JP7174093B2 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
JP7174093B2
JP7174093B2 JP2021037932A JP2021037932A JP7174093B2 JP 7174093 B2 JP7174093 B2 JP 7174093B2 JP 2021037932 A JP2021037932 A JP 2021037932A JP 2021037932 A JP2021037932 A JP 2021037932A JP 7174093 B2 JP7174093 B2 JP 7174093B2
Authority
JP
Japan
Prior art keywords
layer
light
electrode
transistor
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021037932A
Other languages
English (en)
Other versions
JP2021108374A (ja
Inventor
真之 坂倉
欣聡 及川
舜平 山崎
淳一郎 坂田
将志 津吹
健吾 秋元
みゆき 細羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2021108374A publication Critical patent/JP2021108374A/ja
Priority to JP2022176899A priority Critical patent/JP7480255B2/ja
Application granted granted Critical
Publication of JP7174093B2 publication Critical patent/JP7174093B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Landscapes

  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Description

有機化合物を含む層を発光層とする発光装置およびその作製方法に関する。例えば、有機
発光素子を有する発光表示装置を部品として搭載した電子機器に関する。
薄型軽量、高速応答性、直流低電圧駆動などの特徴を有する有機化合物を発光体として用
いた発光素子は、次世代のフラットパネルディスプレイや、次世代の照明への応用が検討
されている。特に、発光素子をマトリクス状に配置した表示装置は、従来の液晶表示装置
と比較して、視野角が広く視認性が優れる点に優位性があると考えられている。
発光素子の発光機構は、一対の電極間にEL層を挟んで電圧を印加することにより、陰極
から注入された電子および陽極から注入された正孔がEL層の発光中心で再結合して分子
励起子を形成し、その分子励起子が基底状態に緩和する際にエネルギーを放出して発光す
るといわれている。励起状態には一重項励起と三重項励起が知られ、発光はどちらの励起
状態を経ても可能であると考えられている。
発光素子を構成するEL層は、少なくとも発光層を有する。また、EL層は、発光層の他
に、正孔注入層、正孔輸送層、電子輸送層、電子注入層などを有する積層構造とすること
もできる。
また、半導体特性を示す材料として金属酸化物が注目されている。半導体特性を示す金属
酸化物としては、例えば、酸化タングステン、酸化錫、酸化インジウム、酸化亜鉛などが
あり、このような半導体特性を示す金属酸化物をチャネル形成領域とする薄膜トランジス
タ(TFT:Thin Film Transistorともいう)が既に知られている
(特許文献1及び特許文献2)。
また、酸化物半導体を適用したTFTは、電界効果移動度が高い。そのため、当該TFT
を用いて、表示装置などの駆動回路を構成することもできる。
特開2007-123861号公報 特開2007-96055号公報
絶縁表面上に複数の異なる回路を形成する場合、例えば、画素部と駆動回路を同一基板上
に形成する場合には、画素部に用いる薄膜トランジスタは、優れたスイッチング特性、例
えばオンオフ比が大きいことが要求され、駆動回路に用いる薄膜トランジスタには動作速
度が速いことが要求される。特に、表示装置の精細度が高精細であればあるほど、表示画
像の書き込み時間が短くなるため、駆動回路に用いる薄膜トランジスタは速い動作速度と
することが好ましい。
同一基板上に複数種の回路を形成し、複数種の回路の特性にそれぞれ合わせた複数種の薄
膜トランジスタを備えた発光装置を提供することを課題の一とする。
本発明の一態様は、電気特性が良好で信頼性の高い薄膜トランジスタをスイッチング素子
として用い、信頼性の高い発光装置を作製することを課題とする。
本発明の一態様は、同一基板上に表示部(画素部ともいう)と、駆動回路を有する発光装
置であり、画素用薄膜トランジスタは駆動回路用薄膜トランジスタと異なる構造である。
画素部が有する第1の薄膜トランジスタはソース電極層及びドレイン電極層上に重なる酸
化物半導体層を有する逆コプラナ型(ボトムコンタクト型とも呼ぶ)の薄膜トランジスタ
である。また、駆動回路が有する第2のトランジスタは酸化物半導体層上にソース電極層
及びドレイン電極層の端部が重なるチャネルエッチ型の薄膜トランジスタである。
また、第1の薄膜トランジスタが有する酸化物半導体層の上面部と側面部と、第2の薄膜
トランジスタが有する酸化物半導体層の上面部の一部は、酸化物絶縁膜と接している。な
お、酸化物導電膜を用いて第1の薄膜トランジスタのソース電極層及びドレイン電極層を
構成し、金属導電膜を用いて第2の薄膜トランジスタのソース電極層及びドレイン電極層
を構成し、金属導電膜を用いて駆動回路用配線を構成する。
また、駆動回路用薄膜トランジスタはソース電極層及びドレイン電極層との間に露呈した
酸化物半導体層に接する酸化物絶縁層が設けられたボトムゲート型薄膜トランジスタであ
る。
駆動回路用薄膜トランジスタは、Tiなどの金属導電膜からなるドレイン電極層を有する
。該ドレイン電極層は酸化物半導体層上面の一部と接し、ドレイン電極層と重なる酸素欠
乏型である高抵抗ドレイン領域(HRD(High Resistance Drain
)領域とも呼ぶ)が形成される。具体的には、高抵抗ドレイン領域のキャリア濃度は、1
×1018/cm以上の範囲内であり、少なくともチャネル形成領域のキャリア濃度(
1×1018/cm未満)よりも高い領域である。なお、本明細書のキャリア濃度は、
室温にてHall効果測定から求めたキャリア濃度の値を指す。
また、ソース電極層は、酸化物半導体層上面の一部と接し、ソース電極層と重なる酸素欠
乏型である高抵抗ソース領域(HRS(High Resistance Source
)領域とも呼ぶ)が形成される。
また、第1の薄膜トランジスタと電気的に接続する第1の画素電極を当該画素部に複数形
成し、それぞれの第1の画素電極上に発光素子を形成すれば表示装置などの発光装置を作
成できる。さらに、複数種類の発光色の発光素子を当該画素部に設ければ、フルカラー表
示が可能な発光装置とすることができる。また、白色の発光色の発光素子を複数設け、そ
れぞれの発光素子の発光領域に重なるように光学フィルム、具体的にはカラーフィルタを
設けてフルカラーの発光表示装置とすることもできる。
なお、白色の発光色の発光素子と、画素用薄膜トランジスタの間にカラーフィルタを設け
、発光素子からの発光をカラーフィルタを通過させて表示を行う場合、画素用薄膜トラン
ジスタのゲート電極層、ソース電極層、及びドレイン電極層の材料として透光性を有する
導電膜を用いると、開口率を向上させることができる。なお、ここでカラーフィルタとは
ブラックマトリクスやオーバーコートを含めた3色のカラーフィルタ層(赤色カラーフィ
ルタ、青色カラーフィルタ、緑色カラーフィルタなど)を備えたフィルム全体を指してい
るのではなく、一つの色のカラーフィルタを指している。
すなわち本発明の一態様は、同一基板上に第1の薄膜トランジスタを有する表示部(画素
部ともいう)と、前記第1の薄膜トランジスタと構造の異なる第2の薄膜トランジスタを
有する駆動回路を有する発光装置である。当該第1の薄膜トランジスタは基板上にゲート
電極層と、ゲート電極層上にゲート絶縁層と、ゲート絶縁層上に第1の電極層及び第2の
電極層と、ゲート絶縁層上に第1の電極層及び第2の電極層と重なる酸化物半導体層と、
酸化物半導体層と接する酸化物絶縁層と、ゲート絶縁層上に第2の電極層と電気的に接続
する接続電極層とを有する。また、当該第1の薄膜トランジスタのゲート電極層、ゲート
絶縁層、酸化物半導体層、第1の電極層、第2の電極層、及び酸化物絶縁層は透光性を有
する。そして、当該画素部は酸化物絶縁層上にカラーフィルタ層と、カラーフィルタ層上
に接続電極層と電気的に接続する第1の画素電極とを有し、第1の画素電極上に発光層と
、発光層上に第2の画素電極とを有する。
また本発明の一態様は、上記構成において第2の薄膜トランジスタのゲート電極層、ソー
ス電極層及びドレイン電極層は、第1の薄膜トランジスタのゲート電極層、第1の電極層
、及び第2の電極層と材料が異なり、第1の薄膜トランジスタの第1の電極層及び第2の
電極層よりも低抵抗の導電材料であることを特徴とする発光装置である。
また本発明の一態様は、上記構成において接続電極層は、Al、Cr、Cu、Ta、Ti
、Mo、Wから選ばれた元素を主成分とする膜、若しくはそれらの合金膜とを組み合わせ
た積層膜からなることを特徴とする発光装置である。
また本発明の一態様は、上記構成において第2の薄膜トランジスタのソース電極層及びド
レイン電極層は、第1の薄膜トランジスタの接続電極層と同じ材料であることを特徴とす
る発光装置である。
また本発明の一態様は、上記構成において第1の薄膜トランジスタの第1の電極層、及び
第2の電極層は、酸化インジウム、酸化インジウム酸化スズ合金、酸化インジウム酸化亜
鉛合金、または酸化亜鉛であることを特徴とする発光装置である。
また本発明の一態様は、上記構成において第1の薄膜トランジスタ、及び前記第2の薄膜
トランジスタは、酸化物半導体層を有し、該酸化物半導体層上に酸化物絶縁層を有し、酸
化物半導体層のチャネル形成領域は、前記酸化物絶縁層と接する発光装置である。
また本発明の一態様は、上記構成において、第1の薄膜トランジスタ、及び前記第2の薄
膜トランジスタが有する酸化物半導体層のチャネル形成領域に接する酸化物絶縁層は、ス
パッタ法で形成される無機絶縁膜を用い、代表的には酸化珪素膜、窒化酸化珪素膜、酸化
アルミニウム膜、または酸化窒化アルミニウム膜などである発光装置である。
上記構成は、上記課題の少なくとも一つを解決する。
なお、酸化物半導体層としては、InMO(ZnO)(m>0)で表記される薄膜を
形成し、その薄膜を酸化物半導体層として用いた薄膜トランジスタを作製する。なお、M
は、Ga、Fe、Ni、Mn及びCoから選ばれた一の金属元素または複数の金属元素を
示す。例えばMとして、Gaの場合があることの他、GaとNiまたはGaとFeなど、
Ga以外の上記金属元素が含まれる場合がある。また、上記酸化物半導体において、Mと
して含まれる金属元素の他に、不純物元素としてFe、Niその他の遷移金属元素、また
は該遷移金属の酸化物が含まれているものがある。本明細書においては、InMO(Z
nO)(m>0)で表記される構造の酸化物半導体層のうち、MとしてGaを含む構造
の酸化物半導体をIn-Ga-Zn-O系酸化物半導体とよび、その薄膜をIn-Ga-
Zn-O系非単結晶膜とも呼ぶ。
また、酸化物半導体層に適用する金属酸化物として上記の他にも、In-Sn-O系、I
n-Sn-Zn-O系、In-Al-Zn-O系、Sn-Ga-Zn-O系、Al-Ga
-Zn-O系、Sn-Al-Zn-O系、In-Zn-O系、Sn-Zn-O系、Al-
Zn-O系、In-O系、Sn-O系、Zn-O系の金属酸化物を適用することができる
。また上記金属酸化物からなる酸化物半導体層に酸化珪素を含ませてもよい。
また、上記構造を実現するための本発明の一態様は、絶縁表面を有する基板上に第1のゲ
ート電極層及び第2のゲート電極層を形成し、第1のゲート電極層及び第2のゲート電極
層上にゲート絶縁層を形成し、ゲート絶縁層上に第1のゲート電極層と重なる第1の電極
層及び第2の電極層を形成し、ゲート絶縁層上に、第1のゲート電極層、第1の電極層の
一部、及び第2電極層の一部と重なる第1の酸化物半導体層と、第2のゲート電極層と重
なる第2の酸化物半導体層を形成し、第2の酸化物半導体層上にソース電極層及びドレイ
ン電極層と、ゲート絶縁層上に第2の電極層と電気的に接続する接続電極層を形成し、第
1の酸化物半導体層の上面部と側面部、及び第2の酸化物半導体層の上面部に接する酸化
物絶縁層を形成し、第1の酸化物半導体層と重なる酸化物絶縁層上にカラーフィルタ層を
形成し、カラーフィルタ層上に接続電極層と電気的に接続する第1の画素電極を形成し、
第1の画素電極上に発光層を形成し、発光層上に第2の画素電極を形成する発光装置の作
製方法である。
上記作製方法の構成において、第1の酸化物半導体層及び第2の酸化物半導体層に接する
酸化物絶縁層の形成は、酸化物半導体層を脱水化または脱水素化した後、大気に触れるこ
となく、酸化物半導体層への水や水素の再混入を防いで形成する。
脱水化または脱水素化は、窒素、または希ガス(アルゴン、ヘリウムなど)の不活性気体
雰囲気下での400℃以上であって750℃未満、好ましくは425℃以上700℃以下
の加熱処理であり、酸化物半導体層の含有水分などの不純物を低減する。
窒素、または希ガス(アルゴン、ヘリウムなど)の不活性気体雰囲気下での加熱処理を行
った場合、酸化物半導体層は加熱処理により酸素欠乏型となって低抵抗化、即ちN型化(
化など)させ、その後、酸化物半導体層に接する酸化物絶縁膜の形成を行うことによ
り酸化物半導体層を酸素過剰な状態とすることで高抵抗化、即ちI型化させているとも言
える。これにより、電気特性が良好で信頼性のよい薄膜トランジスタを有する半導体装置
を作製し、提供することが可能となる。
脱水化または脱水素化を行った酸化物半導体層は、脱水化または脱水素化後の酸化物半導
体層に対して昇温脱離ガス分析(TDS:Thermal Desorption Sp
ectroscopy)法で450℃まで測定を行っても水の2つのピーク、少なくとも
300℃付近に現れる1つのピークは検出されない程度の熱処理条件とする。従って、脱
水化または脱水素化が行われた酸化物半導体層を用いた薄膜トランジスタに対してTDS
で450℃まで測定を行っても少なくとも300℃付近に現れる水のピークは検出されな
い。
そして、酸化物半導体層に対して脱水化または脱水素化を行う加熱温度Tから温度を下げ
る際、脱水化または脱水素化を行った同じ炉で大気に触れさせることなく、水または水素
を再び混入させないことが重要である。脱水化または脱水素化を行い、酸化物半導体層を
低抵抗化、即ちN型化(N、Nなど)させた後、高抵抗化させてI型とした酸化物半
導体層を用いて薄膜トランジスタを作製すると、薄膜トランジスタのしきい値電圧値をプ
ラスとすることができ、所謂ノーマリーオフのスイッチング素子を実現できる。薄膜トラ
ンジスタのゲート電圧が0Vにできるだけ近い正のしきい値電圧でチャネルが形成される
ことが表示装置には望ましい。なお、薄膜トランジスタのしきい値電圧値がマイナスであ
ると、ゲート電圧が0Vでもソース電極とドレイン電極の間に電流が流れる、所謂ノーマ
リーオンとなりやすい。アクティブマトリクス型の表示装置においては、回路を構成する
薄膜トランジスタの電気特性が重要であり、この電気特性が表示装置の性能を左右する。
特に、薄膜トランジスタの電気特性のうち、しきい値電圧(Vth)が重要である。電界
効果移動度が高くともしきい値電圧値が高い、或いはしきい値電圧値がマイナスであると
、回路として制御することが困難である。しきい値電圧値が高く、しきい値電圧の絶対値
が大きい薄膜トランジスタの場合には、駆動電圧が低い状態ではTFTとしてのスイッチ
ング機能を果たすことができず、負荷となる恐れがある。nチャネル型の薄膜トランジス
タの場合、ゲート電圧に正の電圧を印加してはじめてチャネルが形成されて、ドレイン電
流が流れ出すトランジスタが望ましい。駆動電圧を高くしないとチャネルが形成されない
トランジスタや、負の電圧状態でもチャネルが形成されてドレイン電流が流れるトランジ
スタは、回路に用いる薄膜トランジスタとしては不向きである。
また、加熱温度Tから下げるガス雰囲気は、加熱温度Tまで昇温したガス雰囲気と異なる
ガス雰囲気に切り替えてもよい。例えば、脱水化または脱水素化を行った同じ炉で大気に
触れさせることなく、炉の中を高純度の酸素ガスまたはNOガス、超乾燥エア(露点が
-40℃以下、好ましくは-60℃以下)で満たして冷却を行う。
脱水化または脱水素化を行う加熱処理によって膜中の含有水分を低減させた後、水分を含
まない雰囲気(露点が-40℃以下、好ましくは-60℃以下)下で徐冷(または冷却)
した酸化物半導体膜を用いて、薄膜トランジスタの電気特性を向上させるとともに、量産
性と高性能の両方を備えた薄膜トランジスタを実現する。
本明細書では、窒素、または希ガス(アルゴン、ヘリウムなど)の不活性気体雰囲気下で
の加熱処理を脱水化または脱水素化のための加熱処理と呼ぶ。本明細書では、この加熱処
理によってHとして脱離させていることのみを脱水素化と呼んでいるわけではなく、H
、OHなどを脱離することを含めて脱水化または脱水素化と便宜上呼ぶこととする。
発光素子を用いた発光表示装置においては、画素部に複数の薄膜トランジスタを有し、画
素部においてもある薄膜トランジスタのゲート電極と他のトランジスタのソース配線、或
いはドレイン配線を接続させる箇所を有している。また、発光素子を用いた発光表示装置
の駆動回路においては、薄膜トランジスタのゲート電極とその薄膜トランジスタのソース
配線、或いはドレイン配線を接続させる箇所を有している。
また、薄膜トランジスタは静電気などにより破壊されやすいため、ゲート線またはソース
線に対して、画素部の薄膜トランジスタの保護用の保護回路を同一基板上に設けることが
好ましい。保護回路は、酸化物半導体層を用いた非線形素子を用いて構成することが好ま
しい。
なお、第1、第2として付される序数詞は便宜上用いるものであり、工程順又は積層順を
示すものではない。また、本明細書において発明を特定するための事項として固有の名称
を示すものではない。
本発明の一態様の半導体装置は、同一基板上において、駆動回路用TFTを有する駆動回
路部、及び画素用TFTを有する表示部が作製される。そのため、発光装置の製造コスト
を低減することができる。
また、基板上に白色発光素子を形成して照明装置などの発光装置を製造することもできる
。なお、照明装置は、特にエレクトロルミネッセンス(Electroluminesc
ence:以下、ELと略す)が得られる発光物質を含む層を有する発光素子を用いた照
明装置である。
画素部が有する第1の薄膜トランジスタのゲート電極層、ゲート絶縁層、酸化物半導体層
、第1の電極層、第2の電極層、酸化物絶縁層、及び第1電極は透光性を有し、開口率と
ともに、チャネル幅を大きく保つことができる。その結果、高精細であっても、発光素子
に供給するオン電流を大きくでき、輝度が高い発光装置を提供できる。
また、駆動回路が有する第2の薄膜トランジスタのゲート電極を含むゲート電極層、並び
にソース電極を含むソース電極層、及びドレイン電極を含むドレイン電極層は電気抵抗が
低い金属を配線に用いている。その結果、本発明の一態様の表示装置は配線抵抗が抑制さ
れ遅延時間を短くすることができ、表示画像の書き込み時間を短くした高精細な表示装置
を提供できる。
このように同一基板上に複数種の回路を形成し、複数種の回路の特性にそれぞれ合わせた
複数種の薄膜トランジスタを備えた発光装置を提供できる。
本発明の一態様は、電気特性が良好で信頼性の高い薄膜トランジスタをスイッチング素子
として用い、信頼性の高い発光装置を提供できる。
脱水化または脱水素化を行う加熱処理が行われた酸化物半導体層を用いることにより、電
気特性が良好で信頼性の高い薄膜トランジスタをスイッチング素子として用い、信頼性の
高い発光装置を作製することができる。また、同一基板上に画素用TFTと駆動回路用T
FTとをそれぞれの回路に合わせた異なる構造として、発光装置を作製することができる
本発明の一態様を示す断面工程図。 画素構成の一例を示す図。 本発明の一態様を示す断面図。 本発明の一態様を示す断面図。 本発明の一態様を示す断面図及び平面図。 本発明の一態様を示す断面図。 本発明の一態様を示す断面図及び平面図。 アクティブマトリクス型表示装置のブロック図を説明する図。 信号線駆動回路の構成を説明する図及び動作を説明するタイミングチャート。 シフトレジスタの構成を示す回路図。 シフトレジスタの構成を説明する図及び動作を説明するタイミングチャート。 電子機器を示す図。 電子機器を示す図。 電子機器を示す図。 電子機器を示す図。
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は
以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれ
ば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈さ
れるものではない。なお、本明細書中の図面において、同一部分または同様な機能を有す
る部分には同一の符号を付し、その説明は省略する場合がある。
(実施の形態1)
本実施の形態では、発光装置及び発光装置の作製方法の一形態を図1を用いて説明する。
図1(E)には同一基板上に作製された異なる構造の2つの薄膜トランジスタの断面構造
の一例を示す。
図1(E)に示す薄膜トランジスタ450は、ボトムゲート構造の一つであり、薄膜トラ
ンジスタ460はボトムコンタクト型(逆コプラナ型とも呼ぶ)と呼ばれるボトムゲート
構造の一つである。
画素に配置される薄膜トランジスタ460はボトムコンタクト型の薄膜トランジスタであ
り、絶縁表面を有する基板400上に、ゲート電極層111a、ゲート絶縁層402、チ
ャネル形成領域を含む酸化物半導体層123、第1の電極層115a、及び第2の電極層
115bを含む。また、薄膜トランジスタ460を覆い、酸化物半導体層123の上面及
び側面に接する酸化物絶縁層407が設けられている。
また、画素に配置される薄膜トランジスタ460はシングルゲート構造の薄膜トランジス
タを用いて説明したが、必要に応じて、チャネル形成領域を複数有するマルチゲート構造
の薄膜トランジスタも形成することができる。
なお、酸化物半導体層123は、第1の電極層115a、及び第2の電極層115bの上
方に形成し、第1の電極層115a、及び第2の電極層115bと重なっている。また、
酸化物半導体層123は、ゲート電極層111aとゲート絶縁層402を介して重なって
いる。画素に配置される薄膜トランジスタ460のチャネル形成領域は、酸化物半導体層
123のうち、第1の電極層115aの側面と、該側面と向かい合う第2の電極層115
bの側面とで挟まれる領域、即ち、ゲート絶縁層402と接し、且つゲート電極層111
aと重なる領域である。
また、薄膜トランジスタ460は透光性を有する薄膜トランジスタとして高開口率を有す
る発光装置を実現するために第1の電極層115a、及び第2の電極層115bは、透光
性を有する導電膜を用いる。
また、薄膜トランジスタ460のゲート電極層111aも可視光に対して透光性を有する
導電膜を用いる。本明細書において、可視光に対して透光性を有する膜とは可視光の透過
率が75~100%である膜を指し、その膜が導電性を有する場合は透明の導電膜とも呼
ぶ。また、可視光に対して半透明の導電膜を用いてもよい。可視光に対して半透明とは可
視光の透過率が50~75%であることを指す。
また、駆動回路に配置される薄膜トランジスタ450は、絶縁表面を有する基板400上
にゲート電極層211a、ゲート絶縁層402、酸化物半導体層、ソース電極層215a
、及びドレイン電極層215bを含む。なお、当該酸化物半導体層は少なくともチャネル
形成領域223、高抵抗ソース領域213a、及び高抵抗ドレイン領域213bを有する
酸化物半導体層を含む。また、チャネル形成領域223に接する酸化物絶縁層407が設
けられている。また、酸化物絶縁層407上には保護絶縁層408を設け、積層構造にし
てもよい。
また、図1(E)では、ゲート電極層に重畳し、酸化物絶縁層407とゲート絶縁層40
2に接して挟まれる酸化物半導体層の領域をチャネル形成領域と呼ぶこととする。なお、
薄膜トランジスタ450のチャネル長Lは、酸化物半導体層に接して互いに向かい合う、
一対のソース電極層215aとドレイン電極層215bの端部に挟まれた長さである。
以下、図1(A)、図1(B)、図1(C)、図1(D)、及び図1(E)を用い、同一
基板上に薄膜トランジスタ450及び薄膜トランジスタ460を作製する工程を説明する
まず、絶縁表面を有する基板400上に導電膜を形成した後、第1のフォトリソグラフィ
工程によりゲート電極層211a、211cを形成する。
なお、レジストマスクをインクジェット法で形成してもよい。レジストマスクをインクジ
ェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
ゲート電極層211a、211cを形成する導電膜としては、Al、Cr、Ta、Ti、
Mo、Wから選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組
み合わせた合金膜等が挙げられる。
また、ガラス基板としては、後の加熱処理の温度が高い場合には、歪み点が730℃以上
のものを用いると良い。また、ガラス基板には、例えば、アルミノシリケートガラス、ア
ルミノホウケイ酸ガラス、バリウムホウケイ酸ガラスなどのガラス材料が用いられている
。なお、ホウ酸と比較して酸化バリウム(BaO)を多く含ませることで、より実用的な
耐熱ガラスが得られる。このため、BよりBaOを多く含むガラス基板を用いるこ
とが好ましい。
なお、上記のガラス基板に代えて、セラミック基板、石英基板、サファイア基板などの絶
縁体でなる基板を用いても良い。他にも、結晶化ガラスなどを用いることができる。
また、下地膜となる絶縁膜を基板400とゲート電極層211a、211cの間に設けて
もよい。下地膜は、基板400からの不純物元素の拡散を防止する機能があり、窒化珪素
膜、酸化珪素膜、窒化酸化珪素膜、又は酸化窒化珪素膜から選ばれた一又は複数の膜によ
る積層構造により形成することができる。
次いで、ゲート電極層211a、211cを覆って透光性を有する導電膜を成膜した後、
第2のフォトリソグラフィ工程によりゲート電極層111a、111cを形成する。本実
施の形態では、配線抵抗を低減するため、画素部に配置されるゲート配線をゲート電極層
211cと同じ金属導電膜で形成し、後に形成される酸化物半導体層とゲート絶縁層40
2を介して重なるゲート電極層111aの材料を透光性を有する導電膜で形成する。
次いで、ゲート電極層211a、211c、111a、111c上にゲート絶縁層402
を形成する。
ゲート絶縁層402は、プラズマCVD法又はスパッタリング法等を用いて、酸化珪素層
、窒化珪素層、酸化窒化珪素層又は窒化酸化珪素層を単層で又は積層して形成することが
できる。なお、膜中にリン(P)や硼素(B)がドープされていても良い。
例えば、成膜ガスとして、SiH、酸素及び窒素を用いてプラズマCVD法により酸化
窒化珪素層を形成すればよい。ゲート絶縁層402の膜厚は、100nm以上500nm
以下とし、積層の場合は、例えば、膜厚50nm以上200nm以下の第1のゲート絶縁
層と、第1のゲート絶縁層上に膜厚5nm以上300nm以下の第2のゲート絶縁層の積
層とする。
本実施の形態では、プラズマCVD法により酸化窒化珪素(SiON(組成比N<O))
膜を成膜し、膜厚100nmのゲート絶縁層402とする。
次いで、ゲート絶縁層402上に、透光性を有する導電膜を形成した後、第3のフォトリ
ソグラフィ工程により第1の電極層115a、及び第2の電極層115bを形成する(図
1(A)参照。)。透光性を有する導電膜は、可視光に対して透光性を有する導電材料、
例えばIn-Sn-O系、In-Sn-Zn-O系、In-Al-Zn-O系、Sn-G
a-Zn-O系、Al-Ga-Zn-O系、Sn-Al-Zn-O系、In-Zn-O系
、Sn-Zn-O系、Al-Zn-O系、In-O系、Sn-O系、Zn-O系の金属酸
化物を適用することができ、膜厚は50nm以上300nm以下の範囲内で適宜選択する
。また、スパッタ法を用いる場合、SiOを2重量%以上10重量%以下含むターゲッ
トを用いて成膜を行い、透光性を有する導電膜に結晶化を阻害するSiOx(X>0)を
含ませ、後の工程で行う脱水化または脱水素化のための加熱処理の際に結晶化してしまう
のを抑制することが好ましい。
次いで、第4のフォトリソグラフィ工程によりゲート絶縁層402を選択的にエッチング
してゲート電極層211cに達するコンタクトホールを形成する。
次いで、ゲート絶縁層402上に、膜厚5nm以上200nm以下、好ましくは10nm
以上20nm以下の酸化物半導体膜を形成する。酸化物半導体膜の形成後に脱水化または
脱水素化のための加熱処理を行っても酸化物半導体膜を非晶質な状態とするため、膜厚を
50nm以下と薄くすることが好ましい。酸化物半導体膜の膜厚を薄くすることで酸化物
半導体層の形成後に加熱処理した場合に、結晶化してしまうのを抑制することができる。
酸化物半導体膜は、In-Ga-Zn-O系非単結晶膜、In-Sn-Zn-O系、In
-Al-Zn-O系、Sn-Ga-Zn-O系、Al-Ga-Zn-O系、Sn-Al-
Zn-O系、In-Zn-O系、Sn-Zn-O系、Al-Zn-O系、In-O系、S
n-O系、Zn-O系酸化物半導体膜を用いる。また、酸化物半導体膜は、希ガス(代表
的にはアルゴン)雰囲気下、酸素雰囲気下、又は希ガス(代表的にはアルゴン)及び酸素
雰囲気下においてスパッタ法により形成することができる。また、スパッタ法を用いる場
合、SiOを2重量%以上10重量%以下含むターゲットを用いて成膜を行い、酸化物
半導体膜に結晶化を阻害するSiOx(X>0)を含ませ、後の工程で行う脱水化または
脱水素化のための加熱処理の際に結晶化してしまうのを抑制することが好ましい。
ここでは、In、Ga、及びZnを含む酸化物半導体ターゲット(組成比として、In
:Ga:ZnO=1:1:1[mol%]、In:Ga:Zn=1:1:0.
5[at.%])を用いて、基板とターゲットの間との距離を100mm、圧力0.6P
a、直流(DC)電源0.5kW、酸素(酸素流量比率100%)雰囲気下で成膜する。
なお、パルス直流(DC)電源を用いると、ごみが軽減でき、膜厚分布も均一となるため
に好ましい。本実施の形態では、酸化物半導体膜として、In-Ga-Zn-O系酸化物
半導体ターゲットを用いてスパッタ法により膜厚15nmのIn-Ga-Zn-O系非単
結晶膜を成膜する。
スパッタ法にはスパッタ用電源に高周波電源を用いるRFスパッタ法と、DCスパッタ法
があり、さらにパルス的にバイアスを与えるパルスDCスパッタ法もある。RFスパッタ
法は主に絶縁膜を成膜する場合に用いられ、DCスパッタ法は主に金属導電膜を成膜する
場合に用いられる。
また、材料の異なるターゲットを複数設置できる多元スパッタ装置もある。多元スパッタ
装置は、同一チャンバーで異なる材料膜を積層成膜することも、同一チャンバーで複数種
類の材料を同時に放電させて成膜することもできる。
また、チャンバー内部に磁石機構を備えたマグネトロンスパッタ法を用いるスパッタ装置
や、グロー放電を使わずマイクロ波を用いて発生させたプラズマを用いるECRスパッタ
法を用いるスパッタ装置がある。
また、スパッタ法を用いる成膜方法として、成膜中にターゲット物質とスパッタガス成分
とを化学反応させてそれらの化合物薄膜を形成するリアクティブスパッタ法や、成膜中に
基板にも電圧をかけるバイアススパッタ法もある。
なお、酸化物半導体膜をスパッタ法により成膜する前に、アルゴンガスを導入してプラズ
マを発生させる逆スパッタを行い、ゲート絶縁層402の表面に付着しているゴミを除去
することが好ましい。逆スパッタとは、アルゴン雰囲気下で基板側にRF電源を用いて電
圧を印加して基板近傍にプラズマを形成して表面を改質する方法である。なお、アルゴン
雰囲気に代えて窒素、ヘリウム、酸素などを用いてもよい。
本実施の形態では、第4のフォトリソグラフィ工程によりゲート絶縁層を選択的にエッチ
ングしてゲート電極層211cに達するコンタクトホールを形成するが、特に限定されず
、酸化物半導体膜をエッチングした後、酸化物半導体層上にレジストマスクを形成し、ゲ
ート電極層211cに達するコンタクトホールを形成してもよく、その場合には逆スパッ
タを行い、酸化物半導体層及びゲート絶縁層402の表面に付着しているレジスト残渣な
どを除去することが好ましい。
また、ゲート絶縁層上に酸化物半導体膜を成膜した後、酸化物半導体膜上にレジストマス
クを形成し、ゲート電極層211cに達するコンタクトホールを形成した後、レジストマ
スクを除去し、その後、酸化物半導体膜上に再度レジストマスクを形成し、酸化物半導体
膜を選択的にエッチングして島状の酸化物半導体層に加工する工程としてもよい。
また、酸化物半導体膜の成膜前に、不活性ガス雰囲気(窒素、またはヘリウム、ネオン、
アルゴン等)下において加熱処理(400℃以上であって基板の歪み点未満)を行い、ゲ
ート絶縁層内に含まれる水素及び水などの不純物を除去してもよい。
本実施の形態では、第4のフォトリソグラフィ工程によりゲート絶縁層を選択的にエッチ
ングしてゲート電極層211cに達するコンタクトホールを形成するため、コンタクトホ
ール形成後に、不活性ガス雰囲気(窒素、またはヘリウム、ネオン、アルゴン等)下にお
いて加熱処理(400℃以上であって750℃未満)を行い、層内に含まれる水素及び水
などの不純物を除去した後、酸化物半導体膜を成膜する。
次いで、酸化物半導体膜を第5のフォトリソグラフィ工程により島状の酸化物半導体層に
加工する。なお、酸化物半導体膜のエッチング条件において、酸化物半導体膜、並びに第
1の電極層115a及び第2の電極層115bの選択比が充分にとれない場合は、レジス
トマスクに覆われていない第1の電極層115a及び第2の電極層115bを酸化物半導
体膜と共に一部もしくは完全に除去してもよい。完全に除去する場合、図1(B)に示す
形態のごとく、第1の電極層115a及び第2の電極層115bを含む導電層の上面は酸
化物半導体層が形成され、当該導電層の端部は酸化物半導体層の端部と一致することにな
る。また、一部を除去する場合、島状の酸化物半導体層と重なる領域に比べ、島状の酸化
物半導体層113の端から外側に延在する領域の第1の電極層115a及び第2の電極層
115bの厚みは、薄くなる。
また、島状の酸化物半導体層を形成するためのレジストマスクをインクジェット法で形成
してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用しない
ため、製造コストを低減できる。
次いで、酸化物半導体層の脱水化または脱水素化を行う。脱水化または脱水素化を行う第
1の加熱処理の温度は、400℃以上であって750℃未満、好ましくは425℃以上と
する。なお、425℃以上であれば熱処理時間は1時間以下でよいが、425℃未満であ
れば加熱処理時間は、1時間よりも長時間行うこととする。ここでは、加熱処理装置の一
つである電気炉に基板を導入し、酸化物半導体層に対して窒素雰囲気下において加熱処理
を行った後、大気に触れることなく、酸化物半導体層への水や水素の再混入を防ぎ、酸化
物半導体層を得る。本実施の形態では、酸化物半導体層の脱水化または脱水素化を行う加
熱温度Tから、再び水が入らないような十分な温度まで同じ炉を用い、具体的には加熱温
度Tよりも100℃以上下がるまで窒素雰囲気下で徐冷する。また、窒素雰囲気に限定さ
れず、ヘリウム、ネオン、アルゴン等の希ガス雰囲気下において脱水化または脱水素化を
行う。
なお、加熱処理装置は電気炉に限られず、抵抗発熱体などの発熱体からの熱伝導または熱
輻射によって、被処理物を加熱する装置等を用いてもよい。例えば、GRTA(Gas
Rapid Thermal Anneal)装置、LRTA(Lamp Rapid
Thermal Anneal)装置等のRTA(Rapid Thermal Ann
eal)装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライド
ランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水
銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置で
ある。GRTA装置は加熱された気体からの熱伝導によって、被処理物を加熱する装置で
ある。気体にはアルゴンなどの希ガス、または窒素のような、加熱処理によって被処理物
と反応しない不活性気体が用いられる。
なお、第1の加熱処理においては、窒素、またはヘリウム、ネオン、アルゴン等の希ガス
に、水、水素などが含まれないことが好ましい。または、加熱処理装置に導入する窒素、
またはヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上
、好ましくは7N(99.99999%)以上、(即ち不純物濃度を1ppm以下、好ま
しくは0.1ppm以下)とすることが好ましい。
また、第1の加熱処理の条件、または酸化物半導体層の材料によっては、結晶化し、微結
晶膜または多結晶膜となる場合もある。例えば、結晶化率が90%以上、または80%以
上の微結晶の酸化物半導体膜となる場合もある。また、第1の加熱処理の条件、または酸
化物半導体層の材料によっては、結晶成分を含まない非晶質の酸化物半導体膜となる場合
もある。
また、第1の加熱処理後は、酸素欠乏型となって低抵抗化した酸化物半導体層213、1
13となる(図1(B)参照。)。第1の加熱処理後は、成膜直後の酸化物半導体膜より
もキャリア濃度が高まり、好ましくは1×1018/cm以上のキャリア濃度を有する
酸化物半導体層213、113となる。また、第1の加熱処理の条件、またはゲート電極
層111a、111cの材料によっては、ゲート電極層111a、及びゲート電極層11
1cは結晶化し、微結晶膜または多結晶膜となる場合もある。例えば、ゲート電極層11
1a、111cとして、酸化インジウム酸化スズ合金膜を用いる場合は450℃1時間の
第1の熱処理で結晶化し、ゲート電極層111a、111cとして、酸化珪素を含む酸化
インジウム酸化スズ合金膜を用いる場合は結晶化しない。
また、酸化物半導体層の第1の加熱処理は、島状の酸化物半導体層に加工する前の酸化物
半導体膜に行うこともできる。その場合には、第1の加熱処理後に、加熱装置から基板を
取り出し、第5のフォトリソグラフィ工程を行う。
次いで、コンタクトホールを介してゲート電極層211c、ゲート絶縁層402、第1の
電極層115a、第2の電極層115b、及び酸化物半導体層上に、導電膜を形成した後
、第6のフォトリソグラフィ工程によりレジストマスクを形成し、選択的にエッチングを
行ってソース電極層215a、及びドレイン電極層215bを形成する(図1(C)参照
。)。また、図1(C)に示すように、ゲート電極層211cに電気的に接続する接続電
極層215cと、第2の電極層115bと酸素欠乏型の酸化物半導体層を介して電気的に
接続する接続電極層215dも形成する。導電膜の成膜方法は、スパッタ法や真空蒸着法
(電子ビーム蒸着法など)や、アーク放電イオンプレーティング法や、スプレー法を用い
る。導電膜としては、Ti、Mo、W、Al、Cr、Cu、Ta、から選ばれた元素、ま
たは上述した元素を成分とする合金か、上述した元素を組み合わせた合金等を用いる。導
電膜は、上述した元素を含む単層に限定されず、二層以上の積層を用いることができる。
本実施の形態では、チタン膜(膜厚100nm)とアルミニウム膜(膜厚200nm)と
チタン膜(膜厚100nm)の3層構造の導電膜を形成する。また、チタン膜に変えて窒
化チタン膜を用いてもよい。
また、第6のフォトリソグラフィ工程においては、酸化物半導体層上に接する導電膜のみ
を選択的に除去する部分がある。従って、酸化物半導体層上に接する導電膜のみを選択的
に除去するため、アルカリ性のエッチャントとしてアンモニア過水(組成の重量比として
、31重量%過酸化水素:28重量%アンモニア:水=5:2:2)などを用いれば、金
属導電膜を選択的に除去し、In-Ga-Zn-O系酸化物半導体からなる酸化物半導体
層を残存させることができる。
また、エッチング条件にもよるが第6のフォトリソグラフィ工程において酸化物半導体層
(113、213)の露出領域がエッチングされる場合がある。その場合、ソース電極層
215aとドレイン電極層215bに挟まれる領域の酸化物半導体層は、ソース電極層2
15aが重なる領域の酸化物半導体層、又はドレイン電極層215bが重なる領域の酸化
物半導体層に比べ、膜厚が薄くなる。
なお、ソース電極層215a、ドレイン電極層215b、接続電極層(215c、215
d)を形成するためのレジストマスクをインクジェット法で形成してもよい。レジストマ
スクをインクジェット法で形成するとフォトマスクを使用しないため、製造コストを低減
できる。
次いで、ゲート絶縁層402、及び酸化物半導体層(213、113)上に、スパッタ法
で酸化物絶縁膜を成膜して、酸化物絶縁層407を形成する。この段階で、酸化物半導体
層は、酸化物絶縁層407と接する領域が形成される。なお、ゲート電極層に重畳し、酸
化物絶縁層407とゲート絶縁層402に接して挟まれる酸化物半導体層の領域がチャネ
ル形成領域となる。
酸化物絶縁膜は、少なくとも1nm以上の膜厚とし、スパッタリング法など、酸化物絶縁
膜に水、水素等の不純物を混入させない方法を適宜用いて形成することができる。本実施
の形態では、酸化物絶縁膜として酸化珪素膜をスパッタリング法を用いて成膜する。成膜
時の基板温度は、室温以上300℃以下とすればよく、本実施の形態では100℃とする
。酸化珪素膜のスパッタリング法による成膜は、希ガス(代表的にはアルゴン)雰囲気下
、酸素雰囲気下、または希ガス(代表的にはアルゴン)及び酸素雰囲気下において行うこ
とができる。また、ターゲットとして酸化珪素ターゲットまたは珪素ターゲットを用いる
ことができる。例えば、珪素ターゲットを用いて、酸素、及び希ガス雰囲気下でスパッタ
リング法により酸化珪素膜を形成することができる。低抵抗化した酸化物半導体層に接し
て形成する酸化物絶縁膜は、水分や、水素イオンや、OHなどの不純物を含まず、これ
らが外部から侵入することをブロックする無機絶縁膜を用い、代表的には酸化珪素膜、窒
化酸化珪素膜、酸化アルミニウム膜、または酸化窒化アルミニウム膜などを用いる。なお
、スパッタ法で形成した酸化物絶縁膜は特に緻密であり、接する層へ不純物が拡散する現
象を抑制する保護膜として単層であっても利用することができる。また、リン(P)や硼
素(B)をドープしたターゲットを用い、酸化物絶縁膜にリン(P)や硼素(B)を添加
することもできる。
本実施の形態では、純度が6Nであり、柱状多結晶Bドープの珪素ターゲット(抵抗率0
.01Ωcm)を用い、基板とターゲットの間との距離(T-S間距離)を89mm、圧
力0.4Pa、直流(DC)電源6kW、酸素(酸素流量比率100%)雰囲気下でパル
スDCスパッタ法により成膜する。膜厚は300nmとする。
次いで、不活性ガス雰囲気下、または窒素ガス雰囲気下で第2の加熱処理(好ましくは2
00℃以上400℃以下、例えば250℃以上350℃以下)を行う(図1(D)参照。
)。例えば、窒素雰囲気下で250℃、1時間の第2の加熱処理を行う。第2の加熱処理
を行うと、酸化物半導体層213の一部が酸化物絶縁層407と接した状態で加熱される
。なお、第2の加熱処理を行うと、第1の加熱処理で低抵抗化された酸化物半導体層が酸
素過剰な状態となり、高抵抗化(I型化)することができる。また、この時、酸化物半導
体層が15nm以下の場合、金属導電膜からなるソース電極層215a及びドレイン電極
層215bと重なる酸化物半導体層は、該金属導電膜側に酸素が移動しやすくなり、該酸
化物半導体層は全てN型化する。また、酸化物半導体層が30nm~50nmの場合は、
該金属導電膜との界面近傍がN型化するが、その下側はI型若しくはN型化した状態と
なる。また、酸化物絶縁層407は酸化物半導体層のチャネル形成領域となる領域上に接
して設けられ、チャネル保護層として機能する。
また、第2の加熱処理を行うタイミングは、第6のフォトリソグラフィ工程の終了直後に
限定されず、第6のフォトリソグラフィ工程よりも後の工程であれば特に限定されない。
次いで、酸化物絶縁層407上に保護絶縁層408を形成する(図1(E)参照。)。保
護絶縁層408としては、窒化珪素膜、窒化酸化珪素膜、または窒化アルミニウム膜など
を用いる。本実施の形態では、RFスパッタ法を用いて窒化珪素膜の保護絶縁層408を
形成する。
なお、保護絶縁層408を成膜した後、第7のフォトリソグラフィ工程によりレジストマ
スクを形成し、選択的にエッチングを行って接続電極層215dに達するコンタクトホー
ルの形成も行う。
以上の工程により、同一基板上に2種類の薄膜トランジスタ、チャネルエッチ型の薄膜ト
ランジスタ450、ボトムコンタクト型の薄膜トランジスタ460を作製することができ
る。
駆動回路が有するチャネルエッチ型の薄膜トランジスタ450のゲート電極を含むゲート
電極層、並びにソース電極を含むソース電極層、及びドレイン電極を含むドレイン電極層
は電気抵抗が低い金属を配線に用いている。そのため、発光装置の配線抵抗が抑制され、
短い書き込み時間で駆動可能な発光装置を提供できる。また、ボトムコンタクト型の薄膜
トランジスタ460は、接続電極層215d以外は、透光性を有する材料で構成されてい
るため、開口率を高く保ちつつ、チャネル幅を大きくできる。その結果、高精細であって
も、発光素子に大きな電流を供給でき、輝度が高い発光装置を提供できる。
なお、発光装置において、1つの画素に複数の構成の薄膜トランジスタを配置することも
できる。例えば、発光素子に電気的に接続する駆動用TFTは大きなオン電流を得る構成
が望ましく、駆動用TFTのゲート電極層と電気的に接続するスイッチング用TFTはオ
フ電流が抑制された構成が望ましい。そこで、薄膜トランジスタ460と同じ構成のボト
ムコンタクト型のTFTを画素部の駆動用TFTとして用いて、開口率を高く保ちつつ、
チャネル幅を大きくして、大きなオン電流を得ることができる。また、薄膜トランジスタ
450と同じ構成のチャネルエッチ型のTFTを画素部のスイッチング用TFTとして用
いてもよい。なお、スイッチング用TFTは大電流を必要としないため、駆動用TFTよ
りも小型にでき、開口率の低下を招き難い。
また、発光装置を作製する場合、駆動用TFTのソース電極層と電気的に接続する電源供
給線を設け、その電源供給線は、ゲート配線と交差し、且つ、金属導電膜からなる接続電
極層215cと同じ材料、同じ工程で形成する。或いは、電源供給線は、ソース配線と交
差し、且つ、ゲート電極層211cと同じ材料、同じ工程で形成する。
また、発光装置を作製する場合、発光素子の一方の電極は駆動用TFTのドレイン電極層
と電気的に接続させ、発光素子のもう一方の電極と電気的に接続する共通電位線を設ける
。なお、その共通電位線は、金属導電膜からなる接続電極層215cと同じ材料、同じ工
程で形成する。或いは、共通電位線は、ゲート電極層211cと同じ材料、同じ工程で形
成する。
また、発光装置を作製する場合、1つの画素に複数の薄膜トランジスタを有し、一方の薄
膜トランジスタのゲート電極層ともう一方のドレイン電極層とを接続する接続部が設けら
れる。この接続部は、ゲート電極層211cに電気的に接続する接続電極層215cと同
じ工程で形成する。
本実施の形態では駆動回路と画素部を形成し、駆動回路と画素部または、画素部の中の駆
動TFTと選択TFTに適した特性を鑑みて、チャネルエッチ型の薄膜トランジスタ45
0、またはボトムコンタクト型の薄膜トランジスタ460を用いることによって最適化を
図ることができる。
本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態2)
本実施の形態では、実施の形態1に示した複数の薄膜トランジスタと、エレクトロルミネ
ッセンスを利用する発光素子とを用い、アクティブマトリクス型の発光表示装置を作製す
る一例を示す。
エレクトロルミネッセンスを利用する発光素子は、発光材料が有機化合物であるか、無機
化合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子
と呼ばれている。
有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子および正孔
がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャ
リア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成
し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このよう
な発光素子は、電流励起型の発光素子と呼ばれる。
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分
類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有
するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー-ア
クセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、
さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利
用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明す
る。
図2は、半導体装置の例としてデジタル時間階調駆動を適用可能な画素構成の一例を示す
図である。
デジタル時間階調駆動を適用可能な画素の構成及び画素の動作について説明する。ここで
は酸化物半導体層をチャネル形成領域に用いるnチャネル型のトランジスタを1つの画素
に2つ用いる例を示す。
画素6400は、スイッチング用トランジスタ6401、駆動用トランジスタ6402、
発光素子6404及び容量素子6403を有している。スイッチング用トランジスタ64
01はゲートが走査線6406に接続され、第1電極(ソース電極及びドレイン電極の一
方)が信号線6405に接続され、第2電極(ソース電極及びドレイン電極の他方)が駆
動用トランジスタ6402のゲートに接続されている。駆動用トランジスタ6402は、
ゲートが容量素子6403を介して電源線6407に接続され、第1電極が電源線640
7に接続され、第2電極が発光素子6404の第1電極(画素電極)に接続されている。
発光素子6404の第2電極は共通電極6408に相当する。共通電極6408は、同一
基板上に形成される共通電位線と電気的に接続される。
なお、発光素子6404の第2電極(共通電極6408)には低電源電位が設定されてい
る。なお、低電源電位とは、電源線6407に設定される高電源電位を基準にして低電源
電位<高電源電位を満たす電位であり、低電源電位としては例えばGND、0Vなどが設
定されていても良い。この高電源電位と低電源電位との電位差を発光素子6404に印加
して、発光素子6404に電流を流して発光素子6404を発光させるため、高電源電位
と低電源電位との電位差が発光素子6404の順方向しきい値電圧以上となるようにそれ
ぞれの電位を設定する。
なお、容量素子6403は駆動用トランジスタ6402のゲート容量を代用して省略する
ことも可能である。駆動用トランジスタ6402のゲート容量については、チャネル領域
とゲート電極との間で容量が形成されていてもよい。
ここで、電圧入力電圧駆動方式の場合には、駆動用トランジスタ6402のゲートには、
駆動用トランジスタ6402が十分にオンするか、オフするかの二つの状態となるような
ビデオ信号を入力する。つまり、駆動用トランジスタ6402は線形領域で動作させる。
駆動用トランジスタ6402は線形領域で動作させるため、電源線6407の電圧よりも
高い電圧を駆動用トランジスタ6402のゲートにかける。なお、信号線6405には、
(電源線電圧+駆動用トランジスタ6402のVth)以上の電圧をかける。
また、デジタル時間階調駆動に代えて、アナログ階調駆動を行う場合、信号の入力を異な
らせることで、図2と同じ画素構成を用いることができる。
アナログ階調駆動を行う場合、駆動用トランジスタ6402のゲートに発光素子6404
の順方向電圧+駆動用トランジスタ6402のVth以上の電圧をかける。発光素子64
04の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なくとも順方向し
きい値電圧を含む。なお、駆動用トランジスタ6402が飽和領域で動作するようなビデ
オ信号を入力することで、発光素子6404に電流を流すことができる。駆動用トランジ
スタ6402を飽和領域で動作させるため、電源線6407の電位は、駆動用トランジス
タ6402のゲート電位よりも高くする。ビデオ信号をアナログとすることで、発光素子
6404にビデオ信号に応じた電流を流し、アナログ階調駆動を行うことができる。
なお、図2に示す画素構成は、これに限定されない。例えば、図2に示す画素に新たにス
イッチ、抵抗素子、容量素子、トランジスタ又は論理回路などを追加してもよい。
次に、発光素子の構成について、図3を用いて説明する。ここでは、駆動用TFTがnチ
ャネル型の場合を例に挙げて、画素の断面構造について説明する。図3(A)、図3(B
)、及び図3(C)の半導体装置に用いられる駆動用TFTであるTFT7001、70
11、7021は、実施の形態1で示す薄膜トランジスタと同様に作製でき、酸化物半導
体層を含む信頼性の高い薄膜トランジスタである。
発光素子は発光を取り出すために少なくとも陽極又は陰極の一方が透明であればよい。そ
して、基板上に薄膜トランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取
り出す上面射出構造や、基板側の面から発光を取り出す下面射出構造や、基板側及び基板
とは反対側の面から発光を取り出す両面射出構造の発光素子があり、画素構成はどの射出
構造の発光素子にも適用することができる。
下面射出構造の発光素子について図3(A)を用いて説明する。
図3(A)に、駆動用TFT7011がnチャネル型で、発光素子7012から発せられ
る光が第1の電極7013側に射出する場合の、画素の断面図を示す。図3(A)では、
駆動用TFT7011と接続電極層7030を介して電気的に接続された透光性を有する
導電膜7017上に、発光素子7012の第1の電極7013が形成されており、第1の
電極7013上にEL層7014、第2の電極7015が順に積層されている。なお、接
続電極層7030は駆動用TFT7011のドレイン電極層と電気的に接続されている。
透光性を有する導電膜7017としては、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物、酸化ケ
イ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いることができる。
また、発光素子の第1の電極7013は様々な材料を用いることができる。例えば、第1
の電極7013を陰極として用いる場合には、仕事関数が小さい材料、具体的には、例え
ば、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およ
びこれらを含む合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等
が好ましい。図3(A)では、第1の電極7013の膜厚は、光を透過する程度(好まし
くは、5nm~30nm程度)とする。例えば20nmの膜厚を有するアルミニウム膜を
、第1の電極7013として用いる。
なお、透光性を有する導電膜とアルミニウム膜を積層成膜した後、選択的にエッチングし
て透光性を有する導電膜7017と第1の電極7013を形成してもよく、この場合、同
じマスクを用いてエッチングすることができるため、好ましい。
また、第1の電極7013の周縁部は、隔壁7019で覆う。隔壁7019は、ポリイミ
ド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキ
サンを用いて形成する。隔壁7019は、特に感光性の樹脂材料を用い、第1の電極70
13上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面と
なるように形成することが好ましい。隔壁7019として感光性の樹脂材料を用いる場合
、レジストマスクを形成する工程を省略することができる。
また、第1の電極7013及び隔壁7019上に形成するEL層7014は、少なくとも
発光層を含めば良く、単数の層で構成されていても、複数の層が積層されるように構成さ
れていてもどちらでも良い。EL層7014が複数の層で構成されている場合、陰極とし
て機能する第1の電極7013上に電子注入層、電子輸送層、発光層、ホール輸送層、ホ
ール注入層の順に積層することができる。なおこれらの層を全て設ける必要はない。
また、上記積層順に限定されず、第1の電極7013を陽極として機能させ、第1の電極
7013上にホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層
してもよい。ただし、消費電力を比較する場合、第1の電極7013を陰極として機能さ
せ、第1の電極7013上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注
入層の順に積層するほうが、駆動回路部の電圧上昇を抑制でき、消費電力を少なくできる
ため好ましい。
また、EL層7014上に形成する第2の電極7015としては、様々な材料を用いるこ
とができる。例えば、第2の電極7015を陽極として用いる場合、仕事関数が大きい材
料、例えば、ZrN、Ti、W、Ni、Pt、Cr等や、ITO、IZO、ZnOなどの
透明導電性材料が好ましい。また、第2の電極7015上に遮蔽膜7016、例えば光を
遮光する金属、光を反射する金属等を用いる。本実施の形態では、第2の電極7015と
してITO膜を用い、遮蔽膜7016としてTi膜を用いる。
第1の電極7013及び第2の電極7015で、発光層を含むEL層7014を挟んでい
る領域が発光素子7012に相当する。図3(A)に示した素子構造の場合、発光素子7
012から発せられる光は、矢印で示すように第1の電極7013側に射出する。
なお、図3(A)ではゲート電極層として透光性を有する導電膜を用いる例を示しており
、発光素子7012から発せられる光は、カラーフィルタ層7033を通過し、駆動用T
FT7011のゲート電極層やソース電極層を通過して射出させる。駆動用TFT701
1のゲート電極層やソース電極層として透光性を有する導電膜を用い、開口率を向上する
ことができる。
カラーフィルタ層7033はインクジェット法などの液滴吐出法や、印刷法、フォトリソ
グラフィ技術を用いたエッチング方法などでそれぞれ形成する。
また、カラーフィルタ層7033はオーバーコート層7034で覆われ、さらに保護絶縁
層7035によって覆う。なお、図3(A)ではオーバーコート層7034は薄い膜厚で
図示したが、オーバーコート層7034は、カラーフィルタ層7033に起因する凹凸を
平坦化する機能を有している。
また、保護絶縁層7035、オーバーコート層7034、カラーフィルタ層7033、及
び酸化物絶縁層7031に形成され、且つ、接続電極層7030に達するコンタクトホー
ルは、隔壁7019と重なる位置に配置する。図3(A)では、接続電極層7030は金
属導電膜を用いる例であるため、接続電極層7030に達するコンタクトホールと、隔壁
7019と、接続電極層7030とを重ねるレイアウトとすることで開口率の向上を図る
ことができる。
次に、両面射出構造の発光素子について、図3(B)を用いて説明する。
図3(B)では、駆動用TFT7021と接続電極層7040を介して電気的に接続され
た透光性を有する導電膜7027上に、発光素子7022の第1の電極7023が形成さ
れており、第1の電極7023上にEL層7024、第2の電極7025が順に積層され
ている。なお、接続電極層7040は駆動用TFT7021のドレイン電極層と電気的に
接続されている。
透光性を有する導電膜7027としては、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物、酸化ケ
イ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いることができる。
また、第1の電極7023は様々な材料を用いることができる。例えば、第1の電極70
23を陰極として用いる場合、仕事関数が小さい材料、具体的には、例えば、LiやCs
等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む
合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好ましい。本
実施の形態では、第1の電極7023を陰極として用い、その膜厚は、光を透過する程度
(好ましくは、5nm~30nm程度)とする。例えば20nmの膜厚を有するアルミニ
ウム膜を、陰極として用いる。
なお、透光性を有する導電膜とアルミニウム膜を積層成膜した後、選択的にエッチングし
て透光性を有する導電膜7027と第1の電極7023を形成してもよく、この場合、同
じマスクを用いてエッチングすることができ、好ましい。
また、第1の電極7023の周縁部は、隔壁7029で覆う。隔壁7029は、ポリイミ
ド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキ
サンを用いて形成する。隔壁7029は、特に感光性の樹脂材料を用い、第1の電極70
23上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面と
なるように形成することが好ましい。隔壁7029として感光性の樹脂材料を用いる場合
、レジストマスクを形成する工程を省略することができる。
また、第1の電極7023及び隔壁7029上に形成するEL層7024は、発光層を含
めば良く、単数の層で構成されていても、複数の層が積層されるように構成されていても
どちらでも良い。EL層7024が複数の層で構成されている場合、陰極として機能する
第1の電極7023上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層
の順に積層する。なおこれらの層を全て設ける必要はない。
また、上記積層順に限定されず、第1の電極7023を陽極として用い、陽極上にホール
注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層してもよい。ただし
、消費電力を比較する場合、第1の電極7023を陰極として用い、陰極上に電子注入層
、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層するほうが消費電力が少
ないため好ましい。
また、EL層7024上に形成する第2の電極7025としては、様々な材料を用いるこ
とができる。例えば、第2の電極7025を陽極として用いる場合、仕事関数が大きい材
料、例えば、ITO、IZO、ZnOなどの透明導電性材料を好ましく用いることができ
る。本実施の形態では、第2の電極7025を陽極として用い、酸化珪素を含むITO膜
を形成する。
第1の電極7023及び第2の電極7025で、発光層を含むEL層7024を挟んでい
る領域が発光素子7022に相当する。図3(B)に示した素子構造の場合、発光素子7
022から発せられる光は、矢印で示すように第2の電極7025側と第1の電極702
3側の両方に射出する。
なお、図3(B)ではゲート電極層やソース電極層として透光性を有する導電膜を用いる
例を示しており、発光素子7022から第1の電極7023側に発せられる光は、カラー
フィルタ層7043を通過し、駆動用TFT7021のゲート電極層やソース電極層を通
過して射出させる。駆動用TFT7021のゲート電極層やソース電極層として透光性を
有する導電膜を用いることで、第2の電極7025側の開口率と第1の電極7023側の
開口率をほぼ同一とすることができる。
カラーフィルタ層7043はインクジェット法などの液滴吐出法や、印刷法、フォトリソ
グラフィ技術を用いたエッチング方法などでそれぞれ形成する。
また、カラーフィルタ層7043はオーバーコート層7044で覆われ、さらに保護絶縁
層7045によって覆う。
また、保護絶縁層7045、オーバーコート層7044、カラーフィルタ層7043、及
び酸化物絶縁層7041に形成され、且つ、接続電極層7040に達するコンタクトホー
ルは、隔壁7029と重なる位置に配置する。図3(B)では、接続電極層7040は金
属導電膜を用いる例であるため、接続電極層7040に達するコンタクトホールと、隔壁
7029と、接続電極層7040とを重ねるレイアウトとすることで第2の電極7025
側の開口率と第1の電極7023側の開口率をほぼ同一とすることができる。
ただし、両面射出構造の発光素子を用い、どちらの表示面もフルカラー表示とする場合、
第2の電極7025側からの光はカラーフィルタ層7043を通過しないため、別途カラ
ーフィルタ層を備えた封止基板を第2の電極7025上方に設けることが好ましい。
次に、上面射出構造の発光素子について、図3(C)を用いて説明する。
図3(C)に、駆動用TFTであるTFT7001がnチャネル型で、発光素子7002
から発せられる光が第2の電極7005側に抜ける場合の、画素の断面図を示す。図3(
C)では、TFT7001と接続電極層7050を介して電気的に接続された発光素子7
002の第1の電極7003が形成されており、第1の電極7003上にEL層7004
、第2の電極7005が順に積層されている。
また、第1の電極7003は様々な材料を用いることができる。例えば、第1の電極70
03を陰極として用いる場合、仕事関数が小さい材料、具体的には、例えば、LiやCs
等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む
合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好ましい。
また、第1の電極7003の周縁部は、隔壁7009で覆う。隔壁7009は、ポリイミ
ド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキ
サンを用いて形成する。隔壁7009は、特に感光性の樹脂材料を用い、第1の電極70
03上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面と
なるように形成することが好ましい。隔壁7009として感光性の樹脂材料を用いる場合
、レジストマスクを形成する工程を省略することができる。
また、第1の電極7003及び隔壁7009上に形成するEL層7004は、少なくとも
発光層を含めば良く、単数の層で構成されていても、複数の層が積層されるように構成さ
れていてもどちらでも良い。EL層7004が複数の層で構成されている場合、陰極とし
て用いる第1の電極7003上に電子注入層、電子輸送層、発光層、ホール輸送層、ホー
ル注入層の順に積層する。なおこれらの層を全て設ける必要はない。
また、上記積層順に限定されず、陽極として用いる第1の電極7003上にホール注入層
、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層してもよい。
図3(C)ではTi膜、アルミニウム膜、Ti膜の順に積層した積層膜上に、ホール注入
層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層し、その上にMg:Ag
合金薄膜とITOとの積層を形成する。
ただし、TFT7001がnチャネル型の場合、第1の電極7003上に電子注入層、電
子輸送層、発光層、ホール輸送層、ホール注入層の順に積層するほうが、駆動回路におけ
る電圧上昇を抑制することができ、消費電力を少なくできるため好ましい。
第2の電極7005は透光性を有する導電性材料を用いて形成し、例えば酸化タングステ
ンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタン
を含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物、
インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する
導電膜を用いても良い。
第1の電極7003及び第2の電極7005で発光層を含むEL層7004を挟んでいる
領域が発光素子7002に相当する。図3(C)に示した画素の場合、発光素子7002
から発せられる光は、矢印で示すように第2の電極7005側に射出する。
また、図3(C)において、TFT7001は薄膜トランジスタ460を用いる例を示し
ているが、特に限定されず、薄膜トランジスタ450を用いることができる。TFT70
01として薄膜トランジスタ450を用いる場合、第1の電極7003とドレイン電極層
とが接するように電気的に接続させる。
また、図3(C)において、TFT7001のドレイン電極層は、接続電極層7050と
電気的に接続し、接続電極層7050は、平坦化絶縁層7053、保護絶縁層7055及
び酸化物絶縁層7051に形成されたコンタクトホールを介して第1の電極7003と電
気的に接続する。平坦化絶縁層7053は、ポリイミド、アクリル、ベンゾシクロブテン
、ポリアミド、エポキシ等の樹脂材料を用いることができる。また上記樹脂材料の他に、
低誘電率材料(low-k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG
(リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁膜
を複数積層させることで、平坦化絶縁層7053を形成してもよい。平坦化絶縁層705
3の形成法は、特に限定されず、その材料に応じて、スパッタ法、SOG法、スピンコー
ト、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン印刷、オフセ
ット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター等
を用いることができる。
また、図3(C)の構造においては、フルカラー表示を行う場合、例えば発光素子700
2として緑色発光素子とし、隣り合う一方の発光素子を赤色発光素子とし、もう一方の発
光素子を青色発光素子とする。また、3種類の発光素子だけでなく白色発光素子を加えた
4種類の発光素子でフルカラー表示ができる発光表示装置を作製してもよい。
また、図3(C)の構造においては、配置する複数の発光素子を全て白色発光素子として
、発光素子7002上方にカラーフィルタなどを有する封止基板を配置する構成とし、フ
ルカラー表示ができる発光表示装置を作製してもよい。白色などの単色の発光を示す材料
を形成し、カラーフィルタや色変換層を組み合わせることによりフルカラー表示を行うこ
とができる。
もちろん単色発光の表示を行ってもよい。例えば、白色発光を用いて照明装置を形成して
もよいし、単色発光を用いてエリアカラータイプの発光装置を形成してもよい。
また、必要があれば、円偏光板などの偏光フィルムなどの光学フィルムを設けてもよい。
なお、ここでは、発光素子として有機EL素子について述べたが、発光素子として無機E
L素子を設けることも可能である。
なお、発光素子の駆動を制御する薄膜トランジスタ(駆動用TFT)と発光素子が電気的
に接続されている例を示したが、駆動用TFTと発光素子との間に電流制御用TFTが接
続されている構成であってもよい。
本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態3)
本実施の形態では、実施の形態1に示した複数の薄膜トランジスタを用いて、同一基板上
に画素部と駆動回路を形成し、アクティブマトリクス型の発光表示装置を作製する一例を
示す。
実施の形態1では、2つの薄膜トランジスタと、接続部の断面を図示したが、本実施の形
態では、さらに配線交差部及び容量部も図示して説明する。
図4は第1電極(画素電極)上にEL層を形成する前の基板の状態を示す断面図である。
なお、図1(E)と同じ箇所には同じ符号を用いて説明する。
図4において、第1電極414と電気的に接続する駆動用TFTは、ボトムコンタクト型
の薄膜トランジスタ460であり、本実施の形態では、実施の形態1に従って作製するこ
とができる。
実施の形態1に従って酸化物絶縁層407を形成した後、緑色のカラーフィルタ層411
、青色のカラーフィルタ層、赤色のカラーフィルタ層を順次形成する。なお、スパッタ法
で形成した酸化物絶縁膜は特に緻密であり、接する層へ不純物が拡散する現象を抑制する
保護膜として単層であっても利用することができる。また、各カラーフィルタ層は、印刷
法、インクジェット法、フォトリソグラフィ技術を用いたエッチング方法などでそれぞれ
形成する。TFTを形成する基板にカラーフィルタ層を設けることによって、封止基板を
貼り合わせる精度に依存することなく、カラーフィルタ層と発光素子の発光領域を精度良
く位置を合わせることができる。
次いで、緑色のカラーフィルタ層411、青色のカラーフィルタ層、及び赤色のカラーフ
ィルタ層を覆うオーバーコート層412を形成する。オーバーコート層412は透光性を
有する樹脂を用いる。
ここではRGBの3色を用いてフルカラー表示する例を示したが、特に限定されず、RG
BWの4色を用いてフルカラー表示を行ってもよい。
次いで、オーバーコート層412及び酸化物絶縁層407を覆う保護絶縁層408を形成
する。保護絶縁層408は、無機絶縁膜を用い、窒化珪素膜、窒化アルミニウム膜、窒化
酸化珪素膜、酸化窒化アルミニウム膜などを用いる。
次いで、フォトリソグラフィ工程により保護絶縁層408及び酸化物絶縁層407を選択
的にエッチングして接続電極層215dに達するコンタクトホールを形成する。また、こ
のフォトリソグラフィ工程により端子部の保護絶縁層408及び酸化物絶縁層407を選
択的にエッチングして端子電極の一部を露呈させる。また、後に形成される発光素子の第
2電極と共通電位線とを接続するため、共通電位線に達するコンタクトホールも形成する
次いで、透光性を有する導電膜を形成し、フォトリソグラフィ工程により接続電極層21
5dと電気的に接続する第1電極414を形成する。
次いで、第1電極414の周縁部を覆うように隔壁459を形成する。隔壁459は、ポ
リイミド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリ
シロキサンを用いて形成する。隔壁459は、特に感光性の樹脂材料を用い、第1電極4
14上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面と
なるように形成する。隔壁459として感光性の樹脂材料を用いる場合、レジストマスク
を形成する工程を省略することができる。
以上の工程を経て図4に示す基板の状態を得ることができる。以降の工程は実施の形態2
にその一例を示したように、第1電極414上にEL層を形成し、EL層上に第2電極を
形成して発光素子を形成する。なお、第2の電極は、共通電位線と電気的に接続する。
また、画素部において、図4に示すように容量部が形成される。図4に示す容量部は、ゲ
ート絶縁層402を誘電体とし、容量配線層111bと容量電極層115cとで形成され
る。また、発光装置において、容量配線層111bは、画素TFTのゲート電極層の一部であり、容量電極層115cは、電源供給線の一部である。
なお、図4ではゲート配線層211bを金属導電膜とする例を示したが、薄膜トランジス
タ460のゲート電極層111aと同じ透光性を有する導電膜を用いて形成することもで
きる。また、配線層215eは接続電極層(215c、215d)と同じ導電層で形成さ
れ、ゲート配線層211bとゲート絶縁膜を介して交差する。
また、図4において、駆動回路に配置する少なくとも一つのTFTは、チャネルエッチ型
の薄膜トランジスタ450であり、本実施の形態では、実施の形態1に従って作製するこ
とができる。
また、駆動回路の薄膜トランジスタ450の酸化物半導体層の上方に導電層216を設け
てもよい。導電層216は、第1電極414と同じ材料、同じ工程で形成することができ
る。
導電層216を酸化物半導体層のチャネル形成領域223と重なる位置に設けることによ
って、薄膜トランジスタの信頼性を調べるためのバイアス-熱ストレス試験(以下、BT
試験という)において、BT試験前後における薄膜トランジスタ450のしきい値電圧の
変化量を低減することができる。また、導電層216は、電位がゲート電極層211aと
同じでもよいし、異なっていても良く、第2のゲート電極層として機能させることもでき
る。また、導電層216の電位がGND、0V、或いはフローティング状態であってもよ
い。また、導電層216を設けた薄膜トランジスタ450は4端子のトランジスタとして
機能する。
また、薄膜トランジスタは静電気などにより破壊されやすいため、画素部または駆動回路
と同一基板上に保護回路を設けることが好ましい。保護回路は、酸化物半導体層を用いた
非線形素子を用いて構成することが好ましい。例えば、保護回路は画素部と、走査線入力
端子及び信号線入力端子との間に配設されている。本実施の形態では複数の保護回路を配
設して、走査線、信号線及び容量バス線に静電気等によりサージ電圧が印加され、画素ト
ランジスタなどが破壊されないように構成されている。そのため、保護回路にはサージ電
圧が印加されたときに、共通配線に電荷を逃がすように構成する。また、保護回路は、走
査線が間にあり並列に配置された非線形素子によって構成されている。非線形素子は、ダ
イオードのような二端子素子又はトランジスタのような三端子素子で構成される。例えば
、画素部の薄膜トランジスタ460と同じ工程で形成することも可能であり、例えばゲー
ト端子とドレイン端子を接続することによりダイオードと同様の特性を持たせることがで
きる。
本実施の形態は実施の形態1または実施の形態2と自由に組み合わせることができる。
(実施の形態4)
また、本実施の形態では、薄膜トランジスタと同一基板上に設けられる端子部の構成の一
例を図5に示す。なお、図5において、図4と同じ箇所には同じ符号を用いて説明する。
図5(A1)、図5(A2)は、ゲート配線端子部の断面図及び上面図をそれぞれ図示し
ている。図5(A1)は図5(A2)中のC1-C2線に沿った断面図に相当する。図5
(A1)において、酸化物絶縁層407と保護絶縁層408の積層上に形成される導電層
415は、入力端子として機能する接続用の端子電極である。また、図5(A1)におい
て、端子部では、ゲート配線層211bと同じ材料で形成される第1の端子417と、ソ
ース電極層215aを含むソース配線層と同じ材料で形成される接続電極層215fとが
ゲート絶縁層402を介して重なり、導電層415で導通させている。また、導電層41
5は、第1電極414と同じ透光性を有する材料を用いて、同じ工程で形成することがで
きる。
また、図5(B1)、及び図5(B2)は、ソース配線端子部の断面図及び上面図をそれ
ぞれ図示している。また、図5(B1)は図5(B2)中のC3-C4線に沿った断面図
に相当する。図5(B1)において、酸化物絶縁層407と保護絶縁層408の積層上に
形成される導電層418は、入力端子として機能する接続用の端子電極である。また、図
5(B1)において、端子部では、ゲート配線層211bと同じ材料で形成される電極層
416が、ソース配線と電気的に接続される第2の端子215gの下方にゲート絶縁層4
02を介して重なる。電極層416は第2の端子215gとは電気的に接続しておらず、
電極層416を第2の端子215gと異なる電位、例えばフローティング、GND、0V
などに設定すれば、ノイズ対策のための容量または静電気対策のための容量を形成するこ
とができる。また、第2の端子215gは、酸化物絶縁層407及び保護絶縁層408に
形成されたコンタクトホールを介して、導電層418と電気的に接続している。また、導
電層418は、第1電極414と同じ透光性を有する材料を用いて、同じ工程で形成する
ことができる。
ゲート配線、ソース配線、共通電位線、及び電源供給線は画素密度に応じて複数本設けら
れるものである。また、端子部においては、ゲート配線と同電位の第1の端子、ソース配
線と同電位の第2の端子、電源供給線と同電位の第3の端子、共通電位線と同電位の第4
の端子などが複数並べられて配置される。それぞれの端子の数は、それぞれ任意な数で設
ければ良いものとし、実施者が適宣決定すれば良い。
本実施の形態は実施の形態1、実施の形態2、または実施の形態3と自由に組み合わせる
ことができる。
(実施の形態5)
本実施の形態では、実施の形態2に示した図3(A)及び図3(C)に用いる発光素子の
素子構造の一例について説明する。
図6(A)に示す素子構造は、一対の電極(第1の電極1001、第2の電極1002)
間に発光領域を含むEL層1003が挟まれた構造を有する。なお、以下の本実施の形態
の説明においては、例として、第1の電極1001を陽極として用い、第2の電極100
2を陰極として用いるものとする。
また、EL層1003は、少なくとも発光層を含んで形成されていればよく、発光層以外
の機能層を含む積層構造であっても良い。発光層以外の機能層としては、正孔注入性の高
い物質、正孔輸送性の高い物質、電子輸送性の高い物質、電子注入性の高い物質、バイポ
ーラ性(電子及び正孔の輸送性の高い物質)の物質等を含む層を用いることができる。具
体的には、正孔注入層、正孔輸送層、電子輸送層、電子注入層等の機能層を適宜組み合わ
せて用いることができる。
図6(A)に示す発光素子は、第1の電極1001と第2の電極1002との間に生じた
電位差により電流が流れ、EL層1003において正孔と電子とが再結合し、発光するも
のである。つまりEL層1003に発光領域が形成されるような構成となっている。
発光は、第1の電極1001または第2の電極1002のいずれか一方または両方を通っ
て外部に取り出される。従って、第1の電極1001または第2の電極1002のいずれ
か一方または両方は、透光性を有する物質で成る。
なお、EL層は図6(B)のように第1の電極1001と第2の電極1002との間に複
数積層されていても良い。n(nは2以上の自然数)層の積層構造を有する場合には、m
(mは自然数であって、1≦m≦n-1)番目のEL層と、(m+1)番目のEL層との
間には、それぞれ電荷発生層1004を設けることが好ましい。
電荷発生層1004は、有機化合物と金属酸化物の複合材料、金属酸化物、有機化合物と
アルカリ金属、アルカリ土類金属、またはこれらの化合物との複合材料の他、これらを適
宜組み合わせて形成することができる。有機化合物と金属酸化物の複合材料としては、例
えば、有機化合物とVやMoOやWO等の金属酸化物を含む。有機化合物とし
ては、芳香族アミン化合物、カルバゾール誘導体、芳香族炭化水素、高分子化合物(オリ
ゴマー、デンドリマー、ポリマー等)など、種々の化合物を用いることができる。なお、
有機化合物としては、正孔輸送性有機化合物として正孔移動度が10-6cm/Vs以
上であるものを適用することが好ましい。但し、電子よりも正孔の輸送性の高い物質であ
れば、これら以外のものを用いてもよい。なお、電荷発生層1004に用いるこれらの材
料は、キャリア注入性、キャリア輸送性に優れているため、発光素子の低電流駆動、およ
び低電圧駆動を実現することができる。
なお、電荷発生層1004は、有機化合物と金属酸化物の複合材料と他の材料とを組み合
わせて形成してもよい。例えば、有機化合物と金属酸化物の複合材料を含む層と、電子供
与性物質の中から選ばれた一の化合物と電子輸送性の高い化合物とを含む層とを組み合わ
せて形成してもよい。また、有機化合物と金属酸化物の複合材料を含む層と、透明導電膜
とを組み合わせて形成してもよい。
このような構成を有する発光素子は、エネルギーの移動や消光などの問題が起こり難く、
材料の選択の幅が広がることで高い発光効率と長い寿命とを併せ持つ発光素子とすること
が容易である。また、一方のEL層で燐光発光、他方で蛍光発光を得ることも容易である
なお、電荷発生層1004とは、第1の電極1001と第2の電極1002に電圧を印加
したときに、電荷発生層1004に接して形成される一方のEL層1003に対して正孔
を注入する機能を有し、他方のEL層1003に電子を注入する機能を有する。
図6(B)に示す発光素子は、発光層に用いる発光物質の種類を変えることにより様々な
発光色を得ることができる。また、発光物質として発光色の異なる複数の発光物質を用い
ることにより、ブロードなスペクトルの発光や白色発光を得ることもできる。
図6(B)に示す発光素子を用いて、白色発光を得る場合、複数の発光層の組み合わせと
しては、赤、青及び緑色の光を含んで白色に発光する構成であればよく、例えば、青色の
蛍光材料を発光物質として含む第1のEL層と、緑色と赤色の燐光材料を発光物質として
含む第2のEL層を有する構成が挙げられる。また、赤色の発光を示す第1のEL層と、
緑色の発光を示す第2のEL層と、青色の発光を示す第3のEL層とを有する構成とする
こともできる。または、補色の関係にある光を発する発光層を有する構成であっても白色
発光が得られる。EL層が2層積層された積層型素子において、第1のEL層から得られ
る発光の発光色と第2のEL層から得られる発光の発光色を補色の関係にする場合、補色
の関係としては、青色と黄色、あるいは青緑色と赤色などが挙げられる。
なお、上述した積層型素子の構成において、積層されるEL層の間に電荷発生層を配置す
ることにより、電流密度を低く保ったまま、高輝度領域での長寿命素子を実現することが
できる。また、電極材料の抵抗による電圧降下を小さくできるので、大面積での均一発光
が可能となる。
本実施の形態は実施の形態1乃至4のいずれか一と組み合わせることができる。
(実施の形態6)
本実施の形態では、発光表示パネル(発光パネルともいう)の外観及び断面について、図
7を用いて説明する。図7(A)は、第1の基板上に形成された薄膜トランジスタ及び発
光素子を、第2の基板との間にシール材によって封止した、パネルの平面図であり、図7
(B)は、図7(A)のH-Iにおける断面図に相当する。
第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、450
3b、及び走査線駆動回路4504a、4504bを囲むようにして、シール材4505
が設けられている。また画素部4502、信号線駆動回路4503a、4503b、及び
走査線駆動回路4504a、4504bの上に第2の基板4506が設けられている。よ
って画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路45
04a、4504bは、第1の基板4501とシール材4505と第2の基板4506と
によって、充填材4507と共に密封されている。このように外気に曝されないように気
密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィル
ム等)やカバー材でパッケージング(封入)することが好ましい。
また第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4
503b、及び走査線駆動回路4504a、4504bは、薄膜トランジスタを複数有し
ており、図7(B)では、画素部4502に含まれる薄膜トランジスタ4510と、信号
線駆動回路4503aに含まれる薄膜トランジスタ4509とを例示している。
薄膜トランジスタ4509、4510は、実施の形態1で示した酸化物半導体層を含む信
頼性の高い薄膜トランジスタを適用することができる。駆動回路用の薄膜トランジスタ4
509としては、実施の形態1で示した薄膜トランジスタ450、画素用の薄膜トランジ
スタ4510としては、薄膜トランジスタ460を用いることができる。本実施の形態に
おいて、薄膜トランジスタ4509、4510はnチャネル型薄膜トランジスタである。
絶縁層4544上において駆動回路用の薄膜トランジスタ4509の酸化物半導体層のチ
ャネル形成領域と重なる位置に導電層4540が設けられている。導電層4540を酸化
物半導体層のチャネル形成領域と重なる位置に設けることによって、BT試験前後におけ
る薄膜トランジスタ4509のしきい値電圧の変化量を低減することができる。また、導
電層4540は、電位が薄膜トランジスタ4509のゲート電極層と同じでもよいし、異
なっていても良く、第2のゲート電極層として機能させることもできる。また、導電層4
540の電位がGND、0V、或いはフローティング状態であってもよい。
薄膜トランジスタ4510は、接続電極層4548を介して第1の画素電極4517と電
気的に接続されている。また、薄膜トランジスタ4510の酸化物半導体層を覆う酸化物
絶縁層4542が形成されている。
酸化物絶縁層4542は実施の形態1で示した酸化物絶縁層407と同様な材料及び方法
で形成すればよい。また、酸化物絶縁層4542を覆う絶縁層4544が形成される。絶
縁層4544は、実施の形態1で示した保護絶縁層408と同様な材料及び方法で形成す
ればよい。
発光素子4511の発光領域と重なるようにカラーフィルタ層4545が、薄膜トランジ
スタ4510上に形成される。
また、カラーフィルタ層4545の表面凹凸を低減するため平坦化絶縁膜として機能する
オーバーコート層4543で覆う構成となっている。
また、オーバーコート層4543上に絶縁層4544が形成されている。絶縁層4544
は実施の形態1で示した保護絶縁層408と同様な材料及び方法で形成すればよい。
また4511は発光素子に相当し、発光素子4511が有する画素電極である第1の画素
電極4517は、薄膜トランジスタ4510のソース電極層またはドレイン電極層と電気
的に接続されている。なお発光素子4511の構成は、第1の画素電極4517、電界発
光層4512、第2の画素電極4513の積層構造であるが、示した構成に限定されない
。発光素子4511から取り出す光の方向などに合わせて、発光素子4511の構成は適
宜変えることができる。
隔壁4520は、有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。
特に感光性の材料を用い、第1の画素電極4517上に開口部を形成し、その開口部の側
壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
電界発光層4512は、単数の層で構成されていても、複数の層が積層されるように構成
されていてもどちらでも良い。
発光素子4511に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の画素電
極4513及び隔壁4520上に保護膜を形成してもよい。保護膜としては、窒化珪素膜
、窒化酸化珪素膜、DLC膜等を形成することができる。
また、信号線駆動回路4503a、4503b、走査線駆動回路4504a、4504b
、または画素部4502に与えられる各種信号及び電位は、FPC4518a、4518
bから供給されている。
接続端子電極4515が、発光素子4511が有する第1の画素電極4517と同じ導電
膜から形成され、端子電極4516は、薄膜トランジスタ4509のソース電極層及びド
レイン電極層と同じ導電膜から形成されている。
接続端子電極4515は、FPC4518aが有する端子と、異方性導電膜4519を介
して電気的に接続されている。
発光素子4511からの光の取り出し方向に位置する基板は、可視光に対して透光性を有
していなければならない。その場合には、ガラス板、プラスチック板、ポリエステルフィ
ルムまたはアクリルフィルムのような透光性を有する材料を用いる。
また、充填材4507としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹
脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、
ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEV
A(エチレンビニルアセテート)を用いることができる。例えば充填材として窒素を用い
ればよい。
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、
位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよ
い。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により
反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは
、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜によって形成された駆動回
路で実装されていてもよい。また、信号線駆動回路のみ、或いは一部、又は走査線駆動回
路のみ、或いは一部のみを別途形成して実装しても良く、図7の構成に限定されない。
以上の工程により、半導体装置として信頼性の高い発光表示装置(表示パネル)を作製す
ることができる。
(実施の形態7)
本実施の形態では、同一基板上に少なくとも駆動回路の一部と、画素部に配置する薄膜ト
ランジスタを作製する例について以下に説明する。
画素部に配置する薄膜トランジスタは、実施の形態1に従って形成する。また、実施の形
態1に示す薄膜トランジスタはnチャネル型TFTであるため、駆動回路のうち、nチャ
ネル型TFTで構成することができる駆動回路の一部を画素部の薄膜トランジスタと同一
基板上に形成する。
アクティブマトリクス型表示装置のブロック図の一例を図8(A)に示す。表示装置の基
板5300上には、画素部5301、第1の走査線駆動回路5302、第2の走査線駆動
回路5303、信号線駆動回路5304を有する。画素部5301には、複数の信号線が
信号線駆動回路5304から延伸して配置され、複数の走査線が第1の走査線駆動回路5
302、及び第2の走査線駆動回路5303から延伸して配置されている。なお走査線と
信号線との交差領域には、各々、表示素子を有する画素がマトリクス状に配置されている
。また、表示装置の基板5300はFPC(Flexible Printed Cir
cuit)等の接続部を介して、タイミング制御回路5305(コントローラ、制御IC
ともいう)に接続されている。
図8(A)では、第1の走査線駆動回路5302、第2の走査線駆動回路5303、信号
線駆動回路5304は、画素部5301と同じ基板5300上に形成される。そのため、
外部に設ける駆動回路等の部品の数が減るので、コストの低減を図ることができる。また
、基板5300外部に駆動回路を設けた場合の配線を延伸させることによる接続部での接
続数を減らすことができ、信頼性の向上、又は歩留まりの向上を図ることができる。
なお、タイミング制御回路5305は、第1の走査線駆動回路5302に対し、一例とし
て、第1の走査線駆動回路用スタート信号(GSP1)、走査線駆動回路用クロック信号
(GCLK1)を供給する。また、タイミング制御回路5305は、第2の走査線駆動回
路5303に対し、一例として、第2の走査線駆動回路用スタート信号(GSP2)(ス
タートパルスともいう)、走査線駆動回路用クロック信号(GCLK2)を供給する。ま
たタイミング制御回路5305は、信号線駆動回路5304に、信号線駆動回路用スター
ト信号(SSP)、信号線駆動回路用クロック信号(SCLK)、ビデオ信号用データ(
DATA)(単にビデオ信号ともいう)、ラッチ信号(LAT)を供給するものとする。
なお各クロック信号は、周期のずれた複数のクロック信号でもよいし、クロック信号を反
転させた信号(CKB)とともに供給されるものであってもよい。なお、第1の走査線駆
動回路5302と第2の走査線駆動回路5303との一方を省略することが可能である。
図8(B)では、駆動周波数が低い回路(例えば、第1の走査線駆動回路5302、第2
の走査線駆動回路5303)を画素部5301と同じ基板5300に形成し、信号線駆動
回路5304を画素部5301とは別の基板に形成する構成について示している。当該構
成により、単結晶半導体を用いたトランジスタと比較すると電界効果移動度が小さい薄膜
トランジスタによって、基板5300に形成する駆動回路を構成することができる。した
がって、表示装置の大型化、コストの低減、又は歩留まりの向上などを図ることができる
また、実施の形態1に示す薄膜トランジスタは、nチャネル型TFTである。図9(A)
、図9(B)ではnチャネル型TFTで構成する信号線駆動回路の構成、動作について一
例を示し説明する。
信号線駆動回路は、シフトレジスタ5601、及びスイッチング回路5602を有する。
スイッチング回路5602は、スイッチング回路5602_1~5602_N(Nは自然
数)という複数の回路を有する。スイッチング回路5602_1~5602_Nは、各々
、薄膜トランジスタ5603_1~5603_k(kは自然数)という複数のトランジス
タを有する。薄膜トランジスタ5603_1~5603_kが、nチャネル型TFTであ
る例を説明する。
信号線駆動回路の接続関係について、スイッチング回路5602_1を例にして説明する
。薄膜トランジスタ5603_1~5603_kの第1端子は、各々、配線5604_1
~5604_kと接続される。薄膜トランジスタ5603_1~5603_kの第2端子
は、各々、信号線S1~Skと接続される。薄膜トランジスタ5603_1~5603_
kのゲートは、配線5605_1と接続される。
シフトレジスタ5601は、配線5605_1~5605_Nに順番にHレベル(H信号
、高電源電位レベル、ともいう)の信号を出力し、スイッチング回路5602_1~56
02_Nを順番に選択する機能を有する。
スイッチング回路5602_1は、配線5604_1~5604_kと信号線S1~Sk
との導通状態(第1端子と第2端子との間の導通)を制御する機能、即ち配線5604_
1~5604_kの電位を信号線S1~Skに供給するか否かを制御する機能を有する。
このように、スイッチング回路5602_1は、セレクタとしての機能を有する。また薄
膜トランジスタ5603_1~5603_kは、各々、配線5604_1~5604_k
と信号線S1~Skとの導通状態を制御する機能、即ち配線5604_1~5604_k
の電位を信号線S1~Skに供給する機能を有する。このように、薄膜トランジスタ56
03_1~5603_kは、各々、スイッチとしての機能を有する。
なお、配線5604_1~5604_kには、各々、ビデオ信号用データ(DATA)が
入力される。ビデオ信号用データ(DATA)は、画像情報又は画像信号に応じたアナロ
グ信号である場合が多い。
次に、図9(A)の信号線駆動回路の動作について、図9(B)のタイミングチャートを
参照して説明する。図9(B)には、信号Sout_1~Sout_N、及び信号Vda
ta_1~Vdata_kの一例を示す。信号Sout_1~Sout_Nは、各々、シ
フトレジスタ5601の出力信号の一例であり、信号Vdata_1~Vdata_kは
、各々、配線5604_1~5604_kに入力される信号の一例である。なお、信号線
駆動回路の1動作期間は、表示装置における1ゲート選択期間に対応する。1ゲート選択
期間は、一例として、期間T1~期間TNに分割される。期間T1~TNは、各々、選択
された行に属する画素にビデオ信号用データ(DATA)を書き込むための期間である。
なお、本実施の形態の図面等において示す各構成の、信号波形のなまり等は、明瞭化のた
めに誇張して表記している場合がある。よって、必ずしもそのスケールに限定されないも
のであることを付記する。
期間T1~期間TNにおいて、シフトレジスタ5601は、Hレベルの信号を配線560
5_1~5605_Nに順番に出力する。例えば、期間T1において、シフトレジスタ5
601は、ハイレベルの信号を配線5605_1に出力する。すると、薄膜トランジスタ
5603_1~5603_kはオンになるので、配線5604_1~5604_kと、信
号線S1~Skとが導通状態になる。このとき、配線5604_1~5604_kには、
Data(S1)~Data(Sk)が入力される。Data(S1)~Data(Sk
)は、各々、薄膜トランジスタ5603_1~5603_kを介して、選択される行に属
する画素のうち、1列目~k列目の画素に書き込まれる。こうして、期間T1~TNにお
いて、選択された行に属する画素に、k列ずつ順番にビデオ信号用データ(DATA)が
書き込まれる。
以上のように、ビデオ信号用データ(DATA)が複数の列ずつ画素に書き込まれること
によって、ビデオ信号用データ(DATA)の数、又は配線の数を減らすことができる。
よって、外部回路との接続数を減らすことができる。また、ビデオ信号が複数の列ずつ画
素に書き込まれることによって、書き込み時間を長くすることができ、ビデオ信号の書き
込み不足を防止することができる。
なお、シフトレジスタ5601及びスイッチング回路5602としては、実施の形態1、
3、6に示す薄膜トランジスタで構成される回路を用いることが可能である。この場合、
シフトレジスタ5601が有する全てのトランジスタの極性をnチャネル型、又はpチャ
ネル型のいずれかの極性のみで構成することができる。
走査線駆動回路及び/または信号線駆動回路の一部に用いるシフトレジスタの一形態につ
いて図10及び図11を用いて説明する。
走査線駆動回路は、シフトレジスタを有している。また場合によってはレベルシフタやバ
ッファ等を有していても良い。走査線駆動回路において、シフトレジスタにクロック信号
(CLK)及びスタートパルス信号(SP)が入力されることによって、選択信号が生成
される。生成された選択信号はバッファにおいて緩衝増幅され、対応する走査線に供給さ
れる。走査線には、1ライン分の画素のトランジスタのゲート電極が接続されている。そ
して、1ライン分の画素のトランジスタを一斉にONにしなくてはならないので、バッフ
ァは大きな電流を流すことが可能なものが用いられる。
シフトレジスタは、第1のパルス出力回路10_1乃至第Nのパルス出力回路10_N(
Nは3以上の自然数)を有している(図10(A)参照)。図10(A)に示すシフトレ
ジスタの第1のパルス出力回路10_1乃至第Nのパルス出力回路10_Nには、第1の
配線11より第1のクロック信号CK1、第2の配線12より第2のクロック信号CK2
、第3の配線13より第3のクロック信号CK3、第4の配線14より第4のクロック信
号CK4が供給される。また第1のパルス出力回路10_1では、第5の配線15からの
スタートパルスSP1(第1のスタートパルス)が入力される。また2段目以降の第nの
パルス出力回路10_n(nは、2以上N以下の自然数)では、一段前段のパルス出力回
路からの信号(前段信号OUT(n-1)という)(nは2以上の自然数)が入力される
。また第1のパルス出力回路10_1では、2段後段の第3のパルス出力回路10_3か
らの信号が入力される。同様に、2段目以降の第nのパルス出力回路10_nでは、2段
後段の第(n+2)のパルス出力回路10_(n+2)からの信号(後段信号OUT(n
+2)という)が入力される。従って、各段のパルス出力回路からは、後段及び/または
二つ前段のパルス出力回路に入力するための第1の出力信号(OUT(1)(SR)~O
UT(N)(SR))、別の回路等に入力される第2の出力信号(OUT(1)~OUT
(N))が出力される。なお、図10(A)に示すように、シフトレジスタの最終段の2
つの段には、後段信号OUT(n+2)が入力されないため、一例としては、別途第2の
スタートパルスSP2、第3のスタートパルスSP3をそれぞれ入力する構成とすればよ
い。
なお、クロック信号(CK)は、一定の間隔でHレベルとLレベル(L信号、低電源電位
レベル、ともいう)を繰り返す信号である。ここで、第1のクロック信号(CK1)~第
4のクロック信号(CK4)は、順に1/4周期分遅延している。本実施の形態では、第
1のクロック信号(CK1)~第4のクロック信号(CK4)を利用して、パルス出力回
路の駆動の制御等を行う。なお、クロック信号は、入力される駆動回路に応じて、GCK
、SCKということもあるが、ここではCKとして説明を行う。
第1の入力端子21、第2の入力端子22及び第3の入力端子23は、第1の配線11~
第4の配線14のいずれかと電気的に接続されている。例えば、図10(A)において、
第1のパルス出力回路10_1は、第1の入力端子21が第1の配線11と電気的に接続
され、第2の入力端子22が第2の配線12と電気的に接続され、第3の入力端子23が
第3の配線13と電気的に接続されている。また、第2のパルス出力回路10_2は、第
1の入力端子21が第2の配線12と電気的に接続され、第2の入力端子22が第3の配
線13と電気的に接続され、第3の入力端子23が第4の配線14と電気的に接続されて
いる。
第1のパルス出力回路10_1~第Nのパルス出力回路10_Nの各々は、第1の入力端
子21、第2の入力端子22、第3の入力端子23、第4の入力端子24、第5の入力端
子25、第1の出力端子26、第2の出力端子27を有しているとする(図10(B)参
照)。第1のパルス出力回路10_1において、第1の入力端子21に第1のクロック信
号CK1が入力され、第2の入力端子22に第2のクロック信号CK2が入力され、第3
の入力端子23に第3のクロック信号CK3が入力され、第4の入力端子24にスタート
パルスが入力され、第5の入力端子25に後段信号OUT(3)が入力され、第1の出力
端子26より第1の出力信号OUT(1)(SR)が出力され、第2の出力端子27より
第2の出力信号OUT(1)が出力されていることとなる。
なお第1のパルス出力回路10_1~第Nのパルス出力回路10_Nは、3端子の薄膜ト
ランジスタ(TFT:Thin Film Transistorともいう)の他に、上
記実施の形態で説明した4端子の薄膜トランジスタを用いることができる。図10(C)
に上記実施の形態で説明した4端子の薄膜トランジスタ28のシンボルについて示す。図
10(C)に示す薄膜トランジスタ28のシンボルは、上記実施の形態3、6のいずれか
一で説明した4端子の薄膜トランジスタを意味し、図面等で以下用いることとする。なお
、本明細書において、薄膜トランジスタが半導体層を介して二つのゲート電極を有する場
合、半導体層より下方のゲート電極を下方のゲート電極、半導体層に対して上方のゲート
電極を上方のゲート電極とも呼ぶ。薄膜トランジスタ28は、下方のゲート電極に入力さ
れる第1の制御信号G1及び上方のゲート電極に入力される第2の制御信号G2によって
、In端子とOut端子間の電気的な制御を行うことのできる素子である。
酸化物半導体を薄膜トランジスタのチャネル形成領域を含む半導体層に用いた場合、製造
工程により、しきい値電圧がマイナス側、或いはプラス側にシフトすることがある。その
ため、チャネル形成領域を含む半導体層に酸化物半導体を用いた薄膜トランジスタでは、
しきい値電圧の制御を行うことのできる構成が好適である。図10(C)に示す薄膜トラ
ンジスタ28のしきい値電圧は、薄膜トランジスタ28のチャネル形成領域の上下にゲー
ト絶縁膜を介してゲート電極を設け、上部及び/または下部のゲート電極の電位を制御す
ることにより所望の値に制御することができる。
次に、パルス出力回路の具体的な回路構成の一例について、図10(D)で説明する。
第1のパルス出力回路10_1は、第1のトランジスタ31~第13のトランジスタ43
を有している(図10(D)参照)。また、上述した第1の入力端子21~第5の入力端
子25、及び第1の出力端子26、第2の出力端子27に加え、第1の高電源電位VDD
が供給される電源線51、第2の高電源電位VCCが供給される電源線52、低電源電位
VSSが供給される電源線53から、第1のトランジスタ31~第13のトランジスタ4
3に信号、または電源電位が供給される。ここで図10(D)の各電源線の電源電位の大
小関係は、第1の電源電位VDDは第2の電源電位VCC以上の電位とし、第2の電源電
位VCCは第3の電源電位VSSより大きい電位とする。なお、第1のクロック信号(C
K1)~第4のクロック信号(CK4)は、一定の間隔でHレベルとLレベルを繰り返す
信号であるが、HレベルのときVDD、LレベルのときVSSであるとする。なお電源線
51の電位VDDを、電源線52の電位VCCより高くすることにより、動作に影響を与
えることなく、トランジスタのゲート電極に印加される電位を低く抑えることができ、ト
ランジスタのしきい値のシフトを低減し、劣化を抑制することができる。なお図10(D
)に図示するように、第1のトランジスタ31~第13のトランジスタ43のうち、第1
のトランジスタ31、第6のトランジスタ36乃至第9のトランジスタ39には、図10
(C)で示した4端子の薄膜トランジスタ28を用いることが好ましい。第1のトランジ
スタ31、第6のトランジスタ36乃至第9のトランジスタ39の動作は、ソースまたは
ドレインとなる電極の一方が接続されたノードの電位を、ゲート電極の制御信号によって
切り替えることが求められるトランジスタであり、ゲート電極に入力される制御信号に対
する応答が速い(オン電流の立ち上がりが急峻)ことでよりパルス出力回路の誤動作を低
減することができるトランジスタである。そのため、図10(C)で示した4端子の薄膜
トランジスタ28を用いることによりしきい値電圧を制御することができ、誤動作がより
低減できるパルス出力回路とすることができる。なお図10(D)では第1の制御信号G
1及び第2の制御信号G2が同じ制御信号としたが、異なる制御信号が入力される構成と
してもよい。
図10(D)において第1のトランジスタ31は、第1端子が電源線51に電気的に接続
され、第2端子が第9のトランジスタ39の第1端子に電気的に接続され、ゲート電極(
下方のゲート電極及び上方のゲート電極)が第4の入力端子24に電気的に接続されてい
る。第2のトランジスタ32は、第1端子が電源線53に電気的に接続され、第2端子が
第9のトランジスタ39の第1端子に電気的に接続され、ゲート電極が第4のトランジス
タ34のゲート電極に電気的に接続されている。第3のトランジスタ33は、第1端子が
第1の入力端子21に電気的に接続され、第2端子が第1の出力端子26に電気的に接続
されている。第4のトランジスタ34は、第1端子が電源線53に電気的に接続され、第
2端子が第1の出力端子26に電気的に接続されている。第5のトランジスタ35は、第
1端子が電源線53に電気的に接続され、第2端子が第2のトランジスタ32のゲート電
極及び第4のトランジスタ34のゲート電極に電気的に接続され、ゲート電極が第4の入
力端子24に電気的に接続されている。第6のトランジスタ36は、第1端子が電源線5
2に電気的に接続され、第2端子が第2のトランジスタ32のゲート電極及び第4のトラ
ンジスタ34のゲート電極に電気的に接続され、ゲート電極(下方のゲート電極及び上方
のゲート電極)が第5の入力端子25に電気的に接続されている。第7のトランジスタ3
7は、第1端子が電源線52に電気的に接続され、第2端子が第8のトランジスタ38の
第2端子に電気的に接続され、ゲート電極(下方のゲート電極及び上方のゲート電極)が
第3の入力端子23に電気的に接続されている。第8のトランジスタ38は、第1端子が
第2のトランジスタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的
に接続され、ゲート電極(下方のゲート電極及び上方のゲート電極)が第2の入力端子2
2に電気的に接続されている。第9のトランジスタ39は、第1端子が第1のトランジス
タ31の第2端子及び第2のトランジスタ32の第2端子に電気的に接続され、第2端子
が第3のトランジスタ33のゲート電極及び第10のトランジスタ40のゲート電極に電
気的に接続され、ゲート電極(下方のゲート電極及び上方のゲート電極)が電源線52に
電気的に接続されている。第10のトランジスタ40は、第1端子が第1の入力端子21
に電気的に接続され、第2端子が第2の出力端子27に電気的に接続され、ゲート電極が
第9のトランジスタ39の第2端子に電気的に接続されている。第11のトランジスタ4
1は、第1端子が電源線53に電気的に接続され、第2端子が第2の出力端子27に電気
的に接続され、ゲート電極が第2のトランジスタ32のゲート電極及び第4のトランジス
タ34のゲート電極に電気的に接続されている。第12のトランジスタ42は、第1端子
が電源線53に電気的に接続され、第2端子が第2の出力端子27に電気的に接続され、
ゲート電極が第7のトランジスタ37のゲート電極(下方のゲート電極及び上方のゲート
電極)に電気的に接続されている。第13のトランジスタ43は、第1端子が電源線53
に電気的に接続され、第2端子が第1の出力端子26に電気的に接続され、ゲート電極が
第7のトランジスタ37のゲート電極(下方のゲート電極及び上方のゲート電極)に電気
的に接続されている。
図10(D)において、第3のトランジスタ33のゲート電極、第10のトランジスタ4
0のゲート電極、及び第9のトランジスタ39の第2端子の接続箇所をノードAとする。
また、第2のトランジスタ32のゲート電極、第4のトランジスタ34のゲート電極、第
5のトランジスタ35の第2端子、第6のトランジスタ36の第2端子、第8のトランジ
スタ38の第1端子、及び第11のトランジスタ41のゲート電極の接続箇所をノードB
とする(図11(A)参照)。
図11(A)に、図10(D)で説明したパルス出力回路を第1のパルス出力回路10_
1に適用した場合に、第1の入力端子21乃至第5の入力端子25と第1の出力端子26
及び第2の出力端子27に入力または出力される信号を示している。
具体的には、第1の入力端子21に第1のクロック信号CK1が入力され、第2の入力端
子22に第2のクロック信号CK2が入力され、第3の入力端子23に第3のクロック信
号CK3が入力され、第4の入力端子24にスタートパルスが入力され、第5の入力端子
25に後段信号OUT(3)が入力され、第1の出力端子26より第1の出力信号OUT
(1)(SR)が出力され、第2の出力端子27より第2の出力信号OUT(1)が出力
される。
なお、薄膜トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの
端子を有する素子である。また、ゲートと重畳した領域にチャネル領域が形成される半導
体を有しており、ゲートの電位を制御することで、チャネル領域を介してドレインとソー
スの間に流れる電流を制御することが出来る。ここで、ソースとドレインとは、薄膜トラ
ンジスタの構造や動作条件等によって変わるため、いずれがソースまたはドレインである
かを限定することが困難である。そこで、ソース及びドレインとして機能する領域を、ソ
ースもしくはドレインと呼ばない場合がある。その場合、一例としては、それぞれを第1
端子、第2端子と表記する場合がある。
なお図10(D)、図11(A)において、ノードAを浮遊状態とすることによりブート
ストラップ動作を行うための、容量素子を別途設けても良い。またノードBの電位を保持
するため、一方の電極をノードBに電気的に接続した容量素子を別途設けてもよい。
ここで、図11(A)に示したパルス出力回路を複数具備するシフトレジスタのタイミン
グチャートについて図11(B)に示す。なおシフトレジスタが走査線駆動回路である場
合、図11(B)中の期間61は垂直帰線期間であり、期間62はゲート選択期間に相当
する。
なお、図11(A)に示すように、ゲートに第2の電源電位VCCが印加される第9のト
ランジスタ39を設けておくことにより、ブートストラップ動作の前後において、以下の
ような利点がある。
ゲート電極に第2の電源電位VCCが印加される第9のトランジスタ39がない場合、ブ
ートストラップ動作によりノードAの電位が上昇すると、第1のトランジスタ31の第2
端子であるソースの電位が上昇していき、第1の電源電位VDDより大きくなる。そして
、第1のトランジスタ31のソースが第1端子側、即ち電源線51側に切り替わる。その
ため、第1のトランジスタ31においては、ゲートとソースの間、ゲートとドレインの間
ともに、大きなバイアス電圧が印加されるために大きなストレスがかかり、トランジスタ
の劣化の要因となりうる。そこで、ゲート電極に第2の電源電位VCCが印加される第9
のトランジスタ39を設けておくことにより、ブートストラップ動作によりノードAの電
位は上昇するものの、第1のトランジスタ31の第2端子の電位の上昇を生じないように
することができる。つまり、第9のトランジスタ39を設けることにより、第1のトラン
ジスタ31のゲートとソースの間に印加される負のバイアス電圧の値を小さくすることが
できる。よって、本実施の形態の回路構成とすることにより、第1のトランジスタ31の
ゲートとソースの間に印加される負のバイアス電圧も小さくできるため、ストレスによる
第1のトランジスタ31の劣化を抑制することができる。
なお、第9のトランジスタ39を設ける箇所については、第1のトランジスタ31の第2
端子と第3のトランジスタ33のゲートとの間に第1端子と第2端子を介して接続される
ように設ける構成であればよい。なお、本実施形態でのパルス出力回路を複数具備するシ
フトレジスタの場合、走査線駆動回路より段数の多い信号線駆動回路では、第9のトラン
ジスタ39を省略してもよく、トランジスタ数を削減できる利点がある。
なお第1のトランジスタ31乃至第13のトランジスタ43の半導体層として、酸化物半
導体を用いることにより、薄膜トランジスタのオフ電流を低減すると共に、オン電流及び
電界効果移動度を高めることが出来ると共に、劣化の度合いを低減することが出来るため
、回路内の誤動作を低減することができる。また酸化物半導体を用いたトランジスタ、ア
モルファスシリコンを用いたトランジスタに比べ、ゲート電極に高電位が印加されること
によるトランジスタの劣化の程度が小さい。そのため、第2の電源電位VCCを供給する
電源線に、第1の電源電位VDDを供給しても同様の動作が得られ、且つ回路間を引き回
す電源線の数を低減することができるため、回路の小型化を図ることが出来る。
なお、第7のトランジスタ37のゲート電極(下方のゲート電極及び上方のゲート電極)
に第3の入力端子23によって供給されるクロック信号、第8のトランジスタ38のゲー
ト電極(下方のゲート電極及び上方のゲート電極)に第2の入力端子22によって供給さ
れるクロック信号は、第7のトランジスタ37のゲート電極(下方のゲート電極及び上方
のゲート電極)に第2の入力端子22によって供給されるクロック信号、第8のトランジ
スタ38ゲート電極(下方のゲート電極及び上方のゲート電極)に第3の入力端子23に
よって供給されるクロック信号となるように、結線関係を入れ替えても同様の作用を奏す
る。なお、図11(A)に示すシフトレジスタにおいて、第7のトランジスタ37及び第
8のトランジスタ38が共にオンの状態から、第7のトランジスタ37がオフ、第8のト
ランジスタ38がオンの状態、次いで第7のトランジスタ37がオフ、第8のトランジス
タ38がオフの状態とすることによって、第2の入力端子22及び第3の入力端子23の
電位が低下することで生じる、ノードBの電位の低下が第7のトランジスタ37のゲート
電極の電位の低下、及び第8のトランジスタ38のゲート電極の電位の低下に起因して2
回生じることとなる。一方、図11(A)に示すシフトレジスタにおいて、第7のトラン
ジスタ37及び第8のトランジスタ38が共にオンの状態から、第7のトランジスタ37
がオン、第8のトランジスタ38がオフの状態、次いで、第7のトランジスタ37がオフ
、第8のトランジスタ38がオフの状態とすることによって、第2の入力端子22及び第
3の入力端子23の電位が低下することで生じるノードBの電位の低下を、第8のトラン
ジスタ38のゲート電極の電位の低下による一回に低減することができる。そのため、第
7のトランジスタ37のゲート電極(下方のゲート電極及び上方のゲート電極)に第3の
入力端子23からクロック信号CK3が供給され、第8のトランジスタ38のゲート電極
(下方のゲート電極及び上方のゲート電極)に第2の入力端子22からクロック信号CK
2が入力される結線関係とすることが好適である。なぜなら、ノードBの電位の変動回数
が低減され、ノイズを低減することが出来るからである。
このように、第1の出力端子26及び第2の出力端子27の電位をLレベルに保持する期
間に、ノードBに定期的にHレベルの信号が供給される構成とすることにより、パルス出
力回路の誤動作を抑制することができる。
(実施の形態8)
本明細書に開示する発光装置は、さまざまな電子機器(遊技機も含む)に適用することが
できる。電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョン受
信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ
等のカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)
、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが
挙げられる。
図12(A)は、携帯電話機の一例を示している。携帯電話機1100は、筐体1101
に組み込まれた表示部1102の他、操作ボタン1103、外部接続ポート1104、ス
ピーカ1105、マイク1106などを備えている。
図12(A)に示す携帯電話機1100は、表示部1102を指などで触れることで、情
報を入力ことができる。また、電話を掛ける、或いはメールを作成するなどの操作は、表
示部1102を指などで触れることにより行うことができる。
表示部1102の画面は主として3つのモードがある。第1は、画像の表示を主とする表
示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示
モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部1102を文字の入力を
主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合
、表示部1102の画面のほとんどにキーボードまたは番号ボタンを表示させることが好
ましい。
また、携帯電話機1100内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを
有する検出装置を設けることで、携帯電話機1100の向き(縦か横か)を判断して、表
示部1102の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部1102を触れること、又は筐体1101の操作
ボタン1103の操作により行われる。また、表示部1102に表示される画像の種類に
よって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画の
データであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部1102の光センサで検出される信号を検知し、表示
部1102のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モード
から表示モードに切り替えるように制御してもよい。
表示部1102は、イメージセンサとして機能させることもできる。例えば、表示部11
02に掌や指を触れることで、掌紋、指紋等を撮像することで、本人認証を行うことがで
きる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシ
ング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
表示部1102には、実施の形態1に示す薄膜トランジスタ460を複数配置するが、薄
膜トランジスタ460は透光性を有しているため、表示部1102に光センサを設ける場
合には入射光を薄膜トランジスタ460が妨げないため有効である。また、表示部に近赤
外光を発光するバックライトまたは近赤外光を発光するセンシング用光源を用いる場合に
おいても薄膜トランジスタ460が遮光しないため、好ましい。
図12(B)も携帯電話機の一例である。図12(B)を一例とした携帯型情報端末は、
複数の機能を備えることができる。例えば電話機能に加えて、コンピュータを内蔵し、様
々なデータ処理機能を備えることもできる。
図12(B)に示す携帯型情報端末は、筐体1800及び筐体1801の二つの筐体で構
成されている。筐体1801には、表示パネル1802、スピーカ1803、マイクロフ
ォン1804、ポインティングデバイス1806、カメラ用レンズ1807、外部接続端
子1808などを備え、筐体1800には、キーボード1810、外部メモリスロット1
811などを備えている。また、アンテナは筐体1801内部に内蔵されている。
また、表示パネル1802はタッチパネルを備えており、図12(B)には映像表示され
ている複数の操作キー1805を点線で示している。
また、上記構成に加えて、非接触ICチップ、小型記録装置などを内蔵していてもよい。
発光装置は、表示パネル1802に用いることができ、使用形態に応じて表示の方向が適
宜変化する。また、表示パネル1802と同一面上にカメラ用レンズ1807を備えてい
るため、テレビ電話が可能である。スピーカ1803及びマイクロフォン1804は音声
通話に限らず、テレビ電話、録音、再生などが可能である。さらに、筐体1800と筐体
1801は、スライドし、図12(B)のように展開している状態から重なり合った状態
とすることができ、携帯に適した小型化が可能である。
外部接続端子1808はACアダプタ及びUSBケーブルなどの各種ケーブルと接続可能
であり、充電及びパーソナルコンピュータなどとのデータ通信が可能である。また、外部
メモリスロット1811に記録媒体を挿入し、より大量のデータ保存及び移動に対応でき
る。
また、上記機能に加えて、赤外線通信機能、テレビ受信機能などを備えたものであっても
よい。
図13(A)は、テレビジョン装置の一例を示している。テレビジョン装置9600は、
筐体9601に表示部9603が組み込まれている。表示部9603により、映像を表示
することが可能である。また、ここでは、スタンド9605により筐体9601を支持し
た構成を示している。
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリモ
コン操作機9610により行うことができる。リモコン操作機9610が備える操作キー
9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示され
る映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作機
9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機に
より一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線に
よる通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向
(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
表示部9603には、実施の形態1に示す薄膜トランジスタ460を複数配置するため、
発光装置が特に下面射出型の場合に開口率を高くすることができる。
図13(B)は、デジタルフォトフレームの一例を示している。例えば、デジタルフォト
フレーム9700は、筐体9701に表示部9703が組み込まれている。表示部970
3は、各種画像を表示することが可能であり、例えばデジタルカメラなどで撮影した画像
データを表示させることで、通常の写真立てと同様に機能させることができる。
表示部9703には、実施の形態1に示す薄膜トランジスタ460を複数配置するため、
発光装置が特に下面射出型の場合に開口率を高くすることができる。
なお、デジタルフォトフレーム9700は、操作部、外部接続用端子(USB端子、US
Bケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構
成とする。これらの構成は、表示部と同一面に組み込まれていてもよいが、側面や裏面に
備えるとデザイン性が向上するため好ましい。例えば、デジタルフォトフレームの記録媒
体挿入部に、デジタルカメラで撮影した画像データを記憶したメモリを挿入して画像デー
タを取り込み、取り込んだ画像データを表示部9703に表示させることができる。
また、デジタルフォトフレーム9700は、無線で情報を送受信できる構成としてもよい
。無線により、所望の画像データを取り込み、表示させる構成とすることもできる。
図14は携帯型遊技機であり、筐体9881と筐体9891の2つの筐体で構成されてお
り、連結部9893により、開閉可能に連結されている。筐体9881には表示部988
2が組み込まれ、筐体9891には表示部9883が組み込まれている。
表示部9882及び表示部9883には、実施の形態1に示す薄膜トランジスタ460を
複数配置するため、発光装置が特に下面射出型の場合に開口率を高くすることができる。
また、図14に示す携帯型遊技機は、その他、スピーカ部9884、記録媒体挿入部98
86、LEDランプ9890、入力手段(操作キー9885、接続端子9887、センサ
9888(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度
、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、
振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9889)等を備
えている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも本明細
書に開示する薄膜トランジスタを備えた構成であればよく、その他付属設備が適宜設けら
れた構成とすることができる。図14に示す携帯型遊技機は、記録媒体に記録されている
プログラム又はデータを読み出して表示部に表示する機能や、他の携帯型遊技機と無線通
信を行って情報を共有する機能を有する。なお、図14に示す携帯型遊技機が有する機能
はこれに限定されず、様々な機能を有することができる。
図15は、上記実施の形態を適用して形成される発光装置を、室内の照明装置3001と
して用いた例である。実施の形態2で示した発光装置は大面積化も可能であるため、大面
積の照明装置として用いることができる。また、上記実施の形態2で示した発光装置は、
卓上照明器具3000として用いることも可能である。なお、照明器具には天井固定型の
照明器具、卓上照明器具の他にも、壁掛け型の照明器具、車内用照明、誘導灯なども含ま
れる。
以上のように、実施の形態2、及び実施の形態3で示した発光装置は、上記のような様々
な電子機器の表示パネルに配置することができる。薄膜トランジスタ450を駆動回路と
して用い、薄膜トランジスタ460を表示パネルのスイッチング素子として用いることに
より、発光装置が特に下面射出型の場合に高い開口率を有する表示部を備えた信頼性の高
い電子機器を提供することができる。
10 パルス出力回路
11 配線
12 配線
13 配線
14 配線
15 配線
21 入力端子
22 入力端子
23 入力端子
24 入力端子
25 入力端子
26 出力端子
27 出力端子
28 薄膜トランジスタ
31 トランジスタ
32 トランジスタ
33 トランジスタ
34 トランジスタ
35 トランジスタ
36 トランジスタ
37 トランジスタ
38 トランジスタ
39 トランジスタ
40 トランジスタ
41 トランジスタ
42 トランジスタ
43 トランジスタ
51 電源線
52 電源線
53 電源線
61 期間
62 期間
111a ゲート電極層
111b 容量配線層
111c ゲート電極層
113 酸化物半導体層
115a 電極層
115b 電極層
115c 容量電極層
123 酸化物半導体層
211a ゲート電極層
211b ゲート配線層
211c ゲート電極層
213 酸化物半導体層
213a 高抵抗ソース領域
213b 高抵抗ドレイン領域
215a ソース電極層
215b ドレイン電極層
215c 接続電極層
215d 接続電極層
215e 配線層
215f 接続電極層
215g 端子
216 導電層
223 チャネル形成領域
400 基板
402 ゲート絶縁層
407 酸化物絶縁層
408 保護絶縁層
411 カラーフィルタ層
412 オーバーコート層
414 電極
415 導電層
416 電極層
417 端子
418 導電層
450 薄膜トランジスタ
459 隔壁
460 薄膜トランジスタ
1001 電極
1002 電極
1003 EL層
1004 電荷発生層
1100 携帯電話機
1101 筐体
1102 表示部
1103 操作ボタン
1104 外部接続ポート
1105 スピーカ
1106 マイク
1800 筐体
1801 筐体
1802 表示パネル
1803 スピーカ
1804 マイクロフォン
1805 操作キー
1806 ポインティングデバイス
1807 カメラ用レンズ
1808 外部接続端子
1810 キーボード
1811 外部メモリスロット
3000 卓上照明器具
3001 照明装置
4501 基板
4502 画素部
4503a 信号線駆動回路
4504a 走査線駆動回路
4505 シール材
4506 基板
4507 充填材
4509 薄膜トランジスタ
4510 薄膜トランジスタ
4511 発光素子
4512 電界発光層
4513 画素電極
4515 接続端子電極
4516 端子電極
4517 画素電極
4518a FPC
4519 異方性導電膜
4520 隔壁
4540 導電層
4542 酸化物絶縁層
4543 オーバーコート層
4544 絶縁層
4545 カラーフィルタ層
4548 接続電極層
5300 基板
5301 画素部
5302 走査線駆動回路
5303 走査線駆動回路
5304 信号線駆動回路
5305 タイミング制御回路
5601 シフトレジスタ
5602 スイッチング回路
5603 薄膜トランジスタ
5604 配線
5605 配線
6400 画素
6401 スイッチング用トランジスタ
6402 駆動用トランジスタ
6403 容量素子
6404 発光素子
6405 信号線
6406 走査線
6407 電源線
6408 共通電極
7001 TFT
7002 発光素子
7003 電極
7004 EL層
7005 電極
7009 隔壁
7011 駆動用TFT
7012 発光素子
7013 電極
7014 EL層
7015 電極
7016 遮蔽膜
7017 導電膜
7019 隔壁
7021 駆動用TFT
7022 発光素子
7023 電極
7024 EL層
7025 電極
7027 導電膜
7029 隔壁
7030 接続電極層
7031 酸化物絶縁層
7033 カラーフィルタ層
7034 オーバーコート層
7035 保護絶縁層
7040 接続電極層
7041 酸化物絶縁層
7043 カラーフィルタ層
7044 オーバーコート層
7045 保護絶縁層
7050 接続電極層
7051 酸化物絶縁層
7053 平坦化絶縁層
7055 保護絶縁層
9600 テレビジョン装置
9601 筐体
9603 表示部
9605 スタンド
9607 表示部
9609 操作キー
9610 リモコン操作機
9700 デジタルフォトフレーム
9701 筐体
9703 表示部
9881 筐体
9882 表示部
9883 表示部
9884 スピーカ部
9885 操作キー
9886 記録媒体挿入部
9887 接続端子
9888 センサ
9889 マイクロフォン
9890 LEDランプ
9891 筐体
9893 連結部

Claims (2)

  1. 基板上に、第1のトランジスタと、容量部と、画素電極と、を有し、
    前記第1のトランジスタは、第1のゲート電極層として機能する第1の導電層の一部と、前記第1の導電層上の第1の絶縁層と、前記第1の絶縁層上の第1の酸化物半導体層と、ソース電極またはドレイン電極の一方として機能する第2の導電層の一部と、を有し、
    前記画素電極は、第3の導電層と電気的に接続され、
    前記第3の導電層の下面は、前記第1の酸化物半導体層の上面と接する領域と、前記第1の酸化物半導体層の下面よりも前記基板側に位置する領域と、を有し、
    前記画素電極上に有機化合物を含むEL層が設けられ、
    前記画素電極の下にはカラーフィルタ層が設けられ、
    前記容量部は、前記画素電極と重なり、
    前記容量部の一方の電極は、前記第1の導電層の一部であり、
    前記容量部の前記一方の電極は、前記第1の酸化物半導体層と同じ層に設けられた第1の層と重なる領域を有し
    前記第1の層は、前記第1の酸化物半導体層と同じ材料を有し、
    前記第1の層は、前記第2の導電層と同じ材料を有する導電層と接する領域を有する発光装置。
  2. 基板上に、第1のトランジスタと、容量部と、画素電極と、を有し、
    前記第1のトランジスタは、第1のゲート電極層として機能する第1の導電層の一部と、前記第1の導電層上の第1の絶縁層と、前記第1の絶縁層上の第1の酸化物半導体層と、ソース電極またはドレイン電極の一方として機能する第2の導電層の一部と、を有し、
    前記画素電極は、第3の導電層と電気的に接続され、
    前記第3の導電層の下面は、前記第1の酸化物半導体層の上面と接する領域と、前記第1の酸化物半導体層の下面よりも前記基板側に位置する領域と、を有し、
    前記画素電極上に有機化合物を含むEL層が設けられ、
    前記画素電極の下にはカラーフィルタ層が設けられ、
    前記容量部は、前記画素電極と重なり、
    前記容量部の一方の電極は、前記第1の導電層の一部であり、
    前記容量部の前記一方の電極は、前記第1の酸化物半導体層と同じ層に設けられた第1の層と重なる領域を有し
    前記第1の層は、前記第1の酸化物半導体層と同じ材料を有し、
    前記第1の層は、前記第2の導電層と同じ材料を有する導電層と接する領域を有し、
    前記第1の酸化物半導体層は、In、Ga及びZnを有する発光装置。
JP2021037932A 2009-09-04 2021-03-10 発光装置 Active JP7174093B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022176899A JP7480255B2 (ja) 2009-09-04 2022-11-04 発光装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009204929 2009-09-04
JP2009204929 2009-09-04
JP2018239539A JP6852043B2 (ja) 2009-09-04 2018-12-21 発光装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018239539A Division JP6852043B2 (ja) 2009-09-04 2018-12-21 発光装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022176899A Division JP7480255B2 (ja) 2009-09-04 2022-11-04 発光装置

Publications (2)

Publication Number Publication Date
JP2021108374A JP2021108374A (ja) 2021-07-29
JP7174093B2 true JP7174093B2 (ja) 2022-11-17

Family

ID=43649240

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2010196523A Active JP5732216B2 (ja) 2009-09-04 2010-09-02 半導体装置
JP2015020568A Withdrawn JP2015130513A (ja) 2009-09-04 2015-02-04 半導体装置
JP2016220198A Withdrawn JP2017038089A (ja) 2009-09-04 2016-11-11 発光装置
JP2017212397A Withdrawn JP2018028691A (ja) 2009-09-04 2017-11-02 発光装置
JP2018239539A Active JP6852043B2 (ja) 2009-09-04 2018-12-21 発光装置
JP2021037932A Active JP7174093B2 (ja) 2009-09-04 2021-03-10 発光装置
JP2022176899A Active JP7480255B2 (ja) 2009-09-04 2022-11-04 発光装置

Family Applications Before (5)

Application Number Title Priority Date Filing Date
JP2010196523A Active JP5732216B2 (ja) 2009-09-04 2010-09-02 半導体装置
JP2015020568A Withdrawn JP2015130513A (ja) 2009-09-04 2015-02-04 半導体装置
JP2016220198A Withdrawn JP2017038089A (ja) 2009-09-04 2016-11-11 発光装置
JP2017212397A Withdrawn JP2018028691A (ja) 2009-09-04 2017-11-02 発光装置
JP2018239539A Active JP6852043B2 (ja) 2009-09-04 2018-12-21 発光装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022176899A Active JP7480255B2 (ja) 2009-09-04 2022-11-04 発光装置

Country Status (4)

Country Link
US (1) US8378344B2 (ja)
JP (7) JP5732216B2 (ja)
TW (1) TWI528603B (ja)
WO (1) WO2011027701A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027676A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102480780B1 (ko) 2009-09-16 2022-12-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 이의 제조 방법
KR101731047B1 (ko) 2010-12-01 2017-05-12 삼성디스플레이 주식회사 적외선 감지 트랜지스터, 이를 포함하는 표시 장치의 제조 방법
JP6099336B2 (ja) 2011-09-14 2017-03-22 株式会社半導体エネルギー研究所 発光装置
JP5832399B2 (ja) 2011-09-16 2015-12-16 株式会社半導体エネルギー研究所 発光装置
JP2013093565A (ja) * 2011-10-07 2013-05-16 Semiconductor Energy Lab Co Ltd 半導体装置
JP6122275B2 (ja) * 2011-11-11 2017-04-26 株式会社半導体エネルギー研究所 表示装置
JP6059968B2 (ja) 2011-11-25 2017-01-11 株式会社半導体エネルギー研究所 半導体装置、及び液晶表示装置
WO2013168624A1 (en) 2012-05-10 2013-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8658444B2 (en) * 2012-05-16 2014-02-25 International Business Machines Corporation Semiconductor active matrix on buried insulator
JP6289822B2 (ja) * 2012-05-31 2018-03-07 株式会社半導体エネルギー研究所 発光装置及び電子機器
KR102004956B1 (ko) * 2012-08-02 2019-07-30 삼성디스플레이 주식회사 표시 장치
KR102000738B1 (ko) 2013-01-28 2019-07-23 삼성디스플레이 주식회사 정전기 방지 회로 및 이를 포함하는 표시 장치
TWI651839B (zh) * 2013-02-27 2019-02-21 半導體能源研究所股份有限公司 半導體裝置、驅動電路及顯示裝置
TW201503374A (zh) 2013-07-01 2015-01-16 Chunghwa Picture Tubes Ltd 氧化物半導體薄膜電晶體
TWI566413B (zh) 2013-09-09 2017-01-11 元太科技工業股份有限公司 薄膜電晶體
CN104460143B (zh) * 2013-09-17 2017-12-15 瀚宇彩晶股份有限公司 像素结构及其制造方法
WO2015083034A1 (en) * 2013-12-02 2015-06-11 Semiconductor Energy Laboratory Co., Ltd. Display device
JP6570825B2 (ja) 2013-12-12 2019-09-04 株式会社半導体エネルギー研究所 電子機器
US9633710B2 (en) 2015-01-23 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Method for operating semiconductor device
EP3101692A1 (en) * 2015-01-26 2016-12-07 Sumitomo Electric Industries, Ltd. Oxide semiconductor film and semiconductor device
JP2017010000A (ja) 2015-04-13 2017-01-12 株式会社半導体エネルギー研究所 表示装置
US9666655B2 (en) 2015-05-05 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Display device
KR102360010B1 (ko) * 2015-06-05 2022-02-10 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
US10242244B2 (en) * 2016-01-27 2019-03-26 Japan Display Inc. Fingerprint detection device and display device
KR20180002471A (ko) * 2016-06-29 2018-01-08 엘지디스플레이 주식회사 유기발광 표시장치, 그의 제조방법, 및 그를 포함한 헤드 장착형 디스플레이
US10069098B2 (en) 2016-06-29 2018-09-04 Lg Display Co., Ltd. Organic light emitting display device, method of manufacturing the same, and head mounted display including the same
KR102518861B1 (ko) * 2018-05-09 2023-04-07 삼성디스플레이 주식회사 게이트 드라이버 및 이를 구비한 표시 장치
KR20200115772A (ko) * 2019-03-26 2020-10-08 삼성디스플레이 주식회사 표시모듈
US11379231B2 (en) 2019-10-25 2022-07-05 Semiconductor Energy Laboratory Co., Ltd. Data processing system and operation method of data processing system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311440A (ja) 2003-04-07 2004-11-04 Samsung Electronics Co Ltd 有機電界発光表示装置
JP2006245031A (ja) 2005-02-28 2006-09-14 Casio Comput Co Ltd 薄膜トランジスタパネル
JP2007165861A (ja) 2005-11-15 2007-06-28 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2008134625A (ja) 2006-10-26 2008-06-12 Semiconductor Energy Lab Co Ltd 半導体装置、表示装置及び電子機器
JP2008276212A (ja) 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置
JP2009021480A (ja) 2007-07-13 2009-01-29 Toppan Printing Co Ltd 薄膜トランジスタ基板及びこれを用いた画像表示装置
JP2009170905A (ja) 2008-01-15 2009-07-30 Samsung Electronics Co Ltd 表示基板およびこれを含む表示装置
JP2008009393A5 (ja) 2007-05-23 2010-06-24

Family Cites Families (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499124A (en) 1990-12-31 1996-03-12 Vu; Duy-Phach Polysilicon transistors formed on an insulation layer which is adjacent to a liquid crystal material
JPH05218326A (ja) * 1992-01-31 1993-08-27 Canon Inc 半導体装置及び液晶表示装置
JP3405364B2 (ja) 1993-03-08 2003-05-12 セイコーインスツルメンツ株式会社 半導体装置
DE69635107D1 (de) 1995-08-03 2005-09-29 Koninkl Philips Electronics Nv Halbleiteranordnung mit einem transparenten schaltungselement
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
US6476784B2 (en) 1997-10-31 2002-11-05 Kopin Corporation Portable display system with memory card reader
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
JP2000231124A (ja) 1999-02-12 2000-08-22 Sony Corp 電気光学装置、電気光学装置用の駆動基板、及びこれらの製造方法
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP3961172B2 (ja) 1999-11-26 2007-08-22 アルプス電気株式会社 酸化物透明導電膜と酸化物透明導電膜形成用ターゲットおよび先の酸化物透明導電膜を備えた基板の製造方法と電子機器および液晶表示装置
JP2001175198A (ja) * 1999-12-14 2001-06-29 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP2003029293A (ja) 2001-07-13 2003-01-29 Minolta Co Ltd 積層型表示装置及びその製造方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
EP1443130B1 (en) 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP2003179233A (ja) 2001-12-13 2003-06-27 Fuji Xerox Co Ltd 薄膜トランジスタ、及びそれを備えた表示素子
JP2003243657A (ja) * 2002-02-12 2003-08-29 Seiko Epson Corp 半導体装置、電気光学装置、電子機器、半導体装置の製造方法、電気光学装置の製造方法
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
EP2246894B2 (en) 2004-03-12 2018-10-10 Japan Science and Technology Agency Method for fabricating a thin film transistor having an amorphous oxide as a channel layer
US7145174B2 (en) * 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
JP2005352452A (ja) * 2004-05-12 2005-12-22 Seiko Epson Corp 表示装置および電子機器
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
KR101061850B1 (ko) 2004-09-08 2011-09-02 삼성전자주식회사 박막 트랜지스터 표시판 및 그 제조방법
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
RU2358354C2 (ru) 2004-11-10 2009-06-10 Кэнон Кабусики Кайся Светоизлучающее устройство
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
KR100998527B1 (ko) 2004-11-10 2010-12-07 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 비정질 산화물 및 전계 효과 트랜지스터
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
JP5118812B2 (ja) 2004-11-10 2013-01-16 キヤノン株式会社 電界効果型トランジスタ
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI562380B (en) 2005-01-28 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
US7652291B2 (en) * 2005-05-28 2010-01-26 Samsung Mobile Display Co., Ltd. Flat panel display
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4732080B2 (ja) * 2005-09-06 2011-07-27 キヤノン株式会社 発光素子
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
KR100729043B1 (ko) 2005-09-14 2007-06-14 삼성에스디아이 주식회사 투명 박막 트랜지스터 및 그의 제조방법
JP4753373B2 (ja) * 2005-09-16 2011-08-24 株式会社半導体エネルギー研究所 表示装置及び表示装置の駆動方法
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
EP1998375A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method
EP1935027B1 (en) 2005-10-14 2017-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
JP5129473B2 (ja) 2005-11-15 2013-01-30 富士フイルム株式会社 放射線検出器
US7745798B2 (en) 2005-11-15 2010-06-29 Fujifilm Corporation Dual-phosphor flat panel radiation detector
KR101358954B1 (ko) 2005-11-15 2014-02-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 다이오드 및 액티브 매트릭스 표시장치
JP2006126855A (ja) * 2005-11-15 2006-05-18 Semiconductor Energy Lab Co Ltd 表示装置
KR100732849B1 (ko) 2005-12-21 2007-06-27 삼성에스디아이 주식회사 유기 발광 표시장치
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
KR100768199B1 (ko) 2006-01-02 2007-10-17 삼성에스디아이 주식회사 유기 박막 트랜지스터 및 이를 구비한 유기 발광 표시 장치
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
JP5250960B2 (ja) * 2006-01-24 2013-07-31 セイコーエプソン株式会社 発光装置および電子機器
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
JP2007212699A (ja) 2006-02-09 2007-08-23 Idemitsu Kosan Co Ltd 反射型tft基板及び反射型tft基板の製造方法
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP5110803B2 (ja) 2006-03-17 2012-12-26 キヤノン株式会社 酸化物膜をチャネルに用いた電界効果型トランジスタ及びその製造方法
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
JP2007286150A (ja) * 2006-04-13 2007-11-01 Idemitsu Kosan Co Ltd 電気光学装置、並びに、電流制御用tft基板及びその製造方法
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP2006313363A (ja) 2006-05-24 2006-11-16 Semiconductor Energy Lab Co Ltd 表示装置
JP5386069B2 (ja) * 2006-06-02 2014-01-15 株式会社半導体エネルギー研究所 半導体装置、表示装置、液晶表示装置、表示モジュール及び電子機器
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
KR101426513B1 (ko) 2006-09-29 2014-08-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 퀴녹살린 유도체, 발광소자, 발광장치 및 전자기기
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
JP5210594B2 (ja) 2006-10-31 2013-06-12 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7646015B2 (en) 2006-10-31 2010-01-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device and semiconductor device
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
WO2008099700A1 (ja) 2007-02-16 2008-08-21 Sharp Kabushiki Kaisha ダブルゲートトランジスタおよびその製造方法ならびにダブルゲートトランジスタを備えるアクティブマトリクス基板
US8436349B2 (en) 2007-02-20 2013-05-07 Canon Kabushiki Kaisha Thin-film transistor fabrication process and display device
JP5196870B2 (ja) 2007-05-23 2013-05-15 キヤノン株式会社 酸化物半導体を用いた電子素子及びその製造方法
WO2008105347A1 (en) * 2007-02-20 2008-09-04 Canon Kabushiki Kaisha Thin-film transistor fabrication process and display device
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
WO2008126879A1 (en) 2007-04-09 2008-10-23 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
JP5197058B2 (ja) 2007-04-09 2013-05-15 キヤノン株式会社 発光装置とその作製方法
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
CN101663762B (zh) 2007-04-25 2011-09-21 佳能株式会社 氧氮化物半导体
JP5261979B2 (ja) * 2007-05-16 2013-08-14 凸版印刷株式会社 画像表示装置
KR100846968B1 (ko) * 2007-05-21 2008-07-17 삼성에스디아이 주식회사 유기전계발광표시장치
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
WO2009038606A2 (en) 2007-06-01 2009-03-26 Northwestern University Transparent nanowire transistors and methods for fabricating same
KR101413655B1 (ko) 2007-11-30 2014-08-07 삼성전자주식회사 산화물 반도체 박막 트랜지스터의 제조 방법
JP5377940B2 (ja) 2007-12-03 2013-12-25 株式会社半導体エネルギー研究所 半導体装置
JP5213422B2 (ja) 2007-12-04 2013-06-19 キヤノン株式会社 絶縁層を有する酸化物半導体素子およびそれを用いた表示装置
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
KR101383705B1 (ko) 2007-12-18 2014-04-10 삼성디스플레이 주식회사 박막 트랜지스터, 박막 트랜지스터를 포함하는 표시 장치및 그 제조 방법
JP5219529B2 (ja) * 2008-01-23 2013-06-26 キヤノン株式会社 電界効果型トランジスタ及び、該電界効果型トランジスタを備えた表示装置
JP5264197B2 (ja) * 2008-01-23 2013-08-14 キヤノン株式会社 薄膜トランジスタ
KR101525806B1 (ko) 2008-01-23 2015-06-05 삼성디스플레이 주식회사 박막 트랜지스터 표시판
US8586979B2 (en) * 2008-02-01 2013-11-19 Samsung Electronics Co., Ltd. Oxide semiconductor transistor and method of manufacturing the same
JP5540517B2 (ja) 2008-02-22 2014-07-02 凸版印刷株式会社 画像表示装置
JP2009265271A (ja) 2008-04-23 2009-11-12 Nippon Shokubai Co Ltd 電気光学表示装置
US9041202B2 (en) 2008-05-16 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
JP5430248B2 (ja) 2008-06-24 2014-02-26 富士フイルム株式会社 薄膜電界効果型トランジスタおよび表示装置
US8129718B2 (en) 2008-08-28 2012-03-06 Canon Kabushiki Kaisha Amorphous oxide semiconductor and thin film transistor using the same
KR101542840B1 (ko) 2008-09-09 2015-08-07 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 이의 제조 방법
KR20100030865A (ko) 2008-09-11 2010-03-19 삼성전자주식회사 유기 발광 표시 장치 및 그 제조 방법
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
EP2515337B1 (en) 2008-12-24 2016-02-24 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device
EP2457256B1 (en) 2009-07-18 2020-06-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
WO2011010545A1 (en) 2009-07-18 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
EP2284891B1 (en) 2009-08-07 2019-07-24 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and manufacturing method thereof
TWI559501B (zh) 2009-08-07 2016-11-21 半導體能源研究所股份有限公司 半導體裝置和其製造方法
JP5663231B2 (ja) 2009-08-07 2015-02-04 株式会社半導体エネルギー研究所 発光装置
TWI596741B (zh) 2009-08-07 2017-08-21 半導體能源研究所股份有限公司 半導體裝置和其製造方法
TWI582951B (zh) 2009-08-07 2017-05-11 半導體能源研究所股份有限公司 半導體裝置及包括該半導體裝置之電話、錶、和顯示裝置
US8115883B2 (en) 2009-08-27 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
WO2011027661A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
WO2011027656A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
WO2011027702A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
WO2011027676A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011027664A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311440A (ja) 2003-04-07 2004-11-04 Samsung Electronics Co Ltd 有機電界発光表示装置
JP2006245031A (ja) 2005-02-28 2006-09-14 Casio Comput Co Ltd 薄膜トランジスタパネル
JP2007165861A (ja) 2005-11-15 2007-06-28 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2008134625A (ja) 2006-10-26 2008-06-12 Semiconductor Energy Lab Co Ltd 半導体装置、表示装置及び電子機器
JP2008276212A (ja) 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置
JP2008009393A5 (ja) 2007-05-23 2010-06-24
JP2009021480A (ja) 2007-07-13 2009-01-29 Toppan Printing Co Ltd 薄膜トランジスタ基板及びこれを用いた画像表示装置
JP2009170905A (ja) 2008-01-15 2009-07-30 Samsung Electronics Co Ltd 表示基板およびこれを含む表示装置

Also Published As

Publication number Publication date
JP2017038089A (ja) 2017-02-16
JP2019079818A (ja) 2019-05-23
TWI528603B (zh) 2016-04-01
US8378344B2 (en) 2013-02-19
JP2015130513A (ja) 2015-07-16
JP5732216B2 (ja) 2015-06-10
JP2018028691A (ja) 2018-02-22
JP6852043B2 (ja) 2021-03-31
JP7480255B2 (ja) 2024-05-09
JP2023014101A (ja) 2023-01-26
JP2011077511A (ja) 2011-04-14
TW201128820A (en) 2011-08-16
US20110210324A1 (en) 2011-09-01
WO2011027701A1 (en) 2011-03-10
JP2021108374A (ja) 2021-07-29

Similar Documents

Publication Publication Date Title
JP7174093B2 (ja) 発光装置
JP7320103B2 (ja) 表示装置
JP7201749B2 (ja) 半導体装置
JP6028072B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221104

R150 Certificate of patent or registration of utility model

Ref document number: 7174093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150