酸化性の窒素雰囲気において、結晶化温度より低い220℃、あるいは300℃で熱処理しても非晶質のままであり、比抵抗の低下などの特性改善は認められなかった。比較例5の非晶質の透明導電膜は、例えば前記特許文献1で開示されている代表的な組成であり、前記特許文献1~3の実施例で開示されているような、結晶化温度より低い220℃の低温で熱処理を施しているので結晶質にならず、電気特性ならびに光学特性が改善されないことが分かる。
 比較例6では、実施例1~9および15~17に対して、セリウム含有量を本発明の範囲から外れた、Ce/(In+Ce)原子数比で0.1原子%としている。セリウム含有量が低すぎるため、イオンプレーティング法で成膜された結晶質の透明導電膜であっても、十分なキャリア電子濃度を生成することができず、比抵抗は9.9×10-4Ω・cmを示し、青色LEDや太陽電池の用途などで必要な比抵抗8×10-4Ω・cm以下にはならなかった。
 同様に、比較例7では、セリウム含有量を本発明の範囲から外れた、Ce/(In+Ce)原子数比で11原子%としている。セリウム含有量が高過ぎるため、イオンプレーティング法で成膜された結晶質の透明導電膜は、キャリア電子移動度が低下してしまい、比抵抗は8.4×10-4Ω・cmを示し、青色LEDや太陽電池の用途などで必要な比抵抗8.0×10-4Ω・cm以下にはならなかった。
 比較例8では、イオンプレーティング法による成膜ではあるが、セリウムの他に含まれるM元素がチタンであり、Ti/(In+Ce+Ti)原子数比で3原子%と高すぎたために、形成された結晶質の透明導電膜は、膜表面の平滑性に劣り、さらにキャリア電子濃度が高くなってしまい、その結果、青色LEDの用途などで必要な屈折率が2.1以上にはならなかった。
 また、比較例9の結晶質の透明導電膜は、インジウムおよびセリウムの他に、本発明の透明導電膜の構成元素とは異なるスズをSn/(In+Ce+Sn)原子数比で3原子%含有している。セリウムの他にスズを含むため、イオンプレーティング法による成膜ではあるが、膜表面の平滑性に劣り、形成された結晶質の透明導電膜は、キャリア電子濃度が高くなり過ぎてしまい、屈折率は2.02を示し、青色LEDの用途などで必要な屈折率2.1以上にはならなかった。
 本発明の透明導電膜は、青色LEDに用いることができ、この透明導電膜と青色LEDの発光層である窒化ガリウム層との屈折率の整合性がとれ、発光層である窒化ガリウム層からの光の取り出し効率を高めることが可能となる。
 また、本発明の透明導電膜を太陽電池の裏面電極の一部として用いることができ、従来のITO膜では、太陽光の取り込み効率が低かったが、この上記透明導電膜であれば屈折率を高めることができるため、太陽光の取り込み効率を向上させることが可能になる。さらに、太陽電池の表面電極として、この透明導電膜を用いることができる。従来のITO膜では、比抵抗は低いが、キャリア電子濃度が高く、赤外光の反射率や吸収が高く、透過率が低かったのに対して、本発明の透明導電膜によれば、低い比抵抗、高い屈折率を有すると共に、可視光だけでなく赤外光の透過率も高く、さらに膜面が平滑なため光の散乱が抑制され、ITO膜の諸特性を超える材料として代替することができる。

Claims (10)

  1.  酸化インジウムを主成分とし、セリウムを含む、結晶質の透明導電膜であって、セリウムの含有量がCe/(In+Ce)原子数比で0.3~9原子%であり、イオンプレーティング法で成膜され、かつ算術平均高さ(Ra)が1.0nm以下であることを特徴とする透明導電膜。
  2.  酸化インジウムを主成分とし、セリウムを含み、さらに、金属元素(M元素)として、チタン、ジルコニウム、ハフニウム、モリブデン、およびタングステンからなる金属元素群より選ばれる一種以上の金属元素を含む、結晶質の透明導電膜であって、
     セリウムの含有量がCe/(In+Ce+M)原子数比で0.3~9原子%、かつM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下であり、イオンプレーティング法で成膜され、かつ算術平均高さ(Ra)が1.0nm以下であることを特徴とする透明導電膜。
  3.  M元素が、チタンであることを特徴とする請求項2に記載の透明導電膜。
  4.  膜中にスズを含まないことを特徴とする請求項1~3のいずれかに記載の透明導電膜。
  5.  波長460nmの屈折率が2.1以上であることを特徴とする請求項1~4のいずれかに記載の透明導電膜。
  6.  比抵抗が8.0×10-4Ω・cm以下であることを特徴とする請求項1~5のいずれかに記載の透明導電膜。
  7.  キャリア電子移動度が35cm-1-1以上であることを特徴とする請求項1~6のいずれかに記載の透明導電膜。
  8.  セリウムの含有量がCe/(In+Ce)原子数比で0.3~5原子%であり、かつ比抵抗が5.0×10-4Ω・cm以下であることを特徴とする請求項1に記載の透明導電膜。
  9.  セリウムの含有量がCe/(In+Ce)原子数比で0.8~5原子%であり、かつ比抵抗が4.0×10-4Ω・cm以下であることを特徴とする請求項8に記載の透明導電膜。
  10.  セリウムの含有量がCe/(In+Ce+M)原子数比で0.3~5原子%、かつM元素の含有量がM/(In+Ce+M)原子数比で1原子%以下であって、比抵抗が5.0×10-4Ω・cm以下であることを特徴とする請求項2に記載の透明導電膜。
PCT/JP2011/056245 2010-03-19 2011-03-16 透明導電膜 WO2011115177A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180013835.5A CN102792387B (zh) 2010-03-19 2011-03-16 透明导电膜
JP2012505728A JP5561358B2 (ja) 2010-03-19 2011-03-16 透明導電膜
DE112011100972T DE112011100972T5 (de) 2010-03-19 2011-03-16 Transparenter leitender Film
KR1020127023422A KR101789347B1 (ko) 2010-03-19 2011-03-16 투명 도전막
US13/580,196 US9493869B2 (en) 2010-03-19 2011-03-16 Transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010063637 2010-03-19
JP2010-063637 2010-03-19

Publications (1)

Publication Number Publication Date
WO2011115177A1 true WO2011115177A1 (ja) 2011-09-22

Family

ID=44649260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056245 WO2011115177A1 (ja) 2010-03-19 2011-03-16 透明導電膜

Country Status (7)

Country Link
US (1) US9493869B2 (ja)
JP (1) JP5561358B2 (ja)
KR (1) KR101789347B1 (ja)
CN (1) CN102792387B (ja)
DE (1) DE112011100972T5 (ja)
TW (1) TWI513834B (ja)
WO (1) WO2011115177A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039097A1 (ja) * 2014-09-12 2016-03-17 長州産業株式会社 透明導電膜、これを用いた装置または太陽電池、及び透明導電膜の製造方法
JPWO2017006634A1 (ja) * 2015-07-08 2018-04-19 ソニー株式会社 電子デバイス及び固体撮像装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016388A1 (ja) * 2009-08-05 2011-02-10 住友金属鉱山株式会社 酸化物焼結体とその製造方法、ターゲット、および透明導電膜
JP5257372B2 (ja) * 2009-11-30 2013-08-07 住友金属鉱山株式会社 酸化物蒸着材と透明導電膜および太陽電池
CN104769739B (zh) * 2012-11-14 2018-01-23 株式会社Lg化学 透明导电膜和包含所述透明导电膜的有机发光器件
JP5976846B2 (ja) 2013-01-16 2016-08-24 日東電工株式会社 透明導電フィルムおよびその製造方法
JP6261988B2 (ja) 2013-01-16 2018-01-17 日東電工株式会社 透明導電フィルムおよびその製造方法
JP6215062B2 (ja) 2013-01-16 2017-10-18 日東電工株式会社 透明導電フィルムの製造方法
JP6261987B2 (ja) 2013-01-16 2018-01-17 日東電工株式会社 透明導電フィルムおよびその製造方法
US9440876B2 (en) * 2014-05-29 2016-09-13 Lu Han Electron sensitive glass and optical circuits, microstructures formed therein
WO2016073796A1 (en) 2014-11-05 2016-05-12 Solarcity Corporation System and method for efficient deposition of transparent conductive oxide
JP6654865B2 (ja) * 2015-11-12 2020-02-26 日東電工株式会社 非晶質透明導電性フィルム、ならびに、結晶質透明導電性フィルムおよびその製造方法
KR102173346B1 (ko) * 2016-07-08 2020-11-03 아사히 가세이 가부시키가이샤 도전성 필름, 전자 페이퍼, 터치 패널, 및 플랫 패널 디스플레이
CN109872835A (zh) * 2019-04-23 2019-06-11 深圳扑浪创新科技有限公司 一种红外透明导电薄膜、及其制备方法和用途
CN111943649B (zh) * 2020-07-22 2022-08-26 长沙壹纳光电材料有限公司 一种用于蒸镀的烧结体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039531A (ja) * 2002-07-05 2004-02-05 Canon Electronics Inc 有機エレクトロルミネセンス素子
JP2005290458A (ja) * 2004-03-31 2005-10-20 Idemitsu Kosan Co Ltd 酸化インジウム−酸化セリウム系スパッタリングターゲット及び透明導電膜及び透明導電膜の製造方法
JP2005314734A (ja) * 2004-04-28 2005-11-10 Idemitsu Kosan Co Ltd スパッタリングターゲット及び透明導電膜及び透明導電ガラス基板
JP2009224152A (ja) * 2008-03-14 2009-10-01 Sumitomo Metal Mining Co Ltd 透明電極、透明導電性基板および透明タッチパネル

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900007666B1 (ko) * 1984-11-12 1990-10-18 알프스 덴기 가부시기가이샤 자기헤드용 비정질 합금
JP3158948B2 (ja) 1995-03-22 2001-04-23 凸版印刷株式会社 スパッタリングターゲット
JPH0959787A (ja) 1995-08-21 1997-03-04 Toppan Printing Co Ltd 多層導電膜のエッチング方法
JP3031224B2 (ja) 1995-12-21 2000-04-10 凸版印刷株式会社 透明導電膜
JP3445891B2 (ja) 1995-12-21 2003-09-08 凸版印刷株式会社 スパッタリングターゲット
US7141186B2 (en) * 2002-10-29 2006-11-28 Sumitomo Metal Mining Co., Ltd. Oxide sintered body and sputtering target, and manufacturing method for transparent conductive oxide film as electrode
WO2004070812A1 (ja) * 2003-02-05 2004-08-19 Idemitsu Kosan Co.,Ltd. 半透過半反射型電極基板の製造方法、及び反射型電極基板並びにその製造方法、及びその反射型電極基板の製造方法に用いるエッチング組成物
KR101101456B1 (ko) * 2004-03-09 2012-01-03 이데미쓰 고산 가부시키가이샤 박막 트랜지스터, 박막 트랜지스터 기판, 이들의 제조방법, 이들을 사용한 액정 표시 장치, 관련된 장치 및방법, 및 스퍼터링 타깃, 이것을 사용하여 성막한 투명도전막, 투명 전극, 및 관련된 장치 및 방법
JP2005320192A (ja) 2004-05-07 2005-11-17 Sumitomo Metal Mining Co Ltd 酸化物焼結体、スパッタリングターゲットおよび透明導電性薄膜
JP2006016608A (ja) 2004-05-31 2006-01-19 Keiichi Kotaka 製炭炉用容器
WO2006016608A1 (ja) 2004-08-13 2006-02-16 Kanagawa Academy Of Science And Technology 透明伝導体、透明電極、太陽電池、発光素子及びディスプレイパネル
CN101223296A (zh) * 2005-07-15 2008-07-16 出光兴产株式会社 In·Sm氧化物系溅射靶
JP4805648B2 (ja) * 2005-10-19 2011-11-02 出光興産株式会社 半導体薄膜及びその製造方法
JP4605788B2 (ja) * 2006-04-27 2011-01-05 日東電工株式会社 タッチパネル
JP4568254B2 (ja) * 2006-07-20 2010-10-27 三洋電機株式会社 太陽電池モジュール
JP5099893B2 (ja) * 2007-10-22 2012-12-19 日東電工株式会社 透明導電性フィルム、その製造方法及びそれを備えたタッチパネル
JP2010062816A (ja) 2008-09-03 2010-03-18 Murata Mfg Co Ltd 弾性波フィルタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039531A (ja) * 2002-07-05 2004-02-05 Canon Electronics Inc 有機エレクトロルミネセンス素子
JP2005290458A (ja) * 2004-03-31 2005-10-20 Idemitsu Kosan Co Ltd 酸化インジウム−酸化セリウム系スパッタリングターゲット及び透明導電膜及び透明導電膜の製造方法
JP2005314734A (ja) * 2004-04-28 2005-11-10 Idemitsu Kosan Co Ltd スパッタリングターゲット及び透明導電膜及び透明導電ガラス基板
JP2009224152A (ja) * 2008-03-14 2009-10-01 Sumitomo Metal Mining Co Ltd 透明電極、透明導電性基板および透明タッチパネル

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039097A1 (ja) * 2014-09-12 2016-03-17 長州産業株式会社 透明導電膜、これを用いた装置または太陽電池、及び透明導電膜の製造方法
JP2016062647A (ja) * 2014-09-12 2016-04-25 長州産業株式会社 透明導電膜、これを用いた装置または太陽電池、及び透明導電膜の製造方法
JPWO2017006634A1 (ja) * 2015-07-08 2018-04-19 ソニー株式会社 電子デバイス及び固体撮像装置
JP2021090058A (ja) * 2015-07-08 2021-06-10 ソニーグループ株式会社 電子デバイスの製造方法

Also Published As

Publication number Publication date
US20120315439A1 (en) 2012-12-13
TW201144457A (en) 2011-12-16
TWI513834B (zh) 2015-12-21
JP5561358B2 (ja) 2014-07-30
JPWO2011115177A1 (ja) 2013-07-04
US9493869B2 (en) 2016-11-15
KR101789347B1 (ko) 2017-10-23
CN102792387B (zh) 2014-09-10
KR20130029365A (ko) 2013-03-22
CN102792387A (zh) 2012-11-21
DE112011100972T5 (de) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5561358B2 (ja) 透明導電膜
JP6015801B2 (ja) 酸化物焼結体とその製造方法、ターゲット、および透明導電膜
JP4552950B2 (ja) ターゲット用酸化物焼結体、その製造方法、それを用いた透明導電膜の製造方法、及び得られる透明導電膜
JP5994818B2 (ja) 酸化物膜及び透明基材
JP5003600B2 (ja) 酸化物焼結体、ターゲット、およびそれを用いて得られる透明導電膜、導電性積層体
TWI400215B (zh) 氧化物燒結體、標靶、與使用它所得到之透明導電膜及透明導電性基材
JP4730204B2 (ja) 酸化物焼結体ターゲット、及びそれを用いた酸化物透明導電膜の製造方法
JP4779798B2 (ja) 酸化物焼結体、ターゲット、およびそれを用いて得られる透明導電膜
JP4370868B2 (ja) 酸化物焼結体及びスパッタリングターゲット、酸化物透明電極膜の製造方法
WO2014021374A1 (ja) 酸化物焼結体およびそれを加工したタブレット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013835.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756361

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505728

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13580196

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127023422

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120111009720

Country of ref document: DE

Ref document number: 112011100972

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756361

Country of ref document: EP

Kind code of ref document: A1