JPH10125931A - Transfer of thin film element, thin film element, thin film integrated circuit device, active materix substrate and liquid crystal display device - Google Patents

Transfer of thin film element, thin film element, thin film integrated circuit device, active materix substrate and liquid crystal display device

Info

Publication number
JPH10125931A
JPH10125931A JP31559096A JP31559096A JPH10125931A JP H10125931 A JPH10125931 A JP H10125931A JP 31559096 A JP31559096 A JP 31559096A JP 31559096 A JP31559096 A JP 31559096A JP H10125931 A JPH10125931 A JP H10125931A
Authority
JP
Japan
Prior art keywords
thin film
substrate
transfer
layer
film element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31559096A
Other languages
Japanese (ja)
Other versions
JP4619462B2 (en
Inventor
Tatsuya Shimoda
達也 下田
Satoshi Inoue
聡 井上
Wakao Miyazawa
和加雄 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP31559096A priority Critical patent/JP4619462B2/en
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to EP06076860A priority patent/EP1758169A3/en
Priority to DE69739368T priority patent/DE69739368D1/en
Priority to US09/051,966 priority patent/US6372608B1/en
Priority to KR10-2004-7015277A priority patent/KR100500520B1/en
Priority to CNB971911347A priority patent/CN1143394C/en
Priority to DE69739376T priority patent/DE69739376D1/en
Priority to KR10-1998-0703007A priority patent/KR100481994B1/en
Priority to EP97935891A priority patent/EP0858110B1/en
Priority to CNA031579647A priority patent/CN1495523A/en
Priority to EP03076869A priority patent/EP1351308B1/en
Priority to EP06076859A priority patent/EP1744365B1/en
Priority to PCT/JP1997/002972 priority patent/WO1998009333A1/en
Priority to DE69737086T priority patent/DE69737086T2/en
Priority to EP06075225A priority patent/EP1655633A3/en
Priority to TW086112252A priority patent/TW360901B/en
Publication of JPH10125931A publication Critical patent/JPH10125931A/en
Priority to US09/113,373 priority patent/US6127199A/en
Priority to US10/091,562 priority patent/US6645830B2/en
Priority to US10/263,070 priority patent/USRE38466E1/en
Priority to US10/420,840 priority patent/US6818530B2/en
Priority to US10/748,206 priority patent/USRE40601E1/en
Priority to US10/851,202 priority patent/US7094665B2/en
Priority to US11/242,017 priority patent/US7285476B2/en
Priority to US11/514,985 priority patent/US7468308B2/en
Publication of JP4619462B2 publication Critical patent/JP4619462B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68359Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during manufacture of interconnect decals or build up layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate

Abstract

PROBLEM TO BE SOLVED: To make it possible to select a substrate, which is used at the time of the manufacture of a thin film element, and a substrate (a substrate having a desirable nature as seen from the use of a product), which is used at the time of the actual use of a product, for example, independently and freely. SOLUTION: An isolation layer 120 is kept provided on a substrate 100, which is high in reliability and can transmit a laser beam, and a thin film element 140, such as a TFT, is formed on the substrate 1. A laser beam is irradiated from the side of the substrate 100 to the layer 120, whereby a separation is generated in the layer 120. The element 140 is bonded to a transfer material 180 via an adhesiveness layer 160 and the substrate 100 is made to separate from the layer 120. Thereby, a desirable thin film device can be transferred even to any substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜素子の転写方
法,薄膜素子,薄膜集積回路装置,アクティブマトリク
ス基板および液晶表示装置に関する。
The present invention relates to a method for transferring a thin film element, a thin film element, a thin film integrated circuit device, an active matrix substrate, and a liquid crystal display device.

【0002】[0002]

【背景技術】例えば、薄膜トランジスタ(TFT)を用
いた液晶ディスプレイを製造するに際しては、基板上に
薄膜トランジスタをCVD等により形成する工程を経
る。薄膜トランジスタを基板上に形成する工程は高温処
理を伴うため、基板は耐熱性に優れる材質のもの、すな
わち、軟化点および融点が高いものを使用する必要があ
る。そのため、現在では、1000℃程度の温度に耐え
る基板としては石英ガラスが使用され、500℃前後の
温度に耐える基板としては耐熱ガラスが使用されてい
る。
2. Description of the Related Art For example, when manufacturing a liquid crystal display using a thin film transistor (TFT), a process of forming a thin film transistor on a substrate by CVD or the like is performed. Since the process of forming a thin film transistor on a substrate involves high-temperature treatment, the substrate needs to be made of a material having excellent heat resistance, that is, a material having a high softening point and a high melting point. Therefore, at present, quartz glass is used as a substrate that can withstand a temperature of about 1000 ° C., and heat-resistant glass is used as a substrate that can withstand a temperature of about 500 ° C.

【0003】[0003]

【発明が解決しようとする課題】上述のように、薄膜素
子を搭載する基板は、それらの薄膜素子を製造するため
の条件を満足するものでなければならない。つまり、使
用する基板は、搭載されるデバイスの製造条件を必ず満
たすように決定される。
As described above, the substrate on which the thin-film devices are mounted must satisfy the conditions for manufacturing the thin-film devices. That is, the substrate to be used is determined so as to always satisfy the manufacturing conditions of the mounted device.

【0004】しかし、TFT等の薄膜素子を搭載した基
板が完成した後の段階のみに着目すると、上述の「基
板」が必ずしも好ましくないこともある。
However, focusing only on the stage after a substrate on which a thin film element such as a TFT is mounted, the above-mentioned “substrate” may not always be preferable.

【0005】例えば、上述のように、高温処理を伴う製
造プロセスを経る場合には、石英基板や耐熱ガラス基板
等が用いられるが、これらは非常に高価であり、したが
って製品価格の上昇を招く。
For example, as described above, when a manufacturing process involving a high-temperature treatment is performed, a quartz substrate, a heat-resistant glass substrate, or the like is used. However, these are very expensive, and therefore increase the product price.

【0006】また、ガラス基板は重く、割れやすいとい
う性質をもつ。パームトップコンピュータや携帯電話機
等の携帯用電子機器に使用される液晶ディスプレイで
は、可能な限り安価で、軽くて、多少の変形にも耐え、
かつ落としても壊れにくいのが望ましいが、現実には、
ガラス基板は重く、変形に弱く、かつ落下による破壊の
恐れがあるのが普通である。
[0006] Further, the glass substrate is heavy and easily broken. Liquid crystal displays used in portable electronic devices such as palmtop computers and mobile phones are as inexpensive, light and resistant to slight deformation as possible.
It is desirable that it is hard to break when dropped, but in reality,
Glass substrates are usually heavy, vulnerable to deformation, and can be broken by falling.

【0007】つまり、製造条件からくる制約と製品に要
求される好ましい特性との間に溝があり、これら双方の
条件や特性を満足させることは極めて困難であった。
[0007] That is, there is a groove between the constraint caused by the manufacturing conditions and the preferable characteristics required for the product, and it has been extremely difficult to satisfy both conditions and characteristics.

【0008】本発明はこのような問題点に着目してなさ
れたものであり、その目的の一つは、薄膜素子の製造時
に使用する基板と、例えば製品の実使用時に使用する基
板(製品の用途からみて好ましい性質をもった基板)と
を、独立に自由に選択することを可能とする新規な技術
を提供することにある。
The present invention has been made in view of such problems, and one of its objects is to provide a substrate used in manufacturing a thin film element and a substrate used in actual use of a product (for example, a product used in a product). It is an object of the present invention to provide a novel technique that allows independent selection of a substrate having a preferable property from the viewpoint of use.

【0009】[0009]

【課題を解決するための手段】上述した課題を解決する
本発明は、以下のような構成をしている。
The present invention for solving the above-mentioned problems has the following configuration.

【0010】(1)請求項1に記載の本発明は、基板上
の薄膜素子を転写体に転写する方法であって、前記基板
上に分離層を形成する工程と、前記分離層上に薄膜素子
を含む被転写層を形成する工程と、前記薄膜素子を含む
被転写層を接着層を介して前記転写体に接合する工程
と、前記分離層に光を照射し、前記分離層の層内および
/または界面において剥離を生じせしめる工程と、前記
基板を前記分離層から離脱させる工程と、を有すること
を特徴とする。
(1) The present invention according to claim 1 is a method for transferring a thin film element on a substrate to a transfer member, wherein a step of forming a separation layer on the substrate, and a step of forming a thin film on the separation layer Forming a transfer layer including the element, bonding the transfer layer including the thin film element to the transfer body via an adhesive layer, irradiating the separation layer with light, and forming a layer in the separation layer. And / or a step of causing separation at the interface, and a step of separating the substrate from the separation layer.

【0011】つまり、デバイス製造における信頼性が高
い基板上に、例えば、光を吸収する特性をもつ分離層を
設けておき、その基板上にTFT等の薄膜素子を形成す
る。次に、特に限定されないが、例えば接着層を介して
薄膜素子を所望の転写体に接合し、その後に分離層に光
を照射し、これによって、その分離層において剥離現象
を生じせしめて、その分離層と前記基板との間の密着性
を低下させる。そして、基板に力を加えてその基板を薄
膜素子から離脱させる。これにより、どのような転写体
にでも、所望の、信頼性の高いデバイスを転写(形成)
できることになる。
That is, for example, a separation layer having a characteristic of absorbing light is provided on a substrate having high reliability in device manufacture, and a thin film element such as a TFT is formed on the substrate. Next, although not particularly limited, for example, a thin film element is bonded to a desired transfer body via an adhesive layer, and then the separation layer is irradiated with light, thereby causing a separation phenomenon in the separation layer. The adhesion between the separation layer and the substrate is reduced. Then, a force is applied to the substrate to separate the substrate from the thin film element. As a result, a desired and highly reliable device can be transferred (formed) to any transfer body.
You can do it.

【0012】なお、本発明において、接着層を介して薄
膜素子(薄膜素子を含む被転写層)を転写体に接合する
工程と、基板を薄膜素子から離脱させる工程とは、その
順序を問わず、いずれが先でもかまわない。但し、基板
を離脱させた後の薄膜素子(薄膜素子を含む被転写層)
のハンドリングに問題がある場合には、まず、薄膜素子
を転写体に接合し、その後に基板を離脱させるのが望ま
しい。
In the present invention, the step of bonding the thin film element (the layer to be transferred including the thin film element) to the transfer body via the adhesive layer and the step of separating the substrate from the thin film element are not limited in the order. , Whichever comes first. However, the thin film element after the substrate is separated (transferred layer including the thin film element)
In the case where there is a problem in the handling of the substrate, it is desirable to first join the thin film element to the transfer body, and then to separate the substrate.

【0013】また、薄膜素子の転写体への接合に用いら
れる接着層として、例えば、平坦化作用をもつ物質(例
えば、熱硬化性樹脂)を用いれば、薄膜素子を含む被転
写層の表面に多少の段差が生じていたとしても、その段
差は平坦化されて無視できるようになり、よって常に良
好な転写体への接合が可能となり、便利である。
Further, if a material having a flattening action (for example, a thermosetting resin) is used as the adhesive layer used for bonding the thin film element to the transfer member, the surface of the transferred layer including the thin film element can be formed. Even if a slight level difference occurs, the level difference is flattened and can be neglected, so that good joining to the transfer body can be always achieved, which is convenient.

【0014】(2)請求項2に記載の本発明は、請求項
1において、前記基板は透光性の基板であり、前記分離
層への前記光の照射は、前記透光性の基板を介して行わ
れることを特徴とする。
(2) In the present invention described in claim 2, according to claim 1, the substrate is a light-transmitting substrate, and the irradiation of the light on the separation layer is performed on the light-transmitting substrate. Characterized in that it is performed via

【0015】例えば、石英基板等の透明な基板を用いれ
ば、信頼性の高い薄膜デバイスを製造可能であると共
に、基板の裏面から光を分離層の全面に一括して照射す
ることもでき、転写効率が向上する。
For example, when a transparent substrate such as a quartz substrate is used, a highly reliable thin film device can be manufactured, and light can be collectively irradiated from the back surface of the substrate to the entire surface of the separation layer. Efficiency is improved.

【0016】(3)請求項3に記載の本発明は、請求項
1または請求項2において、前記転写体に付着している
前記分離層を除去する工程を、さらに有することを特徴
とする。
(3) The third aspect of the present invention is characterized in that, in the first or second aspect, the method further comprises a step of removing the separation layer adhered to the transfer body.

【0017】不要な分離層を完全に除去するものであ
る。
The unnecessary separation layer is completely removed.

【0018】(4)請求項4に記載の本発明は、請求項
1〜請求項3のいずれかにおいて、前記転写体は、透明
基板であることを特徴とする。
(4) According to a fourth aspect of the present invention, in any one of the first to third aspects, the transfer body is a transparent substrate.

【0019】例えば、ソーダガラス基板等の安価な基板
や、可撓性を有する透明なプラスチックフィルム等を転
写体として使用できる。
For example, an inexpensive substrate such as a soda glass substrate or a transparent plastic film having flexibility can be used as the transfer member.

【0020】(5)請求項5に記載の本発明は、請求項
1〜請求項4のいずれかにおいて、前記転写体は、被転
写層の形成の際の最高温度をTmaxとしたとき、ガラス
転移点(Tg)または軟化点が前記Tmax以下の材料で
構成されていることを特徴とする。
(5) The present invention as set forth in claim 5, wherein the transfer member according to any one of claims 1 to 4, wherein the maximum temperature at the time of forming the layer to be transferred is Tmax . The glass transition point (Tg) or the softening point is made of a material having the above Tmax or less.

【0021】デバイス製造時の最高温度に耐えられず、
従来は使用できなかった安価なガラス基板等を、自由に
使用できるようになる。
Cannot withstand the maximum temperature during device manufacture,
Inexpensive glass substrates and the like that could not be used conventionally can be used freely.

【0022】(6)請求項6に記載の本発明は、請求項
1〜請求項4のいずれかにおいて、前記転写体は、ガラ
ス転移点(Tg)または軟化点が、前記薄膜素子の形成
プロセスの最高温度以下であることを特徴とする。
(6) The present invention according to claim 6, wherein in the transfer member according to any one of claims 1 to 4, the glass transition point (Tg) or the softening point of the transfer member is determined by the process of forming the thin film element. Or less than the maximum temperature.

【0023】ガラス転移点(Tg)または軟化点の上限
を規定したものである。
The upper limit of the glass transition point (Tg) or the softening point is defined.

【0024】(7)請求項7に記載の本発明は、請求項
1〜請求項6のいずれかにおいて、前記転写体は、合成
樹脂またはガラス材で構成されていることを特徴とす
る。
(7) According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the transfer body is made of a synthetic resin or a glass material.

【0025】例えば、プラスチックフィルム等の撓み性
(可撓性)を有する合成樹脂板に薄膜素子を転写すれ
ば、剛性の高いガラス基板では得られないような優れた
特性が実現可能である。本発明を液晶表示装置に適用す
れば、しなやかで、軽くかつ落下にも強いディスプレイ
装置が実現する。
For example, if a thin film element is transferred to a synthetic resin plate having flexibility (flexibility) such as a plastic film, excellent characteristics that cannot be obtained with a glass substrate having high rigidity can be realized. When the present invention is applied to a liquid crystal display device, a display device that is flexible, light, and resistant to falling is realized.

【0026】また、例えば、ソーダガラス基板等の安価
な基板も転写体として使用できる。ソーダガラス基板は
低価格であり、経済的に有利な基板である。ソーダガラ
ス基板は、TFT製造時の熱処理によりアルカリ成分が
溶出するといった問題があり、従来は、アクティブマト
リクス型の液晶表示装置への適用が困難であった。しか
し、本発明によれば、すでに完成した薄膜デバイスを転
写するため、上述の熱処理に伴う問題は解消される。よ
ってアクティブマトリクス型の液晶表示装置の分野にお
いて、ソーダガラス基板等の従来問題があった基板も使
用可能となる。
Further, an inexpensive substrate such as a soda glass substrate can be used as the transfer member. Soda glass substrates are low cost and economically advantageous substrates. The soda glass substrate has a problem that an alkali component is eluted by a heat treatment at the time of manufacturing a TFT, and conventionally, it has been difficult to apply it to an active matrix type liquid crystal display device. However, according to the present invention, since the already completed thin film device is transferred, the problems associated with the heat treatment described above are eliminated. Therefore, in the field of an active matrix type liquid crystal display device, a substrate having a conventional problem such as a soda glass substrate can be used.

【0027】(8)請求項8に記載の本発明は、請求項
1〜請求項7のいずれかにおいて、前記基板は、耐熱性
を有することを特徴とする。
(8) The present invention described in claim 8 is characterized in that, in any one of claims 1 to 7, the substrate has heat resistance.

【0028】薄膜デバイスの製造時に所望のの高温処理
が可能となり、信頼性が高く高性能の薄膜デバイスを製
造することができる。
A desired high-temperature treatment can be performed at the time of manufacturing a thin film device, and a highly reliable and high performance thin film device can be manufactured.

【0029】(9)請求項9に記載の本発明は、請求項
1〜請求項8のいずれかにおいて、前記基板は、310
nmの光を10%以上透過する基板であることを特徴と
する。
(9) In the ninth aspect of the present invention, the substrate according to any one of the first to eighth aspects, wherein the substrate is 310
The substrate is characterized by being a substrate that transmits 10% or more of light of nm.

【0030】分離層においてアブレーションを生じさせ
るにたる光エネルギーを供給できる透光性の基板を用い
るものである。
A light-transmitting substrate capable of supplying light energy that causes ablation in the separation layer is used.

【0031】(10)請求項10に記載の本発明は、請
求項1〜請求項9において、前記基板は、被転写層の形
成の際の最高温度をTmaxとしたとき、歪み点が前記T
max以上の材料で構成されていることを特徴とする。
(10) In the present invention according to claim 10, according to any one of claims 1 to 9, when the maximum temperature at the time of forming the layer to be transferred is T max , T
It is characterized by being composed of a material not less than max .

【0032】薄膜デバイスの製造時に所望の高温処理が
可能となり、信頼性が高く高性能の薄膜デバイスを製造
することができる。
A desired high-temperature treatment can be performed at the time of manufacturing a thin film device, and a highly reliable and high performance thin film device can be manufactured.

【0033】(11)請求項11に記載の本発明は、請
求項1〜請求項10のいずれかにおいて、前記分離層
は、アモルファスシリコンで構成されていることを特徴
とする。
(11) The present invention described in claim 11 is characterized in that, in any one of claims 1 to 10, the separation layer is made of amorphous silicon.

【0034】アモルファスシリコンは光を吸収し、ま
た、その製造も容易であり、実用性が高い。
Amorphous silicon absorbs light, is easily manufactured, and has high practicality.

【0035】(12)請求項12に記載の本発明は、請
求項11において、前記アモルファスシリコンは、水素
(H)を2原子%以上含有することを特徴とする。
(12) According to a twelfth aspect of the present invention, in the eleventh aspect, the amorphous silicon contains hydrogen (H) at 2 atomic% or more.

【0036】水素を含むアモルファスシリコンを用いた
場合、光の照射に伴い水素が放出され、これによって分
離層内に内圧が生じて、分離層における剥離を促す作用
がある。
In the case where amorphous silicon containing hydrogen is used, hydrogen is released with light irradiation, thereby generating an internal pressure in the separation layer and having an effect of promoting separation in the separation layer.

【0037】(13)請求項13に記載の本発明は、請
求項12において、前記アモルファスシリコンは、水素
(H)を10原子%以上含有することを特徴とする。
(13) According to a thirteenth aspect of the present invention, in the twelfth aspect, the amorphous silicon contains hydrogen (H) in an amount of 10 atomic% or more.

【0038】水素の含有率が増えることにより、分離層
における剥離を促す作用がより顕著になる。
As the hydrogen content increases, the effect of promoting separation in the separation layer becomes more remarkable.

【0039】(14)請求項14に記載の本発明は、請
求項1〜請求項10のいずれかにおいて、前記分離層が
窒化シリコンからなることを特徴とする。
(14) According to a fourteenth aspect of the present invention, in any one of the first to tenth aspects, the isolation layer is made of silicon nitride.

【0040】分離層として窒化シリコンを用いると、光
の照射に伴い窒素が放出され、これによって分離層にお
ける剥離が促進される。
When silicon nitride is used as the separation layer, nitrogen is released with the irradiation of light, thereby promoting separation in the separation layer.

【0041】(15)請求項15に記載の本発明は、請
求項1〜請求項10のいずれかにおいて、前記分離層が
水素含有合金からなることを特徴とする。
(15) The present invention described in claim 15 is characterized in that, in any one of claims 1 to 10, the separation layer is made of a hydrogen-containing alloy.

【0042】分離層として水素含有合金を用いると、光
の照射に伴い水素が放出され、これによって分離層にお
ける剥離が促進される。
When a hydrogen-containing alloy is used as the separation layer, hydrogen is released with the irradiation of light, thereby promoting separation in the separation layer.

【0043】(16)請求項16に記載の本発明は、請
求項1〜請求項10のいずれかにおいて、前記分離層が
窒素含有金属合金からなることを特徴とする。
(16) The present invention described in claim 16 is characterized in that, in any one of claims 1 to 10, the separation layer is made of a nitrogen-containing metal alloy.

【0044】分離層として窒素含有合金を用いると、光
の照射に伴い窒素が放出され、これによって分離層にお
ける剥離が促進される。
When a nitrogen-containing alloy is used as the separation layer, nitrogen is released with the irradiation of light, thereby promoting separation in the separation layer.

【0045】(17)請求項17に記載の本発明は、
請求項1〜請求項10のいずれかにおいて、前記分離層
は多層膜からなることを特徴とする薄膜素子の転写方
法。
(17) The present invention according to claim 17 provides the following:
11. The method according to claim 1, wherein the separation layer is formed of a multilayer film.

【0046】単層膜に限定されないことを明らかとした
ものである。
It is apparent that the present invention is not limited to a single-layer film.

【0047】(18)請求項18に記載の本発明は、請
求項17において、前記多層膜は、アモルファスシリコ
ン膜とその上に形成された金属膜とからなることを特徴
とする。
(18) The invention according to claim 18 is characterized in that, in claim 17, the multilayer film comprises an amorphous silicon film and a metal film formed thereon.

【0048】(19)請求項19に記載の本発明は、請
求項1〜請求項10のいずれかにおいて、前記分離層
は、セラミックス,金属,有機高分子材料の少なくとも
一種から構成されていることを特徴とする。
(19) In the present invention described in claim 19, in any one of claims 1 to 10, the separation layer is made of at least one of ceramics, metal, and organic polymer material. It is characterized by.

【0049】分離層として実際に使用可能なものをまと
めて、例示したものである。金属としては、例えば、水
素含有合金や窒素含有合金も使用可能である。この場
合、アモルファスシリコンの場合と同様に、光の照射に
伴う水素ガスや窒素ガスの放出によって、分離層におけ
る剥離が促進される。
[0049] Examples of those that can actually be used as the separation layer are shown together. As the metal, for example, a hydrogen-containing alloy or a nitrogen-containing alloy can be used. In this case, as in the case of amorphous silicon, separation of the separation layer is promoted by release of hydrogen gas or nitrogen gas accompanying light irradiation.

【0050】(20)請求項20に記載の本発明は、請
求項1〜請求項19のいずれかにおいて、前記光はレー
ザー光であることを特徴とする。
(20) The present invention described in claim 20 is characterized in that, in any one of claims 1 to 19, the light is laser light.

【0051】レーザー光はコヒーレント光であり、分離
層内において剥離を生じさせるのに適する。
The laser light is coherent light and is suitable for causing separation in the separation layer.

【0052】(21)請求項21に記載の本発明は、請
求項20において、前記レーザー光の波長が、100n
m〜350nmであることを特徴とする。
(21) The present invention according to claim 21, wherein the laser beam has a wavelength of 100 n.
m to 350 nm.

【0053】短波長で光エネルギーのレーザー光を用い
ることにより、分離層における剥離を効果的に行うこと
ができる。
By using a laser beam having a short wavelength and light energy, the separation layer can be effectively separated.

【0054】上述の条件を満たすレーザーとしては、例
えば、エキシマレーザーがある。エキシマレーザーは、
短波長紫外域の高エネルギーのレーザー光出力が可能な
ガスレーザーであり、レーザー媒質として希ガス(A
r,Kr,Xe)とハロゲンガス(F2,HCl)とを
組み合わせたものを用いることにより、代表的な4種類
の波長のレーザー光を出力することができる(XeF=
351nm,XeCl=308nm,KrF=248n
m,ArF=193nm)。
As a laser satisfying the above conditions, for example, there is an excimer laser. Excimer laser
A gas laser capable of outputting high-energy laser light in the short-wavelength ultraviolet region, and a rare gas (A
r, Kr, Xe) and a halogen gas (F 2 , HCl) can be used to output laser beams of four typical wavelengths (XeF =
351 nm, XeCl = 308 nm, KrF = 248 n
m, ArF = 193 nm).

【0055】エキシマレーザー光の照射により、基板上
に設けられている分離層において、熱影響のない分子結
合の直接の切断やガスの蒸発等の作用を生じせしめるこ
とができる。
By the irradiation of the excimer laser beam, in the separation layer provided on the substrate, effects such as direct breaking of molecular bonds without heat influence and evaporation of gas can be caused.

【0056】(22)請求項22に記載の本発明は、請
求項20において、前記レーザー光の波長が350nm
〜1200nmであることを特徴とする。
(22) In the twentieth aspect, in the twentieth aspect, the wavelength of the laser beam is 350 nm.
〜1200 nm.

【0057】分離層において、例えばガス放出,気化,
昇華等の相変化を起こさせて分離特性を与える場合に
は、波長が350nm〜1200nm程度のレーザー光
も使用可能である。
In the separation layer, for example, outgassing, vaporization,
When a separation characteristic is given by causing a phase change such as sublimation, a laser beam having a wavelength of about 350 nm to 1200 nm can be used.

【0058】(23)請求項23に記載の本発明は、請
求項1〜請求項22のいずれかにおいて、前記薄膜素子
は薄膜トランジスタ(TFT)であることを特徴とす
る。
(23) The present invention described in claim 23 is characterized in that in any one of claims 1 to 22, the thin film element is a thin film transistor (TFT).

【0059】高性能なTFTを、所望の転写体上に自由
に転写(形成)できる。よって、種々の電子回路をその
転写体上に搭載することも可能となる。
A high-performance TFT can be freely transferred (formed) on a desired transfer member. Therefore, various electronic circuits can be mounted on the transfer body.

【0060】(24)請求項24に記載の本発明は、請
求項1〜請求項23のいずれかにおいて、請求項1に記
載の転写方法を複数回実行して、前記基板よりも大きい
前記転写体上に、複数の被転写層を転写することを特徴
とする。
(24) According to a twenty-fourth aspect of the present invention, the transfer method according to any one of the first to twenty-third aspects, wherein the transfer method according to the first aspect is performed a plurality of times to make the transfer larger than the substrate. The method is characterized by transferring a plurality of layers to be transferred onto a body.

【0061】信頼性の高い基板を繰り返し使用し、ある
いは複数の基板を使用して薄膜パターンの転写を複数回
実行することにより、信頼性の高い薄膜素子を搭載した
大規模な基板を作成できる。
By repeatedly using a highly reliable substrate, or by transferring a thin film pattern a plurality of times using a plurality of substrates, a large-scale substrate on which a highly reliable thin film element is mounted can be produced.

【0062】(25)請求項25に記載の本発明は、請
求項1〜請求項24のいずれかにおいて、請求項1に記
載の転写方法を複数回実行して、前記転写体上に、薄膜
素子の設計ルールのレベルが異なる複数の被転写層を転
写することを特徴とする。
(25) In the present invention according to claim 25, the transfer method according to any one of claims 1 to 24 is performed a plurality of times to form a thin film on the transfer body. A plurality of layers to be transferred having different levels of element design rules are transferred.

【0063】一つの基板上に、例えば、種類の異なる複
数の回路(機能ブロック等も含む)を搭載する場合、そ
れぞれの回路に要求される特性に応じて、各回路毎に使
用する素子や配線のサイズ(設計ルール、すなわちデザ
インルールと呼ばれるもの)が異なる場合がある。この
ような場合にも、本発明の転写方法を用いて、各回路毎
に転写を実行していけば、設計ルールレベルの異なる複
数の回路を一つの基板上に実現できる。
When a plurality of different types of circuits (including functional blocks and the like) are mounted on one substrate, for example, the elements and wiring used for each circuit are determined according to the characteristics required for each circuit. (Design rules, that is, what are called design rules) may be different. Even in such a case, if the transfer is performed for each circuit using the transfer method of the present invention, a plurality of circuits having different design rule levels can be realized on one substrate.

【0064】(26)請求項26に記載の本発明は、請
求項1〜請求項22のいずれかに記載の転写方法を用い
て前記転写体に転写されてなる薄膜素子である。
(26) The present invention according to claim 26 is a thin film element which is transferred to the transfer body by using the transfer method according to any one of claims 1 to 22.

【0065】本発明の薄膜素子の転写技術(薄膜構造の
転写技術)を用いて、任意の基板上に形成される薄膜素
子である。
A thin-film element formed on an arbitrary substrate by using the thin-film element transfer technique of the present invention (thin-film structure transfer technique).

【0066】(27)請求項27に記載の本発明は、請
求項26において、前記薄膜素子は、薄膜トランジスタ
(TFT)であることを特徴とする。
(27) The invention according to claim 27 is characterized in that in claim 26, the thin film element is a thin film transistor (TFT).

【0067】(28)請求項28に記載の本発明は、請
求項1〜請求項25のいずれかに記載の転写方法を用い
て前記転写体に転写された薄膜素子を含んで構成される
薄膜集積回路装置である。
(28) The present invention as set forth in claim 28, wherein a thin film comprising a thin film element transferred to the transfer member by using the transfer method according to any one of claims 1 to 25. An integrated circuit device.

【0068】例えば、合成樹脂基板上に、薄膜トランジ
スタ(TFT)を用いて構成されたシングルチップマイ
クロコンピュータ等を搭載することも可能である。
For example, it is also possible to mount a single-chip microcomputer or the like using a thin film transistor (TFT) on a synthetic resin substrate.

【0069】(29)請求項29に記載の本発明は、マ
トリクス状に配置された薄膜トランジスタ(TFT)
と、その薄膜トランジスタの一端に接続された画素電極
とを含んで画素部が構成されるアクティブマトリクス基
板であって、請求項1〜請求項24のいずれかに記載の
方法を用いて前記画素部の薄膜トランジスタを転写する
ことにより製造されたアクティブマトリクス基板であ
る。
(29) The invention according to claim 29, wherein the thin film transistors (TFTs) are arranged in a matrix.
And an active matrix substrate having a pixel portion including a pixel electrode connected to one end of the thin film transistor, wherein the pixel portion is formed using the method according to any one of claims 1 to 24. This is an active matrix substrate manufactured by transferring a thin film transistor.

【0070】本発明の薄膜素子の転写技術(薄膜構造の
転写技術)を用いて、所望の基板上に画素部を形成して
なるアクティブマトリクス基板である。製造条件からく
る制約を排して自由に基板を選択できるため、従来にな
い新規なアクティブマトリクス基板を実現することも可
能である。
An active matrix substrate in which a pixel portion is formed on a desired substrate by using the thin film element transfer technology (thin film structure transfer technology) of the present invention. Since a substrate can be freely selected without restrictions imposed by manufacturing conditions, it is also possible to realize a novel active matrix substrate that has not existed conventionally.

【0071】(30)請求項30に記載の本発明は、マ
トリクス状に配置された走査線と信号線とに接続される
薄膜トランジスタ(TFT)と、その薄膜トランジスタ
の一端に接続された画素電極とを含んで画素部が構成さ
れ、かつ、前記走査線および前記信号線に信号を供給す
るためのドライバ回路を内蔵するアクティブマトリクス
基板であって、請求項25に記載の方法を用いて形成さ
れた、第1の設計ルールレベルの前記画素部の薄膜トラ
ンジスタおよび第2の設計ルールレベルの前記ドライバ
回路を構成する薄膜トランジスタを具備するアクティブ
マトリクス基板である。
(30) According to the present invention, a thin film transistor (TFT) connected to a scanning line and a signal line arranged in a matrix and a pixel electrode connected to one end of the thin film transistor are formed. An active matrix substrate including a pixel portion and including a driver circuit for supplying a signal to the scanning line and the signal line, formed using the method according to claim 25, An active matrix substrate including a thin film transistor of the pixel portion at a first design rule level and a thin film transistor forming the driver circuit at a second design rule level.

【0072】アクティブマトリクス基板上に、画素部の
みならずドライバ回路も搭載し、しかも、ドライバ回路
の設計ルールレベルと画素部の設計ルールレベルとが異
なるアクティブマトリクス基板である。例えば、ドライ
バ回路の薄膜パターンを、シリコンTFTの製造装置を
利用して形成すれば、集積度を向上させることが可能で
ある。
This is an active matrix substrate in which not only a pixel portion but also a driver circuit are mounted on the active matrix substrate, and the design rule level of the driver circuit and the design rule level of the pixel portion are different. For example, if the thin film pattern of the driver circuit is formed by using a silicon TFT manufacturing apparatus, the degree of integration can be improved.

【0073】(31)請求項31に記載の本発明は、請
求項29〜請求項30のいずれかに記載のアクティブマ
トリクス基板を用いて製造された液晶表示装置である。
(31) The invention according to claim 31 is a liquid crystal display device manufactured using the active matrix substrate according to any one of claims 29 to 30.

【0074】例えば、プラスチック基板を用いた、しな
やかに曲がる性質をもった液晶表示装置も実現可能であ
る。
For example, a liquid crystal display device using a plastic substrate and having a flexible bending property can be realized.

【0075】[0075]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0076】(第1の実施の形態)図1〜図6は本発明
の第1の実施の形態(薄膜素子の転写方法)を説明する
ための図である。
(First Embodiment) FIGS. 1 to 6 are views for explaining a first embodiment (transfer method of a thin film element) of the present invention.

【0077】[工程1]図1に示すように、基板100上
に分離層(光吸収層)120を形成する。
[Step 1] As shown in FIG. 1, a separation layer (light absorbing layer) 120 is formed on a substrate 100.

【0078】以下、基板100および分離層120につ
いて説明する。
Hereinafter, the substrate 100 and the separation layer 120 will be described.

【0079】基板100についての説明 基板100は、光が透過し得る透光性を有するものであ
るのが好ましい。
Description of the Substrate 100 It is preferable that the substrate 100 has a light-transmitting property through which light can pass.

【0080】この場合、光の透過率は10%以上である
のが好ましく、50%以上であるのがより好ましい。こ
の透過率が低過ぎると、光の減衰(ロス)が大きくな
り、分離層120を剥離するのにより大きな光量を必要
とする。
In this case, the light transmittance is preferably 10% or more, more preferably 50% or more. If the transmittance is too low, the attenuation (loss) of light increases, and a larger amount of light is required to separate the separation layer 120.

【0081】また、基板100は、信頼性の高い材料で
構成されているのが好ましく、特に、耐熱性に優れた材
料で構成されているのが好ましい。その理由は、例えば
後述する被転写層140や中間層142を形成する際
に、その種類や形成方法によってはプロセス温度が高く
なる(例えば350〜1000℃程度)ことがあるが、
その場合でも、基板100が耐熱性に優れていれば、基
板100上への被転写層140等の形成に際し、その温
度条件等の成膜条件の設定の幅が広がるからである。
The substrate 100 is preferably made of a highly reliable material, and particularly preferably made of a material having excellent heat resistance. The reason for this is that, for example, when forming a layer to be transferred 140 or an intermediate layer 142 to be described later, the process temperature may be high (for example, about 350 to 1000 ° C.) depending on the type and formation method.
Even in such a case, if the substrate 100 is excellent in heat resistance, the range of setting of film forming conditions such as temperature conditions in forming the transferred layer 140 and the like on the substrate 100 is widened.

【0082】従って、基板100は、被転写層140の
形成の際の最高温度をTmaxとしたとき、歪点がTmax以
上の材料で構成されているのものが好ましい。具体的に
は、基板100の構成材料は、歪点が350℃以上のも
のが好ましく、500℃以上のものがより好ましい。こ
のようなものとしては、例えば、石英ガラス、コーニン
グ7059、日本電気ガラスOA−2等の耐熱性ガラス
が挙げられる。
Therefore, it is preferable that the substrate 100 be made of a material whose strain point is equal to or higher than Tmax when the maximum temperature at the time of forming the transfer layer 140 is Tmax. Specifically, the constituent material of the substrate 100 preferably has a strain point of 350 ° C. or higher, more preferably 500 ° C. or higher. Examples of such a material include heat-resistant glass such as quartz glass, Corning 7059, and NEC Glass OA-2.

【0083】また、基板100の厚さは、特に限定され
ないが、通常は、0.1〜5.0mm程度であるのが好ま
しく、0.5〜1.5mm程度であるのがより好ましい。
基板100の厚さが薄すぎると強度の低下を招き、厚す
ぎると、基板100の透過率が低い場合に、光の減衰を
生じ易くなる。なお、基板100の光の透過率が高い場
合には、その厚さは、前記上限値を超えるものであって
もよい。なお、光を均一に照射できるように、基板10
0の厚さは、均一であるのが好ましい。
The thickness of the substrate 100 is not particularly limited, but is usually preferably about 0.1 to 5.0 mm, and more preferably about 0.5 to 1.5 mm.
If the thickness of the substrate 100 is too small, the strength is reduced. If the thickness is too large, light is easily attenuated when the transmittance of the substrate 100 is low. When the light transmittance of the substrate 100 is high, the thickness may exceed the upper limit. In order to uniformly irradiate light, the substrate 10
Preferably, the thickness of 0 is uniform.

【0084】分離層120の説明 分離層120は、照射される光を吸収し、その層内およ
び/または界面において剥離(以下、「層内剥離」、
「界面剥離」と言う)を生じるような性質を有するもの
であり、好ましくは、光の照射により、分離層120を
構成する物質の原子間または分子間の結合力が消失また
は減少すること、すなわち、アブレーションが生じて層
内剥離および/または界面剥離に至るものがよい。
Description of the Separation Layer 120 The separation layer 120 absorbs the irradiated light and peels off in its layer and / or at the interface (hereinafter, “in-layer peeling”,
"Interfacial separation"), and preferably, the irradiation of light reduces or reduces the bonding force between atoms or molecules of the substance forming the separation layer 120, that is, It is preferable that abrasion occurs to result in delamination and / or interfacial delamination.

【0085】さらに、光の照射により、分離層120か
ら気体が放出され、分離効果が発現される場合もある。
すなわち、分離層120に含有されていた成分が気体と
なって放出される場合と、分離層120が光を吸収して
一瞬気体になり、その蒸気が放出され、分離に寄与する
場合とがある。このような分離層120の組成として
は、例えば、次のA〜Eに記載されるものが挙げられ
る。
Further, in some cases, gas is released from the separation layer 120 by light irradiation, and a separation effect may be exhibited.
That is, there is a case where the component contained in the separation layer 120 is released as a gas, and a case where the separation layer 120 absorbs light and becomes a gas for a moment and the vapor is released to contribute to separation. . Examples of the composition of the separation layer 120 include those described in the following AE.

【0086】A.アモルファスシリコン(a−Si) このアモルファスシリコン中には、水素(H)が含有さ
れていてもよい。この場合、Hの含有量は、2原子%以
上程度であるのが好ましく、2〜20原子%程度である
のがより好ましい。このように、水素(H)が所定量含
有されていると、光の照射によって水素が放出され、分
離層120に内圧が発生し、それが上下の薄膜を剥離す
る力となる。アモルファスシリコン中の水素(H)の含
有量は、成膜条件、例えばCVDにおけるガス組成、ガ
ス圧、ガス雰囲気、ガス流量、温度、基板温度、投入パ
ワー等の条件を適宜設定することにより調整することが
できる。
A. Amorphous silicon (a-Si) This amorphous silicon may contain hydrogen (H). In this case, the content of H is preferably about 2 atomic% or more, and more preferably about 2 to 20 atomic%. As described above, when a predetermined amount of hydrogen (H) is contained, hydrogen is released by light irradiation, and an internal pressure is generated in the separation layer 120, which serves as a force for separating upper and lower thin films. The content of hydrogen (H) in the amorphous silicon is adjusted by appropriately setting film forming conditions, for example, conditions such as gas composition, gas pressure, gas atmosphere, gas flow rate, temperature, substrate temperature, and input power in CVD. be able to.

【0087】B.酸化ケイ素又はケイ酸化合物、酸化チ
タンまたはチタン酸化合物、酸化ジルコニウムまたはジ
ルコン酸化合物、酸化ランタンまたはランタン酸化化合
物等の各種酸化物セラミックス、透電体(強誘電体)あ
るいは半導体 酸化ケイ素としては、SiO、SiO2、Si32が挙
げられ、ケイ酸化合物としては、例えばK2SiO3、L
2SiO3、CaSiO3、ZrSiO4、Na2SiO3
が挙げられる。
B. Various oxide ceramics, such as silicon oxide or silicate compound, titanium oxide or titanate compound, zirconium oxide or zirconate compound, lanthanum oxide or lanthanum oxide compound, conductive material (ferroelectric material) or semiconductor. , SiO 2 , and Si 3 O 2. Examples of the silicate compound include K 2 SiO 3 and L
i 2 SiO 3 , CaSiO 3 , ZrSiO 4 , Na 2 SiO 3
Is mentioned.

【0088】酸化チタンとしては、TiO、Ti23
Ti02が挙げられ、チタン酸化合物としては、例え
ば、BaTi04、BaTiO3、Ba2Ti920、Ba
Ti511、CaTiO3、SrTiO3、PbTiO3
MgTiO3、ZrTiO2、SnTiO4、Al2TiO
5、FeTiO3が挙げられる。
As the titanium oxide, TiO, Ti 2 O 3 ,
Ti0 2, and examples of titanate compounds, for example, BaTi0 4, BaTiO 3, Ba 2 Ti 9 O 20, Ba
Ti 5 O 11, CaTiO 3, SrTiO 3, PbTiO 3,
MgTiO 3 , ZrTiO 2 , SnTiO 4 , Al 2 TiO
5 , FeTiO 3 .

【0089】酸化ジルコニウムとしては、ZrO2が挙
げられ、ジルコン酸化合物としては、例えばBaZrO
3、ZrSiO4、PbZrO3、MgZrO3、K2Zr
3が挙げられる。
Examples of zirconium oxide include ZrO 2 , and examples of zirconate compounds include BaZrO 2
3 , ZrSiO 4 , PbZrO 3 , MgZrO 3 , K 2 Zr
O 3 is mentioned.

【0090】C.PZT、PLZT、PLLZT、PB
ZT等のセラミックスあるいは誘電体(強誘電体) D.窒化珪素、窒化アルミ、窒化チタン等の窒化物セラ
ミックス E.有機高分子材料 有機高分子材料としては、−CH−、−CO−(ケト
ン)、−CONH−(アミド)、−NH−(イミド)、
−COO−(エステル)、−N=N−(アゾ)、ーCH
=N−(シフ)等の結合(光の照射によりこれらの結合
が切断される)を有するもの、特に、これらの結合を多
く有するものであればいかなるものでもよい。また、有
機高分子材料は、構成式中に芳香族炭化水素(1または
2以上のベンゼン環またはその縮合環)を有するもので
あってもよい。
C. PZT, PLZT, PLLZT, PB
C. Ceramics such as ZT or dielectric (ferroelectric) B. Nitride ceramics such as silicon nitride, aluminum nitride, titanium nitride, etc. Organic polymer material As the organic polymer material, -CH-, -CO- (ketone), -CONH- (amide), -NH- (imide),
-COO- (ester), -N = N- (azo), -CH
= N- (shif) or the like (these bonds are broken by irradiation of light), in particular, any material having many of these bonds may be used. Further, the organic polymer material may have an aromatic hydrocarbon (one or more benzene rings or a condensed ring thereof) in the structural formula.

【0091】このような有機高分子材料の具体例として
は、ポリエチレン,ポリプロピレンのようなポリオレフ
ィン,ポリイミド,ポリアミド,ポリエステル,ポリメ
チルメタクリレート(PMMA),ポリフェニレンサル
ファイド(PPS),ポリエーテルスルホン(PE
S),エポキシ樹脂等があげられる。
Specific examples of such organic polymer materials include polyolefins such as polyethylene and polypropylene, polyimides, polyamides, polyesters, polymethyl methacrylate (PMMA), polyphenylene sulfide (PPS), and polyether sulfone (PE).
S), epoxy resin and the like.

【0092】F.金属 金属としては、例えば、Al,Li,Ti,Mn,I
n,Sn,Y,La,Ce,Nd,Pr,Gd,Smま
たはこれらのうちの少なくとも1種を含む合金が挙げら
れる。
F. Metal As the metal, for example, Al, Li, Ti, Mn, I
n, Sn, Y, La, Ce, Nd, Pr, Gd, Sm or an alloy containing at least one of these.

【0093】また、分離層120の厚さは、剥離目的や
分離層120の組成、層構成、形成方法等の諸条件によ
り異なるが、通常は、1nm〜20μm程度であるのが
好ましく、10nm〜2μm程度であるのがより好まし
く、40nm〜1μm程度であるのがさらに好ましい。
分離層120の膜厚が小さすぎると、成膜の均一性が損
なわれ、剥離にムラが生じることがあり、また、膜厚が
厚すぎると、分離層120の良好な剥離性を確保するた
めに、光のパワー(光量)を大きくする必要があるとと
もに、後に分離層120を除去する際に、その作業に時
間がかかる。なお、分離層120の膜厚は、できるだけ
均一であるのが好ましい。
The thickness of the separation layer 120 varies depending on the purpose of peeling and various conditions such as the composition of the separation layer 120, the layer structure, the formation method, and the like, but is usually preferably about 1 nm to 20 μm, and preferably about 10 nm to 20 nm. It is more preferably about 2 μm, and further preferably about 40 nm to 1 μm.
If the thickness of the separation layer 120 is too small, the uniformity of the film is impaired, and the separation may be uneven. If the thickness is too large, good separation properties of the separation layer 120 are ensured. In addition, it is necessary to increase the light power (light amount), and it takes time to remove the separation layer 120 later. Note that the thickness of the separation layer 120 is preferably as uniform as possible.

【0094】分離層120の形成方法は、特に限定され
ず、膜組成や膜厚等の諸条件に応じて適宜選択される。
たとえば、CVD(MOCVD、低圧CVD、ECR−
CVDを含む)、蒸着、分子線蒸着(MB)、スパッタ
リング、イオンプレーティング、PVD等の各種気相成
膜法、電気メッキ、浸漬メッキ(ディッピング)、無電
解メッキ等の各種メッキ法、ラングミュア・プロジェッ
ト(LB)法、スピンコート、スプレーコート、ロール
コート等の塗布法、各種印刷法、転写法、インクジェッ
ト法、粉末ジェット法等が挙げられ、これらのうちの2
以上を組み合わせて形成することもできる。
The method for forming the separation layer 120 is not particularly limited, and is appropriately selected according to various conditions such as a film composition and a film thickness.
For example, CVD (MOCVD, low pressure CVD, ECR-
Various vapor deposition methods such as vapor deposition, molecular beam deposition (MB), sputtering, ion plating, PVD, various plating methods such as electroplating, immersion plating (dipping), and electroless plating, and Langmuir. Coating methods such as a projet (LB) method, spin coating, spray coating, and roll coating, various printing methods, a transfer method, an ink jet method, a powder jet method, and the like.
It can also be formed by combining the above.

【0095】例えば、分離層120の組成がアモルファ
スシリコン(a−Si)の場合には、CVD、特に低圧
CVDやプラズマCVDにより成膜するのが好ましい。
For example, when the composition of the separation layer 120 is amorphous silicon (a-Si), it is preferable to form the film by CVD, especially low pressure CVD or plasma CVD.

【0096】また、分離層120をゾルーゲル法による
セラミックスで構成する場合や、有機高分子材料で構成
する場合には、塗布法、特に、スピンコートにより成膜
するのが好ましい。
When the separation layer 120 is made of a ceramic by a sol-gel method or when it is made of an organic polymer material, it is preferable to form a film by a coating method, particularly, spin coating.

【0097】[工程2]次に、図2に示すように、分離層
120上に、被転写層(薄膜デバイス層)140を形成
する。
[Step 2] Next, as shown in FIG. 2, a transfer target layer (thin film device layer) 140 is formed on the separation layer 120.

【0098】この薄膜デバイス層140のK部分(図2
において1点線鎖線で囲んで示される部分)の拡大断面
図を、図2の右側に示す。図示されるように、薄膜デバ
イス層140は、例えば、SiO2膜(中間層)142
上に形成されたTFT(薄膜トランジスタ)を含んで構
成され、このTFTは、ポリシリコン層にn型不純物を
導入して形成されたソース,ドレイン層146と、チャ
ネル層144と、ゲート絶縁膜148と、ゲート電極1
50と、層間絶縁膜154と、例えばアルミニュウムか
らなる電極152とを具備する。
The K portion of this thin film device layer 140 (FIG. 2)
2 is shown on the right side of FIG. 2). As illustrated, the thin-film device layer 140 includes, for example, a SiO 2 film (intermediate layer) 142.
The TFT includes a TFT (thin film transistor) formed thereon. The TFT includes a source / drain layer 146 formed by introducing an n-type impurity into a polysilicon layer, a channel layer 144, a gate insulating film 148, , Gate electrode 1
50, an interlayer insulating film 154, and an electrode 152 made of, for example, aluminum.

【0099】本実施の形態では、分離層120に接して
設けられる中間層としてSi02膜を使用しているが、
Si34などのその他の絶縁膜を使用することもでき
る。Si02膜(中間層)の厚みは、その形成目的や発
揮し得る機能の程度に応じて適宜決定されるが、通常
は、10nm〜5μm程度であるのが好ましく、40nm〜
1μm程度であるのがより好ましい。中間層は、種々の
目的で形成され、例えば、被転写層140を物理的また
は化学的に保護する保護層,絶縁層,導電層,レーザー
光の遮光層,マイグレーション防止用のバリア層,反射
層としての機能の内の少なくとも1つを発揮するものが
挙げられる。
In this embodiment, the SiO 2 film is used as the intermediate layer provided in contact with the separation layer 120.
Other insulating films such as Si 3 N 4 can also be used. The thickness of the SiO 2 film (intermediate layer) is appropriately determined depending on the purpose of its formation and the degree of the function that can be exhibited, but is usually preferably about 10 nm to 5 μm, more preferably 40 nm to 5 μm.
More preferably, it is about 1 μm. The intermediate layer is formed for various purposes, for example, a protective layer for physically or chemically protecting the transferred layer 140, an insulating layer, a conductive layer, a laser light shielding layer, a barrier layer for preventing migration, and a reflective layer. That exhibit at least one of the functions described above.

【0100】なお、場合によっては、Si02膜等の中
間層を形成せず、分離層120上に直接被転写層(薄膜
デバイス層)140を形成してもよい。
In some cases, the transfer layer (thin film device layer) 140 may be formed directly on the separation layer 120 without forming an intermediate layer such as a SiO 2 film.

【0101】被転写層140(薄膜デバイス層)は、図
2の右側に示されるようなTFT等の薄膜素子を含む層
である。
The transfer layer 140 (thin film device layer) is a layer including a thin film element such as a TFT as shown on the right side of FIG.

【0102】薄膜素子としては、TFTの他に、例え
ば、薄膜ダイオードや、シリコンのPIN接合からなる
光電変換素子(光センサ、太陽電池)やシリコン抵抗素
子、その他の薄膜半導体デバイス、電極(例:ITO、
メサ膜のような透明電極)、スイッチング素子、メモリ
ー、圧電素子等のアクチュエータ、マイクロミラー(ピ
エゾ薄膜セラミックス)、磁気記録薄膜ヘッド、コイ
ル、インダクター、薄膜高透磁材料およびそれらを組み
合わせたマイクロ磁気デバイス、フィルター、反射膜、
ダイクロイックミラー等がある。
As the thin film element, in addition to the TFT, for example, a thin film diode, a photoelectric conversion element (photo sensor, solar cell) formed of a PIN junction of silicon, a silicon resistance element, other thin film semiconductor devices, and electrodes (for example: ITO,
Actuators such as transparent electrodes such as mesa films), switching elements, memories, piezoelectric elements, etc., micro mirrors (piezo thin film ceramics), magnetic recording thin film heads, coils, inductors, thin magnetic highly permeable materials, and micro magnetic devices combining them , Filters, reflective films,
There are dichroic mirrors and the like.

【0103】このような薄膜素子(薄膜デバイス)は、
その形成方法との関係で、通常、比較的高いプロセス温
度を経て形成される。したがって、この場合、前述した
ように、基板100としては、そのプロセス温度に耐え
得る信頼性の高いものが必要となる。
Such a thin film element (thin film device)
In relation to the forming method, it is usually formed through a relatively high process temperature. Therefore, in this case, as described above, the substrate 100 needs to have a high reliability that can withstand the process temperature.

【0104】[工程3]次に、図3に示すように、薄膜デ
バイス層140を、接着層160を介して転写体180
に接合(接着)する。
[Step 3] Next, as shown in FIG. 3, the thin film device layer 140 is transferred to the transfer member 180 via the adhesive layer 160.
Is bonded (adhered) to

【0105】接着層160を構成する接着剤の好適な例
としては、反応硬化型接着剤、熱硬化型接着剤、紫外線
硬化型接着剤等の光硬化型接着剤、嫌気硬化型接着剤等
の各種硬化型接着剤が挙げられる。接着剤の組成として
は、例えば、エポキシ系、アクリレート系、シリコーン
系等、いかなるものでもよい。このような接着層160
の形成は、例えば、塗布法によりなされる。
Preferable examples of the adhesive forming the adhesive layer 160 include a light-curable adhesive such as a reaction-curable adhesive, a thermosetting adhesive, and an ultraviolet-curable adhesive, and an anaerobic-curable adhesive. Various curable adhesives can be used. The adhesive may be of any composition, for example, epoxy, acrylate, or silicone. Such an adhesive layer 160
Is formed by, for example, a coating method.

【0106】前記硬化型接着剤を用いる場合、例えば被
転写層(薄膜デバイス層)140上に硬化型接着剤を塗
布し、その上に転写体180を接合した後、硬化型接着
剤の特性に応じた硬化方法により前記硬化型接着剤を硬
化させて、被転写層(薄膜デバイス層)140と転写体
180とを接着し、固定する。
In the case of using the curable adhesive, for example, a curable adhesive is applied on the layer to be transferred (thin film device layer) 140 and a transfer member 180 is bonded thereon. The curable adhesive is cured by a suitable curing method, and the transfer target layer (thin film device layer) 140 and the transfer body 180 are bonded and fixed.

【0107】接着剤が光硬化型の場合、光透過性の基板
100または光透過性の転写体180の一方の外側から
(あるいは光透過性の基板及び転写体の両外側から)光
を照射する。接着剤としては、薄膜デバイス層に影響を
与えにくい紫外線硬化型などの光硬化型接着剤が好まし
い。
When the adhesive is of a photo-curing type, light is irradiated from one outside of the light-transmitting substrate 100 or the light-transmitting transfer body 180 (or from both outsides of the light-transmitting substrate and the transfer body). . As the adhesive, a photocurable adhesive, such as an ultraviolet curable adhesive, which hardly affects the thin film device layer is preferable.

【0108】なお、図示と異なり、転写体180側に接
着層160を形成し、その上に被転写層(薄膜デバイス
層)140を接着してもよい。なお、例えば転写体18
0自体が接着機能を有する場合等には、接着層160の
形成を省略してもよい。
It is to be noted that, unlike the drawing, an adhesive layer 160 may be formed on the transfer body 180 side, and a transfer target layer (thin film device layer) 140 may be bonded thereon. For example, the transfer member 18
For example, in the case where 0 itself has an adhesive function, the formation of the adhesive layer 160 may be omitted.

【0109】転写体180としては、特に限定されない
が、基板(板材)、特に透明基板が挙げられる。なお、
このような基板は平板であっても、湾曲板であってもよ
い。また、転写体180は、前記基板100に比べ、耐
熱性、耐食性等の特性が劣るものであってもよい。その
理由は、本発明では、基板100側に被転写層(薄膜デ
バイス層)140を形成し、その後、被転写層(薄膜デ
バイス層)140を転写体180に転写するため、転写
体180に要求される特性、特に耐熱性は、被転写層
(薄膜デバイス層)140の形成の際の温度条件等に依
存しないからである。
The transfer member 180 is not particularly limited, but includes a substrate (plate material), particularly a transparent substrate. In addition,
Such a substrate may be a flat plate or a curved plate. Further, the transfer member 180 may have inferior properties such as heat resistance and corrosion resistance as compared with the substrate 100. The reason is that in the present invention, the transfer layer (thin film device layer) 140 is formed on the substrate 100 side, and then the transfer layer (thin film device layer) 140 is transferred to the transfer body 180. This is because the properties to be obtained, especially the heat resistance, do not depend on the temperature conditions and the like when the transfer target layer (thin film device layer) 140 is formed.

【0110】したがって、被転写層140の形成の際の
最高温度をTmaxとしたとき、転写体0の構成材料とし
て、ガラス転移点(Tg)または軟化点がTmax以下の
ものを用いることができる。例えば、転写体180は、
ガラス転移点(Tg)または軟化点が好ましくは800
℃以下、より好ましくは500℃以下、さらに好ましく
は320℃以下の材料で構成することができる。
Accordingly, assuming that the maximum temperature at the time of forming the transfer layer 140 is Tmax, a material having a glass transition point (Tg) or a softening point of Tmax or less can be used as the material of the transfer body 0. For example, the transfer member 180 is
Glass transition point (Tg) or softening point is preferably 800
It can be composed of a material having a temperature of not more than 500C, more preferably not more than 500C, and still more preferably not more than 320C.

【0111】また、転写体180の機械的特性として
は、ある程度の剛性(強度)を有するものが好ましい
が、可撓性、弾性を有するものであってもよい。
The mechanical properties of the transfer member 180 are preferably those having a certain degree of rigidity (strength), but may be those having flexibility and elasticity.

【0112】このような転写体180の構成材料として
は、各種合成樹脂または各種ガラス材が挙げられ、特
に、各種合成樹脂や通常の(低融点の)安価なガラス材
が好ましい。
As a constituent material of such a transfer member 180, various synthetic resins or various glass materials can be mentioned, and particularly, various synthetic resins and ordinary (low melting point) inexpensive glass materials are preferable.

【0113】合成樹脂としては、熱可塑性樹脂、熱硬化
性樹脂のいずれでもよく、例えば、ポリエチレン、ポロ
プロピレン、エチレン−プレピレン共重合体、エチレン
−酢酸ビニル共重合体(EVA)等のポリオレフィン、
環状ポリオレフィン、変性ポリオレフィン、ポリ塩化ビ
ニル、ポリ塩化ビニリデン、ポリスチレン、ポリアミ
ド、ポリイミド、ポリアミドイミド、ポリカーボネー
ト、ポリ−(4−メチルベンテン−1)、アイオノマ
ー、アクリル系樹脂、ポリメチルメタクリレート、アク
リル−スチレン共重合体(AS樹脂)、ブタジエン−ス
チレン共重合体、ポリオ共重合体(EVOH)、ポリエ
チレンテレフタレート(PET)、ポリプチレンテレフ
タレート(PBT)、プリシクロヘキサンテレフタレー
ト(PCT)等のポリエステル、ポリエーテル、ポリエ
ーテルケトン(PEK)、ポリエーテルエーテルケトン
(PEEK)、ポリエーテルイミド、ポリアセタール
(POM)、ポリフェニレンオキシド、変性ポリフェニ
レンオキシド、ポリアリレート、芳香族ポリエステル
(液晶ポリマー)、ポリテトラフルオロエチレン、ポリ
フッ化ビニリデン、その他フッ素系樹脂、スチレン系、
ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン
系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可
塑性エラストマー、エボキシ樹脂、フェノール樹脂、ユ
リア樹脂、メラミン樹脂、不飽和ポリエステル、シリコ
ーン樹脂、ポリウレタン等、またはこれらを主とする共
重合体、ブレンド体、ポリマーアロイ等が挙げられ、こ
れらのうちの1種または2種以上を組み合わせて(例え
ば2層以上の積層体として)用いることができる。
The synthetic resin may be either a thermoplastic resin or a thermosetting resin. Examples of the synthetic resin include polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer (EVA), and the like.
Cyclic polyolefin, modified polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, polyimide, polyamideimide, polycarbonate, poly- (4-methylbenten-1), ionomer, acrylic resin, polymethyl methacrylate, acrylic-styrene Polyester, polyether, polyether such as polymer (AS resin), butadiene-styrene copolymer, polio copolymer (EVOH), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and precyclohexane terephthalate (PCT) Ketone (PEK), polyetheretherketone (PEEK), polyetherimide, polyacetal (POM), polyphenylene oxide, modified polyphenylene oxide, polyarylene DOO, aromatic polyester (liquid crystal polymer), polytetrafluoroethylene, polyvinylidene fluoride, other fluorine-based resins, styrene-based,
Various thermoplastic elastomers such as polyolefin, polyvinyl chloride, polyurethane, fluoro rubber, chlorinated polyethylene, etc., ethoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyester, silicone resin, polyurethane, etc., or these And copolymers, blends, polymer alloys and the like, and one or more of these can be used (for example, as a laminate of two or more layers).

【0114】ガラス材としては、例えば、ケイ酸ガラス
(石英ガラス)、ケイ酸アルカリガラス、ソーダ石灰ガ
ラス、カリ石灰ガラス、鉛(アルカリ)ガラス、バリウ
ムガラス、ホウケイ酸ガラス等が挙げられる。このう
ち、ケイ酸ガラス以外のものは、ケイ酸ガラスに比べて
融点が低く、また、成形、加工も比較的容易であり、し
かも安価であり、好ましい。
Examples of the glass material include silicate glass (quartz glass), alkali silicate glass, soda lime glass, potassium lime glass, lead (alkali) glass, barium glass, borosilicate glass and the like. Of these, those other than silicate glass have a lower melting point than silicate glass, are relatively easy to mold and process, and are inexpensive, and are therefore preferable.

【0115】転写体180として合成樹脂で構成された
ものを用いる場合には、大型の転写体180を一体的に
成形することができるとともに、湾曲面や凹凸を有する
もの等の複雑な形状であっても容易に製造することがで
き、また、材料コスト、製造コストも安価であるという
種々の利点が享受できる。したがって、合成樹脂の使用
は、大型で安価なデバイス(例えば、液晶ディスプレ
イ)を製造する上で有利である。
When a transfer member 180 made of a synthetic resin is used, a large transfer member 180 can be integrally formed and has a complicated shape such as a member having a curved surface or irregularities. However, various advantages such as easy production and low material cost and low production cost can be enjoyed. Therefore, the use of a synthetic resin is advantageous in manufacturing a large and inexpensive device (for example, a liquid crystal display).

【0116】なお、転写体180は、例えば、液晶セル
のように、それ自体独立したデバイスを構成するもの
や、例えばカラーフィルター、電極層、誘電体層、絶縁
層、半導体素子のように、デバイスの一部を構成するも
のであってもよい。
The transfer member 180 is, for example, a device constituting an independent device such as a liquid crystal cell, or a device such as a color filter, an electrode layer, a dielectric layer, an insulating layer, or a semiconductor element. May be a part of the above.

【0117】さらに、転写体180は、金属、セラミッ
クス、石材、木材紙等の物質であってもよいし、ある品
物を構成する任意の面上(時計の面上、エアコンの表面
上、プリント基板の上等)、さらには壁、柱、天井、窓
ガラス等の構造物の表面上であってもよい。
Further, the transfer member 180 may be a material such as metal, ceramics, stone, wood paper or the like, or may be on any surface constituting a product (on a clock, on an air conditioner, or on a printed circuit board). On the surface of a structure such as a wall, a pillar, a ceiling, or a window glass.

【0118】[工程4]次に、図4に示すように、基板1
00の裏面側から光を照射する。
[Step 4] Next, as shown in FIG.
The light is irradiated from the back side of 00.

【0119】この光は、基板100を透過した後に分離
層120に照射される。これにより、分離層120に層
内剥離および/または界面剥離が生じ、結合力が減少ま
たは消滅する。
This light is applied to the separation layer 120 after passing through the substrate 100. As a result, intra-layer peeling and / or interfacial peeling occurs in the separation layer 120, and the bonding force decreases or disappears.

【0120】分離層120の層内剥離および/または界
面剥離が生じる原理は、分離層120の構成材料にアブ
レーションが生じること、また、分離層120に含まれ
ているガスの放出、さらには照射直後に生じる溶融、蒸
散等の相変化によるものであることが推定される。
The principle that separation within the separation layer 120 and / or interfacial separation occurs is that ablation occurs in the constituent material of the separation layer 120, that the gas contained in the separation layer 120 is released, and that immediately after the irradiation. It is presumed that this is due to a phase change such as melting and transpiration that occurs during the heating.

【0121】ここで、アブレーションとは、照射光を吸
収した固定材料(分離層120の構成材料)が光化学的
または熱的に励起され、その表面や内部の原子または分
子の結合が切断されて放出することをいい、主に、分離
層120の構成材料の全部または一部が溶融、蒸散(気
化)等の相変化を生じる現象として現れる。また、前記
相変化によって微小な発砲状態となり、結合力が低下す
ることもある。
Here, ablation means that the fixed material (the constituent material of the separation layer 120) that has absorbed the irradiation light is photochemically or thermally excited, and the surface or internal bonds of atoms or molecules are cut off and released. This phenomenon mainly occurs as a phenomenon in which all or a part of the constituent material of the separation layer 120 undergoes a phase change such as melting and evaporation (vaporization). In addition, the phase change may cause a very small firing state, and the bonding force may be reduced.

【0122】分離層120が層内剥離を生じるか、界面
剥離を生じるか、またはその両方であるかは、分離層1
20の組成や、その他種々の要因に左右され、その要因
の1つとして、照射される光の種類、波長、強度、到達
深さ等の条件が挙げられる。
Whether the separation layer 120 causes in-layer peeling, interfacial peeling, or both is determined by the separation layer 1
20 and other various factors, and one of the factors is a condition such as a type, a wavelength, an intensity, and a reaching depth of irradiated light.

【0123】照射する光としては、分離層120に層内
剥離および/または界面剥離を起こさせるものであれば
いかなるものでもよく、例えば、X線、紫外線、可視
光、赤外線(熱線)、レーザ光、ミリ波、マイクロ波、
電子線、放射線(α線、β線、γ線)等が挙げられる。
そのなかでも、分離層120の剥離(アブレーション)
を生じさせ易いという点で、レーザ光が好ましい。
The light to be irradiated may be any light as long as it causes separation within the separation layer 120 and / or interfacial separation, such as X-ray, ultraviolet light, visible light, infrared light (heat ray), and laser light. , Millimeter wave, microwave,
Electron beam, radiation (α ray, β ray, γ ray) and the like.
Above all, separation (ablation) of the separation layer 120
Laser light is preferable in that the laser light is easily generated.

【0124】このレーザ光を発生させるレーザ装置とし
ては、各種気体レーザ、固体レーザ(半導体レーザ)等
が挙げられるが、エキシマレーザ、Nd−YAGレー
ザ、Arレーザ、CO2レーザ、COレーザ、He−N
eレーザ等が好適に用いられ、その中でもエキシマレー
ザが特に好ましい。
Examples of a laser device for generating this laser light include various gas lasers and solid-state lasers (semiconductor lasers). Excimer lasers, Nd-YAG lasers, Ar lasers, CO 2 lasers, CO lasers, He— N
An e-laser or the like is suitably used, and among them, an excimer laser is particularly preferable.

【0125】エキシマレーザは、短波長域で高エネルギ
ーを出力するため、極めて短時間で分離層2にアブレー
ションを生じさせることができ、よって隣接する転写体
180や基板100等に温度上昇をほとんど生じさせる
ことなく、すなわち劣化、損傷を生じさせることなく、
分離層120を剥離することができる。
Since the excimer laser outputs high energy in a short wavelength range, ablation can occur in the separation layer 2 in a very short time, and therefore, almost no temperature rise occurs in the adjacent transfer member 180, substrate 100, or the like. Without causing deterioration, damage,
The separation layer 120 can be peeled.

【0126】また、分離層120にアブレーションを生
じさせるに際して、光の波長依存性がある場合、照射さ
れるレーザ光の波長は、100nm〜350nm程度で
あるのが好ましい。
In the case where the ablation is caused in the separation layer 120, if the wavelength of the light is dependent, it is preferable that the wavelength of the laser light to be applied is about 100 nm to 350 nm.

【0127】図7に、基板100の、光の波長に対する
透過率の一例を示す。図示されるように、300nmの
波長に対して透過率が急峻に増大する特性をもつ。この
ような場合には、300nm以上の波長の光(例えば、
波長308nmのXe−Clエキシマレーザー光)を照
射する。
FIG. 7 shows an example of the transmittance of the substrate 100 with respect to the wavelength of light. As shown in the figure, the transmittance has a characteristic of sharply increasing at a wavelength of 300 nm. In such a case, light having a wavelength of 300 nm or more (for example,
Xe-Cl excimer laser light having a wavelength of 308 nm) is irradiated.

【0128】また、分離層120に、例えばガス放出、
気化、昇華等の相変化を起こさせて分離特性を与える場
合、照射されるレーザ光の波長は、350から1200
nm程度であるのが好ましい。
Further, for example, gas release,
When a phase change such as vaporization and sublimation is caused to give separation characteristics, the wavelength of the laser light to be irradiated is from 350 to 1200.
It is preferably about nm.

【0129】また、照射されるレーザ光のエネルギー密
度、特に、エキシマレーザの場合のエネルギー密度は、
10〜5000mJ/cm2程度とするのが好ましく、
100〜500mJ/cm2程度とするのがより好まし
い。また、照射時間は、1〜1000nsec程度とす
るのが好ましく、10〜100nsec程度とするのが
より好ましい。エネルギー密度が低いかまたは照射時間
が短いと、十分なアブレーション等が生じず、また、エ
ネルギー密度が高いかまたは照射時間が長いと、分離層
120を透過した照射光により被転写層140に悪影響
を及ぼすおそれがある。
The energy density of the irradiated laser beam, particularly the energy density of an excimer laser, is as follows:
It is preferably about 10 to 5000 mJ / cm 2 ,
More preferably, it is about 100 to 500 mJ / cm 2 . The irradiation time is preferably about 1 to 1000 nsec, more preferably about 10 to 100 nsec. If the energy density is low or the irradiation time is short, sufficient ablation or the like does not occur, and if the energy density is high or the irradiation time is long, irradiation light transmitted through the separation layer 120 adversely affects the transferred layer 140. May cause.

【0130】なお、分離層120を透過した照射光が被
転写層140にまで達して悪影響を及ぼす場合の対策と
しては、例えば、図30に示すように、分離層(レーザ
ー吸収層)120上にタンタル(Ta)等の金属膜12
4を形成する方法がある。これにより、分離層120を
透過したレーザー光は、金属膜124の界面で完全に反
射され、それよりの上の薄膜素子に悪影響を与えない。
As a countermeasure against the case where the irradiation light transmitted through the separation layer 120 reaches the transfer receiving layer 140 and exerts an adverse effect, for example, as shown in FIG. Metal film 12 such as tantalum (Ta)
4 is formed. As a result, the laser beam transmitted through the separation layer 120 is completely reflected at the interface of the metal film 124, and does not adversely affect the thin film element above it.

【0131】レーザ光に代表される照射光は、その強度
が均一となるように照射されるのが好ましい。照射光の
照射方向は、分離層120に対し垂直な方向に限らず、
分離層120に対し所定角度傾斜した方向であってもよ
い。
It is preferable that the irradiation light typified by the laser light is irradiated so that its intensity becomes uniform. The irradiation direction of the irradiation light is not limited to the direction perpendicular to the separation layer 120,
The direction may be inclined at a predetermined angle with respect to the separation layer 120.

【0132】また、分離層120の面積が照射光の1回
の照射面積より大きい場合には、分離層120の全領域
に対し、複数回に分けて照射光を照射することもでき
る。また、同一箇所に2回以上照射してもよい。また、
異なる種類、異なる波長(波長域)の照射光(レーザ
光)を同一領域または異なる領域に2回以上照射しても
よい。
When the area of the separation layer 120 is larger than the irradiation area of one irradiation light, the whole area of the separation layer 120 can be irradiated with the irradiation light in plural times. The same location may be irradiated more than once. Also,
Irradiation light (laser light) of different types and different wavelengths (wavelength ranges) may be irradiated to the same region or different regions twice or more.

【0133】次に、図5に示すように、基板100に力
を加えて、この基板100を分離層120から離脱させ
る。図5では図示されないが、この離脱後、基板100
上に分離層が付着することもある。
Next, as shown in FIG. 5, a force is applied to the substrate 100 to separate the substrate 100 from the separation layer 120. Although not shown in FIG. 5, after the separation, the substrate 100
Separation layers may also adhere on top.

【0134】次に、図6に示すように、残存している分
離層120を、例えば洗浄、エッチング、アッシング、
研磨等の方法またはこれらを組み合わせた方法により除
去する。これにより、被転写層(薄膜デバイス層)14
0が、転写体180に転写されたことになる。
Next, as shown in FIG. 6, the remaining separation layer 120 is subjected to, for example, cleaning, etching, ashing,
It is removed by a method such as polishing or a combination thereof. Thereby, the transferred layer (thin film device layer) 14
0 has been transferred to the transfer member 180.

【0135】なお、離脱した基板100にも分離層の一
部が付着している場合には同様に除去する。なお、基板
100が石英ガラスのような高価な材料、希少な材料で
構成されている場合等には、基板100は、好ましくは
再利用(リサイクル)に供される。すなわち、再利用し
たい基板100に対し、本発明を適用することができ、
有用性が高い。
If a part of the separation layer adheres to the separated substrate 100, it is removed in the same manner. When the substrate 100 is made of an expensive material such as quartz glass or a rare material, the substrate 100 is preferably provided for reuse. That is, the present invention can be applied to the substrate 100 to be reused,
High usefulness.

【0136】以上のような各工程を経て、被転写層(薄
膜デバイス層)140の転写体180への転写が完了す
る。その後、被転写層(薄膜デバイス層)140に隣接
するSiO2膜の除去や、被転写層140上への配線等
の導電層や所望の保護膜の形成等を行うこともできる。
Through the steps described above, the transfer of the transfer target layer (thin film device layer) 140 to the transfer member 180 is completed. Thereafter, removal of the SiO 2 film adjacent to the transfer target layer (thin film device layer) 140, formation of a conductive layer such as wiring on the transfer target layer 140, or formation of a desired protective film can also be performed.

【0137】本発明では、被剥離物である被転写層(薄
膜デバイス層)140自体を直接に剥離するのではな
く、被転写層(薄膜デバイス層)140に接合された分
離層において剥離するため、被剥離物(被転写層14
0)の特性、条件等にかかわらず、容易かつ確実に、し
かも均一に剥離(転写)することができ、剥離操作に伴
う被剥離物(被転写層140)へのダメージもなく、被
転写層140の高い信頼性を維持することができる。
In the present invention, the transferred layer (thin film device layer) 140 itself, which is the object to be peeled, is not directly peeled but is separated at the separation layer bonded to the transferred layer (thin film device layer) 140. The object to be peeled (the layer to be transferred 14
0) Irrespective of the characteristics, conditions, etc., the separation (transfer) can be easily and reliably and uniformly performed, and the object to be peeled (the layer to be transferred 140) is not damaged by the peeling operation. The high reliability of 140 can be maintained.

【0138】(第2の実施の形態)基板上にCMOS構
造のTFTを形成し、これを転写体に転写する場合の具
体的な製造プロセスの例を図8〜図18を用いて説明す
る。
(Second Embodiment) A specific example of a manufacturing process for forming a TFT having a CMOS structure on a substrate and transferring the TFT to a transfer member will be described with reference to FIGS.

【0139】(工程1)図8に示すように、基板(例え
ば石英基板)100上に、分離層(例えば、LPCVD
法により形成されたアモルファスシリコン層))120
と、中間層(例えば、SiO2膜)142と、アモルフ
ァスシリコン層(例えばLPCVD法により形成され
る)143とを順次に積層形成し、続いて、アモルファ
スシリコン層143の全面に上方からレーザー光を照射
し、アニールを施す。これにより、アモルファスシリコ
ン層143は再結晶化してポリシリコン層となる。
(Step 1) As shown in FIG. 8, a separation layer (eg, LPCVD) is formed on a substrate (eg, a quartz substrate) 100.
Amorphous silicon layer formed by the method)) 120
And an intermediate layer (for example, an SiO 2 film) 142 and an amorphous silicon layer (for example, formed by an LPCVD method) 143 are sequentially laminated, and then a laser beam is applied from above to the entire surface of the amorphous silicon layer 143. Irradiate and anneal. Thereby, the amorphous silicon layer 143 is recrystallized to become a polysilicon layer.

【0140】(工程2)続いて、図9に示すように、レ
ーザーアニールにより得られたポリシリコン層をパター
ニングして、アイランド144a,144bを形成す
る。
(Step 2) Subsequently, as shown in FIG. 9, the polysilicon layer obtained by the laser annealing is patterned to form islands 144a and 144b.

【0141】(工程3)図10に示されるように、アイ
ランド144a,144bを覆うゲート絶縁膜148
a,148bを、例えば、CVD法により形成する。
(Step 3) As shown in FIG. 10, the gate insulating film 148 covering the islands 144a and 144b
a, 148b are formed by, for example, a CVD method.

【0142】(工程4)図11に示されるように、ポリ
シリコンあるいはメタル等からなるゲート電極150
a,150bを形成する。
(Step 4) As shown in FIG. 11, a gate electrode 150 made of polysilicon or metal is used.
a, 150b are formed.

【0143】(工程5)図12に示すように、ポリイミ
ド等からなるマスク層170を形成し、ゲート電極15
0bおよびマスク層170をマスクとして用い、セルフ
アラインで、例えばボロン(B)のイオン注入を行う。
これによって、p+層172a,172bが形成され
る。
(Step 5) As shown in FIG. 12, a mask layer 170 made of polyimide or the like is formed, and a gate electrode 15 is formed.
Using 0b and the mask layer 170 as a mask, ion implantation of, for example, boron (B) is performed in a self-aligned manner.
Thus, p + layers 172a and 172b are formed.

【0144】(工程6) 図13に示すように、ポリイ
ミド等からなるマスク層174を形成し、ゲート電極1
50aおよびマスク層174をマスクとして用い、セル
フアラインで、例えばリン(P)のイオン注入を行う。
これによって、n+層146a,146bが形成され
る。
(Step 6) As shown in FIG. 13, a mask layer 174 made of polyimide or the like is formed, and a gate electrode 1 is formed.
Using the mask 50a and the mask layer 174 as a mask, ion implantation of, for example, phosphorus (P) is performed in a self-aligned manner.
Thus, n + layers 146a and 146b are formed.

【0145】(工程7) 図14に示すように、層間絶
縁膜154を形成し、選択的にコンタクトホール形成
後、電極152a〜152dを形成する。
(Step 7) As shown in FIG. 14, an interlayer insulating film 154 is formed, and after selectively forming a contact hole, electrodes 152a to 152d are formed.

【0146】このようにして形成されたCMOS構造の
TFTが、図2〜図6における被転写層(薄膜デバイス
層)140に該当する。なお、層間絶縁膜154上に保
護膜を形成してもよい。
The TFT having the CMOS structure formed as described above corresponds to the layer to be transferred (thin film device layer) 140 in FIGS. Note that a protective film may be formed over the interlayer insulating film 154.

【0147】(工程8)図15に示すように、CMOS
構成のTFT上に接着層としてのエポキシ樹脂層160
を形成し、次に、そのエポキシ樹脂層160を介して、
TFTを転写体(例えば、ソーダガラス基板)180に
貼り付ける。続いて、熱を加えてエポキシ樹脂を硬化さ
せ、転写体180とTFTとを接着(接合)する。
(Step 8) As shown in FIG.
Epoxy resin layer 160 as an adhesive layer on the TFT having the structure
Is formed, and then through the epoxy resin layer 160,
The TFT is attached to a transfer body (for example, a soda glass substrate) 180. Subsequently, heat is applied to cure the epoxy resin, and the transfer body 180 and the TFT are bonded (joined).

【0148】なお、接着層160は紫外線硬化型接着剤
であるフォトポリマー樹脂でもよい。この場合は、熱で
はなく転写体180側から紫外線を照射してポリマーを
硬化させる。
Note that the adhesive layer 160 may be a photopolymer resin which is an ultraviolet-curable adhesive. In this case, the polymer is cured by irradiating ultraviolet rays from the transfer body 180 side instead of heat.

【0149】(工程9)図16に示すように、基板10
0の裏面から、例えば、Xe−Clエキシマレーザー光
を照射する。これにより、分離層120の層内および/
または界面において剥離を生じせしめる。
(Step 9) As shown in FIG.
For example, Xe-Cl excimer laser light is radiated from the back surface of 0. Thereby, the inside of the separation layer 120 and / or
Alternatively, separation occurs at the interface.

【0150】(工程10)図17に示すように、基板1
00を引き剥がす。
(Step 10) As shown in FIG.
Peel off 00.

【0151】(工程11)最後に、分離層120をエッ
チングにより除去する。これにより、図18に示すよう
に、CMOS構成のTFTが、転写体180に転写され
たことになる。
(Step 11) Finally, the separation layer 120 is removed by etching. As a result, as shown in FIG. 18, the TFT having the CMOS structure is transferred to the transfer body 180.

【0152】(第3の実施の形態)上述の第1の実施の
形態および第2の実施の形態で説明した技術を用いる
と、例えば、図19(a)に示すような、薄膜素子を用
いて構成されたマイクロコンピュータを所望の基板上に
形成できるようになる。
(Third Embodiment) When the techniques described in the first and second embodiments are used, for example, a thin film element as shown in FIG. Can be formed on a desired substrate.

【0153】図19(a)では、プラスチック等からな
るフレキシブル基板182上に、薄膜素子を用いて回路
が構成されたCPU300,RAM320,入出力回路
360ならびに、これらの回路の電源電圧を供給するた
めの、アモルファスシリコンのPIN接合を具備する太
陽電池340が搭載されている。
In FIG. 19A, a CPU 300, a RAM 320, and an input / output circuit 360, each of which is composed of a thin film element, are provided on a flexible substrate 182 made of plastic or the like, and power supply voltages for these circuits are supplied. A solar cell 340 having an amorphous silicon PIN junction is mounted.

【0154】図19(a)のマイクロコンピュータはフ
レキシブル基板上に形成されているため、図19(b)
に示すように曲げに強く、また、軽量であるために落下
にも強いという特徴がある。
Since the microcomputer shown in FIG. 19A is formed on a flexible substrate, the microcomputer shown in FIG.
As shown in (1), it is resistant to bending, and because it is lightweight, it is resistant to falling.

【0155】(第4の実施の形態)本実施の形態では、
上述の薄膜デバイスの転写技術を用いて、図20,図2
1に示されるような、アクティブマトリクス基板を用い
たアクティブマトリクス型の液晶表示装置を作成する場
合の製造プロセスの例について説明する。
(Fourth Embodiment) In the present embodiment,
20 and 2 using the above-described thin film device transfer technology.
An example of a manufacturing process for producing an active matrix type liquid crystal display device using an active matrix substrate as shown in FIG.

【0156】(液晶表示装置の構成)図20に示すよう
に、アクティブマトリクス型の液晶表示装置は、バック
ライト等の照明光源400,偏光板420,アクティブ
マトリクス基板440,液晶460,対向基板480,
偏光板500を具備する。
(Structure of Liquid Crystal Display Device) As shown in FIG. 20, the active matrix type liquid crystal display device has an illumination light source 400 such as a backlight, a polarizing plate 420, an active matrix substrate 440, a liquid crystal 460, a counter substrate 480,
A polarizing plate 500 is provided.

【0157】なお、本発明のアクティブマトリクス基板
440と対向基板480にプラスチックフィルムのよう
なフレキシブル基板を用いる場合は、照明光源400に
代えて反射板を採用した反射型液晶パネルとして構成す
ると、可撓性があって衝撃に強くかつ軽量なアクティブ
マトリクス型液晶パネルを実現できる。なお、画素電極
を金属で形成した場合、反射板および偏光板420は不
要となる。
When a flexible substrate such as a plastic film is used for the active matrix substrate 440 and the counter substrate 480 of the present invention, a flexible liquid crystal panel using a reflector instead of the illumination light source 400 can be used. It is possible to realize an active matrix type liquid crystal panel which is strong, shock-resistant and lightweight. When the pixel electrode is formed of metal, the reflector and the polarizing plate 420 are not required.

【0158】本実施の形態で使用するアクティブマトリ
クス基板440は、画素部442にTFTを配置し、さ
らに、ドライバ回路(走査線ドライバおよびデータ線ド
ライバ)444を搭載したドライバ内蔵型のアクティブ
マトリクス基板である。
The active matrix substrate 440 used in the present embodiment is a driver built-in type active matrix substrate in which TFTs are arranged in a pixel portion 442 and a driver circuit (scanning line driver and data line driver) 444 is mounted. is there.

【0159】このアクティブマトリクス型液晶表示装置
の要部の断面図が図21に示され、また、液晶表示装置
の要部の回路構成が図22に示される。
FIG. 21 is a cross-sectional view of a main part of this active matrix type liquid crystal display device, and FIG. 22 is a circuit configuration of a main part of the liquid crystal display device.

【0160】図22に示されるように、画素部442
は、ゲートがゲート線G1に接続され、ソース・ドレイ
ンの一方がデータ線D1に接続され、ソース・ドレイン
の他方が液晶460に接続されたTFT(M1)と、液
晶460とを含む。
As shown in FIG. 22, the pixel portion 442
The liquid crystal 460 includes a TFT (M1) having a gate connected to the gate line G1, one of the source and drain connected to the data line D1, and the other of the source and drain connected to the liquid crystal 460.

【0161】また、ドライバー部444は、画素部のT
FT(M1)と同じプロセスにより形成されるTFT
(M2)を含んで構成される。
The driver section 444 is provided with the T of the pixel section.
TFT formed by the same process as FT (M1)
(M2).

【0162】図21の左側に示されるように、画素部4
42におけるTFT(M1)は、ソース・ドレイン層1
100a,1100bと、チャンネル1100eと、ゲ
ート絶縁膜1200aと、ゲート電極1300aと、絶
縁膜1500と、ソース・ドレイン電極1400a,1
400bとを含んで構成される。
As shown on the left side of FIG.
The TFT (M1) at 42 has a source / drain layer 1
100a, 1100b, a channel 1100e, a gate insulating film 1200a, a gate electrode 1300a, an insulating film 1500, and source / drain electrodes 1400a, 1400.
400b.

【0163】なお、参照番号1700は画素電極であ
り、参照番号1702は画素電極1700が液晶460
に電圧を印加する領域(液晶への電圧印加領域)を示
す。図中、配向膜は省略してある。画素電極1700は
ITO(光透過型の液晶パネルの場合)あるいはアルミ
ニュウム等の金属(反射型の液晶パネルの場合)により
構成される。また、図21では、液晶への電圧印加領域
1702において、画素電極1700の下の下地絶縁膜
(中間層)1000は完全に除去されているが、必ずし
もこれに限定されるものではなく、下地絶縁膜(中間
層)1000が薄いために液晶への電圧印加の妨げにな
らない場合には残しておいてもよい。
Reference numeral 1700 denotes a pixel electrode, and reference numeral 1702 denotes a pixel electrode 1700 corresponding to a liquid crystal 460.
Shows a region where a voltage is applied (region where a voltage is applied to the liquid crystal). In the figure, the alignment film is omitted. The pixel electrode 1700 is made of ITO (in the case of a light transmission type liquid crystal panel) or metal such as aluminum (in the case of a reflection type liquid crystal panel). In FIG. 21, the base insulating film (intermediate layer) 1000 under the pixel electrode 1700 is completely removed in the voltage application region 1702 to the liquid crystal. However, the present invention is not limited to this. If the film (intermediate layer) 1000 is thin and does not hinder voltage application to the liquid crystal, it may be left.

【0164】また、図21の右側に示されるように、ド
ライバー部444を構成するTFT(M2)は、ソー
ス,ドレイン層1100c,1100dと、チャンネル
1100fと、ゲート絶縁膜1200bと、ゲート電極
1300bと、絶縁膜1500と、ソース・ドレイン電
極1400c,1400dとを含んで構成される。
As shown on the right side of FIG. 21, the TFT (M2) constituting the driver section 444 includes a source / drain layer 1100c, 1100d, a channel 1100f, a gate insulating film 1200b, and a gate electrode 1300b. , An insulating film 1500, and source / drain electrodes 1400c and 1400d.

【0165】なお、図21において、参照番号480
は、例えば、対向基板(例えば、ソーダガラス基板)で
あり、参照番号482は共通電極である。また、参照番
号1000はSiO2膜であり、参照番号1600は層
間絶縁膜(例えば、SiO2膜)であり、参照番号18
00は接着層である。また、参照番号1900は、例え
ばソーダガラス基板からなる基板(転写体)である。
Note that, in FIG.
Is, for example, a counter substrate (for example, a soda glass substrate), and reference numeral 482 is a common electrode. Reference numeral 1000 denotes an SiO 2 film, reference numeral 1600 denotes an interlayer insulating film (for example, an SiO 2 film), and reference numeral 18 denotes
00 is an adhesive layer. Reference numeral 1900 denotes a substrate (transfer body) made of, for example, a soda glass substrate.

【0166】(液晶表示装置の製造プロセス)以下、図
21の液晶表示装置の製造プロセスについて、図23〜
図27を参照して説明する。
(Manufacturing Process of Liquid Crystal Display) Hereinafter, the manufacturing process of the liquid crystal display of FIG. 21 will be described with reference to FIGS.
This will be described with reference to FIG.

【0167】まず、図8〜図18と同様の製造プロセス
を経て、図23のようなTFT(M1,M2)を、信頼
性が高くかつレーザー光を透過する基板(例えば、石英
基板)3000上に形成し、保護膜1600を構成す
る。なお、図23において、参照番号3100は分離層
(レーザー吸収層)である。また、図23では、TFT
(M1,M2)は共にn型のMOSFETとしている。
但し、これに限定されるものではなく、p型のMOSF
ETや、CMOS構造としてもよい。
First, through the same manufacturing process as in FIGS. 8 to 18, TFTs (M1, M2) as shown in FIG. 23 are mounted on a substrate (for example, a quartz substrate) 3000 having high reliability and transmitting a laser beam. To form a protective film 1600. In FIG. 23, reference numeral 3100 denotes a separation layer (laser absorption layer). Also, in FIG.
Both (M1, M2) are n-type MOSFETs.
However, the present invention is not limited to this.
An ET or CMOS structure may be used.

【0168】次に、図24に示すように、保護膜160
0および下地絶縁膜1000を選択的にエッチングし、
選択的に開口部4000,4200を形成する。これら
の2つの開口部は共通のエッチング工程を用いて同時に
形成する。なお、図24では開口部4200において、
下地絶縁膜(中間層)1000を完全に除去している
が、必ずしもこれに限定されるものではなく、下地絶縁
膜(中間層)1000が薄いために液晶への電圧印加の
妨げにならない場合には残しておいてもよい。
Next, as shown in FIG.
0 and the base insulating film 1000 are selectively etched,
Openings 4000 and 4200 are selectively formed. These two openings are formed simultaneously using a common etching process. In FIG. 24, at the opening 4200,
Although the base insulating film (intermediate layer) 1000 is completely removed, the present invention is not limited to this. If the base insulating film (intermediate layer) 1000 is thin and does not hinder voltage application to the liquid crystal, May be left.

【0169】次に、図25に示すように、ITO膜ある
いはアルミニュウム等の金属からなる画素電極1700
を形成する。ITO膜を用いる場合には透過型の液晶パ
ネルとなり、アルミニュウム等の金属を用いる場合には
反射型の液晶パネルとなる。次に、図26に示すよう
に、接着層1800を介して基板1900を接合(接
着)する。
Next, as shown in FIG. 25, a pixel electrode 1700 made of a metal such as an ITO film or aluminum is used.
To form When an ITO film is used, a transmissive liquid crystal panel is used. When a metal such as aluminum is used, a reflective liquid crystal panel is used. Next, as shown in FIG. 26, the substrate 1900 is bonded (bonded) via the bonding layer 1800.

【0170】次に、図26に示すように、基板3000
の裏面からエキシマレーザー光を照射し、この後、基板
3000を引き剥がす。
Next, as shown in FIG.
Then, an excimer laser beam is irradiated from the back surface of the substrate, and thereafter, the substrate 3000 is peeled off.

【0171】次に、分離層(レーザー吸収層)3100
を除去する。これにより、図27に示すようなアクティ
ブマトリクス基板440が完成する。画素電極1700
の底面(参照番号1702の領域)は露出しており、液
晶との電気的な接続が可能となっている。この後、アク
ティブマトリクス基板440の絶縁膜(SiO2などの
中間層)1000の表面および画素電極1702表面に
配向膜を形成して配向処理が施される。図27では、配
向膜は省略してある。
Next, a separation layer (laser absorption layer) 3100
Is removed. Thus, an active matrix substrate 440 as shown in FIG. 27 is completed. Pixel electrode 1700
Is exposed (area indicated by reference numeral 1702), and can be electrically connected to the liquid crystal. Thereafter, an alignment film is formed on the surface of the insulating film (intermediate layer such as SiO 2 ) 1000 of the active matrix substrate 440 and the surface of the pixel electrode 1702, and the alignment processing is performed. In FIG. 27, the alignment film is omitted.

【0172】そして、さらにその表面に画素電極170
9と対向する共通電極が形成され、その表面が配向処理
された対向基板480と図21のアクティブマトリク基
板440とを封止材(シール材)で封止し、両基板の間
に液晶を封入して、図21に示すような液晶表示装置が
完成する。
The pixel electrode 170 is further provided on the surface.
A common electrode opposed to the substrate 9 is formed, and the opposing substrate 480 whose surface is subjected to an alignment treatment and the active matrix substrate 440 of FIG. 21 are sealed with a sealing material (sealant), and liquid crystal is sealed between the two substrates. Thus, a liquid crystal display device as shown in FIG. 21 is completed.

【0173】(第5の実施の形態)図28に本発明の第
5の実施の形態を示す。
(Fifth Embodiment) FIG. 28 shows a fifth embodiment of the present invention.

【0174】本実施の形態では、上述の薄膜デバイスの
転写方法を複数回実行して、転写元の基板よりも大きい
基板(転写体)上に薄膜素子を含む複数のパターンを転
写し、最終的に大規模なアクティブマトリクス基板を形
成する。
In the present embodiment, the above-described method of transferring a thin film device is executed a plurality of times to transfer a plurality of patterns including thin film elements onto a substrate (transfer body) larger than the transfer source substrate. First, a large-scale active matrix substrate is formed.

【0175】つまり、大きな基板7000上に、複数回
の転写を実行し、画素部7100a〜7100Pを形成
する。図28の上側に一点鎖線で囲んで示されるよう
に、画素部には、TFTや配線が形成されている。図2
8において、参照番号7210は走査線であり、参照番
号7200は信号線であり、参照番号7220はゲート
電極であり、参照番号7230は画素電極である。
That is, the transfer is performed a plurality of times on the large substrate 7000 to form the pixel portions 7100a to 7100P. As shown by the dashed line on the upper side of FIG. 28, a TFT and a wiring are formed in the pixel portion. FIG.
8, reference numeral 7210 is a scanning line, reference numeral 7200 is a signal line, reference numeral 7220 is a gate electrode, and reference numeral 7230 is a pixel electrode.

【0176】信頼性の高い基板を繰り返し使用し、ある
いは複数の第1の基板を使用して薄膜パターンの転写を
複数回実行することにより、信頼性の高い薄膜素子を搭
載した大規模なアクティブマトリクス基板を作成でき
る。
By repeatedly using a highly reliable substrate or performing the transfer of a thin film pattern a plurality of times using a plurality of first substrates, a large-scale active matrix mounting a highly reliable thin film element can be obtained. A substrate can be created.

【0177】(第6の実施の形態)本発明の第6の実施
の形態を図29に示す。
(Sixth Embodiment) FIG. 29 shows a sixth embodiment of the present invention.

【0178】本実施の形態の特徴は、上述の薄膜デバイ
スの転写方法を複数回実行して、転写元の基板上よりも
大きな基板上に、設計ルール(つまりパターン設計する
上でのデザインルール)が異なる薄膜素子(つまり、最
小線幅が異なる薄膜素子)を含む複数のパターンを転写
することである。
The feature of this embodiment is that the above-described method of transferring a thin film device is executed a plurality of times, and a design rule (that is, a design rule for pattern design) is formed on a substrate larger than the transfer source substrate. Is to transfer a plurality of patterns including different thin film elements (that is, thin film elements having different minimum line widths).

【0179】図29では、ドライバー搭載のアクティブ
マトリクス基板において、画素部(7100a〜710
0p)よりも、より微細な製造プロセスで作成されたド
ライバ回路(8000〜8032)を、複数回の転写に
よって基板6000の周囲に作成してある。
In FIG. 29, in the active matrix substrate on which the driver is mounted, the pixel portions (7100a to 710)
A driver circuit (8000 to 8032) formed by a finer manufacturing process than that of the substrate circuit 6000 is formed around the substrate 6000 by multiple transfers.

【0180】ドライバ回路を構成するシフトレジスタ
は、低電圧下においてロジックレベルの動作をするので
画素TFTよりも耐圧が低くてよく、よって、画素TF
Tより微細なTFTとなるようにして高集積化を図るこ
とができる。
Since the shift register constituting the driver circuit operates at a logic level under a low voltage, the withstand voltage may be lower than that of the pixel TFT.
Higher integration can be achieved by making the TFT smaller than T.

【0181】本実施の形態によれば、設計ルールレベル
の異なる(つまり製造プロセスが異なる)複数の回路
を、一つの基板上に実現できる。なお、シフトレジスタ
の制御によりデータ信号をサンプリングするサンプリン
グ手段(図22の薄膜トランジスタM2)は、画素TF
T同様に高耐圧が必要なので、画素TFTと同一プロセ
ス/同一設計ルールで形成するとよい。
According to the present embodiment, a plurality of circuits having different design rule levels (ie, different manufacturing processes) can be realized on one substrate. The sampling means (the thin-film transistor M2 in FIG. 22) for sampling the data signal under the control of the shift register is provided by the pixel TF
Since a high breakdown voltage is required as in the case of T, the pixel TFT is preferably formed by the same process / design rule as the pixel TFT.

【0182】[0182]

【実施例】次に、本発明の具体的実施例について説明す
る。
Next, specific examples of the present invention will be described.

【0183】(実施例1)縦50mm×横50mm×厚さ
1.1mmの石英基板(軟化点:1630℃、歪点:10
70℃、エキシマレーザの透過率:ほぼ100%)を用
意し、この石英基板の片面に、分離層(レーザ光吸収
層)として非晶質シリコン(a−Si)膜を低圧CVD
法(Si26 ガス、425℃)により形成した。分離
層の膜厚は、100nmであった。
(Example 1) A quartz substrate having a length of 50 mm, a width of 50 mm and a thickness of 1.1 mm (softening point: 1630 ° C., strain point: 10
70 ° C., transmittance of excimer laser: almost 100%), and an amorphous silicon (a-Si) film as a separation layer (laser light absorption layer) is formed on one side of this quartz substrate by low pressure CVD.
It was formed by a method (Si 2 H 6 gas, 425 ° C.). The thickness of the separation layer was 100 nm.

【0184】次に、分離層上に、中間層としてSiO2
膜をECR−CVD法(SiH4 +O2 ガス、100
℃)により形成した。中間層の膜厚は、200nmであっ
た。
Next, on the separation layer, SiO 2 was used as an intermediate layer.
The film is formed by ECR-CVD (SiH 4 + O 2 gas, 100
C). The thickness of the intermediate layer was 200 nm.

【0185】次に、中間層上に、被転写層として膜厚5
0nmの非晶質シリコン膜を低圧CVD法(Si26
ス、425℃)により形成し、この非晶質シリコン膜に
レーザ光(波長308nm)を照射して、結晶化させ、ポ
リシリコン膜とした。その後、このポリシリコン膜に対
し、所定のパターンニングを施し、薄膜トランジスタの
ソース・ドレイン・チャネルとなる領域を形成した。こ
の後、1000°C以上の高温によりポリシリコン膜表
面を熱酸化してゲート絶縁膜SiO2 を形成した後、ゲ
ート絶縁膜上にゲート電極(ポリシリコンにMo等の高
融点金属が積層形成された構造)を形成し、ゲート電極
をマスクとしてイオン注入することによって、自己整合
的(セルファライン)にソース・ドレイン領域を形成
し、薄膜トランジスタを形成した。この後、必要に応じ
て、ソース・ドレイン領域に接続される電極及び配線、
ゲート電極につながる配線が形成される。これらの電極
や配線にはAlが使用されるが、これに限定されるもの
ではない。また、後工程のレーザー照射によりAlの溶
融が心配される場合は、Alよりも高融点の金属(後工
程のレーザー照射により溶融しないもの)を使用しても
よい。
Next, on the intermediate layer, a layer having a thickness of 5
A 0 nm amorphous silicon film is formed by a low pressure CVD method (Si 2 H 6 gas, 425 ° C.), and the amorphous silicon film is crystallized by irradiating the amorphous silicon film with laser light (wavelength 308 nm). And Thereafter, the polysilicon film was subjected to predetermined patterning to form a region serving as a source, a drain, and a channel of the thin film transistor. Thereafter, the surface of the polysilicon film is thermally oxidized at a high temperature of 1000 ° C. or more to form a gate insulating film SiO 2 , and then a gate electrode (a high melting point metal such as Mo is laminated on polysilicon to form a gate electrode) on the gate insulating film. Then, ion implantation was performed using the gate electrode as a mask to form source / drain regions in a self-aligned manner (self-alignment), thereby forming a thin film transistor. Thereafter, if necessary, electrodes and wirings connected to the source / drain regions,
A wiring connected to the gate electrode is formed. Although Al is used for these electrodes and wirings, the present invention is not limited to this. Further, when there is a concern about melting of Al due to laser irradiation in a later step, a metal having a higher melting point than Al (a metal not melted by laser irradiation in a later step) may be used.

【0186】次に、前記薄膜トランジスタの上に、紫外
線硬化型接着剤を塗布し(膜厚:100μm )、さらに
その塗膜に、転写体として縦200mm×横300mm×厚
さ1.1mmの大型の透明なガラス基板(ソーダガラス、
軟化点:740℃、歪点:511℃)を接合した後、ガ
ラス基板側から紫外線を照射して接着剤を硬化させ、こ
れらを接着固定した。
Next, an ultraviolet curable adhesive was applied on the thin film transistor (film thickness: 100 μm), and a large-sized 200 mm × 300 mm × 1.1 mm thick transfer member was applied to the coating film. Transparent glass substrate (soda glass,
(Softening point: 740 ° C., strain point: 511 ° C.), and then the adhesive was cured by irradiating ultraviolet rays from the glass substrate side, and these were bonded and fixed.

【0187】次に、Xe−Clエキシマレーザ(波長:
308nm)を石英基板側から照射し、分離層に剥離(層
内剥離および界面剥離)を生じさせた。照射したXe−
Clエキシマレーザのエネルギー密度は、250mJ/c
m2、照射時間は、20nsecであった。なお、エキシマレ
ーザの照射は、スポットビーム照射とラインビーム照射
とがあり、スポットビーム照射の場合は、所定の単位領
域(例えば8mm×8mm)にスポット照射し、このスポッ
ト照射を単位領域の1/10程度ずつずらしながら照射
していく。また、ラインビーム照射の場合は、所定の単
位領域(例えば378mm×0.1mmや378mm×0.3
mm(これらはエネルギーの90%以上が得られる領
域))を同じく1/10程度ずつずらしながら照射して
いく。これにより、分離層の各点は少なくとも10回の
照射を受ける。このレーザ照射は、石英基板全面に対し
て、照射領域をずらしながら実施される。
Next, a Xe-Cl excimer laser (wavelength:
308 nm) from the quartz substrate side to cause peeling (intralayer peeling and interfacial peeling) of the separation layer. Irradiated Xe-
The energy density of Cl excimer laser is 250mJ / c
m 2 , and the irradiation time was 20 nsec. Excimer laser irradiation includes spot beam irradiation and line beam irradiation. In the case of spot beam irradiation, spot irradiation is performed on a predetermined unit area (for example, 8 mm × 8 mm), and this spot irradiation is performed 1/1 of the unit area. Irradiation is performed while shifting by about 10 steps. In the case of line beam irradiation, a predetermined unit area (for example, 378 mm × 0.1 mm or 378 mm × 0.3
mm (these are regions where 90% or more of energy can be obtained) are similarly shifted by about 1/10. Thereby, each point of the separation layer receives at least 10 irradiations. This laser irradiation is performed while shifting the irradiation area over the entire surface of the quartz substrate.

【0188】この後、石英基板とガラス基板(転写体)
とを分離層において引き剥がし、石英基板上に形成され
た薄膜トランジスタおよび中間層を、ガラス基板側に転
写した。
Thereafter, a quartz substrate and a glass substrate (transfer member)
Were peeled off at the separation layer, and the thin film transistor and the intermediate layer formed on the quartz substrate were transferred to the glass substrate side.

【0189】その後、ガラス基板側の中間層の表面に付
着した分離層を、エッチングや洗浄またはそれらの組み
合わせにより除去した。また、石英基板についても同様
の処理を行い、再使用に供した。
Thereafter, the separation layer adhered to the surface of the intermediate layer on the glass substrate side was removed by etching, washing or a combination thereof. The same processing was performed on the quartz substrate, and the quartz substrate was reused.

【0190】なお、転写体となるガラス基板が石英基板
より大きな基板であれば、本実施例のような石英基板か
らガラス基板への転写を、平面的に異なる領域に繰り返
して実施し、ガラス基板上に、石英基板に形成可能な薄
膜トランジスタの数より多くの薄膜トランジスタを形成
することができる。さらに、ガラス基板上に繰り返し積
層し、同様により多くの薄膜トランジスタを形成するこ
とができる。
If the glass substrate serving as the transfer body is a substrate larger than the quartz substrate, the transfer from the quartz substrate to the glass substrate as in this embodiment is repeatedly performed on different areas in a plane, and Further, more thin film transistors than the number of thin film transistors that can be formed over the quartz substrate can be formed. Further, the thin film transistor can be repeatedly stacked over a glass substrate to form more thin film transistors.

【0191】(実施例2)分離層を、H(水素)を20
at%含有する非晶質シリコン膜とした以外は実施例1と
同様にして、薄膜トランジスタの転写を行った。
Example 2 The separation layer was prepared by adding H (hydrogen) to 20
A thin film transistor was transferred in the same manner as in Example 1 except that the amorphous silicon film contained at%.

【0192】なお、非晶質シリコン膜中のH量の調整
は、低圧CVD法による成膜時の条件を適宜設定するこ
とにより行った。
The amount of H in the amorphous silicon film was adjusted by appropriately setting the conditions at the time of film formation by the low-pressure CVD method.

【0193】(実施例3)分離層を、スピンコートによ
りゾル−ゲル法で形成したセラミックス薄膜(組成:P
bTiO3 、膜厚:200nm)とした以外は実施例1と
同様にして、薄膜トランジスタの転写を行った。
(Example 3) A ceramic thin film having a separation layer formed by a sol-gel method by spin coating (composition: P
A thin film transistor was transferred in the same manner as in Example 1 except that bTiO 3 (thickness: 200 nm) was used.

【0194】(実施例4)分離層を、スパッタリングに
より形成したセラミックス薄膜(組成:BaTiO3
膜厚:400nm)とした以外は実施例1と同様にして、
薄膜トランジスタの転写を行った。
(Example 4) A ceramic thin film (composition: BaTiO 3 ,
Except that the film thickness was 400 nm).
The transfer of the thin film transistor was performed.

【0195】(実施例5)分離層を、レーザ−アブレー
ション法により形成したセラミックス薄膜(組成:Pb
(Zr,Ti)O3 (PZT)、膜厚:50nm)とした
以外は実施例1と同様にして、薄膜トランジスタの転写
を行った。
Example 5 A ceramic thin film having a separation layer formed by a laser-ablation method (composition: Pb
The transfer of the thin film transistor was performed in the same manner as in Example 1 except that (Zr, Ti) O 3 (PZT), film thickness: 50 nm).

【0196】(実施例6)分離層を、スピンコートによ
り形成したポリイミド膜(膜厚:200nm)とした以外
は実施例1と同様にして、薄膜トランジスタの転写を行
った。
Example 6 A thin film transistor was transferred in the same manner as in Example 1 except that the separation layer was a polyimide film (thickness: 200 nm) formed by spin coating.

【0197】(実施例7)分離層を、スピンコートによ
り形成したポリフェニレンサルファイド膜(膜厚:20
0nm)とした以外は実施例1と同様にして、薄膜トラン
ジスタの転写を行った。
(Example 7) A polyphenylene sulfide film (thickness: 20) formed by spin coating a separation layer was used.
The transfer of the thin film transistor was performed in the same manner as in Example 1 except that the thickness was set to 0 nm).

【0198】(実施例8)分離層を、スパッタリングに
より形成したAl層(膜厚:300nm)とした以外は実
施例1と同様にして、薄膜トランジスタの転写を行っ
た。
Example 8 A thin film transistor was transferred in the same manner as in Example 1 except that the separation layer was an Al layer (thickness: 300 nm) formed by sputtering.

【0199】(実施例9)照射光として、Kr−Fエキ
シマレーザ(波長:248nm)を用いた以外は実施例2
と同様にして、薄膜トランジスタの転写を行った。な
お、照射したレーザのエネルギー密度は、250mJ/c
m2、照射時間は、20nsecであった。
Example 9 Example 2 was performed except that a Kr-F excimer laser (wavelength: 248 nm) was used as the irradiation light.
The transfer of the thin film transistor was performed in the same manner as described above. The energy density of the irradiated laser was 250 mJ / c
m 2 , and the irradiation time was 20 nsec.

【0200】(実施例10)照射光として、Nd−YA
IGレーザ(波長:1068nm)を用いた以外は実施例
2と同様にして薄膜トランジスタの転写を行った。な
お、照射したレーザのエネルギー密度は、400mJ/c
m2、照射時間は、20nsecであった。
Example 10 Nd-YA was used as the irradiation light.
The transfer of the thin film transistor was performed in the same manner as in Example 2 except that an IG laser (wavelength: 1068 nm) was used. The energy density of the irradiated laser was 400 mJ / c
m 2 , and the irradiation time was 20 nsec.

【0201】(実施例11)被転写層として、高温プロ
セス1000℃によるポリシリコン膜(膜厚80nm)の
薄膜トランジスタとした以外は実施例1と同様にして、
薄膜トランジスタの転写を行った。
(Example 11) A thin film transistor of a polysilicon film (thickness: 80 nm) formed by a high-temperature process at 1000 ° C was used in the same manner as in Example 1 except that the transfer layer was a thin film transistor.
The transfer of the thin film transistor was performed.

【0202】(実施例12)転写体として、ポリカーボ
ネート(ガラス転移点:130℃)製の透明基板を用い
た以外は実施例1と同様にして、薄膜トランジスタの転
写を行った。
Example 12 A thin film transistor was transferred in the same manner as in Example 1 except that a transparent substrate made of polycarbonate (glass transition point: 130 ° C.) was used as a transfer body.

【0203】(実施例13)転写体として、AS樹脂
(ガラス転移点:70〜90℃)製の透明基板を用いた
以外は実施例2と同様にして、薄膜トランジスタの転写
を行った。
Example 13 A thin film transistor was transferred in the same manner as in Example 2 except that a transparent substrate made of an AS resin (glass transition point: 70 to 90 ° C.) was used as a transfer body.

【0204】(実施例14)転写体として、ポリメチル
メタクリレート(ガラス転移点:70〜90℃)製の透
明基板を用いた以外は実施例3と同様にして、薄膜トラ
ンジスタの転写を行った。
Example 14 A thin film transistor was transferred in the same manner as in Example 3 except that a transparent substrate made of polymethyl methacrylate (glass transition point: 70 to 90 ° C.) was used as a transfer body.

【0205】(実施例15)転写体として、ポリエチレ
ンテレフタレート(ガラス転移点:67℃)製の透明基
板を用いた以外は、実施例5と同様にして、薄膜トラン
ジスタの転写を行った。
Example 15 A thin film transistor was transferred in the same manner as in Example 5, except that a transparent substrate made of polyethylene terephthalate (glass transition point: 67 ° C.) was used as a transfer body.

【0206】(実施例16)転写体として、高密度ポリ
エチレン(ガラス転移点:77〜90℃)製の透明基板
を用いた以外は実施例6と同様にして、薄膜トランジス
タの転写を行った。 (実施例17)転写体として、ポリアミド(ガラス転移
点:145℃)製の透明基板を用いた以外は実施例9と
同様にして、薄膜トランジスタの転写を行った。
Example 16 A thin-film transistor was transferred in the same manner as in Example 6, except that a transparent substrate made of high-density polyethylene (glass transition point: 77 to 90 ° C.) was used as a transfer body. (Example 17) A thin film transistor was transferred in the same manner as in Example 9 except that a transparent substrate made of polyamide (glass transition point: 145 ° C) was used as a transfer body.

【0207】(実施例18)転写体として、エポキシ樹
脂(ガラス転移点:120℃)製の透明基板を用いた以
外は実施例10と同様にして、薄膜トランジスタの転写
を行った。
Example 18 A thin film transistor was transferred in the same manner as in Example 10 except that a transparent substrate made of an epoxy resin (glass transition point: 120 ° C.) was used as a transfer body.

【0208】(実施例19)転写体として、ポリメチル
メタクリレート(ガラス転移点:70〜90℃)製の透
明基板を用いた以外は実施例11と同様にして、薄膜ト
ランジスタの転写を行った。
Example 19 A thin film transistor was transferred in the same manner as in Example 11 except that a transparent substrate made of polymethyl methacrylate (glass transition point: 70 to 90 ° C.) was used as a transfer body.

【0209】実施例1〜19について、それぞれ、転写
された薄膜トランジスタの状態を肉眼と顕微鏡とで視観
察したところ、いずれも、欠陥やムラがなく、均一に転
写がなされていた。
In each of Examples 1 to 19, when the state of the transferred thin film transistor was visually observed with the naked eye and a microscope, it was found that all of the transferred thin film transistors were uniformly transferred without any defect or unevenness.

【0210】以上述べたように、本発明の転写技術を用
いれば、薄膜素子(被転写層)を種々の転写体へ転写す
ることが可能となる。例えば、薄膜を直接形成すること
ができないかまたは形成するのに適さない材料、成形が
容易な材料、安価な材料等で構成されたものや、移動し
にくい大型の物体等に対しても、転写によりそれを形成
することができる。
As described above, by using the transfer technique of the present invention, it is possible to transfer a thin film element (transferred layer) to various transfer members. For example, even when a thin film cannot be directly formed or is not suitable for forming, a material that is easily formed, a material formed of an inexpensive material, or a large object that is difficult to move, it is transferred. To form it.

【0211】特に、転写体は、各種合成樹脂や融点の低
いガラス材のような、基板材料に比べ耐熱性、耐食性等
の特性が劣るものを用いることができる。そのため、例
えば、透明基板上に薄膜トランジスタ(特にポリシリコ
ンTFT)を形成した液晶ディスプレイを製造するに際
しては、基板として、耐熱性に優れる石英ガラス基板を
用い、転写体として、各種合成樹脂や融点の低いガラス
材のような安価でかつ加工のし易い材料の透明基板を用
いることにより、大型で安価な液晶ディスプレイを容易
に製造することができるようになる。このような利点
は、液晶ディスプレイに限らず、他のデバイスの製造に
ついても同様である。
In particular, as the transfer body, materials such as various synthetic resins and glass materials having a low melting point, which are inferior in properties such as heat resistance and corrosion resistance as compared with the substrate material, can be used. Therefore, for example, when manufacturing a liquid crystal display in which a thin film transistor (especially a polysilicon TFT) is formed on a transparent substrate, a quartz glass substrate having excellent heat resistance is used as a substrate, and various synthetic resins and low melting points are used as a transfer body. By using a transparent substrate made of an inexpensive and easy-to-process material such as a glass material, a large and inexpensive liquid crystal display can be easily manufactured. Such advantages are not limited to the liquid crystal display, but are the same in the manufacture of other devices.

【0212】また、以上のような利点を享受しつつも、
信頼性の高い基板、特に石英ガラス基板のような耐熱性
の高い基板に対し機能性薄膜のような被転写層を形成
し、さらにはパターニングすることができるので、転写
体の材料特性にかかわらず、転写体上に信頼性の高い機
能性薄膜を形成することができる。
[0212] While enjoying the above advantages,
A transferable layer such as a functional thin film can be formed and patterned on a highly reliable substrate, especially a substrate with high heat resistance such as a quartz glass substrate, regardless of the material characteristics of the transfer body. Thus, a highly reliable functional thin film can be formed on the transfer member.

【0213】また、このような信頼性の高い基板は、高
価であるが、それを再利用することも可能であり、よっ
て、製造コストも低減される。
Although such a highly reliable substrate is expensive, it can be reused, thereby reducing the manufacturing cost.

【0214】[0214]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の薄膜素子の転写方法の第1の実施の形
態における第1の工程を示す断面図である。
FIG. 1 is a cross-sectional view showing a first step in a first embodiment of a method for transferring a thin film element of the present invention.

【図2】本発明の薄膜素子の転写方法の第1の実施の形
態における第2の工程を示す断面図である。
FIG. 2 is a cross-sectional view showing a second step in the first embodiment of the method for transferring a thin film element of the present invention.

【図3】本発明の薄膜素子の転写方法の第1の実施の形
態における第3の工程を示す断面図である。
FIG. 3 is a cross-sectional view showing a third step in the first embodiment of the method for transferring a thin film element of the present invention.

【図4】本発明の薄膜素子の転写方法の第1の実施の形
態における第4の工程を示す断面図である。
FIG. 4 is a cross-sectional view showing a fourth step in the first embodiment of the method for transferring a thin film element of the present invention.

【図5】本発明の薄膜素子の転写方法の第1の実施の形
態における第5の工程を示す断面図である。
FIG. 5 is a cross-sectional view showing a fifth step in the first embodiment of the method for transferring a thin film element of the present invention.

【図6】本発明の薄膜素子の転写方法の第1の実施の形
態における第6の工程を示す断面図である。
FIG. 6 is a cross-sectional view showing a sixth step in the first embodiment of the method for transferring a thin film element of the present invention.

【図7】第1の基板(図1の基板100)のレーザー光
の波長に対する透過率の変化を示す図である。
FIG. 7 is a diagram showing a change in transmittance of a first substrate (the substrate 100 in FIG. 1) with respect to a wavelength of laser light.

【図8】本発明の薄膜素子の転写方法の第2の実施の形
態における第1の工程を示す断面図である。
FIG. 8 is a sectional view showing a first step in a second embodiment of the method for transferring a thin film element of the present invention.

【図9】本発明の薄膜素子の転写方法の第2の実施の形
態における第2の工程を示す断面図である。
FIG. 9 is a cross-sectional view showing a second step in the second embodiment of the method for transferring a thin film element of the present invention.

【図10】本発明の薄膜素子の転写方法の第2の実施の
形態における第3の工程を示す断面図である。
FIG. 10 is a sectional view showing a third step in the second embodiment of the method for transferring a thin film element of the present invention.

【図11】本発明の薄膜素子の転写方法の第2の実施の
形態における第4の工程を示す断面図である。
FIG. 11 is a cross-sectional view showing a fourth step in the second embodiment of the method for transferring a thin film element of the present invention.

【図12】本発明の薄膜素子の転写方法の第2の実施の
形態における第5の工程を示す断面図である。
FIG. 12 is a cross-sectional view showing a fifth step in the second embodiment of the method for transferring a thin film element of the present invention.

【図13】本発明の薄膜素子の転写方法の第2の実施の
形態における第6の工程を示す断面図である。
FIG. 13 is a sectional view showing a sixth step in the second embodiment of the method for transferring a thin film element of the present invention.

【図14】本発明の薄膜素子の転写方法の第2の実施の
形態における第7の工程を示す断面図である。
FIG. 14 is a cross-sectional view showing a seventh step in the second embodiment of the method for transferring a thin film element of the present invention.

【図15】本発明の薄膜素子の転写方法の第2の実施の
形態における第8の工程を示す断面図である。
FIG. 15 is a sectional view showing an eighth step in the second embodiment of the method for transferring a thin film element of the present invention.

【図16】本発明の薄膜素子の転写方法の第2の実施の
形態における第9の工程を示す断面図である。
FIG. 16 is a sectional view showing a ninth step in the second embodiment of the method for transferring a thin film element of the present invention.

【図17】本発明の薄膜素子の転写方法の第2の実施の
形態における第10の工程を示す断面図である。
FIG. 17 is a sectional view showing a tenth step in the second embodiment of the method for transferring a thin film element of the present invention.

【図18】本発明の薄膜素子の転写方法の第2の実施の
形態における第11の工程を示す断面図である。
FIG. 18 is a sectional view showing an eleventh step in the second embodiment of the method for transferring a thin film element of the present invention.

【図19】(a),(b)は共に、本発明を用いて製造
されたマイクロコンピュータの斜視図である。
19A and 19B are perspective views of a microcomputer manufactured by using the present invention.

【図20】液晶表示装置の構成を説明するための図であ
る。
FIG. 20 is a diagram illustrating a configuration of a liquid crystal display device.

【図21】液晶表示装置の要部の断面構造を示す図であ
る。
FIG. 21 is a diagram showing a cross-sectional structure of a main part of a liquid crystal display device.

【図22】液晶表示装置の要部の構成を説明するための
図である。
FIG. 22 is a diagram illustrating a configuration of a main part of the liquid crystal display device.

【図23】本発明を用いたアクティブマトリクス基板の
製造方法の第1の工程を示すデバイスの断面図である。
FIG. 23 is a cross-sectional view of a device showing a first step in a method for manufacturing an active matrix substrate using the present invention.

【図24】本発明を用いたアクティブマトリクス基板の
製造方法の第2の工程を示すデバイスの断面図である。
FIG. 24 is a cross-sectional view of a device showing a second step in the method of manufacturing an active matrix substrate using the present invention.

【図25】本発明を用いたアクティブマトリクス基板の
製造方法の第3の工程を示すデバイスの断面図である。
FIG. 25 is a cross-sectional view of a device showing a third step in the method for manufacturing an active matrix substrate using the present invention.

【図26】本発明を用いたアクティブマトリクス基板の
製造方法の第4の工程を示すデバイスの断面図である。
FIG. 26 is a cross-sectional view of a device showing a fourth step in the method for manufacturing an active matrix substrate using the present invention.

【図27】本発明を用いたアクティブマトリクス基板の
製造方法の第5の工程を示すデバイスの断面図である。
FIG. 27 is a cross-sectional view of a device showing a fifth step of the method for manufacturing an active matrix substrate using the present invention.

【図28】本発明の薄膜素子の転写方法の他の例を説明
すための図である。
FIG. 28 is a view for explaining another example of the method for transferring a thin film element of the present invention.

【図29】本発明の薄膜素子の転写方法のさらに他の例
を説明すための図である。
FIG. 29 is a view for explaining still another example of the method for transferring a thin film element according to the present invention.

【図30】本発明の薄膜素子の転写方法の変形例を説明
すための図である。
FIG. 30 is a view for explaining a modification of the method for transferring a thin film element of the present invention.

【符号の説明】[Explanation of symbols]

100 基板 120 アモルファスシリコン層(レーザー吸収層) 140 薄膜デバイス層 160 接着層 180 転写体 REFERENCE SIGNS LIST 100 substrate 120 amorphous silicon layer (laser absorption layer) 140 thin film device layer 160 adhesive layer 180 transfer body

Claims (31)

【特許請求の範囲】[Claims] 【請求項1】 基板上の薄膜素子を転写体に転写する方
法であって、 前記基板上に分離層を形成する工程と、 前記分離層上に薄膜素子を含む被転写層を形成する工程
と、 前記薄膜素子を含む被転写層を接着層を介して前記転写
体に接合する工程と、 前記分離層に光を照射し、前記分離層の層内および/ま
たは界面において剥離を生じせしめる工程と、 前記基板を前記分離層から離脱させる工程と、を有する
ことを特徴とする薄膜素子の転写方法。
1. A method of transferring a thin film element on a substrate to a transfer body, comprising: forming a separation layer on the substrate; and forming a transfer layer including the thin film element on the separation layer. Bonding a transfer-receiving layer including the thin-film element to the transfer body via an adhesive layer; and irradiating the separation layer with light to cause peeling in the separation layer and / or at the interface. Separating the substrate from the separation layer.
【請求項2】 請求項1において、 前記基板は透光性の基板であり、 前記分離層への前記光の照射は、前記透光性の基板を介
して行われることを特徴とする薄膜素子の転写方法。
2. The thin film element according to claim 1, wherein the substrate is a light-transmitting substrate, and the irradiation of the light to the separation layer is performed through the light-transmitting substrate. Transfer method.
【請求項3】 請求項1または請求項2において、 前記転写体に付着している前記分離層を除去する工程
を、さらに有することを特徴とする薄膜素子の転写方
法。
3. The method according to claim 1, further comprising a step of removing the separation layer attached to the transfer body.
【請求項4】 請求項1〜請求項3のいずれかにおい
て、 前記転写体は、透明基板であることを特徴とする薄膜素
子の転写方法。
4. The method for transferring a thin film element according to claim 1, wherein the transfer body is a transparent substrate.
【請求項5】 請求項1〜請求項4のいずれかにおい
て、 前記転写体は、被転写層の形成の際の最高温度をTmax
としたとき、ガラス転移点(Tg)または軟化点が前記
max以下の材料で構成されていることを特徴とする薄
膜素子の転写方法。
5. The transfer body according to claim 1, wherein a maximum temperature at the time of forming the layer to be transferred is T max.
Wherein the glass transition point (Tg) or softening point of the material is equal to or less than the Tmax .
【請求項6】 請求項1〜請求項4のいずれかにおい
て、 前記転写体は、ガラス転移点(Tg)または軟化点が、
前記薄膜素子の形成プロセスの最高温度以下であること
を特徴とする薄膜素子の転写方法。
6. The transfer body according to claim 1, wherein the transfer body has a glass transition point (Tg) or a softening point.
A method for transferring a thin film element, wherein the temperature is lower than or equal to the maximum temperature of the process for forming the thin film element.
【請求項7】 請求項1〜請求項6のいずれかにおい
て、 前記転写体は、合成樹脂またはガラス材で構成されてい
ることを特徴とする薄膜素子の転写方法。
7. The method according to claim 1, wherein the transfer member is made of a synthetic resin or a glass material.
【請求項8】 請求項1〜請求項7のいずれかにおい
て、 前記基板は、耐熱性を有することを特徴とする薄膜素子
の転写方法。
8. The method according to claim 1, wherein the substrate has heat resistance.
【請求項9】 請求項1〜請求項8のいずれかにおい
て、 前記基板は310nmの光を10%以上透過する基板で
あることを特徴とする薄膜素子の転写方法。
9. The method for transferring a thin film element according to claim 1, wherein the substrate transmits at least 10% of 310 nm light.
【請求項10】 請求項1〜請求項9において、 前記基板は、被転写層の形成の際の最高温度をTmax
したとき、歪み点が前記Tmax以上の材料で構成されて
いることを特徴とする薄膜素子の転写方法。
10. The substrate according to claim 1, wherein the substrate is formed of a material whose strain point is equal to or higher than Tmax when a maximum temperature at the time of forming the transfer-receiving layer is Tmax . A method for transferring a thin film element, characterized by comprising:
【請求項11】 請求項1〜請求項10のいずれかにお
いて、 前記分離層は、アモルファスシリコンで構成されている
ことを特徴とする薄膜素子の転写方法。
11. The method according to claim 1, wherein the separation layer is made of amorphous silicon.
【請求項12】 請求項11において、 前記アモルファスシリコンは、水素(H)を2原子%以
上含有することを特徴とする薄膜素子の転写方法。
12. The method according to claim 11, wherein the amorphous silicon contains hydrogen (H) at 2 atomic% or more.
【請求項13】 請求項12において、 前記アモルファスシリコンは、水素(H)を10原子%
以上含有することを特徴とする薄膜素子の転写方法。
13. The amorphous silicon according to claim 12, wherein the amorphous silicon contains 10 atomic% of hydrogen (H).
A method for transferring a thin-film element, comprising:
【請求項14】 請求項1〜請求項10のいずれかにお
いて、 前記分離層が窒化シリコンからなることを特徴とする薄
膜素子の転写方法。
14. The method according to claim 1, wherein the separation layer is made of silicon nitride.
【請求項15】 請求項1〜請求項10のいずれかにお
いて、 前記分離層が水素含有合金からなることを特徴とする薄
膜素子の転写方法。
15. The method according to claim 1, wherein the separation layer is made of a hydrogen-containing alloy.
【請求項16】 請求項1〜請求項10のいずれかにお
いて、 前記分離層が窒素含有金属合金からなることを特徴とす
る薄膜素子の転写方法。
16. The method according to claim 1, wherein the separation layer is made of a nitrogen-containing metal alloy.
【請求項17】 請求項1〜請求項10のいずれかにお
いて、 前記分離層は多層膜からなることを特徴とする薄膜素子
の転写方法。
17. The method according to claim 1, wherein the separation layer is formed of a multilayer film.
【請求項18】 請求項17において、 前記多層膜は、アモルファスシリコン膜とその上に形成
された金属膜とからなることを特徴とする薄膜素子の転
写方法。
18. The method according to claim 17, wherein the multilayer film includes an amorphous silicon film and a metal film formed thereon.
【請求項19】 請求項1〜請求項10のいずれかにお
いて、 前記分離層は、セラミックス,金属,有機高分子材料の
少なくとも一種から構成されていることを特徴とする薄
膜素子の転写方法。
19. The method according to claim 1, wherein the separation layer is made of at least one of a ceramic, a metal, and an organic polymer material.
【請求項20】 請求項1〜請求項19のいずれかにお
いて、 前記光はレーザー光であることを特徴とする薄膜素子の
転写方法。
20. The method according to claim 1, wherein the light is a laser beam.
【請求項21】 請求項20において、 前記レーザー光の波長が、100nm〜350nmであ
ることを特徴とする薄膜素子の転写方法。
21. The method according to claim 20, wherein a wavelength of the laser light is 100 nm to 350 nm.
【請求項22】 請求項20において、 前記レーザー光の波長が、350nm〜1200nmで
あることを特徴とする薄膜素子の転写方法。
22. The method according to claim 20, wherein the wavelength of the laser beam is 350 nm to 1200 nm.
【請求項23】 請求項1〜請求項22のいずれかにお
いて、 前記薄膜素子は薄膜トランジスタ(TFT)であること
を特徴とする薄膜素子の転写方法。
23. The method according to claim 1, wherein the thin film element is a thin film transistor (TFT).
【請求項24】 請求項1〜請求項23のいずれかにお
いて、 請求項1に記載の転写方法を複数回実行して、前記基板
よりも大きい前記転写体上に、複数の被転写層を転写す
ることを特徴とする薄膜素子の転写方法。
24. The transfer method according to claim 1, wherein the transfer method according to claim 1 is performed a plurality of times to transfer a plurality of layers to be transferred onto the transfer body that is larger than the substrate. A method of transferring a thin film element.
【請求項25】 請求項1〜請求項24のいずれかにお
いて、 請求項1に記載の転写方法を複数回実行して、前記転写
体上に、薄膜素子の設計ルールのレベルが異なる複数の
被転写層を転写することを特徴とする薄膜素子の転写方
法。
25. The transfer method according to claim 1, wherein the transfer method according to claim 1 is executed a plurality of times, and a plurality of substrates having different levels of thin film element design rules are formed on the transfer body. A method for transferring a thin film element, comprising transferring a transfer layer.
【請求項26】 請求項1〜請求項22のいずれかに記
載の転写方法を用いて前記転写体に転写されてなる薄膜
素子。
26. A thin-film element transferred onto the transfer member by using the transfer method according to claim 1. Description:
【請求項27】 請求項26において、 前記薄膜素子は、薄膜トランジスタ(TFT)であるこ
とを特徴とする薄膜素子。
27. The thin film element according to claim 26, wherein the thin film element is a thin film transistor (TFT).
【請求項28】 請求項1〜請求項25のいずれかに記
載の転写方法を用いて前記転写体に転写された薄膜素子
を含んで構成される薄膜集積回路装置。
28. A thin-film integrated circuit device including a thin-film element transferred to the transfer body by using the transfer method according to claim 1. Description:
【請求項29】 マトリクス状に配置された薄膜トラン
ジスタ(TFT)と、その薄膜トランジスタの一端に接
続された画素電極とを含んで画素部が構成されるアクテ
ィブマトリクス基板であって、 請求項1〜請求項24のいずれかに記載の方法を用いて
前記画素部の薄膜トランジスタを転写することにより製
造されたアクティブマトリクス基板。
29. An active matrix substrate comprising a pixel portion including thin-film transistors (TFTs) arranged in a matrix and a pixel electrode connected to one end of the thin-film transistor. 24. An active matrix substrate manufactured by transferring the thin film transistor of the pixel portion using the method according to any one of 24.
【請求項30】 マトリクス状に配置された走査線と信
号線とに接続される薄膜トランジスタ(TFT)と、そ
の薄膜トランジスタの一端に接続された画素電極とを含
んで画素部が構成され、かつ、前記走査線および前記信
号線に信号を供給するためのドライバ回路を内蔵するア
クティブマトリクス基板であって、 請求項25に記載の方法を用いて形成された、第1の設
計ルールレベルの前記画素部の薄膜トランジスタおよび
第2の設計ルールレベルの前記ドライバ回路を構成する
薄膜トランジスタを具備するアクティブマトリクス基
板。
30. A pixel portion comprising: a thin film transistor (TFT) connected to a scanning line and a signal line arranged in a matrix; and a pixel electrode connected to one end of the thin film transistor. An active matrix substrate including a driver circuit for supplying a signal to a scanning line and the signal line, the driver circuit including: a pixel circuit of a first design rule level formed by using the method according to claim 25. An active matrix substrate comprising a thin film transistor and a thin film transistor constituting the driver circuit at a second design rule level.
【請求項31】 請求項29〜請求項30のいずれかに
記載のアクティブマトリクス基板を用いて製造された液
晶表示装置。
31. A liquid crystal display device manufactured using the active matrix substrate according to claim 29.
JP31559096A 1996-08-27 1996-11-12 Thin film element transfer method Expired - Fee Related JP4619462B2 (en)

Priority Applications (24)

Application Number Priority Date Filing Date Title
JP31559096A JP4619462B2 (en) 1996-08-27 1996-11-12 Thin film element transfer method
EP03076869A EP1351308B1 (en) 1996-08-27 1997-08-26 Exfoliating method and transferring method of thin film device
US09/051,966 US6372608B1 (en) 1996-08-27 1997-08-26 Separating method, method for transferring thin film device, thin film device, thin film integrated circuit device, and liquid crystal display device manufactured by using the transferring method
KR10-2004-7015277A KR100500520B1 (en) 1996-08-27 1997-08-26 A transferring method and a method for manufacturing an active matrix substrate
CNB971911347A CN1143394C (en) 1996-08-27 1997-08-26 Separating method, method for transferring thin film device, thin film device, thin film IC device and liquid crystal display device mfg by using transferring method
DE69739376T DE69739376D1 (en) 1996-08-27 1997-08-26 Deposition method and method for transferring a thin film device
KR10-1998-0703007A KR100481994B1 (en) 1996-08-27 1997-08-26 Stripping method, transfer method of thin film device, and thin film device, thin film integrated circuit device and liquid crystal display device manufactured using the same
EP97935891A EP0858110B1 (en) 1996-08-27 1997-08-26 Separating method, method for transferring thin film device, and liquid crystal display device manufactured by using the transferring method
CNA031579647A CN1495523A (en) 1996-08-27 1997-08-26 Transfer method and active matrix base board mfg. method
DE69739368T DE69739368D1 (en) 1996-08-27 1997-08-26 Separation method and method for transferring a thin film device
EP06076859A EP1744365B1 (en) 1996-08-27 1997-08-26 Exfoliating method and transferring method of thin film device
PCT/JP1997/002972 WO1998009333A1 (en) 1996-08-27 1997-08-26 Separating method, method for transferring thin film device, thin film device, thin film integrated circuit device, and liquid crystal display device manufactured by using the transferring method
EP06076860A EP1758169A3 (en) 1996-08-27 1997-08-26 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
DE69737086T DE69737086T2 (en) 1996-08-27 1997-08-26 DISCONNECTING METHOD, METHOD FOR TRANSMITTING A THIN FILM COMPONENT, AND LIQUID CRYSTAL DISPLAY ELEMENT PRODUCED BY USING THE TRANSMISSION METHOD
EP06075225A EP1655633A3 (en) 1996-08-27 1997-08-26 Exfoliating method, transferring method of thin film device, thin film integrated circuit device, and liquid crystal display device
TW086112252A TW360901B (en) 1996-08-27 1997-08-26 Method of peeling thin-film device, method of transferring thin-film device, thin-film device thereby, thin-film IC circuit device, and liquid crystal display device
US09/113,373 US6127199A (en) 1996-11-12 1998-07-10 Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
US10/091,562 US6645830B2 (en) 1996-08-27 2002-03-07 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device and liquid crystal display device produced by the same
US10/263,070 USRE38466E1 (en) 1996-11-12 2002-10-03 Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
US10/420,840 US6818530B2 (en) 1996-08-27 2003-04-23 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
US10/748,206 USRE40601E1 (en) 1996-11-12 2003-12-31 Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
US10/851,202 US7094665B2 (en) 1996-08-27 2004-05-24 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
US11/242,017 US7285476B2 (en) 1996-08-27 2005-10-04 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
US11/514,985 US7468308B2 (en) 1996-08-27 2006-09-05 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22564396 1996-08-27
JP8-225643 1996-08-27
JP31559096A JP4619462B2 (en) 1996-08-27 1996-11-12 Thin film element transfer method

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2003382675A Division JP3809833B2 (en) 1996-08-27 2003-11-12 Thin film element transfer method
JP2003382676A Division JP4619645B2 (en) 1996-08-27 2003-11-12 Thin film element transfer method
JP2003382674A Division JP4619644B2 (en) 1996-08-27 2003-11-12 Thin film element transfer method

Publications (2)

Publication Number Publication Date
JPH10125931A true JPH10125931A (en) 1998-05-15
JP4619462B2 JP4619462B2 (en) 2011-01-26

Family

ID=26526743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31559096A Expired - Fee Related JP4619462B2 (en) 1996-08-27 1996-11-12 Thin film element transfer method

Country Status (1)

Country Link
JP (1) JP4619462B2 (en)

Cited By (177)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044242A1 (en) * 1998-02-25 1999-09-02 Seiko Epson Corporation Method of detaching thin-film device, method of transferring thin-film device, thin-film device, active matrix substrate, and liquid crystal display
JP2000133809A (en) * 1998-10-27 2000-05-12 Seiko Epson Corp Peeling method
EP0924769A4 (en) * 1997-07-03 2001-11-14 Seiko Epson Corp Method of transferring thin film devices, thin film device, thin film integrated circuit device, active matrix substrate, liquid crystal display, and electronic apparatus
JP2002184959A (en) * 2000-12-15 2002-06-28 Sharp Corp Transfer method of functional device and functional panel
JP2002296228A (en) * 2001-03-30 2002-10-09 Seiko Epson Corp Biosensor
JP2003022032A (en) * 2001-07-06 2003-01-24 Sharp Corp Method for manufacturing functional element substrate and method for manufacturing functional panel
JP2003031778A (en) * 2001-07-13 2003-01-31 Seiko Epson Corp Method for manufacturing thin film device
US6559905B1 (en) 1999-06-25 2003-05-06 Kabushiki Kaisha Toshiba Active matrix substrate and method of manufacturing the same
JP2003142666A (en) * 2001-07-24 2003-05-16 Seiko Epson Corp Transfer method for element, method for manufacturing element, integrated circuit, circuit board, electrooptic device, ic card and electronic apparatus
JP2003163337A (en) * 2001-08-10 2003-06-06 Semiconductor Energy Lab Co Ltd Stripping method and method for producing semiconductor device
JP2003163338A (en) * 2001-08-22 2003-06-06 Semiconductor Energy Lab Co Ltd Stripping method and method for producing semiconductor device
JP2003174153A (en) * 2001-07-16 2003-06-20 Semiconductor Energy Lab Co Ltd Peeling method, semiconductor device, and manufacturing method therefor
JP2003195787A (en) * 2001-07-16 2003-07-09 Semiconductor Energy Lab Co Ltd Manufacturing method for light emitting device
JP2003229548A (en) * 2001-11-30 2003-08-15 Semiconductor Energy Lab Co Ltd Vehicle, display device and method for manufacturing semiconductor device
JP2003258211A (en) * 2001-12-28 2003-09-12 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US6642542B1 (en) 1999-09-30 2003-11-04 Seiko Epson Corporation Large EL panel and manufacturing method therefor
JP2004047975A (en) * 2002-05-17 2004-02-12 Semiconductor Energy Lab Co Ltd Method of transferring laminate and method of manufacturing semiconductor device
JP2004056143A (en) * 2002-07-16 2004-02-19 Semiconductor Energy Lab Co Ltd Method for releasing
JP2004096018A (en) * 2002-09-03 2004-03-25 Seiko Epson Corp Manufacturing method for circuit substrate, electrooptical apparatus, and electronic appliance
EP1403691A1 (en) * 2002-09-26 2004-03-31 Seiko Epson Corporation Electro-optical display device and its manufacturing method including the transfer of a chip
EP1408365A2 (en) * 2002-10-08 2004-04-14 Seiko Epson Corporation Circuit board and method of manufacturing the same
JP2004173841A (en) * 2002-11-26 2004-06-24 Seiko Epson Corp Personal identification device, card type information recording medium, and information processing system using the same
JP2004228374A (en) * 2003-01-23 2004-08-12 Seiko Epson Corp Device and its manufacturing method, electro-optical device, and electronic apparatus
JP2004228373A (en) * 2003-01-23 2004-08-12 Seiko Epson Corp Device and its manufacturing method, electro-optical device, and electronic apparatus
JP2004246351A (en) * 2003-01-22 2004-09-02 Semiconductor Energy Lab Co Ltd Semiconductor device and electronic equipment
JP2004252297A (en) * 2003-01-28 2004-09-09 Seiu Kagi Kofun Yugenkoshi Manufacturing method of tft liquid crystal display panel
JP2004260176A (en) * 2003-02-25 2004-09-16 Palo Alto Research Center Inc Tape and its manufacturing method
US6814832B2 (en) 2001-07-24 2004-11-09 Seiko Epson Corporation Method for transferring element, method for producing element, integrated circuit, circuit board, electro-optical device, IC card, and electronic appliance
JP2005026706A (en) * 2002-05-17 2005-01-27 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
US6849877B2 (en) 2001-06-20 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
JP2005033219A (en) * 2002-07-16 2005-02-03 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2005081299A (en) * 2003-09-10 2005-03-31 Seiko Epson Corp Method for forming film, method for forming circuit pattern, method for producing semiconductor device, electro-optical apparatus, and electronic apparatus
US6887650B2 (en) 2001-07-24 2005-05-03 Seiko Epson Corporation Transfer method, method of manufacturing thin film devices, method of manufacturing integrated circuits, circuit board and manufacturing method thereof, electro-optical apparatus and manufacturing method thereof, ic card, and electronic appliance
US6946361B2 (en) 2001-08-10 2005-09-20 Semiconductor Energy Laboratory Co., Ltd. Method of peeling off and method of manufacturing semiconductor device
JP2006032927A (en) * 2004-06-14 2006-02-02 Semiconductor Energy Lab Co Ltd Semiconductor device and communication system
US7005671B2 (en) 2001-10-01 2006-02-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, electronic equipment, and organic polarizing film
EP1453086A3 (en) * 2003-02-28 2006-03-08 Semiconductor Energy Laboratory Co., Ltd. Thin film semiconductor device and method of manufacturing same
US7022538B2 (en) * 2000-12-07 2006-04-04 Seiko Epson Corporation Display device and manufacturing method for the same
US7034775B2 (en) 2001-03-26 2006-04-25 Seiko Epson Corporation Display device and method for manufacturing the same
JP2006120726A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Process for fabricating thin film device, electro-optical device, electronic apparatus
JP2006120720A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Process for fabricating thin film device, active matrix substrate, electro-optical device, electronic apparatus
US7045438B2 (en) 2001-07-27 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, semiconductor device, and method of fabricating the devices
US7045442B2 (en) 2002-12-27 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Method of separating a release layer from a substrate comprising hydrogen diffusion
JP2006135051A (en) * 2004-11-05 2006-05-25 Seiko Epson Corp Thin-film device, method for manufacturing the same, electrooptical device, and electronic apparatus
US7067926B2 (en) 2002-12-19 2006-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor chip and method for manufacturing the same
US7067976B2 (en) 2001-07-03 2006-06-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method of manufacturing a light-emitting device, and electronic equipment
US7084045B2 (en) 2003-12-12 2006-08-01 Seminconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2006203219A (en) * 2001-08-10 2006-08-03 Semiconductor Energy Lab Co Ltd Peeling method
JP2006203220A (en) * 2001-07-16 2006-08-03 Semiconductor Energy Lab Co Ltd Peeling method
US7101729B2 (en) 2002-03-28 2006-09-05 Seiko Epson Corporation Method of manufacturing a semiconductor device having adjoining substrates
US7122445B2 (en) 2002-07-16 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Peeling method
US7122444B2 (en) 2003-10-30 2006-10-17 Nec Corporation Manufacturing method of thin film device substrate
US7147740B2 (en) 2002-05-17 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Method of transferring a laminate and method of manufacturing a semiconductor device
US7164155B2 (en) 2002-05-15 2007-01-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7164151B2 (en) 2003-02-12 2007-01-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with pixel portion and driving circuit, and electronic device
JP2007013108A (en) * 2005-05-31 2007-01-18 Semiconductor Energy Lab Co Ltd Process for fabricating semiconductor device and semiconductor device
JP2007501525A (en) * 2003-08-04 2007-01-25 ナノシス・インコーポレイテッド Nanowire composites and systems and methods for making electronic substrates derived therefrom
US7179520B2 (en) 2003-12-26 2007-02-20 Seiko Epson Corporation Circuit substrate, electro-optic device and electronic equipment
US7180093B2 (en) 2002-11-01 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7189631B2 (en) 2002-10-30 2007-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7211828B2 (en) 2001-06-20 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic apparatus
US7230316B2 (en) 2002-12-27 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having transferred integrated circuit
US7230271B2 (en) 2002-06-11 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device comprising film having hygroscopic property and transparency and manufacturing method thereof
US7242441B2 (en) 2002-06-10 2007-07-10 Seiko Epson Corporation Method for manufacturing electro-optical device, and electro-optical device and electronic device manufactured with this manufacturing method
US7241666B2 (en) 2003-10-28 2007-07-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7262088B2 (en) 2004-03-10 2007-08-28 Seiko Epson Corporation Thin film device supply body, method of fabricating thin film device, method of transfer, method of fabricating semiconductor device, and electronic equipment
JP2007305678A (en) * 2006-05-09 2007-11-22 Seiko Epson Corp Process for producing laminate, electro-optic device, and electronic apparatus
US7302088B2 (en) 2002-07-12 2007-11-27 Seiko Epson Corporation Personal verification device, card-type information storage medium, and information processing system using the same
JP2007534982A (en) * 2004-03-20 2007-11-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Application of color elements and bus bars to display substrates
US7303942B2 (en) 2002-12-26 2007-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7332381B2 (en) 2001-10-30 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7402446B2 (en) 2003-11-17 2008-07-22 Seiko Epson Corporation Method of manufacturing an electroluminescence device
US7407628B2 (en) 2003-09-01 2008-08-05 Seiko Epson Corporation Biosensor and method of manufacturing biosensor
JP2008187094A (en) * 2007-01-31 2008-08-14 Seiko Epson Corp Manufacturing method of semiconductor device
US7436050B2 (en) 2003-01-22 2008-10-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a flexible printed circuit
JP2008258288A (en) * 2007-04-02 2008-10-23 Ishihara Chem Co Ltd Method for forming circuit
US7453199B2 (en) 2004-04-21 2008-11-18 Seiko Epson Corporation Organic electroluminescent device
JP2008292608A (en) * 2007-05-23 2008-12-04 Hitachi Displays Ltd Fabrication method of display device
US7508128B2 (en) 2002-08-29 2009-03-24 Seiko Epson Corporation Electroluminescent device with barrier layer structure, method for manufacturing the same, and electronic apparatus
JP2009076852A (en) * 2007-08-31 2009-04-09 Seiko Epson Corp Thin-film device, method for manufacturing thin-film device, and display
US7521383B2 (en) 2005-06-30 2009-04-21 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US7563147B2 (en) 2004-04-21 2009-07-21 Seiko Epson Corporation Organic electroluminescent device, method of manufacture thereof and electronic apparatus
US7576362B2 (en) 2003-03-14 2009-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having EL element, integrated circuit and adhesive layer therebetween
US7588969B2 (en) 2005-05-31 2009-09-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, and semiconductor device
JP2009278124A (en) * 2006-09-29 2009-11-26 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US7713840B2 (en) 1996-10-01 2010-05-11 Osram Gmbh Electronic components produced by a method of separating two layers of material from one another
US7723209B2 (en) 2002-12-27 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, delamination method, and transferring method
US7733559B2 (en) 2006-12-28 2010-06-08 Seiko Epson Corporation Electrophoretic display sheet, electrophoretic display device, and electronic apparatus
JP2010134466A (en) * 2001-07-16 2010-06-17 Semiconductor Energy Lab Co Ltd Method of manufacturing light emitting device, and method of manufacturing liquid crystal display
US7843041B2 (en) 2006-01-24 2010-11-30 Seiko Epson Corporation Thin-film circuit device having a low strength region, method for manufacturing the thin-film circuit device, and electronic apparatus
US7858411B2 (en) 2001-12-28 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating light emitting device and method for fabricating liquid crystal display device
US7875510B2 (en) 2008-07-17 2011-01-25 Seiko Epson Corporation Thin-film device, method for manufacturing the same, and electronic apparatus
JP2011063263A (en) * 2001-11-30 2011-03-31 Semiconductor Energy Lab Co Ltd Method for manufacturing light-emitting device
US7919779B2 (en) 2003-01-08 2011-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing thereof
US7968388B2 (en) 2007-08-31 2011-06-28 Seiko Epson Corporation Thin-film device, method for manufacturing thin-film device, and display
US7973313B2 (en) 2003-02-24 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device, IC label, container comprising the thin film integrated circuit, manufacturing method of the thin film integrated circuit device, manufacturing method of the container, and management method of product having the container
US8030132B2 (en) 2005-05-31 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including peeling step
US8048771B2 (en) 2007-11-27 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, semiconductor device and electronic appliance
US8058083B2 (en) 2008-11-20 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing flexible semiconductor device
US8058146B2 (en) * 2004-09-24 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Peeling method
JP2012028761A (en) * 2010-06-25 2012-02-09 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
US8137417B2 (en) 2006-09-29 2012-03-20 Semiconductor Energy Laboratory Co., Ltd. Peeling apparatus and manufacturing apparatus of semiconductor device
US20120107978A1 (en) * 2010-10-30 2012-05-03 Aram Shin Method of fabricating flexible display device
US8173519B2 (en) 2006-03-03 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8222116B2 (en) 2006-03-03 2012-07-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2012216695A (en) * 2011-04-01 2012-11-08 Sony Corp Thin film element and manufacturing method therefor, and method of manufacturing image display unit
KR20120127236A (en) 2011-05-12 2012-11-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and electronic device using the light-emitting device
JP2012256892A (en) * 2004-06-04 2012-12-27 Board Of Trustees Of The Univ Of Illinois Method and device for manufacturing and assembling printable semiconductor elements
JP2013502620A (en) * 2009-08-24 2013-01-24 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー Control of electronic devices using chiplets
JP2013080857A (en) * 2011-10-05 2013-05-02 Dainippon Printing Co Ltd Method for manufacturing device with solid-state component
CN103240770A (en) * 2012-02-09 2013-08-14 旭德科技股份有限公司 Edge separation equipment and operation method thereof
WO2013118536A1 (en) * 2012-02-07 2013-08-15 東京応化工業株式会社 Processing method and processing apparatus
JP2013232451A (en) * 2012-04-27 2013-11-14 Lg Display Co Ltd Thin-film transistor, method of manufacturing the same, and display device
KR20130125715A (en) 2012-05-09 2013-11-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and electronic device
US8678958B2 (en) 2004-02-26 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Sports implement, amusement tool, and training tool
JP2014071231A (en) * 2012-09-28 2014-04-21 Toshiba Corp Method for manufacturing display device
KR20140052969A (en) 2011-02-25 2014-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and electronic device using light-emitting device
US8779658B2 (en) 2002-10-25 2014-07-15 Seiko Epson Corporation Electro-optical device and electronic apparatus
KR20140112738A (en) 2013-03-14 2014-09-24 엘지디스플레이 주식회사 Thin Film Transistor, Method Of Fabricating The Same And Display Device Including The Same
JP2014191934A (en) * 2013-03-26 2014-10-06 Kaneka Corp Method for manufacturing transparent electrode-fitted substrate and laminate
DE102014206530A1 (en) 2013-04-10 2014-10-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US8866176B2 (en) 2012-05-10 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101487438B1 (en) * 2012-12-18 2015-02-04 한국기계연구원 Selective exfoliating and transferring apparatus and method for thin film device
KR20150064671A (en) 2013-12-03 2015-06-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Peeling apparatus and stack manufacturing apparatus
WO2015151659A1 (en) * 2014-03-31 2015-10-08 株式会社 東芝 Production method for flexible organic el display device
KR20160015158A (en) 2014-07-25 2016-02-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Separation method, light-emitting device, module, and electronic device
JP2016506061A (en) * 2012-09-05 2016-02-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Laser peeling of carrier wafer from device wafer
KR20160040513A (en) 2013-08-06 2016-04-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Peeling method
JP2016058740A (en) * 2015-10-26 2016-04-21 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9384439B2 (en) 2004-06-14 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and communication system
US9397149B2 (en) 2013-12-27 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9437832B2 (en) 2014-02-19 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and peeling method
KR20160130246A (en) 2014-03-06 2016-11-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device
KR20160141768A (en) 2014-03-31 2016-12-09 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming release layer
KR20160142331A (en) 2014-03-31 2016-12-12 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming releasing layer
JP2017033002A (en) * 2015-04-13 2017-02-09 株式会社半導体エネルギー研究所 Electronic apparatus manufacture method
US9676175B2 (en) 2014-06-20 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Peeling apparatus
JP2017108147A (en) * 2017-01-17 2017-06-15 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9773998B2 (en) 2013-09-06 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing light-emitting device
KR20170116065A (en) 2015-02-10 2017-10-18 닛산 가가쿠 고교 가부시키 가이샤 Composition for releasing layer
KR20170125362A (en) 2015-03-04 2017-11-14 닛산 가가쿠 고교 가부시키 가이샤 Composition for releasing layer
KR20170132803A (en) 2015-03-31 2017-12-04 닛산 가가쿠 고교 가부시키 가이샤 The composition for forming a peel layer and the peel layer
KR20170133395A (en) 2015-03-31 2017-12-05 닛산 가가쿠 고교 가부시키 가이샤 The composition for forming a peel layer and the peel layer
US9849660B2 (en) 2015-05-27 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Separation apparatus
KR20180021255A (en) * 2013-12-02 2018-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and method for manufacturing the same
US9925749B2 (en) 2013-09-06 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Bonding apparatus and stack body manufacturing apparatus
US9937698B2 (en) 2013-11-06 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Peeling method and light-emitting device
US9947568B2 (en) 2013-02-20 2018-04-17 Semiconductor Energy Laboratory Co., Ltd. Peeling method, semiconductor device, and peeling apparatus
US9960213B2 (en) 2014-04-25 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Input and output device having touch sensor element as input device and display device
JP2018142721A (en) * 2018-04-27 2018-09-13 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2018174084A (en) * 2017-03-31 2018-11-08 株式会社半導体エネルギー研究所 Element, semiconductor device, light-emitting device, display device, peeling method, manufacturing method of semiconductor device, manufacturing method of light-emitting device and manufacturing method of display device
US10189048B2 (en) 2013-12-12 2019-01-29 Semiconductor Energy Laboratory Co., Ltd. Peeling method and peeling apparatus
KR20190011747A (en) 2016-05-23 2019-02-07 닛산 가가쿠 가부시키가이샤 The composition for forming a peel layer and the peel layer
CN109390281A (en) * 2017-08-11 2019-02-26 美光科技公司 Semiconductor device structure and its processing method and system
KR20190035757A (en) 2016-08-03 2019-04-03 닛산 가가쿠 가부시키가이샤 Composition for forming a release layer for a transparent resin substrate
KR20190037265A (en) 2016-08-03 2019-04-05 닛산 가가쿠 가부시키가이샤 The composition for forming a peel layer and the peel layer
KR20190038846A (en) 2016-08-03 2019-04-09 닛산 가가쿠 가부시키가이샤 Composition for releasing layer
KR20190039148A (en) 2016-08-03 2019-04-10 닛산 가가쿠 가부시키가이샤 Composition for releasing layer
US10259207B2 (en) 2016-01-26 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Method for forming separation starting point and separation method
JP2019119779A (en) * 2017-12-28 2019-07-22 日鉄ケミカル&マテリアル株式会社 Method for producing polyimide film, and glass-polyimide laminate
KR20190089208A (en) 2016-12-08 2019-07-30 닛산 가가쿠 가부시키가이샤 Manufacturing method of release layer
KR20190094197A (en) 2016-12-08 2019-08-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of release layer
KR20190094198A (en) 2016-12-08 2019-08-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of release layer
KR20190100228A (en) 2016-12-27 2019-08-28 닛산 가가쿠 가부시키가이샤 Composition for Forming Substrate Protective Layer
KR20190129103A (en) 2017-03-30 2019-11-19 닛산 가가쿠 가부시키가이샤 Peeling Layer Formation Composition and Peeling Layer
US20200095670A1 (en) * 2018-09-25 2020-03-26 Disco Corporation Method for forming adherend with optical thin film
CN111341716A (en) * 2020-03-09 2020-06-26 深圳市华星光电半导体显示技术有限公司 Flexible display substrate stripping device and flexible display substrate stripping method
JP2020107821A (en) * 2018-12-28 2020-07-09 株式会社ディスコ Lift-off method
JP6742049B1 (en) * 2020-06-10 2020-08-19 エー・アンド・エイチ・ジャパン株式会社 How to collect valuables
CN111681985A (en) * 2020-06-23 2020-09-18 广东聚华印刷显示技术有限公司 Display panel stripping method
US10978489B2 (en) 2015-07-24 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display panel, method for manufacturing semiconductor device, method for manufacturing display panel, and information processing device
JP2021181118A (en) * 2020-05-18 2021-11-25 ミーレ カンパニー インコーポレイテッド Thin film removal device and thin film removal method
KR20220059551A (en) 2016-05-23 2022-05-10 닛산 가가쿠 가부시키가이샤 Detachable layer-forming composition and detachable layer
KR20220059552A (en) 2016-05-23 2022-05-10 닛산 가가쿠 가부시키가이샤 Detachable layer-forming composition and detachable layer
WO2022230505A1 (en) 2021-04-28 2022-11-03 東洋紡株式会社 Polymer film releasing method, method for manufacturing electronic device, and releasing device
KR20220162792A (en) 2020-06-22 2022-12-08 도요보 가부시키가이샤 Polymer film peeling method, electronic device manufacturing method, and peeling device
KR20220163475A (en) 2020-07-06 2022-12-09 도요보 가부시키가이샤 Polymer film peeling method, electronic device manufacturing method, and peeling device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101832A (en) * 1986-10-17 1988-05-06 Nec Corp Active matrix liquid crystal display device
US4752455A (en) * 1986-05-27 1988-06-21 Kms Fusion, Inc. Pulsed laser microfabrication
JPH04170520A (en) * 1990-11-01 1992-06-18 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display panel and liquid crystal display substrate
JPH04311929A (en) * 1991-04-11 1992-11-04 Seiko Instr Inc Light valve device and semiconductor device
JPH05211128A (en) * 1991-09-18 1993-08-20 Commiss Energ Atom Manufacture of thin film of semiconductor material
JPH05267563A (en) * 1992-03-17 1993-10-15 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH06504139A (en) * 1990-12-31 1994-05-12 コピン・コーポレーシヨン Single crystal silicon array element for display panels
JPH06175157A (en) * 1992-12-09 1994-06-24 Seiko Epson Corp Active matrix type liquid crystal display
JPH07504782A (en) * 1992-02-13 1995-05-25 コピン・コーポレーシヨン High density electronic circuit module
JPH07170072A (en) * 1993-12-16 1995-07-04 Nec Corp Manufacture of polyimide multilayer wiring board
JPH07202424A (en) * 1993-12-28 1995-08-04 Nec Corp Production of multilayer wiring board
JPH08213645A (en) * 1995-02-02 1996-08-20 Sony Corp Method of separating element formation layer from base body

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752455A (en) * 1986-05-27 1988-06-21 Kms Fusion, Inc. Pulsed laser microfabrication
JPS63101832A (en) * 1986-10-17 1988-05-06 Nec Corp Active matrix liquid crystal display device
JPH04170520A (en) * 1990-11-01 1992-06-18 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display panel and liquid crystal display substrate
JPH06504139A (en) * 1990-12-31 1994-05-12 コピン・コーポレーシヨン Single crystal silicon array element for display panels
JPH04311929A (en) * 1991-04-11 1992-11-04 Seiko Instr Inc Light valve device and semiconductor device
JPH05211128A (en) * 1991-09-18 1993-08-20 Commiss Energ Atom Manufacture of thin film of semiconductor material
JPH07504782A (en) * 1992-02-13 1995-05-25 コピン・コーポレーシヨン High density electronic circuit module
JPH05267563A (en) * 1992-03-17 1993-10-15 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH06175157A (en) * 1992-12-09 1994-06-24 Seiko Epson Corp Active matrix type liquid crystal display
JPH07170072A (en) * 1993-12-16 1995-07-04 Nec Corp Manufacture of polyimide multilayer wiring board
JPH07202424A (en) * 1993-12-28 1995-08-04 Nec Corp Production of multilayer wiring board
JPH08213645A (en) * 1995-02-02 1996-08-20 Sony Corp Method of separating element formation layer from base body

Cited By (378)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713840B2 (en) 1996-10-01 2010-05-11 Osram Gmbh Electronic components produced by a method of separating two layers of material from one another
US6521511B1 (en) 1997-07-03 2003-02-18 Seiko Epson Corporation Thin film device transfer method, thin film device, thin film integrated circuit device, active matrix board, liquid crystal display, and electronic apparatus
US6878607B2 (en) 1997-07-03 2005-04-12 Seiko Epson Corporation Thin film device transfer method, thin film device, thin film integrated circuit device, active matrix board, liquid crystal display, and electronic apparatus
EP0924769A4 (en) * 1997-07-03 2001-11-14 Seiko Epson Corp Method of transferring thin film devices, thin film device, thin film integrated circuit device, active matrix substrate, liquid crystal display, and electronic apparatus
WO1999044242A1 (en) * 1998-02-25 1999-09-02 Seiko Epson Corporation Method of detaching thin-film device, method of transferring thin-film device, thin-film device, active matrix substrate, and liquid crystal display
US6885389B2 (en) 1998-02-25 2005-04-26 Seiko Epson Corporation Method of separating thin film device, method of transferring thin film device, thin film device, active matrix substrate and liquid crystal display device
US6700631B1 (en) 1998-02-25 2004-03-02 Seiko Epson Corporation Method of separating thin-film device, method of transferring thin-film device, thin-film device, active matrix substrate, and liquid crystal display device
JP2000133809A (en) * 1998-10-27 2000-05-12 Seiko Epson Corp Peeling method
US6806918B2 (en) 1999-06-25 2004-10-19 Kabushiki Kaisha Toshiba Active matrix substrate and method of manufacturing the same
US6559905B1 (en) 1999-06-25 2003-05-06 Kabushiki Kaisha Toshiba Active matrix substrate and method of manufacturing the same
US7050125B2 (en) 1999-06-25 2006-05-23 Kabushiki Kaisha Toshiba Transferring TFT method with adhesive layer
US6967114B2 (en) 1999-09-30 2005-11-22 Seiko Epson Corporation Large EL panel and manufacturing method therefor
US6642542B1 (en) 1999-09-30 2003-11-04 Seiko Epson Corporation Large EL panel and manufacturing method therefor
US7022538B2 (en) * 2000-12-07 2006-04-04 Seiko Epson Corporation Display device and manufacturing method for the same
JP2002184959A (en) * 2000-12-15 2002-06-28 Sharp Corp Transfer method of functional device and functional panel
US7034775B2 (en) 2001-03-26 2006-04-25 Seiko Epson Corporation Display device and method for manufacturing the same
JP2002296228A (en) * 2001-03-30 2002-10-09 Seiko Epson Corp Biosensor
US9276224B2 (en) 2001-06-20 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting device having dual flexible substrates
US7420208B2 (en) 2001-06-20 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9166180B2 (en) 2001-06-20 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having an organic light emitting diode that emits white light
US9178168B2 (en) 2001-06-20 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. White light emitting device
US6849877B2 (en) 2001-06-20 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7211828B2 (en) 2001-06-20 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic apparatus
US7129102B2 (en) 2001-07-03 2006-10-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method of manufacturing a light-emitting device, and electronic equipment
US7372200B2 (en) 2001-07-03 2008-05-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method of manufacturing a light-emitting device, and electronic equipment
US7067976B2 (en) 2001-07-03 2006-06-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method of manufacturing a light-emitting device, and electronic equipment
JP2003022032A (en) * 2001-07-06 2003-01-24 Sharp Corp Method for manufacturing functional element substrate and method for manufacturing functional panel
JP2003031778A (en) * 2001-07-13 2003-01-31 Seiko Epson Corp Method for manufacturing thin film device
JP2003195787A (en) * 2001-07-16 2003-07-09 Semiconductor Energy Lab Co Ltd Manufacturing method for light emitting device
JP2006203220A (en) * 2001-07-16 2006-08-03 Semiconductor Energy Lab Co Ltd Peeling method
JP2020194788A (en) * 2001-07-16 2020-12-03 株式会社半導体エネルギー研究所 Manufacturing method for display device
US10586816B2 (en) 2001-07-16 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
JP2010134466A (en) * 2001-07-16 2010-06-17 Semiconductor Energy Lab Co Ltd Method of manufacturing light emitting device, and method of manufacturing liquid crystal display
US9608004B2 (en) 2001-07-16 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
JP2003174153A (en) * 2001-07-16 2003-06-20 Semiconductor Energy Lab Co Ltd Peeling method, semiconductor device, and manufacturing method therefor
US9202987B2 (en) 2001-07-16 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
JP4567282B2 (en) * 2001-07-16 2010-10-20 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
US6814832B2 (en) 2001-07-24 2004-11-09 Seiko Epson Corporation Method for transferring element, method for producing element, integrated circuit, circuit board, electro-optical device, IC card, and electronic appliance
US6887650B2 (en) 2001-07-24 2005-05-03 Seiko Epson Corporation Transfer method, method of manufacturing thin film devices, method of manufacturing integrated circuits, circuit board and manufacturing method thereof, electro-optical apparatus and manufacturing method thereof, ic card, and electronic appliance
JP2003142666A (en) * 2001-07-24 2003-05-16 Seiko Epson Corp Transfer method for element, method for manufacturing element, integrated circuit, circuit board, electrooptic device, ic card and electronic apparatus
EP2565924A2 (en) 2001-07-24 2013-03-06 Samsung Electronics Co., Ltd. Transfer method, method of manufacturing thin film devices, method of manufacturing integrated circuits, circuit board and manufacturing method thereof, electro-optical apparatus and manufacturing method thereof, IC card, and electronic appliance
US7045438B2 (en) 2001-07-27 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, semiconductor device, and method of fabricating the devices
US8390019B2 (en) 2001-07-27 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, semiconductor device, and method of fabricating the devices
US7534700B2 (en) 2001-07-27 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device having a film in contact with a debonded layer
JP2014112679A (en) * 2001-08-10 2014-06-19 Semiconductor Energy Lab Co Ltd Semiconductor device
US6946361B2 (en) 2001-08-10 2005-09-20 Semiconductor Energy Laboratory Co., Ltd. Method of peeling off and method of manufacturing semiconductor device
JP2003163337A (en) * 2001-08-10 2003-06-06 Semiconductor Energy Lab Co Ltd Stripping method and method for producing semiconductor device
JP2006203219A (en) * 2001-08-10 2006-08-03 Semiconductor Energy Lab Co Ltd Peeling method
US9842994B2 (en) 2001-08-22 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
US11296131B2 (en) 2001-08-22 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
US9755148B2 (en) 2001-08-22 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
US9281403B2 (en) 2001-08-22 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
JP2003163338A (en) * 2001-08-22 2003-06-06 Semiconductor Energy Lab Co Ltd Stripping method and method for producing semiconductor device
US10529748B2 (en) 2001-08-22 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
CN100409401C (en) * 2001-08-22 2008-08-06 株式会社半导体能源研究所 Stripping method and method for producing semiconductor device
US7005671B2 (en) 2001-10-01 2006-02-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, electronic equipment, and organic polarizing film
US8980700B2 (en) 2001-10-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7648862B2 (en) 2001-10-30 2010-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7332381B2 (en) 2001-10-30 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7994506B2 (en) 2001-10-30 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US9620408B2 (en) 2001-10-30 2017-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US10607883B2 (en) 2001-10-30 2020-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US10629637B2 (en) 2001-11-30 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Vehicle, display device and manufacturing method for a semiconductor device
JP2011063263A (en) * 2001-11-30 2011-03-31 Semiconductor Energy Lab Co Ltd Method for manufacturing light-emitting device
JP2003229548A (en) * 2001-11-30 2003-08-15 Semiconductor Energy Lab Co Ltd Vehicle, display device and method for manufacturing semiconductor device
JP2014222659A (en) * 2001-11-30 2014-11-27 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
US10325940B2 (en) 2001-11-30 2019-06-18 Semiconductor Energy Laboratory Co., Ltd. Vehicle, display device and manufacturing method for a semiconductor device
US9493119B2 (en) 2001-11-30 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Vehicle, display device and manufacturing method for a semiconductor device
US10957723B2 (en) 2001-11-30 2021-03-23 Semiconductor Energy Laboratory Co., Ltd. Vehicle, display device and manufacturing method for a semiconductor device
US9536901B2 (en) 2001-12-28 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device by bonding a layer to a support with curvature
JP2003258211A (en) * 2001-12-28 2003-09-12 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP4567941B2 (en) * 2001-12-28 2010-10-27 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device and method for manufacturing display device
US7858411B2 (en) 2001-12-28 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating light emitting device and method for fabricating liquid crystal display device
US9337341B2 (en) 2001-12-28 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having aluminum-containing layer between two curved substrates
US9123595B2 (en) 2001-12-28 2015-09-01 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device by bonding a layer to a support with curvature
US7101729B2 (en) 2002-03-28 2006-09-05 Seiko Epson Corporation Method of manufacturing a semiconductor device having adjoining substrates
US7164155B2 (en) 2002-05-15 2007-01-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US9118025B2 (en) 2002-05-15 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8945331B2 (en) 2002-05-17 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method of transferring a laminate and method of manufacturing a semiconductor device
JP2004047975A (en) * 2002-05-17 2004-02-12 Semiconductor Energy Lab Co Ltd Method of transferring laminate and method of manufacturing semiconductor device
JP2005026706A (en) * 2002-05-17 2005-01-27 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
US7147740B2 (en) 2002-05-17 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Method of transferring a laminate and method of manufacturing a semiconductor device
US7242441B2 (en) 2002-06-10 2007-07-10 Seiko Epson Corporation Method for manufacturing electro-optical device, and electro-optical device and electronic device manufactured with this manufacturing method
US7230271B2 (en) 2002-06-11 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device comprising film having hygroscopic property and transparency and manufacturing method thereof
US7302088B2 (en) 2002-07-12 2007-11-27 Seiko Epson Corporation Personal verification device, card-type information storage medium, and information processing system using the same
JP2005033219A (en) * 2002-07-16 2005-02-03 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2004056143A (en) * 2002-07-16 2004-02-19 Semiconductor Energy Lab Co Ltd Method for releasing
US7122445B2 (en) 2002-07-16 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Peeling method
US7375006B2 (en) 2002-07-16 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Peeling method
US7666719B2 (en) 2002-07-16 2010-02-23 Semiconductor Energy Laboratory Co., Ltd. Peeling method
US8648528B2 (en) 2002-08-29 2014-02-11 Seiko Epson Corporation Electroluminescent device, method for manufacturing the same, and electronic apparatus
US7508128B2 (en) 2002-08-29 2009-03-24 Seiko Epson Corporation Electroluminescent device with barrier layer structure, method for manufacturing the same, and electronic apparatus
JP2004096018A (en) * 2002-09-03 2004-03-25 Seiko Epson Corp Manufacturing method for circuit substrate, electrooptical apparatus, and electronic appliance
US7169652B2 (en) 2002-09-26 2007-01-30 Seiko Epson Corporation Method of manufacturing electro-optical device, electro-optical device, transferred chip, transfer origin substrate
JP2004119725A (en) * 2002-09-26 2004-04-15 Seiko Epson Corp Method of manufacturing electro-optical device, electro-optical device, transferring chip, transferring source substrate, electronic apparatus
EP1403691A1 (en) * 2002-09-26 2004-03-31 Seiko Epson Corporation Electro-optical display device and its manufacturing method including the transfer of a chip
US7834359B2 (en) 2002-09-26 2010-11-16 Seiko Epson Corporation Electro-optical device, transferred chip, and transfer origin substrate
EP1408365A2 (en) * 2002-10-08 2004-04-14 Seiko Epson Corporation Circuit board and method of manufacturing the same
US7726013B2 (en) 2002-10-08 2010-06-01 Seiko Epson Corporation Method of manufacturing circuit board including transfer chip having a plurality of first pad electrodes connected to wiring
EP1408365B1 (en) * 2002-10-08 2009-02-18 Seiko Epson Corporation Circuit board and method of manufacturing the same
JP2004133047A (en) * 2002-10-08 2004-04-30 Seiko Epson Corp Circuit board and method of manufacturing same, transfer chip, transfer source substrate, electrooptic device, and electronic equipment
US9065074B2 (en) 2002-10-25 2015-06-23 Seiko Epson Corporation Electro-optical device and electronic apparatus
US9450204B2 (en) 2002-10-25 2016-09-20 Seiko Epson Corporation Electro-optical device and electronic apparatus
US8779658B2 (en) 2002-10-25 2014-07-15 Seiko Epson Corporation Electro-optical device and electronic apparatus
US9508620B2 (en) 2002-10-30 2016-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7923348B2 (en) 2002-10-30 2011-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN100391004C (en) * 2002-10-30 2008-05-28 株式会社半导体能源研究所 Semiconductor device and manufacturing method thereof
US9224667B2 (en) 2002-10-30 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7547612B2 (en) 2002-10-30 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2011124590A (en) * 2002-10-30 2011-06-23 Semiconductor Energy Lab Co Ltd Method of manufacturing light emitting device
US9929190B2 (en) 2002-10-30 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8173520B2 (en) 2002-10-30 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8012854B2 (en) 2002-10-30 2011-09-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7189631B2 (en) 2002-10-30 2007-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9263617B2 (en) 2002-11-01 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8237164B2 (en) 2002-11-01 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including magnet
US7180093B2 (en) 2002-11-01 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7741642B2 (en) 2002-11-01 2010-06-22 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and manufacturing method thereof
JP2004173841A (en) * 2002-11-26 2004-06-24 Seiko Epson Corp Personal identification device, card type information recording medium, and information processing system using the same
US7067926B2 (en) 2002-12-19 2006-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor chip and method for manufacturing the same
US7511380B2 (en) 2002-12-19 2009-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor chip and method manufacturing the same
US7303942B2 (en) 2002-12-26 2007-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7564139B2 (en) 2002-12-26 2009-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9269817B2 (en) 2002-12-27 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, delamination method, and transferring method
US7045442B2 (en) 2002-12-27 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Method of separating a release layer from a substrate comprising hydrogen diffusion
US7407870B2 (en) 2002-12-27 2008-08-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9543337B2 (en) 2002-12-27 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, delamination method, and transferring method
US7230316B2 (en) 2002-12-27 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having transferred integrated circuit
US8026152B2 (en) 2002-12-27 2011-09-27 Semiconductor Energy Laboratory Co., Ltd. Separation method of semiconductor device
US7723209B2 (en) 2002-12-27 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, delamination method, and transferring method
US8691604B2 (en) 2002-12-27 2014-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, delamination method, and transferring method
US8441102B2 (en) 2002-12-27 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a capacitor
US10038012B2 (en) 2002-12-27 2018-07-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, delamination method, and transferring method
US8247246B2 (en) 2002-12-27 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, delamination method, and transferring method
US7919779B2 (en) 2003-01-08 2011-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing thereof
US7436050B2 (en) 2003-01-22 2008-10-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a flexible printed circuit
JP2004246351A (en) * 2003-01-22 2004-09-02 Semiconductor Energy Lab Co Ltd Semiconductor device and electronic equipment
JP4689168B2 (en) * 2003-01-22 2011-05-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7029960B2 (en) 2003-01-23 2006-04-18 Seiko Epson Corporation Device manufacturing method
JP2004228374A (en) * 2003-01-23 2004-08-12 Seiko Epson Corp Device and its manufacturing method, electro-optical device, and electronic apparatus
JP2004228373A (en) * 2003-01-23 2004-08-12 Seiko Epson Corp Device and its manufacturing method, electro-optical device, and electronic apparatus
US7408207B2 (en) 2003-01-23 2008-08-05 Seiko Epson Corporation Device manufacturing method and device, electro-optic device, and electronic equipment
JP2004252297A (en) * 2003-01-28 2004-09-09 Seiu Kagi Kofun Yugenkoshi Manufacturing method of tft liquid crystal display panel
US9429800B2 (en) 2003-02-12 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8384699B2 (en) 2003-02-12 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8044946B2 (en) 2003-02-12 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7746333B2 (en) 2003-02-12 2010-06-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7164151B2 (en) 2003-02-12 2007-01-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with pixel portion and driving circuit, and electronic device
US8193532B2 (en) 2003-02-24 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device, IC label, container comprising the thin film integrated circuit, manufacturing method of the thin film integrated circuit device, manufacturing method of the container, and management method of product having the container
US7973313B2 (en) 2003-02-24 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device, IC label, container comprising the thin film integrated circuit, manufacturing method of the thin film integrated circuit device, manufacturing method of the container, and management method of product having the container
JP2004260176A (en) * 2003-02-25 2004-09-16 Palo Alto Research Center Inc Tape and its manufacturing method
US7091070B2 (en) 2003-02-28 2006-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
EP1453086A3 (en) * 2003-02-28 2006-03-08 Semiconductor Energy Laboratory Co., Ltd. Thin film semiconductor device and method of manufacturing same
US7732262B2 (en) 2003-02-28 2010-06-08 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and method of manufacturing the same
US10186682B2 (en) 2003-03-14 2019-01-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9640778B2 (en) 2003-03-14 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11196020B2 (en) 2003-03-14 2021-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7576362B2 (en) 2003-03-14 2009-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having EL element, integrated circuit and adhesive layer therebetween
US9178182B2 (en) 2003-03-14 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10727437B2 (en) 2003-03-14 2020-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2007501525A (en) * 2003-08-04 2007-01-25 ナノシス・インコーポレイテッド Nanowire composites and systems and methods for making electronic substrates derived therefrom
US7998413B2 (en) 2003-09-01 2011-08-16 Seiko Epson Corporation Biosensor and method of manufacturing biosensor
US7407628B2 (en) 2003-09-01 2008-08-05 Seiko Epson Corporation Biosensor and method of manufacturing biosensor
JP2005081299A (en) * 2003-09-10 2005-03-31 Seiko Epson Corp Method for forming film, method for forming circuit pattern, method for producing semiconductor device, electro-optical apparatus, and electronic apparatus
US7622361B2 (en) 2003-10-28 2009-11-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
EP2259300A2 (en) 2003-10-28 2010-12-08 Semiconductor Energy Laboratory Co., Ltd. Manufacture of semiconductor device
US7241666B2 (en) 2003-10-28 2007-07-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7883989B2 (en) 2003-10-28 2011-02-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7579222B2 (en) 2003-10-30 2009-08-25 Nec Corporation Manufacturing method of thin film device substrate
US7122444B2 (en) 2003-10-30 2006-10-17 Nec Corporation Manufacturing method of thin film device substrate
US7402446B2 (en) 2003-11-17 2008-07-22 Seiko Epson Corporation Method of manufacturing an electroluminescence device
US7084045B2 (en) 2003-12-12 2006-08-01 Seminconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7341924B2 (en) 2003-12-12 2008-03-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7179520B2 (en) 2003-12-26 2007-02-20 Seiko Epson Corporation Circuit substrate, electro-optic device and electronic equipment
US8678958B2 (en) 2004-02-26 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Sports implement, amusement tool, and training tool
US7262088B2 (en) 2004-03-10 2007-08-28 Seiko Epson Corporation Thin film device supply body, method of fabricating thin film device, method of transfer, method of fabricating semiconductor device, and electronic equipment
US7456059B2 (en) 2004-03-10 2008-11-25 Seiko Epson Corporation Thin film device supply body, method of fabricating thin film device, method of transfer, method of fabricating semiconductor device, and electronic equipment
KR100787901B1 (en) * 2004-03-10 2007-12-27 세이코 엡슨 가부시키가이샤 Thin film device supply body, method of fabricating thin film device, method of transfer, and method of fabricating semiconductor device
JP2007534982A (en) * 2004-03-20 2007-11-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Application of color elements and bus bars to display substrates
US7563147B2 (en) 2004-04-21 2009-07-21 Seiko Epson Corporation Organic electroluminescent device, method of manufacture thereof and electronic apparatus
US7453199B2 (en) 2004-04-21 2008-11-18 Seiko Epson Corporation Organic electroluminescent device
JP2012256892A (en) * 2004-06-04 2012-12-27 Board Of Trustees Of The Univ Of Illinois Method and device for manufacturing and assembling printable semiconductor elements
US10374072B2 (en) 2004-06-04 2019-08-06 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US11088268B2 (en) 2004-06-04 2021-08-10 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9450043B2 (en) 2004-06-04 2016-09-20 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9768086B2 (en) 2004-06-04 2017-09-19 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9761444B2 (en) 2004-06-04 2017-09-12 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9384439B2 (en) 2004-06-14 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and communication system
JP2006032927A (en) * 2004-06-14 2006-02-02 Semiconductor Energy Lab Co Ltd Semiconductor device and communication system
US10411037B2 (en) 2004-06-14 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and communication system
US8058146B2 (en) * 2004-09-24 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Peeling method
JP2006120720A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Process for fabricating thin film device, active matrix substrate, electro-optical device, electronic apparatus
JP2006120726A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Process for fabricating thin film device, electro-optical device, electronic apparatus
US7393725B2 (en) 2004-10-19 2008-07-01 Seiko Epson Corporation Method of manufacturing thin film device electro-optic device, and electronic instrument
JP2006135051A (en) * 2004-11-05 2006-05-25 Seiko Epson Corp Thin-film device, method for manufacturing the same, electrooptical device, and electronic apparatus
US8030132B2 (en) 2005-05-31 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including peeling step
JP2007013108A (en) * 2005-05-31 2007-01-18 Semiconductor Energy Lab Co Ltd Process for fabricating semiconductor device and semiconductor device
US7588969B2 (en) 2005-05-31 2009-09-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, and semiconductor device
US7521383B2 (en) 2005-06-30 2009-04-21 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US7843041B2 (en) 2006-01-24 2010-11-30 Seiko Epson Corporation Thin-film circuit device having a low strength region, method for manufacturing the thin-film circuit device, and electronic apparatus
US8823023B2 (en) 2006-03-03 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9436036B2 (en) 2006-03-03 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9419142B2 (en) 2006-03-03 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10229940B2 (en) 2006-03-03 2019-03-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9082679B2 (en) 2006-03-03 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10818703B2 (en) 2006-03-03 2020-10-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101393448B1 (en) * 2006-03-03 2014-05-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US8222116B2 (en) 2006-03-03 2012-07-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8173519B2 (en) 2006-03-03 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9793150B2 (en) 2006-03-03 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2007305678A (en) * 2006-05-09 2007-11-22 Seiko Epson Corp Process for producing laminate, electro-optic device, and electronic apparatus
JP2009278124A (en) * 2006-09-29 2009-11-26 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US9397126B2 (en) 2006-09-29 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Peeling apparatus and manufacturing apparatus of semiconductor device
US9054141B2 (en) 2006-09-29 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9472429B2 (en) 2006-09-29 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8137417B2 (en) 2006-09-29 2012-03-20 Semiconductor Energy Laboratory Co., Ltd. Peeling apparatus and manufacturing apparatus of semiconductor device
US8048770B2 (en) 2006-09-29 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8889438B2 (en) 2006-09-29 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Peeling apparatus and manufacturing apparatus of semiconductor device
US9570329B2 (en) 2006-09-29 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Peeling apparatus and manufacturing apparatus of semiconductor device
US8043936B2 (en) 2006-09-29 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10134784B2 (en) 2006-09-29 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Peeling apparatus and manufacturing apparatus of semiconductor device
US8048777B2 (en) 2006-09-29 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9087931B2 (en) 2006-09-29 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Peeling apparatus and manufacturing apparatus of semiconductor device
US7733559B2 (en) 2006-12-28 2010-06-08 Seiko Epson Corporation Electrophoretic display sheet, electrophoretic display device, and electronic apparatus
US8258406B2 (en) 2006-12-28 2012-09-04 Seiko Epson Corporation Electrophoretic display device
US7829795B2 (en) 2006-12-28 2010-11-09 Seiko Epson Corporation Electrophoretic display sheet, electrophoretic display device, and electronic apparatus
JP2008187094A (en) * 2007-01-31 2008-08-14 Seiko Epson Corp Manufacturing method of semiconductor device
JP2008258288A (en) * 2007-04-02 2008-10-23 Ishihara Chem Co Ltd Method for forming circuit
JP2008292608A (en) * 2007-05-23 2008-12-04 Hitachi Displays Ltd Fabrication method of display device
US7968388B2 (en) 2007-08-31 2011-06-28 Seiko Epson Corporation Thin-film device, method for manufacturing thin-film device, and display
JP2009076852A (en) * 2007-08-31 2009-04-09 Seiko Epson Corp Thin-film device, method for manufacturing thin-film device, and display
US8368082B2 (en) 2007-11-27 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, semiconductor device and electronic appliance
US8048771B2 (en) 2007-11-27 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, semiconductor device and electronic appliance
US7875510B2 (en) 2008-07-17 2011-01-25 Seiko Epson Corporation Thin-film device, method for manufacturing the same, and electronic apparatus
US8058083B2 (en) 2008-11-20 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing flexible semiconductor device
JP2013502620A (en) * 2009-08-24 2013-01-24 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー Control of electronic devices using chiplets
KR20210035155A (en) 2010-06-25 2021-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US8936952B2 (en) 2010-06-25 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9799682B2 (en) 2010-06-25 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR20200018555A (en) 2010-06-25 2020-02-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
JP2012028761A (en) * 2010-06-25 2012-02-09 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
KR20190104981A (en) 2010-06-25 2019-09-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR20180036672A (en) 2010-06-25 2018-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR20220060520A (en) 2010-06-25 2022-05-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US8530253B2 (en) * 2010-10-30 2013-09-10 Lg Display Co., Ltd. Method of fabricating flexible display device
US20120107978A1 (en) * 2010-10-30 2012-05-03 Aram Shin Method of fabricating flexible display device
US9337244B2 (en) 2011-02-25 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device using light-emitting device
KR20190095551A (en) 2011-02-25 2019-08-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and electronic device using light-emitting device
KR20140052969A (en) 2011-02-25 2014-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and electronic device using light-emitting device
JP2012216695A (en) * 2011-04-01 2012-11-08 Sony Corp Thin film element and manufacturing method therefor, and method of manufacturing image display unit
US8597965B2 (en) 2011-05-12 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device using the light-emitting device
KR20120127236A (en) 2011-05-12 2012-11-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and electronic device using the light-emitting device
JP2013080857A (en) * 2011-10-05 2013-05-02 Dainippon Printing Co Ltd Method for manufacturing device with solid-state component
JPWO2013118536A1 (en) * 2012-02-07 2015-05-11 東京応化工業株式会社 Processing method and processing apparatus
WO2013118536A1 (en) * 2012-02-07 2013-08-15 東京応化工業株式会社 Processing method and processing apparatus
TWI510369B (en) * 2012-02-07 2015-12-01 Tokyo Ohka Kogyo Co Ltd Processing method and processing device
JP5680229B2 (en) * 2012-02-07 2015-03-04 東京応化工業株式会社 Processing method and processing apparatus
US9352542B2 (en) 2012-02-07 2016-05-31 Tokyo Ohka Kogyo Co., Ltd. Processing method and processing apparatus
CN103240770A (en) * 2012-02-09 2013-08-14 旭德科技股份有限公司 Edge separation equipment and operation method thereof
JP2013232451A (en) * 2012-04-27 2013-11-14 Lg Display Co Ltd Thin-film transistor, method of manufacturing the same, and display device
KR20130125715A (en) 2012-05-09 2013-11-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and electronic device
KR20200115446A (en) 2012-05-09 2020-10-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and electronic device
US10903453B2 (en) 2012-05-09 2021-01-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device
US9627648B2 (en) 2012-05-09 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device
US10381599B2 (en) 2012-05-09 2019-08-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device
US11621407B2 (en) 2012-05-09 2023-04-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device having first to third supports
US10003047B2 (en) 2012-05-09 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device
KR20200017450A (en) 2012-05-09 2020-02-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and electronic device
US9088006B2 (en) 2012-05-09 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device
US11839106B2 (en) 2012-05-09 2023-12-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device
US8866176B2 (en) 2012-05-10 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Display device
US9159774B2 (en) 2012-05-10 2015-10-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2016506061A (en) * 2012-09-05 2016-02-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Laser peeling of carrier wafer from device wafer
JP2014071231A (en) * 2012-09-28 2014-04-21 Toshiba Corp Method for manufacturing display device
KR101487438B1 (en) * 2012-12-18 2015-02-04 한국기계연구원 Selective exfoliating and transferring apparatus and method for thin film device
US10636692B2 (en) 2013-02-20 2020-04-28 Semiconductor Energy Laboratory Co., Ltd. Peeling method, semiconductor device, and peeling apparatus
US11355382B2 (en) 2013-02-20 2022-06-07 Semiconductor Energy Laboratory Co., Ltd. Peeling method, semiconductor device, and peeling apparatus
US9947568B2 (en) 2013-02-20 2018-04-17 Semiconductor Energy Laboratory Co., Ltd. Peeling method, semiconductor device, and peeling apparatus
KR20140112738A (en) 2013-03-14 2014-09-24 엘지디스플레이 주식회사 Thin Film Transistor, Method Of Fabricating The Same And Display Device Including The Same
JP2014191934A (en) * 2013-03-26 2014-10-06 Kaneka Corp Method for manufacturing transparent electrode-fitted substrate and laminate
US10134904B2 (en) 2013-04-10 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a flexible substrate and a crack-preventing semiconductor layer
KR20140122669A (en) 2013-04-10 2014-10-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US9257560B2 (en) 2013-04-10 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Method of semiconductor device including step of cutting substrate at opening of insulating layer
DE102014206530A1 (en) 2013-04-10 2014-10-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
KR20160040513A (en) 2013-08-06 2016-04-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Peeling method
US9735398B2 (en) 2013-08-06 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Peeling method
US10164219B2 (en) 2013-08-06 2018-12-25 Semiconductor Energy Laboratory Co., Ltd. Peeling method
US10583641B2 (en) 2013-09-06 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Bonding apparatus and stack body manufacturing apparatus
US11355729B2 (en) 2013-09-06 2022-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing light-emitting device
US10686157B2 (en) 2013-09-06 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing light-emitting device
US9773998B2 (en) 2013-09-06 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing light-emitting device
US9925749B2 (en) 2013-09-06 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Bonding apparatus and stack body manufacturing apparatus
US9937698B2 (en) 2013-11-06 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Peeling method and light-emitting device
JP2020144386A (en) * 2013-12-02 2020-09-10 株式会社半導体エネルギー研究所 Method for manufacturing display device
US11004925B2 (en) 2013-12-02 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
KR20180021255A (en) * 2013-12-02 2018-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and method for manufacturing the same
US10763322B2 (en) 2013-12-02 2020-09-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US11672148B2 (en) 2013-12-02 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2018106177A (en) * 2013-12-02 2018-07-05 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2020144382A (en) * 2013-12-02 2020-09-10 株式会社半導体エネルギー研究所 Manufacturing method for display device
JP2019061962A (en) * 2013-12-02 2019-04-18 株式会社半導体エネルギー研究所 Method for manufacturing display device
US10312315B2 (en) 2013-12-02 2019-06-04 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2020144385A (en) * 2013-12-02 2020-09-10 株式会社半導体エネルギー研究所 Method for manufacturing display device
CN110010625A (en) * 2013-12-02 2019-07-12 株式会社半导体能源研究所 Display device and its manufacturing method
US10355067B2 (en) 2013-12-02 2019-07-16 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10854697B2 (en) 2013-12-02 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2020129128A (en) * 2013-12-02 2020-08-27 株式会社半導体エネルギー研究所 Method for manufacturing display device
US10872947B2 (en) 2013-12-02 2020-12-22 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10879331B2 (en) 2013-12-02 2020-12-29 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US9770894B2 (en) 2013-12-03 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Peeling apparatus and stack manufacturing apparatus
US9427949B2 (en) 2013-12-03 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Peeling apparatus and stack manufacturing apparatus
KR20150064671A (en) 2013-12-03 2015-06-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Peeling apparatus and stack manufacturing apparatus
US10189048B2 (en) 2013-12-12 2019-01-29 Semiconductor Energy Laboratory Co., Ltd. Peeling method and peeling apparatus
US9397149B2 (en) 2013-12-27 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10141526B2 (en) 2014-02-19 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Peeling method using separating peeling layer and layer to be peeled
US10079353B2 (en) 2014-02-19 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with flexible substrates
US9437832B2 (en) 2014-02-19 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and peeling method
KR20160130246A (en) 2014-03-06 2016-11-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device
US10804487B2 (en) 2014-03-06 2020-10-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US11690243B2 (en) 2014-03-06 2023-06-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9899626B2 (en) 2014-03-06 2018-02-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
KR20210156292A (en) 2014-03-31 2021-12-24 닛산 가가쿠 가부시키가이샤 Composition for forming releasing layer
KR20160141768A (en) 2014-03-31 2016-12-09 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming release layer
KR20160142331A (en) 2014-03-31 2016-12-12 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming releasing layer
KR20210154273A (en) 2014-03-31 2021-12-20 닛산 가가쿠 가부시키가이샤 Composition for forming releasing layer
WO2015151659A1 (en) * 2014-03-31 2015-10-08 株式会社 東芝 Production method for flexible organic el display device
US9960213B2 (en) 2014-04-25 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Input and output device having touch sensor element as input device and display device
US9676175B2 (en) 2014-06-20 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Peeling apparatus
US10388875B2 (en) 2014-07-25 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Separation method, light-emitting device, module, and electronic device
US9799829B2 (en) 2014-07-25 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Separation method, light-emitting device, module, and electronic device
KR20160015158A (en) 2014-07-25 2016-02-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Separation method, light-emitting device, module, and electronic device
KR20170116065A (en) 2015-02-10 2017-10-18 닛산 가가쿠 고교 가부시키 가이샤 Composition for releasing layer
KR20220091609A (en) 2015-02-10 2022-06-30 닛산 가가쿠 가부시키가이샤 Composition for forming release layer
KR20170125362A (en) 2015-03-04 2017-11-14 닛산 가가쿠 고교 가부시키 가이샤 Composition for releasing layer
KR20230023831A (en) 2015-03-31 2023-02-17 닛산 가가쿠 가부시키가이샤 Composition for forming release layer, and release layer
KR20170133395A (en) 2015-03-31 2017-12-05 닛산 가가쿠 고교 가부시키 가이샤 The composition for forming a peel layer and the peel layer
KR20170132803A (en) 2015-03-31 2017-12-04 닛산 가가쿠 고교 가부시키 가이샤 The composition for forming a peel layer and the peel layer
US9851820B2 (en) 2015-04-13 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Display device comprising a first transistor and a second transistor wherein an insulating film is located between a first display element and a conductive film
JP2017033002A (en) * 2015-04-13 2017-02-09 株式会社半導体エネルギー研究所 Electronic apparatus manufacture method
US11016329B2 (en) 2015-04-13 2021-05-25 Semiconductor Energy Laboratory Co., Ltd. Display panel, data processor, and method for manufacturing display panel
US10831291B2 (en) 2015-04-13 2020-11-10 Semiconductor Energy Laboratory Co., Ltd. Display panel, data processor, and method for manufacturing display panel
US11754873B2 (en) 2015-04-13 2023-09-12 Semiconductor Energy Laboratory Co., Ltd. Display panel, data processor, and method for manufacturing display panel
US9849660B2 (en) 2015-05-27 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Separation apparatus
US10978489B2 (en) 2015-07-24 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display panel, method for manufacturing semiconductor device, method for manufacturing display panel, and information processing device
JP2016058740A (en) * 2015-10-26 2016-04-21 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US10259207B2 (en) 2016-01-26 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Method for forming separation starting point and separation method
KR20240032145A (en) 2016-05-23 2024-03-08 닛산 가가쿠 가부시키가이샤 Detachable layer-forming composition and detachable layer
KR20220059552A (en) 2016-05-23 2022-05-10 닛산 가가쿠 가부시키가이샤 Detachable layer-forming composition and detachable layer
KR20220059551A (en) 2016-05-23 2022-05-10 닛산 가가쿠 가부시키가이샤 Detachable layer-forming composition and detachable layer
KR20190011747A (en) 2016-05-23 2019-02-07 닛산 가가쿠 가부시키가이샤 The composition for forming a peel layer and the peel layer
KR20190035757A (en) 2016-08-03 2019-04-03 닛산 가가쿠 가부시키가이샤 Composition for forming a release layer for a transparent resin substrate
KR20190037265A (en) 2016-08-03 2019-04-05 닛산 가가쿠 가부시키가이샤 The composition for forming a peel layer and the peel layer
KR20190038846A (en) 2016-08-03 2019-04-09 닛산 가가쿠 가부시키가이샤 Composition for releasing layer
KR20190039148A (en) 2016-08-03 2019-04-10 닛산 가가쿠 가부시키가이샤 Composition for releasing layer
KR20230020011A (en) 2016-08-03 2023-02-09 닛산 가가쿠 가부시키가이샤 Composition for forming release layer, and release layer
KR20190089208A (en) 2016-12-08 2019-07-30 닛산 가가쿠 가부시키가이샤 Manufacturing method of release layer
KR20190094197A (en) 2016-12-08 2019-08-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of release layer
KR20190094198A (en) 2016-12-08 2019-08-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of release layer
KR20190100228A (en) 2016-12-27 2019-08-28 닛산 가가쿠 가부시키가이샤 Composition for Forming Substrate Protective Layer
JP2017108147A (en) * 2017-01-17 2017-06-15 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR20190129103A (en) 2017-03-30 2019-11-19 닛산 가가쿠 가부시키가이샤 Peeling Layer Formation Composition and Peeling Layer
JP2021179618A (en) * 2017-03-31 2021-11-18 株式会社半導体エネルギー研究所 Manufacture method of semiconductor device, and manufacture method of display device
JP2018174084A (en) * 2017-03-31 2018-11-08 株式会社半導体エネルギー研究所 Element, semiconductor device, light-emitting device, display device, peeling method, manufacturing method of semiconductor device, manufacturing method of light-emitting device and manufacturing method of display device
CN109390281B (en) * 2017-08-11 2023-08-08 美光科技公司 Semiconductor device structure and processing method and system thereof
CN109390281A (en) * 2017-08-11 2019-02-26 美光科技公司 Semiconductor device structure and its processing method and system
JP2019119779A (en) * 2017-12-28 2019-07-22 日鉄ケミカル&マテリアル株式会社 Method for producing polyimide film, and glass-polyimide laminate
JP2018142721A (en) * 2018-04-27 2018-09-13 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US20200095670A1 (en) * 2018-09-25 2020-03-26 Disco Corporation Method for forming adherend with optical thin film
JP2020107821A (en) * 2018-12-28 2020-07-09 株式会社ディスコ Lift-off method
CN111341716A (en) * 2020-03-09 2020-06-26 深圳市华星光电半导体显示技术有限公司 Flexible display substrate stripping device and flexible display substrate stripping method
JP2021181118A (en) * 2020-05-18 2021-11-25 ミーレ カンパニー インコーポレイテッド Thin film removal device and thin film removal method
JP2021194564A (en) * 2020-06-10 2021-12-27 エー・アンド・エイチ・ジャパン株式会社 Recovery method of valuable material
JP6742049B1 (en) * 2020-06-10 2020-08-19 エー・アンド・エイチ・ジャパン株式会社 How to collect valuables
KR20220162792A (en) 2020-06-22 2022-12-08 도요보 가부시키가이샤 Polymer film peeling method, electronic device manufacturing method, and peeling device
CN111681985A (en) * 2020-06-23 2020-09-18 广东聚华印刷显示技术有限公司 Display panel stripping method
KR20220163475A (en) 2020-07-06 2022-12-09 도요보 가부시키가이샤 Polymer film peeling method, electronic device manufacturing method, and peeling device
WO2022230505A1 (en) 2021-04-28 2022-11-03 東洋紡株式会社 Polymer film releasing method, method for manufacturing electronic device, and releasing device
KR20240004413A (en) 2021-04-28 2024-01-11 도요보 가부시키가이샤 Peeling method of polymer film, manufacturing method of electronic device, and peeling device

Also Published As

Publication number Publication date
JP4619462B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4619462B2 (en) Thin film element transfer method
JP3809712B2 (en) Thin film device transfer method
JP3809733B2 (en) Thin film transistor peeling method
KR100494479B1 (en) Method for manufacturing an active matrix substrate
JP4619461B2 (en) Thin film device transfer method and device manufacturing method
KR100481994B1 (en) Stripping method, transfer method of thin film device, and thin film device, thin film integrated circuit device and liquid crystal display device manufactured using the same
JP4478268B2 (en) Thin film device manufacturing method
JPH11243209A (en) Transfer method of thin-film device, the thin-film device, thin-film integrated circuit device, active matrix substrate, liquid crystal display device, and electronic apparatus
US20040209442A1 (en) Device manufacturing method and device, electro-optic device, and electronic equipment
JP3809710B2 (en) Thin film element transfer method
JP4061846B2 (en) Laminated body manufacturing method and semiconductor device manufacturing method
JP4619644B2 (en) Thin film element transfer method
JP3849683B2 (en) Thin film transistor peeling method
JPH10177187A (en) Method for attaining electric conduction between transferred thin film structure blocks, production of active matrix substrate, the active matrix substrate, and liquid crystal device
JP4525603B2 (en) Thin film transistor transfer method
JP4619645B2 (en) Thin film element transfer method
JP2004140380A (en) Method of transferring thin film device and method of manufacturing device
JP3809833B2 (en) Thin film element transfer method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070524

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees