JP4619461B2 - How the transfer of a thin film device, and a manufacturing method for a device - Google Patents

How the transfer of a thin film device, and a manufacturing method for a device Download PDF

Info

Publication number
JP4619461B2
JP4619461B2 JP30037396A JP30037396A JP4619461B2 JP 4619461 B2 JP4619461 B2 JP 4619461B2 JP 30037396 A JP30037396 A JP 30037396A JP 30037396 A JP30037396 A JP 30037396A JP 4619461 B2 JP4619461 B2 JP 4619461B2
Authority
JP
Japan
Prior art keywords
layer
thin film
transfer
substrate
film device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30037396A
Other languages
Japanese (ja)
Other versions
JPH10125930A (en
Inventor
達也 下田
聡 井上
和加雄 宮沢
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP22564396 priority Critical
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to JP30037396A priority patent/JP4619461B2/en
Priority claimed from EP03076869A external-priority patent/EP1351308B1/en
Priority to JP8-225643 priority
Priority claimed from TW086112252A external-priority patent/TW360901B/en
Publication of JPH10125930A publication Critical patent/JPH10125930A/en
Publication of JP4619461B2 publication Critical patent/JP4619461B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68359Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during manufacture of interconnect decals or build up layers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、薄膜デバイスを含む被転写層を、転写体へ転写する転写方法、及びデバイスの製造方法に関するものである。 The present invention, the transferred layer including a thin film device, transfer method of transferring to a transfer member, and a method for manufacturing a device.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
例えば薄膜トランジスタ(TFT)を用いた液晶ディスプレイ(LCD)を製造するに際しては、透明基板上に薄膜トランジスタをCVD等により形成する工程を経る。 For example in manufacturing a liquid crystal display (LCD) using thin film transistors (TFT) undergoes a step of forming a thin film transistor by CVD or the like on a transparent substrate.
【0003】 [0003]
この薄膜トランジスタには、非晶質シリコン(a−Si)を用いたものと、ポリシリコン(p−Si)を用いたものとがあり、さらに、ポリシリコンによるものは、高温プロセスを経て成膜されるものと、低温プロセスを経て成膜されるものとに分類される。 The thin film transistor, and those using amorphous silicon (a-Si), while others using polysilicon (p-Si), further, due to the polysilicon can be deposited through a high temperature process and it shall be classified into those formed through a low temperature process.
【0004】 [0004]
ところで、このような薄膜トランジスタの透明基板上への形成は、高温下でなされるため、透明基板としては、耐熱性に優れる材質のものを使用する必要がある。 Incidentally, formation to such a thin film transistor on a transparent substrate, because it is done at high temperature, as the transparent substrate, it is necessary to use a material excellent in heat resistance. そのため、現在では、軟化点および融点が高く、高温プロセスにおいては、1000℃程度の温度にも十分耐え得るものとして、石英ガラスよりなる透明基板が用いられている。 Therefore, at present, the softening point and a high melting point, in the high-temperature process, as capable of sufficiently withstand the temperature of about 1000 ° C., a transparent substrate made of quartz glass is used. また、低温プロセスにおいては、500℃前後の温度が最高プロセス温度になるので、耐熱ガラスが用いられている。 In the low temperature process, since the temperature of about 500 ° C. is a maximum process temperature, heat-resistant glass is used.
【0005】 [0005]
しかしながら、このような耐熱性に優れる石英ガラスは、通常のガラスに比べて、希少で非常に高価な材料であり、かつ、透明基板として大型のものを製造することが困難である。 However, quartz glass excellent in such heat resistance, as compared with conventional glass, a very expensive material rare, and it is difficult to manufacture a large-sized ones as a transparent substrate. また、耐熱ガラスも石英ガラスより大型化が可能であるが、通常のガラスに比べて桁違いに高価である。 Although heat-resistant glass can also be upsizing of quartz glass, it is extraordinarily expensive than ordinary glass. また、石英ガラスも耐熱ガラスも脆く割れ易く、しかも重量が大きい。 Also, easy quartz glass also heat-resistant glass also crack brittle, yet large weight. これは、LCDを構成する上で重大な欠点となる。 This is a serious disadvantage in constructing a LCD. そのため、大型で安価な液晶ディスプレイを製造する上での障害となっていた。 For this reason, it had become an obstacle to manufacture an inexpensive liquid crystal display in the large.
【0006】 [0006]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
本発明の目的は、被剥離物の特性、条件等にかかわらず、容易に剥離することができ、特に、種々の転写体への転写が可能な剥離方法を提供することにある。 An object of the present invention, characteristics of the peelings, regardless of conditions and the like, can be easily peeled off, particularly, to provide a peeling method capable transfer to the various transcripts.
【0007】 [0007]
【課題を解決するための手段】 In order to solve the problems]
このような目的は、下記の本発明により達成される。 These objects are achieved by the present invention described below.
【0008】 [0008]
基板上の薄膜デバイスを含む被転写層を転写体に転写する薄膜デバイスの転写方法において、前記基板に分離層を形成する工程と、前記分離層上に前記薄膜デバイスを形成する工程と、前記分離層の層内および/または界面において剥離を生ぜしめ、前記被転写層を前記転写体に転写する工程と、を具備し、前記転写の後、前記基板に付着している前記分離層を除去することを特徴とする。 In the transfer method of a thin film device for transferring the transferred layer including a thin film device on a substrate to transfer body, a step of forming a separation layer on the substrate and forming the thin film device onto the separation layer, the separation give rise to peeling in the layer in and / or interfacial layer, anda step of transferring the transferred layer to the transfer member, after the transfer, removing the separation layer adhering to the substrate it is characterized in.
【0009】 [0009]
前記分離層に光を照射することにより前記分離層の層内および/または界面において剥離を生ぜしめることを特徴とする。 Characterized in that give rise to peeling in the layer in and / or interface of the separation layer by irradiating light to the separation layer.
【0010】 [0010]
前記基板は透光性であり、前記分離層には、前記基板側から光を照射することを特徴とする。 The substrate is a translucent, wherein the separation layer, and then irradiating the light from the substrate side.
【0011】 [0011]
前記被転写層を前記分離層上に直接形成することを特徴とする。 Characterized by directly forming the transferred layer onto the separation layer.
【0012】 [0012]
中間層を介して、前記被転写層を前記分離層上に形成することを特徴とする。 Via an intermediate layer, and forming the transferred layer onto the separation layer.
【0013】 [0013]
前記転写体は、前記被転写層の形成の際の最高温度をTmax としたとき、ガラス転移点(Tg)または軟化点がTmax 以下の材料で構成されていることを特徴とする。 The transfer member, when the maximum temperature at the time of formation of the transferred layer was Tmax, and wherein the glass transition point (Tg) or softening point is constituted of the following materials Tmax.
【0014】 [0014]
前記転写体は、ガラス転移点(Tg)または軟化点が800℃以下の材料で構成されていることを特徴とする。 The transfer member is characterized in that glass transition point (Tg) or softening point is constituted by 800 ° C. the following materials.
【0015】 [0015]
前記基板は、前記被転写層の形成の際の最高温度をTmax としたとき、歪点がTmax 以上の材料で構成されていることを特徴とする。 The substrate, when the maximum temperature at the time of formation of the transferred layer and Tmax, characterized in that the strain point is composed of more than one material Tmax.
【0016】 [0016]
前記転写体がガラス基板からなり、前記基板が石英からなることを特徴とする。 The transfer member is made of a glass substrate, wherein the substrate is characterized in that it consists of quartz.
【0017】 [0017]
前記薄膜デバイスとしては例えば薄膜トランジスタを使用できる。 As the thin film device can be used a thin film transistor, for example.
【0018】 [0018]
前記照射光としては例えばレーザ光を使用でき、好ましくは100〜350nm、更には350nm〜1200nmの波長であるとよい。 The can be used, for example, laser light as the irradiation light, preferably 100 to 350 nm, more may is at a wavelength of 350Nm~1200nm.
【0019】 [0019]
前記分離層としては、好ましくは非晶質シリコンが用いられ、その非晶質シリコンは、H(水素)を2at%以上含有するものであるとよい。 Examples separation layer is preferably amorphous silicon is used, the amorphous silicon may H (hydrogen) are those containing more than 2at%.
【0020】 [0020]
前記分離層としては、セラミックス、金属、有機高分子材料、で構成することができ、有機高分子材料である場合は、−CH2 −、−CO−、−CONH−、−NH−、−COO−、−N=N−、−CH=N−のうちの少なくとも1種の結合を有するものであると好ましい。 As the separation layer, a ceramic, a metal, an organic polymer material, in can be configured, when an organic polymeric material, -CH2 -, - CO -, - CONH -, - NH -, - COO- , -N = N -, - CH = preferably has at least one bond of the N-.
【0033】 [0033]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
以下、本発明の剥離方法を添付図面に示す好適実施例に基づいて詳細に説明する。 It will be described in detail with reference to the preferred embodiments shown the stripping method of the present invention with reference to the accompanying drawings.
【0034】 [0034]
図1〜図8は、それぞれ、本発明の剥離方法の実施例の工程を示す断面図である。 Figures 1-8 are sectional views showing the steps of an embodiment of the stripping method of the present invention. 以下、これらの図に基づいて、本発明の剥離方法(転写方法)の工程を順次説明する。 Below based on these figures, sequentially illustrating a process of peeling method of the present invention (transfer method).
【0035】 [0035]
[1] 図1に示すように、基板1の片面(分離層形成面11)に、分離層(光吸収層)2を形成する。 [1] As shown in FIG. 1, on one surface of the substrate 1 (the separation layer forming surface 11), forming an isolation layer (light absorption layer) 2.
【0036】 [0036]
基板1は、基板1側から照射光7を照射する場合、その照射光7が透過し得る透光性を有するものであるのが好ましい。 Substrate 1, when irradiating the illumination light 7 from the substrate 1 side, it is preferred that a light-transmitting that illuminating light 7 may be transmitted.
【0037】 [0037]
この場合、照射光7の透過率は、10%以上であるのが好ましく、50%以上であるのがより好ましい。 In this case, the transmittance of the illumination light 7 is preferably 10% or more, more preferably 50% or more. この透過率が低過ぎると、照射光7の減衰(ロス)が大きくなり、分離層2を剥離するのにより大きな光量を必要とする。 If the transmittance is too low, attenuation of the irradiated light 7 (loss) increases, requiring a large amount of light by peeling off the separation layer 2.
【0038】 [0038]
また、基板1は、信頼性の高い材料で構成されているのが好ましく、特に、耐熱性に優れた材料で構成されているのが好ましい。 The substrate 1 is preferably is composed of a highly reliable material, particularly preferably composed of a material excellent in heat resistance. その理由は、例えば後述する被転写層4や中間層3を形成する際に、その種類や形成方法によってはプロセス温度が高くなる(例えば350〜1000℃程度)ことがあるが、その場合でも、基板1が耐熱性に優れていれば、基板1上への被転写層4等の形成に際し、その温度条件等の成膜条件の設定の幅が広がるからである。 The reason is, for example, in forming a transferred layer 4 and an intermediate layer 3 which will be described later, the type and process temperature by the forming method is high (for example, about 350 to 1000 ° C.) it is, but even in that case, if the substrate 1 is long as excellent heat resistance, upon formation of 4, etc. the transfer layer onto the substrate 1, because the width of the setting of the film formation conditions such as the temperature is increased.
【0039】 [0039]
従って、基板1は、被転写層4の形成の際の最高温度をTmax としたとき、歪点がTmax 以上の材料で構成されているものが好ましい。 Therefore, the substrate 1, when the maximum temperature during the formation of the transferred layer 4 was Tmax, it is preferable that the strain point is composed of more than one material Tmax. 具体的には、基板1の構成材料は、歪点が350℃以上のものが好ましく、500℃以上のものがより好ましい。 Specifically, the material of the substrate 1 is preferably not less than 350 ° C. strain point, more preferably not less than 500 ° C.. このようなものとしては、例えば、石英ガラス、ソーダガラス、コーニング7059、日本電気ガラスOA−2等の耐熱性ガラスが挙げられる。 These include, for example, quartz glass, soda glass, Corning 7059, and a heat-resistant glass NEC such as glass OA-2.
【0040】 [0040]
なお、後述する分離層2、中間層3および被転写層4の形成の際のプロセス温度を低くするのであれば、基板1についても、融点の低い安価なガラス材や合成樹脂を用いることができる。 Incidentally, the separation layer 2 to be described later, if the process temperature in forming the intermediate layer 3 and the transferred layer 4 lower, the substrate 1 may also be used a low-melting inexpensive glass material or synthetic resin .
【0041】 [0041]
また、基板1の厚さは、特に限定されないが、通常は、0.1〜5.0mm程度であるのが好ましく、0.5〜1.5mm程度であるのがより好ましい。 The thickness of the substrate 1 is not particularly limited, usually, is preferably about 0.1 to 5.0 mm, more preferably about 0.5 to 1.5 mm. 基板1の厚さが薄過ぎると強度の低下を招き、厚過ぎると、基板1の透過率が低い場合に、照射光7の減衰を生じ易くなる。 If the thickness of the substrate 1 is too thin cause a decrease in strength, is too thick, when the transmittance of the substrate 1 is low, it tends to occur an attenuation of the irradiation light 7. なお、基板1の照射光7の透過率が高い場合には、その厚さは、前記上限値を超えるものであってもよい。 Note that when the transmittance of the illumination light 7 of the substrate 1 is high, the thickness may be in excess of the upper limit.
【0042】 [0042]
なお、照射光7を均一に照射できるように、基板1の分離層形成部分の厚さは、均一であるのが好ましい。 In addition, as can be uniformly irradiated with the irradiation light 7, the thickness of the separation layer forming part of the substrate 1 is preferably uniform.
【0043】 [0043]
また、基板1の分離層形成面11や、照射光入射面12は、図示のごとき平面に限らず、曲面であってもよい。 Also, the or separation layer forming surface 11 the substrate 1, the irradiation light incident surface 12 is not limited to a plane, such as shown, or may be a curved surface.
【0044】 [0044]
本発明では、基板1をエッチング等により除去するのではなく、基板1と被転写層4との間にある分離層2を剥離して基板1を離脱させるため、作業が容易であるとともに、例えば比較的厚さの厚い基板を用いる等、基板1に関する選択の幅も広い。 With the present invention, instead of removing the substrate 1 by etching or the like, in order to disengage the substrate 1 is peeled off the separation layer 2 located between the substrate 1 and the transferred layer 4, it is easy to work, for example, such as using a thick substrate having a relatively thick, the width of selection for the substrate 1 wide.
【0045】 [0045]
次に、分離層2について説明する。 Next, a description will be given separating layer 2.
【0046】 [0046]
分離層2は、後述する照射光7を吸収し、その層内および/または界面2aまたは2bにおいて剥離(以下、「層内剥離」、「界面剥離」と言う)を生じるような性質を有するものであり、好ましくは、照射光7の照射により、分離層2を構成する物質の原子間または分子間の結合力が消失または減少すること、現実的には、アブレーション等を生ぜしめることにより層内剥離および/または界面剥離に至るものである。 Separation layer 2 absorbs the irradiation light 7 to be described later, the peeling in the layer in and / or surface 2a or 2b having a property such as occurs (hereinafter "intralayer delamination", referred to as "interfacial peeling") , and the preferably, by the irradiation of the irradiation light 7, the bonding force between atoms or molecules of the material constituting the separation layer 2 disappears or decreases, in reality, the intralayer by causing a ablation or the like those leading to peeling and / or interfacial separation.
【0047】 [0047]
さらに、照射光7の照射により、分離層2から気体が放出され、分離効果が発現される場合もある。 Furthermore, by the irradiation of the irradiation light 7, the gas is released from the separation layer 2, in some cases separation effect is expressed. すなわち、分離層2に含有されていた成分が気体となって放出される場合と、分離層2が光を吸収して一瞬気体になり、その蒸気が放出され、分離に寄与する場合とがある。 That is, a case where components contained in the separation layer 2 is released as a gas, the separation layer 2 is instantaneously absorb light gas, the vapor is released, and a case contribute to separation .
【0048】 [0048]
このような分離層2の組成としては、例えば次のようなものが挙げられる。 The composition of this separation layer 2, include, for example as follows.
【0049】 [0049]
▲1▼ 非晶質シリコン(a−Si) ▲ 1 ▼ amorphous silicon (a-Si)
この非晶質シリコン中には、H(水素)が含有されていてもよい。 This amorphous silicon, H (hydrogen) may be contained. この場合、Hの含有量は、2at%以上程度であるのが好ましく、2〜20at%程度であるのがより好ましい。 In this case, the content of H is preferably of the order or 2at%, more preferably about 2~20at%. このように、Hが所定量含有されていると、照射光7の照射により、水素が放出され、分離層2に内圧が発生し、それが上下の薄膜を剥離する力となる。 Thus, when H is contained a predetermined amount, by the irradiation of the irradiation light 7, hydrogen is released to generate internal pressure in the separation layer 2, it is peeled off the upper and lower thin film force.
【0050】 [0050]
非晶質シリコン中のHの含有量は、成膜条件、例えばCVDにおけるガス組成、ガス圧、ガス雰囲気、ガス流量、温度、基板温度、投入パワー等の条件を適宜設定することにより調整することができる。 The content of H in the amorphous silicon, by adjusting film forming conditions, for example, the gas composition in CVD, gas pressure, gas atmosphere, gas flow rate, temperature, substrate temperature, by appropriately setting the conditions such as input power can.
【0051】 [0051]
▲2▼ 酸化ケイ素またはケイ酸化合物、酸化チタンまたはチタン酸化合物、酸化ジルコニウムまたはジルコン酸化合物、酸化ランタンまたはランタン酸化合物等の各種酸化物セラミックス、誘電体(強誘電体)あるいは半導体酸化ケイ素としては、SiO、SiO2 、Si3 O2 が挙げられ、ケイ酸化合物としては、例えばK2 SiO3 、Li2 SiO3 、CaSiO3 、ZrSiO4 、Na2 SiO3 が挙げられる。 ▲ 2 ▼ silicon oxide or silicate compounds, titanium oxide or titanate compound, zirconium oxide or zirconate compound, various oxide ceramics such as lanthanum oxide or lanthanum acid compound, a dielectric (ferroelectric) or as a semiconductor silicon oxide , it includes SiO, SiO2, Si3 O2, as the silicate compound, for example K2 SiO3, Li2 SiO3, CaSiO3, ZrSiO4, Na2 SiO3 and the like.
【0052】 [0052]
酸化チタンとしては、TiO、Ti2 O3 、TiO2 が挙げられ、チタン酸化合物としては、例えば、BaTiO4 、BaTiO3 、Ba2 Ti9 O20、BaTi5 O11、CaTiO3 、SrTiO3 、PbTiO3 、MgTiO3 、ZrTiO2 、SnTiO4 、Al2 TiO5 、FeTiO3 が挙げられる。 The titanium oxide include TiO, Ti2 O3, TiO2, as a titanate compound, for example, BaTiO4, BaTiO3, Ba2 Ti9 O20, BaTi5 O11, CaTiO3, SrTiO3, PbTiO3, MgTiO3, ZrTiO2, SnTiO4, Al2 TiO5, FeTiO3 and the like.
【0053】 [0053]
酸化ジルコニウムとしては、ZrO2 が挙げられ、ジルコン酸化合物としては、例えばBaZrO3 、ZrSiO4 、PbZrO3 、MgZrO3 、K2 ZrO3 が挙げられる。 The zirconium oxide, ZrO2, and examples of zirconate compounds such BaZrO3, ZrSiO4, PbZrO3, MgZrO3, K2 ZrO3 the like.
【0054】 [0054]
▲3▼ PZT、PLZT、PLLZT、PBZT等のセラミックスあるいは誘電体(強誘電体) ▲ 3 ▼ PZT, PLZT, PLLZT, ceramic or dielectric material such as PBZT (ferroelectric)
▲4▼ 窒化珪素、窒化アルミ、窒化チタン等の窒化物セラミックス▲5▼ 有機高分子材料有機高分子材料としては、−CH2 −、−CO−(ケトン)、−CONH−(アミド)、−NH−(イミド)、−COO−(エステル)、−N=N−(アゾ)、−CH=N−(シフ)等の結合(照射光7の照射によりこれらの結合が切断される)を有するもの、特にこれらの結合を多く有するものであればいかなるものでもよい。 ▲ 4 ▼ silicon nitride, aluminum nitride, as the nitride ceramic ▲ 5 ▼ organic polymer material an organic polymer material such as titanium nitride, --CH2 -, - CO- (ketone), - CONH- (amide), - NH - (imide), - COO- (ester), - N = N-(azo), - CH = N-one having a bond of (shift), etc. (these bonds are cut by irradiation with the light 7) it may in particular be any substance so long as it has many of these bonds. また、有機高分子材料は、構成式中に芳香族炭化水素(1または2以上のベンゼン環またはその縮合環)を有するものであってもよい。 The organic polymeric material may have aromatic hydrocarbon (one or more benzene rings or condensed rings) during configuration type.
【0055】 [0055]
このような有機高分子材料の具体的例としては、ポリエチレン、ポリプロピレンのようなポリオレフィン、ポリイミド、ポリアミド、ポリエステル、ポリメチルメタクリレート(PMMA)、ポリフェニレンサルファイド(PPS)、ポリエーテルスルホン(PES)、エポキシ樹脂等が挙げられる。 Specific examples of such organic polymeric materials include polyethylene, polyolefin such as polypropylene, polyimide, polyamide, polyester, polymethylmethacrylate (PMMA), polyphenylene sulfide (PPS), polyether sulfone (PES), epoxy resin etc. the.
【0056】 [0056]
▲6▼ 金属金属としては、例えば、Al、Li、Ti、Mn、In、Sn、Y、La、Ce、Nd、Pr、Gd、Sm、またはこれらのうちの少なくとも1種を含む合金が挙げられる。 ▲ 6 ▼ metal metal, for example, Al, Li, Ti, Mn, In, Sn, Y, La, Ce, Nd, Pr, Gd, Sm or alloys containing at least one of these, .
【0057】 [0057]
また、分離層2の厚さは、剥離目的や分離層2の組成、層構成、形成方法等の諸条件により異なるが、通常は、1nm〜20μm 程度であるのが好ましく、10nm〜2μm 程度であるのがより好ましく、40nm〜1μm 程度であるのがさらに好ましい。 The thickness of the separating layer 2, the composition of the peeling purposes or separation layer 2, the layer configuration may vary depending on various conditions such as forming method, usually, it is preferably about 1Nm~20myuemu, at about 10nm~2μm more preferably is, further preferably about 40Nm~1myuemu.
【0058】 [0058]
分離層2の膜厚が小さすぎると、成膜の均一性が損なわれ、剥離にムラが生じることがあり、また、膜厚が厚すぎると、分離層2の良好な剥離性を確保するために、照射光7のパワー(光量)を大きくする必要があるとともに、後に分離層2を除去する際にその作業に時間がかかる。 If the thickness of the separation layer 2 is too small, impaired uniformity of film formation, sometimes uneven peeling occurs, and when the film thickness is too thick, in order to ensure good release properties of the separating layer 2 to, together it is necessary to increase the power (light intensity) of the illumination light 7, after the time-consuming for the work in removing the separation layer 2. なお、分離層2の膜厚は、できるだけ均一であるのが好ましい。 The thickness of the separation layer 2 is preferably as uniform as possible.
【0059】 [0059]
分離層2の形成方法は、特に限定されず、膜組成や膜厚等の諸条件に応じて適宜選択される。 Method of forming the separation layer 2 is not particularly limited and is appropriately selected depending on conditions such as the film composition and film thickness. 例えば、CVD(MOCVD、低圧CVD、ECR−CVDを含む)、蒸着、分子線蒸着(MB)、スパッタリング、イオンプレーティング、PVD等の各種気相成膜法、電気メッキ、浸漬メッキ(ディッピング)、無電解メッキ等の各種メッキ法、ラングミュア・ブロジェット(LB)法、スピンコート、スプレーコート、ロールコート等の塗布法、各種印刷法、転写法、インクジェット法、粉末ジェット法等が挙げられ、これらのうちの2以上を組み合わせて形成することもできる。 For example, CVD (including MOCVD, low pressure CVD, the ECR-CVD), vapor deposition, molecular beam deposition (MB), sputtering, ion plating, various vapor phase film forming method such as PVD, electroplating, immersion plating (dipping), various plating methods such as electroless plating, Langmuir-Blodgett (LB) method, spin coating, spray coating, a coating method such as roll coating, various printing methods, transfer methods, ink jet method, powder jet method, etc. these It can be formed by combining two or more of.
【0060】 [0060]
例えば、分離層2の組成が非晶質シリコン(a−Si)の場合には、CVD、特に低圧CVDやプラズマCVDにより成膜するのが好ましい。 For example, if the composition of the separation layer 2 is amorphous silicon (a-Si), CVD, is particularly formed by low pressure CVD or plasma CVD preferred.
【0061】 [0061]
また、分離層2をゾル−ゲル法によるセラミックスで構成する場合や、有機高分子材料で構成する場合には、塗布法、特にスピンコートにより成膜するのが好ましい。 Further, the separation layer 2 sol - and if composed of ceramics by gel method, when composed of an organic polymeric material, a coating method, preferably deposited in particular by spin coating.
【0062】 [0062]
また、分離層2の形成は、2工程以上の工程(例えば、層の形成工程と熱処理工程)で行われてもよい。 The formation of the separation layer 2, 2 or more steps (e.g., a heat treatment step and the step of forming the layer) may be carried out in.
【0063】 [0063]
[2] 図2に示すように、分離層2の上に中間層(下地層)3を形成する。 [2] As shown in FIG. 2, to form an intermediate layer (underlying layer) 3 on the separation layer 2.
【0064】 [0064]
この中間層3は、種々の形成目的で形成され、例えば、製造時または使用時において後述する被転写層4を物理的または化学的に保護する保護層、絶縁層、導電層、照射光7の遮光層、被転写層4へのまたは被転写層4からの成分の移行(マイグレーション)を阻止するバリア層、反射層としての機能の内の少なくとも1つを発揮するものが挙げられる。 The intermediate layer 3 is formed by various forming purposes, for example, the protective layer, an insulating layer for protecting the transferred layer 4 to be described later at the time of manufacturing or using physically or chemically, electrically conductive layer, the irradiation light 7 shielding layer, a barrier layer for preventing migration of components to or from the transferred layer 4 to the transfer layer 4 (migration), include those that exhibit at least one of the functions as a reflecting layer.
【0065】 [0065]
この中間層3の組成としては、その形成目的に応じて適宜設定され、例えば、非晶質シリコンによる分離層2と薄膜トランジスタによる被転写層4との間に形成される中間層3の場合には、SiO2 等の酸化ケイ素が挙げられ、分離層2とPZTによる被転写層4との間に形成される中間層3の場合には、例えば、Pt、Au、W、Ta、Mo、Al、Cr、Tiまたはこれらを主とする合金のような金属が挙げられる。 The composition of the intermediate layer 3 is appropriately set according to the formation purposes, for example, in the case of the intermediate layer 3 formed between the transferred layer 4 by the separation layer 2 and the thin film transistor according to the amorphous silicon , include silicon oxide such as SiO2, in the case of an intermediate layer 3 formed between the transferred layer 4 by the separation layer 2 and the PZT, for example, Pt, Au, W, Ta, Mo, Al, Cr , and metal such as alloy Ti or those mainly.
【0066】 [0066]
このような中間層3の厚さは、その形成目的や発揮し得る機能の程度に応じて適宜決定されるが、通常は、10nm〜5μm 程度であるのが好ましく、40nm〜〜1μm 程度であるのがより好ましい。 Such thickness of the intermediate layer 3 is appropriately determined according to the degree of its formation purpose and exhibit and can function normally is preferably in the range of about 10 nm to 5 [mu] m, is approximately 40nm~~1μm and more preferable.
【0067】 [0067]
また、中間層3の形成方法も、前記分離層2で挙げた形成方法と同様の方法が挙げられる。 Further, the method of forming the intermediate layer 3 may include the same method as forming methods listed in the separation layer 2. また、中間層3の形成は、2工程以上の工程で行われてもよい。 The formation of the intermediate layer 3 may be carried out in two or more steps.
【0068】 [0068]
なお、このような中間層3は、同一または異なる組成のものを2層以上形成することもできる。 Incidentally, such an intermediate layer 3, the ones of the same or different composition can be formed two or more layers. また、本発明では、中間層3を形成せず、分離層2上に直接被転写層4を形成してもよい。 In the present invention, without forming the intermediate layer 3 may be formed directly transferred layer 4 on the isolation layer 2.
【0069】 [0069]
[3] 図3に示すように、中間層3の上に被転写層(被剥離物)4を形成する。 [3] As shown in FIG. 3, the transfer layer on the intermediate layer 3 (peeled product) 4 to form a.
【0070】 [0070]
被転写層4は、後述する転写体6へ転写される層であって、前記分離層2で挙げた形成方法と同様の方法により形成することができる。 The transfer layer 4 may be a layer that is transferred to the transfer member 6 which will be described later, it is formed by the same method as forming methods listed in the separation layer 2.
【0071】 [0071]
被転写層4の形成目的、種類、形態、構造、組成、物理的または化学的特性等は、特に限定されないが、転写の目的や有用性を考慮して、薄膜、特に機能性薄膜または薄膜デバイスであるのが好ましい。 Forming an object of the transferred layer 4, the type, form, structure, composition, physical or chemical properties such as, but not limited, in consideration of the purpose and usefulness of the transfer, a thin film, particularly a functional thin film or thin film device in it is preferred.
【0072】 [0072]
機能性薄膜および薄膜デバイスとしては、例えば、薄膜トランジスタ、薄膜ダイオード、その他の薄膜半導体デバイス、電極(例:ITO、メサ膜のような透明電極)、太陽電池やイメージセンサ等に用いられる光電変換素子、スイッチング素子、メモリー、圧電素子等のアクチュエータ、マイクロミラー(ピエゾ薄膜セラミックス)、磁気記録媒体、光磁気記録媒体、光記録媒体等の記録媒体、磁気記録薄膜ヘッド、コイル、インダクター、薄膜高透磁材料およびそれらを組み合わせたマイクロ磁気デバイス、フィルター、反射膜、ダイクロイックミラー、偏光素子等の光学薄膜、半導体薄膜、超伝導薄膜(例:YBCO薄膜)、磁性薄膜 、金属多層薄膜、金属セラミック多層薄膜、金属半導体多層薄膜、セラミック半導体多層薄膜、有機 The functional thin films and thin film devices, for example, thin film transistors, thin film diodes, and other thin film semiconductor devices, electrodes (eg: ITO, transparent electrodes such as mesa films), a photoelectric conversion element used in solar cells and image sensor or the like, switching element, memory, actuators such as a piezoelectric element, a micro mirror (piezo thin film ceramics), magnetic recording medium, a magneto-optical recording medium, a recording medium such as an optical recording medium, a magnetic recording thin film head, coils, inductors, thin film high 磁材 fees and micro magnetic devices a combination thereof, filter, reflection films, dichroic mirrors, optical thin film such as a polarizing element, a semiconductor thin film, the superconducting thin film (example: YBCO thin film), a magnetic thin film, a metal multilayer film, metal ceramic multilayer film, metal a thin semiconductor multi-layer film, ceramic semiconductor multilayer film, an organic 薄膜と他の物質の多層薄膜等が挙げられる。 Multilayer thin film such as a thin film and other materials.
【0073】 [0073]
このなかでも、特に、薄膜デバイス、マイクロ磁気デバイス、マイクロ三次元構造物の構成、アクチュエータ、マイクロミラー等に適用することの有用性が高く、好ましい。 Among this, in particular, thin film devices, micro magnetic devices, configuration of a micro three-dimensional structure, the actuator has high usefulness of applying a micro mirror or the like, preferably.
【0074】 [0074]
このような機能性薄膜または薄膜デバイスは、その形成方法との関係で、通常、比較的高いプロセス温度を経て形成される。 Such functional thin films or thin film devices, in relation to its forming method, normally, is formed at a relatively high process temperatures. 従って、この場合、前述したように、基板1としては、そのプロセス温度に耐え得る信頼性の高いものが必要となる。 Therefore, in this case, as described above, as the substrate 1, it is necessary to have high endure reliability to the process temperature.
【0075】 [0075]
なお、被転写層4は、単層でも、複数の層の積層体でもよい。 Incidentally, the transfer layer 4, it may be a single layer or a stack of multiple layers. さらには、前記薄膜トランジスタ等のように、所定のパターンニングが施されたものであってもよい。 Furthermore, as in such the thin film transistor, or may be a predetermined patterning is performed. 被転写層4の形成(積層)、パターンニングは、それに応じた所定の方法により行われる。 Formation of the transfer layer 4 (lamination), patterning is performed by a predetermined method corresponding thereto. このような被転写層4は、通常、複数の工程を経て形成される。 Such a transfer layer 4 is generally formed through a plurality of steps.
【0076】 [0076]
薄膜トランジスタによる被転写層4の形成は、例えば、特公平2−50630号公報や、文献:H.Ohshima et al : International Symposium Digest of Technical Papers SID 1983 ”B/W and Color LC Video Display Addressed by Poly Formation of the transfer layer 4 by the thin film transistor, for example, Kokoku 2-50630 and JP literature: H.Ohshima et al: International Symposium Digest of Technical Papers SID 1983 "B / W and Color LC Video Display Addressed by Poly
Si TFTs”に記載された方法に従って行うことができる。 It can be carried out according to the method described in Si TFTs ".
【0077】 [0077]
また、被転写層4の厚さも特に限定されず、その形成目的、機能、組成、特性等の諸条件に応じて適宜設定される。 The thickness of the transferred layer 4 is not particularly limited, the formation purpose, function, composition, are set appropriately according to various conditions characteristics. 被転写層4が薄膜トランジスタの場合、その合計厚さは、好ましくは0.5〜200μm 程度、より好ましくは1.0〜10μm 程度とされる。 If the transfer layer 4 is a thin film transistor, the total thickness is preferably about 0.5 to 200, more preferably about 1.0 to 10 [mu] m. また、その他の薄膜の場合、好適な合計厚さは、さらに広い範囲でよく、例えば50nm〜1000μm 程度とすることができる。 Moreover, in the case of other thin films, suitable total thickness may be in a wider range can be, for example 50nm~1000μm about.
【0078】 [0078]
なお、被転写層4は、前述したような薄膜に限定されず、例えば、塗布膜やシートのような厚膜であってもよく、さらには、例えば粉体のような膜(層)を構成しない被転写物または被剥離物であってもよい。 Incidentally, the transfer layer 4 is not limited to a thin film as described above, for example, it may be a thick film such as a coated film or sheet, and further, constituting the membrane (layers), such as powder it may be a transfer target or be peeled product no.
【0079】 [0079]
[4] 図4に示すように、被転写層(被剥離物)4上に接着層5を形成し、該接着層5を介して転写体6を接着(接合)する。 [4] As shown in FIG. 4, to form an adhesive layer 5 on 4 the transfer layer (peeled product) is bonded (joined) to the transfer member 6 through the adhesive layer 5.
【0080】 [0080]
接着層5を構成する接着剤の好適な例としては、反応硬化型接着剤、熱硬化型接着剤、紫外線硬化型接着剤等の光硬化型接着剤、嫌気硬化型接着剤等の各種硬化型接着剤が挙げられる。 Preferable examples of the adhesive constituting the adhesive layer 5, the reaction-curing adhesive, thermosetting adhesive, light curing adhesive such as ultraviolet curing adhesive, various curing types such as anaerobic curing adhesives adhesive and the like. 接着剤の組成としては、例えば、エポキシ系、アクリレート系、シリコーン系等、いかなるものでもよい。 The composition of the adhesive, e.g., epoxy-based, acrylate-based, silicone-based, etc., may be any. このような接着層5の形成は、例えば、塗布法によりなされる。 Formation of such an adhesive layer 5, for example, be done by a coating method.
【0081】 [0081]
前記硬化型接着剤を用いる場合、例えば被転写層4上に硬化型接着剤を塗布し、その上に後述する転写体6を接合した後、硬化型接着剤の特性に応じた硬化方法により前記硬化型接着剤を硬化させて、被転写層4と転写体6とを接着、固定する。 When using the curable adhesive, for example, the curable adhesive is applied onto the transfer layer 4, after joining the transfer member 6 to be described later thereon, wherein the curing method in accordance with the characteristics of the curable adhesive by curing the curable adhesive, it bonds the transfer member 6 and the transfer layer 4 and fixed.
【0082】 [0082]
光硬化型接着剤を用いる場合は、透光性の転写体6を未硬化の接着層5上に配置した後、転写体6上から硬化用の光を照射して接着剤を硬化させることが好ましい。 When using a photocurable adhesive, after placement on the adhesive layer 5 of the uncured transfer member 6 of the translucent, that the adhesive is cured by irradiation with light for curing from the transfer member 6 preferable. また、基板1が透光性を有するものであれば、基板1と転写体6の両側から硬化用の光を照射して接着剤を硬化させれば、硬化が確実となり好ましい。 Further, the substrate 1 is as long as it has translucency, is cured adhesive is irradiated with light for curing from both sides of the substrate 1 and the transfer member 6, preferred curing is ensured.
【0083】 [0083]
なお、図示と異なり、転写体6側に接着層5を形成し、その上に被転写層4を接着してもよい。 Unlike the illustration, the adhesive layer 5 is formed on the transfer body 6 side, may be bonded to the transfer layer 4 is formed thereon. また、被転写層4と接着層5との間に、前述したような中間層を設けてもよい。 Further, between the adhesive layer 5 and the transferred layer 4 may be provided an intermediate layer as described above. また、例えば転写体6自体が接着機能を有する場合等には、接着層5の形成を省略してもよい。 Further, for example, in such case the transfer member 6 itself has an adhesive function may be omitted to form the adhesive layer 5.
【0084】 [0084]
転写体6としては、特に限定されないが、基板(板材)、特に透明基板が挙げられる。 The transfer member 6 is not particularly limited, a substrate (plate material), and in particular transparent substrates. なお、このような基板は、平板であっても、湾曲板であってもよい。 Such a substrate may be flat, or may be a curved plate.
【0085】 [0085]
また、転写体6は、前記基板1に比べ、耐熱性、耐食性等の特性が劣るものであってもよい。 The transfer member 6, compared with the substrate 1, or may be heat resistance, characteristics such as corrosion resistance inferior. その理由は、本発明では、基板1側に被転写層4を形成し、その後、該被転写層4を転写体6に転写するため、転写体6に要求される特性、特に耐熱性は、被転写層4の形成の際の温度条件等に依存しないからである。 The reason is that in the present invention, to form a transferred layer 4 on the substrate 1 side, then, for transferring the 該被 transfer layer 4 to the transfer member 6, characteristics required for the transfer member 6, in particular heat resistance, it does not depend on the temperature conditions and the like during the formation of the transfer layer 4.
【0086】 [0086]
従って、被転写層4の形成の際の最高温度をTmax としたとき、転写体6の構成材料として、ガラス転移点(Tg)または軟化点がTmax 以下のものを用いることができる。 Therefore, when the maximum temperature during the formation of the transferred layer 4 was set to Tmax, as the material of the transfer member 6, a glass transition point (Tg) or softening point can be used are as follows Tmax. 例えば、転写体6は、ガラス転移点(Tg)または軟化点が好ましくは800℃以下、より好ましくは500℃以下、さらに好ましくは320℃以下の材料で構成することができる。 For example, the transfer member 6 is a glass transition point (Tg) or softening point less preferably 800 ° C., more preferably 500 ° C. or less, more preferably can be composed of 320 ° C. the following materials.
【0087】 [0087]
また、転写体6の機械的特性としては、ある程度の剛性(強度)を有するものが好ましいが、可撓性、弾性を有するものであってもよい。 As the mechanical properties of the transfer member 6, but preferably has a certain degree of rigidity (strength), flexibility, may have an elasticity.
【0088】 [0088]
このような転写体6の構成材料としては、各種合成樹脂または各種ガラス材が挙げられ、特に、各種合成樹脂や通常の(低融点の)安価なガラス材が好ましい。 Such constituent material of the transfer member 6, include various synthetic resins or various types of glass material, in particular, various synthetic resins and conventional (low melting point) inexpensive glass materials are preferred.
【0089】 [0089]
合成樹脂としては、熱可塑性樹脂、熱硬化性樹脂のいずれでもよく、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体(EVA)等のポリオレフィン、環状ポリオレフィン、変性ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリ−(4−メチルペンテン−1)、アイオノマー、アクリル系樹脂、ポリメチルメタクリレート(PMMA)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、アクリロニトリル−スチレン共重合体(AS樹脂)、ブタジエン−スチレン共重合体、ポリオキシメチレン、ポリビニルアルコール(PVA)、エチレン−ビニルアルコール共重合体 As the synthetic resin, thermoplastic resin may be either a thermosetting resin, such as polyethylene, polypropylene, ethylene - propylene copolymer, ethylene - vinyl acetate copolymer (EVA) polyolefin such as, cyclic polyolefin, modified polyolefin , polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, polyimide, polyamideimide, polycarbonate, poly - (4-methylpentene-1), ionomer, acrylic resins, polymethyl methacrylate (PMMA), acrylonitrile - butadiene - styrene copolymer polymer (ABS resin), acrylonitrile - styrene copolymer (AS resin), butadiene - styrene copolymer, polyoxymethylene, polyvinyl alcohol (PVA), ethylene - vinyl alcohol copolymer EVOH)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリシクロヘキサンテレフタレート(PCT)等のポリエステル、ポリエーテル、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド、ポリアセタール(POM)、ポリフェニレンオキシド、変性ポリフェニレンオキシド、ポリサルフォン、ポリフェニレンサルファイド(PPS)、ポリエーテルスルホン(PES)、ポリアリレート、芳香族ポリエステル(液晶ポリマー)、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、その他フッ素系樹脂、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、トランスポリイ EVOH), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), poly terephthalate (PCT) polyesters such as, polyethers, polyether ketone (PEK), polyether ether ketone (PEEK), polyetherimide, polyacetal ( POM), polyphenylene oxide, modified polyphenylene oxide, polysulfone, polyphenylene sulfide (PPS), polyether sulfone (PES), polyarylate, aromatic polyester (liquid crystal polymer), polytetrafluoroethylene, polyvinylidene fluoride, other fluorine-based resin, styrene, polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, trans-poly Lee プレン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル、シリコーン樹脂、ポリウレタン等、またはこれらを主とする共重合体、ブレンド体、ポリマーアロイ等が挙げられ、これらのうちの1種または2種以上を組み合わせて(例えば2層以上の積層体として)用いることができる。 Puren system, fluororubber, various thermoplastic elastomers such as chlorinated polyethylene, epoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyester, silicone resin, polyurethane, etc., or a copolymer of these main, blend, a polymer alloy and the like, can be used singly or in combination of two or more of these (e.g., a laminate of two or more layers).
【0090】 [0090]
ガラス材としては、例えば、ケイ酸ガラス(石英ガラス)、ケイ酸アルカリガラス、ソーダ石灰ガラス、カリ石灰ガラス、鉛(アルカリ)ガラス、バリウムガラス、ホウケイ酸ガラス等が挙げられる。 As the glass material, for example, silicate glass (quartz glass), alkali silicate glass, soda lime glass, potash lime glass, lead (alkaline) glass, barium glass, borosilicate glass, and the like. このうち、ケイ酸ガラス以外のものは、ケイ酸ガラスに比べて融点が低く、また、成形、加工も比較的容易であり、しかも安価であり、好ましい。 Among them, other than silicate glass, low melting point in comparison with silicate glass, also forming, machining is also relatively easy and inexpensive, preferred.
【0091】 [0091]
転写体6として合成樹脂で構成されたものを用いる場合には、大型の転写体6を一体的に成形することができるとともに、湾曲面や凹凸を有するもの等の複雑な形状であっても容易に製造することができ、また、材料コスト、製造コストも安価であるという種々の利点が享受できる。 When using those made of synthetic resin as a transfer member 6, as well as a transfer member 6 large can be molded integrally, easily even complicated shapes, such as those having a curved surface or unevenness can be produced, also, material cost, can enjoy various advantages that the manufacturing cost is inexpensive. 従って、大型で安価なデバイス(例えば、液晶ディスプレイ)を容易に製造することができるようになる。 Thus, large and inexpensive devices (e.g., liquid crystal display) so can be easily manufactured.
【0092】 [0092]
なお、転写体6は、例えば、液晶セルのように、それ自体独立したデバイスを構成するものや、例えばカラーフィルター、電極層、誘電体層、絶縁層、半導体素子のように、デバイスの一部を構成するものであってもよい。 The transfer member 6 is, for example, as in the liquid crystal cell, and what constitutes itself independent device, for example a color filter, electrode layer, dielectric layer, an insulating layer, as a semiconductor device, some devices it may constitute a.
【0093】 [0093]
さらに、転写体6は、金属、セラミックス、石材、木材、紙等の物質であってもよいし、ある品物を構成する任意の面上(時計の面上、エアコンの表面上、プリント基板の上等)、さらには壁、柱、梁、天井、窓ガラス等の構造物の表面上であってもよい。 Furthermore, the transfer member 6 is metal, ceramic, stone, wood, it may be a material such as paper, any on the surface (on the watch face, air conditioner on the surface constituting the certain goods on the printed board etc.), and further walls, columns, beams, ceilings, or even on the surface of a structure such as window glass.
【0094】 [0094]
[5] 図5に示すように、基板1の裏面側(照射光入射面12側)から照射光7を照射する。 [5] As shown in FIG. 5, it is irradiated with irradiation light 7 from the back side of the substrate 1 (irradiation light entrance surface 12 side). この照射光7は、基板1を透過した後、界面2a側から分離層2に照射される。 The illumination light 7 is transmitted through the substrate 1 is irradiated from the surface 2a side in the separation layer 2. これにより、図6または図7に示すように、分離層2に層内剥離および/または界面剥離が生じ、結合力が減少または消滅するので、基板1と転写体6とを離間させると、被転写層4が基板1から離脱して、転写体6へ転写される。 Thus, as shown in FIG. 6 or 7, occurs intralayer delamination and / or interfacial separation in the separation layer 2, the bonding strength decreases or disappears, when separating the substrate 1 and the transfer member 6, the transfer layer 4 is detached from the substrate 1 is transferred to the transfer member 6.
【0095】 [0095]
なお、図6は、分離層2に層内剥離が生じた場合を示し、図7は、分離層2に界面2aでの界面剥離が生じた場合を示す。 Incidentally, FIG. 6 shows a case where intra-layer peeling occurs in the separation layer 2, FIG. 7 shows the case where interfacial peeling at the interface 2a occurs in the separation layer 2. 分離層2の層内剥離および/または界面剥離が生じる原理は、分離層2の構成材料にアブレーションが生じること、また、分離層2内に内蔵しているガスの放出、さらには照射直後に生じる溶融、蒸散等の相変化によるものであることが推定される。 Principles intralayer delamination and / or interfacial exfoliation of the separation layer 2 occurs, that ablation occurs in the material of the separation layer 2, also, release of the gas which is incorporated in the separation layer 2, further occurs immediately after irradiation melting, it is estimated is by phase change transpiration like.
【0096】 [0096]
ここで、アブレーションとは、照射光を吸収した固体材料(分離層2の構成材料)が光化学的または熱的に励起され、その表面や内部の原子または分子の結合が切断されて放出することを言い、主に、分離層2の構成材料の全部または一部が溶融、蒸散(気化)等の相変化を生じる現象として現れる。 Here, the ablation that absorbed solid material irradiated light (the material of the separation layer 2) is photochemically or thermally excited, the binding of the surface or inside of the atom or molecule emits been cut refers primarily all or part of the constituent material of the separation layer 2 is melted, it appears as a phenomenon causing a phase change such as transpiration (vaporization). また、前記相変化によって微小な発泡状態となり、結合力が低下することもある。 Moreover, it is fine foam state by the phase change, sometimes binding force decreases.
【0097】 [0097]
分離層2が層内剥離を生じるか、界面剥離を生じるか、またはその両方であるかは、分離層2の組成や、その他種々の要因に左右され、その要因の1つとして、照射光7の種類、波長、強度、到達深さ等の条件が挙げれる。 Or separation layer 2 occurs within the stripping layer, or cause interfacial separation, or whether the is both a composition and of the separating layer 2, depends on various other factors, as one of its factors, irradiation light 7 type, wavelength, intensity, and include conditions such as penetration depth.
【0098】 [0098]
照射光7としては、分離層2に層内剥離および/または界面剥離を起こさせるものであればいかなるものでもよく、例えば、X線、紫外線、可視光、赤外線(熱線)、レーザ光、ミリ波、マイクロ波、電子線、放射線(α線、β線、γ線)等が挙げられるが、そのなかでも、分離層2の剥離(アブレーション)を生じさせ易いという点で、レーザ光が好ましい。 The irradiation light 7, as long as to cause intralayer delamination and / or interfacial separation in the separation layer 2 may be any, for example, X-rays, ultraviolet rays, visible light, infrared rays (heat rays), laser light, millimeter waves , microwave, electron beam, radiation (alpha rays, beta rays, gamma rays), but like, among them, in terms of easily causing separation of the separation layer 2 (ablation), laser light is preferred.
【0099】 [0099]
このレーザ光を発生させるレーザ装置としては、各種気体レーザ、固体レーザ(半導体レーザ)等が挙げられるが、エキシマレーザ、Nd−YAGレーザ、Arレーザ、CO2 レーザ、COレーザ、He−Neレーザ等が好適に用いられ、その中でもエキシマレーザが特に好ましい。 The laser device for generating the laser beam, various gas lasers, but a solid-state laser (semiconductor laser) and the like, an excimer laser, Nd-YAG laser, Ar laser, CO2 laser, CO laser, the He-Ne laser or the like preferably used, an excimer laser is particularly preferred.
【0100】 [0100]
エキシマレーザは、短波長域で高エネルギーを出力するため、極めて短時間で分離層2にアブレーションを生じさせることができ、よって、隣接するまたは近傍の中間層3、被転写層4、基板1等に温度上昇をほとんど生じさせることなく、すなわち劣化、損傷を生じさせることなく分離層2を剥離することができる。 Excimer lasers, for outputting high energy in the short wavelength region, it is possible to cause ablation in the separation layer 2 within a very short time, thus, adjacent or near the middle layer 3, the transferred layer 4, the substrate 1 or the like the less likelihood of causing a temperature rise, i.e. degradation, can be peeled separation layer 2 without causing damage.
【0101】 [0101]
また、分離層2にアブレーションを生じさせるに際しての照射光に波長依存性がある場合、照射されるレーザ光の波長は、100〜350nm程度であるのが好ましい。 Furthermore, if the separation layer 2 has wavelength dependence on the irradiation light when causing ablation, the wavelength of the laser beam irradiated is preferably about 100 to 350 nm.
【0102】 [0102]
また、分離層2に、例えばガス放出、気化、昇華等の相変化を起こさせて分離特性を与える場合、照射されるレーザ光の波長は、350〜1200nm程度であるのが好ましい。 Further, the separation layer 2, for example gas discharge, vaporization, if allowed to cause a phase change of sublimation provide isolation characteristics, the wavelength of the laser beam irradiated is preferably about 350~1200Nm.
【0103】 [0103]
また、照射されるレーザ光のエネルギー密度、特に、エキシマレーザの場合のエネルギー密度は、10〜5000mJ/cm2程度とするのが好ましく、100〜500mJ/cm2程度とするのがより好ましい。 In addition, the energy density of the laser beam irradiated, particularly the energy density in the case of the excimer laser, is preferably about 10~5000mJ / cm2, and more preferably about 100 to 500 mJ / cm @ 2. また、照射時間は、1〜1000nsec程度とするのが好ましく、10〜100nsec程度とするのがより好ましい。 The irradiation time is preferably about 1~1000Nsec, and more preferably about 10~100Nsec. エネルギー密度が低いかまたは照射時間が短いと、十分なアブレーション等が生じず、また、エネルギー密度が高いかまたは照射時間が長いと、分離層2および中間層3を透過した照射光により被転写層4へ悪影響を及ぼすことがある。 When either or irradiation time energy density is low is short, sufficient ablation or the like occurs, and if either or irradiation time of high energy density is long, the transfer layer by the irradiation light transmitted through the separation layer 2 and the intermediate layer 3 4 there is an adverse effect to.
【0104】 [0104]
このようなレーザ光に代表される照射光7は、その強度が均一となるように照射されるのが好ましい。 Such laser irradiation light 7 represented by is preferably irradiated such that the intensity is uniform.
【0105】 [0105]
照射光7の照射方向は、分離層2に対し垂直な方向に限らず、分離層2に対し所定角度傾斜した方向であってもよい。 Irradiation direction of the irradiation light 7 is not limited to a direction perpendicular to the separation layer 2, relative to the separation layer 2 may be a direction inclined at a predetermined angle.
【0106】 [0106]
また、分離層2の面積が照射光の1回の照射面積より大きい場合には、分離層2の全領域に対し、複数回に分けて照射光を照射することもできる。 Further, when the area of ​​the separation layer 2 is larger than one irradiation area of ​​the irradiation light, the entire region of the separation layer 2 with respect, it is also possible to irradiate the illumination light a plurality of times. また、同一箇所に2回以上照射してもよい。 Further, it may be irradiated two or more times at the same place.
【0107】 [0107]
また、異なる種類、異なる波長(波長域)の照射光(レーザ光)を同一領域または異なる領域に2回以上照射してもよい。 Also, different types may be irradiated two or more times different irradiation light wavelength (wavelength region) (laser beam) in the same area or different areas.
【0108】 [0108]
[6] 図8に示すように、中間層3に付着している分離層2を、例えば洗浄、エッチング、アッシング、研磨等の方法またはこれらを組み合わせた方法により除去する。 [6] As shown in FIG. 8, the separation layer 2 adhered to the intermediate layer 3, such as washing, to remove the etching, ashing, by a method or a combination of these methods such as polishing.
【0109】 [0109]
図6に示すような分離層2の層内剥離の場合には、基板1に付着している分離層2も同様に除去する。 When intralayer separation of a separation layer 2 as shown in Figure 6, the separation layer 2 adhered to the substrate 1 similarly removed.
【0110】 [0110]
なお、基板1が石英ガラスのような高価な材料、希少な材料で構成されている場合等には、基板1は、好ましくは再利用(リサイクル)に供される。 The substrate 1 is an expensive material such as quartz glass, in a case like that consists of rare material, the substrate 1 is preferably subjected to a re-use (recycling). 換言すれば、再利用したい基板1に対し、本発明を適用することができ、有用性が高い。 In other words, with respect to the substrate 1 to be reused, it is possible to apply the present invention, highly useful.
【0111】 [0111]
以上のような各工程を経て、被転写層4の転写体6への転写が完了する。 Through the steps described above, it completed the transfer to the transfer member 6 of the transfer layer 4. その後、被転写層4に隣接する中間層3の除去や、他の任意の層の形成等を行うこともできる。 Then, it is also possible to perform the formation such as the removal or the intermediate layer 3 adjacent to the transfer layer 4, the other optional layers.
【0112】 [0112]
本発明では、被剥離物である被転写層4自体を直接剥離するのではなく、被転写層4に接合された分離層2において剥離するため、被剥離物(被転写層4)の特性、条件等にかかわらず、容易かつ確実に、しかも均一に剥離(転写)することができ、剥離操作に伴う被剥離物(被転写層4)へのダメージもなく、被転写層4の高い信頼性を維持することができる。 In the present invention, characteristics of instead of peeling the transferred layer 4 itself is to be peeled product directly for stripping in the separation layer 2 that is bonded to the transfer layer 4, the scrapings (the transfer layer 4), regardless of conditions, etc., easily and reliably, and uniform peeling (transfer) it is possible to, the scrapings caused by peeling operation without damage to (the transfer layer 4), a high transferred layer 4 reliability it can be maintained.
【0113】 [0113]
また、図示の実施例では、被転写層4の転写体6への転写方法について説明したが、本発明の剥離方法は、このような転写を行わないものであってもよい。 Further, in the illustrated embodiment has been described transfer method to the transfer member 6 of the transfer layer 4, the peeling method of the present invention may be those without such transfer. この場合には、前述した被転写層4に代えて、被剥離物とされる。 In this case, instead of the transferred layer 4 described above, it is to be peeled product. この被剥離物は、層状のもの、層を構成しないもののいずれでもよい。 The peeled product may be of a layered, be any of those not constituting the layer.
【0114】 [0114]
また、被剥離物の剥離目的は、例えば、前述したような薄膜(特に機能性薄膜)の不要部分の除去(トリミング)、ゴミ、酸化物、重金属、炭素、その他不純物等のような付着物の除去、それを利用した基板等のリサイクル等いかなるものであってもよい。 Further, peeling the purpose of the stripping may be, for example, removal of the unnecessary portion of the thin film (particularly functional thin film) as described above (trimmed), dust, oxides, heavy metals, carbon, deposits such as other impurities removing it recycling, etc. may be any of the substrate or the like to use.
【0115】 [0115]
また、転写体6は、前述したものに限らず、例えば、各種金属材料、セラミックス、炭素、紙材、ゴム等、基板1と全く性質が異なる材料(透光性の有無を問わない)で構成されたものでもよい。 The transfer member 6 is not limited to those described above, for example, constituted of various metal materials, ceramics, carbon, paper material, such as rubber, in a completely nature material different substrate 1 (with or without a translucent) it may be the one that is. 特に、転写体6が、被転写層4を直接形成することができないかまたは形成するのに適さない材料の場合には、本発明を適用することの価値が高い。 In particular, the transfer member 6, in the case of a material not suitable for or formed can not form a transferred layer 4 directly, a high value of applying the present invention.
【0116】 [0116]
また、図示の実施例では、基板1側から照射光7を照射したが、例えば、付着物(被剥離物)を除去する場合や、被転写層4が照射光7の照射により悪影響を受けないものの場合には、照射光7の照射方向は前記に限定されず、基板1と反対側から照射光を照射してもよい。 Further, in the illustrated embodiment, has been irradiated with irradiation light 7 from the substrate 1 side, for example, when removing the deposit (peeled product), the transfer layer 4 is not adversely affected by irradiation with the light 7 in the case of things, the irradiation direction of the irradiation light 7 is not limited to the above, it may be irradiated with the irradiation light from the side opposite to the substrate 1.
【0117】 [0117]
以上、本発明の剥離方法を図示の実施例について説明したが、本発明は、これに限定されるものではない。 Having described the illustrated embodiment the separation method of the present invention, the present invention is not limited thereto.
【0118】 [0118]
例えば、分離層2の面方向に対し部分的に、すなわち所定のパターンで照射光を照射して、被転写層4を前記パターンで剥離または転写するような構成であってもよい(第1の方法)。 For example, in part to the plane direction of the separation layer 2, namely by irradiating the irradiation light in a predetermined pattern, may be configured such that peeling or transferring the transferred layer 4 with the pattern (first Method). この場合には、前記[5]の工程に際し、基板1の照射光入射面12に対し、前記パターンに対応するマスキングを施して照射光7を照射するか、あるいは、照射光7の照射位置を精密に制御する等の方法により行うことができる。 In this case, when step of the [5], with respect to the irradiation light incident surface 12 of the substrate 1, or to irradiate the illumination light 7 is subjected to masking corresponding to the pattern, or the irradiation position of the irradiation light 7 it can be carried out by a method such as precisely controlled.
【0119】 [0119]
また、分離層2を基板1の分離層形成面11全面に形成するのではなく、分離層2を所定のパターンで形成することもできる(第2の方法)。 Further, the separation layer 2 is not formed on the separation layer forming surface 11 entire surface of the substrate 1, it is possible to form the separating layer 2 with a predetermined pattern (second method). この場合、マスキング等により分離層2を予め所定のパターンに形成するか、あるいは、分離層2を分離層形成面11の全面に形成した後、エッチング等によりパターンニングまたはトリミングする方法が可能である。 Is this case, is formed in advance a predetermined pattern separation layer 2 by a masking or the like, or, after forming the separation layer 2 on the entire surface of the separation layer forming surface 11, it is possible method for patterning or trimmed by etching or the like .
【0120】 [0120]
以上のような第1の方法および第2の方法によれば、被転写層4の転写を、そのパターンニングやトリミングと共に行うことができる。 According to the first and second methods as described above, the transfer of the transfer layer 4 can be performed with the patterned or trimmed.
【0121】 [0121]
また、前述した方法と同様の方法により、転写を2回以上繰り返し行ってもよい。 Further, by the same method as described above, it may be repeated transfer two or more times. この場合、転写回数が偶数回であれば、最後の転写体に形成された被転写層の表・裏の位置関係を、最初に基板1に被転写層を形成した状態と同じにすることができる。 In this case, if an even number of times is the number of transfers, the front and back positional relationship between the transfer layer formed on the end of the transcript, that initially the same as a state of forming a transferred layer on the substrate 1 it can.
【0122】 [0122]
また、大型の透明基板(例えば、有効領域が900mm×1600mm)を転写体6とし、小型の基板1(例えば、有効領域が45mm×40mm)に形成した小単位の被転写層4(薄膜トランジスタ)を複数回(例えば、約800回)好ましくは隣接位置に順次転写して、大型の透明基板の有効領域全体に被転写層4を形成し、最終的に前記大型の透明基板と同サイズの液晶ディスプレイを製造することもできる。 Further, a large transparent substrate (e.g., effective area is 900 mm × 1600 mm) and transfer member 6, a small substrate 1 (e.g., the effective area is 45 mm × 40 mm) on to form a small unit of the transfer layer 4 (thin film transistor) multiple times (e.g., about 800 times) preferably are sequentially transferred to an adjacent position, form a transferred layer 4 on the entire effective region of the large transparent substrate, and finally the large transparent substrate of the same size liquid crystal display It can also be produced.
【0123】 [0123]
【実施例】 【Example】
次に、本発明の具体的実施例について説明する。 Next, detailed embodiments of the present invention.
【0124】 [0124]
(実施例1) (Example 1)
縦50mm×横50mm×厚さ1.1mmの石英基板(軟化点:1630℃、歪点:1070℃、エキシマレーザの透過率:ほぼ100%)を用意し、この石英基板の片面に、分離層(レーザ光吸収層)として非晶質シリコン(a−Si)膜を低圧CVD法(Si2 H6 ガス、425℃)により形成した。 Vertical 50 mm × horizontal 50 mm × thickness 1.1mm quartz substrate (softening point: 1630 ° C., strain point: 1070 ° C., excimer laser transmittance: approximately 100%) was prepared, on one side of the quartz substrate, the separation layer It was formed by (laser absorbing layer) as an amorphous silicon (a-Si) film low pressure CVD method (Si2 H6 gas, 425 ° C.). 分離層の膜厚は、100nmであった。 The film thickness of the separation layer was 100 nm.
【0125】 [0125]
次に、分離層上に、中間層としてSiO2 膜をECR−CVD法(SiH4 +O2 ガス、100℃)により形成した。 Then, on the separation layer, an SiO2 film ECR-CVD method as an intermediate layer (SiH4 + O2 gas, 100 ° C.) was formed by. 中間層の膜厚は、200nmであった。 Thickness of the intermediate layer was 200 nm.
【0126】 [0126]
次に、中間層上に、被転写層として膜厚50nmの非晶質シリコン膜を低圧CVD法(Si2 H6 ガス、425℃)により形成し、この非晶質シリコン膜にレーザ光(波長308nm)を照射して、結晶化させ、ポリシリコン膜とした。 Next, on the intermediate layer, an amorphous silicon film of film thickness 50nm as the transfer layer a low pressure CVD method (Si2 H6 gas, 425 ° C.) is formed by the laser light to the amorphous silicon film (wavelength 308 nm) by irradiating and crystallized to obtain a polysilicon film. その後、このポリシリコン膜に対し、所定のパターンニングを施し、薄膜トランジスタのソース・ドレイン・チャネルとなる領域を形成した。 Then, with respect to the polysilicon film is subjected to predetermined patterning to form regions serving as source-drain channel of the thin film transistor. この後、1000°C以上の高温によりポリシリコン膜表面を熱酸化してゲート絶縁膜SiO2 を形成した後、ゲート絶縁膜上にゲート電極(ポリシリコンにMo等の高融点金属が積層形成された構造)を形成し、ゲート電極をマスクとしてイオン注入することによって、自己整合的(セルファライン)にソース・ドレイン領域を形成し、薄膜トランジスタを形成した。 Thereafter, after the surface of the polysilicon film to form the gate insulating film SiO2 is thermally oxidized by a high temperature of at least 1000 ° C, high-melting-point metal such as Mo to the gate electrode (polysilicon on the gate insulating film is laminated to form the structure), by ion implantation using the gate electrode as a mask to form source and drain regions in a self-aligned manner (self-alignment), to form a thin film transistor. この後、必要に応じて、ソース・ドレイン領域に接続される電極及び配線、ゲート電極につながる配線が形成される。 Thereafter, if necessary, the source-drain region connected to the electrodes and wirings, connected to the gate electrode wiring is formed. これらの電極や配線にはAlが使用されるが、これに限定されるものではない。 Although Al These electrodes and wirings are used, but is not limited thereto. また、後工程のレーザー照射によりAlの溶融が心配される場合は、Alよりも高融点の金属(後工程のレーザー照射により溶融しないもの)を使用してもよい。 Further, if the melting of the Al is concerned by laser irradiation in the subsequent step may use a high melting point metal (which is not melted by laser irradiation in the subsequent step) than Al.
【0127】 [0127]
次に、前記薄膜トランジスタの上に、紫外線硬化型接着剤を塗布し(膜厚:100μm )、さらにその塗膜に、転写体として縦200mm×横300mm×厚さ1.1mmの大型の透明なガラス基板(ソーダガラス、軟化点:740℃、歪点:511℃)を接合した後、ガラス基板側から紫外線を照射して接着剤を硬化させ、これらを接着固定した。 Then, on the thin film transistor, an ultraviolet curable adhesive is applied (film thickness: 100 [mu] m), further to the coating film, a large transparent glass vertical 200 mm × horizontal 300 mm × thickness of 1.1mm as a transfer member substrate (soda glass, softening point: 740 ° C., strain point: 511 ° C.) after bonding and the ultraviolet from the glass substrate side was irradiated to cure the adhesive and these were bonded.
【0128】 [0128]
次に、Xe−Clエキシマレーザ(波長:308nm)を石英基板側から照射し、分離層に剥離(層内剥離および界面剥離)を生じさせた。 Then, Xe-Cl excimer laser (wavelength: 308 nm) was irradiated from the quartz substrate side, it caused peeling the separation layer (intralayer delamination and surface peeling). 照射したXe−Clエキシマレーザのエネルギー密度は、250mJ/cm2、照射時間は、20nsecであった。 Energy density of the irradiated Xe-Cl excimer laser, 250 mJ / cm @ 2, the irradiation time was 20 nsec. なお、エキシマレーザの照射は、スポットビーム照射とラインビーム照射とがあり、スポットビーム照射の場合は、所定の単位領域(例えば8mm×8mm)にスポット照射し、このスポット照射を単位領域の1/10程度ずつずらしながら照射していく。 The irradiation of the excimer laser, there is a spot beam irradiation and line beam irradiation, in the case of spot beam irradiation, and spot irradiation in a predetermined unit region (e.g., 8 mm × 8 mm), the spot irradiation of the unit region 1 / go with radiation shifted by about 10. また、ラインビーム照射の場合は、所定の単位領域(例えば378mm×0.1mmや378mm×0.3mm(これらはエネルギーの90%以上が得られる領域))を同じく1/10程度ずつずらしながら照射していく。 In the case of the line beam irradiation, while shifted by same extent 1/10 predetermined unit region (e.g., 378 mm × 0.1 mm and 378 mm × 0.3 mm (area which are more than 90% of the energy is obtained)) irradiation going to. これにより、分離層の各点は少なくとも10回の照射を受ける。 Thus, each point of the separation layer is subjected to irradiation of at least 10 times. このレーザ照射は、石英基板全面に対して、照射領域をずらしながら実施される。 The laser irradiation with respect to the quartz substrate whole surface is carried out while shifting the irradiation region.
【0129】 [0129]
この後、石英基板とガラス基板(転写体)とを分離層において引き剥がし、石英基板上に形成された薄膜トランジスタおよび中間層をガラス基板側に転写した。 Thereafter, the quartz substrate and the glass substrate (transfer member) peeled in the separation layer, a thin film transistor and interlayer formed on the quartz substrate were transferred to the glass substrate side.
【0130】 [0130]
その後、ガラス基板側の中間層の表面に付着した分離層を、エッチングや洗浄またはそれらの組み合わせにより除去した。 Thereafter, the separation layer adhering to the surface of the glass substrate side of the intermediate layer was removed by etching or washing, or a combination thereof. また、石英基板についても同様の処理を行い、再使用に供した。 Further, the same processing for the quartz substrate and subjected to reuse.
【0131】 [0131]
なお、転写体となるガラス基板が石英基板より大きな基板であれば、本実施例のような石英基板からガラス基板への転写を、平面的に異なる領域に繰り返して実施し、ガラス基板上に、石英基板に形成可能な薄膜トランジスタの数より多くの薄膜トランジスタを形成することができる。 Incidentally, if a large substrate glass substrate of quartz substrate as a transfer member, the transfer from the quartz substrate as in this embodiment the glass substrate was performed repeatedly in different areas in plan view, on a glass substrate, it is possible to form more thin film transistors than the number of formable thin film transistor on a quartz substrate. さらに、ガラス基板上に繰り返し積層し、同様により多くの薄膜トランジスタを形成することができる。 Furthermore, repeatedly laminated on a glass substrate, it is possible to form more thin film transistors as well.
【0132】 [0132]
(実施例2) (Example 2)
分離層を、H(水素)を20at%含有する非晶質シリコン膜とした以外は実施例1と同様にして、薄膜トランジスタの転写を行った。 The separation layer, except that the amorphous silicon film H (hydrogen) containing 20at% in the same manner as in Example 1, was transferred a thin film transistor.
【0133】 [0133]
なお、非晶質シリコン膜中のH量の調整は、低圧CVD法による成膜時の条件を適宜設定することにより行った。 The adjustment of the H amount of the amorphous silicon film was carried out by setting the conditions at the time of film formation by the low pressure CVD method as appropriate.
【0134】 [0134]
(実施例3) (Example 3)
分離層を、スピンコートによりゾル−ゲル法で形成したセラミックス薄膜(組成:PbTiO3 、膜厚:200nm)とした以外は実施例1と同様にして、薄膜トランジスタの転写を行った。 The separation layer, a sol by spin-coating - ceramic thin film formed by gel method (composition: PbTiO3, film thickness: 200 nm) except for using in the same manner as in Example 1, was transferred a thin film transistor.
【0135】 [0135]
(実施例4) (Example 4)
分離層を、スパッタリングにより形成したセラミックス薄膜(組成:BaTiO3 、膜厚:400nm)とした以外は実施例1と同様にして、薄膜トランジスタの転写を行った。 The separation layer, forming the ceramic thin film by sputtering (composition: BaTiO3, thickness: 400 nm) except for using in the same manner as in Example 1, was transferred a thin film transistor.
【0136】 [0136]
(実施例5) (Example 5)
分離層を、レーザアブレーション法により形成したセラミックス薄膜(組成:Pb(Zr,Ti)O3 (PZT)、膜厚:50nm)とした以外は実施例1と同様にして、薄膜トランジスタの転写を行った。 The separation layer, a ceramic thin film formed by a laser ablation method (composition: Pb (Zr, Ti) O3 (PZT), thickness: 50 nm) except for using in the same manner as in Example 1, was transferred a thin film transistor.
【0137】 [0137]
(実施例6) (Example 6)
分離層を、スピンコートにより形成したポリイミド膜(膜厚:200nm)とした以外は実施例1と同様にして、薄膜トランジスタの転写を行った。 The separation layer, a polyimide film (thickness: 200 nm) formed by spin coating except for using in the same manner as in Example 1, was transferred a thin film transistor.
【0138】 [0138]
(実施例7) (Example 7)
分離層を、スピンコートにより形成したポリフェニレンサルファイド膜(膜厚:200nm)とした以外は実施例1と同様にして、薄膜トランジスタの転写を行った。 The separation layer, a polyphenylene sulfide film formed by spin coating (film thickness: 200 nm) except for using in the same manner as in Example 1, was transferred a thin film transistor.
【0139】 [0139]
(実施例8) (Example 8)
分離層を、スパッタリングにより形成したAl層(膜厚:300nm)とした以外は実施例1と同様にして、薄膜トランジスタの転写を行った。 The separation layer, Al layer formed by sputtering (film thickness: 300 nm) except for using in the same manner as in Example 1, was transferred a thin film transistor.
【0140】 [0140]
(実施例9) (Example 9)
照射光として、Kr−Fエキシマレーザ(波長:248nm)を用いた以外は実施例2と同様にして、薄膜トランジスタの転写を行った。 As the irradiation light, Kr-F excimer laser (wavelength: 248 nm) except for using in the same manner as in Example 2, was transferred a thin film transistor. なお、照射したレーザのエネルギー密度は、250mJ/cm2、照射時間は、20nsecであった。 Incidentally, the energy density of the laser was irradiated, 250 mJ / cm @ 2, the irradiation time was 20 nsec.
【0141】 [0141]
(実施例10) (Example 10)
照射光として、Nd−YAIGレーザ(波長:1068nm)を用いた以外は実施例2と同様にして薄膜トランジスタの転写を行った。 As the irradiation light, Nd-YAIG laser (wavelength: 1068 nm) except for using in the same manner as in Example 2 was transferred thin film transistors. なお、照射したレーザのエネルギー密度は、400mJ/cm2、照射時間は、20nsecであった。 Incidentally, the energy density of the laser was irradiated, 400 mJ / cm @ 2, the irradiation time was 20 nsec.
【0142】 [0142]
(実施例11) (Example 11)
被転写層として、高温プロセス1000℃によるポリシリコン膜(膜厚80nm)の薄膜トランジスタとした以外は実施例1と同様にして、薄膜トランジスタの転写を行った。 As the transfer layer, except that the thin film transistor of a polysilicon film (thickness 80 nm) by a high temperature process 1000 ° C. in the same manner as in Example 1, was transferred a thin film transistor.
【0143】 [0143]
(実施例12) (Example 12)
転写体として、ポリカーボネート(ガラス転移点:130℃)製の透明基板を用いた以外は実施例1と同様にして、薄膜トランジスタの転写を行った。 As a transfer member, polycarbonate (glass transition point: 130 ° C.) except that a transparent substrate made of in the same manner as in Example 1, was transferred a thin film transistor.
【0144】 [0144]
(実施例13) (Example 13)
転写体として、AS樹脂(ガラス転移点:70〜90℃)製の透明基板を用いた以外は実施例2と同様にして、薄膜トランジスタの転写を行った。 As a transfer member, AS resin (glass transition point: 70 to 90 ° C.) except that a transparent substrate made of in the same manner as in Example 2, was transferred a thin film transistor.
【0145】 [0145]
(実施例14) (Example 14)
転写体として、ポリメチルメタクリレート(ガラス転移点:70〜90℃)製の透明基板を用いた以外は実施例3と同様にして、薄膜トランジスタの転写を行った。 As a transfer member, polymethyl methacrylate (glass transition point: 70 to 90 ° C.) except that a transparent substrate made of in the same manner as in Example 3, was transferred a thin film transistor.
【0146】 [0146]
(実施例15) (Example 15)
転写体として、ポリエチレンテレフタレート(ガラス転移点:67℃)製の透明基板を用いた以外は実施例5と同様にして、薄膜トランジスタの転写を行った。 As a transfer member, a polyethylene terephthalate (glass transition point: 67 ° C.) except that a transparent substrate made of in the same manner as in Example 5, was transferred a thin film transistor.
【0147】 [0147]
(実施例16) (Example 16)
転写体として、高密度ポリエチレン(ガラス転移点:77〜90℃)製の透明基板を用いた以外は実施例6と同様にして、薄膜トランジスタの転写を行った。 As a transfer member, high density polyethylene (glass transition point: 77 to 90 ° C.) except that a transparent substrate made of in the same manner as in Example 6, was subjected to transfer of the thin film transistor.
【0148】 [0148]
(実施例17) (Example 17)
転写体として、ポリアミド(ガラス転移点:145℃)製の透明基板を用いた以外は実施例9と同様にして、薄膜トランジスタの転写を行った。 As a transfer member, polyamide (glass transition point: 145 ° C.) except that a transparent substrate made of in the same manner as in Example 9, were transferred thin film transistors.
【0149】 [0149]
(実施例18) (Example 18)
転写体として、エポキシ樹脂(ガラス転移点:120℃)製の透明基板を用いた以外は実施例10と同様にして、薄膜トランジスタの転写を行った。 As a transfer member, an epoxy resin (glass transition point: 120 ° C.) except that a transparent substrate made of in the same manner as in Example 10, was subjected to transfer of the thin film transistor.
【0150】 [0150]
(実施例19) (Example 19)
転写体として、ポリメチルメタクリレート(ガラス転移点:70〜90℃)製の透明基板を用いた以外は実施例11と同様にして、薄膜トランジスタの転写を行った。 As a transfer member, polymethyl methacrylate (glass transition point: 70 to 90 ° C.) except that a transparent substrate made of in the same manner as in Example 11, was subjected to transfer of the thin film transistor.
【0151】 [0151]
実施例1〜19について、それぞれ、転写された薄膜トランジスタの状態を肉眼と顕微鏡とで視観察したところ、いずれも、欠陥やムラがなく、均一に転写がなされていた。 For Examples 1 to 19, respectively, were observed viewed in a state of macroscopic and microscopic of the transferred thin film transistors, either, no defects or unevenness, uniform transfer has been made.
【0152】 [0152]
【発明の効果】 【Effect of the invention】
以上述べたように、本発明の剥離方法によれば、被剥離物(被転写層)の特性、条件等にかかわらず、容易かつ確実に剥離することができ、特に、転写体を選ばず、種々の転写体への転写が可能となる。 As described above, according to the separation method of the present invention, characteristics of the peelings (transfer layer), regardless of the conditions, etc., can be easily and reliably separated, in particular, choosing a transfer member, it is possible to transfer to the various transcripts. 例えば、薄膜を直接形成することができないかまたは形成するのに適さない材料、成形が容易な材料、安価な材料等で構成されたものや、移動しにくい大型の物体等に対しても、転写によりそれを形成することができる。 For example, the material unsuitable for a thin film directly or can not be formed or formed, molded easy material, and those composed of inexpensive materials such as, with respect to an object such as a mobile hard large, transfer it can be formed thereby.
【0153】 [0153]
特に、転写体は、各種合成樹脂や融点の低いガラス材のような、基板材料に比べ耐熱性、耐食性等の特性が劣るものを用いることができる。 In particular, transfer member, such as various synthetic resins and low melting point glass material, may be used as the heat resistance, properties such as corrosion resistance inferior to the substrate material. そのため、例えば、透明基板上に薄膜トランジスタ(特にポリシリコンTFT)を形成した液晶ディスプレイを製造するに際しては、基板として、耐熱性に優れる石英ガラス基板を用い、転写体として、各種合成樹脂や融点の低いガラス材のような安価でかつ加工のし易い材料の透明基板を用いることにより、大型で安価な液晶ディスプレイを容易に製造することができるようになる。 Therefore, for example, in manufacturing a liquid crystal display to form a thin film transistor (especially polysilicon TFT) on a transparent substrate, as the substrate, a quartz glass substrate having excellent heat resistance, as a transfer member, low various synthetic resins and melting point the use of inexpensive and transparent substrate processing-prone materials such as glass material, it is possible to easily manufacture an inexpensive liquid crystal display large. このような利点は、液晶ディスプレイに限らず、他のデバイスの製造についても同様である。 Such advantages are not limited to the liquid crystal display is the same for the production of other devices.
【0154】 [0154]
また、以上のような利点を享受しつつも、信頼性の高い基板、特に石英ガラス基板のような耐熱性の高い基板に対し機能性薄膜のような被転写層を形成し、さらにはパターニングすることができるので、転写体の材料特性にかかわらず、転写体上に信頼性の高い機能性薄膜を形成することができる。 Also, while enjoying the advantages described above, a high substrate reliability, and in particular form a transferred layer such as a functional thin film to highly heat-resistant substrate such as a quartz glass substrate, and further patterned it is possible, irrespective of the material properties of the transfer body, it is possible to form a highly reliable functional thin film on the transfer member.
【0155】 [0155]
また、このような信頼性の高い基板は、高価であるが、それを再利用することも可能であり、よって、製造コストも低減される。 Moreover, such a highly reliable substrate is expensive, it is also possible to reuse it, therefore, the manufacturing cost is also reduced.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】本発明の剥離方法の実施例の工程を示す断面図である。 1 is a cross-sectional view showing a step of embodiments of the separation method of the present invention.
【図2】本発明の剥離方法の実施例の工程を示す断面図である。 2 is a sectional view showing an embodiment of a process of peeling method of the present invention.
【図3】本発明の剥離方法の実施例の工程を示す断面図である。 3 is a cross-sectional view showing a step of embodiments of the separation method of the present invention.
【図4】本発明の剥離方法の実施例の工程を示す断面図である。 Is a sectional view showing an embodiment of a process of peeling method of the present invention; FIG.
【図5】本発明の剥離方法の実施例の工程を示す断面図である。 5 is a cross-sectional view showing a process example of a peeling method of the present invention.
【図6】本発明の剥離方法の実施例の工程を示す断面図である。 6 is a cross-sectional view showing a step of embodiments of the separation method of the present invention.
【図7】本発明の剥離方法の実施例の工程を示す断面図である。 7 is a sectional view showing an embodiment of a process of peeling method of the present invention.
【図8】本発明の剥離方法の実施例の工程を示す断面図である。 8 is a sectional view showing a process example of a peeling method of the present invention.
【符号の説明】 DESCRIPTION OF SYMBOLS
1 基板11 分離層形成面12 照射光入射面2 分離層2a、2b 界面3 中間層4 被転写層5 接着層6 転写体7 照射光 1 substrate 11 separating layer formation surface 12 the irradiation light entrance surface 2 isolation layer 2a, 2b interface 3 intermediate layer 4 the transfer layer 5 adhesive layer 6 transfer member 7 irradiates light

Claims (7)

  1. 透光性の基板上に形成された薄膜デバイスを含む被転写層を転写体に転写する薄膜デバイスの転写方法において、 In the transfer method of a thin film device transferred to a transfer member to be transferred layer including a thin film device formed on a transparent substrate,
    前記透光性の基板に所定のパターンで、アモルファスシリコンにより分離層を形成する第1工程と、 In a predetermined pattern on the transparent substrate, a first step of forming a separation layer of amorphous silicon,
    前記分離層上に前記薄膜デバイスである薄膜トランジスタを含む前記被転写層を形成する第2工程と、 A second step of forming said transferred layer including a thin film transistor wherein a thin film device on said separation layer,
    前記薄膜デバイスを含む被転写層を接着層を介して前記転写体に接合する第3工程と、 A third step of bonding the transfer member with an adhesive layer to be transferred layer including the thin film device,
    前記透光性の基板側から前記分離層に光を照射して、前記分離層の層内および/または界面において剥離を生ぜしめ、前記被転写層を前記転写体に転写する第4工程と、 And irradiating light to the separating layer from the substrate side of the light-caused peeling in the layer in and / or interface of the separation layer, and a fourth step of transferring the transferred layer to the transfer member,
    前記転写の後、前記透光性の基板に付着している前記分離層を、前記透光性の基板を再使用可能にするために除去する第5工程と、 After the transfer, the separation layer adhering to the translucent substrate, a fifth step of removing to permit re-use the translucent substrate,
    を具備し、 Equipped with,
    前記転写体は、前記被転写層の形成の際の最高温度をTmaxとしたとき、ガラス転移点(Tg)または軟化点がTmax以下の材料で構成され、 The transfer member, wherein when the maximum temperature during the formation of the transfer layer was Tmax, the glass transition point (Tg) or softening point is constituted by the following materials Tmax,
    前記基板は、前記被転写層の形成の際の最高温度をTmaxとしたとき、歪点がTmax以上の材料で構成されていることを特徴とする薄膜デバイスの転写方法。 The substrate, when said maximum temperature in formation of the transfer layer was Tmax, the transfer method of the thin film device according to claim Rukoto strain point consists of more materials Tmax.
  2. 請求項1に記載の薄膜デバイスの転写方法において、 In the transfer method of a thin-film device according to claim 1,
    前記被転写層を前記分離層上に直接形成することを特徴とする薄膜デバイスの転写方法。 Method for transferring a thin film device, which comprises directly forming the transferred layer onto the separation layer.
  3. 請求項1に記載の薄膜デバイスの転写方法において、 In the transfer method of a thin-film device according to claim 1,
    中間層を介して、前記被転写層を前記分離層上に形成することを特徴とする薄膜デバイスの転写方法。 Via an intermediate layer, transfer method of a thin film device, which comprises forming the transferred layer onto the separation layer.
  4. 請求項1乃至請求項のいずれかに記載の薄膜デバイスの転写方法において、 In the transfer method of a thin-film device according to any one of claims 1 to 3,
    前記転写体がガラス基板からなり、前記基板が石英からなることを特徴とする薄膜デバイスの転写方法。 The transfer member is made of a glass substrate, transferring a thin film device in which the substrate is characterized in that it consists of quartz.
  5. 請求項1乃至請求項のいずれかに記載の薄膜デバイスの転写方法において、 In the transfer method of a thin-film device according to any one of claims 1 to 4,
    前記分離層の剥離は、分離層を構成する物質の原子間または分子間の結合力が消失または減少することにより生じることを特徴とする薄膜デバイスの転写方法。 The release of the separation layer, transferring a thin film device, characterized in that caused by the bonding force between atoms or molecules of the material constituting the separation layer to disappear or decrease.
  6. 請求項1乃至請求項のいずれかに記載の薄膜デバイスの転写方法において、 In the transfer method of a thin-film device according to any one of claims 1 to 5,
    前記分離層は、CVD(Chemical Vapor Deposition)によって形成することを特徴とする薄膜デバイスの転写方法。 The separating layer transfer method of the thin film device, which comprises forming by CVD (Chemical Vapor Deposition).
  7. デバイスの製造方法において、請求項1乃至請求項のいずれかに記載の薄膜デバイスの転写方法によって薄膜デバイスを転写する工程を具備することを特徴とするデバイスの製造方法。 The method of manufacturing a device, a device manufacturing method characterized by comprising the step of transferring a thin film device by transferring a thin film device according to any one of claims 1 to 6.
JP30037396A 1996-08-27 1996-11-12 How the transfer of a thin film device, and a manufacturing method for a device Expired - Fee Related JP4619461B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22564396 1996-08-27
JP30037396A JP4619461B2 (en) 1996-08-27 1996-11-12 How the transfer of a thin film device, and a manufacturing method for a device
JP8-225643 1997-08-26

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
JP30037396A JP4619461B2 (en) 1996-08-27 1996-11-12 How the transfer of a thin film device, and a manufacturing method for a device
EP03076869A EP1351308B1 (en) 1996-08-27 1997-08-26 Exfoliating method and transferring method of thin film device
DE69739368A DE69739368D1 (en) 1996-08-27 1997-08-26 Separation process and process for transferring a thin film device
EP06076859A EP1744365B1 (en) 1996-08-27 1997-08-26 Exfoliating method and transferring method of thin film device
EP06075225A EP1655633A3 (en) 1996-08-27 1997-08-26 Exfoliating method, transferring method of thin film device, thin film integrated circuit device, and liquid crystal display device
DE69737086A DE69737086D1 (en) 1996-08-27 1997-08-26 Separation method, method of transferring a thin film device, and using the transmission method produced liquid crystal display device
DE69737086T DE69737086T2 (en) 1996-08-27 1997-08-26 Separation method, method of transferring a thin film device, and using the transmission method produced liquid crystal display device
TW086112252A TW360901B (en) 1996-08-27 1997-08-26 Method of peeling thin-film device, method of transferring thin-film device, thin-film device thereby, thin-film IC circuit device, and liquid crystal display device
CNB971911347A CN1143394C (en) 1996-08-27 1997-08-26 Separatnig method, method for transferring thin film device, thin film device
DE69739376A DE69739376D1 (en) 1996-08-27 1997-08-26 Replacement methods and methods for transferring a thin film device
PCT/JP1997/002972 WO1998009333A1 (en) 1996-08-27 1997-08-26 Separating method, method for transferring thin film device, thin film device, thin film integrated circuit device, and liquid crystal display device manufactured by using the transferring method
KR10-2004-7015277A KR100500520B1 (en) 1996-08-27 1997-08-26 A transferring method and a method for manufacturing an active matrix substrate
EP97935891A EP0858110B1 (en) 1996-08-27 1997-08-26 Separating method, method for transferring thin film device, and liquid crystal display device manufactured by using the transferring method
CNA031579647A CN1495523A (en) 1996-08-27 1997-08-26 Transfer method and active matrix base board mfg. method
KR10-1998-0703007A KR100481994B1 (en) 1996-08-27 1997-08-26 Method for transferring a separation method, a thin film device, and the thin film device, a thin film integrated circuit device produced by using it, and a liquid crystal display device
EP06076860A EP1758169A3 (en) 1996-08-27 1997-08-26 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
US09/051,966 US6372608B1 (en) 1996-08-27 1997-08-26 Separating method, method for transferring thin film device, thin film device, thin film integrated circuit device, and liquid crystal display device manufactured by using the transferring method
US10/091,562 US6645830B2 (en) 1996-08-27 2002-03-07 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device and liquid crystal display device produced by the same
US10/420,840 US6818530B2 (en) 1996-08-27 2003-04-23 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
US10/851,202 US7094665B2 (en) 1996-08-27 2004-05-24 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
US11/242,017 US7285476B2 (en) 1996-08-27 2005-10-04 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
US11/514,985 US7468308B2 (en) 1996-08-27 2006-09-05 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same

Publications (2)

Publication Number Publication Date
JPH10125930A JPH10125930A (en) 1998-05-15
JP4619461B2 true JP4619461B2 (en) 2011-01-26

Family

ID=26526742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30037396A Expired - Fee Related JP4619461B2 (en) 1996-08-27 1996-11-12 How the transfer of a thin film device, and a manufacturing method for a device

Country Status (1)

Country Link
JP (1) JP4619461B2 (en)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4009923B2 (en) 1999-09-30 2007-11-21 セイコーエプソン株式会社 El panel
JP4727024B2 (en) * 2000-07-17 2011-07-20 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP2002116455A (en) * 2000-08-01 2002-04-19 Kyodo Printing Co Ltd Liquid crystal display device, electrode substrate for the same device and method of manufacturing the same device
US7034775B2 (en) 2001-03-26 2006-04-25 Seiko Epson Corporation Display device and method for manufacturing the same
JP4567282B2 (en) * 2001-07-16 2010-10-20 株式会社半導体エネルギー研究所 The method for manufacturing a light emitting device
US8415208B2 (en) * 2001-07-16 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
JP4527068B2 (en) * 2001-07-16 2010-08-18 株式会社半導体エネルギー研究所 Separation method, a method for manufacturing a semiconductor device, and a method for manufacturing the electronic book
TW586231B (en) 2001-07-24 2004-05-01 Seiko Epson Corp Transfer method, methods of manufacturing thin film devices and integrated circuits, circuit board and manufacturing method thereof, electro-optical apparatus and manufacturing method thereof, manufacturing methods of IC card and electronic appliance
US6814832B2 (en) 2001-07-24 2004-11-09 Seiko Epson Corporation Method for transferring element, method for producing element, integrated circuit, circuit board, electro-optical device, IC card, and electronic appliance
JP2003109773A (en) 2001-07-27 2003-04-11 Semiconductor Energy Lab Co Ltd Light-emitting device, semiconductor device and its manufacturing method
TW554398B (en) 2001-08-10 2003-09-21 Semiconductor Energy Lab Method of peeling off and method of manufacturing semiconductor device
JP4602261B2 (en) * 2001-08-10 2010-12-22 株式会社半導体エネルギー研究所 The method for manufacturing a separation method and a semiconductor device
TW558743B (en) 2001-08-22 2003-10-21 Semiconductor Energy Lab Peeling method and method of manufacturing semiconductor device
JP4166455B2 (en) 2001-10-01 2008-10-15 株式会社半導体エネルギー研究所 Polarizing film and a light-emitting device
KR100944886B1 (en) 2001-10-30 2010-03-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 A method of manufacturing a semiconductor device
GB0127090D0 (en) * 2001-11-10 2002-01-02 Image Portal Ltd Display
TWI264121B (en) 2001-11-30 2006-10-11 Semiconductor Energy Lab A display device, a method of manufacturing a semiconductor device, and a method of manufacturing a display device
JP2003229548A (en) * 2001-11-30 2003-08-15 Semiconductor Energy Lab Co Ltd Vehicle, display device and method for manufacturing semiconductor device
JP4567941B2 (en) * 2001-12-28 2010-10-27 株式会社半導体エネルギー研究所 The method for manufacturing a manufacturing method and a display device of a semiconductor device
US6953735B2 (en) 2001-12-28 2005-10-11 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device by transferring a layer to a support with curvature
TW531897B (en) * 2002-04-18 2003-05-11 Ind Tech Res Inst Method of forming thin film transistor on plastic substrate
US7242441B2 (en) 2002-06-10 2007-07-10 Seiko Epson Corporation Method for manufacturing electro-optical device, and electro-optical device and electronic device manufactured with this manufacturing method
TWI272641B (en) 2002-07-16 2007-02-01 Semiconductor Energy Lab Method of manufacturing a semiconductor device
JP4602035B2 (en) * 2002-07-16 2010-12-22 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP4693411B2 (en) 2002-10-30 2011-06-01 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
WO2004040649A1 (en) 2002-11-01 2004-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP4554152B2 (en) 2002-12-19 2010-09-29 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor chip
JP4101643B2 (en) 2002-12-26 2008-06-18 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP4373085B2 (en) 2002-12-27 2009-11-25 株式会社半導体エネルギー研究所 The method for manufacturing a semiconductor device, peeling method and transfer method
TWI330269B (en) 2002-12-27 2010-09-11 Semiconductor Energy Lab Separating method
US7230316B2 (en) 2002-12-27 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having transferred integrated circuit
JP4637588B2 (en) 2003-01-15 2011-02-23 株式会社半導体エネルギー研究所 The method for manufacturing a display device
US7436050B2 (en) 2003-01-22 2008-10-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a flexible printed circuit
JP4151420B2 (en) 2003-01-23 2008-09-17 セイコーエプソン株式会社 Method of manufacturing a device
JP4524992B2 (en) * 2003-01-28 2010-08-18 セイコーエプソン株式会社 TFT display device, method of manufacturing a thin film device, a thin film transistor circuit board, an electro-optical device and electronic apparatus
JP2004247373A (en) 2003-02-12 2004-09-02 Semiconductor Energy Lab Co Ltd Semiconductor device
US7973313B2 (en) 2003-02-24 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device, IC label, container comprising the thin film integrated circuit, manufacturing method of the thin film integrated circuit device, manufacturing method of the container, and management method of product having the container
JP4526771B2 (en) 2003-03-14 2010-08-18 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP2004349513A (en) 2003-05-22 2004-12-09 Seiko Epson Corp Thin film circuit device, its manufacturing method, electrooptic device, and electronic equipment
JP3824233B2 (en) 2003-09-01 2006-09-20 セイコーエプソン株式会社 Method for producing a biosensor and a biosensor
US7241666B2 (en) 2003-10-28 2007-07-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP4689249B2 (en) * 2003-11-28 2011-05-25 株式会社半導体エネルギー研究所 The method for manufacturing a display device
JP4836445B2 (en) * 2003-12-12 2011-12-14 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
TWI406688B (en) 2004-02-26 2013-09-01 Semiconductor Energy Lab Sports implement, amusement tool, and training tool
JP2006049800A (en) 2004-03-10 2006-02-16 Seiko Epson Corp Thin film device feeder, manufacturing method thereof, transfer method, manufacturing method of semiconductor device, and electronic machine
JP4225237B2 (en) 2004-04-21 2009-02-18 セイコーエプソン株式会社 Manufacturing method and an electronic apparatus of the organic el device and organic el device
JP4225238B2 (en) 2004-04-21 2009-02-18 セイコーエプソン株式会社 Manufacturing method and an organic el device and an electronic apparatus of the organic el device
KR101223197B1 (en) * 2004-09-24 2013-01-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP4940402B2 (en) * 2004-10-19 2012-05-30 セイコーエプソン株式会社 Method of manufacturing a thin film device
JP2006120726A (en) 2004-10-19 2006-05-11 Seiko Epson Corp Process for fabricating thin film device, electro-optical device, electronic apparatus
JP4945726B2 (en) * 2004-11-05 2012-06-06 セイコーエプソン株式会社 Method of manufacturing a thin film device
US8030132B2 (en) 2005-05-31 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including peeling step
JP4916680B2 (en) 2005-06-30 2012-04-18 株式会社半導体エネルギー研究所 The method for manufacturing a semiconductor device, peeling method
JP4610515B2 (en) * 2006-04-21 2011-01-12 株式会社半導体エネルギー研究所 Peeling method
JP2010027767A (en) 2008-07-17 2010-02-04 Seiko Epson Corp Thin-film device, method for manufacturing thin-film device, and electronic equipment
JP4928529B2 (en) * 2008-11-12 2012-05-09 日東電工株式会社 Method for producing a polarizing plate, a polarizing plate, an optical film and an image display device
KR100913124B1 (en) * 2009-01-05 2009-08-19 포항공과대학교 산학협력단 Manufacturing method for flexible element using laser
US7927975B2 (en) * 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
JP5147794B2 (en) * 2009-08-04 2013-02-20 株式会社半導体エネルギー研究所 A method for manufacturing a manufacturing method and electronic book of the display device
JP5132722B2 (en) * 2010-06-16 2013-01-30 株式会社半導体エネルギー研究所 Peeling method
TWI445118B (en) * 2012-02-09 2014-07-11 Subtron Technology Co Ltd Edge separation equipment and operating method thereof
JP6197369B2 (en) * 2013-05-24 2017-09-20 富士通株式会社 Production method and type of wiring board for producing a wiring board
CN106653685A (en) * 2013-12-02 2017-05-10 株式会社半导体能源研究所 Display device and method for manufacturing the same
JP5978199B2 (en) * 2013-12-25 2016-08-24 株式会社半導体エネルギー研究所 The light-emitting device
WO2015152121A1 (en) 2014-03-31 2015-10-08 日産化学工業株式会社 Composition for forming release layer
CN108690495A (en) 2014-03-31 2018-10-23 日产化学工业株式会社 Composition for forming releasing layer
CN109563341A (en) 2016-08-03 2019-04-02 日产化学株式会社 Peeling layer formation composition for transparent resin substrate
KR20190039148A (en) 2016-08-03 2019-04-10 닛산 가가쿠 가부시키가이샤 Composition for releasing layer
TW201817775A (en) 2016-08-03 2018-05-16 Nissan Chemical Ind Ltd Composition for forming release layer, and release layer
CN109476913A (en) 2016-08-03 2019-03-15 日产化学株式会社 Composition is used in peeling layer formation
JP6297654B2 (en) * 2016-09-29 2018-03-20 株式会社半導体エネルギー研究所 The light-emitting device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752455A (en) * 1986-05-27 1988-06-21 Kms Fusion, Inc. Pulsed laser microfabrication
JPH04170520A (en) * 1990-11-01 1992-06-18 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display panel and liquid crystal display substrate
JPH04311929A (en) * 1991-04-11 1992-11-04 Seiko Instr Inc Light valve device and semiconductor device
JPH05211128A (en) * 1991-09-18 1993-08-20 Commiss Energ Atom Manufacture of thin semiconductor film
JPH06118441A (en) * 1991-11-05 1994-04-28 Tadanobu Kato Display cell
JPH06504139A (en) * 1990-12-31 1994-05-12
JPH07504782A (en) * 1992-02-13 1995-05-25
JPH07170072A (en) * 1993-12-16 1995-07-04 Nec Corp Manufacture of polyimide multilayer wiring board
JPH07202424A (en) * 1993-12-28 1995-08-04 Nec Corp Production of multilayer wiring board
JPH07302889A (en) * 1994-03-10 1995-11-14 Canon Inc Manufacture of semiconductor substrate
JPH08213645A (en) * 1995-02-02 1996-08-20 Sony Corp Method of separating element formation layer from base body

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752455A (en) * 1986-05-27 1988-06-21 Kms Fusion, Inc. Pulsed laser microfabrication
JPH04170520A (en) * 1990-11-01 1992-06-18 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display panel and liquid crystal display substrate
JPH06504139A (en) * 1990-12-31 1994-05-12
JPH04311929A (en) * 1991-04-11 1992-11-04 Seiko Instr Inc Light valve device and semiconductor device
JPH05211128A (en) * 1991-09-18 1993-08-20 Commiss Energ Atom Manufacture of thin semiconductor film
JPH06118441A (en) * 1991-11-05 1994-04-28 Tadanobu Kato Display cell
JPH07504782A (en) * 1992-02-13 1995-05-25
JPH07170072A (en) * 1993-12-16 1995-07-04 Nec Corp Manufacture of polyimide multilayer wiring board
JPH07202424A (en) * 1993-12-28 1995-08-04 Nec Corp Production of multilayer wiring board
JPH07302889A (en) * 1994-03-10 1995-11-14 Canon Inc Manufacture of semiconductor substrate
JPH08213645A (en) * 1995-02-02 1996-08-20 Sony Corp Method of separating element formation layer from base body

Also Published As

Publication number Publication date
JPH10125930A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
KR101158831B1 (en) Semiconductor chip and method for manufacturing the same
US9299879B2 (en) Peeling method and method for manufacturing display device using the peeling method
US7164151B2 (en) Semiconductor device with pixel portion and driving circuit, and electronic device
JP5072946B2 (en) Method for manufacturing a liquid crystal display device
CN1458665B (en) Laminate layer transfer method and method for producing semiconductor device
CN101442057B (en) Semiconductor device,its manufacturing method and electronic apparatus
KR100561924B1 (en) Ink jet type recording head and method of producing same
JP6437680B2 (en) The method for manufacturing a light emitting device
JP4027740B2 (en) A method for manufacturing a semiconductor device
JP5288644B2 (en) Manufacturing semiconductor device and a method
KR101079757B1 (en) Semiconductor device and method for manufacturing semiconductor device
US20020110673A1 (en) Multilayered electrode/substrate structures and display devices incorporating the same
KR100884053B1 (en) Method of peeling off and method of manufacturing semiconductor device
CN1945856B (en) Semiconductor device and method of fabricating the same
CN100413092C (en) Thin film device supply body and method of fabricating the same and transfer method
JP5364779B2 (en) A method for manufacturing a semiconductor device
KR100542534B1 (en) Active matrix substrate, method of manufacturing the same, and display device
JP5057619B2 (en) A method for manufacturing a semiconductor device
US6762124B2 (en) Method for patterning a multilayered conductor/substrate structure
US20050106839A1 (en) Transfer method, method of manufacturing thin film devices, method of maufacturing integrated circuits, circuit board and manufacturing method thereof, electro-optical apparatus and manufacturing method thereof, IC card, and electronic appliance
US8182633B2 (en) Method of fabricating a flexible display device
CN1286148C (en) Electrooptic apparatus and its mfg. method, and electronic apparatus
DE69931130T2 (en) A method for separating a thin film device
DE69835798T2 (en) to transfer process to thin-film components
JP4413478B2 (en) A method for manufacturing a semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070524

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees