WO2004070812A1 - 半透過半反射型電極基板の製造方法、及び反射型電極基板並びにその製造方法、及びその反射型電極基板の製造方法に用いるエッチング組成物 - Google Patents

半透過半反射型電極基板の製造方法、及び反射型電極基板並びにその製造方法、及びその反射型電極基板の製造方法に用いるエッチング組成物 Download PDF

Info

Publication number
WO2004070812A1
WO2004070812A1 PCT/JP2003/014810 JP0314810W WO2004070812A1 WO 2004070812 A1 WO2004070812 A1 WO 2004070812A1 JP 0314810 W JP0314810 W JP 0314810W WO 2004070812 A1 WO2004070812 A1 WO 2004070812A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide
etching
electrode substrate
inorganic compound
Prior art date
Application number
PCT/JP2003/014810
Other languages
English (en)
French (fr)
Inventor
Kazuyoshi Inoue
Original Assignee
Idemitsu Kosan Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003027999A external-priority patent/JP2004240091A/ja
Priority claimed from JP2003084905A external-priority patent/JP2004294630A/ja
Priority claimed from JP2003129824A external-priority patent/JP2004333882A/ja
Application filed by Idemitsu Kosan Co.,Ltd. filed Critical Idemitsu Kosan Co.,Ltd.
Priority to US10/544,487 priority Critical patent/US20070037402A1/en
Priority to EP03815744A priority patent/EP1592050A4/en
Publication of WO2004070812A1 publication Critical patent/WO2004070812A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission

Definitions

  • the present invention relates to a method of manufacturing a transflective electrode substrate, a method of manufacturing a reflective electrode substrate, and a method of manufacturing the reflective electrode substrate.
  • the present invention relates to a method for manufacturing a transflective liquid crystal electrode substrate.
  • the present invention also relates to an etching solution used for manufacturing a transflective electrode substrate.
  • the present invention also relates to a reflective electrode substrate in a reflective liquid crystal or a light emitting device, a method for producing the same, and an etching solution used for the method for producing the same. Background art
  • Patent Literatures 1 and 2 below disclose a silver reflective film 120 formed thereon, a protective film 130 covering the silver reflective film 120, and a transmission electrode for driving a liquid crystal thereon.
  • a transflective liquid crystal display device having a structure in which a pole is provided and in which a silver reflective layer and a transmissive electrode for driving liquid crystal are alternately arranged is disclosed.
  • FIG. 5 is a cross-sectional view showing the entire configuration of the transflective liquid crystal display devices of Patent Documents 1 and 2.
  • This liquid crystal display device has a first substrate 100 and a second substrate 110 The liquid crystal is sealed in the gap between the first substrate 100 and the second substrate 110. Further, a silver reflective film 120 on the first substrate 100, a protective film 130 formed on the silver reflective film 120, and a transparent electrode 1 formed on the protective film 130 And an alignment film formed on the transparent electrode 140. According to such a configuration, even if a high-temperature treatment of the alignment film is performed after the formation of the reflective film, the growth of the crystal particles constituting the silver reflective film 120 can be suppressed, so that a decrease in reflectance can be prevented. It becomes possible.
  • Patent Document 3 discloses a configuration using a single transflective film in which a Si thin film or the like having an auxiliary reflection function is provided below the silver reflective film 120. ing. According to such a configuration, it is possible to display in a desired color tone while maintaining the optimum brightness and contrast both during transmission and reflection.
  • Patent Document 2 ''
  • Patent Document 3 ''
  • reflective LCDs are suitable for portable displays because they are: (1) light-weight and bright display can be obtained because of the reflective type; (2) power consumption can be saved by eliminating the need for backlight; and (3) they can be operated with low power consumption. Development is being actively pursued for these reasons.
  • the top emission type organic electroluminescence (hereinafter referred to as) L) is: 1 It is a solid-state element, it has excellent handling properties, 2 It emits light by itself, so other light-emitting members are not required, 3 It is attracting attention because it is suitable for displays because of its excellent visibility, and 4 it is easy to use full color.
  • a reflective electrode is used for the working electrode layer. As this reflective electrode
  • Patent Document 4 discloses a reflective electrode in which a layer in contact with an OLED is made of Mo, Ru, V, or an oxide thereof.
  • Patent Document 5 discloses a laminated film of Cr and Cr oxide, and a metal such as Mo, W, Ta, Nb, Ni, and Pt instead of Cr and Cr oxide. Further, an electrode for a light-emitting element including a laminated film made of an oxide thereof is disclosed. On the other hand, it is known that A1 or the like having a high reflectivity can be used as a reflective electrode for driving a liquid crystal.
  • Patent Document 4 ''
  • Patent Document 5 ''
  • a reflective electrode is usually used for a drive electrode layer in a display device such as the reflective liquid crystal, particularly the top emission type organic EL.
  • Patent Document 6 discloses a metal oxide layer composed of Cr, Ta, W, Ti, Mo, and the like, wherein the ratio of the thickness of the metal oxide layer / the thickness of the Ag alloy layer is expressed by It has been proposed that the step formed between the metal oxide layer and the Ag alloy layer be reduced by making the ratio of the etching rate of the oxide layer / the etching rate of the Ag alloy layer smaller.
  • Patent Document 5 ''
  • the transmission electrode portion and the reflection electrode portion are provided on separate layers, and each layer is formed by “film formation, etching by photolithography, “Film formation—etching by photolithography” had to be repeated, and complicated work was required, resulting in a time loss for moving between processes.
  • the present inventors have conducted intensive studies on the above problems, and found that a transparent conductive film that can be etched by an acid that does not corrode metal but is resistant to an etchant for metal and that is difficult to be etched can be used. It has been found that the process of “one etching” can be further simplified.
  • the present invention simplifies the process by using a liquid that can be selectively etched, avoids a complicated repetitive operation, and prevents a time loss from occurring.
  • the purpose is to provide the information.
  • the reflective electrodes made of Mo, W, Ta, Nb, Ni, Pt, Ru, V, Cr, etc. have low reflectivity, which lowers the luminous efficiency of organic EL.
  • the reflective electrode since the reflective electrode is used as an anode, it is preferable that the work function of the reflective electrode is large from the viewpoint of luminous efficiency.
  • the work function of the metal group such as Mo is relatively large, the ionization potential of the organic compound is 5.6 to 5.8 eV, which is not a sufficient value.
  • the work function of A1 is 4.2, which is not large with respect to the ionization potential of the organic compound.
  • the present invention has been made in view of the above problems.
  • a reflective electrode substrate and a reflective electrode substrate having properties such as (1) low surface resistance, (2) excellent reflection characteristics and durability, and (3) large work function. It is an object of the present invention to provide a method for producing the same.
  • the reflective electrode substrate of the present invention is particularly useful as an electrode substrate for a top emission type organic EL device.
  • the work function of the metal group such as Mo is relatively large, but the ionization potential of the organic compound is 5.6 to 5.8 eV, so that it is not sufficient. Not a value.
  • the work function of Ag is 4-2, which is not large against the ionization potential of organic compounds.
  • the present invention has been made in view of the above problems, and, like the second object, a reflective electrode having properties such as 1) low surface resistance, 2) excellent reflection characteristics and durability, and 3) high work function. It is an object of the present invention to provide a substrate and a method for manufacturing the reflective electrode substrate. And, like the second object, the reflective electrode substrate of the present invention is particularly useful as an electrode substrate for a top emission type organic EL device.
  • the present invention employs the following means in order to achieve the above object.
  • the present invention provides a method for producing a transflective electrode substrate in which at least a metal oxide layer composed of indium oxide and an inorganic compound layer composed of at least A1 or Ag are laminated in this order.
  • each layer can be formed in a process of “film formation—film formation—etching by photolithography—etching by photolithography”. You. As a result, the process can be simplified more than before, and the manufacturing time of the transflective liquid crystal electrode substrate can be shortened.
  • the etching solution ⁇ containing oxalic acid can be added to a small amount of other acids such as hydrochloric acid, nitric acid, sulfonic acid, disulfonic acid, etc. within a range that does not damage the inorganic compound layer composed of Ag or A1. good.
  • the present invention sets a value of BZA, which is a ratio of an etching rate A of the metal oxide layer by the etching liquid to an etching rate B of the inorganic compound layer by the etching liquid, to 10 or more. It is characterized by doing.
  • the value of the etching rate ratio is defined as “the etching rate of the inorganic compound layer made of Ag or A1 and the etching rate of the metal oxide layer”.
  • the value of the etching rate ratio of the etching rate of the inorganic compound layer composed of Ag or A1 to the etching rate of the metal oxide layer is less than 10, when etching the inorganic compound layer composed of Ag or A1 In addition, the underlying metal oxide layer is etched, and the metal oxide layer is damaged.
  • the etching time is longer than the time when the etching is completed, it is defined as over-etching time. In the case of a normal etching process, the etching time is about 1.2 to 2.0 times the time when the etching is completed. Often. Therefore, taking this overetching time into account, the metal oxide layer serving as the base is etched for 0.2 to 1.0 times the time when the etching is completed. It is necessary to increase the value of the etching rate ratio between the etching rate of the inorganic compound layer and the etching rate of the metal oxide layer.
  • the present invention is characterized in that the etching solution contains 30 to 60 wt% of phosphate ions, 1 to 5 wt% of nitrate ions, and 30 to 50 wt% of acetate ions.
  • the present invention is characterized in that the metal oxide layer contains a lanthanide-based metal oxide. This is because, when the metal oxide layer composed of at least indium oxide does not contain a lanthanide-based metal oxide, the value of the etching rate ratio may be 10 or less. Further, when the lanthanide-based metal oxide is not contained, it is difficult to perform etching with an acid containing oxalic acid as a main component.
  • the ratio of the etching speed can often be 10 or more. Further, when a lanthanide-based metal oxide is added, etching containing oxalic acid as a main component becomes possible.
  • the invention is characterized in that the lanthanide-based metal oxide is cerium oxide, brassium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide. , Erbium oxide, thulium oxide, ytterbium oxide, and lutetium oxide.
  • the lanthanide-based metal oxide cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, terbium oxide, and the like can be suitably selected. This is because these metal oxides are non-toxic and easily available. In addition, it is because these oxides can be suitably selected from the relation with the price of the metal oxide, the sintering density during sintering, the sintering time, and the temperature.
  • the content ratio of the lanthanide-based metal oxide is 0.1 to 10 atoms with respect to all metal atoms of the metal oxide. / 0 or less.
  • the amount of the lanthanide-based metal oxide added is 0.1 to 20 atomic%, preferably 1 to 8 atomic%, and more preferably 2 to 7 atomic%.
  • the amount of lanthanide-based metal oxide added is 0.1 atom. If the ratio is less than / 0 , the effect of the addition, that is, the ratio of the etching rates may not be able to be 10 or more. If the amount of the lanthanide-based metal oxide is more than 10 atomic%, the conductivity of the metal oxide layer may be deteriorated, and the permeability of the metal oxide may be reduced. .
  • the present invention is characterized in that the inorganic compound layer contains at least one selected from Au, Pt, and Nd in a range of 0.1 to 3 wt%.
  • the adhesion to the metal oxide layer as an underlayer is excellent, and a film more stable against heat and humidity can be obtained.
  • the amount of Au, Pt, or Nd is more than 3 wt%, the resistance will be low, the adhesion to the underlayer will not be obtained, and it will be unstable to heat and humidity, and it will be expensive. Because there is a case.
  • the preferable addition amount of Au, Pt, and Nd is 0.2 to 2 wt%, more preferably 0.3 to 1.5 wt%.
  • Means 8 to 14 for solving the problems described below are the same as those described above except that the method has a step of forming a second metal oxide layer on an inorganic compound layer made of A1 or Ag. The same operation and effect as the means 1 to 7 for solving the problem described in (1) are obtained.
  • the present invention provides a first metal oxide layer made of at least indium oxide, an inorganic compound layer made of at least A1 or Ag, and a second metal made of at least indium oxide or zinc oxide.
  • An oxide layer and a A method of manufacturing an electrode substrate comprising: etching the second metal oxide layer and the inorganic compound layer with an etchant comprising phosphoric acid, nitric acid, and acetic acid; and etching the first metal oxide thin film. And etching with an etching solution ⁇ containing oxalic acid.
  • the present invention provides a value of ⁇ / ⁇ , which is a ratio of an etching rate ⁇ of the first metal oxide layer by the etching solution ⁇ and an etching rate B of the inorganic compound layer by the etching solution ⁇ . 10 or more, and the ratio CZD of the etching rate C of the inorganic compound layer by the etching liquid ⁇ to the etching rate D of the second metal oxide layer by the etching liquid is 0.5 to 2. It is characterized in that it is set in the range of 0.
  • the present invention is characterized in that the etching solution L is composed of 30 to 60 wt% of phosphate ions, 1 to 5 wt% of ion nitrate, and 30 to 50 wt% of acetate ion.
  • the present invention is characterized in that the first metal oxide layer contains a lanthanide-based metal oxide. .
  • the lanthanide-based metal oxide may include cerium oxide, prasedium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, holmium oxide, It contains at least one selected from the group consisting of erbium, thulium oxide, ytterbium oxide, and lutetium oxide.
  • the content ratio of the lanthanide-based metal oxide is 0.1 to 10 atoms with respect to all metal atoms of the metal oxide. / 0 or less.
  • the present invention is characterized in that the inorganic compound layer contains at least one selected from Au, Pt, and Nd in a range of 0.1 to 3 wt%.
  • Second group invention is characterized in that the inorganic compound layer contains at least one selected from Au, Pt, and Nd in a range of 0.1 to 3 wt%.
  • the second group of the present invention is divided into the following three small groups (2-1, 2-2, 2-3).
  • the 2-1 group of the present invention includes an inorganic compound layer composed of at least A1 on a substrate and a metal composed of at least one or more oxides selected from indium oxide, zinc oxide and tin oxide.
  • This is a reflective electrode substrate in which an oxide layer is laminated in this order.
  • the 2nd-2 group of the present invention relates to a method for producing the reflective electrode substrate, the method including a step of collectively etching the metal oxide layer and the inorganic compound layer with an etching solution comprising phosphoric acid, nitric acid and acetic acid. is there.
  • the 2-3 group of the present invention relates to an etching composition of an etching solution comprising phosphoric acid, nitric acid and acetic acid.
  • the metal oxide layer when the metal oxide layer has a crystal structure, not only the surface becomes rough, but also the surface has projections, thereby causing a leakage current. May be.
  • the luminous efficiency may be degraded. Therefore, it is essential that the metal oxide layer is amorphous.
  • the content of indium oxide in the metal oxide layer is preferably less than 60 to less than 100 at% based on all metal atoms of the metal oxide in the metal oxide layer.
  • the content of indium oxide is 60 atoms. /. If it is less than 1, the specific resistance of the metal oxide layer increases, which is not preferable. If the content of indium oxide is 100 atomic%, it is not preferable because the metal oxide layer is crystallized and a leakage current may occur. Further, water or hydrogen may be added to the metal oxide layer in order to suppress crystallization of the metal oxide layer. Further, the content of indium oxide is preferably 96 atomic% or less, more preferably 95 atomic% or less.
  • the metal oxide layer can be made amorphous without adding water or hydrogen to the metal oxide layer. Further, by adding zinc oxide, the metal oxide layer can be made amorphous.
  • [I n] Z ([ I n] + [Z n]) ( atomic ratio) is from 0.7 to 0.9 5, preferably 0.8 5 to 0.9 5, more Preferably it is 0.8 to 0.9.
  • [In] and [Zn] indicate the number of atoms of In and the number of atoms of Zn in the metal oxide layer. The number of atoms is the number of In or Zn atoms per unit volume in the composition of the metal oxide layer.
  • the thickness of the metal oxide layer is from 2 to 300 nm, preferably from 30 to 200 nm, and more preferably from 10 to 120 nm.
  • the thickness of the inorganic compound layer is 10 to 300 nm, preferably 30 to 300 nm. It is 250 nm, more preferably 50 to 200 nm.
  • the thickness of the inorganic compound layer is less than 10 nm, not only the light from the light emitting portion layer cannot be sufficiently reflected, but also the resistance of the reflective electrode may become too large.
  • a step may be formed in the inorganic compound layer when the metal oxide layer and the inorganic compound layer are collectively etched using an etchant, which is not preferable.
  • the surface of the inorganic compound layer may be a diffuse reflection surface.
  • the material of the substrate for forming the inorganic compound layer and the like is not particularly limited.
  • glass may be used, or plastic and silicon may be used.
  • the inorganic compound layer contains one or more metals selected from Au, Pt, and Nd in addition to A1, which is a main component, in the range of 0.1 to 3 wt%.
  • the addition amount of Au, Pt and Nd in the inorganic compound layer is 0.1 to 3 wt%, preferably 0:! To 2 wt%, more preferably 0.5 to 2 wt%. It is. If the addition amount is less than 0.1 lwt%, the effect of addition will not be sufficiently exhibited. If the addition amount exceeds 3 wt%, the conductivity of the inorganic compound layer is undesirably reduced.
  • the third component is a major metal such as Au It means other components other than.
  • the work function of the metal oxide layer is 5.6 eV or more.
  • the work function of the metal oxide layer of the reflective electrode substrate is set to 5.6 eV or more, the luminous efficiency of the organic EL device can be enhanced when used for the electrode substrate of the organic EL device. For this reason, it is preferable to set the work function of the metal oxide layer to 5.6 eV or more. More preferably, it is 5.8 eV or more.
  • the work function of the metal oxide layer tends to be 5.6 V or more.
  • the lanthanide-based metal oxide includes cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terpium oxide, dysprosium oxide, holmium oxide, erbium oxide, and thulium oxide.
  • the content ratio of the lanthanide-based metal oxide is 0.1 to 10 atomic% with respect to all metal atoms of the metal oxide in the metal oxide layer.
  • the addition amount of the lanthanide-based metal oxide in the metal oxide layer is less than 0.1 to less than 1 ° at%, preferably less than 1 to less than 10 at%, more preferably less than 0.1 to at. It is less than 2 to 5 atomic%.
  • the addition amount is 0.1 atom. If it is less than / 0, the work function of the metal oxide layer may not be 5.6 eV or more.
  • the addition amount is 10 atoms. If the ratio is / 0 or more, the specific resistance of the metal oxide layer becomes too large, and the conductivity may be lowered, which is not preferable.
  • the reflective electrode substrate of the 2-1st group of the present invention can be manufactured by the method for manufacturing a reflective electrode substrate of the second group of the present invention described below.
  • the metal oxide layer is preferably formed in an atmosphere having an oxygen partial pressure of 0 to 5%.
  • the oxygen partial pressure is 5% or more, the specific resistance of the formed metal oxide layer may be too large.
  • the oxygen partial pressure is more preferably 0 to 2%, and particularly preferably 0 to 1%.
  • the value of B / A which is the ratio of the etching rate A of the inorganic compound layer by the etching solution to the etching rate B of the metal oxide layer, is set in the range of 0.5 to 2.0.
  • the range of the value of B / A which is the ratio of the etching rate A of the inorganic compound layer to the etching rate B of the metal oxide layer, is 0.5 to 2.0, and preferably 0.6 to 1.0. 5, more preferably 0.6 to 1.2. If the value of BZA, which is the ratio of the etching rates, is less than 0.5, the etching rate B of the inorganic compound layer becomes too high compared to the etching rate A of the metal oxide layer. Etching may be performed in a wider area than the oxide layer, and a step may occur at the boundary between the metal oxide layer and the inorganic compound layer.
  • the etching rate B of the inorganic compound layer becomes too slower than the etching rate A of the metal oxide layer.
  • Etching may be performed in a wider area than the inorganic compound layer, and a step may occur at the boundary between the metal oxide layer and the inorganic compound layer.
  • the etchant is 30-60 wt% phosphoric acid, 1-5 wt% nitric acid, and 30 wt%
  • the concentration of phosphoric acid is less than 30 wt%, the concentration of nitric acid is less than 1 wt%, or the concentration of acetic acid is less than 30 wt%, the life of the etching solution is shortened.
  • the inorganic compound layer is not sufficiently etched to leave a residue, or the metal oxide layer and the inorganic compound layer cannot be etched at one time.
  • the concentration of phosphoric acid is more than 65 wt%, the concentration of nitric acid is more than 5 wt%, or the concentration of acetic acid is more than 50 wt% in the etching solution, the metal oxide layer and the inorganic compound layer are used.
  • the etching rate becomes too fast to control, and the etching rate ratio By 7 A may deviate from the above range (0.5 to 2.0). It may deteriorate.
  • the concentration of phosphoric acid is preferably 30 to 50 wt%
  • the concentration of nitric acid is 1 to 5 wt%
  • the concentration of acetic acid is more preferably 30 to 50 wt%.
  • the metal oxide layer is amorphous.
  • the metal oxide layer is amorphous, not only is there little residue on the end face (etched surface) due to etching, but also the reflective electrode is tapered, so that short-circuiting with the counter electrode is unlikely to occur. .
  • the invention of the 2-3 group of the present invention is an etching solution used in the etching step in the method of manufacturing the reflective electrode substrate of the 2-2 group, wherein the etching solution comprises 30 to 60 wt% of phosphoric acid, :! An etching composition characterized by comprising nitric acid of up to 5 wt% and acetic acid of 30 to 50 wt%.
  • the etching composition is a composition contained in the etching solution.
  • an electrode layer of a reflective electrode substrate includes an inorganic compound layer made of Ag or the like having high reflection efficiency and a metal oxide containing a specific element. It has been discovered that the use of a stack of layers and a reflective electrode substrate having a large work function can be obtained while maintaining low specific resistance.
  • the 3-1st group of the present invention relates to a reflection layer in which an inorganic compound layer made of at least Ag and a metal oxide layer made of at least indium oxide and a lanthanide-based metal oxide are laminated in this order on a substrate. It is a type electrode substrate.
  • the second group of the present invention includes a step of etching the metal oxide layer with an etching solution containing oxalic acid, and a step of etching the metal compound layer using an etching solution containing phosphoric acid, nitric acid and acetic acid. And a step of etching the layer.
  • the metal oxide layer when the metal oxide layer has a crystal structure, not only the surface is roughened, but also a leakage current is generated due to the projection on the surface. is there.
  • the luminous efficiency may be deteriorated, so that the metal oxide layer must be amorphous.
  • the content of indium atoms in the metal oxide layer is preferably at least 60 atomic% based on all metal atoms in the metal oxide layer. If the atomic atom content is less than 60 atomic%, the specific resistance of the metal oxide layer increases, which is not preferable. Water or hydrogen may be added at the time of forming the metal oxide layer in order to suppress the crystallization of the metal oxide layer and the generation of leakage current. Further, the content of the indium atom is preferably 96 atom% or less, more preferably 95 atom%. / 0 or less. The content of aluminum atoms is 96 atoms.
  • the metal oxide layer becomes amorphous, and leakage current can be prevented.
  • the metal oxide layer can be made amorphous.
  • [In] Z ([In] + [Zn]) (atomic ratio) is 0.7.5-0.95, preferably 0.85-0.95, More preferably, it is 0.8 to 0.9.
  • [In] and [Zn] indicate the number of atoms of In and ZII in the metal oxide layer.
  • tin oxide may be added to the metal oxide layer instead of or together with zinc oxide.
  • [In] / ([In] + [Sn]) (atomic ratio) is 0.7 to 0.97, preferably 0.85 to 0.95, It is more preferably 0.85 to 0.95.
  • [S n] indicates the number of atoms of Sn in the metal oxide layer. The number of atoms is the number of In, Zn, or Sn atoms per unit volume in the composition of the metal oxide layer.
  • the work function of the metal oxide layer is preferably 5.25 eV or more.
  • a more preferable work function of the metal oxide layer is 5.60 eV or more. More preferably, 5 80 eV or more.
  • the lanthanide-based metal oxide includes cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, yttrium oxide, ytterbium oxide, And one or more selected from the group consisting of lutetium oxide.
  • the content ratio of lanthanide-based metal atoms in the lanthanide-based metal oxide is 0.1 to 20 atomic% with respect to all metal atoms of the metal oxide in the metal oxide layer.
  • the content ratio of the lanthanide-based metal atom in the metal oxide layer is preferably 1 to less than 10 at%, more preferably 2 to less than 5 at%.
  • the addition amount is 0.1 atom. If the ratio is less than / 0, the work function of the metal oxide layer may not be higher than 5.25 eV. If the addition amount is 20 atomic% or more, the specific resistance of the metal oxide layer becomes too large and the conductivity may be lowered, which is not preferable.
  • the thickness of the metal oxide layer is from 2 to 300 nm, preferably from 30 to 200 nm, and more preferably from 10 to 120 nm. If the thickness of the metal oxide layer is less than 2 nm, the inorganic compound layer cannot be sufficiently protected. When the thickness of the metal oxide layer exceeds 300 nm, the reflection efficiency of the reflective electrode substrate is lowered, which is not preferable.
  • the thickness of the inorganic compound layer is from 10 to 300 nm, preferably from 30 to 250 nm, and more preferably from 50 to 200 nm.
  • the thickness of the inorganic compound layer is less than 10 nm, not only the light from the light emitting section layer cannot be sufficiently reflected, but also the resistance of the reflective electrode may become too large. If the thickness of the inorganic compound layer exceeds 300 nm, a step may be formed in the inorganic compound layer when etching the inorganic compound layer using an etching solution, which is not preferable.
  • the surface of the inorganic compound layer may be a diffuse reflection surface.
  • the material of the substrate for forming the inorganic compound layer and the like is not particularly limited.
  • glass may be used, or plastic and silicon may be used.
  • the inorganic compound layer contains one or more metals selected from Au, Cu, Pd, Zr, Ni, Co and Nd in addition to Ag as a main component. Preferably, it is contained in the range of 1-3 wt%.
  • the addition amount of Au, Cu, Pd, Zr, Ni, Co or Nd in the inorganic compound layer is 0:! To 3 wt%, preferably 0.1 to 2 wt%. , More preferably 0.5 to 2 wt%. If the amount is less than 0.1 wt%, the effect of the addition will not be sufficiently exhibited. If the addition amount exceeds 3 wt%, the conductivity of the inorganic compound layer is undesirably reduced.
  • another metal may be added as a third component within a range that does not affect the stability and resistance of the inorganic compound layer.
  • the above-mentioned reflective electrode substrate of the 3-1st group of the present invention can be manufactured by the below-mentioned reflective electrode substrate manufacturing method of the 3-2nd group of the present invention.
  • the metal oxide layer is preferably formed by sputtering in an atmosphere having an oxygen partial pressure of 0 to 5%.
  • the oxygen partial pressure is 5% or more, the specific resistance of the formed metal oxide layer may be too large.
  • the oxygen partial pressure is more preferably 0 to 2%, particularly preferably 0 to 1%.
  • the manufacturing method of the second group of the present invention includes: a step of etching the metal oxide layer with an etching solution containing oxalic acid; and a step of etching the inorganic compound layer using an etching solution containing phosphoric acid, nitric acid, and acetic acid. Including.
  • the etching solution for etching the metal oxide layer preferably contains oxalic acid in an amount of 1 to 1 wt%. If it is less than lwt%, the etching rate of the metal oxide layer may be slow, and if it exceeds 10wt%, oxalic acid crystals may be precipitated. Particularly preferably, it is 2 to 5 wt%.
  • the etching solution for etching the inorganic compound layer comprises 30 to 60 wt% of phosphoric acid, 1 to 5 wt% of nitric acid, and 30 to 50 wt% of acetic acid.
  • the concentration of phosphoric acid when the concentration of phosphoric acid is less than 30 wt%, the concentration of nitric acid is less than 1 wt%, or the concentration of acetic acid is less than 3 wt%.
  • the content is less than 0 wt%, not only the life of the etching solution is shortened, but also the inorganic compound layer may not be sufficiently etched to leave a residue or the inorganic compound layer may not be etched.
  • the etching solution preferably has a phosphoric acid concentration of 30 to 50 wt%, a nitric acid concentration of 1 to 5 t%, and an acetic acid concentration of 30 to 50 wt%.
  • a phosphoric acid concentration of 30 to 50 wt%
  • a nitric acid concentration of 1 to 5 t%
  • an acetic acid concentration of 30 to 50 wt%.
  • FIG. 1 is a diagram illustrating a process of manufacturing a transflective electrode substrate according to a first group of the present embodiment.
  • FIG. 2 is a diagram illustrating a process of manufacturing the transflective electrode substrate of the first group of the present embodiment.
  • FIG. 3 is a cross-sectional view of the transflective electrode substrate of the first group of the present embodiment.
  • FIG. 4 is a cross-sectional view of transflective electrode substrate of the first group of the present embodiment.
  • FIG. 6 is a plan view of a transflective electrode substrate of the first group of the present embodiment.
  • FIG. 6 is a plan view of a transflective electrode substrate of the first group of the present embodiment. It is sectional drawing of the conventional transflective electrode substrate.
  • FIG. 8 is a sectional process view showing a reflective electrode substrate and a method of manufacturing the same according to an example in the second group of the present embodiment.
  • FIG. 9 is a longitudinal sectional view of a reflective electrode substrate according to an example in the second group of the present embodiment.
  • FIG. 10 shows the reflective electrode substrate and the reflective electrode substrate according to the examples in the third group of the present embodiment. It is sectional process drawing which shows the manufacturing method.
  • FIG. 11 is a longitudinal sectional view of a reflective electrode substrate according to an example in the third group of the present embodiment.
  • Embodiment 1 The first group is an embodiment related to the invention of the first group.
  • specific examples will be compared with 11 (Examples 11 to 11).
  • Two examples (Comparative Examples 11-1 to 11-2) will be described.
  • the temperature of the blue glass substrate 10 at the time of film formation was 200 ° C.
  • the film thickness of the formed metal oxide layer 12 was 75 nm, and the specific resistance was 380 ⁇ cm.
  • Ag—Pd— was formed on the metal oxide layer 12.
  • the inorganic compound layer 14 was formed using a target Ag composed of Cu (98. 5: 0.5: 1.0 wt%).
  • the thickness of the inorganic compound layer 14 was 100 nm. This is shown in Fig. 1 (3).
  • the metal oxide layer 12 and the inorganic compound layer 14 containing Ag as a main component are collectively referred to as an electrode layer. In FIGS.
  • the layers formed on the metal oxide layer 12 and the metal oxide layer 12a are referred to as an inorganic compound layer 14 made of Ag or A1 for convenience.
  • 14 may be composed of Ag alone or A1 alone Alternatively, it may be composed of a compound containing Ag or Al as a main component.
  • a compound obtained by adding Au, Pt, and Nd to Ag or A1 is called an inorganic compound for convenience.
  • the inorganic compound layer 14 is etched to form a plurality of lines using the inorganic compound layer 14. Therefore, the portion left by the etching is the line of the inorganic compound layer 14.
  • FIG. 1 (4) shows the portion remaining by this etching, that is, the line of the inorganic compound layer 14.
  • the width of the line of the inorganic compound layer 14 is 40/2 m, and the space between the lines of each inorganic compound layer 14 is almost zero. ⁇ m.
  • the mask pattern is designed to have such dimensions.
  • a photosensitive agent resist
  • the inorganic compound layer 14 was etched by overetching 1.0 using an aqueous solution containing phosphate ions, 2.5 ⁇ rt% nitrate ions, and 40 wt% acetate ions. The result of this etching is shown in Figure 1 (4).
  • This aqueous solution corresponds to an example of an etching solution in the claims.
  • the etched blue glass substrate 10 was washed with water and dried.
  • the metal oxide layer 12 is etched to form a plurality of lines using the metal oxide layer 12.
  • the portion left by the etching is the line of the metal oxide layer 12.
  • FIG. 1 (5) shows the portion left by this etching, that is, the line of the metal oxide layer 12.
  • the line width of the metal oxide layer 12 is 90 ⁇ m, and the space between the lines of the metal oxide layer 12 is 2 ⁇ m. 0 ⁇ m.
  • the mask pattern is designed to have such dimensions.
  • the metal oxide layer 12 is etched using the mask pattern designed as described above.
  • a photo-sensitive agent (resist) is applied on the electrode layer for tuning.
  • a glass plate made of the mask pattern is placed on this resist.
  • the resist was exposed, developed, and post-beta. This is shown in Figure (5).
  • the resist is exposed so that a part (one side) of the edges of the inorganic compound layer 14 and the metal oxide layer 12 is aligned as shown in FIG.
  • the obtained metal oxide layer 12 was etched using an aqueous solution of 4 wt% of oxalic acid. Note that this aqueous solution corresponds to an example of the etching solution ⁇ in the claims.
  • the resistance of one electrode was measured at a length of 5 cm and found to be 0.65 kQ.
  • the transflective electrode substrate thus obtained was able to achieve a low electric resistance. Further, when the substrate surface was observed with a scanning electron microscope, no roughening of the surface of the metal oxide layer 12 was observed.
  • the inorganic compound layer 14 is hardly etched by the oxalic acid etching solution ⁇ .
  • the etching rate of the inorganic compound and the metal oxide layer when an aqueous solution containing the above 40 wt% of phosphate ions, 2.5 wt% of nitrate ions, and 40 wt% of ionic acetate at 30 ° C were used.
  • the ratio of the etching rate to the etching rate of 12 was 40.
  • the temperature at the time of film formation was room temperature.
  • the thickness of the second metal oxide was 20 nm. This is shown in Fig. 2 (4).
  • Example 11 etching was performed in the same manner as in Example 11 to manufacture a transflective electrode substrate.
  • the specific resistance of the first metal oxide layer 12a was 320 ⁇ cm, and the electrode resistance was 0.61 kQ. This situation is shown in Figs. 2 (5) and (6).
  • the transflective electrode substrate thus obtained was able to achieve a low electric resistance.
  • the substrate surface was observed with a scanning electron microscope, no surface roughness of the metal oxide layer 12a was observed. Further, almost no change was observed in the edge portion of the inorganic compound layer 14 before and after etching with oxalic acid. This means that the inorganic compound layer 14 is hardly etched by the oxalic acid etching solution ⁇ .
  • the value of the etching rate ratio between the etching rate of the inorganic compound and the etching rate of the first metal oxide layer 12a when using an aqueous solution at 30 ° C containing acetate ions was 45. .
  • etching rate ratio between the etching rate of the inorganic compound layer 14 and the etching rate of the second metal oxide layer 16 in the case of using an aqueous solution at 30 ° C. containing citrate ions is 1.5. Met.
  • Example 11 Next, etching is performed in the same manner as in Example 11 to obtain a transflective type.
  • An electrode substrate was manufactured.
  • the specific resistance of the metal oxide layer 12 was 450 ⁇ cm. This is shown in (1) to (5) in Fig. 1.
  • the transflective electrode substrate thus obtained was able to achieve a low electric resistance. Further, when the substrate surface was observed with a scanning electron microscope, no roughening of the surface of the metal oxide layer 12 was observed. Further, almost no change was observed in the edge portion of the inorganic compound layer 14 before and after etching with oxalic acid. This means that the inorganic compound layer 14 is hardly etched by the oxalic acid etching solution ⁇ . In addition, 30 wt. /. Nitrate, 1.5 WT. /. Etching rates of the inorganic compound layer 14 and the metal oxide layer 12 when using an aqueous solution at 30 ° C containing 40% by weight nitrate ions and 40 wt% acetate ions. The ratio was 38.
  • Example 1-1 etching was performed in the same manner as in Example 1-1 to produce a transflective electrode substrate. This is shown in (1) to (5) of FIG.
  • the specific resistance of the metal oxide layer 12 was 420 ⁇ Q cm, and the electrode resistance was 0.67 k ⁇ .
  • the transflective electrode substrate thus obtained was able to achieve a low electric resistance. Further, when the substrate surface was observed with a scanning electron microscope, no roughening of the surface of the metal oxide layer 12 was observed. Further, almost no change was observed in the edge portion of the inorganic compound layer 14 before and after etching with oxalic acid. This means that the inorganic compound layer 14 is hardly etched by the oxalic acid etching solution ⁇ . In addition, 30 wt. /. Etching rate of the inorganic compound layer 14 when using an aqueous solution at 30 ° C containing 1.5 wt% nitrate ions, 1.5 wt% nitrate ions, and 40 wt% acetate ions. The ratio of the etching rate to the etching rate of the metal oxide layer 12 was 48.
  • etching was performed in the same manner as in Example 11 to manufacture a transflective electrode substrate. This situation is shown in Fig. 1 (1) to (5).
  • the specific resistance of the metal oxide layer 12 was 720 ⁇ cm and the electrode resistance was 0.72 k ⁇ .
  • the transflective electrode substrate thus obtained was able to achieve a low electric resistance. Further, when the substrate surface was observed with a scanning electron microscope, no roughening of the surface of the metal oxide layer 12 was observed. Further, almost no change was observed in the edge portion of the inorganic compound layer 14 before and after etching with oxalic acid. This means that the inorganic compound layer 14 is hardly etched by the oxalic acid etching solution ⁇ . The etching rate of the inorganic compound layer 14 when using an aqueous solution at 30 ° C.
  • the ratio of the etching rate of layer 12 to the etching rate was 40.
  • Example 11- An electrode substrate was manufactured. This is shown in (1) to (5) in Fig. 1. Note that the specific resistance of the metal oxide layer 12 was 1450 ⁇ cm.
  • the transflective electrode substrate obtained in this way was able to achieve a low electric resistance. Further, when the substrate surface was observed with a scanning electron microscope, no roughening of the surface of the metal oxide layer 12 was observed. Further, almost no change was observed in the edge portion of the inorganic compound layer 14 before and after etching with oxalic acid. This means that the inorganic compound layer 14 is hardly etched by the oxalic acid etching solution ⁇ . In addition, 30 wt 0 /.
  • Fig. 1 (Refer to (1))
  • a metal oxide layer 12 was formed thereon. This is shown in Fig. 1 (2).
  • the substrate temperature during film formation was 200 ° C.
  • the thickness of the formed metal oxide layer 12 was 75 nm.
  • the specific resistance of the metal oxide layer 2 was 380 ⁇ cm.
  • an inorganic compound layer 14 was formed on the metal oxide layer 12 by using a target A 1 target composed of A 1 —N d (99: 1 wt%).
  • the thickness of the inorganic compound layer 14 was 100 nm. This is shown in Fig. 1 (3).
  • the metal oxide layer 12 and the inorganic compound layer 14 containing A1 as a main component are collectively referred to as an electrode layer.
  • Example 17 and Examples 18 to 11 described below a semi-transmissive and semi-reflective electrode substrate was manufactured in substantially the same manner as Example 1-1. However, in Example 11--11, Ag was used as the main component of the metal oxide layer 12; however, in Example 11-17 and Examples 18-1-1 The difference is that A 1 is used as the main component of the oxide layer 12.
  • the inorganic compound layer! _4 is etched to form a plurality of lines using the inorganic compound layer 14. Therefore, the part remaining by the above etching is an inorganic compound. This is the line for material layer 14.
  • FIG. 1 (4) shows the portion remaining by this etching, that is, the line of the inorganic compound layer 14.
  • the width of the line of the inorganic compound layer 14 is 40 ⁇ m, and the space between the lines of each inorganic compound layer 14 is 70 ⁇ m. m.
  • the mask pattern is designed to have such dimensions.
  • a photosensitive agent (resist) is applied on the inorganic compound layer 14, and the mask pattern is applied onto the resist.
  • a glass plate Next, the resist was exposed, developed, and boosted.
  • the inorganic compound layer 14 was etched by overetching 1.0 using an aqueous solution containing nitrate ions. The result of this etching is shown in FIG. 1 (4).
  • This aqueous solution corresponds to an example of an etching solution in the claims.
  • the etched blue glass substrate 10 was washed with water and dried.
  • the metal oxide layer 12 is etched to form a plurality of lines using the metal oxide layer 12. Therefore, the portion left by the etching is the line of the metal oxide layer 12.
  • FIG. 1 (5) shows the portion left by this etching, that is, the line of the metal oxide layer 12.
  • the line width of the metal oxide layer 12 is 90 ⁇ m, and the space between the lines of the metal oxide layer 12 is 2 ⁇ m. 0 ⁇ m.
  • the mask pattern is designed to have such dimensions.
  • a photosensitive agent (resist) is applied on the metal layer to etch the metal oxide layer 12 using the mask pattern designed as described above.
  • a glass plate made of the mask pattern is placed on this register.
  • the resist was exposed, developed, and post-beta. This is shown in Fig. 1 (5). Note that the resist is exposed so that a part (one side) of the edge of the inorganic compound layer 14 and the edge of the metal oxide layer 12 are aligned.
  • the obtained metal oxide layer 12 was etched using an aqueous solution of 4 wt% of oxalic acid.
  • the aqueous solution is an example of an etching solution described in the claims; Hit. After the resist was peeled off, the resistance of one electrode was measured at a length of 5 cm and found to be 0.65 kQ.
  • the transflective electrode substrate thus obtained was able to achieve a low electric resistance. Further, when the substrate surface was observed with a scanning electron microscope, no roughening of the surface of the metal oxide layer 12 was observed. Further, almost no change was observed in the edge portion of the inorganic compound layer 14 before and after etching with oxalic acid. This means that the inorganic compound layer 14 is hardly etched by the oxalic acid etching solution ⁇ . Note that the above is 50 wt. /.
  • the etching rate of the inorganic compound layer 14 and the metal oxide layer 12 when an aqueous solution at 30 ° C containing phosphoric acid ions, 2. wt% nitrate ions, and 40 wt% acetate ions were used. The ratio of the etching rate to the etching rate was i 6.
  • the temperature at the time of film formation was room temperature.
  • the thickness of the second metal oxide layer 16 was 20 nm. This is shown in Fig. 2 (4).
  • Example 11 etching was performed in the same manner as in Example 11 to manufacture a transflective electrode substrate. This situation is shown in (5) and (6) in Fig. 2.
  • the specific resistance of the layer of indium oxide / tin oxide / cerium oxide was 320 ⁇ cm, and the electrode resistance was 1.57 kQ.
  • the transflective electrode substrate thus obtained was able to achieve low electrical resistance
  • the substrate surface was observed with a scanning electron microscope, no roughening of the surface of the metal oxide layer 12 was observed. Further, almost no change was observed in the edge portion of the inorganic compound layer 14 before and after etching with oxalic acid. This means that the inorganic compound layer 14 is hardly etched by the oxalic acid etching solution ⁇ .
  • the value of the etching rate ratio between the etching rate of the inorganic compound layer 14 and the etching rate of the first metal oxide layer 12 was 18.
  • the value of the etching rate ratio between the etching rate of the inorganic compound layer 14 and the etching rate of the second metal oxide layer was 1.1.
  • Example 11 etching was performed in the same manner as in Example 11 to manufacture a transflective electrode substrate. This is shown in (1) to (5) in Fig. 1.
  • the specific resistance of the metal oxide layer 12 was 450 ⁇ cm, and the electrode resistance was 1.66 k ⁇ .
  • the transflective electrode substrate thus obtained was able to achieve a low electric resistance. Further, when the substrate surface was observed with a scanning electron microscope, no roughening of the surface of the metal oxide layer 12 was observed. Further, almost no change was observed in the edge portion of the inorganic compound layer 14 before and after the etching with oxalic acid. This means that the inorganic compound layer 14 is hardly etched by the oxalic acid etching solution ⁇ . The value of the etching rate ratio between the etching rate of the inorganic compound layer 14 and the etching rate of the metal oxide layer 12 was 15.
  • Example 11 etching was performed in the same manner as in Example 11 to manufacture a transflective electrode substrate. This is shown in (1) to (5) in Fig. 1.
  • the specific resistance of the layer of indium oxide / tin oxide / neodymium oxide was 420 ⁇ cm, and the electrode resistance was 1.39.
  • the transflective electrode substrate thus obtained was able to achieve a low electric resistance. Further, when the substrate surface was observed with a scanning electron microscope, no roughening of the surface of the metal oxide layer 12 was observed. Further, almost no change was observed in the edge portion of the inorganic compound layer 14 before and after etching with oxalic acid. This means that the inorganic compound layer 14 is hardly etched by the oxalic acid etching solution ⁇ . The value of the etching rate ratio between the etching rate of the inorganic compound layer 1'4 and the etching rate of the metal oxide layer 12 was 18.
  • Example 11 etching was performed in the same manner as in Example 11 to manufacture a transflective electrode substrate.
  • the specific resistance of the indium oxide / tin oxide / praseodymium oxide layer was 720 ⁇ cm, and the electrode resistance was 1.47. This is shown in Fig. 1 (1) to (5).
  • the transflective electrode substrate thus obtained was able to achieve a low electric resistance. Further, when the substrate surface was observed with a scanning electron microscope, no roughening of the surface of the metal oxide layer 12 was observed. In addition, inorganic compounds before and after etching with oxalic acid PC leakage 00 810 Almost no change in the edge portion of the physical layer 14 was observed. This means that the inorganic compound layer 14 is hardly etched by the oxalic acid etching solution ⁇ . The ratio of the etching rate of the inorganic compound layer 14 to the etching rate of the metal oxide layer 12 was 20.
  • Example 11 etching was performed in the same manner as in Example 11 to manufacture a transflective electrode substrate.
  • the specific resistance of indium tin oxide was 250 ⁇ ⁇ cm.
  • the semi-transmissive and semi-reflective electrode substrate thus obtained showed almost no surface roughness due to the etching solution.
  • the metal oxide layer 12 could not be etched with oxalic acid.
  • Example 11 etching was performed in the same manner as in Example 11 to manufacture a transflective electrode substrate.
  • the specific resistance of indium zinc oxide was 390 ⁇ cm.
  • the indium zinc oxide layer was also etched when Ag was etched.
  • a semi-transmissive semi-reflective electrode substrate manufacturing process is simplified by using an etching solution having different etching rates depending on selection, and complicated transmissive operations are avoided, thereby reducing transflectiveness.
  • the manufacturing time of the reflective electrode substrate can be reduced, and the transflective electrode substrate can be efficiently provided.
  • the collective etching refers to etching the inorganic compound layer and the metal oxide layer at one time using one kind of etching solution.
  • etching solution (I) After preparing an etching solution containing phosphoric acid (40 wt%), nitric acid (2.5 wt%), and acetic acid (40 wt%) (hereinafter referred to as etching solution (I)), this etching solution is used.
  • etching solution (I) the inorganic compound layer on the blue glass substrate was etched at 30 ° C. At this time, when the etching rate A (I) of the inorganic compound layer was measured, it was 42 ⁇ mZmin.
  • etching solution (II) an etching solution containing phosphoric acid (55 wt%), nitric acid (2.5 wt%), and acetic acid (40 wt%) was prepared, and this etching was performed.
  • etching solution (II) the inorganic compound layer on another soda lime glass substrate was etched at 30 ° C. At this time, when the etching rate A (II) of the inorganic compound layer was measured, it was found that the etching rate was 73 nm min 7.
  • a reflective electrode substrate 201 having the electrode layer 2 13 composed of the inorganic compound layer 2 11 and the metal oxide layer 2 12 on the blue glass substrate 2 10 was manufactured.
  • the surface resistance of this reflective electrode substrate 1 was measured using the same type of surface resistance It was found to be 1.2 ⁇ / port (Table 2-2).
  • a resist (trade name: NPR 2048 USP, manufactured by Nippon Polytech Co., Ltd.) was applied on the metal oxide layer 2 12 of the reflective electrode substrate 1, exposed to ultraviolet light using a photomask, and developed. Thereafter, by heating to 130 ° C. and performing post beta for 15; ⁇ , a resist mask 2 14 was formed on the metal oxide layer 2 12 (FIG. 8 (4)).
  • the inorganic compound layer 211 and the metal oxide layer 211 on the reflective electrode substrate 201 are collectively etched to form a reflective electrode as shown in FIG.
  • the electrode substrate 201 was manufactured.
  • Example 2-1 (a) 1 above an inorganic compound layer was formed on a blue glass substrate, and the etching rates A (I) and A (II) were measured in the same manner. Obtained.
  • Example 2-1 a target with the composition shown in Table 2-1 was used.
  • a metal oxide layer was formed on a soda lime glass substrate in the same manner as in Example 2-1 (a) 2 except for the difference.
  • Example 2-2 to 2-14 the composition of the target was changed little by little.
  • a lanthanide-based metal element is added as a third component element.
  • the composition atomic% of the target due to the addition is as shown in Table 2-1.
  • Example in this way 2-2 to 2-1-4 are obtained by changing the composition of the target used for sputtering the metal oxide layer, and show the results of measuring the physical properties of the obtained metal oxide layer. It is.
  • the metal oxide layer on the blue glass substrate was etched at 30 ° C. using the etching solutions (I) and (II), respectively. At this time, the etching rates B (I) and B (II) of each metal oxide layer by the etching liquids (I) and (I () were measured, respectively.
  • Example 2-1 (a) the metal oxide layer on the blue sheet glass substrate was washed with ultraviolet rays, and the work function and the specific resistance of the metal oxide layer were measured. The results are shown in Table 2-2.
  • the metal of the reflective electrode substrate 201 was formed in the same manner as in the embodiment 2-1 (b) 2.
  • the etching solutions (I) and (II) the inorganic compound layer 211 and the metal oxide layer 212 of the reflective electrode substrate 201 were collectively etched, and the reflective electrode shown in FIG. Substrate 201 was manufactured.
  • the inorganic compound layer on the blue glass substrate was etched at 30 ° C.
  • the etching rates A (I) and A (II) of the inorganic compound layer by the etching solutions (I) and (II) were measured, respectively, the A (I) force S was 38 nm / min.
  • the A (II) force was S71 nm / mi.
  • Example 2-1 (a) 2 Formation of metal oxide layer and measurement of etching rate, work function and specific resistance
  • metal oxide layer was formed on blue glass substrate Then, the etching rates B (I) and B (II) were measured in the same manner, and similar measurement results were obtained. Further, the work function and the specific resistance of this metal oxide layer were measured in the same manner as in Example 2-1 (a), and similar measurement results were obtained.
  • the etching rates of the inorganic compound layer and the metal oxide layer were determined.
  • the values of the ratios B (I) / A (I) and B (II) / A (II) were calculated.
  • B (I) / A (I) was 1.08
  • B (II) / A (II) was 0.59 (Table 2-3).
  • Example 2- 1 (b) 1 A 1 Target: Instead of (A 1 1 00 atoms 0/0), A 1-Au target (the composition atoms 0/0 [A 1]: [Au] 9 9: 1). Except for this point, as in Example 2-1 (b) 1), a reflection type having an electrode layer 213 composed of an inorganic compound layer 211 and a metal oxide layer 212 on a blue glass substrate 210 The electrode substrate 201 was manufactured (FIG. 8 (3)). The surface resistance of the reflective electrode substrate 201 was measured using a surface resistance measuring instrument of the same type as in Example 2-1 (b) 1, and was found to be 1.2 ⁇ / port (Table 2-3).
  • a resist mask 214 was formed on the metal oxide layer '212 of the reflective electrode substrate 201 in the same manner as in Example 2-1 (b) 2.
  • the inorganic compound layer 211 and the metal oxide layer 212 of the reflective electrode substrate 201 are collectively etched using the etching solutions (I) and (II), and the reflection as shown in FIG. A shaped electrode substrate 201 was manufactured.
  • Example 2-1 (a) 1 of A 1 data one target: Instead of (A 1 1 00 atoms 0/0), A 1- P t targets (the composition at% [A 1]: [P t ] 99: 1). Except for this point, an inorganic compound layer was formed on a blue glass substrate as in Example 2-1 (a) 1.
  • the inorganic compound layer on the blue glass substrate is 30. Etched with C.
  • a (I) and A (II) of the inorganic compound layer by the etching solutions (I) and (II) were measured, respectively, A (I) was 39 nm / min.
  • the A (II) force was S69 nm / min.
  • Example 2-1 (a) 2 Formation of metal oxide layer and measurement of etching rate, work function and specific resistance
  • a metal oxide layer is formed on a soda lime glass substrate and etched by the same method.
  • the velocities B (I) and B (II) were measured, and similar measurement results were obtained.
  • the work function and the specific resistance of this metal oxide layer were measured in the same manner as in Example 2-1 (a), and similar measurement results were obtained.
  • a reflective electrode substrate 201 having an electrode layer 2 13 composed of an inorganic compound layer 211 and a metal oxide layer 212 on a blue glass substrate 210 was manufactured (FIG. 8). (3)).
  • the surface resistance of the reflective electrode substrate 201 was measured using a surface resistance measuring instrument of the same type as in Example 2-1 (b) 1, and was found to be 1.2 ⁇ / port (Table 2-3).
  • a resist mask 2 14 was formed on the metal oxide layer 2 12 of the reflective electrode substrate 201 in the same manner as in Example 2-1 (b) 2.
  • the inorganic compound layer 211 and the metal oxide layer 211 of the reflective electrode substrate 201 are etched at a time using the etching solutions (I) and (II), as shown in FIG.
  • a reflective electrode substrate 201 was manufactured.
  • the inorganic compound layer on the blue glass substrate was etched at 30 ° C.
  • a (I) and A (II) of the inorganic compound layer by the etchants (I) and (II) were measured, respectively, A (I) was 41 nm / min.
  • the A (II) force S was 71 nm / min.
  • Example 2-1 (a) 2 Formation of metal oxide layer and measurement of etching rate, work function and specific resistance
  • a metal oxide layer was formed on a blue glass substrate, and the same method was used.
  • the etching rates B (I) and B (II) were measured, and similar measurement results were obtained.
  • the metal oxide layer was formed in the same manner as in Example 2-1 (a) ⁇ ⁇ above. Were measured for work function and specific resistance, and similar measurement results were obtained.
  • the etching rates of the inorganic compound layer and the metal oxide layer were determined.
  • the values of the ratios B (I) / A (I) and B (II) / A (II) were calculated.
  • B (I) / (I) was 1.00
  • B (II) / A (II) was 0.59 (Table 2-3).
  • Example 2- 1 (b) 1 A 1 Target: Instead of (A 1 1 0 0 atomic%), A l- N d target (the composition atoms 0/0 [A 1]: [N d ] 9 9: 1). Except for this point, the electrode layer 2 13 composed of the inorganic compound layer 2 1 1 and the metal oxide layer 2 1 2 was formed on the blue glass substrate 2 10 in the same manner as in Example 2-1 (b) 1.
  • a reflective electrode substrate 201 having the same was manufactured (FIG. 8 (3)). The surface resistance of the reflective electrode substrate 201 was measured using a surface resistance measuring instrument of the same type as in Example 2-1 (b) 1, and was found to be 1.2 ⁇ / port (Table 2-3). .
  • a resist mask 2 14 was formed on the metal oxide layer 2 12 of the reflective electrode substrate 201 in the same manner as in Example 2-1 (b) 2.
  • the inorganic compound layer 211 and the metal oxide layer 212 of the reflective electrode substrate 201 are collectively etched, as shown in FIG. A reflective electrode substrate 201 was manufactured.
  • Example 2-1 (a) 1 above an inorganic compound layer was formed on a blue glass substrate, and the etching rates A (I) and A (II) were measured in the same manner. Obtained.
  • Example 2-1 (a) 4 the metal oxide layer was washed with ultraviolet light.
  • the work function of the metal oxide layer was measured to be 5.12 eV (Table 2-5).
  • the specific resistance of this metal oxide layer was measured in the same manner as in Example 2-1 (a), and found to be 210 ⁇ ⁇ ⁇ ⁇ . m (Table 5).
  • Example 2-1 (a) 1 above an inorganic compound layer was formed on a blue glass substrate, and the etching rates A (I) and A (II) were measured by the same method. Got.
  • the metal oxide layer on the blue glass substrate was etched at 30 ° C. using the etching solutions (I) and (II). At this time, when the etching rates B (I) and B (II) of the metal oxide layer with the etching solutions (I) and (II) were measured, respectively, the B (I) force S 7.6 nm / and the B (II) force S was 5.1 nm / min.
  • the etching rate of the inorganic compound layer and the metal oxide layer was determined.
  • the values of the ratios B (I) / A (I) and B (II) / A (II) were calculated.
  • B (I) / A (I) is 0.18
  • Example 2-1 (a) 4 the metal oxide layer on the blue sheet glass substrate was subjected to ultraviolet ray cleaning, and the work function of the metal oxide layer was measured. As a result, it was 5.88 eV. (Table 2-5). Further, the specific resistance of this metal oxide layer was measured in the same manner as in Example 2-1 (a), and was found to be 78 ⁇ m ⁇ ⁇ ⁇ cm (Table 2-5).
  • a resist mask 214 was formed on the metal oxide layer 212 of the reflective electrode substrate 201 in the same manner as in Example 2-1 (b) 2. Next, using the etching solutions (I) and (II), the inorganic compound layer 211 and the metal oxide layer 212 of the reflective electrode substrate 201 were collectively etched.
  • ⁇ ( ⁇ ) Etching rate of the inorganic compound layer at 30C by a plating solution ( ⁇ ) containing phosphoric acid (55wt%), nitric acid (2.5wt%), and acetic acid (40%)
  • ⁇ ( ⁇ ) Etching rate of metal oxide layer at 30 by etching solution ( ⁇ ) containing phosphoric acid (55wt%), nitric acid (2.5wt%), and acetic acid (40wt%)
  • a step is formed at the boundary between the metal oxide layer and the inorganic compound layer in the etching step, as compared with the method of manufacturing the reflective electrode substrate of each example. Since it is difficult to prevent such a phenomenon, it is considered that it is difficult to manufacture a reflective electrode substrate having a high work function while maintaining a low specific resistance.
  • Example 2— Each of the electrode layers obtained in 2 to 17 had high reflectivity.
  • a reflective electrode substrate of the present invention since the inorganic compound layer composed of at least A 1 and the metal oxide layer composed of at least indium oxide are used, a low specific resistance is obtained. Thus, it is possible to obtain a reflective electrode substrate having a high work function while maintaining the above.
  • an etching solution containing an etching composition composed of acid, nitric acid and acetic acid the metal oxide layer and the inorganic compound layer of the reflective electrode substrate can be simultaneously etched, and the metal oxide layer and the inorganic compound layer can be etched.
  • a reflective electrode substrate having almost no steps at the boundary between the two and having little residue on the etched surface can be manufactured.
  • a metal oxide layer having a thickness of 100 nm was formed on the blue glass substrate.
  • the work function of the metal oxide layer is measured by a photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd.).
  • the blue glass substrate 310 coated with Si ⁇ 2 was heated to 200 ° C. as in (a) 1.
  • Sputtering was performed using an Ag target ([Ag]: 100 atomic%) to form an inorganic compound layer 311 having a thickness of 100 nm on the blue glass substrate 310 (FIG. 10 (2) ).
  • a reflective electrode substrate 301 having the electrode layer 313 in which the inorganic compound layer 311 and the metal oxide layer 312 were laminated on the blue glass substrate 310 was obtained.
  • the surface resistance of the obtained reflective electrode substrate 301 was measured using a surface resistance measuring instrument of the same type as in (a) 2 above, and found to be 1.2 ⁇ .
  • a resist (manufactured by Nippon Polytec Co., Ltd., trade name: NPR 2048 USP) is applied on the metal oxide layer 312 of the reflection type electronic substrate 301, and is exposed to ultraviolet light using a photomask. After development, it was heated to 130 ° C and post-baked for 15 minutes to form a resist mask 3 14 on the metal oxide layer 3 12 (Fig. 10 (4) ).
  • the metal oxide layer 312 on the blue glass substrate 310 was etched at 30 ° C. with an aqueous oxalic acid solution (3.5 wt%).
  • the inorganic compound layer 311 was etched at 30 ° C. with an etching solution containing phosphoric acid (30 wt%), nitric acid (1.5 wt%), and acetic acid (40 wt%).
  • the reflective electrode substrate 301 shown in FIG. 11 was manufactured.
  • Example 3-1 (a) 2 the metal oxide layer 312 on the blue sheet glass substrate 310 was subjected to ultraviolet cleaning, and the work function and the specific resistance of this metal oxide layer were measured. The results are shown in Table 3-1.
  • Example (3-2-3-14) the surface resistance of the obtained reflective electrode substrate 301 was measured using the same type of surface resistance measuring device as in Example 3-1. As a result, in each of Examples (3-2 to 3-14), the value of the surface resistance of the reflective electrode substrate 301 was 1.2 ⁇ / port.
  • the reflective electrode substrate 3 ⁇ 1 was formed in the same manner as in the embodiment 3-1 (b) .3.
  • a resist mask 314 was formed on the metal oxide layer 312 of FIG.
  • the metal oxide layer 312 and the inorganic compound layer 311 were etched in the same manner as in Example 3-1 (b) 3 to produce the reflective electrode substrate 301 shown in FIG. 11. .
  • a resist mask 3 14 was formed on the metal oxide layer 3 12 of the reflective electrode substrate 301 in the same manner as in Example 1 (b) 3. . Then, the metal oxide layer 312 and the inorganic compound layer 311 were etched in the same manner as in Example 3-1 (b) 3 to produce the reflective electrode substrate 3 ⁇ 1 shown in FIG. did.
  • a resist mask 3 14 is formed on the metal oxide layer 3 12 of the reflective electrode substrate 301 in the same manner as in Example 3-1 (b) 3). Formed. Next, the metal oxide layer 312 and the inorganic compound layer 311 were etched in the same manner as in Example 3-1 (b) 3, and the reflective electrode substrate 301 shown in FIG. Manufactured.
  • a resist mask 3 14 was formed on the metal oxide layer 3 12 of the reflective electrode substrate 301 in the same manner as in Example 1 (b) 3). .
  • the metal oxide layer 312 and the inorganic compound layer 311 were etched in the same manner as in Example 3-1 (b) 3 to produce the reflective electrode substrate 301 shown in FIG. 11. .
  • Example 3-1 (b) 3 in the same manner as in Example 3-1 (b) 3, the reflective A resist mask 314 was formed on the metal oxide layer 312 of the electrode substrate 301. Next, the metal oxide layer 312 and the inorganic compound layer 311 were etched in the same manner as in Example 3-1 (b) 3, and the reflective electrode substrate 301 shown in FIG. Manufactured.
  • the etched surfaces of the inorganic compound layer 311 and the metal oxide layer 312 were observed with a scanning electron microscope of the same type as in Example 3-1. It was etched well according to the pattern of 14.
  • a metal oxide layer 312 was formed on a blue glass substrate 310 in the same manner as in 1.
  • the metal oxide layer 312 on the soda lime glass substrate 310 was subjected to ultraviolet light cleaning in the same manner as in Example 3_1 (a) 2, and the work function and the specific resistance of the metal oxide layer 312 were determined. It was measured. As a result, the value of the work function was 5.12 eV and the value of the specific resistance was 210 ⁇ ⁇ • cm (Table 3-2).
  • a resist mask 3 14 is formed on the metal oxide layer 3 12 of the reflective electrode substrate 301 in the same manner as in Example 3-1 (b) 3). Formed. Next, the metal oxide layer 312 and the inorganic compound layer 311 were etched in the same manner as in Example 3-1 (b) 3, and the reflective electrode substrate 301 shown in FIG. Manufactured. Next, as in Example 3-1 (b) 3, an attempt was made to etch the metal oxide layer 312 using an aqueous oxalic acid solution (3.5 wt%), but the metal oxide layer was dissolved. No (Table 3-2).
  • the etching step is performed. It is difficult to prevent a step from occurring at the boundary between the metal oxide layer and the inorganic compound layer in the above method, so that a reflective electrode substrate having a high work function while maintaining a low specific resistance Is considered difficult to manufacture.
  • all the electrode layers obtained in Examples 3-1 to 3-18 had high reflectance.
  • the reflective electrode substrate in the third group of the present embodiment is low because it includes at least an inorganic compound layer made of Ag and at least a metal oxide layer made of indium oxide and a lanthanide-based oxide. Has high work function while maintaining specific resistance.
  • the metal oxide layer is etched using an etching solution containing oxalic acid, and the inorganic compound is further etched using an etching solution containing phosphoric acid, nitric acid, and acetic acid. Etch the layer. By performing such etching, it is possible to manufacture a reflective electrode substrate having almost no step at the boundary between the metal oxide layer and the inorganic compound layer and having little residue on the etched surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 選択的にエッチングできるエッチング液を用いて、半透過半反射型電極基板の製造工程を簡略化し、煩雑な繰り返し作業を回避することによって時間的なロスを発生しない工程とし、半透過半反射型電極基板を効率的に提供することである。少なくとも酸化インジウムからなる金属酸化物層12と、少なくともAlまたはAgからなる無機化合物層14と、をこの順で積層した半透過半反射型電極基板を製造する方法であって、前記無機化合物層14を燐酸、硝酸、酢酸からなるエッチング液λでエッチングする工程と、前記金属酸化物層12を蓚酸を含むエッチング液σでエッチングする工程によって半透過半反射型電極基板を製造する。

Description

明 細 書 半透過半反射型電極基板の製造方法、 及び反射型電極基板並びにその製造方法 、 及びその反射型電極基板の製造方法に用いるエツチング組成物 技術分野
本発明は、 半透過反射型液晶電極基板を製造する方法に関するものである。 ま た、 半透過半反射型電極基板の製造に用いるエッチング液に関するものである。 また、 本発明は、 反射型液晶や発光素子における反射型電極基板及びその製造 方法、 並びにその製造方法に用いるエッチング液に関する。 背景技術
従来技術その 1 (半透過半反射型液晶)
従来から、 半透過半反射型液晶が、 以下に示す理由等から鋭意研究開発されて いる。
( 1 ) 半透過半反射であるため、 屋外、 屋内を問わず明るい表示が得られる。
( 2 ) 明るい場所で使用する場合、 反射型として使用できるので消費電力をセー ブできる。
( 3 ) 低消費電力に優れているため、 携帯用ディスプレイに好適である。
( 4 ) フルカラー化も容易である。
しかし、 半透過半反射型液晶では、 液晶駆動用の電極部に反射電極と透過電極 を同一画素内に設置する必要があり、 製造工程が複雑で歩留まりの低下や高価格 化や、 透過モードと反射モードでの見え方が異なるために見えにくい等の問題が あった。 そこで、 下記特許文献 1および特許文献 2等には、 銀反射膜 1 2 0を形 成後、 保護膜 1 3 0でこの銀反射膜 1 2 0を覆い、 その上に液晶駆動用の透過電 極を設けた構造になっており、 銀反射層と液晶駆動用の透過電極が互い違いに配 置されている半透過半反射液晶表示装置が開示されている。 なお、 この特許文献 1および特許文献 2の半透過半反射液晶表示装置の全体構成を示す断面図が図 5 に示されている。 この液晶表示装置は、 第 1の基板 1 0 0と第 2の基板 1 1 0と が対抗して配置され、 第 1の基板 1 0 0と第 2の基板 1 1 0との間隙に液晶が封 入されている。 さらに、 第 1の基板 1 0 0上に銀反射膜 1 2 0と、 銀反射膜 1 2 0上に形成された保護膜 1 3 0と、 保護膜 1 3 0上に形成された透明電極 1 40 と、 透明電極 1 4 0上に形成された配向膜から構成されている。 このような構成 によれば、 反射膜の形成後において、 配向膜の高温処理がなされても、 銀反射膜 1 20を構成する結晶粒子の成長が抑えられるので、 反射率の低下を防止するこ とが可能となる。
また、 下記特許文献 3には、 単一の半透過反射膜を用いた構成に関してこの銀 反射膜 1 2 0の下に補助的な反射機能を持つ S i薄膜等を設置した構成が開示さ れている。 このような構成によれば、 透過時反射時ともに、 最適な明るさ · コン トラストを維持しつつ、 好みの色調で表示することが可能となる。
『特許文献 1』 '
特開 20 0 2— 4 9 0 34号公報
『特許文献 2』
特開 2 0 0 2— 4 9 0 3 3号公報
『特許文献 3』
特開 2 0 0 1— 3 0 5 5 2 9号公報 従来技術その 2 (反射型液晶)
従来から反射型液晶は、 ①反射型であるため軽量で明るい表示が得られること 、 ②バックライ トが不要で消費電力を節約できること、 ③少ない消費電力で作動 できるため、 携帯用ディスプレイに好適であること等の理由から盛んに開発が進 められている。
なかでもトップエミッション型有機ェレク トロルミネッセンス (electrolumine scence:以下 έ Lと記す) は、 ①固体素子であるためハンドリング性に優れるこ と、 ②自己発光するため他の発光部材を必要としないこと、 ③視認性に優れるた めディスプレイに好適であること、 ④フルカラー化が容易であること等の理由か ら注目されている。
上記反射型液晶、 特にトップエミッション型有機 E L等の表示機器における駆 動用の電極層には、 通常反射型電極が用いられている。 この反射型電極としては
、 有機 E L等の発光効率の観点から、 反射率が高いものが好ましい。
有機 E Lの反射型電極としては、 例えば下記特許文献 4に、 O LEDと接する 層が Mo, R u, V及ぴこれらの酸化物からなる反射型電極が開示されている。 下記特許文献 5には、 C r と C r酸化物との積層膜、 及び上記 C r及び C r酸 化物の代わりに、 Mo , W, T a , N b , N i及び P t等の金属及びそれらの酸 化物からなる積層膜を含む発光素子用の電極が開示されている。 一方、 液晶駆動用の反射型電極としては、 反射率の高い A 1等を使用できるこ とが知られている。
『特許文献 4』
国際公開第 WO 0 0/0 6 5 8 7 9号パンフレッ ト
『特許文献 5』
特開 2 0 0 2— 2 1 6 9 7 6号公報 従来技術その 3 (反射型液晶)
上記従来の技術その 2で述べたように、 上記反射型液晶、 特にトップエミッシ ョン型有機 E L等の表示機器における駆動用の電極層には、 通常反射型電極が用 いられている。
たとえば、 下記特許文献 6には、 C r、 T a、 W、 T iおよび Mo等からなる 金属酸化物層であって、 金属酸化物層の厚み/ A g合金層の厚みの比を、 金属酸 化物層のエッチング速度/ A g合金層のエッチング速度の比より小さくすること により、 金属酸化物層と A g合金層間に生ずる段差を緩和することが提案されて いる。
一方、 液晶駆動用の反射型電極としては、 反射率の高い A g等を使用できる ことが知られている。
『特許文献 5』
特開 2 0 0 3— 3 6 0 3 7号公報 発明の開示
第 1の目的 (従来技術その 1に関して)
さて、 上記の特許文献 1および 2によれば、 透過電極部分と反射電極部分を別 々の層に設置することになり、 それぞれの層に対して 「成膜一フォ トリソグラフ ィ一によるエッチング一成膜ーフォ トリ ソグラフィ一によるエッチング」 を繰り 返さなければならず、 煩雑な作業が必要となり、 工程間を移動させるための時間 的なロスが発生していた。
上記問題について、 本願発明者らが鋭意検討したところ、 金属を腐食しない酸 にはエッチングされるが、 金属用のエッチング液には耐性がありエッチングされ にくい透明導電膜を採用することにより 「成膜一エッチング」 の工程をより簡略 化できることが判明した。
すなわち、 本発明は、 選択的にエッチングできる液を用いて、 工程を簡略化し 、 煩雑な繰り返し作業を回避することによって時間的なロスを発生しない工程と し、 半透過半反射型電極基板を効率的に提供することを目的とする。 第 2の目的 (従来技術その 2に関して)
. また、 上記 M o、 W、 T a、 N b、 N i、 P tや R u、 V、 C r等からなる反 射型電極は反射率が低いため、 有機 E Lの発光効率が低下してしまう。
特に有機 E Lの場合、 反射型電極は陽極として用いられるため、 発光効率の観 点から、 反射型電極の仕事関数は大きい方が好ましい。 上記 M o等の金属群の仕 事関数は比較的大きいが、 有機化合物のイオン化ポテンシャルは 5 . 6〜5 . 8 e Vであるため、 十分な値とはいえない。
反射率の大きな A 1を反射型電極として使用する場合、 A 1の仕事関数は 4 . 2であり、 有機化合物のィオン化ポテンシャルに対し、 大きくはない。
本発明は上記問題に鑑みなされたものであり、 ①表面抵抗が小さく、 ②反射特 性や耐久性に優れ、 ③仕事関数が大きい等の性質を有する反射型電極基板及び当 該反射型電極基板の製造方法を提供することを目的とする。 本発明の反射型電極 基板はトップエミッション型有機 E L素子用の電極基板として特に有用である。 第 3の目的 (従来技術その 3に関して)
上記第 2の目的で述べたように、 上記 M o等の金属群の仕事関数は比較的大き いが、 有機化合物のイオン化ポテンシャルは 5 . 6〜 5 . 8 e Vであるため、 十 分な値とはいえない。 反射率の大きな A gを反射型電極として使用する場合、 A gの仕事関数は 4 - 2であり、 有機化合物のイオン化ポテンシャルに対し、 大きくはない。
本発明は上記問題に鑑みなされたものであり、 上記第 2の目的と同様に、 ① 表面抵抗が小さく、 ②反射特性や耐久性に優れ、 ③仕事関数が大きい等の性質 を有する反射型電極基板及び当該反射型電極基板の製造方法を提供することを 目的とする。 そして、 上記第 2の目的と同様に、 本発明の反射型電極基板はト ップエミッション型有機 E L素子用の電極基板として特に有用である。 本発明は、 上記目的を達成するために、 以下のような手段を採用する。 第 1グループの発明 '
まず、 主に上記第 1の目的を達成するための第 1グループの発明を説明する。 この第 1グループの発明は、 後に述べる第 1の実施の形態において詳細に説明さ れている。
1 . 本発明は、 少なくとも酸化インジウムからなる金属酸化物層と、 少なく とも A 1または A gからなる無機化合物層と、 をこの順で積層した半透過半反射型電 極基板を製造する方法であって、 前記無機化合物層を燐酸、 硝酸、 酢酸からなる エツチング液 λでェッチングする工程と、 前記金属酸化物層を蓚酸を含むェッチ ング液びでエッチングする工程と、 からなることを特徴とする。
従来は、 「成膜ーフォトリソグラフィ一によるエッチング一成膜ーフォトリソ グラフィ一によるエッチング」 の工程を繰り返さなければならなかった。 しかし 、 本発明によれば、 「成膜一成膜一フォトリソグラフィ一によるエッチングーフ ォトリソグラフィ一によるエッチング」 による工程で各層を成膜することができ る。 この結果、 従来よりも工程をより簡略化することが可能となり、 半透過半反 射型液晶電極基板の製造時間を短縮することができる。
蓚酸を含むエッチング液 σは、 A gまたは A 1からなる無機化合物層にダメー ジを与えない範囲で、 その他の酸、 例えば、 塩酸、 硝酸、 スルホン酸、 ジスルホ ン酸等を少量添加しても良い。
2 . 本発明は、 前記エッチング液えによる前記金属酸化畅層のエッチング速度 A と、 前記エッチング液えによる前記無機化合物層のエッチング速度 Bと、 の比で ある B Z Aの値を 1 0以上に設定することを特徴とする。
ここで、 エッチング速度比の値とは、 「A gまたは A 1からなる無機化合物層 のエッチング速度ノ金属酸化物層のエッチング速度」 と定義する。
A gまたは A 1からなる無機化合物層のェツチング速度と金属酸化物層のエツ チング速度とのエッチング速度比の値が 1 0未満では、 A gまたは A 1からなる 無機化合物層のエッチングをする場合に、 下地の金属酸化物層までエッチングし てしまい、 金属酸化物層にダメージを与えてしまうからである。
また、 丁度エッチングが終了する時間より長くエッチングした場合をオーバー エッチング時間と定義すると、 通常のエッチング工程の場合、 丁度エッチングが 終了する時間の 1 . 2倍から 2 . 0倍程度の時間でエッチングすることが多い。 よって、 このオーバーエツチング時間を考慮すると丁度ェツチングが終了する時 間の 0 . 2〜 1 . 0倍の時間、 下地である金属酸化物層がエッチングされること になるので、 A gまたは A 1からなる無機化合物層のエッチング速度と金属酸化 物層のエッチング速度のエッチング速度比の値を大きく しておく必要がある。
3 . 本発明は、 前記エッチング液; が 3 0〜 6 0 w t %の燐酸イオン、 1〜5 w t %の硝酸イオン、 3 0〜 5 0 w t %の酢酸イオンからなることを特徴とする
エッチング液; L中の陰イオンの組成が上記範囲以外の混合酸では、 エッチング 速度比の値が 1 0以上とするのが困難であり、 下地である金属酸化物層にダメー ジを与えてしまう場合があるからである。 さらに、 上記範囲以外のエッチング液 では、 エッチングの速度が遅くなり、 その結果、 エッチング工程に多大な時間を 要する場合もあるからである。 また、 上記範囲以外のエッチング液では、 エッチ ング速度が速くなり、 その結果、 エッチング速度を制御することができず、 下地 である金属酸化物層にダメージを与えてしまう場合もあるからである。
4 . 本発明は、 前記金属酸化物層がランタノイ ド系金属酸化物を含有したもので あることを特徴とする。 少なく とも酸化インジウムからなる金属酸化物層にランタノィ ド系金属酸化物 を含有しない場合には、 エッチング速度比の値が 1 0以下になる場合があるから である。 さらに、 ランタノイ ド系金属酸化物を含有しない場合には、 蓚酸を主成 分とする酸でのエッチングが困難となるからである。
一方、 金属酸化物層にランタノイ ド系金属酸化物を添加した場合には、 エッチ ングの速度の比が 1 0以上とすることができる場合が多い。 さらに、 ランタノィ ド系金属酸化物を添加した場合には、 蓚酸を主成分とするエッチングが可能とな るからである。
5 . 本発明は、 前記ランタノィ ド系金属酸化物が、 酸化セリ ウム、 酸化ブラセォ ジゥム、 酸化ネオジゥム、 酸化サマリ ウム、 酸化ユウ口ピウム、 酸化ガドリ -ゥ ム、 酸化テルビウム、 酸化ジスプロシウム、 酸化ホルミ ウム、 酸化エルビウム、 酸化ツリ ウム、 酸化イッテルビウム、 および酸化ルテチウムからなる群から選択 される 1種以上を含むことを特徴とする。 ランタノイ ド系金属酸化物と しては、 酸化セリ ウム、 酸化プラセォジゥム、 酸 化ネオジゥム、 酸化サマリ ウム、 酸化テルビウム等を好適に選択することができ る。 これらの金属酸化物は、 無毒性であり、 入手がし易いからである。 また、 金 属酸化物の価格、 焼結時の焼結密度の上がりやすさ、 焼結の時間、 温度との関係 から、 好適にこれらの酸化物を選択することができるからである。
6 . 本発明は、 前記ランタノイ ド系金属酸化物の含有量の割合が、 金属酸化物の 全金属原子に対して 0 . 1〜 1 0原子。 /0未満であることを特徴とする。 ランタノイ ド系金属酸化物の添加量は、 0 . 1〜 2 0原子%、 好ましくは、 1 〜8原子%、 より好ましくは、 2〜7原子%でぁる。 ランタノイ ド系金属酸化物の添加量が 0. 1原子。 /0未満では、 添加の効果、 す なわち、 エッチングの速度の比を 1 0以上にすることができない場合があるから である。 また、 ランタノイ ド系金属酸化物の添加量が 1 0原子%以上では、 金属 酸化物層の導電性が劣化する場合があり、 また、 金属酸化物の透過性が低下する 場合があるからである。
7. 本発明'は、 前記無機化合物層が、 Au, P t , N dから選択される 1種以上 を 0. 1から 3 w t %の範囲で含むことを特徴とする。
A g単体でも実施可能であるが、 Au, P t , N dを添加した方が、 抵抗も低 く、 下地との密着性に優れ、 熱湿度に対してもより安定した膜が得られるからで ある。' Au, P t , N dの添加量としては、 0. 1から 3 w t %の範囲で含んで いることが望ましい。 なお、 本特許では、 、 金属酸化物層上に成膜される金属層 が A g単体または A1単体からなる場合にも便宜上無機化合物層と呼んでいる。 ま た、 本特許では、 Agまたは A1に Au、 Ptまたは Ndを添加したものも便宜上無機化 合物と呼んでいる。 A u , P t , N dの添加量が、 0. 1 w t %未満では添加の効果、 すなわち、
-抵抗を低く抑えることができ、 下地である金属酸化物層との密着性に優れ、 熱湿 度に対してもより安定した膜を得ることができるという効果が得にくいからであ る。 また、 Au, P t, N dの添加量が、 3 w t %以上では、 抵抗が低くなり、 下地との密着性が得られず、 また、 熱湿度に対して不安定となり、 高価になる場 合があるからである。 好ましい Au, P t, N dの添加量としては、 0. 2〜2 w t %、 より好ましくは、 0. 3〜1. 5 w t %である。
下記に記載されている課題を解決するための手段 8〜 1 4は、 第二の金属酸化 物層を A 1または A gからなる無機化合物層上に成膜する工程を有すること以外 は、 上記に記載されている課題を解決するための手段 1〜7と同様の作用効果を 奏する。
8. 本発明は、 少なく とも酸化インジウムからなる第一の金属酸化物層と、 少な くとも A 1または A gからなる無機化合物層と、 少なく とも酸化ィンジゥムまた は酸化亜鉛からなる第二の金属酸化物層と、 をこの順で積層した半透過半反射電 極基板を製造する方法であって、 前記第二の金属酸化物層および前記無機化合物 層を燐酸、 硝酸、 酢酸からなるエッチング液; Iでエッチングする工程と、 前記第 一の金属酸化物薄膜を蓚酸を含むェッチング液 σでエッチングする工程とからな ることを特徴とする。
9. 本発明は、 前記エッチング液 λによる前記第一の金属酸化物層のエッチング 速度 Αと、 前記エッチング液 λによる前記無機化合物層のエッチング速度 Bと、 の比である Β/Αの値を 1 0以上に設定し、 前記エッチング液 λによる前記無機 化合物層のエッチング速度 Cと、 前記エッチング液 による前記第二の金属酸化 物層のエッチング速度 Dと、 の比 CZDを 0. 5〜2. 0の範囲に設定すること を特徴とする。
1 0. 本発明は、 前記エッチング液 Lが 3 0〜 6 0 w t %の燐酸イオン、 1〜5 w t %の硝酸ィオン、 3 0〜 5 0 w t %の酢酸ィオンからなることを特徴とする
1 1. 本発明は、 前記第一の金属酸化物層がランンタノィ ド系金属酸化物を含有 したものであることを特徴とする。 .
1 2. 本発明は、 前記ランタノィ ド系金属酸化物が、 酸化セリウム、 酸化プラセ ォジゥム、 酸化ネオジゥム、 酸化サマリ ウム、 酸化ユウ口ピウム、 酸化ガドリニ ゥム、 酸化テルビウム、 酸化ジスプロシウム、 酸化ホルミウム、 酸化エルビウム 、 酸化ツリウム、 酸化イッテルビウム、 および酸化ルテチウムからなる群から選 択される 1種以上を含むことを特徴とする。
1 3. 本発明は、 前記ランタノィ ド系金属酸化物の含有量の割合が、 金属酸化物 の全金属原子に対して 0. 1〜 1 0原子。 /0未満であることを特徴とする。
1 4. 本発明は、 前記無機化合物層が、 Au, P t, N dから選択される 1種以 上を 0. 1から 3 w t % の範囲で含むことを特徴とする。 第 2グループの発明
次に、 主に上記第 2の目的を達成するための第 2グループの発明を説明する。 この第 2グループの発明は、 後に述べる第 2の実施の形態において詳細に説明さ れている。 上記課題に鑑み、 鋭意研究の結果、 本発明者等は反射型電極基板の電極層とし て、 反射効率の大きい A 1等からなる無機化合物層、 及び電荷注入層として特定 の元素を含む金属酸化物層を用いると、 低い比抵抗を維持しつつ、 仕事関数の大 きな反射型電極基板が得られることを発見した。
そして、 第 2グループの本発明は、 以下の 3個の小グループ (2— 1、 2 - 2 、 2— 3 ) に分けられる。
1 . 本発明の第 2— 1グループは、 基板上に少なくとも A 1からなる無機化合物 層と、 少なく とも酸化インジウム、 酸化亜鉛又は酸化錫から選ばれる 1種又は 2 種以上の酸化物からなる金属酸化物層とを、 この順で積層した反射型電極基板で ある。
また本発明の第 2 _ 2グループは、 燐酸、 硝酸及び酢酸からなるエッチング液 により前記金属酸化物層及び前記無機化合物層を一括エッチングする工程を含む 前記反射型電極基板を製造する方法に関するものである。
さらに本発明の第 2— 3グループは、 燐酸、 硝酸及び酢酸からなるエッチング 液のエッチング組成物に関するものである。
2 . 本発明の第 2 — 1グループの反射型電極基板において、 金属酸化物層が結晶 構造を有すると、 その表面が粗くなるばかりでなく、 表面に突起を有することに より、 漏れ電流が発生することがある。 このような反射型電極基板を有機 E L素 子に使用した場合、 発光効率が悪くなる場合もあるため、 金属酸化物層は非晶質 であることが必須である。
金属酸化物層における酸化ィンジゥムの含有量は、 金属酸化物層における金属 酸化物の全金属原子に対して 6 0〜 1 0 0原子%未満であるのが好ましい。 酸化 インジウムの含有量が 6 0原子。 /。未満となると、 金属酸化物層の比抵抗が大きく なるため好ましくない。 酸化インジウムの含有量が 1 0 0原子%であると、 金属 酸化物層が結晶化して漏れ電流が発生することがあるので好まくない。 また金属 酸化物層の結晶化を抑えるために、 金属酸化物層に水や水素を添加してもよい。 さらに酸化インジウムの含有量は、 9 6原子%以下であるのが好ましく、 より好 ましくは、 9 5原子%以下である。 酸化インジウムの含有量を 9 6原子%以下に することにより、 金属酸化物層に水や水素を添加しなくても、 金属酸化物層を非 晶質とすることができる。 また酸化亜鉛を添加することにより、 金属酸化物層を 非晶質にできる。 その場合、 [ I n] Z ( [ I n] + [Z n] ) (原子比) は 0 . 7〜0. 9 5であり、 好ましくは 0. 8 5〜0. 9 5であり、 より好ましくは 0. 8〜0. 9である。 ここで、 [ I n] 、 [Z n] は金属酸化物層中の I nの 原.子数、 Z nの原子数を示す。 尚、 原子数とは、 金属酸化物層の組成物中におけ る単位体積あたりの I n又は Z nの原子の個数である。
金属酸化物層の厚さは 2〜 3 0 0 nmであり、 好ましくは 3 0〜 2 0 0 nmで あり、 より好ましくは 1 0〜 1 2 0 n mである。 金属酸化物層の厚さが 2 n m未 満となると、 無機化合物層を十分に保護することができない。 金属酸化物層の厚 さが 3 0 0 nm超となると、 反射型電極基板の反射効率が低くなり好ましくない 無機化合物層の厚さは 1 0〜3 0 0 nmであり、 好ましくは 3 0〜 2 5 0 n m であり、 より好ましくは 5 0〜 2 0 0 nmである。 無機化合物層の厚さが 1 0 n m未満となると、 発光部層からの光を十分に反射することができないばかりでな く、 反射型電極の抵抗が大きくなりすぎる場合がある。 無機化合物層の厚さが 3 0 0 nm超となると、 エッチング液を用いて金属酸化物層及び無機化合物層を一 括エッチングする際、 無機化合物層に段差が生じてまうことがあるので好ましく ない。 無機化合物層の表面は拡散反射面であってもよい。
無機化合物層等を形成するための基板の材質は特に制限はない。 例えばガラス を用いても良いし、 プラスチック及ぴシリコン等を用いても良い。
前記無機化合物層は主成分である A 1の他に A u, P t及び N dから選ばれる 1種以上の金属を 0. 1〜 3 w t %の範囲で含む。
無機化合物層における Au, P t及びN dの添加量は、 0. l〜3 w t %であ り、 好ましくは 0. :!〜 2 w t %であり、 より好ましくは 0. 5〜2 w t %であ る。 添加量が 0. l w t %未満となると、 添加効果が十分に現れない。 添加量が 3 w t %超となると、 無機化合物層の導電性が低くなるので好ましくない。
上記 Au等の金属の他に、 第三成分として、 無機化合物層の安定性や抵抗に影 響しない範囲で別の金属を添加してもよい。 第三成分とは、 主要な Au等の金属 以外の他の成分という意味である。
前記金属酸化物層の仕事関数は 5 . 6 e V以上である。
反射型電極基板の金属酸化物層の仕事関数を 5 . 6 e V以上にすると、 有機 E L素子の電極基板に使用した場合、 上記有機 E L素子の発光効率を高めることが できる。 このため、 金属酸化物層の仕事関数を 5 . 6 e V以上にするのが好まし レヽ。 より好ましくは、 5 . 8 e V以上である。
また金属酸化物層がランタノィ ド系金属酸化物を含有すると、 金属酸化物層の 仕事関数が 5 . 6 Θ V以上になり易い。
前記ランタノイ ド系金属酸化物は、 酸化セリウム、 酸化プラセォジゥム、 酸化 ネオジゥム、 酸化サマリウム、 酸化ユウ口ピウム、 酸化ガドリニウム、 酸化テル ピウム、 酸化ジスプロシウム、 酸化ホルミウム、 酸化エルビウム、 酸化ツリウム
、 酸化イッテルビウム、 及び酸化ルテチウムからなる群から選ばれる 1種以上を 含む。
前記ランタノィ ド系金属酸化物の含有割合が、 金属酸化物層における金属酸化 物の全金属原子に対して 0 . 1〜 1 0原子%でぁる。
金属酸化物層におけるランタノィ ド系金属酸化物の添加量は、 金属原子の合計 に対して 0 . 1〜 1 ◦原子%未満であり、 好ましくは 1〜 1 0原子%未満であり 、 より好ましくは 2〜 5原子%未満である。 添加量が 0 . 1原子。 /0未満となると 、 金属酸化物層の仕事関数が 5 . 6 e V以上にならない場合がある。 添加量が 1 0原子。 /0以上となると、 金属酸化物層の比抵抗が大きくなりすぎて導電性が低下 してしまうことがあるので好ましくない。
3 . 上記本発明の第 2— 1グループの反射型電極基板は、 以下に記載する本発明 の第 2グループである反射型電極基板の製造方法により製造できる。
金属酸化物層は、 酸素分圧が 0〜 5 %の雰囲気中で形成するのが好ましい。 酸 素分圧が 5 %以上となると、 形成された金属酸化物層の比抵抗が大きくなりすぎ る場合がある。 酸素分圧は、 0〜2 %とするのがより好ましく、 0〜 1 %とする のが特に好ましい。
燐酸、 硝酸及び酢酸からなるエッチング液により前記金属酸化物層及び前記無 機化合物層を一括エッチングする工程を含む。 前記ェッチング液による前記無機化合物層のエツチング速度 Aと、 前記金属酸 化物層のエッチング速度 Bとの比である B /Aの値を 0 . 5〜2 . 0の範囲に設 定する。
前記無機化合物層のエツチング速度 Aと、 前記金属酸化物層のエツチング速度 Bとの比である B /Aの値の範囲は 0 . 5〜2 . 0であり、 好ましくは 0 . 6〜 1 . 5であり、 より好ましくは 0 . 6〜1 . 2である。 エッチング速度の比であ る B ZAの値が 0 . 5未満となると、 金属酸化物層のエッチング速度 Aよりも無 機化合物層のエッチング速度 Bが速くなりすぎるため、 無機化合物層の方が金属 酸化物層よりも広範囲にエッチングされて金属酸化物層と無機化合物層との境目 に段差が生じてしまう場合がある。 エッチング速度の比である B ZAの値が 2 . 0超であると、 金属酸化物層のエッチング速度 Aよりも無機化合物層のエツチン グ速度 Bが遅くなりすぎるため、 金属酸化物層の方が無機化合物層よりも広範囲 にエッチングされて、 金属酸化物層と無機化合物層との境目に段差が生じてしま う場合がある。
前記エッチング液が 3 0〜 6 0 w t %の燐酸、 1〜 5 w t %の硝酸、 及び 3 0
〜 5 0 w t %の酢酸からなる。
エッチング液において、 燐酸の濃度が 3 0 w t %未満の場合、 硝酸の濃度が 1 w t %未満の場合、 又は酢酸の濃度が 3 0 w t %未満の場合は、 エッチング液の 寿命が短くなるだけでなく、 無機化合物層が十分にエッチングされずに残渣が出 たり、 金属酸化物層及び無機化合物層を一括エッチングができなくなる場合があ る。
またエッチング液において、 燐酸の濃度が 6 5 w t %超の場合、 硝酸の濃度が 5 w t %超の場合、 又は酢酸の濃度が 5 0 w t %超の場合は、 金属酸化物層及び 無機化合物層のエッチング速度が速くなりすぎて制御できなくなり、 エッチング 速度の比である B y7 Aが上記範囲 (0 . 5〜2 . 0 ) からはずれてしまう場合が あるばかりでなく、 金属酸化物層が劣化してしまうことがある。
上記エッチング液は、 燐酸の濃度が 3 0〜 5 0 w t %であり、 硝酸の濃度が 1 〜 5 w t %であり、 酢酸の濃度が 3 0〜 5 0 w t %であるのがより好ましい。 金属酸化物層にランタノィ ド系金属酸化物を添加することにより、 金属酸化物 層のエッチング速度を制御し易くなり、 エッチング速度比である B / Aの値を 0 . 5 〜 2 . 0の範囲内に設定することが容易となる。
金属酸化物層は非晶質であるのが好ましい。 金属酸化物層が非晶質であると、 エッチングによる端面 (エッチング面) の残渣がほとんど無くなるばかりでなく 、 反射型電極がテーパー状になるため、 対抗電極とのショート等が起こりにく く なる。
4 . 本発明の第 2— 3グループの発明は、 上記第 2— 2グループの反射型電極基 板の製造方法におけるエッチング工程に用いるエッチング液であって、 3 0〜 6 0 w t %の燐酸、 :!〜 5 w t %の硝酸、 及ぴ 3 0〜 5 0 w t %の酢酸からなるこ とを特徴とするエッチング組成物である。 ここでエッチング組成物とは、 エッチ ング液に含まれる組成物である。 第 3グループの発明
次に、 主に上記第 3の目的を達成するための第 3グループの発明を説明する。 この第 3グループの発明は、 後に述べる第 3の実施の形態において詳細に説明さ れている。
この第 3グループの発明は、 さらに 2個の小グループ (3— 1 、 3 - 2 ) に分 けられる。 上記課題に鑑み、 鋭意研究の,結果、 本発明者等は反射型電極基板の電極層と して、 反射効率の大きい A g等からなる無機化合物層と、 特定の元素を含む金 属酸化物層と、 を積層して用いると、 低い比抵抗を維持しつつ、 仕事関数の大 きな反射型電極基板が得られることを発見した。
1 . 第 3— 1グループ (反射型電極基板)
本発明の第 3— 1グループは、 基板上に少なく とも A gからなる無機化合物層 と、 少なく とも酸化インジウム及びランタノィ ド系金属酸化物からなる金属酸 化物層とを、 この順で積層した反射型電極基板である。 また本発明の第 2グル ープは、 シュゥ酸からなるエッチング液により前記金属酸化物層をエッチング する工程と、 燐酸、 硝酸及び酢酸からなるエッチング液により'前記無機化合物 層をエツチングする工程とを含む前記反射型電極基板を製造する方法に関する ものである。
本発明の第 3— 1グループの反射型電極基板において、 金属酸化物層が結晶 構造を有すると、 その表面が粗くなるばかりでなく、 表面に突起を有すること により、 漏れ電流が発生することがある。 このような反射型電極基板を有機 E L素子に使用した場合、 発光効率が悪くなる場合もあるため、 金属酸化物層は 非晶質であることが必須である。
金属酸化物層におけるインジウム原子の含有量は、 金属酸化物層における全 金属原子に対して 6 0原子%以上であるのが好ましい。 ィンジゥム原子の含有 量が 6 0原子%未満となると、 金属酸化物層の比抵抗が大きくなるため好まし くない。 また金属酸化物層が結晶化し、 漏れ電流が発生することを抑えるため に、 金属酸化物層の製膜時に水や水素を添加してもよい。 さらにインジウム原 子の含有量は、 9 6原子%以下であるのが好ましく、 より好ましくは、 9 5原 子。 /0以下である。 ィンジゥム原子の含有量を 9 6原子。 /0以下にすることにより 、 金属酸化物層の製膜時に水や水素を添加しなくても、 金属酸化物層が非晶質 となり、 漏れ電流を防止することができる。 また酸化亜鉛を添加することによ り、 金属酸化物層を非晶質にできる。 その場合、 [ I n] Z ( [ I n] + [Z n] ) (原子比) は 0..7〜0. 9 5であり、 好ましくは 0 · 8 5〜0. 9 5 であり、 より好ましくは 0. 8〜0. 9である。 ここで、 [ I n] 、 [Z n] は金属酸化物層中の I nの原子数、 Z IIの原子数を示す。 また酸化亜鉛の代わ りに、 又は酸化亜鉛とともに酸化スズを金属酸化物層に添加してもよい。 この 場合、 [ I n] / ( [ I n] + [S n] ) (原子比) は 0. 7〜0. 9 7であ り、 好ましくは 0. 8 5〜0. 9 5であり、 より好ましくは 0. 8 5〜0. 9 5である。 ここで、 [S n] は金属酸化物層中の S nの原子数を示す。 尚、 原 子数とは、 金属酸化物層の組成物中における単位体積あたりの I n、 Z n又は S nの原子の個数である。
また、 金属酸化物層の仕事関数は 5. 2 5 e V以上が好ましい。 より好まし い金属酸化物層の仕事関数は 5. 6 0 e V以上である。 さらに好ましくは、 5 . 8 0 e V以上である。
前記ランタノイ ド系金属酸化物は、 酸化セリウム、 酸化プラセォジゥム、 酸 化ネオジゥム、 酸化サマリウム、 酸化ユウ口ピウム、 酸化ガドリニウム、 酸化 テルビウム、 酸化ジスプロシウム、 酸化ホルミ ウム、 酸化エルビウム、 酸化ッ リウム、 酸化イッテルビウム、 及ぴ酸化ルテチウムからなる群から選ばれる 1 種以上を含む。
そして、 このランタノィ ド系金属酸化物のランタノィ ド系金属原子の含有割 合が、 金属酸化物層における金属酸化物の全金属原子に対して 0 . 1〜 2 0原 子%である。
金属酸化物層におけるランタノイ ド系金属原子の含有割合は、 好ましくは 1 〜 1 0原子%未満であり、 より好ましくは 2〜 5原子%未満である。 添加量が 0 . 1原子。 /0未満となると、 金属酸化物層の仕事関数が 5 . 2 5 e V以上にな らない場合がある。 添加量が 2 0原子%以上となると、 金属酸化物層の比抵抗 が大きくなりすぎて導電性が低下してしまうことがあるので好ましくない。 金属酸化物層の厚さは 2〜 3 0 0 n mであり、 好ましくは 3 0〜 2 0 0 n m であり、 より好ましくは 1 0〜 1 2 0 n mである。 金属酸化物層の厚さが 2 n m未満となると、 無機化合物層を十分に保護することができない。 金属酸化物 層の厚さが 3 0 0 n m超となると、 反射型電極基板の反射効率が低くなり好ま しくない。
無機化合物層の厚さは 1 0〜 3 0 0 n mであり、 好ましくは 3 0〜 2 5 0 η mであり、 より好ましくは 5 0〜 2 0 0 n mである。 無機化合物層の厚さが 1 0 n m未満となると、 発光部層からの光を十分に反射することができないばか りでなく、 反射型電極の抵抗が大きくなりすぎる場合がある。 無機化合物層の 厚さが 3 0 0 n m超となると、 エッチング液を用いて無機化合物層をエツチン グする際、 無機化合物層に段差が生じてまうことがあるので好ましくない。 無 機化合物層の表面は拡散反射面であってもよい。
無機化合物層等を形成するための基板の材質は特に制限はない。 例えばガラ スを用いても良いし、 プラスチック及ぴシリコン等を用いても良い。 PC蘭 00麵 810 前記無機化合物層は主成分である A gの他に A u, C u, P d, Z r , N i , C o及び N dから選ばれる 1種以上の金属を 0. 1〜 3 w t %の範囲で含む ことが好ましレ、。
無機化合物層における Au, C u, P d, Z r , N i , C o又はN dの添加 量は、 0. :!〜 3 w t %であり、 好ましくは 0. l〜2 w t %であり、 より好 ましくは 0. 5〜 2 w t %である。 添加量が 0. 1 w t %未満となると、 添加 効果が十分に現れない。 添加量が 3 w t %超となると、 無機化合物層の導電性 が低くなるので好ましくない。
上記 Au等の金属の他に、 第三成分として、 無機化合物層の安定性や抵抗に 影響しない範囲で別の金属を添加してもよい。
2. 第 3— 2グループ (製造方法)
上記本発明の第 3— 1グループの反射型電極基板は、 以下に記载する本発明の 第 3— 2グループである反射型電極基板の製造方法により製造できる。
金属酸化物層は、 酸素分圧が 0〜 5%の雰囲気中でスパッタリング製膜する のが好ましい。 酸素分圧が 5 %以上となると、 形成された金属酸化物層の比抵 抗が大きくなりすぎる場合がある。 酸素分圧は、 0〜2%とするのがより好ま しく、 0〜 1 %とするのが特に好ましい。
本発明の第 2グループの製造方法は、 シユウ酸からなるエッチング液により 前記金属酸化物層をエッチングする工程と、 燐酸、 硝酸及び酢酸からなるエツ チング液により前記無機化合物層をエッチングする工程とを含む。
前記金属酸化物層をエッチングするエッチング液は、 シユウ酸を 1〜 1 O w t %含むことが好ましい。 l w t %未満では、 金属酸化物層のエッチング速度 が遅い場合があり、 1 0 w t %超では、 シユウ酸の結晶が析出する場合がある 。 特に好ましくは、 2〜5 w t %である。
前記無機化合物層をエツチング液するエッチング液は、 3 0〜 6 0 w t %の 燐酸、 l〜5 w t %の硝酸、 及び 30〜 5 0 w t %の酢酸からなる。
前記無機化合物層をエッチングするエッチング液において、 燐酸の濃度が 3 0 w t %未満の場合、 硝酸の濃度が 1 w t %未満の場合、 又は酢酸の濃度が 3 0 w t %未満の場合は、 エッチング液の寿命が短くなるだけでなく、 無機化合 物層が十分にエッチングされずに残渣が出たり、 無機化合物層をエッチングが できなくなる場合がある。
上記エッチング液は、 燐酸.の濃度が 3 0〜 5 0 w t %であり、 硝酸の濃度が 1 ~ 5 t %であり、 酢酸の濃度が 3 0〜 5 0 w t %であるのがより好ましい 本発明の反射型電極基板では、 金属酸化物層が非晶質であるため、 エツチン グによる端面 (エッチング面) の残渣がほとんど無い。 また反射型電極がテー パー状になるため、 対抗電極とのショート等が起こりにくレ、。 図面の簡単な説明
図 1は、 本実施の形態第 1グループの半透過半反射型電極基板を製造する工程 を表す図である。
図 2は、 本実施の形態第 1 グループの半透過半反射型電極基板を製造する工程 を表す図である。
図 3は、 本実施の形態第 1グループの半透過半反射型電極基板の断面図である 図 4は、 本実施の形態第 1グループの半透過半反射型電極基板の断面図である 図 5は、 本実施の形態第 1グループの半透過半反射型電極基板の平面図である 図 6は、 本実施の形態第 1グループの半透過半反射型電極基板の平面図である 図 7は、 従来の半透過半反射型電極基板の断面図である。
図 8は、 本実施の形態第 2グループ中の実施例による反射型電極基板及びその 製造方法を示す断面工程図である。
図 9は、 本実施の形態第 2グループ中の実施例による反射型電極基板の縦断面 図である。
図 1 0は、 本実施の形態第 3グループ中の実施例による反射型電極基板及び その製造方法を示す断面工程図である。
図 1 1は、 本実施の形態第 3グループ中の実施例による反射型電極基板の縦 断面図である。 発明を実施するための最良の形態
以下、 図面を参照して、 本発明の好ましい実施の形態について具体的に説明す る。 実施の形態第 1グループ
以下、 本発明の好適な実施の形態第 1グループを図面に基づき説明する。 実施 の形態第 1グループは、 上記第 1グループの発明に関する実施の形態であり、 以 下、 具体的な実施例を 1 1個 (実施例 1一 1〜実施例 1一 1 1 ) と、 比較例を 2 個 (比較例 1一 1〜比較例 1一 2 ) 説明する。
[実施例 1一 1 ]
まず、 酸化インジウム一酸化セリウム (C e Z ( I n + C e ) = 4. 5原子0 /0 ) からなる第一ターゲットを用いて、 S i〇2をコートした青板ガラス基板 1 0 ( 図 1 ( 1 ) 参照) 上に、 金属酸化物層 1 2を成膜した。 なお、 この様子が図 1 ( 2) に示されている。 また、 金属酸化物層 1 2の成膜には、 D Cマグネトロンス パッタ装置 (神港精機社製) を用いた。
なお、 成膜時の青板ガラス基板 1 0の温度は 2 0 0°Cであった。 また、 成膜し た金属酸化物層 1 2の膜厚は 7 5 nmであり、 比抵抗は 3 8 0 Ω c mであった 次に、 金属酸化物層 1 2上に A g— P d— C u ( 9 8. 5 : 0. 5 : 1. 0 w t %) からなるターゲッ ト A gを用いて、 無機化合物層 1 4を成膜した。 なお、 無機化合物層 1 4の膜厚は 1 0 0 nmであった。 この様子が図 1 ( 3) に示され ている。 また、 この金属酸化物層 1 2および A gを主成分とする無機化合物層 1 4を併せて電極層と呼ぶ。 また、 図 1〜4では、 金属酸化物層 1 2、 金属酸化物 層 1 2 a上に成膜する層を Agまたは A1からなる無機化合物層 1 4と便宜上呼んで いるが、 この無機化合物層 1 4は Ag単体または A1単体から組成されていても良 いし、 Agまたは Alを主成分とする化合物から組成されていても良い。 なお、 本 特許では、 Agまたは A1に Au、 Pt、 Ndを添加したものを便宜上無機化合物と呼ん でいる。
次に、 無機化合物層 1 4を用いて複数のラインを形成するために無機化合物層 1 4をエッチングする。 従って、 上記エッチングにより残存した部分が無機化合 物層 1 4のラインである。 このエッチングにより残存した部分、 すなわち、 無機 化合物層 1 4のラインが図 1 ( 4 ) に示されている。 また、 この無機化合物層 1 4を用いた複数のラインは、 無機化合物層 1 4のラ ィンの幅が 4 0 /2 mであり、 各無機化合物層 1 4のライン間のスペースがマ 0 μ mである。 このような寸法となるようにマスクパターンを設計している。 次に、 上記のように設計されたマスクパターンを用いて無機化合物層 1 4をェ ツチングするために無機化合物層 1 4上に感光剤 (レジス ト) を塗布する。 次に 、 上記レジスト上に上記マスクパターンからなるガラス板を載せる。 次に、 レジ ス トを露光後、 現像、 ポス トベータした。 次に、 4 0 w t。/。の燐酸イオン、 2. 5 ^r t %の硝酸イオン、 4 0 w t %の酢 酸イオンを含む水溶液を用いて、 無機化合物層 1 4をオーバーエッチング 1 . 0 にてエッチングした。. このエッチングの結果が図 1 ( 4 ) に示されている。 なお 、 この水溶液は、 特許請求の範囲のエッチング液えの一例に相当する。 次に、 上記エッチングした青板ガラス基板 1 0を水洗 '乾燥した。 次に、 金属酸化物層 1 2を用いて複数のラインを形成するために金属酸化物層 1 2をエッチングする。 従って、 上記エッチングにより残存した部分が金属酸化 物層 1 2のラインである。 このエッチングにより残存した部分、 すなわち、 金属 酸化物層 1 2のラインが図 1 ( 5 ) に示されている。 また、 この金属酸化物層 1 2を用いた複数のラインは、 金属酸化物層 1 2のラ ィンの幅が 9 0 μ mであり、 金属酸化物層 1 2のライン間のスペースが 2 0 μ m である。 このような寸法となるようにマスクパターンを設計している。 次に、 上記のように設計されたマスクパターンを用いて金属酸化物層 1 2をェ ツチングするために電極層上に感光剤 (レジス ト) を塗布する。 次に、 このレジ スト上に上記マスクパターンからなるガラス板を載せる。 次に、 レジストを露光 後、 現像、 ポストベータした。 この様子が図 (5) に示されている。 なお、 レジ ス トの露光は、 図 3に示すように無機化合物層 1 4と金属酸化物層 1 2のエッジ の一部 (片側) が合うようにする。 次に、 蓚酸 4 w t %の水溶液を用いて、 上記得られた金属酸化物層 1 2をエツ チングした。 なお、 この水溶液は、 特許請求の範囲のエッチング液 σの一例に相 当する。 また、 レジス トを剥離後、 1本の電極の抵抗を 5 c mの長さで測定した ところ 0. 6 5 k Qであった。 このようにして得られた半透過半反射型電極基板は低い電気抵抗を達成できた 。 また、 走査型電子顕微鏡で基板表面を観察したところ、 金属酸化物層 1 2の表 面の荒れは観察されなかった。 また、 蓚酸でのエッチング前後における無機化合 物層 1 4のエッジ部の変化はほとんど見られなかった。 これは、 蓚酸のエツチン グ液 σでは無機化合物層 1 4はほとんどエッチングされないことを意味する。 なお、 上記の 40 w t %の燐酸イオン、 2. 5 w t %の硝酸イオン、 40 w t %の酢酸ィオンを含む 3 0 °Cの水溶液を用いた場合の無機化合物のエッチング速 度と金属酸化物層 1 2のエッチング速度とのエッチングの速度の比は 40であつ た。
[実施例 1一 2]
実施例 1一 1で用いた第一ターゲッ トに替えて、 酸化インジウム一酸化スズー 酸化セリウム ( I n/ ( I n + S n) = 9 0原子%、 C e / ( I n + S n + C e ) =4. 9原子%) からなる第二ターゲッ トを用いた。 また、 実施例 1一 1で用 いた A g— P d— C u (9 8. 5 : 0. 5 : 1. 0 w t %) に替えて A g - Au 一 N i (9 8. 5 : 0. 5 : 1. 0 w t %) を用いた。 それ以外については、 実 施例 1一 1 と同様の手法で行った。 すなわち、 第一の金属酸化物層 1 2 aおよび 無機化合物層 1 4の成膜を行った。 この様子が図 2の ( 1 ) 〜 (3) に示されて いる。 なお、 本実施例 1一 2において成膜した第一の金属酸化物層 1 2 aすなわ ち、 図 2の (2) に示されている第一の金属酸化物層 1 2 aは、 図 1の (2) に 示されている金属酸化物層 1 2と同様の金属酸化物層である。
次に、 保護膜として酸化インジウム +酸化亜鉛 ( I n/ ( I n + Z n ) = 7 5 原子0 /0) からなる第三ターゲットを用いて第二の金属酸化物層 1 6を成膜した。 なお、 成膜時の温度は室温であった。 また、 第二の金属酸化物の膜厚は 2 0 n m mであった。 この様子が図 2の (4 ) に示されている。
次に、 実施例 1一 1 と同様の手法によりエッチングを行ない、 半透過半反射型 電極基板を製造した。 なお、 第一の金属酸化物層 1 2 aの比抵抗は 3 2 0 μ Ω c mであり、 電極抵抗は 0. 6 1 k Qあった。 この様子が図 2の (5 ) 、 (6 ) に 示されている。
このようにして得られた半透過半反射型電極基板は低い電気抵抗を達成できた 。 また、 走査型電子顕微鏡で基板表面を観察したところ、 金属酸化物層 1 2 aの 表面の荒れは観察されなかった。 また、 蓚酸でのエッチング前後における無機化 合物層 1 4のエッジ部の変化はほとんど見られなかった。 これは、 蓚酸のエッチ ング液 σでは無機化合物層 1 4はほとんどエッチングされないことを意味する。 なお、 3 0 w t %の燐酸イオン、 1 . 5 w t 0 /。の硝酸イオン、 4 0 w t 0/。の酢 酸イオンを含む 3 0 °Cの水溶液を用いた場合の無機化合物のエッチング速度と、 第一の金属酸化物層 1 2 aのエッチング速度とのエッチング速度比の値は 4 5で あった。
また、 3 0 w t %の燐酸イオン、 1 . 5 w t %の硝酸イオン、 4 0 w t 0/。の酢 酸イオンを含む 3 0 °Cの水溶液を用いた場合の無機化合物層 1 4のエッチング速 度と、 第二の金属酸化物層 1 6のエッチング速度のエッチング速度比の値は 1 . 5であった。
[実施例 1一 3 ]
実施例 1一 1で用いた第一ターゲットに替えて、 酸化ィンジゥム一酸化スズー 酸化プラセオジム ( I n/ ( I n + S n) = 9 0原子0 /0、 P r / ( I n + S n + P r ) = 4. 6原子%) の第四ターゲットを用いた。 それ以外については、 実施 例 1一 1と同様の手法によって、 金属酸化物層 1 2および無機化合物層 1 4の成 膜を行った。
次に、 実施例 1一 1 と同様の手法によりエッチングを行ない、 半透過半反射型 電極基板を製造した。 なお、 金属酸化物層 1 2の比抵抗は 4 5 0 μ Ω c mであつ た。 この様子が図 1の (1 ) 〜 (5) に示されている。
このようにして得られた半透過半反射型電極基板は低い電気抵抗を達成できた 。 また、 走査型電子顕微鏡で基板表面を観察したところ、 金属酸化物層 1 2の表 面の荒れは観察されなかった。 また、 蓚酸でのエッチング前後における無機化合 物層 1 4のエッジ部の変化はほとんど見られなかった。 これは、 蓚酸のエツチン グ液 σでは無機化合物層 1 4はほとんどエッチングされないことを意味する。 なお、 3 0 w t。/。の硝酸イオン、 1 . 5 w t。/。の硝酸イオン、 4 0 w t %の酢 酸イオンを含む 3 0 °Cの水溶液を用いた場合の無機化合物層 1 4のエッチング速 度と、 金属酸化物層 1 2のエッチング速度とのエッチングの速度の比は 3 8であ つた。
[実施例 1一 4 ]
実施例 1一 1で用いた第一ターゲッ トに替えて、 酸化ィンジゥム一酸化スズー 酸化ネオジゥム ( I nノ ( I n + S n) = 9 0原子。/。、 N d / ( I n + S n + N d ) = 3. 8原子0 /0) の第五ターゲッ トを用いた。 また、 A g — P d— C u ( 9 8. 5 : 0. 5 : 1 . 0 w t %) に替えて A g— P t — C o ( 9 8. 5 : 0. 5 : 1 . 0 w t %) を用いた。 それ以外については、 実施例 1 — 1と同様の手法に より金属酸化物層 1 2および無機化合物層 1 4の成膜を行った。
次に、 実施例 1 — 1 と同様の手法によりエッチングを行ない、 半透過半反射型 電極基板を製造した。 この様子が図 1の (1 ) 〜 (5 ) に示されている。 なお、 金属酸化物層 1 2の比抵抗は 4 2 0 μ Q c mであり、 電極抵抗は 0. 6 7 k Ωで あつ 7こ。
このようにして得られた半透過半反射型電極基板は低い電気抵抗を達成できた 。 また、 走査型電子顕微鏡で基板表面を観察したところ、 金属酸化物層 1 2の表 面の荒れは観察されなかった。 また、 蓚酸でのエッチング前後における無機化合 物層 1 4のエッジ部の変化はほとんど見られなかった。 これは、 蓚酸のエツチン グ液 σでは無機化合物層 1 4はほとんどエッチングされないことを意味する。 なお、 3 0 w t。/。の硝酸イオン、 1 . 5 w t %の硝酸イオン、 4 0 w t %の酢 酸イオンを含む 3 0 °Cの水溶液を用いた場合の無機化合物層 1 4のエッチング速 度と、 金属酸化物層 1 2のエッチング速度とのエッチングの速度の比は 48であ つた。
[実施例 1一 5]
実施例 1— 1で用いた第一タ^"ゲットに替えて、 酸化ィンジゥム一酸化スズー 酸化サマリウム ( I nZ ( I n + S n) = 90原子0 /0、 S m/ ( I n + S n + S m) = 3. 2原子0 /o) の第六ターゲットを用いた。 また、 A g— P d— C u (9 8. 5 : 0. 5 : 1. 0 w t %) に替えて A g— C o— N i (98. 0 : 1. 0 : 1. 0 w t %) を用いた。 それ以外については実施例 1一 1 と同様の手法によ り金属酸化物層 1 2および無機化合物層 14の成膜を行った。
次に、 実施例 1一 1と同様の手法によりエッチングを行ない、 半透過半反射型 電極基板を製造した。 この様子が図 1の ( 1) 〜 (5) に示されている。 なお、 金属酸化物層 1 2の比抵抗は 720 μ Ω c mであり、 電極抵抗は 0. 7 2 k Ωで あった
このようにして得られた半透過半反射型電極基板は低い電気抵抗を達成できた 。 また、 走査型電子顕微鏡で基板表面を観察したところ、 金属酸化物層 1 2の表 面の荒れは観察されなかった。 また、 蓚酸でのエッチング前後における無機化合 物層 1 4のエッジ部の変化はほとんど見られなかった。 これは、 蓚酸のエツチン グ液 σでは無機化合物層 14はほとんどエッチングされないことを意味する。 なお、 30w t %の硝酸イオン、 1. 5 w t %の硝酸イオン、 40 w t %の酢 酸イオンを含む 30°Cの水溶液を用いた場合の無機化合物層 14のエッチング速 度と、 金属酸化物層 1 2のエッチング速度とのエッチングの速度の比は 40であ つた。
[実施例 1一 6]
実施例 1一 1で用いた第一ターゲッ トに替えて、 酸化ィンジゥム一酸化スズ一 酸化テルビゥム ( I n/ ( I n + S n) = 90原子0 、 T bZ ( I n + S n+T b) = 4. 7原子。/。) の第七ターゲッ トを用いた。 それ以外については実施例 1 一 1と同様の手法により金属酸化物層 1 2および無機化合物層 14の成膜を行つ た。
次に、 実施例 1一 1と同様の手法によりエッチングを行ない、 半透過半反射型 電極基板を製造した。 この様子が図 1の (1 ) 〜 (5) に示されている。 なお、 金属酸化物層 1 2の比抵抗は 1 4 5 0 μ Ω c mであった。
このようにして得られた半透過半反射型電極基板は低い電^抵抗を達成できた 。 また、 走查型電子顕微鏡で基板表面を観察したところ、 金属酸化物層 1 2の表 面の荒れは観察されなかった。 また、 蓚酸でのエッチング前後における無機化合 物層 1 4のエッジ部の変化はほとんど見られなかった。 これは、 蓚酸のエツチン グ液 σでは無機化合物層 1 4はほとんどエッチングされないことを意味する。 なお、 3 0 w t 0/。の硝酸イオン、 1. 5 w t %の硝酸イオン、 40 w t %の酢 酸イオンを含む 3 0°Cの水溶液を用いた場合の無機化合物層 1 4のエッチング速 度と、 金属酸化物層 1 2のエッチング速度とのエッチングの速度の比は4 6であ つた。
[実施例 1一 7]
まず、 酸化ィンジゥム一酸化セリウム (C eZ ( I n + C e) = 4. 5原子0 /0 ) からなる第一ターゲットを用いて、 S i 02をコートした青板ガラス基板 1 0 ( 図 1 ( 1 ) 参照) 上に、 金属酸化物層 1 2を成膜した。 この様子が図 1 (2) に 示されている。 なお、 成膜時の基板温度は 2 0 0°Cであった。 また、 成膜した金 属酸化物層 1 2の膜厚は 7 5 nmであった。 また、 金属酸化物層ェ 2の比抵抗は 3 8 0 μ Ω c mであった。 次に、 金属酸化物層 1 2の上に A 1 —N d ( 9 9 : 1 w t %) からなるターゲット A 1 ターゲッ トを用いて、 無機化合物層 1 4を成 膜した。 なお、 無機化合物層 1 4の膜厚は 1 0 0 nmであった。 この様子が図 1 の (3) に示されている。 ま'た、 この金属酸化物層 1 2および A1を主成分とする 無機化合物層 1 4を併せて電極層と呼ぶ。
本実施例 1一 7および以下に示す実施例 1一 8〜 1一 1 1は、 実施例 1— 1と ほぼ同様の手法により半透過半反射型電極基板の製造を行った。 ただし、 実施例 1一 1では金属酸化物層 1 2の主成分に A gを用いているが、 本実施例 1一 7お よび以下に示す実施例 1一 8〜 1一 1 1では、 金属酸化物層 1 2の主成分に A 1 を用いている点で異なる。
次に、 無機化合物層 1 4を用いた複数のラインを形成するために無機化合物層 !_ 4をエッチングする。 従って、 上記エッチングにより残存した部分が無機化合 物層 1 4のラインである。 このエッチングにより残存した部分、 すなわち、 無機 化合物層 1 4のラインが図 1 ( 4 ) に示されている。
また、 この無機化合物層 1 4を用いた複数のラインは、 無機化合物層 1 4のラ ィンの幅が 4 0 μ mであり、 各無機化合物層 1 4のライン間のスペースが 7 0 μ mである。 このような寸法となるようにマスクパターンを設計している。
次に、 上記のように設計されたマスクパターンに無機化合物層 1 4をエツチン グするために無機化合物層 1 4上に感光剤 (レジス ト) を塗布し、 このレジス ト 上に上記マスクパターンからなるガラス板を載せる。 次に、 レジス トを露光後、 現像、 ボス トベータした。
次に、 5 0 w t %の燐酸イオン、 2 . O w t。/。の酢酸イオン、 4 0 w t。/。の硝 酸イオンを含む水溶液を用いて、 無機化合物層 1 4をオーバーエッチング 1 . 0 にてエッチングした。 このエッチングの結果が図 1 ( 4 ) に示されている。 なお 、 この水溶液は、 特許請求の範囲のエッチング液えの一例に相当する。
次に、 上記エッチングした青板ガラス基板 1 0を水洗 · 乾燥した。
次に、 金属酸化物層 1 2を用いて複数のラインを形成するために金属酸化物層 1 2をエッチングする。 従って、 上記エッチングにより残存した部分が金属酸化 物層 1 2のラインである。 このエッチングにより残存した部分、 すなわち、 金属 酸化物層 1 2のラインが図 1 ( 5 ) に示されている。
また、 この金属酸化物層 1 2を用いた複数のラインは、 金属酸化物層 1 2のラ ィンの幅が 9 0 μ mであり、 金属酸化物層 1 2のライン間のスペースが 2 0 μ m である。 このような寸法となるようにマスクパターンを設計している。
次に、 上記のように設計されたマスクパターンを用いて金属酸化物層 1 2をェ ツチングするために金属層上に感光剤 (レジス ト) を塗布する。 次に、 このレジ ス ト上に上記マスクパターンからなるガラス板を載せる。 次に、 レジス トを露光 後、 現像、 ポス トベータした。 この様子が図 1の (5 ) に示されている。 なお、 レジス トの露光は、 無機化合物層 1 4と金属酸化物層 1 2のエッジの一部 (片側 ) が合うようにする。
次に、 蓚酸 4 w t %の水溶液を用いて、 上記得られた金属酸化物層 1 2をエツ チングした。 なお、 この水溶液は、 特許請求の範囲のエッチング液; Lの一例に相 当する。 また、 レジス トを剥離後、 1本の電極の抵抗を 5 c mの長さで測定した ところ、 0. 6 5 k Qであった。
このようにして得られた半透過半反射型電極基板は低い電気抵抗を達成できた 。 また、 走査型電子顕微鏡で基板表面を観察したところ、 金属酸化物層 1 2の表 面の荒れは観察されなかった。 また、 蓚酸でのエッチング前後における無機化合 物層 1 4のエッジ部の変化はほとんど見られなかった。 これは、 蓚酸のエツチン グ液 σでは無機化合物層 1 4はほとんどエッチングされないことを意味する。 なお、 上記の 5 0 w t。/。の燐酸イオン、 2. Ow t %の硝酸イオン、 40 w t %の酢酸イオンを含む 3 0°Cの水溶液を用いた場合の無機化合物層 1 4のエッチ ング速度と、 金属酸化物層 1 2のエッチング速度のエッチングの速度の比は i 6 であった。
[実施例 1一 8]
実施例 1一 2で用いた第二ターゲットに替えて、 酸化ィンジゥム一酸化スズ— 酸化セリウム ( I nZ ( I n+ S n) = 9 0原子%、 C e / ( I n + S n + C e ) =4. 9原子%) のターゲット 2を用いた。 また、 実施例 1一 7で用いた A 1 -N d (9 9 : 1 w t %) に替えて A 1 — P t (9 9 : 1 w t %) を用いた。 そ れ以外については、 実施例 2と同様の手法により第一の金属酸化物層 1 2 aおよ ぴ無機化合物層 1 4の成膜を行った。 この様子が図 2の ( 1) 〜 (3) に示され ている。 なお、 本実施例 1 _ 8において成膜した第一の金属酸化物層 1 2 a、 す なわち、 図 2の (2) に示されている第一の金属酸化物層 1 2 aは、 図 1の (2 ) に示されている金属酸化物層 1 2と同様の金属酸化物層である。
次に、 保護膜として酸化ィンジゥム +酸化亜鉛 ( I nZ ( I n + Z n) = 8 5 原子%) からなるターゲッ ト 3を用いて第二の金属酸化物層 1 6を成膜した。 な お、 成膜時の温度は室温であった。 また、 第二の金属酸化物層 1 6の膜厚は 2 0 nmmであった。 この様子が図 2の (4) に示されている。
次に、 実施例 1一 1 と同様の手法によりエッチングを行ない、 半透過半反射型 電極基板を製造した。 この様子が図 2の (5) 、 (6) に示されている。 なお、 酸化ィンジゥム一酸化スズ一酸化セリゥム層の比抵抗は 3 2 0 μ Ω c mであり、 電極抵抗は 1. 5 7 k Qあった。 このようにして得られた半透過半反射型電極基板は低い電気抵抗を達成できた
。 また、 走查型電子顕微鏡で基板表面を観察したところ、 金属酸化物層 1 2の表 面の荒れは観察されなかった。 また、 蓚酸でのエッチング前後における無機化合 物層 1 4のエッジ部の変化はほとんど見られなかった。 これは、 蓚酸のエツチン グ液 σでは無機化合物層 1 4はほとんどエッチングされないことを意味する。 なお、 無機化合物層 1 4のエッチング速度と第一金属酸化物層 1 2のエツチン グ速度とのエッチング速度比の値は 1 8であった。
また、 無機化合物層 1 4のエッチング速度と第二金属酸化物層のエッチング速 度とのエッチング速度比の値は 1. 1であった。
[実施例 1一 9]
実施例 1一 1で用いた第一ターゲッ トに替えて、 酸化ィンジゥム一酸化スズー 酸化プラセオジム ( I nZ ( I n + S n) = 9 0原子0 /0、 P r / ( I n + S n + P r ) =4. 6原子%) の第四ターゲットを用いた。 それ以外については実施例 1 - 1 と同様の手法により金属酸化物層 1 2および無機化合物層 1 4の成膜を行 つた。
次に、 実施例 1一 1 と同様の手法によりエッチングを行ない、 半透過半反射型 電極基板を製造した。 この様子が図 1の ( 1 ) 〜 (5) に示されている。 なお、 金属酸化物層 1 2の比抵抗は 4 50 Ω c mであり、 電極抵抗は 1. 6 6 k Ωで あつに。
このようにして得られた半透過半反射型電極基板は低い電気抵抗を達成できた 。 また、 走査型電子顕微鏡で基板表面を観察したところ、 金属酸化物層 1 2の表 面の荒れは観察されなかった。 また、 蓚酸でのエッチング前'後における無機化合 物層 1 4のエッジ部の変化はほとんど見られなかった。 これは、 蓚酸のエツチン グ液 σでは無機化合物層 1 4はほとんどエッチングされないことを意味する。 なお、 無機化合物層 1 4のエッチング速度と金属酸化物層 1 2のエッチング速 度のエッチング速度比の値は 1 5であった。
[実施例 1一 1 0]
実施例 1一 7で用いた第一ターゲットに替えて、 酸化ィンジゥム一酸化スズー 酸化ネオジヴム ( I n/ ( I n + S n) = 9 0原子0/。、 N d/ ( I n + S n +N 003/014810 d) = 3. 8原子%) の第五ターゲッ トを用いた。 また、 実施例 1一 7で用いた A 1 -N d (9 9 : 1 w t %) に替えて A 1— Au (9 9 : 1 w t %) を用いた 。 それ以外については実施例 1 と同様の手法により金属酸化物層 1 2 aおよび無 機化合物層 1 4の成膜を行った。
次に、 実施例 1一 1と同様の手法によりエッチングを行ない、 半透過半反射型 電極基板を製造した。 この様子が図 1の (1 ) 〜 (5) に示されている。 なお、 酸化ィンジゥム一酸化スズ一酸化ネオジゥム層の比抵抗は 4 2 0 μ Ω c mであり 、 また、 電極抵抗は 1. 3 9 であった。
このようにして得られた半透過半反射型電極基板は低い電気抵抗を達成できた 。 また、 走査型電子顕微鏡で基板表面を観察したところ、 金属酸化物層 1 2の表 面の荒れは観察されなかった。 また、 蓚酸でのエッチング前後における無機化合 物層 1 4のエッジ部の変化はほとんど見られなかった。 これは、 蓚酸のエツチン グ液 σでは無機化合物層 1 4はほとんどエッチングされないことを意味する。 なお、 無機化合物層 1 '4のエッチング速度と金属酸化物層 1 2のエッチング速 度のエッチング速度比の値は 1 8であった。
[実施例 1— 1 1]
実施例 1一 1で用いた第一ターゲッ トに替えて、 酸化ィンジゥム一酸化スズー 酸化サマリウム ( I n/ ( I n + S n) = 9 0原子。/。、 S m/ ( I n + S n + S m) = 3. 2原子%) の第六ターゲットを用いた。 また、 実施例 1一 7で用いた A 1 -N d (9 9 : 1 w t %) に替えて A 1 ( 1 00 w t %) を用いた。 それ以 外については実施例 1― 1 と同様の手法により金属酸化物層 1 2および無機化合 物層 1 4の成膜を行った。
次に、 実施例 1一 1 と同様の手法によりエッチングを行ない、 半透過半反射型 電極基板を製造した。 なお、 酸化インジウム一酸化スズ一酸化プラセオジム層の 比抵抗は 7 2 0 μ Ω c mであり、 また、 電極抵抗は 1. 4 7 であった。 この 様子が図 1の (1) 〜 (5) に示されている。
このようにして得られた半透過半反射型電極基板は低い電気抵抗を達成できた 。 また、 走査型電子顕微鏡で基板表面を観察したところ、 金属酸化物層 1 2の表 面の荒れは観察されなかった。 また、 蓚酸でのエッチング前後における無機化合 PC漏 00藤 810 物層 1 4のエッジ部の変化はほとんど見られなかった。 これは、 蓚酸のエツチン グ液 σでは無機化合物層 1 4はほとんどエッチングされないことを意味する。 なお、 無機化合物層 1 4のエッチング速度と金属酸化物層 1 2のエッチング速 度のエッチング速度比の値は 2 0であった。
[比較例 1一 1 ]
実施例 1一 1で用いた第一ターゲットに替えて、 酸化インジウム一酸化スズ ( I n / ( I n + S n ) = 9 0原子%) の第七ターゲットを用いた。 それ以外につ いては実施例 1と同様の手法により金属酸化物層 1 2 aおよび無機化合物層 1 4 の成膜を行った。
次に、 実施例 1一 1と同様の手法によりエッチングを行ない、 半透過半反射型 電極基板を製造した。 なお、 酸化インジウム一酸化スズの比抵抗は 2 5 0 ^ Ω c mであった。 このようにして得られた半透過半反射型電極基板は、 エッチング 液による表面の荒れはほとんど見られなかった。 しかし、 蓚酸で金属酸化物層 1 2をエッチングすることはできなかった。
[比較例 1一 2 ]
実施例 1一 1で用いた第一ターゲットに替えて、 酸化インジウム一酸化スズ ( I VL / ( I n + Z n ) = 8 5原子%) の第八ターゲットを用いた。 それ以外につ いては実施例 1一 1 と同様の手法により金属酸化物層 1 2 aおよび無機化合物層 1 4の成膜を行った。
次に、 実施例 1一 1と同様の手法によりエッチングを行ない、 半透過半反射型 電極基板を製造した。 なお、 酸化インジウム一酸化亜鉛の比抵抗は 3 9 0 Ω c mであった。
このよ うにして半透過半反射型電極基板は、 A gのエッチング時に、 酸化イン ジゥム一酸化亜鉛層もエッチングされた。
実施の形態第 1グループのまとめ
以上説明したように、 本発明によれば、 選択によってエッチング速度が異なる エッチング液を用いて、 半透過半反射型電極基板の製造工程を簡略化し、 煩雑な 繰り返し作業を回避することによって半透過半反射型電極基板の製造時間の短縮 を図り、 半透過半反射型電極基板を効率的に提供することができる。 実施の形態第 2グループ
以下、 本発明の好適な実施の形態第 2グループの説明を行う。 尚、 本発明にお いて、 一括エッチングとは、 1種類のエッチング液を用いて無機化合物層及び金 属酸化物層を一度にエッチングすることを言う。
[実施例 2— 1]
(a ) 無機化合物層及び金属酸化物層
① 無機化合物層の形成及ぴエッチング速度の測定
D Cマグネ トロンスパッタ装置 (ァネルバ製) 内に S i 〇2をコーティングした 青板ガラス基板を載置し、 この青板ガラス基板を 20 0°Cに加熱した後、 A 1 タ 一ゲッ ト (A 1 : 1 0 0原子0 /0) を用いてスパッタリングを行った。 これにより 、 青板ガラス基板上に厚さ 1 00 nmの無機化合物層を形成した。
燐酸 ( 4 0 w t %) 、 硝酸 ( 2. 5 w t %) 、 および 酢酸 ( 4 0 w t %) を含 むエッチング液 (以下、 エッチング液 ( I ) と記す) を調製した後、 このエッチ ング液 ( I ) を用いて、 青板ガラス基板上の無機化合物層を 3 0°Cでエッチング した。 この時無機化合物層のエッチング速度 A ( I ) を測定したところ、 4 2 η m Z m i nであった。
一方、 燐酸 ( 5 5 w t %) 、 硝酸 ( 2. 5 w t %) , 酢酸 ( 4 0 w t %) を含 むエッチング液 (以下、 エッチング液 ( I I ) と記す) を調製した後、 このエツ チング液 ( I I ) を用いて、 別の青板ガラス基板上の無機化合物層を 3 0°Cでェ ツチングした。 この時無機化合物層のエッチング速度 A ( I I ) を測定したとこ ろ、 7 3 n m m i nでめつ 7こ。
②金属酸化物層の形成及びエッチング速度の測定
上記 (a) ①と同様に、 DCマグネトロンスパッタ装置内に S i O 2をコーティ ングした別の青板ガラス基板を载置し、 この青板ガラス基板を 2 0 0°Cに加熱し た後、 酸化インジウム一酸化亜鉛ターゲッ ト (その組成原子%は [ I n] : [Z n] = 8 3. 0 : 1 7. 0原子0 /0である) を用いてスパッタリングを行った。 こ れにより、 青板ガラス基板上に厚さ 7 5 nmの金属酸化物層を形成した。
上記エッチング液 ( I ) 及び ( I I ) をそれぞれ用いて、 青板ガラス基板上の 金属酸化物層を 3 0°Cでエッチングした。 この時、 エッチング液 ( I ) 及ぴ ( I I ) による金属酸化物層のエッチング速度 B ( I ) 及ぴ B ( I I ) をそれぞれ測 定したところ、 B ( I ) が 4 1 n m/m i nであり、 B ( I I ) が 4 2 n /m i nであった。
③ エッチング速度比の算出
測定された無機化合物層及ぴ金属酸化物層のエッチング速度 A ( I ) 、 A ( I I ) 、 B ( I ) 及び B ( I I ) を用いて、 無機化合物層及ぴ金属酸化物層のエツ チング速度比である B ( I ) /A ( I ) 及ぴ B ( I I ) /A ( I I ) の値を算出 した。 この結果、 B ( I ) /A ( I ) が 0. 9 8であり、 B ( I I ) /A ( I I ) 力 0. 5 8であった (表 2— 1 ) 。 .
④ 金属酸化物層の仕事闋数及び比抵抗の測定
青板ガラス基板上に形成された上記金属酸化物層を紫外線照射することにより 洗浄した後、 この金属酸化物層の仕事関数を光電子分光装置 (理研計器 (株) 製 、 AC— 1 ) で測定したところ、 5. 24 e Vであった (表 2— 2 ) 。 また、 金 属酸化物層の比抵抗を抵抗率測定装置 (三菱油化 (株) 製、 ロレスタ) を用いて 測定したところ、 3 40μ · Ω · 。 mであった (表 2— 2 ) 。
(b ) 反射型電極基板
① 反射型電極基板の製造
図 8 ( 1 ) に示すように、 (a) ①と同様に、 D Cマグネトロンスパッタ装置 内に S i〇2をコーティングした上記青板ガラス基板 2 1 0を載置し、 この青板ガ ラス基板 2 1 0を 2 00°Cに加熱した。 図 8 (2) に示すように、 A 1 ターゲッ ト (A 1 : 1 00原子0 /0) を用いてスパッタリングを行い、 青板ガラス基板 2 1 0上に厚さ 1 0 0 nmの無機化合物層 2 1 1を形成した。 次に、 図 8 (3) に示 すように、 青板ガラス基板 2 1 0の無機化合物層 2 1 1上に、 酸化インジウム一 酸化亜鉛ターゲット (その組成原子0 /0は [ I n] : [Z n] = 8 3. 0 : 1 7. 0である) を用いてスパッタリングを行い、 厚さ 20 nmの金属酸化物層 2 1 2 を形成した。 これにより、 青板ガラス基板 2 1 0上に、 無機化合物層 2 1 1及ぴ 金属酸化物層 2 1 2からなる電極層 2 1 3を有する反射型電極基板 2 0 1を製造 した。 この反射型電極基板 1の表面抵抗を上記 (a) ④と同型の表面抵抗測定器 を用いて測定したところ、 1. 2 Ω/口であった (表 2— 2) 。
② 反射型電極基板のエッチング特性の検討
この反射型電極基板 1の金属酸化物層 2 1 2上にレジス ト (日本ポリテック ( 株) 製、 商品名 NP R 204 8 U S P) を塗布し、 フォトマスクを用いて紫外線 を露光し、 現像した後、 1 3 0°Cに加熱して 1 5; ^間ポストベータをすることに より、 金属酸化物層 2 1 2上にレジス トマスク 2 1 4を形成した (図 8 (4) ) 上記エッチング液 ( I ) 及ぴ ( I I ) を用いて、 反射型電極基板 20 1上の無 機化合物層 2 1 1及び金属酸化物層 2 1 2を一括エッチングして、 図 9に示すよ うな反射型電極基板 20 1を製造した。
無機化合物層 2 1 1及び金属酸化物層 2 1 2のエッチング面を走查電子顕微鏡 (日立製作所 (株) 製、 商品名 S 800) により観察したところ、 エッチングに よる残渣ゃ段差は認められず、 上記レジス トマスク 2 1 4のパターン通りに良好 にエッチングされていた (表 2— 2 ) 。
[実施例 2— 2〜 2— 1 4]
(a ) 無機化合物層及び金属酸化物層
① 無機化合物層の形成及びエッチング速度の測定
上記実施例 2— 1 (a) ①と同様に、 青板ガラス基板上に無機化合物層を形成 し、 同様の方法でエッチング速度 A ( I ) 及び A ( I I ) を測定し、 同様の測定 結果を得た。
② 金属酸化物層の形成及びエッチング速度の測定
酸化インジウム一酸化亜鉛ターゲッ ト (その組成原子%は [ I n] : [Z n] = 8 3. 0 : 1 7. 0である) の代わりに、 表 2— 1に示す組成のターゲットを 用いた点を除き、 実施例 2— 1 (a) ②と同様の方法で青板ガラス基板上に金属 酸化物層を形成した。
表 2— 1に示すように実施例 2— 2〜 2— 1 4では、 ターゲットの組成を少し ずつ変えている。 実施例 2— 2〜 2— 1 4においては、 インジウム及び亜鉛の他 に、 第三成分の元素としてランタノイ ド系金属元素を加えている。 加えたことに よるターゲッ トの組成原子%は、 表 2— 1に示す通りである。 このように実施例 2— 2〜 2— 1 4は、 金属酸化物層のスパッタリングに用いたターゲットの組成 を変化させたのものであり、 これによつて得られた金属酸化物層の物性を測定し た結果を示すものである。
上記エッチング液 ( I ) 及ぴ ( I I ) をそれぞれ用いて、 青板ガラス基板上の 上記金属酸化物層を 3 0°Cでエッチングした。 この時、 エッチング液 ( I ) 及び ( I Γ) よる各金属酸化物層のエッチング速度 B ( I ) 及び B ( I I ) をそれ ぞれ測定した。
③ エッチング速度比の算出
このようにして、 測定された無機化合物層及び金属酸化物層の各エッチング速 度 A ( I ) 、 A ( I I ) 、 B ( I ) 及び B ( I I ) を用いて、 無機化合物層及び 金属酸化物層のエッチング速度比である B ( I ) /A ( I ) 及び B ( I I ) /A ( I I ) の値を算出した。 その結果を表 2— 1に示す。
④ 金属酸化物層の仕事関数及び比抵抗の測定
実施例 2— 1 (a) ④と同様に、 上記青板ガラス基板上の金属酸化物層を紫外 線洗浄し、 この金属酸化物層の仕事関数及び比抵抗を測定した。 結果を表 2— 2 に示す。
(b) 反射型電極基板
① 反射型電極基板の製造
実施例 2— 1 (b ) ①の酸化インジウム—酸化亜鉛ターゲッ ト (その組成原子 %は [ I n ] : [Z n] = 8 3. 0 : 1 7. 0である) の代わりに、 表 2— 1に 示す各組成のターゲッ トを用いてスパッタリングを行った。 この点を除き、 いず れの実施例 (2— 2〜2— 1 4) も実施例 2— 1 (b ) ①と同様な方法で、 図 8 (3) に示すような青板ガラス基板 2 1 0上に、 無機化合物層 2 1 1及び金属酸 化物層 2 1 2を形成した。 このようにして、 無機化合物層 1 1及び金属酸化物層 2 1 2からなる電極層 2 1 3を有する反射型電極基板 2 0 1を製造した。 この反 射型電極基板 2 0 1の表面抵抗を実施例 2— 1 と同型の表面抵抗測定器を用いて 各実施例 (2— 2〜2— 1 4) について測定した (表 2— 2) 。
また各実施例 (2 _ 2〜2— 1 4) において、 図 8 (4) に示すように、 実施 例 2— 1 (b) ②と同様な方法で、 反射型電極基板 2 0 1の金属酸化物層 2 1 2 上にレジス トマスク 2 1 4を形成した。 次いで、 エッチング液 ( I ) 及び ( I I ) を用いて、 反射型電極基板 2 0 1の無機化合物層 2 1 1及び金属酸化物層 2 1 2を一括ェツチングして、 図 9に示す反射型電極基板 2 0 1を製造した。
② 反射型電極基板のエッチング特性の検討
無機化合物層 2 1 1及び金属酸化物層 2 1 2のエッチング面を実施例 2— 1 と 同型の走査電子顕微鏡により観察したところ、 いずれの実施例 (2— 2〜 2— 1 4) においても、 エッチングによる残渣ゃ段差は認められず、 上記レジス トマス ク 2 1 4のパターン通りに良好にエッチングされていた (表 2— 2) 。
[表 2
表 2— 1
Figure imgf000038_0001
*) Α(Ι): 燐酸イオン(40wt%〉、硝酸イオン(2.5%〉、およぴ舴酸イオン (40wt%)も含む エッチング液 (I)による 30°Gでの無機化合物層のエッチング速度
B(I): 燐酸イオン(40wt%;)、硝酸イオン(2.5%〉、および酢酸イオン (40wt%〉を含む エッチング液 (1〉による 30 での金属化合物層のエツチン 速度
**) A(II): 燐酸イオン(55Wt%〉、硝酸イオン(2.5%〉、および酢酸イオン (40wt%)も含む エッチング液(II)による 30Όでの無機化合物層のエッチング速度
B(II): 燐酸イオン(55wt%)、硝酸イオン(2.5%〉、および酢酸イオン (40wt%)を含む エッチング液(11〉による 30Όでの金属化合物層のエッチング速度
2003/014810
[表 2— 2] 表 2— 2
Figure imgf000039_0001
[実施例 2 _ 1 5 ]
(a) 無機化合物層及び金属酸化物層
① 無機化合物層の形成及びエッチング速度の測定
実施例 2— 1 (a) ①の A 1ターゲット (A 1 : 1 00原子0 /0) の代わりに、 A 1— Auターゲット (その組成原子%は [A 1 ] : [Au] = 9 9 : 1である ) を用いてスパッタリングを行った。 この点を除き、 実施例 2— 1 (a) ①と同 様に、 青板ガラス基板上に無機化合物層を形成した。
上記エッチング液 ( I ) 及び ( I I ) を用いて、 青板ガラス基板上の無機化合 物層を 30°Cでエッチングした。 この時、 エッチング液 ( I ) 及ぴ ( I I ) によ る無機化合物層のエッチング速度 A ( I ) 及び A ( I I ) をそれぞれ測定したと ころ、 A ( I ) 力 S 38 n m/m i nであり、 A ( I I ) 力 S 7 1 n m/m i であ つた。
② 金属酸化物層の形成及びエッチング速度、 仕事関数及び比抵抗の測定 上記実施例 2— 1 (a) ②と同様に、 青板ガラス基板上に金属酸化物層を形成 し、 同様の方法でエッチング速度 B ( I ) 及び B (I I ) を測定し、 同様の測定 結果を得た。 また上記実施例 2— 1 (a) ④と同様の方法で、 この金属酸化物層 の仕事関数及ぴ比抵抗を測定し、 同様の測定結果を得た。
③ エッチング速度比の算出
測定された無機化合物層及び金属酸化物層のエッチング速度 A (I ) 、 A (I I ) 、 B ( I ) 及び B ( I I ) を用いて、 無機化合物層及ぴ金属酸化物層のエツ チング速度比である B (I ) /A (I ) 及び B (I I ) /A ( I I ) の値を算出 した。 この結果、 B ( I ) /A ( I ) が 1. 08であり、 B ( I I ) /A ( I I ) が 0. 5 9であった (表 2— 3) 。
(b) 反射型電極基板
① 反射型電極基板の製造
実施例 2— 1 (b) ①の A 1ターゲット (A 1 : 1 00原子0 /0) の代わりに、 A 1— Auターゲッ ト (その組成原子0 /0は [A 1 ] : [Au] = 9 9 : 1である ) を用いてスパッタリ ングを行った。 この点を除き、 実施例 2— 1 (b ) ①と同 様に、 青板ガラス基板 2 10上に、 無機化合物層 21 1及び金属酸化物層 2 1 2 からなる電極層 21 3を有する反射型電極基板 201を製造した (図 8 (3) ) 。 この反射型電極基板 201の表面抵抗を実施例 2— 1 (b ) ①と同型の表面抵 抗測定器を用いて測定したところ、 1. 2 Ω /口であった (表 2— 3) 。
図 8 (4) に示すように、 実施例 2— 1 (b) ②と同様の方法で、 反射型電極 基板 20 1の金属酸化物層' 21 2上にレジス トマスク 214を形成した。 次いで 、 エッチング液 ( I ) 及び ( I I ) を用いて、 反射型電極基板 20 1の無機化合 物層 2 1 1及び金属酸化物層 21 2を一括エッチングして、 図 9に示すような反 射型電極基板 20 1を製造した。
② 反射型電極基板のエッチング特性の検討
無機化合物層 2 1 1及び金属酸化物層 21 2のエッチング面を実施例 2— 1 ( b) ②と同型の走査電子顕微鏡により観察したところ、 エッチングによる残渣ゃ 段差は認められず、 上記レジストマスク 214のパターン通りに良好にエツチン グされていた (表 2— 3) 。
[実施例 2— 1 6] (a) 無機化合物層及び金属酸化物層
① 無機化合物層の形成及びエッチング速度の測定
実施例 2— 1 (a) ①の A 1タ一ゲット (A 1 : 1 00原子0 /0) の代わりに、 A 1— P tターゲット (その組成原子%は [A 1 ] : [P t] = 9 9 : 1である ) を用いてスパッタリングを行った。 この点を除き、 実施例 2— 1 (a) ①と同 様に、 青板ガラス基板上に無機化合物層を形成した。
上記エッチング液 ( I ) 及び ( I I ) を用いて、 青板ガラス基板上の無機化合 物層を 30。Cでエッチングした。 この時、 エッチング液 ( I ) 及び ( I I ) によ る無機化合物層のエッチング速度 A ( I ) 及ぴ A ( I I ) をそれぞれ測定したと ころ、 A ( I ) が 3 9 nm/m i nであり、 A ( I I ) 力 S 6 9 nm/m i nであ つた。
② 金属酸化物層の形成及びエッチング速度、 仕事関数及び比抵抗の測定 上記実施例 2— 1 (a) ②と同様に、 青板ガラス基板上に金属酸化物層を形成 し、 同様の方法でエッチング速度 B ( I ) 及び B ( I I ) を測定し、 同様の測定 結果を得た。 また上記実施例 2— 1 (a) ④と同様の方法で、 この金属酸化物層 の仕事関数及び比抵抗を測定し、 同様の測定結果を得た。
③ エッチング速度比の算出
測定された無機化合物層及ぴ金属酸化物層のエッチング速度 A ( I ) 、 A ( I I) 、 B ( I ) 及ぴ B ( I I ) を用いて、 無機化合物層及び金属酸化物層のエツ チング速度比である B ( I ) /A ( I ) 及び B ( I I ) /A ( I I ) の値を算出 した。 この結果、 B ( I ) /A ( I ) が 1. 05であり、 B ( I I ) /A ( I I ) が 0. 6 1であった (表 2— 3 ) 。
(b) 反射型電極基板
① 反射型電極基板の製造
A 1ターゲット (A 1 : 1 00原子0/。) の代わりに、 A 1— P tターゲット ( その組成原子0 /0は [A 1 ] : [ P t ] = 99 : 1である) を用いてスパッタリン グを行った点を除き、 実施例 2— 1 (b) ①と同様に、 スパッタリングを行った 。 これにより、 青板ガラス基板 210上に、 無機化合物層 2 1 1及び金属酸化物 層 2 1 2からなる電極層 2 1 3を有する反射型電極基板 20 1を製造した (図 8 (3) ) 。 この反射型電極基板 20 1の表面抵抗を実施例 2— 1 (b) ①と同型 の表面抵抗測定器を用いて測定したところ、 1. 2 Ω/口であった (表 2— 3) 図 8 (4) に示すように、 実施例 2— 1 (b) ②と同様の方法で、 反射型電極 基板 20 1の金属酸化物層 2 1 2上にレジストマスク 2 1 4を形成した。 次いで 、 エッチング液 (I ) 及び (I I ) を用いて、 反射型電極基板 2 0 1の無機化合 物層 2 1 1及ぴ金属酸化物層 2 1 2を一括エッチングして、 図 9に示すような反 射型電極基板 2 0 1を製造した。
② 反射型電極基板のエッチング特性の検討
無機化合物層 2 1 1及ぴ金属酸化物層 2 1 2のエッチング面を実施例 2— 1 ( b) ②と同型の走査電子顕微鏡により観察したところ、 エッチングによる残渣ゃ 段差は認められず、 上記レジストマスク 2 1 4のパターン通りに良好にエツチン グされていた (表 2— 3) 。
[実施例 2— 1 7]
(a) 無機化合物層及び金属酸化物層
① 無機化合物層の形成及びエッチング速度の測定
実施例 2— 1 ( a ) ①の A 1ターゲット (A 1 : 1 0 0原子0 /0) の代わりに、 A l — Ndターゲッ ト (その組成原子0 /0は [A 1 ] : [N d ] = 9 9 : 1である ) を用いてスパッタリングを行った。 この点を除き、 実施例 2— 1 (a) ①と同 様に、 青板ガラス基板上に無機化合物層を形成した。
上記エッチング液 ( I ) 及び ( I I ) を用いて、 青板ガラス基板上の無機化合 物層を 3 0°Cでエッチングした。 この時、 エッチング液 ( I ) 及ぴ ( I I ) によ る無機化合物層のエッチング速度 A ( I ) 及び A ( I I ) をそれぞれ測定したと ころ、 A ( I ) が 4 1 nm/m i nであり、 A ( I I ) 力 S 7 1 n m/m i nであ つた。
② 金属酸化物層の形成及ぴエッチング速度、 仕事関数及び比抵抗の測定 上記実施例 2— 1 (a) ②と同様に、 青板ガラス基板上に金属酸化物層を形成 し、 同様の方法でエッチング速度 B ( I ) 及び B ( I I ) を測定し、 同様の測定 結果を得た。 また上記実施例 2— 1 (a) ④と同様の方法で、 この金属酸化物層 の仕事関数及び比抵抗を測定し、 同様の測定結果を得た。
③ エッチング速度比の算出
測定された無機化合物層及び金属酸化物層のエッチング速度 A ( I ) 、 A ( I I ) 、 B ( I ) 及び B ( I I ) を用いて、 無機化合物層及ぴ金属酸化物層のエツ チング速度比である B ( I ) /A ( I ) 及び B ( I I ) /A ( I I ) の値を算出 した。 この結果、 B ( I ) / ( I ) が 1. 0 0であり、 B ( I I ) /A ( I I ) が 0. 5 9であった (表 2— 3 ) 。
(b) 反射型電極基板
① 反射型電極基板の製造
実施例 2— 1 (b) ①の A 1ターゲット (A 1 : 1 0 0原子%) の代わりに、 A l— N dターゲット (その組成原子0 /0は [A 1 ] : [N d] = 9 9 : 1である ) を用いてスパッタリングを行った。 この点を除き、 実施例 2— 1 (b ) ①と同 様に、 青板ガラス基板 2 1 0上に、 無機化合物層 2 1 1及び金属酸化物層 2 1 2 からなる電極層 2 1 3を有する反射型電極基板 2 0 1を製造した (図 8 (3) ) 。 この反射型電極基板 20 1の表面抵抗を実施例 2— 1 (b) ①と同型の表面抵 抗測定器を用いて測定したところ、 1. 2 Ω/口であった (表 2— 3) 。
図 8 (4) に示すように、 実施例 2— 1 (b) ②と同様の方法で、 反射型電極 基板 20 1の金属酸化物層 2 1 2上にレジストマスク 2 1 4を形成した。 次いで 、 エッチング液 (I ) 及び ( I I ) を用いて、 反射型電極基板 2 0 1の無機化合 物層 2 1 1及び金属酸化物層 2 1 2を一括エッチングして、 図 9に示すような反 射型電極基板 20 1を製造した。
②反射型電極基板のエッチング特性の検討
無機化合物層 2 1 1及び金属酸化物層 2 1 2のエッチング面を実施例 2— 1 ( b) ②と同型の走査電子顕微鏡により観察したところ、 エッチングによる残渣ゃ 段差は認められず、 上記レジス トマスク 2 1 4のパターン通りに良好にエツチン グされていた (表 2— 3) 。 JP2003/014810
[表 2— 3] 表 2— 3
Figure imgf000044_0001
*〉Α( I:):燐酸 (40wt%)、硝酸 (2.5wt%),および酢酸 (40 %)を含むエッチング液 ( I )による 30°Cでの無機化合物層のエッチング速度
B( I;):燐酸 (40wt%)、硝酸 (2.5wt%)、および酢酸 (4Qwt%)を含むエッチング液 ( I )による 30Όでの金属酸化物層のエッチング速度
**)Α(Π):燐酸 (55wt。/。)、硝酸 (2.5wt%).および酢酸 (40Wt。/。)を含むエッチング液 ( II )による 30Όでの無機化合物層のエッチング速度
B(II〉:燐酸 (55wt%〉、硝酸 (2.5wt%),および酢酸 (40wt%〉を含むエッチング液
( Π )による 30°Gでの金属酸化物層のエッチング速度
[比較例 2— 1]
(a) 無機化合物層及び金属酸化物層 '
① 無機化合物層の形成及びエッチング速度の測定
上記実施例 2— 1 (a) ①と同様に、 青板ガラス基板上に無機化合物層を形成 し、 同様の方法でエッチング速度 A ( I ) 及び A ( I I ) を測定し、 同様の測定 結果を得た。
② 金属酸化物層の形成及びエッチング特性の検討
実施例 2— 1 ( a ) ②の酸化インジウム一酸化亜鉛ターゲッ ト (その組成原子 %は [ I n] : [Z n] = 83. 0 : 1 7. 0である) の代わりに、 酸化インジ ゥム一酸化スズターゲット (その組成原子0 X»は [ I n] : [S n] = 8 5. 0 : 1 5. 0である) を用いてスパッタリングを行った (表 2— 4) 。 この点を除き 、 実施例 2— 1 (a) ②と同様の方法で、 青板ガラス基板上に金属酸化物層を形 成した。
次いで実施例 2— 1 (a) ④と同様の方法で、 この金属酸化物層を紫外線洗浄 し、 金属酸化物層の仕事関数を測定したところ、 5. 1 2 e Vであった (表 2— 5) 。 また実施例 2— 1 (a) ④と同様に、 この金属酸化物層の比抵抗を測定し たところ、 2 1 0μ · Ω · 。 mであった (表 5 ) 。
次に、 上記エッチング液 (I) 及び ( I I ) をそれぞれ用いて、 青板ガラス基 板に形成された上記金属酸化物層一括エッチングしたが、 いずれのエッチング液 を用いても、 金属酸化物層は溶解しなかった (表 2— 4及び 2— 5) 。
[比較例 2— 2]
(a) 無機化合物層及び金属酸化物層
① 無機化合物層の形成及びエッチング速度の測定
上記実施例 2— 1 (a) ①と同様に、 青板ガラス基板上に無機化合物層を形成 し、 同様の方法でエッチング速度 A ( I ) 及ぴ A ( I I ) を測定し、 同様の測定 結果を得た。
② 金属酸化物層の形成及びエッチング速度の測定
実施例 2— 1 (a ) ②の酸化インジウム一酸化亜鉛ターゲッ ト (その組成原子 %は [ I n] : [Z n] = 83. 0 : 1 7. 0である) の代わりに、 酸化インジ ゥム一酸化スズ一酸化セリウムターゲット (その組成原子%は [ I n] : [S n ] : [C e ] = 8 5. 0 : 1 0. 0 : 5. 0である) を用いてスパッタリングを 行った。 この点を除き、 実施例 2— 1 (a) ②と同様の方法で青板ガラス基板上 に金属酸化物層を形成した。 ·
上記エッチング液 ( I ) 及び ( I I ) を用いて、 青板ガラス基板上の金属酸化 物層を 30°Cでエッチングした。 この時、 エッチング液 ( I ) 及ぴ ( I I ) によ る金属酸化物層のエッチング速度 B ( I ) 及び B ( I I ) をそれぞれ測定したと ころ、 B ( I ) 力 S 7. 6 nm/m i nであり、 B ( I I ) 力 S 5. 1 nm/m i n であった。
③ エッチング速度比の算出
測定された無機化合物層及び金属酸化物層のエッチング速度 A ( I ) 、 A (I I ) 、 B ( I ) 及ぴ B ( I I) を用いて、 無機化合物層及び金属酸化物層のエツ チング速度比である B (I) /A ( I ) 及び B ( I I ) /A ( I I ) の値を算出 した。 この結果、 B ( I ) /A ( I ) が 0. 1 8であり、 B ( I I ) /A ( I I 3014810
) が 0. 07であった (表 2— 4) 。
④ 金属酸化物層の仕事関数及び比抵抗の測定
実施例 2— 1 (a) ④と同様に、 上記青板ガラス基板上の金属酸化物層を紫外 線洗浄し、 この金属酸化物層の仕事関数を測定したところ、 5. 88 e Vであつ た (表 2— 5) 。 また実施例 2— 1 (a) ④と同様に、 この金属酸化物層の比抵 抗を測定したところ、 78 Ομ · Ω · c mであった (表 2— 5 ) 。
(b) 反射型電極基板
① 反射型電極基板の製造
実施例 2— 1 (b ) ①の酸化インジウム一酸化亜鉛ターゲット (その組成原子 %は [ I n] : [Z n] = 87. 0 : 1 3. 0である) の代わりに、 酸化インジ ゥム一酸化スズ一酸化セリウムターゲット (その組成原子%は [ I n] : [S n ] : [C e ] = 85. 0 : 1 0. 0 : 5. 0である) を用いてスパッタリングを 行った (表 2— 4) 。 この点を除き、 実施例 2— 1 (b) ①と同様に、 青板ガラ ス基板 2 10上に、 無機化合物層 21 1及び金属酸化物層 2 1 2からなる電極層 21 3を有する反射型電極基板 20 1を製造した (図 8 (3) ) 。
図 8 (4) に示すように、 実施例 2— 1 (b) ②と同様の方法で、 反射型電極 基板 20 1の金属酸化物層 2 1 2上にレジストマスク 2 14を形成した。 次いで 、 上記エッチング液 ( I ) 及び ( I I ) を用いて、 反射型電極基板 20 1の無機 化合物層 21 1及ぴ金属酸化物層 21 2を一括エッチングした。
② 反射型電極基板のエッチング特性の検討
無機化合物層 2 1 1及ぴ金属酸化物層 2 1 2のエッチング面を実施例 20 1 と 同型の走査電子顕微鏡により観察したところ、 無機化合物層 2 1 1と金属酸化物 層 21 2との境目に大きな段差が生じていた (表 2— 5) 。 2003/014810
[表 2— 4]
表 2— 4
Figure imgf000047_0001
*)Α(Ι ):燐酸 (40wt%)、硝酸 (2.5wt%)、および酢酸 (40wrt)を含むエッチング液 ( I〉による 30°Cでの無機化合物層のエッチング速度
B( I ):燐酸 (40wt%)、硝酸 (2.5wt%),および酢酸 (40wt%)を含むエッチング液 ( I )による 30°Cでの金属酸化物層のエッチング速度
**)Α(Π):燐酸 (55wt%)、硝酸 (2.5wt%)、および酢酸 (40 %)を含むヱツチング液 (Π )による 30Cでの無機化合物層のエッチング速度
Β(Π〉:燐酸 (55wt%)、硝酸 (2.5wt%),および酢酸 (40wt%)を含むエッチング液 (Π)による 30 での金属酸化物層のエッチング速度
03 014810
[表 2 - 5 ] 表 2— 5
Figure imgf000048_0001
上記の通り、 各実施例の反射型電極基板の製造方法と比較して、 比較例の反射 型電極基板の製造方法では、 エッチング工程において金属酸化物層及ぴ無機化合 物層の境目に段差が生じないようにするのが困難であるため、 低い比抵抗を維持 しつつ、 高い仕事関数を有する反射型電極基板を製造することが困難であると考 えられる。 尚、 上記実施例 2—:!〜 2— 1 7で得られたいずれの電極層も、 高い 反射率を有していた。
実施の形態第 2グループのまとめ
上記の通り、 本発明の反射型電極基板の製造方法によれば、 少なくとも A 1か らなる無機化合物層と、 少なく と ·も酸化ィンジゥムからなる金属酸化物層とを用 いるため、 低い比抵抗を維持しつつ、 高い仕事関数を有する反射型電極基板を得 ることができる。 また、 憐酸、 硝酸及び酢酸からなるエッチング組成物を含むェ ツチング液を用いることにより、 反射型電極基板の金属酸化物層及び無機化合物 層を一括エッチングできるとともに、 金属酸化物層と無機化合物層との境目にほ とんど段差が無く、 かつエッチング面に残渣が少ない反射型電極基板を製造する ことができる。 実施の形態第 3グループ 以下、 実施の形態第 3グループについて、 本グループに含まれる各実施例を説 明するが、 本発明は実施例に限定されるものではない。
[実施例 3— 1 ]
( a ) 金属酸化物層の形成及び仕事関数 ·比抵抗の測定
①金属酸化物層の形成
S i〇2をコーティングした青板ガラス基板を 200°Cに加熱した後、 酸化イン ジゥム一酸化亜鉛—酸化セリウムターゲット (その組成原子%は [ I n] : [Z n] : [C e ] =80. 7 : 14. 4 : 4. 9である) を用いてスパッタリング を行った。 これにより、 青板ガラス基板上に厚さ 1 00 nmの金属酸化物層を形 成した。
②金属酸化物層の仕事関数 ·比抵抗の測定
青板ガラス基板上に形成された上記金属酸化物層を紫外線照射することにより 洗浄した後、 この金属酸化物層の仕事関数を光電子分光装置 (理研計器 (株) 製
、 AC- 1 ) で測定したところ、 5. 9 2 e Vであった (表 3— 1) 。 また、 金 属酸化物層の比抵抗を抵抗率測定装置 (三菱油化 (株) 製、 ロレスタ) を用い て測定したところ、 960μ· Ω · 。 πιであった (表 3— 1 ) 。
(b) 反射型電極基板の製造、 表面抵抗の測定及びエッチング性の検討
① 反射型電極基板の製造
図 1 0 (1) に示すように、 (a) ①と同様に、 S i〇2をコ一ティングした上 記青板ガラス基板 3 10を 200°Cに加熱した。 Agターゲッ ト ( [A g] : 1 00原子%) を用いてスパッタリングを行い、 前記青板ガラス基板 3 1 0上に厚 さ 100 nmの無機化合物層 3 1 1を形成した (図 10 (2) ) 。 次に、 青板ガ ラス基板 3 1 0上の無機化合物層 3 1 1に、 酸化インジウム一酸化亜鉛一酸化セ リウムターゲッ ト (その組成原子%は [ I n] : [Z n] : [C e ] = 8 0. 7 : 1 4. 4 : 4. 9である) を用いてスパッタリングを行い、 厚さ 20 nmの金 属酸化物層 3 1 2を形成した (図 1 0 (3) ) 。 これにより、 青板ガラス基板 3 1 0上に、 無機化合物層 3 1 1及び金属酸化物層 3 1 2を積層した電極層 3 1 3 を有する反射型電極基板 30 1が得られた。
②表面抵抗の測定 得られた反射型電極基板 30 1の表面抵抗を上記 (a) ②と同型の表面抵抗測 定器を用いて測定したところ、 1. 2 ΩΖ口であった。
③エッチング性の検討
この反射型電準基板 30 1の金属酸化物層 3 1 2上にレジスト (日本ポリテツ ク (株) 製、 商品名 NPR 2048 US P) を塗布し、 フォトマスクを用いて紫 外線を露光し、 現像した後、 1 3 0°Cに加熱して 1 5分間ポストべークをするこ とにより、 金属酸化物層 3 1 2上にレジストマスク 3 1 4を形成した (図 1 0 ( 4) ) 。
シユウ酸水溶液 (3. 5 w t %) により、 青板ガラス基板 3 1 0上の金属酸化物 層 3 1 2を 3 0°Cでエッチングした。 次に、 燐酸 (3 0 w t %) 、 硝酸 ( 1. 5 w t %) 及ぴ酢酸 (4 0w t %) を含むエッチング液により無機化合物層 3 1 1 を 3 0°Cでエッチングした。 これにより、 図 1 1に示す反射型電極基板 3 0 1を 製造した。
この金属酸化物層 3 1 2及び無機化合物層 3 1 1のエッチング面を走査電子顕 微鏡 (日立製作所 (株) 製、 商品名 S 8 0◦) により観察したところ、 エツチン グによる残渣ゃ段差は認められず、 上記レジストマスク 3 1 4のパターン通りに 良好にエッチングされていた (表 3— 1) 。
[実施例 3— 2〜実施例 3— 14 ]
(a) 金属酸化物層の形成及び仕事関数 ·比抵抗の測定
①金属酸化物層の形成
実施例 3— 1 (a) ①において、 金属酸化物層 3 1 2を形成する酸化インジゥ ム—酸化亜鉛一酸化セリウムターゲット (その組成原子%は [ I n] : [Z n] : [C e ] = 8 0. 7 : 1 4. 4 : 4. 9である) の代わりに、 表 3— 1に記載 のターゲットを用いてスパッタリングを行った。 この点を除き、 実施例 3— 1 ( a) ①と同様の方法で青板ガラス基板 3 1 0上に金属酸化物層 3 1 2を形成した 表 3— 1に示すように実施例 3— 2〜実施例 3— 1 4では、 金属酸化物層 3 1 2を形成するターゲッ トの組成を少しずつ変えている。 用いたターゲッ トの組成 原子%は、 表 3— 1に示す通りである。 このように実施例 3— 2〜 3— 1 4は、 金属酸化物層 3 1 2のスパッタリングに用いたターゲットの組成を変化させたの ものであり、 これによつて得られた金属酸化物層 3 1 2の物性を測定した結果を 示すものである。
②金属酸化物層の仕事関数 ·比抵抗の測定
実施例 3— 1 (a) ②と同様に、 上記青板ガラス基板 3 1 0上の金属酸化物層 3 1 2を紫外線洗浄し、 この金属酸化物層の仕事関数及び比抵抗を測定した。 結 果を表 3— 1に示す。
(b) 反射型電極基板の製造、 表面抵抗の測定及びエッチング性の検討
①反射型電極基板の製造
実施例 3— 1 (b) ①において、 金属酸化物層 3 1 2を形成する酸化インジゥ ム—酸化亜鉛一酸化セリ ウムターゲット (その組成原子%は [ I n] : [Z n] : [C e ] = 80. 7 : 14. 4 : 4. 9である) の代わりに、 表 3— 1に示す 各組成のターゲットを用いてスパッタリングを行った。 この点を除き、 いずれの 実施例 (3— 2〜 3— 14) も実施例 3— 1 ( b ) ①と同様な方法で、 図 1 0 ( 3) に示すような青板ガラス基板 3 1 0上に、 無機化合物層 3 1 1及び金属酸化 物層 3 1 2を形成した。 このようにして、 無機化合物層 3 1 1及び金属酸化物層 3 1 2を積層した電極層 3 1 3を有する反射型電極基板 301が得られた。
②表面抵抗の測定
各実施例 (3— 2〜3— 14) において、 得られた反射型電極基板 30 1の表 面抵抗を実施例 3— 1と同型の表面抵抗測定器を用いて測定した。 この結果、 い ずれの実施例 (3— 2〜3— 14) においても、 反射型電極基板 30 1の表面抵 抗の値は、 1. 2 Ω/口であった。
③ エッチング性の検討
また各実施例 (3— 2〜3— 14) において、 図 1 0 (4) に示すように、 実 施例 3— 1 (b).③と同様な方法で、 反射型電極基板 3 ◦ 1の金属酸化物層 3 1 2上にレジス トマスク 3 14を形成した。 次いで、 実施例 3— 1 (b ) ③と同様 な方法で、 金属酸化物層 3 1 2及ぴ無機化合物層 3 1 1をエッチングし、 図 1 1 に示す反射型電極基板 30 1を製造した。
この無機化合物層 3 1 1及ぴ金属酸化物層 3 1 2のエッチング面を実施例 3— 1と同型の走査電子顕微鏡により観察したところ、 いずれの実施例 (3— 2 3 一 1 4) においても、 エッチングによる残渣ゃ段差は認められず、 上記レジスト マスク 3 1 4のパターン通りに良好にエッチングされていた (表 3— 1 )
[表 3— 1] 表 3—1
Figure imgf000052_0001
[実施例 3— 1 5]
(a ) 反射型電極基板の製造及びエッチング性の検討
①反射型電極基板の製造
実施例 3— 1 (b) ①において、 無機化合物層 3 1 1を形成する A gターゲッ ト (A g ·· 1 0 0原子。 /0) の代わりに、 A g— Au— P dターゲット (その組成 原子0 /0は [A g] : [Au] : [P d] = 9 8. 5 : 1. 0 : 0. 5である) を 用いてスパッタリングを行った。 この点を除き、 実施例 3— 1 (b ) ①と同様に 、 青板ガラス基板 3 1 0上に、 無機化合物層 3 1 1及び金属酸化物層 3 1 2を積 層した電極層 3 1 3を有する反射型電極基板 30 1を製造した (図 1 0 (3) ) ② エッチング性の検討
図 1 0 (4) に示すように、 実施例 1 (b) ③と同様の方法で、 反射型電極基 板 3 0 1の金属酸化物層 3 1 2上にレジストマスク 3 1 4を形成した。 次いで、 実施例 3— 1 (b) ③と同様な方法で、 金属酸化物層 3 1 2及ぴ無機化合物層 3 1 1をエッチングし、 図 1 1に示す反射型電極基板 3 ◦ 1を製造した。
この無機化合物層 3 1 1及び金属酸化物層 3 1 2のエッチング面を実施例 3— 1 と同型の走査電子顕微鏡により観察したところ、 エッチングによる残渣ゃ段差 は認められず、 上記レジストマスク 3 1 4のパターン通りに良好にエッチングさ れていた。
[実施例 3— 1 6 ]
(a) 反射型電極基板の製造及びエッチング性の検討
①反射型電極基板の製造
実施例 3— 1 (b ) ①において、 無機化合物層 3 1 1を形成する A gターゲッ ト ( [A g] : 1 00原子%) の代わりに、 A g—Au— C uターゲッ ト (その 組成原子0 /0は [A g] : [Au] : [C u] = 9 8. 5 : 1. 0 : 0. 5である ) を用いてスパッタリングを行った。 この点を除き、 実施例 1 (b) ①と同様に 、 青板ガラス基板 3 1 0上に、 無機化合物層 3 1 1及ぴ金属酸化物層 3 1 2を積 層した電極層 3 1 3を有する反射型電極基板 3 0 1を製造した (図 1 0 (3) ) ②エツチング性の検討
図 1 0 (4) に示すように、 実施例 3— 1 (b) ③と同様の方法で、 反射型電 極基板 3 0 1の金属酸化物層 3 1 2上にレジストマスク 3 1 4を形成した。 次い で、 実施例 3— 1 (b) ③と同様な方法で、 金属酸化物層 3 1 2及び無機化合物 層 3 1 1をエッチングし、 図 1 1に示す反射型電極基板 3 0 1を製造した。
この無機化合物層 3 1 1及ぴ金属酸化物層 3 1 2のエッチング面を実施例 3— 1と同型の走査電子顕微鏡により観察したところ、 エッチングによる残渣ゃ段差 は認められず、 上記レジストマスク 3 1 4のパターン通りに良好にエッチングさ れていた。
[実施例 3— 1 7〕 (a) 反射型電極基板の製造及びエッチング性の検討
①反射型電極基板の製造
実施例 3— 1 (b ) ①において、 無機化合物層 3 1 1を形成する A gターゲッ ト (A g : 1 0 0原子0 /0) の代わりに、 A g— N dターゲット (その組成原子% は [A g] : [N d] = 9 9. 0 : 1. 0である) を用いてスパッタリングを行 つた。 この点を除き、 実施例 3— 1 (b) ①と同様に、 青板ガラス基板 3 1 0上 に、 無機化合物層 3 1 1及び金属酸化物層 3 1 2を積層した電極層 3 1 3を有す る反射型電極基板 3 0 1を製造した (図 1 0 (3) ) 。 '
②エッチング性の検討
図 1 0 (4) に示すように、 実施例 1 (b) ③と同様の方法で、 反射型電極基 板 3 0 1の金属酸化物層 3 1 2上にレジス トマスク 3 1 4を形成した。 次いで、 実施例 3— 1 (b) ③と同様な方法で、 金属酸化物層 3 1 2及び無機化合物層 3 1 1をエッチングし、 図 1 1に示す反射型電極基板 3 0 1を製造した。
この無機化合物層 3 1 1及ぴ金属酸化物層 3 1 2のエッチング面を実施例 3— 1 と同型の走査電子顕微鏡により観察したところ、 エッチングによる残渣ゃ段差 は認められず、 上記レジス トマスク 3 1 4のパターン通りに良好にエッチングさ れていた。
[実施例 3— 1 8]
(a ) 反射型電極基板の製造及びエッチング性の検討
①反射型電極基板の製造
実施例 3— 1 (b ) ①において、 無機化合物層 3 1 1を形成する A gターゲッ ト (A g : 1 00原子%) の代わりに、 A g— Z r— N i— C oターゲット (そ の組成原子0 /。は [A g] : [Z r ] : [N i ] : [C o] = 9 6. 0 : 1. 0 : 1. 5 : 1. 5である) を用いてスパッタリングを行った。 この点を除き、 実施 例 3 _ 1 (b) ①と同様に、 青板ガラス基板 3 1 0上に、 無機化合物層 3 1 1及 び金属酸化物層 3 1 2を積層した電極層 3 1 3を有する反射型電極基板 3 0 1を 製造した (図 1 0 ( 3) ) 。
②エッチング性の検討
図 1 0 (4) に示すように、 実施例 3— 1 (b) ③と同様の方法で、 反射型電 極基板 3 0 1の金属酸化物層 3 1 2上にレジストマスク 3 1 4を形成した。 次い で、 実施例 3— 1 (b ) ③と同様な方法で、 金属酸化物層 3 1 2及び無機化合物 層 3 1 1をエッチングし、 図 1 1に示す反射型電極基板 3 0 1を製造した。
この無機化合物層 3 1 1及び金属酸化物層 3 1 2のエッチング面を実施例 3— 1と同型の走查電子顕微鏡により観察したところ、 エッチングによる残渣ゃ段差 は認められず、 上記レジストマスク 3 1 4のパターン通りに良好にエッチングさ れていた。
[比較例 3 _ 1 ]
( a ) 金属酸化物層の形成及び仕事関数 ·比抵抗の測定
①金属酸化物層の形成
実施例 3— 1 (a ) ①において、 金属酸化物層 3 1 2を形成する酸化インジゥ ム一酸化亜鉛一酸化セリウムターゲット (その組成原子%は [ I n] : [Z n] : [C e ] = 8 0. 7 : 1 4. 4 : 4. 9である) の代わりに、 酸化ィンジゥム —酸化スズ (その組成原子0 は [ I n] : [S n] = 9 0. 0 : 1 0. 0である ) を用いてスパッタリングを行った (表 3— 2) 。 この点を除き、 実施例 3— 1
( a ) ①と同様の方法で青板ガラス基板 3 1 0上に金属酸化物層 3 1 2を形成し た。
②金属酸化物層の仕事関数 ·比抵抗の測定
実施例 3 _ 1 ( a ) ②と同様に、 上記青板ガラス基板 3 1 0上の金属酸化物層 3 1 2を紫外線洗浄し、 .この金属酸化物層 3 1 2の仕事関数及び比抵抗を測定し た。 この結果、 仕事関数の値は 5. 1 2 e Vであり、 比抵抗の値は 2 1 0 · Ω • c mであった (表 3— 2 ) 。
(b ) 反射型電極基板の製造及びエッチング性の検討
①反射型電極基板の製造
実施例 3— 1 (b ) ①において、 金属酸化物層 3 1 2を形成する酸化インジゥ ム一酸化亜鉛一酸化セリウムターゲッ ト (その組成原子。 は [ I n] : [Z n] : [C e ] = 8 0. 7 : 1 4. 4 : 4. 9である) の代わりに、 酸化ィンジゥム 一酸化スズ (その組成原子0 は [ I n] : [S n] = 9 0. 0 : 1 0. 0である ) を用いてスパッタリングを行った (表 3— 2) 。 この点を除き、 実施例 3— 1 (b) ①と同様の方法で、 図 1 0 (3) に示すような青板ガラス基板 3 1 0上に 、 無機化合物層 3 1 1及び金属酸化物層 3 1 2を形成した。 このようにして、 無 機化合物層 3 1 1及び金属酸化物層 3 1 2を積層した電極層 3 1 3を有する反射 型電極基板 3 0 1が得られた。
②エッチング性の検討
図 1 0 (4) に示すように、 実施例 3— 1 (b) ③と同様な方法で、 反射型電 極基板 3 0 1の金属酸化物層 3 1 2上にレジストマスク 3 1 4を形成した。 次い で、 実施例 3— 1 (b) ③と同様な方法で、 金属酸化物層 3 1 2及び無機化合物 層 3 1 1をエッチングし、 図 1 1に示す反射型電極基板 3 0 1を製造した。 次に、 実施例 3— 1 (b) ③と同様に、 シユウ酸水溶液 (3. 5 w t %) を用 いて上記金属酸化物層 3 1 2のエッチングを試みたが、 金属酸化物層は溶解しな かった (表 3— 2) 。
[表 3— 2]
表 3— 2
Figure imgf000056_0001
上記の通り、 各実施例 (3— 1〜3— 1 8) の反射型電極基板の製造方法と比 較して、 比較例 (3— 1 ) の反射型電極基板の製造方法では、 エッチング工程に おいて金属酸化物層及ぴ無機化合物層の境目に段差が生じないようにするのが困 難であるため、 低い比抵抗を維持しつつ、 高い仕事関数を有する反射型電極基板 を製造することが困難であると考えられる。 尚、 上記実施例 3 — 1〜 3— 1 8で 得られたいずれの電極層も、 高い反射率を有していた。 実施の形態 3グループのまとめ
上記の通り、 本実施の形態 3グループにおける反射型電極基板は、 少なく とも A gからなる無機化合物層と、 少なく とも酸化インジウム及びランタノィ ド系酸 化物からなる金属酸化物層とを含むため、 低い比抵抗を維持しつつ、 高い仕事関 数を有する。 また、 本発明の上記反射型電極基板の製造方法によれば、 シユウ酸 からなるエッチング液を用いて金属酸化物層をエッチングし、 さらに燐酸、 硝酸 及ぴ酢酸からなるエッチング液を用いて無機化合物層をエッチングする。 このよ うにエッチングすることによって、 金属酸化物層と無機化合物層との境目にほと んど段差が無く、 かつエッチング面に残渣が少ない反射型電極基板を製造するこ とができる。

Claims

請求の範囲 . 少なくとも酸化インジウムからなる金属酸化物層と、 少なくとも A 1または A gからなる無機化合物層と、 をこの順で積層した半透過半反射型電極基板 を製造する方法であって、 - 前記無機化合物層を燐酸、 硝酸、 酢酸からなるエッチング液 λでエッチングす る工程と、
前記金属酸化物層を蓚酸を含むェッチング液 σでェッチングする工程と、 からなることを特徴とする半透過半反射型電極基板の製造方法。
. 前記エッチング液; Iによる前記金属酸化物層のエッチング速度 Αと、 前記ェ ツチング液 Lによる前記無機化合物層のエッチング速度 Bと、 の比である B ZAの値を 1 0以上に設定することを特徴とする請求の範囲第 1項に記載の 半透過半反射型電極基板の製造方法。
. 前記エッチング液; が 3 0〜6 0 w t。/。の燐酸イオン、 l〜5 w t %の硝 酸イオン、 3 0〜5 0 w t %の酢酸イオンからなることを特徴とする請求の 範囲第 1項または第 2項に記載の半透過半反射型電極基板の製造方法。. 前記金属酸化物層がランタノィド系金属酸化物を含有したものであることを 特徴とする請求の範囲第 1項〜第 3項のいずれかに記載の半透過半反射型電 極基板の製造方法。
. 前記ランタノイ ド系金属酸化物が、 酸化セリウム、 酸化プラセォジゥム、 酸 化ネオジゥム、 酸化サマリウム、 酸化ユウ口ピウム、 酸化ガドリニウム、 酸 化テルビウム、 酸化ジスプロシウム、 酸化ホルミウム、 酸化エルビウム、 酸 化ツリウム、 酸化イッテルビウム、 および酸化ルテチウムからなる群から選 択される 1種以上を含むことを特徴とする請求の範囲第 4項に記載の半透過 半 射型電極基板の製造方法。
. 前記ランタノイ ド系金属酸化物の含有量の割合が、 金属酸化物の全金属原子 に対して 0 . 1〜1 0原子%未満であることを特徴とする請求の範囲第 4項 または第 5項に記載の半透過半反射型電極基板の製造方法。
. 前記無機化合物層が、 A u , P t, N dから選択される 1種以上を 0 . 1か ら 3 w t % の範囲で含むことを特徴とする請求の範囲第 1項〜第 6項のい ずれかに記載の半透過半反射型電極基板の製造方法。
. 少なく とも酸化インジウムからなる第一の金属酸化物層と、 少なくとも A 1 または A gからなる無機化合物層と、 少なくとも酸化インジウムまたは酸化 亜鉛からなる第二の金属酸化物層と、 をこの順で積層した半透過半反射電極 基板を製造する方法であって、
前記第二の金属酸化物層おょぴ前記無機化合物層を燐酸、 硝酸、 酢酸からなる エツチング液 λでエツチングする工程と、
前記第一の金属酸化物薄膜を蓚酸を含むエッチング液 σでエッチングする工程 とからなることを特徴とする半透過半反射電極基板の製造方法。
. 前記エッチング液えによる前記第一の金属酸化物層のエッチング速度 Αと、 前記エッチング液 Iによる前記無機化合物層のエッチング速度 Bと、 の比であ る B ZAの値を 1 0以上に設定し、
前記エッチング液 λによる前記無機化合物層のエッチング速度 Cと、 前記エッチング液えによる前記第二の金属酸化物層のエッチング速度 Dと、 の 比 C /Dを 0 . 5〜2 . 0の範囲に設定す.ることを特徴とする請求の範囲第
' 8項に記載の半透過半反射型電極基板の製造方法。
0 . 前記エッチング液; Lが 3 0〜 6 0 w t。/。の燐酸イオン、 l〜5 w t %の 硝酸イオン、 3 0〜5 0 w t %の酢酸イオンからなることを特徴とする請求 の範囲第 8項または請求の範囲第 9項に記載の半透過半反射型電極基板の製 造方法。
1 . 前記第一の金属酸化物層がランンタノィ ド系金属酸化物を含有したもので あることを特徴とする請求の範囲第 8項〜第 1 0項のいずれかに記載の半透 過半反射型電極基板の製造方法。
2 . 前記ランタノイ ド系金属酸化物が、 酸化セリウム、 酸化プラセォジゥム、 酸化ネオジゥム、 酸化サマリウム、 酸化ユウ口ピウム、 酸化ガドリニウム、 酸化テルビウム、 酸化ジスプロシウム、 酸化ホルミウム、 酸化エルビウム、 酸化ツリウム、 酸化イッテルビウム、 および酸化ルテチウムからなる群から 選択される 1種以上を含むことを特徴とする請求の範囲第 1 1項に記載の半 透過半反射型電極基板の製造方法。
1 3. 前記ランタノィド系金属酸化物の含有量の割合が、 金属酸化物の全金属原 子に対して 0. 1〜1 0原子%未満であることを特徴とする請求の範囲第 1 1項または第 12項に記載の半透過半反射型電極基板の製造方法。
14. 前記無機化合物層が、 Au, P t , N dから選択される 1種以上を 0. 1 から 3 w t % の範囲で含むことを特徴とする請求の範囲第 8項〜第 1 3項 のいずれかに記載の半透過半反射型電極基板の製造方法。
1 5. 基板上に少なくとも A 1からなる無機化合物層と、
少なくとも酸化インジウムからなる金属酸化物層とを
この順で積層した反射型電極基板。
1 6. 前記金属酸化物層が酸化亜鉛を含み、
[ I n] Z ([ I n] + [Z n]) が 0. 7〜0. 9 5 (ここで、 [I n]、 [Z n] は金属酸化物層中の [ I n] の原子数、 [Z n] の原子数を示す。) で あることを特徴とする請求の範囲第 1 5項に記載の反射型電極基板。
1 7. 前記無機化合物層が、 Au, P t又は Ndから選ばれる 1種又は 2種以上 の金属を 0. 1〜3 %含むことを特徴とする請求の範囲第1 5項又は第 1 6項に記載の反射型電極基板。
1 8. 前記金属酸化物層がランタノィ ド系金属酸化物を含むことを特徴とする請 求の範囲第 1 5項〜第 1 7項のいずれか 1項に記載の反射型電極基板。
1 9. 前記ランタノイド系金属酸化物が、 酸化セリウム、 酸化プラセォジゥム、 酸化ネオジゥム、 酸化サマリウム、 酸化ユウ口ピウム、 酸化ガドリュウム、 酸化テルビウム、 酸化ジスプロシウム、 酸化ホルミウム、 酸化エルビウム、 酸化ツリウム、 酸化イッテルビウム、 及び酸化ルテチウムから選ばれる 1種 又は 2種以上を含むことを特徴とする請求の範囲第 1 8項に記載の反射型電 極 板。
20. 俞記ランタノイ ド系金属酸化物の含有割合が、 金属酸化物の全金属原子に 対して 0. 1〜10原子%であることを特徴とする請求の範囲第 1 8項又は 第 1 9項に記載の反射型電極基板。
2 1. 前記金属酸化物の仕事関数が 5. 6 eV以上であることを特徴とする請求 の範囲第 1 5項〜第 2 0項のいずれか 1項に記載の反射型電極基板。
2 . 請求の範囲第 1 5項〜第 2 1項のいずれか 1項に記載の反射型電極基板を 製造する方法であって、 ,
燐酸、 硝酸及び酢酸からなるエッチング液により前記金属酸化物層及び前記無 機化合物層を一括エッチングする工程を含む反射型電極基板の製造方法。 3 . 前記エッチング液による前記無機化合物層のエッチング速度 Aと、 前記金 属酸化物層のエッチング速度 Bとの比 B ZAの値を 0 . 5〜2 . 0の範囲に 設定することを特徴とする請求の範囲第 2 2項に記載の反射型電極基板の製 造方法。
4 . 前記ェッチング液が 3 0〜 6 0 w t。/。の燐酸、 1〜 5 w t %の硝酸、 及ぴ 3 0〜 5 0 w t %の酢酸からなることを特徴とする請求の範囲第 2 2項又は 第 2 3項に記載の反射型電極基板の製造方法。
5 . 請求の範囲第 2 2項に記載の一括エッチングする工程に用いるエッチング 液であって、
3 0〜 6 0 w t %の燐酸、 :!〜 5 w t %の硝酸、 及び 3 0〜 5 0 w t %の酢酸 からなることを特徴とするエツチング組成物。
6 . 基板上に少なくとも A gからなる無機化合物層と、
少なく とも酸化インジウム及びランタノィ ド系金属酸化物からなる金属酸化物 層と、
をこの順で積層することを特徴とする反射型電極基板。
7 . 前記ランタノイ ド系金属酸化物が、 酸化セリウム、 酸化プラセォジゥム、 酸化ネオジゥム、 酸化サマリウム、 酸化ユウ口ピウム、 酸化ガドリニウム、 酸化テルビウム、 酸化ジスプロシウム、 酸化ホルミウム、 酸化エルビウム、 酸化ツリウム、 酸化イッテルビウム、 及び酸化ルテチウムから選ばれる 1種 又は 2種以上を含むことを特徴とする請求の範囲 2 6に記載の反射型電極基 板。
8 . ランタノイ ド系金属原子の含有割合が、 金属酸化物中の全金属原子に対し て 0 . 1〜2 0原子。 /。であることを特徴とする請求の範囲 2 6又は 2 7に記 載の反射型電極基板。
9. 前記金属酸化物層が酸化亜鉛を含み、 '
[ I n] / ([ I n] + [Z n]) が 0. 7〜0. 9 5 (ここで、 [ I n]、 [Z n] は金属酸化物層中の I nの原子数、 Z nの原子数を示す。) であること を特徴とする請求の範囲 2 6〜 2 8のいずれか 1項に記載の反射型電極基 板。
3 0. [ I n / ([ I n] + [S n]) が 0. 7〜0. 9 7 (ここで、 [S n] は金属酸化物層中の S nの原子数を示す。) であることを特徴とする請求の 範囲 2 6〜 2.9のいずれか 1項に記載の反射型電極基板。
3 1. 前記無機化合物層が、 Au, C u, P d, Z r, N i , C o又はN dから 選ばれる 1種又は 2種以上の金属を 0. 1〜3 w t %含むことを特徴とする 請求の範囲 26〜 30のいずれか 1項に記載の反射型電極基板。
3 2. 前記金属酸化物の仕事関数が 5. 2 5 e V以上であることを特徴とする請 求の範囲 26〜 3 1のいずれか 1項に記載の反射型電極基板。
3 3. 請求の範囲 26〜 3 2のいずれか 1項に記載の反射型電極基板を製造する 方法であって、 シュゥ酸からなるエッチング液により前記金属酸化物層をェ ツチングする工程と、
燐酸、 硝酸及ぴ酢酸からなるエツチング液により前記無機化合物層をエツチン グする工程と、
を含む反射型電極基板の製造方法。
34. 前記無機化合物層をエッチングする前記エッチング液が、 30〜6 0w t
%の燐酸、 1〜 5 w t %の硝酸、 及ぴ 30〜 50 w t %の酢酸からなること を特徴とする請求の範囲 3 3に記載の反射型電極基板の製造方法。
PCT/JP2003/014810 2003-02-05 2003-11-20 半透過半反射型電極基板の製造方法、及び反射型電極基板並びにその製造方法、及びその反射型電極基板の製造方法に用いるエッチング組成物 WO2004070812A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/544,487 US20070037402A1 (en) 2003-02-05 2003-11-20 Method for manufacturing semi-transparent semi-reflective electrode substrate, reflective element substrate, method for manufacturing same, etching composition used for the method for manufacturing the reflective electrode substrate
EP03815744A EP1592050A4 (en) 2003-02-05 2003-11-20 PROCESS FOR PRODUCING SEMI-TRANSPARENT AND SEMI-REFLECTIVE ELECTRODE SUBSTRATE, SUBSTRATE FOR REFLECTIVE MEMBER, METHOD FOR MANUFACTURING THE SAME, ETCHING COMPOSITION FOR USE IN THE METHOD OF MANUFACTURING REFLECTING ELECTRODE SUBSTRATE

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003027999A JP2004240091A (ja) 2003-02-05 2003-02-05 半透過半反射型電極基板の製造方法
JP2003-27999 2003-02-05
JP2003-84905 2003-03-26
JP2003084905A JP2004294630A (ja) 2003-03-26 2003-03-26 反射型電極基板及びその製造方法、並びにその製造方法に用いるエッチング組成物
JP2003-129824 2003-05-08
JP2003129824A JP2004333882A (ja) 2003-05-08 2003-05-08 反射型電極基板及びその製造方法

Publications (1)

Publication Number Publication Date
WO2004070812A1 true WO2004070812A1 (ja) 2004-08-19

Family

ID=32854103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014810 WO2004070812A1 (ja) 2003-02-05 2003-11-20 半透過半反射型電極基板の製造方法、及び反射型電極基板並びにその製造方法、及びその反射型電極基板の製造方法に用いるエッチング組成物

Country Status (5)

Country Link
US (1) US20070037402A1 (ja)
EP (1) EP1592050A4 (ja)
KR (1) KR20050097538A (ja)
TW (1) TW200422741A (ja)
WO (1) WO2004070812A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648657B2 (en) * 2005-07-15 2010-01-19 Idemitsu Kosan Co., Ltd. In Sm oxide sputtering target
KR101244092B1 (ko) 2005-09-01 2013-03-18 이데미쓰 고산 가부시키가이샤 투명 도전막, 투명 전극, 및 전극 기판 및 그의 제조 방법
JP4846726B2 (ja) 2005-09-20 2011-12-28 出光興産株式会社 スパッタリングターゲット、透明導電膜及び透明電極
JP2007095613A (ja) * 2005-09-30 2007-04-12 Seiko Epson Corp 有機エレクトロルミネッセンス装置および電子機器
WO2008018403A1 (fr) * 2006-08-10 2008-02-14 Idemitsu Kosan Co., Ltd. Cible d'oxyde contenant du lanthanide
JP5244331B2 (ja) * 2007-03-26 2013-07-24 出光興産株式会社 非晶質酸化物半導体薄膜、その製造方法、薄膜トランジスタの製造方法、電界効果型トランジスタ、発光装置、表示装置及びスパッタリングターゲット
KR101349675B1 (ko) * 2008-02-26 2014-01-10 삼성코닝정밀소재 주식회사 산화아연계 스퍼터링 타겟
KR100964231B1 (ko) * 2008-08-29 2010-06-16 삼성모바일디스플레이주식회사 유기 발광 소자 및 유기 발광 표시 장치
JP2010225572A (ja) * 2008-11-10 2010-10-07 Kobe Steel Ltd 有機elディスプレイ用の反射アノード電極および配線膜
US9493869B2 (en) * 2010-03-19 2016-11-15 Sumitomo Metal Mining Co., Ltd. Transparent conductive film
CN104916662A (zh) * 2015-05-08 2015-09-16 京东方科技集团股份有限公司 一种有机发光二极管显示面板及其制造方法、显示器
CN110165070B (zh) * 2018-12-14 2021-04-23 合肥视涯显示科技有限公司 Oled阳极的制作方法及oled显示装置的制作方法
CN110767745A (zh) * 2019-09-18 2020-02-07 华南理工大学 复合金属氧化物半导体及薄膜晶体管与应用
CN110797395A (zh) * 2019-09-18 2020-02-14 华南理工大学 掺杂型金属氧化物半导体及薄膜晶体管与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0733931A2 (en) * 1995-03-22 1996-09-25 Toppan Printing Co., Ltd. Multilayered conductive film, and transparent electrode substrate and liquid crystal device using the same
JPH0959787A (ja) * 1995-08-21 1997-03-04 Toppan Printing Co Ltd 多層導電膜のエッチング方法
JPH09232278A (ja) * 1996-02-21 1997-09-05 Asahi Glass Co Ltd 透明導電膜のパターニング方法と透明電極付き基体
JPH1096937A (ja) * 1996-09-24 1998-04-14 Canon Inc 液晶素子及びその製造方法
JP2000008184A (ja) * 1998-06-24 2000-01-11 Toppan Printing Co Ltd 多層導電膜のエッチング方法
US6040056A (en) * 1996-06-07 2000-03-21 Nippon Sheet Glass Co., Ltd. Transparent electrically conductive film-attached substrate and display element using it
JP2001091942A (ja) * 1999-09-20 2001-04-06 Seiko Epson Corp 液晶装置及び液晶装置の製造方法
US20010043046A1 (en) * 2000-05-08 2001-11-22 Takeshi Fukunaga Luminescent apparatus and method of manufacturing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033368A (ja) * 1983-08-01 1985-02-20 Hitachi Ltd エッチング液の再生方法
JPH01183091A (ja) * 1988-01-08 1989-07-20 Sharp Corp 透過型薄膜el素子の製造方法
JP3482825B2 (ja) * 1997-07-30 2004-01-06 凸版印刷株式会社 反射型液晶表示装置用カラーフィルタ基板
JPH1192966A (ja) * 1997-09-22 1999-04-06 Matsushita Electric Ind Co Ltd エッチング液濃度制御装置
JPH11264995A (ja) * 1998-03-17 1999-09-28 Idemitsu Kosan Co Ltd 液晶表示装置の製造方法
JP2000258787A (ja) * 1999-03-05 2000-09-22 Sanyo Electric Co Ltd 反射型液晶表示装置
DE60042431D1 (de) * 1999-11-25 2009-07-30 Idemitsu Kosan Co Tranparentes konduktives Oxid
JP4815659B2 (ja) * 2000-06-09 2011-11-16 ソニー株式会社 液晶表示装置
EP1213599A3 (en) * 2000-12-07 2004-08-18 Furuya Metal Co., Ltd. Heat resistant reflecting layer
JP2002229010A (ja) * 2001-02-06 2002-08-14 Seiko Epson Corp 液晶表示装置および電子機器
JP2002365664A (ja) * 2001-06-05 2002-12-18 Matsushita Electric Ind Co Ltd 反射型液晶表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0733931A2 (en) * 1995-03-22 1996-09-25 Toppan Printing Co., Ltd. Multilayered conductive film, and transparent electrode substrate and liquid crystal device using the same
JPH0959787A (ja) * 1995-08-21 1997-03-04 Toppan Printing Co Ltd 多層導電膜のエッチング方法
JPH09232278A (ja) * 1996-02-21 1997-09-05 Asahi Glass Co Ltd 透明導電膜のパターニング方法と透明電極付き基体
US6040056A (en) * 1996-06-07 2000-03-21 Nippon Sheet Glass Co., Ltd. Transparent electrically conductive film-attached substrate and display element using it
JPH1096937A (ja) * 1996-09-24 1998-04-14 Canon Inc 液晶素子及びその製造方法
JP2000008184A (ja) * 1998-06-24 2000-01-11 Toppan Printing Co Ltd 多層導電膜のエッチング方法
JP2001091942A (ja) * 1999-09-20 2001-04-06 Seiko Epson Corp 液晶装置及び液晶装置の製造方法
US20010043046A1 (en) * 2000-05-08 2001-11-22 Takeshi Fukunaga Luminescent apparatus and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1592050A4 *

Also Published As

Publication number Publication date
US20070037402A1 (en) 2007-02-15
EP1592050A4 (en) 2007-10-17
KR20050097538A (ko) 2005-10-07
TW200422741A (en) 2004-11-01
EP1592050A1 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
KR102546803B1 (ko) 은 함유 박막의 식각액 조성물 및 이를 이용한 표시 기판
WO2004070812A1 (ja) 半透過半反射型電極基板の製造方法、及び反射型電極基板並びにその製造方法、及びその反射型電極基板の製造方法に用いるエッチング組成物
JP2004140319A (ja) 薄膜配線
JPH1170610A (ja) 透明導電膜、および透明電極の形成方法
CN110644003B (zh) 银薄膜蚀刻液组合物及利用其的蚀刻方法和金属图案的形成方法
WO2004040946A1 (ja) 積層体、配線付き基体、有機el表示素子、有機el表示素子の接続端子及びそれらの製造方法
KR101005454B1 (ko) 보조 배선이 형성된 전극 기체의 제조 방법
JP2004240091A (ja) 半透過半反射型電極基板の製造方法
JP3656898B2 (ja) 平面表示装置用Ag合金系反射膜
JP4714477B2 (ja) Ag合金膜及びその製造方法
JP2006028641A (ja) スパッタリングターゲット並びにAg合金膜及びその製造方法
KR102263693B1 (ko) 은 식각액 조성물 및 이를 이용한 식각 방법 및 금속 패턴의 형성 방법
KR102599939B1 (ko) 은 박막 식각액 조성물 및 이를 이용한 식각 방법 및 금속 패턴의 형성 방법
KR102459688B1 (ko) 은 박막 식각액 조성물 및 이를 이용한 식각 방법 및 금속 패턴의 형성 방법
WO2006075506A1 (ja) 透明電極及びその製造方法
JP2004333882A (ja) 反射型電極基板及びその製造方法
KR20190106645A (ko) 은 박막 식각액 조성물 및 이를 이용한 식각 방법 및 금속 패턴의 형성 방법
JP2004294630A (ja) 反射型電極基板及びその製造方法、並びにその製造方法に用いるエッチング組成物
TW201829845A (zh) 含銀薄膜用的蝕刻液組合物及利用其的顯示裝置用陣列基板的製造方法
JP2010107570A (ja) 表示装置の製造方法
JP4551592B2 (ja) 配線付き基体
JPH09236811A (ja) 液晶ディスプレイ用透明導電基板および透明電極形成方法
TW200541381A (en) Laminate for forming substrate with wires, such substrate with wires, and method for forming it
KR20190072408A (ko) 은 박막 식각액 조성물 및 이를 이용한 식각 방법 및 금속 패턴의 형성 방법
JP3994386B2 (ja) Ag合金膜、平面表示装置およびAg合金膜形成用スパッタリングターゲット材

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003815744

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057014394

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A9548X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057014394

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003815744

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007037402

Country of ref document: US

Ref document number: 10544487

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10544487

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003815744

Country of ref document: EP