JP6796664B2 - 血液処理のためのガス枯渇化およびガス添加デバイス - Google Patents

血液処理のためのガス枯渇化およびガス添加デバイス Download PDF

Info

Publication number
JP6796664B2
JP6796664B2 JP2019000220A JP2019000220A JP6796664B2 JP 6796664 B2 JP6796664 B2 JP 6796664B2 JP 2019000220 A JP2019000220 A JP 2019000220A JP 2019000220 A JP2019000220 A JP 2019000220A JP 6796664 B2 JP6796664 B2 JP 6796664B2
Authority
JP
Japan
Prior art keywords
gas
depletion
oxygen
liquid
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019000220A
Other languages
English (en)
Other versions
JP2019065039A (ja
Inventor
スティーヴン エフ レベック
スティーヴン エフ レベック
トーマス アール ルス
トーマス アール ルス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Health Sciences Inc
Original Assignee
New Health Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Health Sciences Inc filed Critical New Health Sciences Inc
Publication of JP2019065039A publication Critical patent/JP2019065039A/ja
Application granted granted Critical
Publication of JP6796664B2 publication Critical patent/JP6796664B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0242Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0263Non-refrigerated containers specially adapted for transporting or storing living parts whilst preserving, e.g. cool boxes, blood bags or "straws" for cryopreservation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0281Apparatus for treatment of blood or blood constituents prior to transfusion, e.g. washing, filtering or thawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen

Description

本開示は、血液製剤および赤血球の保存のためのデバイス、方法およびシステムを含む。より具体的には、本開示は、系からのガスの除去のためのデバイス、ならびに血液製剤からの赤血球の長期嫌気的貯蔵および輸血前の血液製剤に対するガスの回復のための方法を含む。本開示はまた、輸血前にガスを回復させるためのデバイスを提供する。
液体血液の供給は、現在、従来の血液貯蔵の実践において使用されている貯蔵システムにより制限されている。現在のシステムを使用すると、貯蔵された血液は、濃厚血液細胞調製物として、凍結点より上の温度(すなわち4℃)での約42日間の冷蔵貯蔵後に期限切れとなる。劣化は42日目以前でも生じる。期限切れの血液は、最終的な受容者に有害となるため使用することができず、廃棄されなければならない。血液の損傷の主な理由の1つは、貯蔵された後のその継続的な代謝活性である。例えば、2007年において、世界で4500万単位を超える赤血球(RBC)が採取および貯蔵された(米国においては1560万単位)。冷蔵貯蔵中、RBCは、貯蔵損傷により次第に損傷される。現在の6週間の期限内に輸血された場合、貯蔵されたRBCは、より低い品質(RBCの一部の除去;悪化したO2送達能力)、およびしばしば輸血治療の副作用として発現する潜在的な毒性を有する。これらの貯蔵損傷は、貯蔵された細胞に関連する改変された生化学的および物理的パラメータとして観察される。これらの例は、in vitro測定パラメータ、例えば低減した代謝レベル(ATPおよび2,3−DPG)、低減した表面積、エキノサイトーシス(echinocytosis)、ホスファチジルセリン曝露、および低減した変形能を含む。
貯蔵された血液は、貯蔵期間中に生じる溶血、ヘモグロビン分解および低減したアデノシン三リン酸(ATP)濃度により一部起因して、着実に劣化する。これらの理由および他の理由により、輸血に必要とされるすぐに利用可能な高品質血液の量が制限される。
上述のように、機械的応力および循環の一定サイクル環境を避けて、RBCが血液貯蔵バッグ内で凍結点より上の温度(例えば、1〜6℃、標準的貯蔵条件)の冷蔵下で貯蔵された場合、老化過程が部分的に停止する。しかしながら、冷蔵貯蔵下で一定の栄養物補充および廃棄物除去がないと、RBCは徐々に悪化し、生理学的機能の低下がもたらされる。例として、長期貯蔵中に以下の問題が生じる。
− RBCが長期間貯蔵された場合、貯蔵損傷が蓄積してRBCを劣化させ、それにより貯蔵中にRBCの1%までが溶血し、25%までが輸血後すぐに除去される。
− 非生存RBCは、長期輸血患者において鉄過剰負荷を引き起こす。
− 輸血は、必ずしも、組織かん流の上昇の意図された転帰を達成するとは限らない。
− RBC中のヘモグロビンは、2,3−DPGの損失に起因して、組織で酸素を効率的に放出しない。
− RBCは、変形能の損失に起因して、毛細血管床に進入およびかん流することができない。
より長期間貯蔵されたRBCの輸血は、「より新鮮な」赤血球の輸血に比べてより高い疾病率およびより長い入院期間をもたらし得る。より高い疾病率およびより長い入院期間は、より新鮮な赤血球と比較して、6週間を超える期間貯蔵されたRBCによりもたらされる。例えば、心臓手術における負の臨床転帰は、「より古い」血液を使用した場合に生じ、手術患者における多臓器障害は、輸血赤血球の古さを反映し、重症敗血症においては、より古い単位と死亡率の増加との間に相関があり、O2利用改善の不良は、血液粘度の増加に関連した2,3−DPGの減少および心係数の減少に起因する。
輸血の非有効性および否定的な結果は、少なくとも部分的に、RBCの長期貯蔵の悪化作用に起因する。ある特定のRBCの受容者による即時的な除去に加えて、RBC貯蔵損傷の結果は、(i)ATPの枯渇(前毛細血管細動脈を拡張するRBCの能力の損失);(ii)2,3−DPGの枯渇;(iii)変性ヘモグロビンのO2との反応により形成される反応性酸素種(ROS)により引き起こされる酸化的損傷の蓄積;ならびに(iv)部分的に膜および細胞骨格への酸化的損傷により引き起こされるRBC変形能の低下およびRBC粘度の増加を含む。より変形能の低いRBCは、毛細管チャネルから排除され、低い毛細管占有度および低減された組織かん流をもたらす。非変形性細胞の大量輸血はまた、臓器の毛細血管床を遮断することにより、多臓器障害に寄与し得る。輸血後、2,3−DPGは、7時間という短期間で正常レベルの約50%まで、また2〜3日で正常レベルの約95%まで、in vivoで比較的迅速に合成される。しかしながら、2,3−DPG枯渇細胞は、そのレベルを即時に回復しないため、O2運搬能は、即時的なO2送達および組織かん流を必要とする重症患者に被害が及ぶ程悪化する。そのような臨床的状況における高い酸素運搬能を有するRBCの重要性を強調する、数々の報告がある。
冷凍保存血液の貯蔵が当該技術分野において知られているが、そのような冷凍保存血液には制限がある。何年もの間、冷凍保存血液は、ある特定の高い需要および希少な血液型に対して、血液バンクおよび軍により使用されている。しかしながら、冷凍保存血液は、取り扱いが困難である。冷凍保存血液は解凍されなければならず、そのため冷凍保存血液は緊急時の状況において非実用的である。血液が解凍されたら、48時間以内に使用されなければならない。Serebrennikovに対する米国特許第6,413,713号は、0℃未満の温度で血液を貯蔵する方法に関する。
Hamasakiらに対する米国特許第4,769,318号およびSasakawaらに対する米国特許第4,880,786号は、血液保存および活性化のための添加剤溶液に関する。Bitenskyらに対する米国特許第5,624,794号、Bitenskyらに対する米国特許第6,162,396号、およびBitenskyに対する米国特許第5,476,764号は、酸素枯渇条件下での赤血球の貯蔵に関する。Bitenskyらに対する米国特許第5,789,151号は、血液貯蔵添加剤溶液に関する。
血液保存および活性化のための添加剤溶液は、当該技術分野において知られている。例えば、Rejuvesol(商標)(enCyte Corp.、Braintree、MAから入手可能)は、低温貯蔵(すなわち4℃)後、輸血直前に、または長期保存のための凍結(すなわちグリセロールと共に−80℃で)前に血液に添加される。Hessらに対する米国特許第6,447,987号は、ヒト赤血球の冷蔵貯蔵のための添加剤溶液に関する。
血液貯蔵状況におけるATPレベルの上昇および保存の効果が研究されている。例えば、Greenwaltらによる「Studies In Red Blood Cell Preservation-7. In Vivo and in Vitro Studies with a Modified Phosphate-Ammonium Additive Solution」, Vox Sang 65, 87-94 (1993)において、著者らは、mMで20 NH4Cl、30 Na2HPO4、2アデニン、110デキストロース、55マンニトールを含有する実験添加剤溶液(EAS−2)、pH7.15が、5〜6週間という現在の標準から8〜9週間の改善された標準へのヒトRBCの貯蔵期間の延長に有用であることを突き止めた。濃厚RBCは、単一洗浄ステップによる上澄みの除去後の輸血に好適である。Greenwaltらはまた、ATP濃度以外の因子が、50日間の貯蔵後のRBC生存率の決定においてますます重要な役割を担っているようであると結論付けている。彼らは、「The Viability of Human Blood Stored in Phosphate Adenine Media」, Transfusion 7, 401-408 (1967)におけるL.WoodおよびE.Beutlerの結果を引用し、また彼ら自身の実験において、ATP濃度と24時間RBC生存率測定値との間の関係が、約8週間の貯蔵後により不明確となるようであることを見出している。E.BeutlerおよびC.Westは、「Storage of Red Cell Concentrates in CPD-A2 for 42 and 49 Days」, J. Lab. Clin. Med. 102, 53-62 (1983)において、赤血球ATP濃度と生存率との間の関係が、長期間の貯蔵後には弱い関係であることを改めて述べている。
ある特定の特許は、血液貯蔵の異なる側面に注目している。1つのそのような特許は、Satoらに対する米国特許第4,837,047号であり、これは、血液の品質を良好な状態に保持するための、長期間の血液保存用の容器に関する。Satoらは、血液中の二酸化炭素ガスの分圧を低レベルに維持することによる、貯蔵された血液の貯蔵期限の改善を目指している。そのような分圧は、外の気圧との正規化により得られるようである。容器は、二酸化炭素ガスが血液から外に容易に拡散し得るようにすることを目的として、二酸化炭素ガスに対する高い透過性を有する合成樹脂フィルムで作製される。しかしながら、血液中の酸素およびヘモグロビンの相互作用により引き起こされる問題は対処されていない。
別の特許である、Ishikawaらに対する米国特許第5,529,821号は、容器への血液の付着を防止する、血液の貯蔵のための容器および方法に関する。血液は、複数の層を有するシート材料で構成される容器内に貯蔵され、血液に接触する第1のシートが、血小板の活性化およびその層への付着を実質的に防止する。しかしながら、この場合も、血液中の酸素およびヘモグロビンの相互作用により引き起こされる問題は対処されていない。
現在の技術に照らして、輸血に関連した疾病率を最小限化するために、貯蔵される赤血球の品質を改善し、輸血の前のそのような赤血球の貯蔵期限を延長することが必要とされている。
本開示は、液体からガスを除去するための枯渇化デバイスであって、1つまたは複数の液体チャンバと、1つまたは複数の枯渇化チャンバと、1つまたは複数の液体チャンバを1つまたは複数の枯渇化チャンバから分離する、少なくとも1つのガス透過性バリアと、少なくとも1つの液体入口と、少なくとも1つの液体出口とを有する筐体を含む枯渇化デバイスを含み、それを提供する。
本開示は、筐体と、1つまたは複数の液体チャンバと、1つまたは複数のガス添加チャンバと、液体チャンバの少なくとも1つをガス添加チャンバから分離する、少なくとも1つのガス透過性バリアと、少なくとも1つの液体入口と、少なくとも1つの液体出口とを含むガス添加デバイスを含み、それを提供する。
本開示は、輸血用血液製剤を調製する方法であって、枯渇化デバイスを通して血液製剤液を流動させ、増加したレベルのガスを有する血液製剤を調製するステップを含む方法をさらに含み、それを提供する。
さらに、本開示は、赤血球の長期貯蔵のための方法であって、全血を得るステップと、全血を枯渇化デバイスに通過させ、枯渇血液製剤を調製するステップと、枯渇血液製剤をガス不透過性貯蔵バッグ内にある期間貯蔵し、貯蔵された枯渇血液製剤を調製するステップと、貯蔵された枯渇血液製剤をガス添加デバイスに通過させ、輸血血液製剤を調製するステップとを含む方法を含み、それを提供する。
本開示による実施形態において、赤血球の長期貯蔵のための方法は、輸血血液製剤を編集するステップ、輸血血液製剤に照射するステップ、輸血血液製剤の緩衝液交換を行うステップ、ガス回復血液製剤を輸血バッグ内に収集するステップ、およびそれらの組合せをさらに含んでもよい。
本開示はまた、赤血球の長期貯蔵のためのシステムであって、瀉血針と、血液採取バッグと、添加剤溶液と、枯渇化デバイスと、白血球低減のためのデバイスと、赤血球を編集するためのデバイスと、病原体を不活性化するためのデバイスと、血液製剤の体積を低減するためのデバイスと、血液製剤の緩衝液を交換するためのデバイスと、血液製剤を貯蔵するためのガス不透過性貯蔵バッグと、輸血前に貯蔵された血液製剤にガスを添加するためのデバイスと、デバイス、採取バッグ、および貯蔵バッグを接続する配管とを含むシステムを含み、それを提供する。
A〜Dは、本開示による例示的な単一の液体チャンバ枯渇化デバイスを示す図である。 A〜Fは、本開示による例示的な流動制御機構を示す図である。 A〜Cは、本開示による2つ以上の液体チャンバを有する例示的な枯渇化デバイスを示す図である。 A〜Cは、剛性内部液体チャンバおよび可撓性外部筐体を有する例示的な単一の液体チャンバ枯渇化デバイスを示す図である。 A〜Cは、本開示による、可撓性筐体、可撓性液体チャンバ、および可撓性枯渇化チャンバを有する例示的な単一の液体チャンバ枯渇化デバイスを示す図である。 A〜Cは、可撓性筐体、間接的液体経路を有する可撓性液体チャンバ、および2つの可撓性枯渇化チャンバを有する例示的な単一の液体チャンバ枯渇化デバイスを示す図である。 A〜Cは、本開示による、可撓性筐体、2つの可撓性液体チャンバ、および3つの可撓性枯渇化チャンバを有する例示的な複数チャンバ枯渇化デバイスを示す図である。 A〜Cは、本開示による単一の液体チャンバおよび2つのガス枯渇化チャンバを有する例示的な単一チャンバ枯渇化デバイスを示す図である。 A〜Cは、本開示による直列構成の2つの液体チャンバおよび3つのガス枯渇化チャンバを有する例示的な複数チャンバ枯渇化デバイスを示す図である。 A〜Cは、本開示による並列構成の2つの液体チャンバおよび3つのガス枯渇化チャンバを有する例示的な複数チャンバ枯渇化デバイスを示す図である。 A〜Cは、本開示による例示的なガス流動制御機構を示す図である。 A〜Cは、本開示による、単一の液体チャンバ、単一の枯渇化チャンバおよび単一のプラズマチャンバを有する例示的な単一チャンバ枯渇化およびプラズマ分離デバイスを示す図である。 A〜Cは、本開示による、単一の液体チャンバ、2つの枯渇化チャンバおよびプラズマチャンバを有する例示的な枯渇化およびプラズマ分離デバイスを示す図である。 A〜Cは、本開示による、白血球低減フィルタ、2つの枯渇化チャンバおよび流体チャンバを有する例示的な枯渇化デバイスを示す図である。 A〜Cは、本開示による、白血球低減フィルタ、プラズマ分離チャンバ、2つの枯渇化チャンバおよび流体チャンバを有する例示的な枯渇化デバイスを示す図である。 A〜Cは、本開示による単一の液体チャンバおよび2つの酸素供給チャンバを有する例示的な酸素再供給デバイスを示す図である。 嫌気的血液貯蔵システムにおける、本開示の枯渇化デバイスを使用した血液採取から輸血までの構成要素および方法の例示的フローチャートを示す図である。 本開示の図17による例示的システムを示す図である。
赤血球(RBC)の輸血は、患者における組織および重要末端臓器の酸素供給の改善を目指した救命治療である。輸血に使用されるRBC単位の大部分は、添加剤/保存剤溶液を含有する酸素透過性ポリ塩化ビニル血液バッグ内で、1〜6℃で42日間まで貯蔵される。
献血者:全血は、好ましくは健常な個人または供血者から献血され、最終的に受容者により使用される後の使用のための血液バンク内に保持される。手術または他の治療が予定されている対象が、自己献血として知られるプロセスにおいて自身のために献血してもよい。代替として、血液は、同種血輸血として知られるプロセスにおいて、他者による使用のために献血される。供血者から、または自己血輸血の場合には患者から採血された全血試料の収集は、当該技術分野において知られた技術により、例えば献血またはアフェレーシスにより達成され得る。
全血:全血は、血漿中に懸濁した赤血球、白血球、血小板を含有する血液細胞の懸濁液であり、電解質、ホルモン、ビタミン、および抗体を含む。
血液製剤:本明細書において使用される場合、「血液製剤」は、全血、赤血球、血漿、白血球、および血小板を指し、それらを含む。「血液製剤」はまた、濃厚赤血球、白血球低減赤血球、血小板低減赤血球を含む枯渇血液製剤も指す。血液製剤は、さらに、抗凝固剤、抗酸化剤、貯蔵添加剤、および緩衝剤を含むがこれらに限定されない1種または複数種の添加剤溶液を有する血液製剤を含む。枯渇血液製剤は、本明細書において使用される場合、特に本開示のデバイスによる処置またはそれへの通過後の、O2、CO2またはその両方が枯渇した血液製剤を指す。酸素再供給血液製剤は、通常は輸血に備えて、酸素レベルがin vivoレベル以上まで回復された枯渇血液製剤である。
赤血球(RBC):本明細書において使用される場合、「赤血球」(RBC)、「濃厚赤血球」(pRBC)および「赤血球懸濁液」は、赤血球(red blood cellまたはerythrocyte)を有する血液製剤を指し、それを含む。赤血球は、1種または複数種の添加剤溶液を有する赤血球製剤をさらに含む。赤血球は、本明細書において使用される場合、白血球および他の非赤血球が枯渇化または低減されていてもよい。本明細書において使用される場合、赤血球は、血漿が枯渇した(血漿低減)組成を含む。赤血球は、本明細書において使用される場合、さらに、低減または枯渇した血小板を有する赤血球製剤を含んでもよい。
白血球:白血球(white blood cellまたはleukocyte)は、本明細書において使用される場合、多形核白血球としても知られる顆粒球を含む。顆粒球は、好中球、好塩基球、および好酸球を含む。白血球はまた、単核白血球としても知られる無顆粒白血球を含み、また単球およびマクロファージを含む。本開示による血液製剤は、白血球低減および白血球枯渇血液を含む。
血小板:血小板は、血管の内壁に粘着することにより凝血プロセスを促進する血液の小細胞成分である。血小板は、赤血球と同様に骨髄により生成され、循環系内で9〜10日間生存した後、脾臓により除去される。血小板は、典型的には、血小板を血漿から分離するために遠心分離を使用して調製される。血小板は、RBCとは異なり、ATPの生成のためにO2を必要とする。
血漿:血漿は、タンパク質−塩溶液であり、赤血球および白血球ならびに血小板が懸濁した血液の液体部分である。血漿は、90%が水であり、血液体積の約55パーセントを占める。血漿の主な機能の1つは、血液凝固および免疫性を補助することである。血漿は、血液の液体部分を細胞から分離することにより得られる。典型的には、血漿は、遠心分離により細胞から分離される。遠心分離は、全血の成分を、血漿、白血球、血小板および濃厚赤血球に分離するために使用されるプロセスである。遠心分離の間、まず血漿が軽い回転中に容器の上部に移動する。次いで、血漿が容器から取り出される。第2の遠心分離中に白血球および血小板が除去され、濃厚赤血球が生成される。
本明細書および添付の特許請求の範囲において使用される場合、単数形「a」、「an」、および「the」は、文脈上異なる定義が明示されていない限り、複数形への言及を含む。したがって、例えば、「収着剤(a sorbent)」への言及は、複数のそのような収着剤および当業者に知られたその均等物等を含み、「収着剤(the sorbent)」への言及は、1つまたは複数のそのような収着剤および当業者に知られたその均等物等への言及である。
in vivoのヒト赤血球は、動的状態にある。全血中、白血球は、通常、4,300〜10,800細胞/μLの間の範囲で存在し、海水面における正常なRBC範囲は、男性で540万/μL(+0.8)、および女性で480万/μL(+0.6)である。赤血球は、体中に酸素を運搬し、赤血球にその色を提供する鉄含有タンパク質であるヘモグロビンを含有する。赤血球で構成される血液体積のパーセンテージは、ヘマトクリットと呼ばれる。濃厚赤血球は、当該技術分野において一般的に知られている遠心分離技術を使用して、全血から調製される。濃厚赤血球は、後の輸血のために本発明の独特の貯蔵システムにおいて貯蔵される血液成分である。
赤血球(RBC)の通常の寿命は、120日である。RBCの約0.875%は、脾臓により24時間毎に排除され、新たなRBCが骨髄により生成される。その結果、供血者から血液が採血される場合、ある割合の白血球および様々な異なる古さの細胞が存在する。
RBCの主な機能は、肺および組織において酸素および二酸化炭素を交換することであり、体内の他の細胞とは異なり、酸化的リン酸化において酸素に依存せず、ATP産生には解糖にのみ依存する。ATPは、RBCの生存に重要であり、2,3−DPGと共に、その遊離細胞質濃度は、解糖経路における重要な酵素へのフィードバック阻害に対するその機能により厳密に制御される。冷蔵貯蔵条件下において、数週間の貯蔵にわたるATPおよび2,3−DPGの漸進的な枯渇を克服するためには、解糖経路の脱阻害が望ましい。RBC中のヘモグロビン濃度は、2,3−DPGおよびATPと同様であり、その脱酸素状態は、酸化ヘモグロビンと比較して、2,3−DPGおよびATPに対する高い親和性を有する結合ポケットを有する。したがって、この酸素を数%の占有度まで奪い取ること(採取および処理された際には約60%の占有度)により、2,3−DPGおよびATPの取り込みが生じ、遊離分子の濃度の低減がもたらされ、解糖流量が刺激される。健常個人において、肺におけるRBC中のヘモグロビンのパーセント飽和(sO2)は100%である。RBCが体中を循環するに従い、O2が放出され、sO2は、低酸素組織において10%未満のsO2に到達し得る。
本明細書において使用される場合、液体は、重力流により、または蠕動ポンプを含むがこれに限定されないポンプにより、本開示のデバイスに提供され得る。流量は、重力駆動流の場合には頭高を調節することにより、ポンプ速度の変更により、または流動を制限することにより制御され得る。血液製剤、特に血液製剤の細胞成分は、高圧または高速度液体流動により損傷され得ることが理解される。したがって、流動は、細胞損傷を最小限化または排除するように制御される。一態様において、デバイスを通って流動する液体の圧力降下は、2lbs/in2を超えるべきではない。別の態様において、デバイスを通って流動する液体の圧力降下は、1.5lbs/in2を超えるべきではない。別の態様において、デバイスを通って流動する液体の圧力降下は、1.0lbs/in2を超えるべきではない。
本開示は、筐体を備える、液体からガスを除去するための枯渇化デバイスを提供し、それを含む。本開示によるある特定の実施形態によれば、筐体は、例えば図1A〜D、2A〜C、5A〜C、および6A〜Cに示されるような剛性筐体であってもよい。図1A〜Cを参照すると、本開示による剛性筐体は、外側シェル103から作製されてもよく、流動制御機構108をさらに組み込んでもよい内側シェル109を含んでもよい。ある特定の実施形態において、2つの外側シェル103および内側シェル109は、接着剤および結合材料、例えば、糊、エポキシ、結合剤、およびロックタイト409もしくは他の好適な強力瞬間接着剤等の接着剤、溶接および接合処理、例えば、超音波もしくは熱超音波接合、熱接合、拡散接合、または圧力嵌め等を含む、当該技術分野において知られた任意の好適な様式を使用して接合され得る。
図3A〜Cを参照すると、剛性筐体は、2つ以上の液体チャンバ101および2つ以上の枯渇化チャンバ102を形成するように、2つの外側シェル103、1つまたは複数の内側シェル109、および1つまたは複数の筐体シェル110を含んでもよく、液体チャンバ101および枯渇化チャンバ102は、ガス透過性バリア107から分離され、それにより形成される。ある特定の実施形態において、液体チャンバ101および枯渇化チャンバ102は、分割および隔離された液体チャンバ101および枯渇化チャンバ102を作製するために、ガス不透過性バリアから分離され、それにより形成されてもよい。2つの外側シェル103、1つまたは複数の内側シェル109、ガス透過性バリア107および1つまたは複数のガス不透過性バリアを備える筐体は、上述のように、接着剤、糊、エポキシ、結合剤、溶接、超音波もしくは熱超音波接合、または熱接合を含む任意の既知の様式で接合され得る。
別の実施形態において、筐体は、1つまたは複数の液体チャンバ、1つまたは複数の枯渇化チャンバ、およびそれらの組合せに分割された可撓性材料であってもよい。いくつかの実施形態において、筐体は、剛性である1つもしくは複数の液体チャンバまたは1つもしくは複数の枯渇化チャンバ、およびそれらの組合せを封入する可撓性バッグであってもよい。本開示によるいくつかの実施形態において、筐体は、ガス不透過性、ガス透過性、またはガス透過性であってガス不透過性バリアもしくはフィルムでコーティングされていてもよい。他の実施形態において、可撓性材料は、バッグに成形されてもよい。いくつかの実施形態において、可撓性材料はまた弾性であってもよい。
本開示によれば、可撓性筐体は、湾曲または屈曲され得る筐体であってもよい。可撓性筐体は、しなやか、柔軟、可撓性、または弾性であってもよい。可撓性筐体は、可撓性に起因する形状の変化によって、または弾性膨張によって、全体積を含有するように膨張し得る。可撓性筐体は、周囲圧力下で膨張し、体積を含有する。弾性筐体は、筐体の内部圧力が周囲圧力より高くなったときに膨張する。本開示によれば、周囲圧力は、天候または高度に起因する圧力の変化を考慮しない大気圧(典型的には760Torr)に対応する。
可撓性筐体の体積は、以下の式により説明され得る。
t=Vv+Vl+Vd+Vc
式中、Vtは、弾性または非弾性膨張による全膨張体積であり、Vvは、空隙体積を含む初期体積であり、Vlは、1つまたは複数の液体チャンバ内に含有される液体の体積であり、Vdは、1つもしくは複数のガス枯渇化チャンバ115または枯渇化チャンバ102内に含有される、枯渇化デバイスが完全に膨張したときの体積であり、Vcは、非充填ガス枯渇化チャンバ115および非充填液体チャンバ101を含むバッグの内部構成要素の体積である。Vcは、枯渇化デバイス内に含有される任意の枯渇化媒体106の体積を含む。本開示の未使用の膨張していない可撓性バッグは、初期体積Vi=Vv+Vcを有する。
本開示の実施形態において、Vlは、血液の標準単位の体積に等しい。別の実施形態において、Vlは、約500mlに等しい。さらなる実施形態において、Vlは、600mlを超えない。別の実施形態において、Vlは、100〜550mlの間であってもよい。さらなる実施形態において、体積Vlは、300〜500mlまたは300〜550mlであってもよい。
本開示による実施形態において、可撓性筐体は、プラスチックが互いに粘着するのを防止するための機構をさらに含む。一実施形態において、機構は、プラスチックが互いに粘着するのを防止するようにテクスチャ化されてもよい。本開示による実施形態において、テクスチャは、畝、突起、筋、ストランド、または筐体の表面を粗面とするための他の特徴であってもよい。一実施形態において、テクスチャ化表面は、筐体の内側にあってもよい。一実施形態において、テクスチャ化表面は、液体に接触する。
ある特定の実施形態において、可撓性筐体は、死容積または空隙体積と呼ぶこともできる非膨張筐体体積に対応する初期体積(Vv)を封入してもよい。空隙体積Vvは、製造中に存在するいかなる空気も除去して減少した初期体積Viを提供するために真空を印加することにより最小限化され得る。他の実施形態において、製造中に存在する空気は、Vvを最小限化するために真空を印加する前に、洗浄ガスで洗浄されてもよい。いくつかの実施形態において、洗浄ガスは、製造プロセス中に存在する空気を置き換えるために使用されてもよい。洗浄ガスに好適ないくつかのガスは、アルゴン、ヘリウム、および窒素を含むが、これらに限定されない。洗浄ガスは、枯渇化デバイス内の酸素、二酸化炭素、またはその両方の量を減少させるために使用されてもよい。一実施形態において、洗浄ガスは、1Torr未満の酸素の分圧を有する。別の実施形態において、洗浄ガスは、1Torr未満の酸素および二酸化炭素の分圧を有する。
本開示による実施形態において、可撓性枯渇化デバイスにより含有される体積は、枯渇化のための液体が少なくとも1つの液体入口104を通して提供されると、全体積(Vt)まで増加し得る。液体を含有する可撓性枯渇化デバイスは、液体体積Vlを有する。いくつかの実施形態において、液体体積は、Vv=ゼロとなるように、存在するいかなる空気または洗浄ガスも押し出すことができる。いくつかの実施形態において、全体積(Vt)は、少なくとも1つのガス入口111を通して提供される枯渇化ガスの体積(Vd)に対応する体積を含み得る。枯渇化媒体106を有する枯渇化デバイスの実施形態において、枯渇化媒体の体積はVcに含まれるため、Vdはほぼゼロとなる。別の実施形態において、枯渇化媒体の体積は、50cm3未満となる。
本開示によれば、可撓性筐体は、液体またはガスが少なくとも1つのガス入口111を通して提供されると、体積を調節することができてもよい。少なくとも1つの液体出口105または少なくとも1つのガス出口112を通ってすぐには出て行かない液体またはガスは、可撓性筐体内に蓄積し、可撓性筐体の含有体積をVdだけ増加させ得る。本開示による実施形態において、ガス入口111およびガス出口112を通るガスの流量は、20リットル毎時未満である。他の実施形態において、最大ガス流量は、18リットル毎時未満である。さらに別の実施形態において、流量は、15リットル毎時未満である。さらなる実施形態において、ガス入口111およびガス出口112を通るガスの流量は、10リットル毎時未満または5リットル毎時未満である。
図4A〜Cを参照すると、本開示による枯渇化デバイス400は、可撓性および剛性材料の両方から作製されてもよい。一実施形態において、枯渇化デバイスの筐体は、可撓性シェル129、および流動制御機構108を有する剛性内側シェル109から作製されてもよい。可撓性シェル129は、ガス不透過性材料から作製されてもよく、またはガス不透過性材料でコーティングされてもよい。ある特定の実施形態において、可撓性シェル129はまた、膨張性であってもよい。いくつかの実施形態において、可撓性シェル129は、膨張性および弾性であってもよい。他の実施形態において、可撓性シェル129は、ガス不透過性であるラミネート材料であってもよい。ある特定の実施形態において、可撓性シェル129および1つまたは複数の内側シェル109の組合せが、ガス不透過性筐体を提供する。ある特定の実施形態において、筐体は、外側シェル103および1つまたは複数の内側シェル109と組み合わされた可撓性シェル129を有してもよい。
図5A〜C、6A〜C、および7A〜Cに示されるように、本開示による筐体は、可撓性または膨張性筐体として作製されてもよい。図5A〜Cを参照すると、デバイス500の筐体は、単一の液体チャンバ101を作製するために、2つのガス透過性バリア107により内側液体チャンバから分離された2つのガスバリアフィルム可撓性シェル129で形成されてもよい。
図6A〜Cを参照すると、デバイス600は、2つのガス透過性バリア107から形成された液体チャンバ101を収納する可撓性シェル129を含んでもよい。図6A〜Cに示されるように、2つのガス透過性バリア107は、間接的経路133を有する液体チャンバ101を作製するために互いに接合されてもよい。例示的デバイス600において示されるように、液体チャンバ101は、混合、厚さ制御、および流動制御を提供するように、液体流動のためのジグザグ経路を有してもよい。他の実施形態において、液体チャンバ101の液体経路133は、1回または複数回分岐および再接合されてもよい。いくつかの実施形態において、液体経路133は、液体出口105の前で再接合される3つ以上の経路に分割されてもよい。いくつかの実施形態において、液体経路133は、液体出口105の前で再接合される4つ以上の経路に分割されてもよい。いくつかの実施形態において、液体経路133は、液体出口105の前で再接合される5つ以上の経路に分割されてもよい。他の実施形態において、液体経路133は、液体出口105の前で再接合する6つ、7つ、8つ、9つ、10個、またはそれ以上の分岐を有してもよい。デバイス600の液体経路133は、液体が移動する経路長を増加させてもよく、また液体チャンバ101内を流動する流体の滞留時間を増加させてもよい。液体経路133は、液体の混合の増幅を提供してもよく、また、ガス透過性バリア107および隣接した枯渇化チャンバ102への液体の曝露を増加させてもよい。枯渇化チャンバ102は、枯渇化媒体106を含んでもよい。
一実施形態において、液体経路133は、長方形、円形、および不規則形状からなる群から選択される断面形状を有してもよい。ある特定の実施形態において、液体経路133は、その長手方向経路に沿って、長方形、円形、および不規則形状からなる群の1つまたは複数から選択される2つ以上の断面形状を有してもよい。一実施形態において、液体経路133は、その長手方向経路に沿って均一な断面積を有してもよい。ある特定の実施形態において、液体経路133は、その長手方向経路に沿って変化する断面積を有してもよい。
いくつかの実施形態において、液体経路133の長方形断面は、0.01mm以上の深さを有してもよい。一実施形態において、液体経路133の長方形断面は、0.1mm以上の深さを有してもよい。一実施形態において、液体経路133の長方形断面は、0.2mm以上の深さを有してもよい。一実施形態において、液体経路133の長方形断面は、0.3mm以上の深さを有してもよい。一実施形態において、液体経路133の長方形断面は、0.4mm以上の深さを有してもよい。一実施形態において、液体経路133の長方形断面は、0.5mm以上の深さを有してもよい。他の実施形態において、液体経路133の長方形断面は、0.6mmまでの深さを有してもよい。別の実施形態において、液体経路133の長方形断面は、0.7mmまでの深さを有してもよい。さらに他の実施形態において、液体経路133の長方形断面は、0.8mm、0.9mm、または1.0mmまでの深さを有してもよい。他の実施形態において、液体経路133の長方形断面は、1.0〜2.0mmの間の深さを有してもよい。他の実施形態において、液体経路133の長方形断面は、1.5〜2.0mmの間の深さを有してもよい。他の実施形態において、液体経路133の長方形断面は、1.75〜2.0mmの間の深さを有してもよい。ある特定の他の実施形態において、液体経路133の長方形断面は、2.0mm〜3.0mmの間の深さを有してもよい。ある特定の実施形態において、液体経路133の長方形断面は、2.5mm〜3.0mmの間の深さを有してもよい。いくつかの実施形態において、液体経路133の長方形断面は、変動してもよく、1つまたは複数の深さを有してもよい。
いくつかの実施形態において、液体経路133は、マイクロチャネルであってもよい。いくつかの実施形態において、液体経路133の円形断面は、100μm〜500μmの間の直径を有してもよい。いくつかの実施形態において、液体経路133の円形断面は、100μm以上の直径を有してもよい。いくつかの実施形態において、液体経路133の円形断面は、150μm以上の直径を有してもよい。いくつかの実施形態において、液体経路133の円形断面は、200μmの直径を有してもよい。いくつかの実施形態において、液体経路133の円形断面は、250μmの直径を有してもよい。いくつかの実施形態において、液体経路133の円形断面は、300μmの直径を有してもよい。いくつかの実施形態において、液体経路133の円形断面は、350μmの直径を有してもよい。いくつかの実施形態において、液体経路133の円形断面は、400μmの直径を有してもよい。さらに他の実施形態において、液体経路133の円形断面は、450μmまたは500μmの直径を有してもよい。
いくつかの実施形態において、液体経路133の不規則断面は、0.01〜10mm2の範囲内の面積を有してもよい。一実施形態において、液体経路133の不規則断面は、0.01〜0.1mm2の範囲内の面積を有してもよい。一実施形態において、液体経路133の不規則断面は、0.1〜1mm2の範囲内の面積を有してもよい。一実施形態において、液体経路133の不規則断面は、1〜5mm2の範囲内の面積を有してもよい。一実施形態において、液体経路133の不規則断面は、5〜10mm2の範囲内の面積を有してもよい。
本開示によれば、液体経路133は、蛇行、波状、起伏、正弦曲線、螺旋、部分螺旋、およびジグザグからなる群から選択される長手方向経路を有してもよい。一実施形態において、液体経路133の経路長は、可撓性シェル129の長さの少なくとも10倍以上であってもよい。別の実施形態において、液体経路133の経路長は、可撓性シェル129の長さの少なくとも15倍以上であってもよい。別の実施形態において、液体経路133の経路長は、可撓性シェル129の長さの少なくとも20倍以上であってもよい。別の実施形態において、液体経路133の経路長は、可撓性シェル129の長さの少なくとも30倍以上であってもよい。別の実施形態において、液体経路133の経路長は、可撓性シェル129の長さの少なくとも40倍以上であってもよい。別の実施形態において、液体経路133の経路長は、可撓性シェル129の長さの少なくとも50倍以上であってもよい。
図7A〜Cを参照すると、可撓性または膨張性筐体は、2つのガス透過性バリア107により内側液体チャンバから分離され、追加のガス透過性バリア107によりさらにチャンバに分割された2つの可撓性シェル129で形成されてもよい。図7Bに示されるように、4つのガス透過性バリア107により分離された2つの可撓性シェル129は、2つの液体チャンバ101および3つの枯渇化チャンバ102をもたらしてもよい。本開示によるある特定の実施形態において、さらなるガス透過性バリア107の追加により、1つの追加された液体チャンバ101および1つの追加された枯渇化チャンバ102が形成される。本開示によれば、枯渇化デバイスは、3つの枯渇化チャンバおよび2つの液体チャンバを含んでもよい。一実施形態において、枯渇化デバイスは、4つの枯渇化チャンバおよび3つの液体チャンバを含んでもよい。一実施形態において、枯渇化デバイスは、5つの枯渇化チャンバおよび4つの液体チャンバを含んでもよい。他の実施形態において、枯渇化デバイスは、6つの枯渇化チャンバおよび5つの液体チャンバを含んでもよい。
本開示による実施形態において、可撓性シェル129(例えば、膨張性であってもよい可撓性シェル129)は、ガス不透過性プラスチックから作製されてもよい。一実施形態において、ガス不透過性プラスチックは、ラミネートであってもよい。ある特定の実施形態において、ラミネートは、透明バリアフィルム、例えばナイロンポリマーであってもよい。一実施形態において、ラミネートは、ポリエステルフィルムであってもよい。一実施形態において、ラミネートは、Mylar(登録商標)であってもよい。ある特定の実施形態において、ラミネートは、金属化フィルムであってもよい。一実施形態において、金属化フィルムは、アルミニウムでコーティングされてもよい。別の実施形態において、コーティングは、酸化アルミニウムであってもよい。
本開示による可撓性シェル129は、接着剤による固定、または、接着剤および結合材料、例えば、糊、エポキシ、結合剤、およびロックタイト409もしくは他の好適な強力瞬間接着剤等の接着剤、溶接および接合処理、例えば、超音波もしくは熱超音波接合、熱接合、拡散接合、または圧力嵌め等を含む、当該技術分野において知られた任意の好適な様式を使用した別の結合を含む、任意の既知の様式で接合され得る。
ある特定の実施形態において、筐体は、可撓性および剛性の両方の側面を有してもよく、可撓性の側面は、1つまたは複数のチャンバを通って流動する液体に対応するための膨張を提供する。いくつかの実施形態において、筐体は、剛性外側シェル103、可撓性シェル129、内側シェル109、筐体シェル110、およびガス透過性バリア107の組合せを含んでもよく、それにより、液体が筐体、液体チャンバおよび枯渇化チャンバを通って流動する際に膨張するバッグまたは容器を提供する。
本開示による筐体は、プラスチックまたは他の耐久性軽量材料を含むガス不透過性材料から作製された1つまたは複数の部分で形成されてもよい。いくつかの実施形態において、筐体は、2種以上の材料で形成されてもよい。一実施形態において、筐体は、ガス不透過性筐体を作製するために、1種の材料で形成され、ガス不透過性材料でコーティングされてもよい。一実施形態において、剛性または可撓性筐体は、射出成形され得るプラスチックから作製されてもよい。本開示による実施形態において、プラスチックは、ポリスチレン、ポリ塩化ビニル、またはナイロンから選択されてもよい。一実施形態において、筐体材料は、ポリエステル(PES)、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、高密度ポリエチレン(HDPE)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、低密度ポリエチレン(LDPE)、ポリプロピレン(PP)、ポリスチレン(PS)、耐衝撃用ポリスチレン(HIPS)、ポリアミド(PA)(例えばナイロン)、アクリロニトリルブタジエンスチレン(ABS)、ポリカーボネート(PC)、ポリカーボネート/アクリロニトリルブタジエンスチレン(PC/ABS)、ポリウレタン(PU)、メラミンホルムアルデヒド(MF)、プラスターチ材料、フェノール(PF)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)(Ultem)、ポリ乳酸(PLA)、ポリメチルメタクリレート(PMMA)、ポリテトラフルオロエチレン(PTFE)、および尿素−ホルムアルデヒドからなる群から選択されてもよい。ある特定の実施形態において、筐体は、ポリエチレンであってもよい。いくつかの実施形態において、ポリエチレン筐体は、互いに溶接される1つまたは複数のポリエチレン構成要素を備えてもよい。
本開示は、さらに、1つまたは複数の液体チャンバまたは空洞を有する枯渇化デバイスを提供し、それを含む。いくつかの実施形態において、液体チャンバは、上述のような剛性チャンバまたは空洞であってもよい。他の実施形態において、液体チャンバは、上述のような可撓性チャンバまたは空洞であってもよい。一実施形態において、1つまたは複数の液体チャンバは、枯渇化デバイスを通って流動する液体が流動し得るチャンバ、空洞または空間であってもよい。本開示による実施形態において、1つまたは複数の液体チャンバは、互いに流体連通していてもよく、また少なくとも1つの液体入口および少なくとも1つの液体出口と流体連通していてもよい。
図1A〜Dに示されるように、剛性液体チャンバ101は、内側シェル109および2つのガス透過性バリア107の組合せにより形成されてもよい。同様に、図3A〜C、9A〜Cおよび10A〜Cに示されるように、本開示の枯渇化デバイスの実施形態は、それぞれ2つのガス透過性バリア107と組み合わされた2つ以上の外側内側シェル109の組合せにより形成された2つ以上の剛性液体チャンバ101を有してもよい。他の実施形態において、例えば図5A〜C、6A〜C、および7A〜Cに示されるように、液体チャンバ101は、2つの可撓性ガス透過性バリア107の組合せにより形成されてもよい。本開示によるある特定の実施形態において、外側筐体は、5インチ×8インチである。ある特定の実施形態において、ガス透過性バリアは、35〜175μmの間の厚さである。 本開示によるある特定の実施形態において、液体チャンバ101は、液体の流動を誘導するために後述のような流動制御機構108をさらに備えてもよく、例えば液体の層流を妨害することにより、液体チャンバを通って流動する液体の混合を提供してもよい。他の実施形態において、液体チャンバ101は、間接的経路133を提供する流動制御機構を含んでもよい。理論に制限されないが、液体チャンバ内の液体の混合は、酸素および二酸化炭素ガスの枯渇化チャンバへの効率的な拡散および枯渇化を確実にし得る。
同様に、可撓性筐体を全体的または部分的に含むある特定の実施形態において、液体チャンバ101を形成するガス透過性バリア107は、さらに、液体の流動を誘導し、例えば液体の層流を妨害することにより混合を提供するための流動制御機構をさらに含んでもよい。図5A〜Cおよび7A〜Cに示されるように、液体チャンバ101は、流動制御機構なしで描写されている。図6A〜Cに示されるように、液体チャンバ101は、流動制御機構を提供する間接的経路133を含む。流動制御機構は、例えば、ガス透過性バリア107における制御された経路または間接的経路133に沿って血液の流動を誘導するような様式で、ガス透過性バリア107を互いに結合することにより形成され得る。この誘導された流動は、混合と共に、個々の赤血球とガス透過性バリア107との間の距離を最小限化する。また、流動制御機構の数および位置は、特定の構成に合わせてプロセスを最適化するために改変され得る。本開示による一実施形態において、ガス透過性バリア107は、液体の流動に対して垂直に配向した畝を含んでもよい。他の実施形態において、ガス透過性バリア107は、液体の流動に対して角度を持って配向した畝を含んでもよい。本開示による流動制御機構は、以下でより詳細に説明される。
図12A〜Cおよび13A〜Cに示されるように、液体チャンバ101は、液体チャンバ101内を流動する液体からの血漿の枯渇化を提供し得る。図12A−Cに示されるように、ガス透過性バリア107の1つは、赤血球を維持し、親水性膜124を通した血漿チャンバ117内への嫌気性血漿の通過を可能とし得る、血漿多孔質親水性膜124で置き換えられてもよい。次いで、嫌気性血漿は、嫌気性血漿ポート116を通して血漿チャンバ117から流出し得る。図13A〜Cに示されるように、第2の枯渇化チャンバ122は、組み合わされた血漿およびガス枯渇化デバイス内に含まれてもよい。図13A〜Cに示されるように、枯渇化チャンバ122は、ガス透過性バリア107により血漿チャンバ117から分離される。ガス透過性バリア107、血漿多孔質親水性膜124、血漿外側シェル119、外側シェル103、および他の説明された構成要素の追加の構成は、追加の枯渇化チャンバ102または122、追加の血漿チャンバ117、および追加の液体チャンバ101を提供し得る。そのような追加のチャンバは、適切な接続により、直列または並列で配置されてもよい。
本開示によれば、液体と接触する液体チャンバ101の表面は、生体適合性材料であってもよい。同様に、液体と流体連通しているガス枯渇化デバイスの他の表面および構成要素は、生体適合性材料から作製される。一実施形態において、生体適合性材料は、本開示の適合性血液製剤である。本開示の生体適合性材料は、国際標準ISO10993において定義および記載されているものを含む。
本開示は、さらに、1つまたは複数の枯渇化チャンバまたは空洞を有する枯渇化デバイスを提供し、それを含む。本開示によるある特定の実施形態において、枯渇化チャンバ102は、ガス透過性バリア107により枯渇化チャンバ102から分離された液体チャンバ101内に存在するガスの濃度または分圧よりも低いガスの濃度または分圧を有する。したがって、ガスは、より高い濃度を有する液体チャンバ101から、枯渇化チャンバ102に流動し、そのようにして枯渇化チャンバ101内の液体からガスを枯渇させる。ある特定の実施形態において、枯渇化デバイスは、2つの枯渇化チャンバを有してもよい。いくつかの実施形態において、枯渇化デバイスは、3つの枯渇化チャンバを有してもよい。他の実施形態において、枯渇化デバイスは、4つの枯渇化チャンバを有してもよい。さらなる実施形態において、枯渇化デバイスは、5つまたは6つの枯渇化チャンバを有してもよい。さらなる実施形態において、枯渇化デバイスは、7つ、8つまたはそれ以上の枯渇化チャンバを有してもよい。
本開示による実施形態において、枯渇化デバイスは、2〜5つ、2〜7つ、2〜9つ、または2〜11個の枯渇化チャンバを有してもよい。他の実施形態において、枯渇化デバイスは、3〜6つ、3〜8つ、3〜10個、または3〜12個の枯渇化チャンバを有してもよい。他の実施形態において、枯渇化チャンバの数は、10個まで、12個まで、14個まで、16個まで、または17個以上の枯渇化チャンバであってもよい。
本開示による実施形態において、液体チャンバ101内より低い濃度または分圧を有する枯渇化チャンバ102内のガスは、酸素であってもよい。酸素のより低い濃度または分圧を有する枯渇化チャンバ102は、酸素枯渇化チャンバ102である。ある特定の実施形態において、酸素枯渇化チャンバ102は、酸素をほとんど、または全く含有しなくてもよい。別の実施形態において、酸素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、1mmHg未満(1Torr未満)の酸素の分圧を有してもよい。別の実施形態において、酸素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、0.1mmHg未満の酸素の分圧を有してもよい。さらなる実施形態において、酸素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、0.05mmHg未満の酸素の分圧を有してもよい。さらに別の実施形態において、酸素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、0.08mmHg未満の酸素の分圧を有してもよい。本開示による実施形態において、酸素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、0.01mmHg〜0.1mmHgの間の酸素の分圧を有してもよい。一実施形態において、酸素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、0.05mmHg〜0.5mmHgの間の酸素の分圧を有してもよい。
本開示による実施形態において、枯渇化チャンバ102は、液体チャンバ102内の液体と比較してより低い酸素および二酸化炭素の濃度または分圧を有してもよい。酸素および二酸化炭素のより低い濃度または分圧を有する枯渇化チャンバ102は、酸素および二酸化炭素枯渇化チャンバ102である。ある特定の実施形態において、酸素および二酸化炭素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、酸素および二酸化炭素をほとんどまたは全く含有しなくてもよい。他の実施形態において、酸素および二酸化炭素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、それぞれ1mmHg未満(1Torr未満)の酸素および二酸化炭素の分圧を有してもよい。別の実施形態において、酸素および二酸化炭素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、それぞれ0.1mmHg未満の酸素および二酸化炭素の分圧を有してもよい。さらなる実施形態において、酸素および二酸化炭素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、それぞれ0.05mmHg未満の酸素および二酸化炭素の分圧を有してもよい。さらに別の実施形態において、酸素および二酸化炭素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、それぞれ0.08mmHg未満の酸素および二酸化炭素の分圧を有してもよい。本開示による実施形態において、酸素および二酸化炭素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、それぞれ0.01mmHg〜0.1mmHgの間の酸素および二酸化炭素の分圧を有してもよい。一実施形態において、酸素および二酸化炭素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、それぞれ0.05mmHg〜0.5mmHgの間の酸素および二酸化炭素の分圧を有してもよい。
本開示による実施形態において、液体チャンバ101内よりも低い濃度または分圧を有する枯渇化チャンバ102内のガスは、二酸化炭素であってもよい。二酸化炭素のより低い濃度または分圧を有する枯渇化チャンバ102は、二酸化炭素枯渇化チャンバ102である。ある特定の実施形態において、二酸化炭素枯渇化チャンバ102は、二酸化炭素をほとんどまたは全く含有しなくてもよい。別の実施形態において、二酸化炭素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、1mmHg未満(1Torr未満)の二酸化炭素の分圧を有してもよい。別の実施形態において、二酸化炭素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、0.1mmHg未満の二酸化炭素の分圧を有してもよい。さらなる実施形態において、二酸化炭素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、0.05mmHg未満の二酸化炭素の分圧を有してもよい。さらに別の実施形態において、二酸化炭素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、0.08mmHg未満の二酸化炭素の分圧を有してもよい。本開示による実施形態において、二酸化炭素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、0.01mmHg〜0.1mmHgの間の二酸化炭素の分圧を有してもよい。一実施形態において、二酸化炭素枯渇化チャンバ102は、枯渇化デバイスとしての使用前に、0.05mmHg〜0.5mmHgの間の二酸化炭素の分圧を有してもよい。
本開示による実施形態において、枯渇化チャンバ102のガスのより低い濃度または分圧は、枯渇化媒体106を提供することにより達成され得る。一実施形態において、枯渇化媒体106は、酸素収着剤材料であってもよい。別の実施形態において、枯渇化媒体106は、二酸化炭素収着剤材料であってもよい。さらに別の実施形態において、枯渇化媒体106は、組み合わされた酸素および二酸化炭素収着剤材料であってもよい。
枯渇化媒体106は、酸素収着剤材料であってもよく、酸素枯渇化媒体106は、酸素収着剤材料を有する枯渇化媒体106である。本明細書において使用される場合、「酸素収着剤」は、使用条件下において酸素と不可逆的に結合するまたは結び付く材料である。本明細書において使用される場合、「酸素収着剤」は、使用条件下において酸素と不可逆的に結合するまたは結び付くことができる材料である。「酸素捕捉剤」という用語は、本明細書において、「酸素収着剤」と同義的に使用され得る。本開示によるある特定の実施形態において、材料は、酸素と不可逆的に結合するまたは結び付くことができる。本開示による実施形態において、材料は、ヘモグロビンより高い親和性で酸素と結合する。本開示による実施形態において、O2枯渇化媒体は、貯蔵前にRBCから酸素を除去する、または血液から酸素を奪い取る材料であってもよい。酸素捕捉剤は、血液バッグ内での貯蔵前にRBCから酸素を除去するために使用され得る。他の実施形態において、酸素は、収着剤材料に結合し、非常に遅い放出速度koffを有してもよい。一実施形態において、酸素は、材料のいくつかの成分と化学反応し、別の化合物に変換されてもよい。結合した酸素の遊離速度が血液の滞留時間より遅い任意の材料が、酸素捕捉剤として機能し得る。ある特定の実施形態において、枯渇化媒体106は、血液の単位を30分で3%未満のsO2まで枯渇化し得る酸素収着剤材料であってもよい。枯渇化媒体106は、34mlの血液を2分で3%のsO2まで枯渇化し得る酸素収着剤材料であってもよい。酸素収着剤材料は、繊維、ミクロスフェア、ゲルおよびフォームに成形または組み込まれてもよい。
本開示による実施形態において、酸素枯渇化媒体106は、非毒性無機および/もしくは有機塩、ならびに第一鉄または酸素に対する高い反応性を有する他の材料の混合物であってもよい。ある特定の実施形態において、酸素枯渇媒体106は、O2に対する顕著な吸収能(5ml O2/g超)を有する粒子から作製されてもよく、枯渇化チャンバ102の内側を0.01%未満(0.08mmHg未満のpO2に対応する)に維持することができる。酸素枯渇化媒体106は、遊離していてもよく、または後述されるような酸素透過性エンベロープ内に含有されてもよい。本開示によるガス枯渇化デバイスは、血液の単位から約100mLの酸素を枯渇化することができる。
酸素捕捉剤の例は、鉄粉、例えば第一鉄含有粉末、および有機化合物を含む。例えば、酸素収着剤は、Multisorb Technologies(Buffalo、NY)により提供されている。そのような材料は、所望の結果を達成するために、所望の比までブレンドされ得る。酸素捕捉剤の限定されない例は、鉄粉および有機化合物を含む。O2収着剤の例は、コバルト、鉄、およびシッフ塩基のキレートを含む。O2収着剤の追加の限定されない例は、2008年3月25日発行のBulowら、米国特許第7,347,887号、名称「Oxygen sorbent compositions and methods of using same」、1993年5月4日発行のRamprasadら、米国特許第5,208,335号、名称「Reversible oxygen sorbent compositions」、および1987年3月31日発行のSieversら、米国特許第4,654,053号、名称「Oxygen Sorbent」に見出すことができ、これらはそれぞれ、参照によりその全体が本明細書に組み込まれる。
本開示による実施形態において、収着剤は、ポリマー骨格および複数のペンダント基を有する酸化性有機ポリマーであってもよい。ポリマー骨格を有する収着剤の例は、飽和炭化水素(<0.01%の炭素間二重結合)を含む。いくつかの実施形態において、骨格は、エチレンまたはスチレンのモノマーを含有し得る。一実施形態において、ポリマー骨格は、エチレン性であってもよい。別の実施形態において、酸化性有機化合物は、エチレン/ビニルシクロヘキサンコポリマー(EVCH)であってもよい。置換部分および触媒の追加的な例は、参照によりその全体が本明細書に組み込まれる、Yangら、米国特許出願公開第2003/0183801号に記載されている。追加的な実施形態において、酸化性有機ポリマーはまた、置換炭化水素部分を含んでもよい。酸素捕捉ポリマーの例は、参照によりその全体が本明細書に組み込まれる、Chingら、国際公開WO99/48963により説明されているものを含む。酸素捕捉材料は、2010年7月13日発行のEbnerら、米国特許第7,754,798号、名称「Oxygen scavenger block copolymers and compositions」、2008年11月18日発行のEbnerら、米国特許第7,452,601号、名称「Oxygen scavenger compositions derived from isophthalic acid/or terephthalic acid monomer or derivatives thereof」、2002年5月14日発行のEbnerら、米国特許第6,387,461号、名称「Oxygen scavenger compositions」に記載されるものを含んでもよく、これらはそれぞれ、参照によりその全体が本明細書に組み込まれる。
枯渇化媒体106は、二酸化炭素収着剤材料であってもよく、二酸化炭素枯渇化媒体106は、二酸化炭素収着剤材料を有する枯渇化媒体106である。本明細書において使用される場合、「二酸化炭素収着剤」は、使用条件下において二酸化炭素と不可逆的に結合するまたは結び付く材料である。本明細書において使用される場合、「二酸化炭素収着剤」は、使用条件下において二酸化炭素と不可逆的に結合するまたは結び付くことができる材料である。「二酸化炭素捕捉剤」という用語は、本明細書において、「二酸化炭素収着剤」と同義的に使用され得る。本開示によるある特定の実施形態において、材料は、二酸化炭素と不可逆的に結合するまたは結び付くことができる。本開示による実施形態において、材料は、ヘモグロビンより高い親和性で二酸化炭素と結合する。他の実施形態において、収着剤材料は、血液またはRBC細胞質中に存在する炭酸が放出されて収着剤により吸収されるように、高い親和性で二酸化炭素に結合し得る。
本開示による実施形態において、二酸化炭素枯渇化媒体は、貯蔵前にRBCから二酸化炭素を除去する、または血液から二酸化炭素を奪い取る材料であってもよい。二酸化炭素捕捉剤は、血液バッグ内での貯蔵前にRBCから二酸化炭素を除去するために使用され得る。他の実施形態において、二酸化炭素は、収着剤材料に結合し、非常に遅い放出速度koffを有してもよい。一実施形態において、二酸化炭素は、材料のいくつかの成分と化学反応し、別の化合物に変換されてもよい。結合した二酸化炭素の遊離速度が血液の滞留時間より遅い任意の材料が、二酸化炭素捕捉剤として機能し得る。ある特定の実施形態において、二酸化炭素枯渇化媒体106は、2分で血液の単位から二酸化炭素を枯渇化し得る。二酸化炭素収着剤材料は、繊維、ミクロスフェア、ゲルおよびフォームに成形または組み込まれてもよい。
二酸化炭素捕捉剤は、金属酸化物および金属水酸化物を含む。金属酸化物は、水と反応して、金属水酸化物を生成する。金属水酸化物は、二酸化炭素と反応して、水および金属炭酸塩を形成する。一実施形態において、二酸化炭素捕捉剤は、酸化カルシウムであってもよい。例えば、酸化カルシウムが使用される場合、酸化カルシウムは、収着剤に添加される水と反応して、水酸化カルシウムを生成する。
CaO+H2O→Ca(OH)2
水酸化カルシウムは、二酸化炭素と反応して、炭酸カルシウムおよび水を形成する。
Ca(OH)2+CO2→CaCO3+H2
本開示のある特定の実施形態において、枯渇化媒体106は、O2およびCO2枯渇化または捕捉活性の両方を組み合わせることができる。枯渇化媒体106は、酸素および二酸化炭素収着剤材料、または酸素収着剤および二酸化炭素収着剤の混合物であってもよい。酸素および二酸化炭素枯渇化媒体106は、酸素および二酸化炭素収着材料または2つの混合物を有する枯渇化媒体106である。本明細書において使用される場合、「酸素および二酸化炭素収着剤」は、使用条件下において酸素および二酸化炭素と不可逆的に結合するまたは結び付く材料である。「酸素および二酸化炭素捕捉剤」という用語は、本明細書において、「酸素および二酸化炭素収着剤」と同義的に使用され得る。本開示によるある特定の実施形態において、材料は、酸素および二酸化炭素と不可逆的に結合するまたは結び付くことができる。本開示による実施形態において、材料は、ヘモグロビンより高い親和性で酸素および二酸化炭素と結合する。他の実施形態において、収着剤材料は、血液またはRBC細胞質中に存在する炭酸が放出されて収着剤により吸収されるように、高い親和性で酸素および二酸化炭素に結合し得る。
CO2捕捉剤の限定されない例は、Multisorb Technologies(Buffalo、NY)により提供されている酸素捕捉剤および二酸化炭素捕捉剤を含む。酸素捕捉剤は、二酸化炭素捕捉の二次機能性を示してもよい。本開示による実施形態において、O2枯渇化媒体およびCO2枯渇化媒体は、所望の結果を達成するために、所望の比までブレンドされ得る。
本開示による実施形態において、枯渇化媒体106は、様々な形態で枯渇化チャンバ102に組み込まれるまたは提供され得る。本明細書において使用される場合、枯渇化媒体106は、酸素収着剤、二酸化炭素収着剤、ならびに組み合わされた酸素および二酸化炭素収着剤を含む枯渇化媒体を提供し、それを含む。収着剤は、小袋、パッチ、コーティング、ポケット、およびパケット等の任意の既知の形態で貯蔵容器およびバッグ内に組み込まれてもよいことが理解される。
本開示のいくつかの限定されない実施形態によれば、枯渇化媒体106の貯蔵容器は、小型の小袋、ポケット、バッグ、容器またはパケット(それぞれ同義的に使用され得る)を含んでもよい。パケットおよび枯渇化媒体106に内在する化学の構成は、性能を最適化するために、各枯渇化チャンバ102に対して異なっていてもよい。図1A〜D、2A〜C、3A〜C、および4A〜Cを参照すると、枯渇化媒体106は、枯渇化媒体106の1つまたは複数のパケットとして枯渇化チャンバ102に提供されてもよい。いくつかの実施形態において、酸素および二酸化炭素枯渇化媒体106のいくつかのパケットは、各枯渇化チャンバ102内に配置されてもよく、または、酸素および二酸化炭素枯渇化媒体106の単一のより長いもしくはより大きいパケットが使用されてもよい。他の実施形態において、酸素枯渇化媒体106および二酸化炭素枯渇化媒体106は、別個のパケットとして含まれてもよい。2つ以上の枯渇化チャンバ102を有するある特定の実施形態において、パケットおよび枯渇化媒体106に内在する化学の構成は、性能を最適化するために、各枯渇化チャンバ102に対して異なっていてもよい。同様に、ある特定の実施形態において、1つまたは複数の枯渇化チャンバ102は、O2を枯渇化するように構成されてもよく、別の1つまたは複数の枯渇化チャンバ102は、CO2を枯渇化するように構成されてもよい。
いくつかの実施形態において、枯渇化媒体106は、ガス透過性膜、フィルムまたは材料内に含有されてもよい。ある特定の実施形態において、小型の小袋またはパケットは、高い酸素透過性を有するシリコーンまたはシロキサン材料で作製されてもよい。いくつかの実施形態において、小袋またはパケットは、生体適合性材料から作製されてもよい。一実施形態において、小袋またはパケットは、O2透過性が律速段階とはならなくなることを確実とするために、0.13mm未満の厚さの壁厚を有してもよい。他の実施形態において、小袋またはパケットは、厚さ0.15mmのシリコーン膜等の材料から作製されてもよい。さらなる実施形態において、枯渇化媒体106を受容するための小袋またはパケットは、PTFEまたは他のフッ素ポリマー等の材料から作製されてもよい。本開示において、後述のようなガス透過性膜を使用して作製された小袋またはパケットが含まれ、提供される。ある特定の実施形態において、ガス透過性膜は、オレフィン繊維である。他の実施形態において、ガス透過性膜は、フラッシュ紡糸高密度ポリエチレン繊維である。
本開示による実施形態において、枯渇化媒体106を保持するための小袋、ポケット、バッグ、パケットまたは容器は、表面積を増加させるために整形または成形されてもよい。一実施形態において、小袋またはパケットは、表面積を増加させるために、表面テクスチャを有するように成形されてもよい。他の実施形態において、小袋は、表面積を増加させるために、表面テクスチャを有する成型要素であってもよい。一実施形態において、小袋またはパケットは、急速なガス枯渇のための櫛型構造を有してもよい。枯渇化媒体106を有する小袋は、例えば、4”×6”の長方形等の長方形形状を有してもよいが、他のサイズも可能である。一実施形態において、枯渇化媒体は、6cm×6cm(例えば36cm2)の小袋内にあってもよい。
本開示による実施形態において、枯渇化媒体106は、マクロ多孔質構造として作製されてもよい。いくつかの実施形態において、マクロ多孔質構造は、繊維性材料、フォームまたはミクロスフェアであってもよい。本明細書において使用される場合、マクロ多孔質構造は、約5〜10μmの粒子が通過する材料である。マクロ多孔質構造は、織繊維、ランダム繊維または層を有する充填層、粒子の不均一混合物を有する充填層であってもよい。マクロ多孔質構造は、繊維性またはフォーム構造内に埋設または捕捉されたマイクロまたはマクロ粒子を含み得る。マクロ多孔質構造は、上述のような小袋またはパケット内に含有されたマイクロまたはマクロ粒子を含み得る。枯渇化媒体106のマクロ多孔質構造は、上述のような小袋、パケットおよびポケット内に組み込まれてもよい。
多孔質または微小空隙構造もまた、酸素または酸素および二酸化炭素との反応に利用可能な増加した表面積を有する。いくつかの実施形態において、マクロ多孔質構造の表面積は、O2、CO2またはそれらの組合せを除去することができる表面積を有する繊維であってもよい。いくつかの実施形態において、表面積は、少なくとも5×103cm2/g媒体であってもよい。一実施形態において、表面積は、10cm2〜2000cm2であってもよい。別の実施形態において、表面積は、20cm2〜1000cm2であってもよい。繊維の場合、表面積は、繊維の直径に基づいて決定されてもよい。
一実施形態において、枯渇化媒体106は、0.01g/cm3〜0.7g/cm3のバルク密度を有してもよく、7gm〜300gmの間の隣接繊維間平均距離を有する。一実施形態において、枯渇化媒体106のバルク密度は、0.001g/cm3〜0.7g/cm3であってもよい。別の実施形態において、枯渇化媒体106のバルク密度は、0.10g/cm3〜0.5g/cm3であってもよい。本明細書において使用される場合、「バルク密度」という用語は、繊維塊の質量(グラム)を繊維塊の体積(cm3)で除すことにより得られる、g/cm3で表現される数値を意味する。
血液製剤からの酸素の除去は、いくつかのステップを含む。酸素の大部分が赤血球中のヘモグロビンに結合することを考慮すると、O2を除去するためには、酸素は血漿に放出される必要がある。次いで、血漿中の酸素は、ガス透過性バリア107を通過することにより、枯渇化媒体106の表面に拡散する必要がある。枯渇化媒体106表面において、酸素は、表面上の反応基と即時に反応し得、または、ポリマーマトリックス(例えば、繊維またはマイクロ粒子)中に溶解し得る。ポリマーマトリックス中に溶解したら、O2は、ポリマーマトリックス内に存在する基と反応し得る。
本開示による実施形態において、枯渇化媒体106は、多孔質マイクロガラス繊維の細孔の内側に形成され得る。多孔質材料の細孔内への遷移金属錯体の封入は、シップインボトル合成を使用することにより達成され得、最終的な分子は、より小さい前駆体を反応させることにより、細孔の内側で調製される。合成後、巨大分子は「機械的に捕捉」され、いくつかの制限された立体構造および配置で細孔の内側に封入されたままとなり得る。酸素分離のためのコバルトフタロシアニン/多孔質ガラス複合繊維は、シップインボトル合成により調製され得、多孔質ガラス繊維の細孔内へのコバルトフタロシアニンの封入は、1,2−ジシアノベンゼンを使用した化学気相堆積法により達成される。参照によりその全体が本明細書に組み込まれる、Kuraoka et al., 「Ship-in-a-bottle synthesis of a cobalt phthalocyanine/porous glass composite membrane for oxygen separation」, Journal of Membrane Science, 286(1-2):12-14 (2006)を参照されたい。いくつかの実施形態において、多孔質ガラス繊維は、参照によりその全体が本明細書に組み込まれる、1988年5月31発行のBeaverら、米国特許第4,748,121号、名称「Porous Glass Fibers with Immobilized Biochemically Active Material」に記載されるように製造されてもよい。別の実施形態において、枯渇化媒体106は、製紙/不織湿式機器を使用して、多孔質シート製品として形成されてもよい。参照によりその全体が本明細書に組み込まれる、1988年9月6日発行のInoue、米国特許第4,769,175号、名称「Sheet−like, Oxygen−Scavenging Agent」に記載のもの等のO2捕捉製剤を有するシートが形成され、次いでシリコーンフィルムで封入されてもよい。
本開示による実施形態において、枯渇化媒体106は、ミクロスフェア内に封入されてもよい。例えば、シリコーンは、自己平滑性接着フィルムを形成し得る。極性部分(ポリエチレンオキシド置換基、例えば、Dow Corning(登録商標)9011 Silicone Elastomer Blend)および低架橋密度を含有するジメチルシリコーンポリマーをベースとしたシリコーンエラストマーは、シリコーン中水エマルションを調製するための効果的な乳化剤を形成する。シリコーン中水エマルションを改質することにより、枯渇化媒体106は、超高分子量シリコーンの水性エマルション(Dow Corning(登録商標)HMW 2220 Non Ionic Emulsion)に組み込まれ得る。ある特定の実施形態において、エチレンオキシドまたはプロピレンオキシドポリマー鎖の追加が、配合中の乳化を補助し、極性材料との適合性を改善し得る。他の実施形態において、ミクロスフェアとしての枯渇化媒体106が、上述のような小袋、パケットおよびバッグ内に組み込まれてもよい。
本開示による実施形態において、ポリジメチルシロキサン(PDMS)の単分散マイクロビーズは、流動集中を使用したマイクロ流体システムにおいて形成され得る。PDMS前駆体溶液は、水性連続相内の微小液滴中に分散され得る。次いで、これらの液滴が回収され、固体マイクロビーズに熱硬化され得る。これらの技術は、PDMSマイクロビーズ内への枯渇化媒体106の組込みを可能にする。流動集中メカニズムは、界面活性剤であるドデシル硫酸ナトリウム(SDS)を保持する水性連続相中にPDMS前駆体の液滴を形成する。例えば、参照によりその全体が本明細書に組み込まれる、Jiang et al., 「Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen sensors」, Soft Matter, 8:923-926 (2006)を参照されたい。
本開示の一実施形態において、シリコーンエラストマーは、Sylgard(登録商標)184であってもよい。Dow Corning(登録商標)からの一般的なPDMSエラストマーキットであるSylgard(登録商標)184は、分散相として使用され得る。Sylgard(登録商標)184は、2種の流体、A液(基材、ビニル末端シロキサンオリゴマーからなる)およびB液(硬化剤、シロキサンオリゴマーおよび触媒からなる)で構成され、これらは、最終PDMSポリマーを形成するために、混合され熱硬化されなければならない。A液およびB液の比は、安定な液滴を生成するための粘度を低下させるように調節され得る。本開示による実施形態において、枯渇化媒体106は、PDMS前駆体溶液に直接添加され得る。
他の実施形態において、同軸電気流体力学的噴霧(CEHDA)によりミクロスフェアが形成され得る。このプロセスは、最小1〜2mmまでの液滴を生成することができる(Ganan-Calvo et al., 「Current and droplet size in the electrospraying of liquids. Scaling laws」, J. Aerosol Sci., 28:249-275 (1997)、およびJayasinghe et al., 「Controlled deposition of nano-particle clusters by electrohydrodynamic atomization」, Nanotechnology, 15:1519-1523 (2004)を参照されたい)。枯渇化媒体106の水溶液が生成され、内側毛細管を通してポンピングされてもよく、一方PDMS溶液が外側毛細管を通してポンピングされてもよい。数キロボルトの電位差が毛細管と接地電極との間に印加されて、テイラーコーン(毛細管出口における円錐状液体メニスカス)が発生する。高電荷密度が細い噴流を形成し、これが液滴に分解してミクロスフェア粒子を形成する。次いで、得られるミクロスフェアが収集され、熱硬化され得る。
他の実施形態において、ミクロスフェアはまた、1983年1月25日発行のZiemelis、米国特許第4,370,160号、名称「Process for Preparing Silicone Micro−Particles」において教示されるように形成されてもよく、または、1997年2月7日発行のMoritaら、米国特許第5,387,624号、名称「Method for the Preparation of a Powder Mixture Composed of Cured Silicone Microparticles and Inorganic Microparticles」に記載のように、無機収着剤がミクロスフェアに組み込まれてもよい。無機収着剤はまた、2001年4月3日発行のHottleら、米国特許第6,210,601号、名称「Method of Making an Oxygen Scavenging Sealant Composition」に記載のように、シリコーン中にブレンドされてもよい。これらの特許はそれぞれ、参照によりその全体が本明細書に組み込まれる。
本開示による他の実施形態において、枯渇化チャンバ115のガスのより低い濃度または分圧は、枯渇化ガス114を提供することにより達成され得る。枯渇化ガス114は、酸素遊離ガス、二酸化炭素遊離ガス、または酸素および二酸化炭素遊離ガスである。アルゴン、ヘリウム、および窒素を含むがこれらに限定されないいくつかのガスが、枯渇化ガス114として使用されてもよい。ある特定の実施形態において、枯渇化ガス114は、混合物であってもよい。いくつかの実施形態において、枯渇化ガス114は、CO2を含んでもよい。
本開示による実施形態において、枯渇化デバイスは、枯渇化媒体106または枯渇化ガス114を有する1つまたは複数の枯渇化チャンバ102を組み合わせてもよい。一実施形態において、枯渇化デバイスは、枯渇化媒体106を有する枯渇化チャンバ102および枯渇化ガス114を有する枯渇化チャンバ115を有してもよい。別の実施形態において、枯渇化デバイスは、枯渇化媒体106を有する2つの枯渇化チャンバ102および枯渇化ガス114を有する枯渇化チャンバ115を有してもよい。他の実施形態において、枯渇化デバイスは、枯渇化媒体106を有する枯渇化チャンバ102および枯渇化ガス114を有する2つの枯渇化チャンバ115を有してもよい。
ある特定の実施形態において、枯渇化ガス114は、酸素不含であってもよく、またゼロではない二酸化炭素の分圧を有してもよい。一実施形態において、酸素の分圧は、ゼロまたはほぼゼロmmHgであり、二酸化炭素の分圧は、5mmHg(5Torr)である。別の実施形態において、酸素の分圧は、ゼロまたはほぼゼロmmHgであり、二酸化炭素は、5mmHg未満である。さらなる実施形態において、酸素の分圧は、ゼロまたはほぼゼロmmHgであり、二酸化炭素は、ゼロまたはほぼゼロmmHgである。一実施形態において、pCO2は、約5mmHgであり、pO2は、約10mmHgである。別の実施形態において、O2は、約1パーツパービリオン(ppb)のレベルまで枯渇化されてもよく、CO2は、少なくとも1パーツパーミリオン(ppm)まで枯渇化されてもよい。別の実施形態において、酸素不含ガスは、約10mmHgのCO2を有してもよい。別の実施形態において、酸素不含ガスは、約20mmHg以上のCO2を有してもよい。本開示による実施形態において、酸素不含ガスは、5、10、15、20、25、30、35、40または45mmHgのCO2を有してもよい。さらに別の実施形態において、酸素不含ガスは、約ゼロから50mmHgのCO2を有してもよい。一実施形態において、酸素不含、二酸化炭素低減ガスは、約5mmHg CO2を有するアルゴンであってもよい。
非限定的な例示のために、図8A〜Cおよび9A〜Cは、1つまたは複数のガス入口111および1つまたは複数のガス出口112を有する少なくとも1つのガス枯渇化チャンバ115を有する、ガス枯渇化デバイスの例示的実施形態を提供する。いくつかの実施形態において、ガス枯渇化デバイスは、2つ、3つまたは4つのガス入口111および2つ、3つまたは4つのガス出口112を有してもよい。図8Aを参照すると、ガス枯渇化デバイスは、2つのガス入口111および2つのガス出口112を有してもよい。ガス入口111およびガス出口112は、液体チャンバ101を通る液体の流動に対して枯渇化ガス114の向流を提供するように配置されてもよい。他の実施形態において、液体チャンバ101内の液体の流動に対する枯渇化ガス114の流動は、向流と並流との間で交互してもよい。
本開示による一実施形態において、ガス入口111およびガス出口112は、各ガス枯渇化チャンバ115に枯渇化ガス114の別個のストリームが提供されるように並列で配置されてもよい。いくつかの実施形態において、1つまたは複数のガス枯渇化チャンバ115は、直接的にまたは接続管を介して、第1のガス出口112を第2のガス入口111に接続することにより、直列で接続されてもよい。同様に、いくつかの実施形態において、第2のガス出口112は、直接的にまたは接続管を介して、第3のガス入口111に接続されてもよい。本開示の実施形態によれば、直列で接続されてもよいガス枯渇化チャンバ115の数は、2つ以上であってもよい。別の実施形態において、3つ以上のガス枯渇化チャンバ115が直列で接続されてもよい。別の実施形態において、4つ以上のガス枯渇化チャンバ115が直列で接続されてもよい。別の実施形態において、5つ以上のガス枯渇化チャンバ115が直列で接続されてもよい。直列で接続されてもよいガス枯渇化チャンバの数は、酸素、二酸化炭素、またはその両方の濃度または分圧が、液体チャンバ内の酸素、二酸化炭素、またはその両方の濃度または分圧未満であるように、枯渇化ガス114の流動に依存することが明らかなはずである。
図9A〜Cを参照すると、本開示のガス枯渇化デバイスは、3つ以上の枯渇化チャンバ115を有してもよい。示されるように、3つの枯渇化チャンバ115を有するデバイスに、枯渇化ガス114の3つのストリームが、別個のガス入口111を通して並列で供給されてもよい。いくつかの実施形態において、枯渇化ガス114は、第1のガス出口112が直接的にまたは配管を介して第2のガス入口111に接続されるように、上述のように直列で提供されてもよい。他の実施形態において、枯渇化ガス114は、液体チャンバ101内の液体の流動に対して枯渇化ガスの向流として提供されてもよい。さらなる実施形態において、液体チャンバ101内の液体の流動に対する枯渇化ガスの流動は、向流と並流との間で交互してもよい。本開示による実施形態において、2つ以上のガス枯渇化チャンバ115を有するガス枯渇化デバイスに、枯渇化ガス114の単一の源が供給されてもよい。したがって、各枯渇化チャンバ115に対する各ガス入口111は、枯渇化ガス114の流動をそれぞれの別個の枯渇化チャンバ115に分配および分割する多岐管を介して供給される。同様に、枯渇化ガスの単一の源を有する本開示のガス枯渇化デバイスは、1つまたは複数のガス出口112からの排出ガス流を合流させる出口多岐管をさらに含んでもよい。
図8A〜C、9A〜C、および10A〜Cに示されるように、ガス枯渇化チャンバ115は、1つまたは複数のガス流動制御機構113を含んでもよい。図に示されるように、2つのガス流動制御機構113(水平の棒として示されている)は、ガス枯渇化チャンバ115と液体チャンバ101との間の濃度または分圧差を最大化するように枯渇化ガス114の混合を提供し、それにより1つまたは複数のガス透過性バリア107を通したガス拡散の効率および速度を増加させる。さらに他の実施形態において、ガス流動制御機構113の構造は、図11A〜Cに示されるように変更されてもよい。さらなる実施形態において、本開示のガス枯渇化デバイスは、ガス流動制御機構113の組合せを含んでもよい。本開示による実施形態において、流動制御機構は、ガス流を調節するように変更されてもよい(以下を参照されたい)。別の実施形態において、ガス流動制御機構113は、所望の分圧を達成するように、および液体の乾燥を回避するように変更されてもよい。ある特定の実施形態において、ガス流動制御機構113は、気泡形成を排除するように設計される。いくつかの実施形態において、ガス流動制御機構113は、液体を押し出すいかなる圧力も排除するように設計される。
本開示によれば、ガス透過性バリア107は、液体不透過性であり、1種または複数種のガスが通過するバリアである。ガス透過性バリア107は、膜、フィルム、繊維、またはメッシュとして形成されてもよい。いくつかの実施形態において、ガス透過性バリア107は、疎水性多孔質構造であってもよい。ある特定の実施形態において、ガス透過性バリア107は、1種または複数種のガスを通過させる低液体透過性バリアであってもよい。いくつかの実施形態において、ガス透過性バリア107は、膜の侵入圧力を下回る液体側圧力でのその動作の間は液体不透過性であってもよい。
本開示による実施形態において、ガス透過性バリア107は、高いガス透過速度が可能な非多孔質材料であってもよい。いくつかの実施形態において、ガス透過性バリア107は、高い酸素透過速度が可能であってもよい。いくつかの実施形態において、ガス透過性バリア107は、高い二酸化炭素透過速度が可能であってもよい。さらなる実施形態において、ガス透過性バリア107は、高い酸素および二酸化炭素透過速度が可能であってもよい。
本開示によるガス透過性バリア107は、ポリマーで構築された膜、フィルム、繊維またはメッシュを含む。本開示のガス透過性バリア107の作製に好適なポリマーの限定されない例は、ポリオレフィン、シリコーン、エポキシ、およびポリエステルを含む。他の実施形態において、ガス透過性バリア107は、テフロン(登録商標)、PVDF、またはポリスルホン、セラミックを含む無機材料、およびそれぞれの組合せから構築されてもよい。本開示によるガス透過性バリア107に好適な材料は、ポリスルホン、酢酸セルロース、ポリプロピレン、ポリフッ化ビニリデン、ポリエーテルスルホン、ポリビニルアルコール、ポリメチルメタクリレート、およびそれらの組合せを含む。ガス透過性バリア107の限定されない例は、膜コードVVHP、GVHP、HVHP、DVHP、HAWP、DAWP、AAWP、RAWP、SSWP、SMWP、SCWP、SVPP、VEPP、GEPP、EIMF、HEMF、HEPP、VVSP、GVSP、HVSP、DVSP、BVSPおよびSVSPを有するEMD Millipore製のPVDF膜を含む。
本開示による実施形態において、ガス透過性バリア107は、走査型電子顕微鏡等の当該技術分野において知られた方法により特性決定され得る平均表面細孔径を有する。いくつかの実施形態において、ガス透過性バリア107は、約8μm以下、または3μm未満の面積平均表面細孔径を有してもよい。細孔分布測定またはバブルポイント試験により、ガス透過性バリア107の平均細孔径は、約0.1〜1μmの間であってもよい。ある特定の実施形態において、平均細孔径は、4μm未満である。
本開示によれば、ガス透過性バリア107は、親水化PVDF、ナイロン、セルロースエステル、ポリスルホン、ポリエーテルスルホン、親水化ポリプロピレン、およびポリアクリロニトリルからなる群から選択される少なくとも1種の材料から形成されてもよい。本開示による実施形態によれば、親水性微多孔膜は、多層膜であってもよい。一実施形態において、ガス透過性バリア107は、親水化PVDF、ナイロン、セルロースエステル、ポリスルホン、ポリエーテルスルホン、親水化ポリプロピレン、およびポリアクリロニトリルからなる群から選択される2種以上の材料を有する多層膜であってもよい。本開示のガス透過性バリア107は、細胞付着、タンパク質結合および汚損を制御するようにさらに表面改質されてもよい。いくつかの実施形態において、ガス透過性バリア107は、親水性を増加させるために改質されてもよい。一実施形態において、親水性が増加した膜を作製するために、ポリスルホン材料がPVPと組み合わされてもよい。一実施形態において、ガス透過性バリア107は、ポリスルホンから作製されてもよい。本開示による一実施形態において、ガス透過性バリア107は、親水性微多孔膜であってもよい。他の実施形態において、ガス透過性バリア107は、2つ以上の親水性微多孔膜から形成されてもよい。いくつかの実施形態において、ガス透過性バリア107を作製するために、2つ以上の膜が互いに融合されてもよい。他の実施形態において、ガス透過性バリア107を作製するために、2つ以上の膜が層状化されてもよい。いくつかの実施形態において、層状膜は、媒体により分離されてもよい。一実施形態において、媒体は、上述のような枯渇化媒体であってもよい。
本開示による実施形態において、ガス透過性バリア107は、250μm未満の厚さであってもよい。一実施形態において、ガス透過性バリア107は、25μm超の厚さであってもよい。いくつかの実施形態において、ガス透過性バリア107は、25〜250μmの間の厚さであってもよい。他の実施形態において、ガス透過性バリア107は、25〜100μmまたは25〜150μmの間の厚さであってもよい。一実施形態において、ガス透過性バリア107は、50〜100μmの間の厚さ、75〜100μmの間の厚さ、50〜150μmの間の厚さ、75〜150μmの間の厚さ、100〜250μmの間の厚さ、150〜250μmの間の厚さ、または25〜150μmの間の厚さであってもよい。
最低酸素飽和度は、急速な拡散時間を可能とするように、枯渇化媒体106がガス透過性バリア107の近くに設置され、これがまた一方で液体チャンバ101内の液体の近くに設置されたデバイスを使用することにより達成され得る。ガス拡散を増加させる追加の因子は、ガス透過性バリア107のより大きな活性表面積である。枯渇化媒体106の捕捉速度は、酸素または酸素および二酸化炭素との反応に利用可能な表面積、ならびに酸素または酸素および二酸化炭素がどれ程容易に枯渇化媒体106内に拡散するかにより制限され得る。表面積の利用可能性は、枯渇化媒体106を上述のようなマイクロ粒子またはマイクロ繊維に組み込むことにより増加させることができる。
本開示によるある特定の実施形態において、ガス透過性バリア107は、液体チャンバ101と流体接触したガス透過性バリア107の表面上の生体適合性白血球結合表面化学を含んでもよい。ある特定の実施形態において、液体チャンバ101は、液体チャンバ101内を流動する液体中の白血球の数を低減するために、1種または複数種の白血球結合材料を含んでもよい。一実施形態において、ガス透過性バリア107は、生体適合性白血球結合表面化学を有する1つまたは複数の追加の層をさらに備えてもよい。本開示による他の実施形態において、デバイスは、別個の生体適合性白血球結合材料を含んでもよい。ある特定の実施形態において、生体適合性白血球結合材料は、結合表面化学を有する膜であってもよい。いくつかの実施形態において、白血球結合材料は、結合マトリックスであってもよい。他の実施形態において、生体適合性白血球結合材料は、白血球低減材料123であってもよい。
本開示の方法に好適な白血球低減材料は、フィルタ、繊維、ミクロスフェアまたはマイクロ粒子として調製されてもよい。一実施形態において、白血球低減フィルタは、2002年1月8日発行のLeeら、米国特許第6,337,026号、名称「Leukocyte reduction filtration media」に記載のように、マイクロガラス繊維を使用して形成され得る。上述のようなガス透過性バリアは、基材として使用されてもよく、次いでグラフトされたPVAまたはシリコーンを使用してガス透過性バリア107をコーティングし、白血球接着を促進してもよい。別の実施形態において、1990年5月15日発行のPall、米国特許第4,925,572号、名称「Device and method for depletion of the leukocyte content of blood and blood components」に記載のような溶融ブロー繊維が、PBTまたはPETから形成されてもよく、次いで、1993年7月20日発行のPallら、米国特許第5,229,012号、名称「Method for depletion of the leucocyte content of blood and blood components」において教示されるようにフィルタデバイス内に組み込まれてもよく、また1995年8月22日発行のGsell、米国特許第5,443,743号、名称「Gas plasma treated porous medium and method of separation using same」に記載のように表面改質されてもよい。これらは全て、参照することによりその全体が本明細書に組み込まれる。
別の実施形態において、上述のようなガス透過性バリア107はまた、参照によりその全体が本明細書に組み込まれる、2010年8月17日発行のBonaguidiら、米国特許第7,775,376号、名称「Filter for the separation of leukocytes from whole blood or blood preparations, method for production of said filter, corresponding device and use thereof」に記載のように表面改質されてもよい。別の実施形態において、Bonaguidiらのモノマーは、重合される代わりにシリコーンコーティング上にグラフトされてもよい。ガス透過性バリア107は、参照によりその全体が本明細書に組み込まれる、2003年8月26日発行のClaubergら、米国特許第6,610,772号、名称「Platelet Particle Polymer Composite with Oxygen Scavenging Organic Cations」において教示されるように、PBTまたはPETで作製された従来の白血球低減繊維に含まれてもよい。白血球低減フィルタの追加の制限および要件は、参照によりその全体が本明細書に組み込まれる、1987年10月20日発行のWatanabeら、米国特許第4,701,267号、名称「Method for Removing Leukocytes」に見出すことができる。
白血球低減能を有する本開示の枯渇化デバイスは、濃厚赤血球を含む白血球低減血液製剤の調製を含み、それを提供する。一実施形態において、白血球の数は、1000細胞/μlを下回るレベルまで低減される。別の実施形態において、白血球の数は、100細胞/μlを下回るレベルまで低減される。さらに別の実施形態において、白血球の数は、10細胞/μlを下回るレベルまで低減される。本開示による一実施形態において、白血球低減後に残留する白血球の数は、1細胞〜10細胞/μlであってもよい。別の実施形態において、残留する白血球の数は、5〜20細胞/μlであってもよい。別の実施形態において、残留する白血球の数は、5〜10細胞/μl、5〜50細胞/μl、5〜100細胞/μl、10〜20細胞/μl、または5〜100細胞/μlであってもよい。本開示によるある特定の実施形態において、白血球の数は、フローサイトメトリーにより決定される。
本開示による実施形態において、液体チャンバ101およびガス枯渇化チャンバ102は、流動制御機構108および113を含有してもよい。流動制御機構108および113の数、位置、サイズおよび形状は、本開示のガス枯渇化デバイスを最適化するために改変されてもよい。一実施形態において、流動制御機構108は、ガス透過性バリア107に対する液体の流動を誘導するように構成されてもよい。他の実施形態において、流動制御機構113は、枯渇化ガス114の流動をガス透過性バリア107に沿って誘導するように構成されてもよい。
本開示による流動制御機構108は、異なる形状およびサイズであってもよい。図1Dに示されるように、流動制御機構108は、液体チャンバ101(例えば、図1Bを参照されたい)のほぼ半分の高さとして描写されている。この比は、異なる流量のために改変されてもよい。同じく図に示されるように、流動制御機構108は、三角形であってもよい(例えば、図1A、1B、2A、2B、3A、4A、8A、9A、10A、12A、13A、14A、および15Aを参照されたい)。他の実施形態において、流動制御機構は、半円形、卵形、正方形またはそれらの任意の組合せであってもよい(例えば、図2A〜Fを参照されたい)。例えば、図1C、2B、8Cおよび9Bに示されるように、流動制御機構108は、液体チャンバ101の幅にわたり延在してもよい。他の実施形態において、流動制御機構108は、開口または隙間を含んでもよい。
図2A〜Fを参照すると、流動制御機構108は、様々な形状、位置および数を含む。ある特定の実施形態において、流動制御機構108は、図2Aおよび2Bに示されるように、内側シェル109の外側表面と同一平面上に位置してもよい。他の実施形態において、流動制御機構108は、内側シェル109の表面からオフセットしていてもよく、図2C〜2Fに示されている。本開示によるある特定の実施形態において、流動制御機構108は、図2A〜2Fに示されるように、三角形、長方形または円形であってもよい。他の実施形態において、流動制御機構108は、三角形、長方形または円形形状の組合せであってもよい。一実施形態において、流動制御機構108は、半円形であってもよい。本開示による流動制御機構108は、様々な数で存在してもよい。例えば、図2Aおよび2Bに示されるように、8つの流動制御形状があってもよい。他の実施形態において、9つ以上の流動制御機構108、例えば9つ、10個または11個の流動制御機構108があってもよい。いくつかの実施形態において、7つ以下の流動制御機構108があってもよい。例えば、1つまたは複数の流動制御機構108があってもよい。いくつかの実施形態において、7つ以下の流動制御機構108があってもよい。ある特定の他の実施形態において、2つ以上の流動制御機構108があってもよい。他の実施形態において、3つ以上の流動制御機構108があってもよい。さらに他の実施形態において、4つ以上の流動制御機構108があってもよい。さらなる実施形態において、5つまたは6つの流動制御機構108があってもよい。
また、流動制御機構108の数および位置は、特定の構成に合わせてプロセスを最適化するために改変され得る。図1A〜Dに示されるように、流動機構は、液体チャンバ101の交互の側面上の流動制御機構108として組み込まれてもよく、液体が液体チャンバ101を通って進行する間にジグザグ方向に流動するようにオフセットをさらに含んでもよい(例えば、図1A、2A〜B、3A、4A、6A、8A、9A、10A、12A、13A、および14Aを参照されたい)。液体チャンバ101の対向する側面上に含まれる流動制御機構108は、ガス透過性バリア107に対する液体の流動の誘導、および液体中のガスの濃度または分圧と、枯渇化チャンバ102内の濃度または分圧との間の不均衡を維持するような流動する液体の混合の両方を提供する。
また、流動制御機構108の数および位置は、特定の構成に合わせてプロセスを最適化するために改変され得る。ガス枯渇化デバイスは、1つまたは複数の流動制御機構108を有してもよい。一実施形態において、ガス枯渇化デバイスは、2つ以上の流動制御機構108を有してもよい。別の実施形態において、ガス枯渇化デバイスは、3つ以上の流動制御機構108を有してもよい。他の実施形態において、ガス枯渇化デバイスは、4つ以上の流動制御機構108を有してもよい。別の実施形態において、ガス枯渇化デバイスは、5つ以上の流動制御機構108を有してもよい。いくつかの実施形態において、6つ、7つまたは8つ以上の流動制御機構108があってもよい。
本開示による流動制御機構113は、異なる形状およびサイズであってもよい。図8A、9A、および10Aに示されるように、流動がガス透過性膜107に平行に流れるようにデバイスの外側周囲にガスの流動を誘導するガス流動制御機構113が描写されている。ガス流動制御機構113は、混合を確実とするためにガスの流動に乱流を導入し、ガス透過性膜107を通した拡散の速度を維持し得る。同じく図に示されるように、ガス流動制御機構113は、三角形であってもよい。他の実施形態において、流動制御機構は、半円形、卵形、正方形またはそれらの任意の組合せであってもよい(例えば、図2A〜Fおよび図11A〜Cも参照されたい)。図8B、9Bおよび10Bに示されるように、ガス流動制御機構113は、ガス枯渇化チャンバ115の幅未満にわたり延在してもよい。他の実施形態において、ガス流動制御機構113は、ガス流動の分岐および合流を提供するために開口または隙間を含んでもよい。
また、ガス流動制御機構113の数および位置は、特定の構成に合わせてプロセスを最適化するために改変され得る。流動制御機構108に関して示されるように、ガス流動機構113は、ガス枯渇化チャンバ102の交互の側面上に組み込まれてもよく、ガスがガス枯渇化チャンバ102を通って進行する間にジグザグ方向に流動するようにオフセットをさらに含んでもよい。ガス流動制御機構113は、ガス透過性バリア107に対する液体の流動の誘導、および液体中のガスの濃度または分圧と、枯渇化ガスにおける濃度または分圧との間の不均衡を維持するような流動するガスの混合の両方を提供するために、ガス枯渇化チャンバ102の対向する側面上に含まれてもよい。
また、ガス流動制御機構113の数および位置は、特定の構成に合わせてプロセスを最適化するために改変され得る。ガス枯渇化デバイスは、1つまたは複数の流動制御機構113を有してもよい。一実施形態において、ガス枯渇化デバイスは、2つ以上の流動制御機構113を有してもよい。別の実施形態において、ガス枯渇化デバイスは、3つ以上の流動制御機構113を有してもよい。他の実施形態において、ガス枯渇化デバイスは、4つ以上の流動制御機構113を有してもよい。別の実施形態において、ガス枯渇化デバイスは、5つ以上の流動制御機構113を有してもよい。いくつかの実施形態において、6つ、7つまたは8つ以上の流動制御機構113があってもよい。
図5A〜Cおよび7A〜Cを参照すると、本開示による枯渇化デバイスは、1つまたは複数の可撓性または膨張性枯渇化チャンバ102および1つまたは複数の可撓性または膨張性液体チャンバ101を含んでもよい。液体チャンバ101から枯渇化チャンバ102へのガスの混合および効率的な拡散を提供するために、可撓性枯渇化デバイスの枯渇化チャンバ102は、1つまたは複数の流動制御機構108を含んでもよい。ある特定の実施形態において、流動制御機構は、角部が可変角度で設定されたパターンに液体流動を誘導するように提供される。図6A〜Cを参照すると、流動制御機構は、間接的経路133を含んでもよい。ある特定の実施形態において、液体流動は、ジグザグ様式で進行する。いくつかの実施形態において、流動は、分岐および再合流してから液体出口105を通って出る規則的パターンに従ってもよい。他の実施形態において、流動は、不規則的パターンに従ってもよい。いくつかの実施形態において、液体流動は、2つ以上の個々の流動に分割されてもよい。他の実施形態において、液体流動は、2回、4回、6回またはそれ以上の回数分割されてもよい。分割された流動を有するある特定の実施形態において、流動は、出口105を通って出る前に再合流されてもよい。
本開示による枯渇化デバイスは、少なくとも1つの入口104および少なくとも1つの出口105を含む。図には、上部に入口104および底部に出口105を有するように描写されているが、液体およびガスの流動は逆であってもよい。いくつかの実施形態において、流動は、向流を提供するように配置される。いくつかの実施形態において、出口105は、入口104、例えば図9A〜Cに示されるように、デバイス900に接続されてもよい。一実施形態において、液体チャンバ101は、並流を提供するように入口104および出口105を介して接続されてもよい。
本開示による枯渇化デバイスは、1つまたは複数の液体チャンバ101および1つまたは複数の枯渇化チャンバ102を備えてもよい。いくつかの実施形態において、チャンバ101および102は、単一の枯渇化デバイスとしてスタックされ組み合わされてもよい。スタック構成において、枯渇化デバイスは、液体チャンバ101を、互いに流体連通した直列または並列構成に配置してもよい。本開示によれば、液体チャンバ109および制御機構108の内部機構および比の変更と組み合わせた、枯渇化チャンバ102および液体チャンバ101のスタックは、ガス枯渇化プロセス要件に適合するために必要な数だけ層を形成するように続いてもよい。ある特定の実施形態において、枯渇化デバイスは、図10Aに示されるように、分流器130を使用して流体流動を分割することにより、2つ以上の液体チャンバ101を通る流体の並流を提供してもよい。並列チャンバ枯渇化デバイスにおいて、液体出口105を通る流体流動は、合流器131により再合流する。一実施形態において、例えば図10A〜Cに示されるように、デバイス1000は、2つの並列液体チャンバ101および3つのガス枯渇化チャンバ114を有してもよい。他の実施形態において、3つ以上の並列液体チャンバ101が提供されてもよい。さらに他の実施形態において、並列および直列液体チャンバ101の組合せが提供されてもよい。
他の実施形態において、本開示による枯渇化デバイスは、図7A〜Cおよび8A〜Cに示されるように、嫌気性血漿ポート116をさらに含んでもよい。
本開示において、上述の図8A〜Cおよび9A〜Cに示されるものと同様の枯渇化デバイスの構造と同様の構造を有するガス添加デバイスが含まれ、提供される。ガス添加デバイスは、輸血前に、酸素または酸素および二酸化炭素枯渇血液製剤に1種または複数種のガスを供給し得る。本開示によるガス添加デバイスは、添加ガスの1つまたは複数のストリームを有してもよい。例えば、ガス添加デバイスは、図9A〜Cに示されるものと同様の単一ガス添加デバイスに別個に提供される、酸素添加ガスおよび酸化窒素添加ガスを有してもよい。
図16A〜Cを参照すると、ガス添加デバイスは、必要とする患者への輸血の前に嫌気性貯蔵赤血球等の嫌気性液体の酸素再供給を提供し得る。例えば、嫌気性濃厚赤血球は、液体入口104を通って進入し、流動制御機構108を有する液体チャンバ101を通って流動する。濃厚赤血球がデバイスを通過すると、ガス添加ポート128を通して提供された酸素は、ガス透過性バリア107を通って拡散し、赤血球中のヘモグロビンにより結合される。デバイス1600において示されるように、ガス添加ガスポート128は、外側シェル103を通した周囲空気の通過を提供する。他の実施形態において、添加ポート128は、酸素富化ガスを提供するためにガス供給源と接続することができる入口をさらに備えてもよい。
本開示によるガス添加デバイスは、輸血前に、ガス枯渇血液製剤にガスを提供し得る。本開示のガス添加デバイスは、枯渇化ガス114が添加ガスにより置き換えられ、枯渇化チャンバ102が添加チャンバにより置き換えられた上述のようなデバイスを含む。添加デバイスにおいて、ガスは、1つまたは複数のガス添加チャンバを通って流動し、それにより、液体チャンバ101内を流動する液体よりも高い濃度または分圧の添加ガスの源を提供する。上述のように、ガス添加チャンバは、ガス透過性バリアにより液体チャンバから分離される。ガス添加デバイスの実施形態において、液体チャンバは、液体の混合およびガスの濃度または分圧の差により提供される強い拡散力の維持を確実とするために、1つまたは複数の流動制御機構108を備える。同様に、ガス添加チャンバもまた、混合およびガス平衡を確実とするために、流動制御機構113を含んでもよい。
本開示による実施形態において、添加ガスは、酸素含有ガスであってもよい。一実施形態において、酸素含有ガスは、約20%の酸素を有する周囲空気を含んでもよい。別の実施形態において、添加ガスは、周囲空気と比較して増加した酸素パーセンテージを有してもよい。一実施形態において、パーセント酸素は、20%超であってもよい。別の実施形態において、パーセント酸素は、30%超であってもよい。別の実施形態において、パーセント酸素は、40%、50%、またはそれ以上であってもよい。さらに別の実施形態において、添加ガスは、純酸素であってもよい。他の実施形態において、酸素含有ガスは、20%未満の酸素を有してもよい。一実施形態において、添加ガスは、15%の酸素もしくは10%の酸素、またはそれ以下を有してもよい。
本開示による実施形態において、添加ガスは、酸化窒素含有ガスであってもよい。いくつかの実施形態において、NOの添加は、酸素の存在下でのNO固有の不安定性のために、輸血に備えた酸素の添加前に行われてもよい。ある特定の実施形態において、酸化窒素を有する添加ガスは、ガス添加デバイスによるO2の添加前に、ガス添加デバイスを使用して嫌気性血液製剤に提供される。他の実施形態において、統合NO/O2添加デバイスは、ガス添加チャンバ134内のNO添加ガスの第1のストリームを維持し、したがって隣接する液体チャンバ101にNOを供給する。第2のガス添加チャンバに提供される第2の酸素添加ガスは、第1のNOガス供給液体チャンバと流体連通した第2の液体チャンバに酸素の源を提供する。上述のようにガス添加チャンバおよび液体チャンバをスタックすることにより、1回または複数回のNO添加ステップおよび1回または複数回のO2添加ステップが提供されてもよい。いくつかの実施形態において、添加ガスは、一緒に、または別個のガスストリームとして、二酸化炭素を含んでもよい。一実施形態において、添加ガスは、5%のCO2を含んでもよい。別の実施形態において、添加ガスは、2.5%のCO2を含んでもよい。さらなる実施形態において、添加ガスは、1〜5%のCO2を含んでもよい。他の実施形態において、添加ガスは、2〜4%または2〜5%のCO2を含んでもよい。他の実施形態は、添加ガス中に5%超のCO2を含んでもよい。
本開示による枯渇化デバイスは、赤血球または血液製剤を嫌気的に、およびCO2枯渇状態で貯蔵することができる嫌気的貯蔵バッグと共に使用されてもよい。
本開示の方法およびシステムに適合する貯蔵バッグは、酸素および二酸化炭素収着剤、または酸素および二酸化炭素収着剤を含有する二次的なバッグを有するラミネートバッグであってもよい。他の実施形態において、適合する貯蔵バッグは、RBCまたは血液製剤に接触したDEHP可塑化PVCを有する内側血液貯蔵バッグを備えてもよい。適合する貯蔵バッグは、外側表面内側血液バッグにラミネートされた外側透明酸素バリアフィルム(例えばナイロンポリマー)をさらに備えてもよい。他の適合する実施形態において、貯蔵バッグは、最も外側のバッグが酸素バリアフィルムを備えるバッグ内のバッグであってもよい。本開示による枯渇化デバイスにより生成される血液製剤に適合する貯蔵バッグは、酸素収着剤を含む1種または複数種の収着剤を含む貯蔵バッグを含む。
例示的な貯蔵バッグは、例えば、2010年10月8日出願の米国特許出願公開第12/901,350号、名称「Blood Storage Bag System and Depletion Devices with Oxygen and Carbon Dioxide Depletion Capabilities」に見出すことができ、これは参照することによりその全体が本明細書に組み込まれる。
本開示の枯渇化デバイスにおける使用に好適な血液製剤は、血小板枯渇血液製剤を含む。一実施形態において、好適な血液製剤は、血小板枯渇濃厚赤血球血液製剤である。血小板は、赤血球とは対照的に、代謝にO2を必要とする。したがって、血小板は、酸素の枯渇および嫌気的条件下での貯蔵により損傷され得る。したがって、本開示のデバイスによる処理前または処理後の血小板の除去は、貯蔵される枯渇血液製剤の品質を悪化させ得る物質の放出を回避し得る。例示的な血小板枯渇化コーティングは、例えば、1989年11月14日発行の米国特許第4,880,548号、名称「Device and method for separating leucocytes from platelet concentrate」、1998年7月21日発行の米国特許第5,783,094号、名称「Whole blood and platelet leukocyte filtration method」、2012年5月25日発行の米国特許第7,721,898号、名称「Coating material for leukocyte removal filter and the filter」、および2010年8月17日発行の米国特許第7,775,376号、名称「Filter for the separation of leukocytes from whole blood or blood preparations, method for production of said filter, corresponding device and use thereof」に記載されており、これらはそれぞれその全体が本明細書に組み込まれる。
本開示は、本明細書に開示の、および後述のデバイスの使用方法を提供し、それを含む。本開示のデバイスを使用して酸素または酸素および二酸化炭素枯渇血液製剤を調製するための方法が提供され、含まれる。本開示は、さらに、開示された枯渇化デバイスを使用した血液製剤の長期貯蔵のための方法を提供し、それを含む。本明細書において開示されたデバイスを使用して、本明細書に記載のステップの組合せを採用した方法が設計され得る。開示されたデバイスを使用した枯渇化方法に好適な血液製剤は、例えば、全血、濃厚赤血球、血小板枯渇全血、血小板枯渇濃厚赤血球、編集された全血、および編集された濃厚赤血球を含む。
本開示は、筐体、1つまたは複数の液体チャンバ、1つまたは複数の枯渇化チャンバ、少なくとも1つのガス透過性バリア、少なくとも1つの液体入口および少なくとも1つの液体出口を有する枯渇化デバイスを提供し、それを含む。本開示による方法は、血液の採取、説明された枯渇化デバイスへの通過、嫌気的貯蔵バッグ内での貯蔵、本開示のデバイスを使用した酸素再供給、および患者への輸血を含んでもよい。方法は、白血球低減ステップ、血小板低減または分離ステップ、赤血球編集ステップ、病原体不活性化ステップおよび体積低減ステップをさらに含んでもよい。本開示において記載されるように、方法ステップは、それを必要とする患者への輸血に好適な血液製剤を提供するために、様々な組合せで含まれてもよい。本開示の方法はまた、血液製剤の長期貯蔵を向上させるための方法を提供し、それを含む。
本開示は、赤血球(RBC)を調製するための方法であって、全血を得るステップと、全血からRBCを分離して濃厚RBCを形成するステップと、本開示のデバイスを使用して酸素を枯渇化して酸素枯渇RBCを形成する、または酸素および二酸化炭素を枯渇化して酸素および二酸化炭素枯渇RBCを形成するステップと、酸素枯渇または酸素および二酸化炭素枯渇RBCを嫌気的貯蔵環境内で貯蔵し、酸素枯渇または酸素および二酸化炭素枯渇状態を維持するステップとを含む方法を提供し、それを含む。
本開示による方法は、開示されたデバイスを使用した枯渇血液製剤の調製を提供する。一実施形態において、方法は、酸素枯渇全血製剤を調製するために、酸素枯渇化媒体106または枯渇化ガス114を含むデバイスを含んでもよい。一実施形態において、方法は、酸素および二酸化炭素枯渇全血製剤を調製するために、酸素および二酸化炭素枯渇化媒体106または枯渇化ガス114を含むデバイスを含んでもよい。
本発明の方法は、開示されたデバイスを使用した枯渇化のための血液製剤の調製の方法を含む。一実施形態において、供血者から全血が得られ、本発明のデバイスに直接適用されてもよい。別の実施形態において、全血または供血者の血液全体から、濃厚赤血球が調製されてもよい。濃厚赤血球(pRBC)は、当該技術分野において一般的に知られている遠心分離技術を使用して、全血から調製されてもよい。濃厚赤血球はまた、濾過法を使用して調製されてもよい。濃厚赤血球は、添加剤溶液を含有してもよい。濃厚赤血球はまた、採取中に成分が分離されるように、アフェレーシス技術により採取されてもよい。本開示の枯渇化デバイスを使用して、濃厚赤血球から酸素または酸素および二酸化炭素が枯渇化され得る。
本開示のデバイスは、白血球低減枯渇血液製剤を調製するための方法と共に使用され得る。一実施形態において、血液製剤は、本開示の枯渇化デバイスを通して流動させる前に、白血球を除去するために白血球低減フィルタに通過されてもよい。他の実施形態において、本発明の枯渇化デバイスは、上述のような白血球低減を含むように作製され得る。一実施形態において、請求される本発明のデバイスは、ガス透過性バリア107上に白血球低減コーティングを含む。別の実施形態において、白血球低減前置フィルタが、開示された枯渇化デバイス内に組み込まれてもよい。さらなる実施形態において、白血球低減後置フィルタが、開示された枯渇化デバイス内に組み込まれてもよい。
本開示は、本開示のデバイスを使用して、編集された赤血球集団を有する枯渇血液製剤を調製するための方法を提供し、それを含む。編集は、悪化している兆候を示すRBCを除去することを含み得る。RBCの編集は、輸血プロセスにおいて生存する可能性が低い、または輸血後すぐに死滅する可能性のある血液細胞を特定および除去するプロセスである。瀕死状態のRBC、または死滅したもしくは死滅しかかっている赤血球の編集は、本開示のデバイスを使用した血液製剤の処理前または処理後に行われてもよい。例えば、編集は、嫌気的貯蔵バッグ内での貯蔵後の輸血直前に行われてもよい。
輸血患者の疾病率および死亡率の主な原因は、いかなる病原体の伝染に関わらず、輸血される血液の非生存部分であるため、編集は重要となり得る。悪化した、または輸血後すぐに細網内皮系によって脾臓により除去されるRBCは、すでに悪化している受容者に打撃を与える恐れがあり得る。輸血された細胞の25%までが、輸血後最初の24時間で受容者により除去される。これらの除去された細胞は、長期または大量輸血患者の重要なパラメータとなり得る受容者の過剰な鉄負荷に即時に寄与するため、有害である。また、これらの細胞は、変形能の低減または凝集体形成に起因する毛細管閉塞を引き起こし、低い組織かん流、さらには臓器不全をもたらし得る。したがって、これらのより生存能の低いRBCを輸血前に除去することができれば、実質的な利益が期待される。
赤血球を編集するために使用され得る技術はいくつかある。第1の技術は、新しいおよび古いRBCの特徴的な浮力に基づく、貯蔵前に古いおよび新しいRBCを分離するための遠心分離プロセスである。
第2の技術は、緩衝液交換ステップと組み合わせて、貯蔵前または後に浸透圧衝撃等の生体力学的ストレスを印加し、弱い細胞を溶血させる。印加された生体力学的ストレスは、弱いそれらの細胞を即時に識別し、より強いRBCと急速に対比させて、機械的分離を可能とする。弱いRBCは、特にすでに悪化しているまたは過剰負荷下の免疫系を有する個人に関して、受容者の疾病率および死亡率に寄与するものである。受容者に到達するRBCの25%までがすでに死滅しており、受容者に対し有害な効果を有し得る。RBCを編集することにより、その数は50%〜75%低減され得る。
第3の技術は、RBCの変形能に適用される。スタガ型ピラーを含有するバンプアレイマイクロ流体デバイスは(参照によりその全体が本明細書に組み込まれる、Huang, L.R., et al., 「Continuous particle separation through deterministic lateral displacement」, Science, 304(5673): 987-90 (2004))は、変形可能なRBCをピラーに通過させるが、変形可能なRBCは、ピラーを通過することができずに別個のチャネル内にはね返される。
RBCを編集するためのさらなる技術は、特定の表面マーカーを示すRBCを除去するためのフィルタシステムを使用する。ホスファチジルセリンまたは凝集タンパク質3等の既知の表面マーカーを示すRBCは、高親和性リガンド(例えば、アネキシンIVまたは特定の表面マーカータンパク質に対する抗体)で表面改質されたフィルタにより捕捉され得る。
追加の技術は、標的表面マーカーを示すRBCが凝集体を形成するように多量体分子を作製するために複合化された、第2の技術における同じ高親和性リガンド(例えば特定の表面マーカー)を使用する。次いで、これは、濾過または遠心分離により分離され得る。
本開示のデバイスを使用して血液製剤を調製する方法は、ガンマ線またはX線照射(一般に照射)を使用したリンパ球不活性化および病原体排除の1つまたは複数のステップを含んでもよい。
ガンマ線照射は、直接的に、および反応性酸素種(ROS)、すなわち水のガンマ線分解中に生成されるヒドロキシル基を介してDNAを損傷することにより、Tリンパ球の増殖を無効化する。赤血球(RBC)はDNAを含有しないが、ガンマ線照射により生成されたROSは、RBCに対して著しい損傷を引き起こすことが示されている。観察される主要な損傷は、i)溶血の増加、ii)K+漏出の増加、iii)輸血後生存の低減、およびiv)変形能の低減を含む。そのような損傷は、貯蔵により誘発されるRBCの損傷に類似するが、その増大された形態である。RBCの悪化状態は、そのような悪化したRBCを投与する医者には周知である。FDAは、ガンマ線照射後の短縮された保存期間(14日)、および/または照射された単位の28日間の全保存期間に関し、そのようなRBCの使用の制限を命じている。
血液成分の照射は、輸血関連移植片対宿主病を防止するために、そのような血液を受容する資格のある患者のカテゴリーの増加に起因してますます注目されている。しかしながら、照射は、貯蔵損傷の増大をもたらし、これは、そのような血液が輸血された場合に有害な効果を有し得る。RBCに対する照射の主な有害副作用は、ROSにより引き起こされる酸化的損傷であることが、当該技術分野において周知である。
本開示の方法において、デバイスを使用して枯渇化された血液製剤は、照射された血液製剤を必要とする患者に輸血され得るように、照射されてもよい。一実施形態において、赤血球組成物は、説明された枯渇化デバイスを使用して、酸素または酸素および二酸化炭素が枯渇化され、次いでガス不透過性貯蔵バッグ内での貯蔵前に照射されてもよい。別の実施形態において、血液製剤は、説明された枯渇化デバイスを使用して、酸素または酸素および二酸化炭素が枯渇化され、嫌気的環境内で貯蔵され、輸血前に照射されてもよい。
血液製剤の照射のための例示的方法は、参照によりその全体が本明細書に組み込まれる、2011年11月4日出願の米国特許出願第13/289,722号において示されている。
本開示のデバイスを使用して血液製剤を調製する方法は、1つまたは複数の緩衝液交換ステップを含んでもよい。一実施形態において、緩衝液は、細胞を沈降させるための遠心分離、上澄みの除去および液体の緩衝液との置換により交換され得る。一実施形態において、緩衝液は、等張緩衝液であってもよい。さらに別の実施形態において、緩衝液置換は、細胞の濾過および置換緩衝液の添加により達成され得る。
上述のように、本開示のデバイスは、枯渇血液製剤への1種または複数種のガスの導入を提供する。一実施形態において、本開示のデバイスを使用して調製された酸素または酸素および二酸化炭素枯渇血液製剤は、上述のようなガス添加デバイスを使用した方法により輸血用に調製され得る。一実施形態において、ガス添加デバイスは、酸素飽和度が100%またはその近くとなるように、血液製剤にO2を回復させる。本開示による方法において、枯渇血液製剤を含有する貯蔵バッグは、管を使用して液体入口104に接続され、血液製剤が液体チャンバ101を通して流動される一方で、ガス添加ポート128を通して酸素含有添加ガスがガス添加チャンバ134に提供される。液体、例えば嫌気性貯蔵赤血球は、液体チャンバ101を通って流動するにつれて、ガス透過性バリア107を通して拡散する、ガス添加チャンバ134を通って流動するガスから酸素を吸収する。ある特定の実施形態において、添加ポートは、デバイスを通る周囲空気の流動を提供する。他の実施形態において、添加ポート128は、提供される酸素富化ガス源を提供し得る。周囲空気、純酸素ならびに酸素および二酸化炭素の混合物を含む任意の好適なガスが、添加ポート128を通してガス添加デバイスに提供され得る。他の実施形態において、添加ガスは、O2と共に、または別個に提供されるNOを含んでもよい。一実施形態において、NOは、2つのガス添加ストリームおよび2つ以上の添加チャンバを有する添加デバイスに提供されてもよく、1つのガスストリームおよび添加チャンバはO2を提供し、第2のガスストリームおよび添加チャンバはNOを提供する。
本開示による方法は、血液の採取、説明された枯渇化デバイスへの通過、嫌気的貯蔵バッグ内での貯蔵、本開示のデバイスを使用した酸素再供給、および患者への輸血を含んでもよい。方法は、白血球低減ステップ、血小板低減または分離ステップ、赤血球編集ステップ、病原体不活性化ステップおよび体積低減ステップをさらに含んでもよい。
本開示のデバイスは、図17に示されるように、例えば濃厚赤血球(pRBC)を含む血液製剤の調製、および供血者からの全血の受容から受容者への輸血までの長期貯蔵のためのシステムおよび方法に含まれてもよく、また統合されてもよい。
その最も一般的な形態において、本開示の枯渇化デバイスを有するシステムは、赤血球の調製、および供血者からの全血の受容から受容者への輸血までの長期貯蔵のための、統合されたシステムおよび方法を提供し、それらを含む。例として、図17は、貯蔵前段階A21、嫌気的環境内での貯蔵段階B22、および貯蔵後段階C23を介する嫌気的貯蔵方法10およびシステム25を使用した、献血者15からの血液採取から受容者50への輸血までの構成要素および方法の例示的フローチャートを示す。しかしながら、本開示を参照して理解されるように、開示されたシステムおよび方法の様々な組合せが、本開示の範囲内として想定され、示された構成要素および方法は、置換、除外、または再配列されてもよい。
例示として、方法10は、受容者50への輸血プロセスを最適化し、そのような輸血に関連した疾病率を低減するために、本開示の枯渇化デバイス20、嫌気的貯蔵システム26、ならびに貯蔵後方法およびシステムを含む貯蔵システム25を説明している。白血球低減12、編集14、病原体不活性化11およびガンマ線照射17を含む向上処理が提供され、方法10および貯蔵システム25に含まれる。また、受容者50への輸血前に酸素47または酸素47および酸化窒素48(NO)を提供するための、本開示のガス添加デバイス46を使用したガス添加を含む貯蔵後方法が含まれ、提供される。方法10はまた、補助添加49および緩衝液交換40ステップを提供する。
図面、特に図17を再び参照すると、方法10は、供血者15からの採取から受容者50への輸血までの貯蔵システム25を説明している。システム25は、異なる部分プロセスまたはステップが生じ得る3つの段階を有する方法を示す。3つの段階は、一般に、貯蔵前段階A21、貯蔵段階B22および貯蔵後段階C23である。図17に示されるように、血液貯蔵方法10の異なるステップが、点線矢印により示されるように、最適な輸血結果を達成するために異なる段階で生じ得る。例えば、ガンマ線照射17は、貯蔵前段階A21の間の本開示の枯渇化デバイス20を使用した枯渇化の前、貯蔵段階B22の間、貯蔵後段階C23の間、貯蔵段階B22ならびに貯蔵前段階A21および貯蔵後段階C23の一部の間、またはそれらの組合せ等において行われてもよい。同様に、RBCの編集14(例えば瀕死のRBCの除去)は、貯蔵前段階A21の間、貯蔵後段階C23の間、またはそれらの組合せ等において行われてもよい。嫌気的環境27は、そのような嫌気的環境内で生じなければならないRBCへの利点を提供する、酸化窒素の添加48、ガンマ線照射17および病原体不活性化11等のステップとの相乗関係を有する。したがって、本開示による血液貯蔵処理には、いくつかの異なる順番が存在する。
貯蔵前段階A21は、供血者15からの採取から嫌気的環境27内での貯蔵までの時間を含む。段階A21の間、全血31が供血者15から採取されてもよく、血液成分、すなわち血漿33、血小板34およびRBC32が分離されてもよい。本明細書においてさらに説明されるように、貯蔵および/または処理を補助するために、任意選択的な添加剤溶液18が全血に添加されてもよい。病原体不活性化11、白血球低減12および編集14等の処理は、貯蔵前段階A21の間に行われてもよい。段階A21の間、酸素、二酸化炭素、または酸素および二酸化炭素が、貯蔵段階B22の前に本開示の枯渇化デバイス20を使用して枯渇化される。
貯蔵段階B22は、嫌気的貯蔵期間であり、嫌気性RBC30が、嫌気的貯蔵環境27、例えば嫌気的貯蔵バッグ36内に貯蔵される。いくつかの実施形態において、嫌気的環境27は、本開示の枯渇化デバイス20を使用した酸素枯渇後に、嫌気的貯蔵バッグ36により維持される。
貯蔵後段階C23は、嫌気的貯蔵環境27内での貯蔵後であるが受容者50への輸血前に開始し、体積低減41、編集14、緩衝液交換40中の清浄化、酸化窒素48および酸素46の一方または両方の添加等の処理を含んでもよい。いくつかの実施形態において、酸化窒素48および酸素46の一方または両方の添加は、本開示のガス添加デバイス46を使用して達成され得る。
図面、特に図18を参照すると、例示的な嫌気的貯蔵システム25が示されている。ある特定の実施形態において、システム25は、使い捨てであるように構築されてもよい。ここでも、システム25は例示的システムであり、したがって、上述のように異なる時点または異なる段階中で異なる部分プロセスまたはステップが生じ得る。血液貯蔵システム25は、本開示の枯渇化デバイス20(例えばデバイス100〜1500)、嫌気的血液貯蔵バッグ36および任意選択的な添加剤溶液バッグ250を含む。従来的に血液採取のプロセスに関連する構成要素は、瀉血針16、抗凝固剤(例えば添加剤18)を含有する血液採取バッグ35、および血漿を含有するバッグ45である。配管が、様々な構成(1つの実施形態が示されている)において血液貯蔵システム25の様々な構成要素を接続し得る。本開示による枯渇化デバイスは、枯渇化デバイス100、200、300、400、500、600、700、800、900、もしくは1000、ガスおよび血漿分離デバイス1200もしくは1300、または組み合わされた白血球低減血漿分離枯渇化デバイス1400もしくは1500を含み得る。システム25はまた、白血球低減フィルタ4000、および編集デバイス5000、照射デバイス6000、病原体不活性化デバイス7000、体積低減デバイス8000およびガス添加デバイス9000を含有してもよい。例えば、本開示によるガス添加デバイス1600は、受容者50への輸血に先立って、酸化窒素48、酸素47、または酸素47およびNO 48をRBCに即時に供給する。システム25は、そのようなデバイス4000〜9000の全てまたは組合せを、様々な構成で含有し得る。システム25はまた、上述のようなデバイス100〜1600を含有し得る。
システム25の構成要素は、従来の様式で接続される。管440は、採取バッグ35を白血球低減フィルタ400と接続する。管441は、溶液バッグ250を採取バッグ35と接続する。管442は、血漿バッグ45を採取バッグ35と接続する。管443は、白血球フィルタ4000を本開示の枯渇化デバイス100と接続する。管444は、枯渇化デバイス100を血液貯蔵バッグ2000と接続する。血液貯蔵システム25は、好ましくは、単回使用の使い捨て低コストシステムである。
システム構成要素、すなわち白血球低減フィルタ4000、編集デバイス5000、照射デバイス6000、病原体不活性化デバイス7000、体積低減デバイス8000および酸化窒素デバイス9000は、輸血前のRBCに様々な治療を行う。治療に依存して、そのような治療は、本開示の枯渇化デバイス20への通過前に、または貯蔵バッグ36内での貯蔵後に、RBCに対して行われる。枯渇化デバイス20内で枯渇化された後、RBCは、患者に対する所望の結果を確実とし、貯蔵RBCを使用した輸血に一般的に関連する疾病率を回避するために、酸素、二酸化炭素、または酸素および二酸化炭素枯渇環境27内に維持される。
本開示の枯渇化デバイスおよびガス添加デバイスを組み込んだ血液貯蔵システムの追加の限定されない例は、参照によりその全体が本明細書に組み込まれる、2012年7月3日出願の米国特許出願第13/541,554号、名称「System for Extended Storage of Red Blood Cells and Methods of Use」に見出すことができる。
本明細書において引用される各定期刊行物、特許および他の文書または参考文献は、参照することによりその全体が本明細書に組み込まれる。
ここで、本発明を概略的に説明してきたが、例示を目的として提供され、指定されない限り本発明の限定を意図しない以下の例を参照することにより、本発明がより容易に理解される。
(例1)
剛性筐体、単一の液体チャンバ、2つの枯渇化チャンバのデバイス
図1A、1Bおよび1Cは、単一の液体チャンバ101および2つの枯渇化チャンバ102を有する剛性筐体枯渇化デバイス100を示す。2つの枯渇化チャンバ102は、剛性筐体外側シェル103およびガス透過性バリア107により形成される。単一の液体チャンバ101は、内側シェル109およびガス透過性バリア107により形成され、入口104および出口105を有する。枯渇化チャンバ102は、枯渇化媒体106を含有する。ガス透過性バリア107は、単一の液体チャンバ101および2つの枯渇化チャンバ102を分離する。
血液は、入口104を通って単一の液体チャンバ101に進入すると、枯渇化チャンバ102内の枯渇化媒体106により形成された酸素枯渇環境に曝露されるが、枯渇化媒体106は、固体のO2およびCO2収着剤の組合せである。これによって、赤血球は、枯渇化チャンバ102のガス枯渇環境に酸素および二酸化炭素を放出する。酸素および二酸化炭素は、ガス透過性バリア107を通って拡散する。ガス枯渇環境内でのO2およびCO2ガスの増加は、この添加された酸素および二酸化炭素を環境から除去する枯渇化媒体106における反応を引き起こす。酸素および二酸化炭素枯渇化媒体106は、枯渇化チャンバ102内に存在する長方形パッケージとして描写されているが、酸素および二酸化炭素枯渇化媒体106のいくつかのパケットが、別個または組み合わされて各チャンバ内に配置されてもよく、または、酸素および二酸化炭素枯渇化媒体106の単一のより長いパケットが使用されてもよい。
液体チャンバ101は、ガス透過性バリア107に対する液体の流動を誘導する流動制御機構108を含有する。この誘導された流動は、混合と共に、個々の赤血球とガス透過性バリア107との間の距離を最小限化する。流動制御機構108は、血液チャンバ101(図1B)のほぼ半分の高さとして描写されている。この比は、異なる流量のために改変されてもよい。流動制御機構108の数および位置は、特定の構成に合わせてプロセスを最適化するために改変され得る。酸素および二酸化炭素枯渇化プロセスは、細胞および液体が所望のレベルまで酸素および二酸化炭素を枯渇化され、出口105を通って出るまで、液体チャンバ101内の赤血球を含有する液体の曝露の間継続する。酸素および二酸化炭素枯渇化の程度は、デバイスの高さ、長さおよび幅、液体がチャンバ内にある時間、ならびにチャンバを通る流量により制御される。上部に入口104および底部に出口105を有するように描写されているが、配向は、液体チャンバ101内外への流動を制御するために逆であってもよい。
(例2)
剛性筐体、2つの液体チャンバ、3つの枯渇化チャンバのデバイス
図3A、3Bおよび3Cは、2つの液体チャンバ101および3つの枯渇化チャンバ102を有する剛性筐体枯渇化デバイス300を示す。2つの外側枯渇化チャンバ102は、ガスバリア筐体外側シェル103により形成される。内側枯渇化チャンバ102は、筐体シェル110により形成される。2つの液体チャンバ101は、外側筐体シェル109により形成され、入口104および出口105を有する。枯渇化チャンバ102は、酸素および二酸化炭素枯渇化媒体106を含有する。ガス透過性バリア107は、2つの液体チャンバ101および3つの枯渇化チャンバ102を分離する。液体は、入口104を通って液体チャンバ101に進入すると、酸素および二酸化炭素枯渇化媒体106により形成された酸素および二酸化炭素枯渇環境に曝露される。これによって、液体中の赤血球は、酸素および二酸化炭素枯渇環境に酸素および二酸化炭素を放出する。酸素および二酸化炭素ガスは、ガス透過性バリア107を通って拡散する。ガス枯渇環境内での酸素および二酸化炭素の増加は、この添加されたガスを環境から除去する酸素および二酸化炭素枯渇化媒体106との反応をもたらす。このプロセスは、細胞が所望のレベルまで酸素および二酸化炭素を枯渇化され、出口105を通って出るまで、液体中の赤血球の曝露の間継続する。上部に入口104および出口105、ならびに底部に接続された入口104および出口105を有するように描写されているが、配向は、液体チャンバ101内外への流動を制御するために逆であってもよい。液体チャンバはまた、デバイスの同じ端部の両方の入口および両方の出口と平行に接続されてもよい。「スタック型」枯渇化デバイス300は、図1A、1Bおよび1Cに示される枯渇化デバイス100の全ての機構および能力を再現する。血液チャンバ109および制御機構108の内部機構および比の変更と組み合わせた設計のスタックは、酸素および二酸化炭素枯渇化プロセス要件に適合するために必要な数だけ層を形成するように続いてもよい。
(例3)
可撓性筐体、剛性液体チャンバ、2つの枯渇化チャンバのデバイス
図4A〜Cは、単一の液体チャンバ101を有し、2つの枯渇化チャンバ102を有する可撓性筐体枯渇化デバイス400を示す。2つの枯渇化チャンバ102は、それぞれ、ガス透過性バリア107および可撓性シェル129により形成される。単一の液体チャンバ101は、剛性内側シェル109に入口104および出口105を有する。剛性内側シェル109は、流動制御機構108を含む。枯渇化チャンバ103は、枯渇化媒体106を含有する。
赤血球を含有する液体は、入口104を通って単一の液体チャンバ101に進入すると、ガス透過性バリア107を通して酸素および二酸化炭素枯渇化媒体106により形成されたガス枯渇環境に曝露される。これによって、赤血球は、ガス枯渇環境に酸素および二酸化炭素を放出する。酸素および二酸化炭素は、ガス透過性バリア107を通って拡散する。枯渇化チャンバ内での酸素および二酸化炭素の増加は、この添加された酸素および二酸化炭素を環境から除去する酸素および二酸化炭素枯渇化媒体106との反応を引き起こす。酸素および二酸化炭素枯渇化媒体106は、枯渇化チャンバ102の中央部の長方形パッケージとして描写されている。酸素および二酸化炭素枯渇化媒体106のいくつかのパケットは、各チャンバ内に配置されてもよく、または、酸素および二酸化炭素枯渇化媒体106の単一のより長いパケットが使用されてもよい。酸素および二酸化炭素媒体106は、別個のパケットとして含まれてもよい。パケットならびに酸素および二酸化炭素枯渇化媒体106に内在する化学の構成は、性能を最適化するために、各枯渇化チャンバ102に対して異なっていてもよい。酸素および二酸化炭素枯渇化プロセスは、赤血球および液体が所望のレベルまで酸素および二酸化炭素を枯渇化され、出口105を通って出るまで、液体チャンバ101内の赤血球の曝露の間継続する。酸素および二酸化炭素枯渇化の程度は、デバイスの高さおよび長さ、血液がチャンバ内にある時間またはチャンバを通る流量、ならびに血液チャンバの幅により制御される。上部に入口104および底部に出口105を有するように描写されているが、配向は、液体チャンバ101内外への流動を制御するために逆であってもよい。
(例4)
可撓性筐体、単一の液体チャンバ、2つの枯渇化チャンバのデバイス
図5A、5Bおよび5Cは、単一の液体チャンバ101および2つの枯渇化チャンバ102を有する可撓性筐体ガス枯渇化デバイス500を示す。図5Aに示されるように、可撓性筐体は、液体が液体チャンバ101を通って流動する際にデバイスの膨張またはインフレーションを提供し得るが、必須ではない。2つの枯渇化チャンバ102は、可撓性シェル129を形成するガスバリア外側フィルムにより形成される。単一の液体チャンバ101は、入口104および出口105を有する。枯渇化チャンバ102は、酸素および二酸化炭素枯渇化媒体106を含有する。ガス透過性バリア107は、単一の液体チャンバ101および2つの枯渇化チャンバ102を分離する。
赤血球を含有する液体は、入口104を通って単一の液体チャンバ101に進入すると、酸素および二酸化炭素枯渇化媒体106により形成されたガス枯渇環境に曝露される。これによって、赤血球は、ガス枯渇環境に酸素および二酸化炭素を放出する。酸素および二酸化炭素は、ガス透過性バリア107を通って拡散する。枯渇化チャンバ内での酸素および二酸化炭素の増加は、この添加された酸素および二酸化炭素を環境から除去する酸素および二酸化炭素枯渇化媒体106との反応を引き起こす。酸素および二酸化炭素枯渇化媒体106は、枯渇化チャンバ102の中央部の長方形パッケージとして描写されている。酸素および二酸化炭素枯渇化媒体106のいくつかのパケットは、各チャンバ内に配置されてもよく、または、酸素および二酸化炭素枯渇化媒体106の単一のより長いパケットが使用されてもよい。酸素および二酸化炭素媒体106は、別個のパケットとして含まれてもよい。パケットならびに酸素および二酸化炭素枯渇化媒体106に内在する化学の構成は、性能を最適化するために、各枯渇化チャンバ102に対して異なっていてもよい。液体チャンバ101は、流動制御機構108を有さないように描写されているが、例えば例5において記載されるように、流動制御機構が組み込まれてもよい。酸素および二酸化炭素枯渇化プロセスは、赤血球および液体が所望のレベルまで酸素および二酸化炭素を枯渇化され、出口105を通って出るまで、液体チャンバ101内の赤血球の曝露の間継続する。酸素および二酸化炭素枯渇化の程度は、デバイスの高さおよび長さ、血液がチャンバ内にある時間またはチャンバを通る流量、ならびに血液チャンバの幅により制御される。上部に入口104および底部に出口105を有するように描写されているが、配向は、液体チャンバ101内外への流動を制御するために逆であってもよい。
(例5)
可撓性筐体、単一の液体チャンバ、2つの枯渇化チャンバのデバイス
図6A〜Cは、単一の液体チャンバ101および2つの枯渇化チャンバ102を有する可撓性筐体ガス枯渇化デバイス600を示す。2つの枯渇化チャンバ102は、可撓性シェル129を形成するガスバリア外側フィルムにより形成される。単一の液体チャンバ101は、液体入口104および液体出口105を有する。枯渇化チャンバ102は、酸素および二酸化炭素枯渇化媒体106を含有する。ガス透過性バリア107は、単一の液体チャンバ101および2つの枯渇化チャンバ102を分離する。
赤血球を含有する液体は、入口104を通って単一の液体チャンバ101に進入すると、酸素および二酸化炭素枯渇化媒体106により形成されたガス枯渇環境に曝露される。これによって、赤血球は、ガス枯渇環境に酸素および二酸化炭素を放出する。酸素および二酸化炭素は、ガス透過性バリア107を通って拡散する。枯渇化チャンバ内での酸素および二酸化炭素の増加は、この添加された酸素および二酸化炭素を環境から除去する酸素および二酸化炭素枯渇化媒体106との反応を引き起こす。酸素および二酸化炭素枯渇化媒体106は、上述のように提供される。液体チャンバ101は、ガス透過性バリア107における制御された経路に沿って血液の流動を誘導する様式でガス透過性バリア107を互いに結合することにより生成される液体の流動のための、間接的経路133を備える。この誘導された流動は、混合し、個々の赤血球とガス透過性バリア107との間の距離を最小限化する。酸素および二酸化炭素枯渇化プロセスは、赤血球および液体が所望のレベルまで酸素および二酸化炭素を枯渇化され、出口105を通って出るまで、液体チャンバ101内の赤血球の曝露の間継続する。酸素および二酸化炭素枯渇化の程度は、デバイスの高さおよび長さ、血液がチャンバ内にある時間またはチャンバを通る流量、ならびに血液チャンバの幅により制御される。上部に入口104および底部に出口105を有するように描写されているが、配向は、液体チャンバ101内外への流動を制御するために逆であってもよい。
(例6)
可撓性筐体、2つの液体チャンバ、3つの枯渇化チャンバのデバイス
図7A、7Bおよび7Cは、2つの液体チャンバ101および3つの枯渇化チャンバ102を有する可撓性筐体枯渇化デバイス700を示す。2つの外側枯渇化チャンバ102は、可撓性シェル129を形成するガスバリア外側フィルムにより形成される。内側枯渇化チャンバ102は、中央の2つのガス透過性バリア107を端部でシールすることにより形成される。2つの液体チャンバ101は、外側の2つのガス透過性バリア107を内側の2つのガス透過性バリア107に入口104および出口105を有する外側端部でシールすることにより形成される。酸素および二酸化炭素枯渇化チャンバ102は、酸素および二酸化炭素枯渇化媒体106を含有する。ガス透過性バリア107は、2つの液体チャンバ101および3つの枯渇化チャンバ102を分離する。赤血球を有する液体は、入口104を通って液体チャンバ101に進入すると、酸素および二酸化炭素枯渇化媒体106により形成された酸素および二酸化炭素枯渇環境に曝露される。これによって、赤血球は、酸素および二酸化炭素枯渇環境に酸素および二酸化炭素を放出する。酸素および二酸化炭素ガスは、ガス透過性バリア107を通って拡散する。ガス枯渇環境内での酸素および二酸化炭素の増加は、これらの添加されたガスを環境から除去する酸素および二酸化炭素枯渇化媒体106における反応を引き起こす。液体チャンバ101は、流動制御機構を有さないように描写されている。流動制御機構は、例えば図6A〜Cに示されるように、ガス透過性バリア107を結合することにより形成され得る。枯渇化プロセスは、細胞が所望のレベルまで酸素および二酸化炭素を枯渇化され、出口105を通って出るまで、赤血球の曝露の間継続する。上部に入口104および出口105、ならびに底部に接続された入口104および出口105を有するように描写されているが、配向は、液体チャンバ101内外への流動を制御するために逆であってもよい。液体チャンバ101はまた、デバイスの同じ端部の両方の入口および両方の出口と平行に接続されてもよい。
このスタック設計は、図3A、3Bおよび3Cに示される枯渇化デバイス500の全ての機構および能力を再現する。枯渇化デバイス600の同様の機構および能力が、デバイス700のスタック型設計に組み込まれ得る。内部機構の変更と組み合わせた設計のスタックは、酸素および二酸化炭素枯渇化プロセス要件に適合するために必要な数だけ層を形成し得る。
(例7)
可撓性筐体、単一の液体チャンバ、2つの枯渇化チャンバのデバイス
図8A、8Bおよび8Cは、単一の液体チャンバ101および2つの枯渇化チャンバ115を有する剛性筐体枯渇化デバイス800を示す。2つの枯渇化チャンバ115は、ガス不透過性である剛性筐体外側シェル103により形成される。単一の液体チャンバ101は、内側シェル109により形成され、入口104および出口105を有する。酸素および二酸化炭素枯渇化チャンバ115は、枯渇化ガス114がそこを通ってデバイスに進入およびデバイスを出る、ガス入口111およびガス出口112を有するガスバリア外側筐体シェル103、ならびにガス透過性バリア107により形成される。ガス透過性バリア107は、単一の液体チャンバ101および2つの枯渇化チャンバ115を分離する。
血液は、入口104を通って単一の液体チャンバ101に進入すると、ガス入口111に進入する枯渇化ガス114により形成されたガス枯渇環境に曝露される。枯渇化ガス114は、酸素不含または酸素および二酸化炭素不含であってもよい。酸素および二酸化炭素不含枯渇化ガス114によって、赤血球は、酸素および二酸化炭素枯渇環境に酸素および二酸化炭素を放出する。酸素および二酸化炭素ガスは、ガス透過性バリア107を通って拡散する。枯渇環境内の増加した酸素および二酸化炭素は、枯渇化ガス114と混合し、ガス出口112を通って出る。ガスの流動は、添加された酸素および二酸化炭素を枯渇化チャンバ102の環境から除去する。上部にガス入口111および底部にガス出口112を有するように描写されているが、配向は、酸素枯渇チャンバ115内外への流動を制御するために逆であってもよい。酸素不含または酸素および二酸化炭素枯渇化ガスは描写されていない。アルゴン、ヘリウムおよび窒素を含むがこれらに限定されないいくつかのガスが使用される。ガスおよび流量の構成は、性能を最適化するために、各枯渇化チャンバ102に対して異なっていてもよい。ガスバリア外側シェル103により形成された枯渇化チャンバ115は、ガス流動制御機構113を含有する。これらの流動制御機構113は、2つの水平な棒として描写されている。これらの機構は、放出された酸素と枯渇化ガス114との混合を増加させる。選択されたガスおよび流量に依存して、異なる構成が使用され得る。
液体チャンバ101は、上述のような流動制御機構108を含有する。ガス枯渇化プロセスは、細胞が所望のレベルまでガスを枯渇化され、出口105を通って出るまで、液体チャンバ101内の赤血球の曝露の間継続する。ガス枯渇化の程度は、デバイスの高さおよび長さ、赤血球を含有する液体がチャンバ内にある時間、チャンバを通る流量、ならびに液体チャンバの幅により制御される。上部に入口104および底部に出口105を有するように描写されているが、配向は、液体チャンバ101内外への流動を制御するために逆であってもよい。
(例8)
剛性筐体、2つの液体チャンバ、3つのガス枯渇化チャンバのデバイス
図9A、9Bおよび9Cは、2つの液体チャンバ101およびガス枯渇化チャンバ115を有する剛性筐体枯渇化デバイス900を示す。2つのガス枯渇化チャンバ115は、ガスバリア外側シェル103により形成される。2つの液体チャンバ101は、内側シェル109により形成され、入口104および出口105を有する。ガスバリア外側シェル103により形成された2つの外側ガス枯渇化チャンバ115は、ガス入口111およびガス出口112を有する。内側枯渇化チャンバ115は、ガスバリア筐体シェル110により形成される。ガス透過性バリア107は、2つの液体チャンバ101および3つの枯渇化チャンバ115を分離する。
赤血球を含有する液体は、入口104を通って液体チャンバ101に進入すると、上記のデバイス800に関して記載されたように、ガス入口111に進入する酸素不含または酸素および二酸化炭素不含ガスにより形成されたガス枯渇環境に曝露される。上部に入口104および出口105、ならびに底部に接続された入口104および出口105を有するように描写されているが、配向は、液体チャンバ101内外への流動を制御するために逆であってもよい。枯渇化デバイス900は、デバイスを通って流動する液体の連続的枯渇化を提供する。追加のガス枯渇化チャンバ115および液体チャンバ101が容易に追加され得る。チャンバはまた、デバイスの同じ端部の両方の入口および両方の出口と平行に接続されてもよい。
ガス枯渇化プロセスは、細胞が所望のレベルまでガスを枯渇化され、出口105を通って出るまで、液体チャンバ101内の赤血球の曝露の間継続する。ガス枯渇化の程度は、デバイスの高さおよび長さ、液体がチャンバ内にある時間またはチャンバを通る流量、ならびに液体チャンバの幅により制御される。
(例9)
剛性筐体、2つの液体チャンバ、3つのガス枯渇化チャンバのデバイス
図10A、10Bおよび10Cは、赤血球含有流体が直列ではなく並列で流動する以外上記枯渇化デバイス900と同様である、2つの液体チャンバ101およびガス枯渇化チャンバ115を有する剛性筐体枯渇化デバイス1000を示す。2つのガス枯渇化チャンバ115は、ガスバリア外側シェル103により形成される。2つの液体チャンバ101は、内側シェル109により形成され、入口104および出口105を有する。デバイス1000において、液体の流動は、分流器130により2つ以上の入口104に分配され、枯渇液体の流動は、出口105から出た後に合流器131により合流する。デバイスの動作は、例8において上述された通りである。
(例10)
剛性筐体、単一の液体チャンバ、単一の枯渇化チャンバの血漿分離デバイス
図12A、12Bおよび12Cは、単一の液体チャンバ101、枯渇化チャンバ102、および血漿/血小板チャンバ127を有する剛性筐体枯渇化デバイス1200を示す。枯渇化チャンバ102は、剛性筐体外側シェル103およびガス透過性バリア107により形成される。単一の液体チャンバ101は、内側シェル109およびガス透過性バリア107および血漿多孔質疎水性膜124により形成される。枯渇化デバイス1200は、入口104および出口105を有する。枯渇化チャンバ102は、枯渇化媒体106を含有する。ガス透過性バリア107は、単一の液体チャンバ101および枯渇化チャンバ102を分離する。枯渇化デバイス1200はまた、血漿外側シェル119および血漿多孔質親水性膜124および嫌気性血漿ポート116から形成された血漿チャンバ127を有する。
血液は、入口104を通って単一の液体チャンバ101に進入すると、枯渇化チャンバ102内の枯渇化媒体106により形成された酸素枯渇環境に曝露されるが、枯渇化媒体106は、固体のO2およびCO2収着剤の組合せである。これによって、赤血球は、枯渇化チャンバ102のガス枯渇環境に酸素および二酸化炭素を放出し、ガス透過性バリア107を通した液体チャンバ101からの酸素および二酸化炭素の拡散がもたらされる。上記の例において説明されたデバイスに関して、ガス枯渇化が進行する。同じく上記の例において記載されたように、液体チャンバ101は、流動制御機構108を含有する。
液体チャンバ101は、液体チャンバ101を血漿チャンバ127から分離する血漿多孔質親水性膜124をさらに含有する。嫌気性血漿は、血漿多孔質親水性膜118を通過して血漿チャンバ127内に入り、嫌気性血漿120は、嫌気性血漿ポート116を通って出る。血漿多孔質親水性膜127を通り嫌気性血漿チャンバ127内に入る嫌気性血漿の流動は、液体チャンバ101と血漿チャンバ127との間の圧力差により制御される。血漿チャンバ117の圧力に対する液体チャンバ101内の増加した圧力は、血漿多孔質親水性膜124を通り嫌気性血漿チャンバ127内に入る血漿の流動の増加をもたらす。
(例11)
剛性筐体、単一の液体チャンバ、2つの枯渇化チャンバの血漿分離デバイス
図13A、13Bおよび13Cは、単一の液体チャンバ101ならびに2つの枯渇化チャンバ102および122を有する剛性筐体枯渇化デバイス1300を示す。第1の枯渇化チャンバ102は、剛性筐体外側シェル103およびガス透過性バリア107により形成される。第2の枯渇化チャンバ122は、外側シェル103およびガス透過性バリア107により形成される。単一の液体チャンバ101は、内側シェル109、ガス透過性バリア107、および血漿多孔質疎水性膜124により形成される。枯渇化デバイス1300は、入口104および出口105を有する。枯渇化チャンバ102および枯渇化チャンバ122は、枯渇化媒体106を含有する。ガス透過性バリア107は、単一の液体チャンバ101および枯渇化チャンバ102を分離し、ガス透過性バリア107は、血漿チャンバ117を枯渇化チャンバ122から分離する。枯渇化デバイス1300はまた、血漿外側シェル119、血漿多孔質親水性膜124、およびガス透過性バリア107から形成された血漿チャンバ117を有する。血漿チャンバ117は、嫌気性血漿ポート116を有する。
血液は、入口104を通って単一の液体チャンバ101に進入すると、枯渇化チャンバ102内の枯渇化媒体106により形成された酸素枯渇環境に曝露されるが、枯渇化媒体106は、固体のO2およびCO2収着剤の組合せである。ガス枯渇化は、上記の例において説明されたように進行する。
液体チャンバ101は、液体チャンバ101を血漿チャンバ117から分離する血漿多孔質親水性膜124をさらに含有する。ガス枯渇血漿は、血漿多孔質親水性膜124を通過して嫌気性血漿チャンバ117内に入り、嫌気性血漿120は、嫌気性血漿ポート116を通って出る。血漿チャンバ117内の血漿は、(枯渇化媒体106に依存して)O2およびCO2のさらなる除去を提供する第2の枯渇化チャンバ122から分離される。血漿多孔質親水性膜124を通り嫌気性血漿チャンバ117内に入る嫌気性血漿の流動は、液体チャンバ101と血漿チャンバ117との間の圧力差により制御される。血漿チャンバ117の圧力に対する液体チャンバ101内の増加した圧力は、血漿多孔質親水性膜124を通り嫌気性血漿チャンバ117内に入る血漿の流動の増加をもたらす。
(例12)
白血球低減およびガス枯渇化を組み合わせたデバイス
図14A、14Bおよび14Cは、白血球低減媒体123、白血球低減チャンバ125、白血球低減流体チャンバ132、液体チャンバ101および2つの枯渇化チャンバ102を有する組合せ枯渇化デバイス1400を示す。組合せ枯渇化デバイス1400は、液体入口104および液体出口105を含む。上記の例において記載されるように、枯渇化チャンバ102は、酸素不含および二酸化炭素不含環境を提供するために枯渇化媒体106を有する。
血漿低減血液が液体入口104を通って進入すると、流体は、血液中に存在する白血球に結合またはそれを吸着する白血球低減媒体123を通過する。白血球低減媒体123を通過した後、流体は白血球低減チャンバ125に進入して、流動制御機構108を有する枯渇化チャンバ102に流動する。上記の例において記載されたように、血液は、酸素および二酸化炭素を枯渇化され、液体出口105を通って流出する。
図14Aに示されるように、白血球低減媒体123は、膜形態で提供される。代替の構成において、白血球低減媒体123は、液体がそれを通って流動するマトリックスとして提供されてもよい。この代替の構成において、白血球低減チャンバ123および白血球低減流体チャンバ132は、組み合わされ、白血球低減媒体123マトリックスで充填されてもよい。
(例13)
白血球低減、ガス枯渇化、および血漿分離を組み合わせたデバイス
図15A、15Bおよび15Cは、白血球低減媒体123、白血球低減チャンバ125、血漿分離チャンバ126、液体チャンバ101および2つの枯渇化チャンバ102を有する組合せ枯渇化デバイス1500を示す。組合せ枯渇化デバイス1500は、液体入口104ならびに液体出口105および106を含む。枯渇化媒体106および流動制御機構108を有する枯渇化チャンバ102は、上記の例において記載された通りである。
全血が液体入口104を通って進入すると、流体は、血液中に存在する白血球に結合またはそれを吸着する白血球低減媒体123を通過する。白血球低減媒体123を通過した後、流体は血漿分離チャンバ126に進入する。上に記載されたように、白血球低減媒体123は、膜または白血球低減媒体のマトリックスとして提供され得る。血漿および血小板は、血漿多孔質疎水性膜124を通って血漿/血小板チャンバ127内に流動する。血漿および血小板は、チャンバから116を通って血漿および血小板採取バッグ(図示せず)に流動する。ここで白血球/血漿/血小板が枯渇した赤血球を有する流体は、枯渇化チャンバ102内に流動し、上述の様式で酸素および二酸化炭素を枯渇化される。嫌気性赤血球は、液体出口105を通って流出し、嫌気的貯蔵バッグ内に採取および貯蔵される。
(例14)
酸素再供給デバイス
図16A、16Bおよび16Cは、ガス透過性バリア107により分離されたガス添加チャンバ134、および2つのガス透過性バリア107により形成された液体チャンバ101を有する、本開示による酸素再供給デバイス1600を示す。
酸素(または酸素および二酸化炭素)枯渇血液製剤は、液体入口104を通って進入し、液体チャンバ102を通過し、そこでガス透過性バリア107を通して酸素を供給される。示されるように、ガス添加ポート128を通して周囲空気が提供される。酸素はガス添加チャンバ134からガス透過性バリア107を通って拡散し、赤血球中のヘモグロビンにより吸収される。いくつかの実施形態において、添加ポート128は、ガス添加チャンバ134内に流動する酸素富化ガス源を提供する。周囲空気、純酸素、ならびに酸素および二酸化炭素の混合物を含む任意の好適なガスが、添加ポート128を通してガス添加デバイスに提供されてもよく、O2と共に、または別個に提供されるNOをさらに含んでもよい。
(例15)
単一カセット構成を使用した赤血球懸濁液中の酸素の枯渇化
可撓性筐体、単一の液体チャンバ、および2つの枯渇化チャンバを有するデバイス(単一カセット構成)を使用して、赤血球懸濁液中の酸素が枯渇化される。図6A、6B、および6Cに記載の波状経路プロファイル設計を有するように機械加工されたアクリルブロックから構築された本開示のデバイスを用いて、赤血球懸濁液の脱酸素を試験する。ガス透過性バリア107は、疎水性膜(GVSP22205、Millipore、Billerica、MA)により提供される。膜は、Arrow AP10−4多目的ホットメルト接着剤(Arrow Fastener Co.、Saddle Brook、NJ)を使用して波状経路に取り付けられる。枯渇化媒体106は、洗浄ガス(100%N2)により提供される。表1は、試験された3つの試作デバイスの経路構造を要約している。全てのデバイスは、2235mmの同じ経路長および90cm2の曝露表面積を有する。
2つの流通式セル酸素センサ(「セル」)が、デバイスと直列に、1つは入口104の上流側、もう1つは出口105の下流側に設置される。セルセンサは、PreSens Fibox 3トレースPSt6ソフトウェア(PST6v701)が稼動するPreSens Fibox 3トレースデバイスおよびインライン測定用のpST3酸素プローブ(PreSens−Precision Sensing GmbH)を備える。2つの液浸プローブ酸素センサ(「プローブ」)が、可撓性シェル129の内側の液体チャンバ101と直列に、1つは入口104のすぐ下流側、もう1つは出口105のすぐ上流側に提供される。プローブセンサは、PreSens OXY−4ミニソフトウェア(OXY4v2_30fb)が稼動するPreSens OXY−4ミニデバイスおよびPSt6酸素液浸プローブセンサ(PreSens−Precision Sensing GmbH)を備える。これらのセンサは、流路に沿った異なる位置での赤血球を有する流体懸濁液中の酸素の分圧を監視する。
この例において、赤血球懸濁液は、一度センサ−液体チャンバアセンブリを通って流動する。表2は、異なる試作デバイスにおける脱酸素プロセスの結果を要約している。全ての試験は、室温で行われている。入口センサにより測定された赤血球懸濁液中の酸素の平均分圧は、pO2 inである。出口センサにより測定された赤血球懸濁液中の酸素の平均分圧は、pO2 outである。酸素レベルの変化(ΔpO2)は、pO2 inとpO2 outとの間の差を取ることにより計算される。酸素低減のパーセンテージ(%O2低減)は、ΔpO2をpO2 inで除すことにより計算される。
経路体積に対する曝露表面積の比は、酸素低減の効率に影響することが観察される。1ml/分の流量では、試作デバイスAは、3つのデバイスの中で最も高い酸素低減のパーセンテージを提供する。酸素枯渇化の効率に対する流量の影響はまた、試作デバイスBにおいても観察される。3つの流量(1ml/分、1.2ml/分、および1.4ml/分)のうち、1ml/分において最も高い酸素低減のパーセンテージが観察される。
おそらくは可撓性シェル129に対する相対的位置付けに起因して、またはおそらくは流体の不均一性に起因して、プローブセンサは、セルセンサと比較して一貫してより高い酸素低減のパーセンテージを測定する。
Figure 0006796664
Figure 0006796664
(例16)
直列に接続された複数のデバイスを使用した赤血球懸濁液中の酸素の枯渇化
表1に記載の経路構造を有するデバイスを、例15に記載のように構築する。同じ経路の深さを有する3つのデバイスを直列で接続し、試験セットを形成する。表3は、各試験セットの全体的経路構造を要約している。デバイスの各セットは、全体で6705mmの同じ経路長および269cm2の曝露表面積を有する。
2つの液浸プローブ酸素センサ(「プローブ」)が、一連の第1のデバイスの可撓性シェル129の内側の液体チャンバ101と直列に、1つは入口104のすぐ下流側、もう1つは出口105のすぐ上流側に提供される。プローブセンサは、例15において上述された通りである。さらに、2つの液浸プローブ酸素センサ(「プローブ」)が、一連の第3のデバイスの可撓性シェル129の内側の液体チャンバ101と直列に、1つは入口104のすぐ下流側、もう1つは出口105のすぐ上流側に提供される。これらのセンサは、流路に沿った異なる位置での血液中の酸素の分圧を監視する。
また、赤血球懸濁液中の酸素飽和レベルおよび酸素の分圧を、処理の前および後の両方において試験する。処理の前および後に赤血球懸濁液のアリコートをシリンジにより採取し、酸素分析計(「Nova COOX」;Nova Analytical Systems、Niagara Falls、NY)において分析する。
この例において、赤血球懸濁液は、一度試験セットを通って流動する。表4は、異なる試験セットにおける脱酸素プロセスの結果を要約している。全ての試験は、22.0〜23.6℃の間の温度で行われる。試験セットの第1のデバイスにおける入口センサにより測定された血液中の酸素の平均分圧は、pO2 d1inである。試験セットの第3のデバイスにおける出口センサにより測定された血液中の酸素の平均分圧は、pO2 d3outである。酸素レベルの変化(ΔpO2)は、pO2 d1inとpO2 d3outとの間の差を取ることにより計算される。酸素低減のパーセンテージ(%O2低減)は、ΔpO2をpO2 d1inで除すことにより計算される。表5は、23℃および37℃の両方におけるpO2測定値に基づき、37℃における測定%SO2を計算%SO2値と比較している。変換計算は、以下のヒルの式に基づいてなされる。
Figure 0006796664
式中、n=2.7は、ヘモグロビンに結合する酸素の協同性を表し、P50は、ヘモグロビンが23℃または37℃において半分飽和する分圧を表す。脱酸素の前および後の赤血球懸濁液の測定または計算酸素飽和度は、それぞれ%SO2 inおよび%SO2 outである。
1.10ml/分の流量において、3つの試作Bデバイスを備える試験セットは、3つのセットのうち最も高い酸素低減のパーセンテージを提供し、91.5%の酸素低減を達成する。全ての試験セットにおいて、より低い流量が一貫して観察され、より速い流量と比較してより高いパーセンテージの酸素低減をもたらす。1.10ml/分の流量において、3つの試作Aデバイスを含む試験セットで処理された赤血球懸濁液試料は、Nova COOXシステムを使用して、37℃において飽和酸素レベルの9.3%の低減を有することが測定されている。しかしながら、同じ血液試料は、37℃において同じシステムから生成されたpO2測定値に基づいて、その酸素飽和レベルにおいて42.9%の低減を示すことが計算される。理論に制限されないが、これは、ヒルの式のモデルにおける協同性またはP50値が、実験結果を反映するように最適化され得ないことを示唆している可能性がある。インラインプローブセンサにより行われた処理後のpO2測定と、Nova COOXシステムとの間に、別の相違が観察される。理論に制限されないが、これは、赤血球懸濁液試料アリコートが、そのNova COOXシステムへの移送中に速やかに酸素再供給されていることを示唆している可能性がある。
Figure 0006796664
Figure 0006796664
Figure 0006796664
(例17)
単一のデバイスにおける再循環による赤血球懸濁液中の酸素の枯渇化
この例では、試作デバイスBのみを試験する。デバイスは、例15に記載のように構築される。デバイスの経路構造は、表1に要約されている。センサは、例15に記載のように配置される。酸素飽和レベルは、実施例16に記載のように測定される。
この例において、赤血球懸濁液は、少なくとも3通過分、センサ−液体チャンバアセンブリを通して再循環される。これらのデバイスはまた、複数の配向および重力送り法で試験される。表6は、異なる流量および再循環サイクルでの脱酸素プロセスの結果を要約している。全ての試験は、23.6〜25.0℃の間の温度で行われる。単一の通過中に入口センサにより測定された血液中の酸素の平均分圧は、pO2 inである。単一の通過中に出口センサにより測定された血液中の酸素の平均分圧は、pO2 outである。単一の通過における酸素レベルの変化(ΔpO2)は、各種類のセンサに対して測定された同じ通過からのpO2 inとpO2 outとの間の計算された差である。単一の通過における酸素低減のパーセンテージ(%O2低減(1回の通過))は、各種類のセンサに対して、ΔpO2を同じ通過からのpO2 inで除すことにより計算される。全体的な酸素低減のパーセンテージ(全体的%O2低減(開始から))は、各種類のセンサに対して、第1の通過のpO2 inと現在の通過におけるpO2 outとの間の差を第1の通過からのpO2 inで除すことにより計算される。脱酸素の前および後の赤血球懸濁液の酸素飽和度は、それぞれ、37℃での%SO2 inおよび37℃での%SO2 outである。
流量は、酸素を所望のレベルまで低減するのに必要な通過回数に影響する。同じ全体的な酸素低減のパーセンテージを達成するために、5.1ml/分で3回の通過と比較して、8.4ml/分では5回の通過が必要である。デバイスの通過から返ると、開始時のpO2レベルは、前回の通過後に試料がデバイスを出た際のものより高い。理論に制限されないが、これは、RBCの酸素低減が均一ではなく、RBCから周囲の流体への拡散が、周囲の流体から酸素を除去するために必要な時間より長い時間スケールにわたり生じることを示唆している。代替として、図3、8、9、10、13、および15のデバイス等のデバイスは、酸素増加を排除し得る。
pO2レベルの94%低減までの観察は、デバイスが赤血球含有試料からの酸素の除去において効果的であることを示唆している。この例において観察される不変の酸素飽和レベルは、脱酸素された赤血球含有血液試料が、嫌気的環境からの除去後に急速に酸素再供給され得ることを示している。理論に制限されないが、これは、ヘモグロビンが酸素に対する極めて高い親和性を有することを考慮すると、本明細書において開示された構成においてSO2を測定する際には十分な配慮が必要であることを示唆している。そのような観察はまた、酸素再供給と比較して、脱酸素にはより長い処理時間が必要であることの理解を助ける。
Figure 0006796664
次に、本発明の好ましい態様を示す。
1. 液体からガスを除去するための枯渇化デバイスであって、
a.筐体と、
b.1つまたは複数の液体チャンバと、
c.1つまたは複数の枯渇化チャンバと、
d.前記1つまたは複数の液体チャンバの少なくとも1つを、前記1つまたは複数の枯渇化チャンバから分離する、少なくとも1つのガス透過性バリアと、
e.少なくとも1つの液体入口と、
f.少なくとも1つの液体出口と
を備える枯渇化デバイス。
2. 前記ガス透過性バリアが、酸素、二酸化炭素、およびそれらの組合せからなる群から選択されるガスに対し透過性である、上記1に記載の枯渇化デバイス。
3. 前記ガスが、酸素および二酸化炭素である、上記0に記載の枯渇化デバイス。
4. 前記1つまたは複数の液体チャンバが、1つまたは複数の流動制御機構をさらに備える、上記1に記載の枯渇化デバイス。
5. 前記少なくとも1つのガス透過性バリアが、ポリオレフィン、ポリテトラフルオロエチレン(PTFE)、ポリビニリデンモノまたはジフルオリド(PVDF)、ポリスルホン、シリコーン、エポキシ、ポリエステル膜ポリエチレン、またはセラミックを含む膜である、上記1に記載の枯渇化デバイス。
6. 前記少なくとも1つのガス透過性バリアが、疎水性多孔質構造である、上記5に記載の枯渇化デバイス。
7. 前記ガス透過性バリアが、少なくとも1つの血液適合性表面を備える、上記5に記載の枯渇化デバイス。
8. 前記1つまたは複数の液体チャンバが、2つ以上のガス透過性バリアにより前記1つまたは複数の枯渇化チャンバから分離されている、上記1に記載の枯渇化デバイス。
9. 前記1つまたは複数の流動制御機構が、前記少なくとも1つの液体入口を通って進入し、前記1つまたは複数の液体チャンバを通って流動し、前記少なくとも1つの液体出口を通って出る液体を混合する、上記1に記載の枯渇化デバイス。
10. 前記液体が、全血、白血球枯渇血液、白血球および血小板枯渇血液、赤血球懸濁液、および血漿からなる群から選択される血液製剤である、上記1に記載の枯渇化デバイス。
11. 前記筐体が、高さ、長さおよび幅を有する直方体であり、前記1つまたは複数の液体チャンバが、長さ、幅および高さを有する直方体である、上記1に記載の枯渇化デバイス。
12. 前記1つまたは複数の液体チャンバが、1つまたは複数の流動制御機構をさらに備える、上記11に記載の枯渇化デバイス。
13. 前記1つまたは複数の流動制御機構が、前記1つまたは複数の液体チャンバの高さの半分であり、前記1つまたは複数の液体チャンバの幅である、上記12に記載の枯渇化デバイス。
14. 前記1つまたは複数の枯渇化チャンバが、前記1つまたは複数の枯渇化チャンバと流体連通した少なくとも1つのガス入口および少なくとも1つのガス出口をさらに備える、上記1に記載の枯渇化デバイス。
15. 前記枯渇化チャンバが、1つまたは複数のガス流動制御機構をさらに備える、上記14に記載の枯渇化デバイス。
16. 前記1つまたは複数の枯渇チャンバが、長さ、幅および高さを有する、上記1に記載の枯渇化デバイス。
17. 枯渇化ガスが、前記少なくとも1つのガス入口内に流動し、前記1つまたは複数の枯渇化チャンバを通過して前記1つまたは複数のガス出口を通って出る、上記14に記載の枯渇化デバイス。
18. 前記枯渇化ガスが、アルゴン、ヘリウム、窒素、アルゴン/二酸化炭素、窒素/二酸化炭素、およびそれらの組合せからなる群から選択される、上記17に記載の枯渇化デバイス。
19. 前記1つまたは複数の液体チャンバが、1つの液体チャンバ、2つの液体チャンバ、3つの液体チャンバ、4つの液体チャンバおよび5つの液体チャンバからなる群から選択される、上記1に記載の枯渇化デバイス。
20. 前記1つまたは複数の枯渇化チャンバが、1つの枯渇化チャンバ、2つの枯渇化チャンバ、3つの枯渇化チャンバ、4つの枯渇化チャンバ、および5つの枯渇化チャンバからなる群から選択される、上記1に記載の枯渇化デバイス。
21. 前記1つまたは複数の液体チャンバおよび前記1つまたは複数の枯渇化チャンバが、スタック構成で交互し、前記液体チャンバが、互いに流体連通している、上記1に記載の枯渇化デバイス。
22. 前記1つまたは複数の枯渇化チャンバが、酸素枯渇化媒体、二酸化炭素枯渇化媒体、およびそれらの組合せからなる群から選択される枯渇化材料を含有する、上記1に記載の枯渇化デバイス。
23. 前記枯渇化材料が、1つまたは複数のパケットに保持される、上記22に記載の枯渇化デバイス。
24. 前記枯渇化材料が、ゲル、固体、ガス、およびそれらの組合せからなる群から選択される、上記22に記載の枯渇化デバイス。
25. 前記筐体が、剛性材料、可撓性材料、弾性材料、およびそれらの組合せからなる群から選択される材料で作製される、上記1に記載の枯渇化デバイス。
26. 前記液体チャンバが、剛性材料、可撓性材料、弾性材料、およびそれらの組合せからなる群から選択されるガスバリア材料で作製される、上記1に記載の枯渇化デバイス。
27. 前記1つまたは複数の液体チャンバが、少なくとも1つのガス透過性バリアを備える、上記1に記載の枯渇化デバイス。
28. 前記枯渇化チャンバが、剛性材料、可撓性材料、弾性材料、およびそれらの組合せからなる群から選択される材料で作製される、上記1に記載の枯渇化デバイス。
29. 前記枯渇化チャンバが、前記液体チャンバと接触している少なくとも1つのガス透過性材料を含む、上記1に記載の枯渇化デバイス。
30. 白血球低減デバイスをさらに備える、上記1に記載の枯渇化デバイス。
31. 血小板分離デバイスをさらに備える、上記1に記載の枯渇化デバイス。
32. 赤血球編集デバイスをさらに備える、上記1に記載の枯渇化デバイス。
33. 前記液体出口に接続された酸素および二酸化炭素不透過性血液貯蔵デバイスをさらに備える、上記1に記載の枯渇化デバイス。
34. 前記酸素および二酸化炭素不透過性血液貯蔵デバイスが、酸素および二酸化炭素捕捉剤をさらに備える、上記33に記載の枯渇化デバイス。
35. a.筐体と、
b.1つまたは複数の液体チャンバと、
c.1つまたは複数のガス添加チャンバと、
d.前記1つまたは複数の液体チャンバの少なくとも1つを、前記1つまたは複数のガス添加チャンバから分離する、少なくとも1つのガス透過性バリアと、
e.少なくとも1つの液体入口と、
f.少なくとも1つの液体出口と
を備えるガス添加デバイス。
36. 前記1つまたは複数の液体チャンバが、1つまたは複数の流動制御機構をさらに備える、上記35に記載のガス添加デバイス。
37. 前記ガス透過性バリアが、ポリオレフィン、ポリテトラフルオロエチレン(PTFE)、ポリビニリデンモノまたはジフルオリド(PVDF)、ポリスルホン、シリコーン、エポキシ、ポリエステル膜、またはセラミックを含む膜である、上記35に記載のガス添加デバイス。
38. 前記ガス透過性バリアが、疎水性多孔質構造である、上記37に記載のガス添加デバイス。
39. 前記1つまたは複数の液体チャンバが、2つ以上のガス透過性バリアにより前記1つまたは複数のガス添加チャンバから分離されている、上記35に記載のガス添加デバイス。
40. 前記筐体が、剛性材料、可撓性材料、弾性材料、およびそれらの組合せからなる群から選択される材料で作製される、上記35に記載のガス添加デバイス。
41. 前記液体チャンバが、剛性材料、可撓性材料、弾性材料、およびそれらの組合せからなる群から選択される材料で作製される、上記35に記載のガス添加デバイス。
42. 前記ガス添加チャンバが、剛性材料、可撓性材料、弾性材料、およびそれらの組合せからなる群から選択される材料で作製される、上記35に記載のガス添加デバイス。
43. 前記1つまたは複数の流動制御機構が、前記少なくとも1つの液体入口を通って進入し、前記1つまたは複数の液体チャンバを通って流動し、前記少なくとも1つの液体出口を通って出る液体を混合する、上記35に記載のガス添加デバイス。
44. 前記液体が、全血、白血球枯渇血液、白血球および血小板枯渇血液、赤血球懸濁液、酸素および二酸化炭素枯渇赤血球、酸素枯渇赤血球、ならびに血漿からなる群から選択される血液製剤である、上記35に記載のガス添加デバイス。
45. 前記筐体が、長さ、幅および高さを有する直方体であり、前記1つまたは複数の液体チャンバが、長さ、幅および高さを有する直方体である、上記35に記載のガス添加デバイス。
46. 前記1つまたは複数の液体チャンバが、1つまたは複数の流動制御機構をさらに備える、上記45に記載のガス添加デバイス。
47. 前記1つまたは複数の流動制御機構が、前記1つまたは複数の液体チャンバの高さの半分であり、前記1つまたは複数の液体チャンバの幅である、上記46に記載のガス添加デバイス。
48. 前記1つまたは複数のガス添加チャンバが、前記1つまたは複数のガス添加チャンバと流体連通した少なくとも1つのガス入口および少なくとも1つのガス出口をさらに備える、上記35に記載のガス添加デバイス。
49. 前記ガス添加チャンバが、1つまたは複数のガス流動制御機構をさらに備える、上記48に記載のガス添加デバイス。
50. 前記1つまたは複数のガス添加チャンバが、長さ、幅および高さを有する直方体である、上記35に記載のガス添加デバイス。
51. 添加ガスが、前記少なくとも1つのガス入口内に流動し、前記1つまたは複数の枯渇化チャンバを通過して前記1つまたは複数のガス出口を通って出る、上記48に記載のガス添加枯渇化デバイス。
52. 前記添加ガスが、純酸素、空気、二酸化炭素、亜酸化窒素およびそれらの組合せからなる群から選択される、上記51に記載のガス添加デバイス。
53. 前記1つまたは複数の液体チャンバが、1つの液体チャンバ、2つの液体チャンバ、3つの液体チャンバ、4つの液体チャンバ、5つの液体チャンバおよび6つ以上の液体チャンバからなる群から選択される、上記35に記載のガス添加デバイス。
54. 前記1つまたは複数のガス添加チャンバが、1つのガス添加チャンバ、2つのガス添加チャンバ、3つのガス添加チャンバ、4つのガス添加チャンバ、5つのガス添加チャンバおよび6つ以上のガス添加チャンバからなる群から選択される、上記35に記載のガス添加デバイス。
55. 前記1つまたは複数の液体チャンバおよび前記1つまたは複数のガス添加チャンバが、スタック構成で交互し、前記液体チャンバが、互いに流体連通している、上記35に記載のガス添加デバイス。
56. 液体からガスを枯渇化する方法であって、上記1に記載のデバイスを通して液体を流動させ、ガス枯渇液体を調製するステップを含む方法。
57. 前記液体が、全血、白血球枯渇血液、白血球および血小板枯渇血液、赤血球懸濁液、および血漿からなる群から選択される血液製剤である、上記56に記載の方法。
58. 前記ガスが、酸素、二酸化炭素、およびそれらの組合せからなる群から選択される、上記56に記載の方法。
59. 前記ガスが、酸素および二酸化炭素である、上記58に記載の方法。
60. 白血球低減デバイスを通して前記血液製剤を流動させ、ガス枯渇および白血球低減血液製剤を調製するステップをさらに含む、上記57に記載の方法。
61. 前記血液製剤または前記ガス枯渇血液製剤から血小板を除去するステップをさらに含む、上記57に記載の方法。
62. 前記全血が、抗凝固剤および添加剤溶液をさらに含む、上記57に記載の方法。
63. 前記ガス枯渇血液製剤が、10%未満、5%未満、2.5%未満、または1%未満のヘモグロビン酸素飽和度を有する、上記57に記載の方法。
64. 輸血用血液製剤を調製する方法であって、上記35に記載のデバイスを通して血液製剤液を流動させ、増加したレベルのガスを有する血液製剤を調製するステップを含む方法。
65. 前記血液製剤が、全血、白血球枯渇血液、白血球および血小板枯渇血液、赤血球懸濁液、酸素および二酸化炭素枯渇赤血球、酸素枯渇赤血球、ならびに血漿からなる群から選択される、上記64に記載の方法。
66. 前記添加ガスが、酸素、二酸化炭素、酸化窒素、およびそれらの組合せからなる群から選択される、上記64に記載の方法。
67. 前記増加したレベルのガスが、ヘモグロビンに結合した生理学的レベルの酸素である、上記64に記載の方法。
68. 緩衝液交換デバイスを通して前記液体を流動させるステップをさらに含む、上記64に記載の方法。
69. 前記血液製剤が、赤血球編集デバイスを通って流動する、上記64に記載の方法。
70. 前記血液製剤が、赤血球懸濁液および濃厚赤血球からなる群から選択される、上記69に記載の方法。
71. 赤血球の長期貯蔵のための方法であって、
a.全血を得るステップと、
b.前記全血を枯渇化デバイスに通過させ、枯渇血液製剤を調製するステップと、
c.前記枯渇血液製剤をガス不透過性貯蔵バッグ内にある期間貯蔵し、貯蔵された枯渇血液製剤を調製するステップと、
d.前記貯蔵された枯渇血液製剤をガス添加デバイスに通過させ、輸血血液製剤を調製するステップと
を含む方法。
72. 前記枯渇化デバイスが、
a.筐体と、
b.1つまたは複数の液体チャンバと、
c.1つまたは複数の枯渇化チャンバと、
d.前記1つまたは複数の液体チャンバの少なくとも1つを、前記1つまたは複数の枯渇化チャンバから分離する、少なくとも1つのガス透過性バリアと、
e.少なくとも1つの液体入口と、
f.少なくとも1つの液体出口と
を備える、上記71に記載の方法。
73. 前記1つまたは複数の液体チャンバが、1つまたは複数の流動制御機構をさらに備える、上記72に記載の方法。
74. 前記1つまたは複数の液体チャンバが、2つ以上のガス透過性バリアにより前記1つまたは複数の枯渇化チャンバから分離されている、上記72に記載の方法。
75. 前記少なくとも1つのガス透過性バリアが、ポリオレフィン、ポリテトラフルオロエチレン(PTFE)、ポリビニリデンモノまたはジフルオリド(PVDF)、ポリスルホン、シリコーン、エポキシ、ポリエステル膜ポリエチレン、またはセラミックを含む膜である、上記74に記載の方法。
76. 前記ガス添加デバイスが、
a.筐体と、
b.1つまたは複数の液体チャンバと、
c.1つまたは複数のガス添加チャンバと、
d.前記1つまたは複数の液体チャンバの少なくとも1つを、前記1つまたは複数のガス添加チャンバから分離する、少なくとも1つのガス透過性バリアと、
e.少なくとも1つの液体入口と、
f.少なくとも1つの液体出口と
を備える、上記71に記載の方法。
77. 前記1つまたは複数の液体チャンバが、1つまたは複数の流動制御機構をさらに備える、上記76に記載の方法。
78. 前記ガス透過性バリアが、ポリオレフィン、ポリテトラフルオロエチレン(PTFE)、ポリビニリデンモノまたはジフルオリド(PVDF)、ポリスルホン、シリコーン、エポキシ、ポリエステル膜、またはセラミックを含む膜である、上記76に記載の方法。
79. 前記ガス透過性バリアが、疎水性多孔質構造である、上記76に記載の方法。
80. 前記1つまたは複数の液体チャンバが、2つ以上のガス透過性バリアにより前記1つまたは複数のガス添加チャンバから分離されている、上記76に記載の方法。
81. 前記筐体が、剛性材料、可撓性材料、弾性材料、およびそれらの組合せからなる群から選択される材料で作製される、上記76に記載の方法。
82. 前記液体チャンバが、剛性材料、可撓性材料、弾性材料、およびそれらの組合せからなる群から選択される材料で作製される、上記76に記載の方法。
83. 前記輸血血液製剤を編集するステップ、
前記輸血血液製剤に照射するステップ、
前記輸血血液製剤の緩衝液交換を行うステップ、および
前記ガス回復血液製剤を輸血バッグ内に収集するステップ
からなる群から選択される1つまたは複数のステップをさらに含む、上記71に記載の方法。
84. 前記ガス不透過性貯蔵バッグが、バリアフィルムを有する外側バッグと、前記枯渇血液製剤と接触した内側バッグとを備える、上記71に記載の方法。
85. 前記ガス不透過性貯蔵バッグが、前記内側バッグと前記外側バッグとの間に配置された収着剤をさらに備える、上記84に記載の方法。
86. 赤血球の長期貯蔵のためのシステムであって、
瀉血針と、
血液採取バッグと、
添加剤溶液と、
枯渇化デバイスと、
白血球低減のためのデバイスと、
赤血球を編集するためのデバイスと、
病原体を不活性化するためのデバイスと、
血液製剤の体積を低減するためのデバイスと、
血液製剤の緩衝液を交換するためのデバイスと、
血液製剤を貯蔵するためのガス不透過性貯蔵バッグと、
輸血前に貯蔵された血液製剤にガスを添加するためのデバイスと、
前記デバイス、前記採取バッグ、および前記貯蔵バッグを接続する配管と
を備えるシステム。
87. 前記枯渇化デバイスが、
a.筐体と、
b.1つまたは複数の液体チャンバと、
c.1つまたは複数の枯渇化チャンバと、
d.前記1つまたは複数の液体チャンバの少なくとも1つを、前記1つまたは複数の枯渇化チャンバから分離する、少なくとも1つのガス透過性バリアと、
e.少なくとも1つの液体入口と、
f.少なくとも1つの液体出口と
を備える、上記86に記載のシステム。
88. 前記1つまたは複数の液体チャンバが、1つまたは複数の流動制御機構をさらに備える、上記87に記載のシステム。
89. 前記1つまたは複数の液体チャンバが、2つ以上のガス透過性バリアにより前記1つまたは複数の枯渇化チャンバから分離されている、上記87に記載の枯渇化デバイス。
90. 前記少なくとも1つのガス透過性バリアが、ポリオレフィン、ポリテトラフルオロエチレン(PTFE)、ポリビニリデンモノまたはジフルオリド(PVDF)、ポリスルホン、シリコーン、エポキシ、ポリエステル、ポリエチレン、またはセラミックを含む膜である、上記89に記載の枯渇化デバイス。
91. 筐体と、
液体入口と、
液体出口と、
1つまたは複数の枯渇化ユニットであって、
他の枯渇化ユニット、前記液体入口、または前記液体出口との流体連通のための少なくとも2つのコネクタと、
酸素または酸素および二酸化炭素枯渇ガスに対して曝露可能なガス透過性膜と、
前記液体入口および前記液体出口と流体連通した1つまたは複数のチャネルと
を備える枯渇化ユニットとを備え、
前記ガス透過性膜と接触した少なくとも1つの曝露長手方向側面を有する前記1つまたは複数のチャネルは、血液製剤を受容および運搬するように構成される、枯渇化デバイス。
92. 前記1つまたは複数のチャネルが、マイクロチャネルである、上記91に記載の枯渇化デバイス。
93. 前記1つまたは複数のチャネルが、長方形、円形および不規則形状からなる群から選択される断面形状を有する、上記91に記載の枯渇化デバイス。
94. 前記1つまたは複数のチャネルが、その長手方向経路に沿って変化する断面積を有する、上記93に記載の枯渇化デバイス。
95. 前記1つまたは複数のチャネルが、その長手方向経路に沿って、長方形、円形、および不規則形状からなる群の1つまたは複数から選択される2つ以上の断面形状を有する、上記91に記載の枯渇化デバイス。
96. 前記不規則形状断面を有する前記1つまたは複数のチャネルが、前記筐体の側面と、前記ガス透過性膜の粗面との間の空間により画定される、上記93に記載の枯渇化デバイス。
97. 前記1つまたは複数のチャネルが、それぞれ、前記筐体の長さの少なくとも10倍の長さを有するが、前記筐体内に完全に収納される、上記91に記載の枯渇化デバイス。
98. 前記1つまたは複数のチャネルが、前記血液製剤の混合を生成するように構成される、上記91に記載の枯渇化デバイス。
99. 前記1つまたは複数のチャネルが、前記混合を生成するために、蛇行、波状、起伏、正弦曲線、螺旋、部分螺旋、およびジグザグからなる群から選択される長手方向経路を有する、上記98に記載の枯渇化デバイス。
100. 前記筐体が、前記ガス透過性膜と接触したガスチャンバをさらに備える、上記91に記載の枯渇化デバイス。
101. 前記ガスチャンバが、洗浄ガスを受容および排出するように構成されるガス入口およびガス出口をさらに備える、上記100に記載の枯渇化デバイス。
102. 前記ガスチャンバが、ある体積のガスを受容および保持するように構成される、上記100に記載の枯渇化デバイス。
103. 前記筐体が、第2のガス透過性膜および第2のガスチャンバをさらに備える、上記100に記載の枯渇化デバイス。
104. 前記1つまたは複数のチャネルが、ガス透過性膜と接触した第2の曝露長手方向側面を有する、上記103に記載の枯渇化デバイス。
105. 前記第1および第2のガスチャンバが、洗浄ガスを受容および排出するように構成されるガス入口およびガス出口に接続される、上記103に記載の枯渇化デバイス。
106. 前記第1および第2のガスチャンバが、ある体積のガスを受容および保持するように構成される、上記103に記載の枯渇化デバイス。
107. 前記第1および第2のガスチャンバが、プレナムチャンバである、上記103に記載の枯渇化デバイス。
108. 1つまたは複数の液体流動制御デバイスをさらに備える、上記91に記載の枯渇化デバイス。
109. 1つまたは複数のガスセンサをさらに備える、上記91に記載の枯渇化デバイス。
110. 前記1つまたは複数の枯渇化ユニットが、1つの枯渇化ユニット、2つの枯渇化ユニット、3つの枯渇化ユニット、4つの枯渇化ユニット、および5つの枯渇化ユニット、またはそれ以上からなる群から選択される、上記91に記載の枯渇化デバイス。
111. 前記1つまたは複数の枯渇化ユニットが、並列に接続されて、前記流体入口から前記流体出口に前記赤血球の並流を伝達する、上記110に記載の枯渇化デバイス。
112. 前記1つまたは複数の枯渇化ユニットが、直列に接続されて、前記流体入口から前記流体出口に前記赤血球の連続流を伝達する、上記110に記載の枯渇化デバイス。
113. 前記1つまたは複数のチャネルが、1つのチャネル、2つのチャネル、3つのチャネル、4つのチャネル、5つのチャネル、6つのチャネル、7つのチャネル、8つのチャネル、9つのチャネル、および10個のチャネル、またはそれ以上からなる群から選択される、上記91に記載の枯渇化デバイス。
114. 前記1つまたは複数の枯渇化ユニットが、ガス枯渇化媒体をさらに備える、上記91に記載の枯渇化デバイス。
115. 前記ガス枯渇化媒体が、ガス収着剤である、上記114に記載の枯渇化デバイス。
116. 前記ガス枯渇化媒体が、ゲル、固体、ガス、およびそれらの組合せからなる群から選択される、上記114に記載の枯渇化デバイス。
117. 前記枯渇化媒体が、1つまたは複数のパケットに保持される、上記114に記載の枯渇化デバイス。
118. 白血球低減デバイスをさらに備える、上記91に記載の枯渇化デバイス。
119. 血小板分離デバイスをさらに備える、上記91に記載の枯渇化デバイス。
120. 赤血球編集デバイスをさらに備える、上記91に記載の枯渇化デバイス。

Claims (20)

  1. 血液製剤にガスを添加するためのガス添加デバイスであって、
    a.筐体と、
    b.1つまたは複数の液体チャンバと、
    c.1つまたは複数のガス添加チャンバと、
    d.前記1つまたは複数の液体チャンバの少なくとも1つを、前記1つまたは複数のガス添加チャンバから分離する、少なくとも1つのガス透過性バリアと、
    e.少なくとも1つの液体入口と、
    f.少なくとも1つの液体出口と
    を備え、
    前記1つまたは複数の液体チャンバは、層流を妨害する1つまたは複数の流制御機構を更に有している、ガス添加デバイス。
  2. 前記ガス透過性バリアが、ポリオレフィン、ポリテトラフルオロエチレン(PTFE)、ポリビニリデンモノまたはジフルオリド(PVDF)、ポリスルホン、シリコーン、エポキシ、ポリエステル膜、またはセラミックを含む膜である、請求項1に記載のガス添加デバイス。
  3. 前記少なくとも1つのガス透過性バリアが、疎水性多孔質構造である、請求項2に記載のガス添加デバイス。
  4. 前記1つまたは複数の液体チャンバが、2つ以上のガス透過性バリアにより前記1つまたは複数のガス添加チャンバから分離されている、請求項1に記載のガス添加デバイス。
  5. 前記筐体が、剛性材料、可撓性材料、弾性材料、およびそれらの組合せからなる群から選択される材料で作製される、請求項1に記載のガス添加デバイス。
  6. 前記液体チャンバが、剛性材料、可撓性材料、弾性材料、およびそれらの組合せからなる群から選択される材料で作製される、請求項1に記載のガス添加デバイス。
  7. 前記血液製剤は、全血、白血球枯渇血液、白血球および血小板枯渇血液、赤血球懸濁液、酸素および二酸化炭素枯渇赤血球、酸素枯渇赤血球、ならびに血漿からなる群から選択される、請求項1に記載のガス添加デバイス。
  8. 前記1つまたは複数の流動制御機構が、前記1つまたは複数の液体チャンバの高さの半分であり、前記1つまたは複数の液体チャンバの幅である、請求項1に記載のガス添加デバイス。
  9. 前記1つまたは複数のガス添加チャンバが、前記1つまたは複数のガス添加チャンバと流体連通した少なくとも1つのガス入口および少なくとも1つのガス出口をさらに備える、請求項1に記載のガス添加デバイス。
  10. 前記ガス添加チャンバが、1つまたは複数のガス流動制御機構をさらに備える、請求項9に記載のガス添加デバイス。
  11. 添加ガスが、前記少なくとも1つのガス入口内に流動し、前記1つまたは複数のガス添加チャンバを通過して前記少なくとも1つのガス出口を通って出る、請求項9に記載のガス添加デバイス
  12. 前記添加ガスが、純酸素、空気、二酸化炭素、亜酸化窒素およびそれらの組合せからなる群から選択される、請求項11に記載のガス添加デバイス。
  13. 前記1つまたは複数の液体チャンバが、1つの液体チャンバ、2つの液体チャンバ、3つの液体チャンバ、4つの液体チャンバ、5つの液体チャンバおよび6つ以上の液体チャンバからなる群から選択される、請求項1に記載のガス添加デバイス。
  14. 前記1つまたは複数のガス添加チャンバが、1つのガス添加チャンバ、2つのガス添加チャンバ、3つのガス添加チャンバ、4つのガス添加チャンバ、5つのガス添加チャンバおよび6つ以上のガス添加チャンバからなる群から選択される、請求項1に記載のガス添加デバイス。
  15. 輸血用血液製剤を調製する方法であって、請求項1に記載のデバイスを通して血液製剤液を流動させ、増加したレベルのガスを有する血液製剤を調製するステップを含む方法。
  16. 前記血液製剤が、全血、白血球枯渇血液、白血球および血小板枯渇血液、赤血球懸濁液、酸素および二酸化炭素枯渇赤血球、酸素枯渇赤血球、ならびに血漿からなる群から選択される、請求項15に記載の方法。
  17. 前記添加ガスが、酸素、二酸化炭素、酸化窒素、およびそれらの組合せからなる群から選択される、請求項15に記載の方法。
  18. 前記増加したレベルのガスが、ヘモグロビンに結合した生理学的レベルの酸素である、請求項15に記載の方法。
  19. 前記血液製剤が、赤血球編集デバイスを通って流動する、請求項15に記載の方法。
  20. 前記血液製剤が、赤血球懸濁液および濃厚赤血球からなる群から選択される、請求項19に記載の方法。
JP2019000220A 2013-02-28 2019-01-04 血液処理のためのガス枯渇化およびガス添加デバイス Active JP6796664B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361770516P 2013-02-28 2013-02-28
US61/770,516 2013-02-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015560367A Division JP2016517395A (ja) 2013-02-28 2014-02-28 血液処理のためのガス枯渇化およびガス添加デバイス

Publications (2)

Publication Number Publication Date
JP2019065039A JP2019065039A (ja) 2019-04-25
JP6796664B2 true JP6796664B2 (ja) 2020-12-09

Family

ID=50290298

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015560367A Pending JP2016517395A (ja) 2013-02-28 2014-02-28 血液処理のためのガス枯渇化およびガス添加デバイス
JP2019000220A Active JP6796664B2 (ja) 2013-02-28 2019-01-04 血液処理のためのガス枯渇化およびガス添加デバイス

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015560367A Pending JP2016517395A (ja) 2013-02-28 2014-02-28 血液処理のためのガス枯渇化およびガス添加デバイス

Country Status (9)

Country Link
US (2) US9877476B2 (ja)
EP (2) EP3967143A1 (ja)
JP (2) JP2016517395A (ja)
AU (1) AU2014223165B2 (ja)
CA (2) CA2902061C (ja)
ES (1) ES2900298T3 (ja)
HK (1) HK1219205A1 (ja)
PT (1) PT2961269T (ja)
WO (1) WO2014134503A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9199016B2 (en) 2009-10-12 2015-12-01 New Health Sciences, Inc. System for extended storage of red blood cells and methods of use
US11284616B2 (en) 2010-05-05 2022-03-29 Hemanext Inc. Irradiation of red blood cells and anaerobic storage
EP4091645A1 (en) 2010-08-25 2022-11-23 Hemanext Inc. Method for enhancing red blood cell quality and survival during storage
EP4218412A1 (en) 2010-11-05 2023-08-02 Hemanext Inc. Irradiation of red blood cells and anaerobic storage
US9067004B2 (en) 2011-03-28 2015-06-30 New Health Sciences, Inc. Method and system for removing oxygen and carbon dioxide during red cell blood processing using an inert carrier gas and manifold assembly
EP4074395B1 (en) 2011-08-10 2024-01-24 Hemanext Inc. Integrated leukocyte, oxygen and/or co2 depletion, and plasma separation filter device
CA2902061C (en) 2013-02-28 2023-08-08 New Health Sciences, Inc. Gas depletion and gas addition devices for blood treatment
PT3268015T (pt) * 2015-03-10 2022-01-06 Hemanext Inc Kits descartáveis de redução de oxigénio, dispositivos e métodos de utilização dos mesmos
EP3285711A4 (en) 2015-04-23 2018-11-07 New Health Sciences, Inc. Anaerobic blood storage containers
CN114748503A (zh) 2015-05-18 2022-07-15 希玛奈克斯特股份有限公司 储存全血的方法及其组合物
AU2017271545C1 (en) 2016-05-27 2023-06-15 Hemanext Inc. Anaerobic blood storage and pathogen inactivation method
RU2019130972A (ru) * 2017-03-03 2021-04-05 РИЧ ТЕКНОЛОДЖИЗ ХОЛДИНГ КОМПАНИ, ЭлЭлСи Устройство для консервирования препаратов крови и клеточных культур в газовой среде под давлением
EP3634523A1 (en) 2017-06-08 2020-04-15 Case Western Reserve University Devices and methods for nitrosylation of blood
CN108552157B (zh) * 2018-01-06 2019-07-19 马艳丽 干细胞冷冻保存箱
CN107963306B (zh) * 2018-01-06 2019-05-31 广州赛琅生物技术有限公司 干细胞冷冻保存装置
CN108207933B (zh) * 2018-01-06 2019-06-25 广州市流式生物科技有限公司 脐带血干细胞冷冻保存箱
CN108142413B (zh) * 2018-01-06 2019-08-20 青岛市妇女儿童医院 冷冻保存装置
CN108190215B (zh) * 2018-01-06 2019-06-07 王云霞 脐带血干细胞冷冻保存装置
GB2573265B (en) 2018-03-12 2022-06-15 Tsi Tech Limited Apparatus for treating blood
US10843136B2 (en) * 2018-08-20 2020-11-24 Hamilton Sundstrand Corporation Selectively permeable membrane devices
CN114746129A (zh) 2019-11-12 2022-07-12 费森尤斯医疗护理德国有限责任公司 血液治疗系统
EP4058094A1 (en) 2019-11-12 2022-09-21 Fresenius Medical Care Deutschland GmbH Blood treatment systems
EP4058088A1 (en) 2019-11-12 2022-09-21 Fresenius Medical Care Deutschland GmbH Blood treatment systems
CA3160853A1 (en) 2019-11-12 2021-05-20 Fresenius Medical Care Deutschland Gmbh Blood treatment systems
US11662353B2 (en) 2020-09-10 2023-05-30 Functional Fluidics Inc. Method for assessing the effects of hypoxia on tissues

Family Cites Families (331)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3064647A (en) 1957-06-13 1962-11-20 Baxter Laboratories Inc Blood component separation method and apparatus
US3361041A (en) 1964-01-13 1968-01-02 Equitable Paper Bag Co Method and apparatus for making gusseted header bags
FR1455087A (fr) 1964-05-08 1966-04-01 Schwarz Biores Procédé de conservation du sang
US3942529A (en) 1967-02-01 1976-03-09 Investrop A.G. Package and method for storing blood
US3668837A (en) 1970-02-13 1972-06-13 Pall Corp Separator of the semipermeable membrane type
US3668838A (en) 1970-12-07 1972-06-13 Dalph C Mcneil Flash economizer
US3803810A (en) * 1972-05-01 1974-04-16 Pall Corp Liquid-gas separator and filter
GB1442754A (en) * 1972-06-28 1976-07-14 Nat Res Dev Apparatus for and method of effecting heat or mass transfer berween fluids
US3910841A (en) 1974-04-02 1975-10-07 William G Esmond Stacked exchange device
US4093515A (en) 1976-03-01 1978-06-06 Government Of The United States Laminated carbon-containing silicone rubber membrane for use in membrane artificial lung
US4131200A (en) 1976-07-06 1978-12-26 Union Carbide Corporation Thermoplastic blood bag
US4082509A (en) 1976-08-05 1978-04-04 Dow Corning Corporation Method of storing blood and a blood storage bag therefor
US4086924A (en) 1976-10-06 1978-05-02 Haemonetics Corporation Plasmapheresis apparatus
SE421999B (sv) 1977-10-17 1982-02-15 Gambro Dialysatoren Anordning for diffusion och/eller filtration av emnen mellan tva fluider via semipermeabla membran vilken anordning innefattar parallellkopplade banor innehallande seriekopplade kamrar
US4370160A (en) 1978-06-27 1983-01-25 Dow Corning Corporation Process for preparing silicone microparticles
US6150085A (en) 1998-09-16 2000-11-21 The United States Of America As Represented By The Secretary Of The Army Prolonged storage of red blood cells and composition
US6447987B1 (en) 1978-09-09 2002-09-10 The United States Of America As Represented By The Secretary Of The Army Prolonged storage of red blood cells
GB2035093B (en) 1978-10-26 1983-01-12 Baxter Travenol Lab Medical articles made of blood compatible polymers
US4222379A (en) 1978-10-26 1980-09-16 Baxter Travenol Laboratories, Inc. Multiple blood bag having plasticizer-free portions and a high blood component survival rate
US4228032A (en) 1978-11-06 1980-10-14 Dow Corning Corporation Method of storing blood and a blood storage bag therefore
US4342723A (en) 1978-11-24 1982-08-03 Shin-Etsu Polymer Co., Ltd. Gas-exchange sheet members
US4256692A (en) * 1979-02-01 1981-03-17 C. R. Bard, Inc. Membrane oxygenator
US4253458A (en) 1979-03-08 1981-03-03 Baxter Travenol Laboratories, Inc. Method and apparatus for collecting blood plasma
US4262581A (en) 1979-05-04 1981-04-21 Kcl Corporation Method and apparatus for making printed gusset bags
US4398642A (en) 1979-11-02 1983-08-16 Toyo Boseki Kabushiki Kaisha Multi-ply vessel and method for production thereof
US4267269A (en) 1980-02-05 1981-05-12 Baxter Travenol Laboratories, Inc. Red cell storage solution
US4381775A (en) 1980-02-05 1983-05-03 Takeda Chemical Industries, Ltd. Method for low pressure filtration of plasma from blood
CA1156641A (en) 1980-03-17 1983-11-08 Takanari Nawata Oxygen and carbon dioxide absorbent and process for storing coffee by using the same
US4314480A (en) 1980-07-14 1982-02-09 Baxter Travenol Laboratories, Inc. Venous pressure isolator
US5382526A (en) 1980-10-31 1995-01-17 Baxter International Inc. Blood storage container and material
US4440815A (en) 1981-06-29 1984-04-03 Abbott Laboratories Clear, autoclavable plastic formulation for medical liquid containers
US4455299A (en) 1981-11-20 1984-06-19 Baxter Travenol Laboratories, Inc. Storage of blood platelets
US4386069A (en) 1981-12-02 1983-05-31 Baxter Travenol Laboratories, Inc. Additive solution and method for preserving normal red cell morphology in whole blood during storage
EP0093381B1 (en) 1982-04-27 1986-07-23 The Wellcome Foundation Limited Tricyclic compounds, preparation, use and intermediates
JPS58194879A (ja) 1982-04-27 1983-11-12 ザ・ウエルカム・フアウンデ−シヨン・リミテツド 三環式化合物
US5310674A (en) 1982-05-10 1994-05-10 Bar-Ilan University Apertured cell carrier
DE3225408A1 (de) 1982-07-07 1984-01-12 Biotest-Serum-Institut Gmbh, 6000 Frankfurt Waessrige loesung zum suspendieren und lagern von zellen, insbesondere erythrozyten
BE898469A (fr) 1982-12-20 1984-03-30 El Paso Polyolefins Compositions polyoléfiniques stérilisables à la chaleur et articles fabriqués à partir de ces compositions.
US4670013A (en) 1982-12-27 1987-06-02 Miles Laboratories, Inc. Container for blood and blood components
KR890005278B1 (ko) 1983-01-28 1989-12-20 미쓰비시가스가가꾸 가부시끼 가이샤 탈산소제 포장체
US4540416A (en) 1983-08-18 1985-09-10 El Paso Polyolefins Company Heat-sterilizable polyolefin compositions and articles manufactured therefrom
US4859360A (en) 1983-10-27 1989-08-22 Biosynergy, Inc. Cholesteric liquid crystal formulations and time/temperature monitoring means
JPS60193469A (ja) * 1984-03-14 1985-10-01 三菱レイヨン株式会社 中空糸膜型人工肺
US4701267B1 (en) 1984-03-15 1996-03-12 Asahi Medical Co Method for removing leukocytes
US5417986A (en) 1984-03-16 1995-05-23 The United States Of America As Represented By The Secretary Of The Army Vaccines against diseases caused by enteropathogenic organisms using antigens encapsulated within biodegradable-biocompatible microspheres
US4831012A (en) 1984-03-23 1989-05-16 Baxter International Inc. Purified hemoglobin solutions and method for making same
CA1251109A (en) * 1984-04-24 1989-03-14 Tohru Takemura Blood oxygenator using a hollow-fiber membrane
EP0168755B1 (en) 1984-07-16 1991-04-17 Sumitomo Bakelite Company Limited Container and method for storing blood
US4585735A (en) 1984-07-19 1986-04-29 American National Red Cross Prolonged storage of red blood cells
US4654053A (en) 1984-07-27 1987-03-31 University Patents, Inc. Oxygen sorbent
US4629544A (en) 1984-09-24 1986-12-16 Aquanautics Corporation Apparatus and method for reversibly removing ligands from carriers
US4568328A (en) 1984-10-29 1986-02-04 Extracorporeal Medical Specialties, Inc. Automated photophoresis blood portion control methods and apparatus
US4748121A (en) 1984-11-30 1988-05-31 Ppg Industries, Inc. Porous glass fibers with immobilized biochemically active material
US4713176A (en) 1985-04-12 1987-12-15 Hemascience Laboratories, Inc. Plasmapheresis system and method
FR2581289A1 (fr) 1985-05-06 1986-11-07 Rgl Transfusion Sanguine Centr Solution synthetique pour la conservation prolongee de concentres erythrocytaires
KR890002855B1 (ko) 1985-06-26 1989-08-05 미쯔비시 가스 가가구 가부시기가이샤 시이트상 탈산소제 및 그 제조방법
SE448444B (sv) 1985-07-08 1987-02-23 Alfa Laval Food & Dairy Eng Forslutbar pase samt anvendning av denna
IT1218450B (it) 1985-09-24 1990-04-19 Teresa Borgione Perfezionamenti agli ossigenatori per il sangue, a fibre cave
US4961928A (en) 1986-03-19 1990-10-09 American Red Cross Synthetic, plasma-free, transfusible storage medium for red blood cells and platelets
JPS62157385U (ja) 1986-03-26 1987-10-06
US4769318A (en) 1986-06-03 1988-09-06 Ube Industries, Ltd. Additive solution for blood preservation and activation
JPS6363616A (ja) 1986-09-04 1988-03-22 Showa Denko Kk 赤血球濃厚液の保存剤及び保存方法
JPH0326882Y2 (ja) * 1986-12-12 1991-06-11
US4880786A (en) 1987-01-14 1989-11-14 Ube Industries, Ltd. Additive solution for blood preservation and activation
US5000848A (en) 1987-01-28 1991-03-19 Membrex, Inc. Rotary filtration device with hyperphilic membrane
CA1323271C (en) 1987-07-11 1993-10-19 Takanori Anazawa Membrane-type artificial lung and method of using it
JPH07121340B2 (ja) 1987-07-11 1995-12-25 大日本インキ化学工業株式会社 中空繊維膜
JP2700170B2 (ja) 1987-07-11 1998-01-19 大日本インキ化学工業株式会社 膜型人工肺
DE3722984A1 (de) 1987-07-11 1989-01-19 Biotest Pharma Gmbh Waessrige loesung zum suspendieren und lagern von zellen, insbesondere erythrozyten
US5192320A (en) 1987-07-11 1993-03-09 Dainippon Ink And Chemicals Inc. Artificial lung and method of using it
JPH0829162B2 (ja) * 1987-07-28 1996-03-27 ミンテック コーポレーション 外部環流型血液オキシゲネータ
US4925572A (en) 1987-10-20 1990-05-15 Pall Corporation Device and method for depletion of the leukocyte content of blood and blood components
US4861867A (en) 1988-02-03 1989-08-29 Baxter International, Inc. Purified hemoglobin solutions and method for making same
US4880548A (en) 1988-02-17 1989-11-14 Pall Corporation Device and method for separating leucocytes from platelet concentrate
JP2685544B2 (ja) 1988-11-11 1997-12-03 株式会社日立製作所 血液フィルタおよび血液検査方法並びに血液検査装置
US4998990A (en) 1988-12-20 1991-03-12 The Coca-Cola Company Collapsible bag with evacuation passageway and method for making the same
US5229012A (en) 1989-05-09 1993-07-20 Pall Corporation Method for depletion of the leucocyte content of blood and blood components
US5120659A (en) 1989-06-26 1992-06-09 Mine Safety Appliances Company Deuterated water test method
DK0413378T3 (da) 1989-08-18 1995-05-15 Akzo Nobel Nv Escherichia coli vaccine
US5152905A (en) 1989-09-12 1992-10-06 Pall Corporation Method for processing blood for human transfusion
US5037419A (en) 1989-09-21 1991-08-06 Eastman Kodak Company Blood bag system containing vitamin E
IL95912A (en) 1989-10-06 1998-08-16 American Nat Red Cross A method for extending the shelf life of blood cells
US5386014A (en) 1989-11-22 1995-01-31 Enzon, Inc. Chemically modified hemoglobin as an effective, stable, non-immunogenic red blood cell substitute
US5139668A (en) 1989-12-27 1992-08-18 Alberta Research Corporation Hollow fiber bundle element
SU1718766A1 (ru) 1990-01-30 1992-03-15 Ленинградский научно-исследовательский институт гематологии и переливания крови Способ консервировани эритроцитов крови
JP2888590B2 (ja) 1990-03-30 1999-05-10 テルモ株式会社 血漿および濃厚赤血球採取用器具
US6187572B1 (en) 1990-04-16 2001-02-13 Baxter International Inc. Method of inactivation of viral and bacterial blood contaminants
CA2040993C (en) 1990-04-25 2001-08-07 Yoshiaki Inoue Oxygen absorbent composition and method of preserving article with same
US6077659A (en) 1990-05-15 2000-06-20 New York Blood Center, Inc. Vitamin E and derivatives thereof prevent potassium ion leakage and other types of damage in red cells that are virus sterilized by phthalocyanines and light
US5194158A (en) 1990-06-15 1993-03-16 Matson Stephen L Radon removal system and process
JP2953753B2 (ja) 1990-06-28 1999-09-27 テルモ株式会社 血漿採取装置
JPH0474515A (ja) 1990-07-13 1992-03-09 Toray Ind Inc 酸素吸収体
US5368808A (en) 1990-10-26 1994-11-29 Kyoraku Co., Ltd. Blowbag manufacturing method
DE69126861T2 (de) 1990-11-07 1998-02-26 Baxter Int Lösung zur aufbewahrung roter blutzellen
US5208335A (en) 1991-03-19 1993-05-04 Air Products And Chemicals, Inc. Reversible oxygen sorbent compositions
US5789152A (en) 1991-04-30 1998-08-04 Basil T. Hone Composition and method for detecting HIV with baculovirus derived vesicles
CA2089005C (en) 1991-06-21 1999-01-19 John Chapman Method for inactivating pathogens in a body fluid
US5443743A (en) 1991-09-11 1995-08-22 Pall Corporation Gas plasma treated porous medium and method of separation using same
US5353793A (en) 1991-11-25 1994-10-11 Oishi-Kogyo Company Sensor apparatus
JP3461360B2 (ja) 1991-11-30 2003-10-27 旭メディカル株式会社 白血球除去用フィルター材料
JP3337232B2 (ja) 1991-12-26 2002-10-21 東レ・ダウコーニング・シリコーン株式会社 シリコーン硬化物微粒子と無機質微粒子からなる粉体混合物の製造方法
NZ249176A (en) * 1992-02-07 1996-11-26 Vasogen Inc Method of increasing concentration of nitric oxide in blood using ozone and uv radiation
US5356375A (en) 1992-04-06 1994-10-18 Namic U.S.A. Corporation Positive pressure fluid delivery and waste removal system
JP3177713B2 (ja) 1992-04-30 2001-06-18 科学技術振興事業団 輸血用血液または血液製剤の保存方法
US5304487A (en) 1992-05-01 1994-04-19 Trustees Of The University Of Pennsylvania Fluid handling in mesoscale analytical devices
JPH05317413A (ja) 1992-05-20 1993-12-03 Asahi Medical Co Ltd 白血球除去血液成分採取装置
US6248690B1 (en) 1992-05-26 2001-06-19 Multisorb Technologies, Inc. Oxygen absorber
US5529821A (en) 1992-06-29 1996-06-25 Terumo Kabushiki Kaisha Container for storing blood or blood component
DE4229325C2 (de) 1992-09-02 1995-12-21 Heraeus Instr Gmbh Kulturgefäß für Zellkulturen
US5328268A (en) 1992-10-30 1994-07-12 Custom Packaging Systems, Inc. Bulk bag with restrainer
SE9301581D0 (sv) 1993-05-07 1993-05-07 Kabi Pharmacia Ab Protein formulation
JP3648261B2 (ja) * 1993-05-21 2005-05-18 株式会社 オキシジェニクス ヘモグロビン含有水溶液の処理方法
US5427663A (en) 1993-06-08 1995-06-27 British Technology Group Usa Inc. Microlithographic array for macromolecule and cell fractionation
US5744056A (en) 1993-07-16 1998-04-28 Amoco Corporation Oxygen-scavenging compositions and articles
US5362442A (en) 1993-07-22 1994-11-08 2920913 Canada Inc. Method for sterilizing products with gamma radiation
IT1260685B (it) 1993-09-29 1996-04-22 Sorin Biomedica Spa Dispositivo per il contenimento di sangue
GB2283015B (en) 1993-10-22 1998-05-13 Chemitreat Pte Ltd Membrane reactor for the removal of dissolved oxygen from water
US20010037978A1 (en) 1999-04-20 2001-11-08 Daryl R. Calhoun Filter assembly having a flexible housing and method of making same
CA2143365A1 (en) 1994-03-14 1995-09-15 Hugh V. Cottingham Nucleic acid amplification method and apparatus
WO1995029662A2 (en) 1994-04-20 1995-11-09 U.S. Department Of The Army Vaccine against gram-negative bacterial infections
US5617873A (en) 1994-08-25 1997-04-08 The United States Of America As Represented By The Administrator, Of The National Aeronautics And Space Administration Non-invasive method and apparatus for monitoring intracranial pressure and pressure volume index in humans
US6156231A (en) 1994-09-08 2000-12-05 Multisorb Technologies, Inc. Oxygen absorbing composition with cover layer
US5476764A (en) 1994-09-16 1995-12-19 The Regents Of The University Of California Method using CO for extending the useful shelf-life of refrigerated red blood cells
US6045701A (en) 1994-10-17 2000-04-04 Baxter International Inc. Method of filtering a fluid suspension with a membrane having a particular coating
DE4446270C1 (de) * 1994-12-23 1996-02-29 Hewlett Packard Gmbh Basisstruktur für einen Flüssigkeitschromatographie-Entgaser
US5730989A (en) 1995-02-16 1998-03-24 Novavax, Inc. Oral vaccine against gram negative bacterial infection
US5895810A (en) 1995-03-23 1999-04-20 Biopure Corporation Stable polymerized hemoglobin and use thereof
US5691452A (en) 1995-03-23 1997-11-25 Biopure Corporation Method for preserving a hemoglobin blood substitute
US6288027B1 (en) 1995-03-23 2001-09-11 Biopure Corporation Preserving a hemoglobin blood substitute with a transparent overwrap
DK0815138T3 (da) 1995-03-23 2002-12-23 Biopure Corp Stabil polymeriseret hæmoglobin-blod-erstatning
US5605934A (en) 1995-03-23 1997-02-25 Baxter International Inc. Method of manufacturing and storing solutions
US6610832B1 (en) 1995-03-23 2003-08-26 Biopure Corporation Preserving a hemoglobin blood substitute with a transparent overwrap
WO1996029864A1 (en) 1995-03-24 1996-10-03 Organ, Inc. Rejuvenating outdated red cells
EP0869835B1 (en) 1995-04-13 2005-06-08 Travenol Laboratories (Israel) Ltd. Leukocyte filtration method and apparatus
US5624794A (en) 1995-06-05 1997-04-29 The Regents Of The University Of California Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas
US5716852A (en) 1996-03-29 1998-02-10 University Of Washington Microfabricated diffusion-based chemical sensor
US5762791A (en) 1995-08-09 1998-06-09 Baxter International Inc. Systems for separating high hematocrit red blood cell concentrations
US6527957B1 (en) 1995-08-09 2003-03-04 Baxter International Inc. Methods for separating, collecting and storing red blood cells
US5846427A (en) 1995-10-23 1998-12-08 Hemasure, Inc. Extra-lumenal crossflow plasmapheresis devices and method of use thereof
US5709472A (en) 1995-10-23 1998-01-20 Lifelines Technology, Inc. Time-temperature indicator device and method of manufacture
US6042264A (en) 1995-10-23 2000-03-28 Lifelines Technology, Inc. Time-temperature indicator device and method of manufacture
US5686304A (en) 1995-12-15 1997-11-11 Avecor Cardiovascular, Inc. Cell culture apparatus and method
US5693230A (en) 1996-01-25 1997-12-02 Gas Research Institute Hollow fiber contactor and process
US5863460A (en) 1996-04-01 1999-01-26 Chiron Diagnostics Corporation Oxygen sensing membranes and methods of making same
US5698250A (en) 1996-04-03 1997-12-16 Tenneco Packaging Inc. Modifield atmosphere package for cut of raw meat
SE9601348D0 (sv) 1996-04-10 1996-04-10 Pharmacia Ab Improved containers for parenteral fluids
US5906285A (en) 1996-05-10 1999-05-25 Plastipak Packaging, Inc. Plastic blow molded container
IT1285393B1 (it) 1996-06-04 1998-06-03 Hospal Dasco Spa Formulazione di polivinile cloruro plastificato per la realizzazione di componenti in materiale biocompatibile, in particolare di linee
US6148536A (en) 1996-06-10 2000-11-21 Nippon Telegraph And Telephone Corporation Two-fluid nozzle and device employing the same nozzle for freezing and drying liquid containing biological substances
US6808675B1 (en) 1996-06-25 2004-10-26 Thermogenesis Corp. Freezing and thawing bag, mold, apparatus and method
JP3915126B2 (ja) 1996-07-09 2007-05-16 ポール・コーポレーション 多要素フィルター
US6254628B1 (en) 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
US5876604A (en) 1996-10-24 1999-03-02 Compact Membrane Systems, Inc Method of gasifying or degasifying a liquid
US6358678B1 (en) 1998-02-11 2002-03-19 The United States Of America As Represented By The Secretary Of The Navy Applications of reversible crosslinking and co-treatment in stabilization and viral inactivations of erythrocytes
EP0969897B1 (en) 1997-03-17 2010-08-18 Adidas AG Physiologic signs feedback system
US6482585B2 (en) 1997-04-16 2002-11-19 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Storage and maintenance of blood products including red blood cells and platelets
US6403124B1 (en) 1997-04-16 2002-06-11 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Storage and maintenance of blood products including red blood cells and platelets
US6162396A (en) 1997-04-26 2000-12-19 The Regents Of The University Of California Blood storage device and method for oxygen removal
US6164821A (en) 1997-05-09 2000-12-26 The Procter & Gamble Company Flexible, self-supporting storage bag with hinged, framed closure
US5789151A (en) 1997-05-15 1998-08-04 The Regents Of The University Of California Prolonged cold storage of red blood cells by oxygen removal and additive usage
DE69839047T2 (de) 1997-05-20 2009-01-15 Zymequest, Inc., Beverly Flüssigkeitsüberwachungssystem
US6087087A (en) * 1997-07-03 2000-07-11 Takashi Yonetani Treatment of hemoglobin with nitric oxide
IT1293309B1 (it) 1997-07-09 1999-02-16 Sis Ter Spa Apparecchiatura per il trattamento del sangue con dispositivo di scambio a membrana
US6368871B1 (en) 1997-08-13 2002-04-09 Cepheid Non-planar microstructures for manipulation of fluid samples
US6022477A (en) 1997-11-14 2000-02-08 New Jersey Institute Of Technology Method and apparatus for isolation purification of biomolecules
JP3758853B2 (ja) 1997-11-28 2006-03-22 テルモ株式会社 白血球除去器
DE19754573A1 (de) 1997-12-09 1999-06-10 Bayer Ag Pharmazeutische Zusammensetzung zur Behandlung von Schlaganfall und Schädel-Hirn-Trauma
JP2003521552A (ja) 1998-03-25 2003-07-15 シェブロン フィリップス ケミカル カンパニー エルピー プラスチックフィルムそして飲料および食品の容器で使用するための酸化生成物が減少する酸素スカベンジャー
US6027623A (en) 1998-04-22 2000-02-22 Toyo Technologies, Inc. Device and method for electrophoretic fraction
US5937617A (en) 1998-05-01 1999-08-17 Innoflex Incorporated Pouch with pre-inserted straw
US6090062A (en) 1998-05-29 2000-07-18 Wayne State University Programmable antisiphon shunt system
US6908553B1 (en) 1998-07-08 2005-06-21 Baxter International Inc. Composite membrane with particulate matter substantially immobilized therein
US20030215784A1 (en) 1998-07-21 2003-11-20 Dumont Larry Joe Method and apparatus for inactivation of biological contaminants using photosensitizers
US20070099170A1 (en) 1998-07-21 2007-05-03 Navigant Biotechnologies, Inc. Method for treatment and storage of blood and blood products using endogenous alloxazines and acetate
CA2341614C (en) 1998-08-31 2008-11-18 Walter Reed Army Institute Of Research Prolonged storage of red blood cells
US6695803B1 (en) 1998-10-16 2004-02-24 Mission Medical, Inc. Blood processing system
AUPP676898A0 (en) 1998-10-26 1998-11-19 Noble House Group Pty Ltd Sampling first in blood collection
US6413713B1 (en) 1998-10-30 2002-07-02 Hyperbaric Systems Method for preserving blood platelets
CA2287768C (en) 1998-11-02 2004-01-13 Ahmed Abdoh Method for automated data collection, analysis and reporting
WO2001054584A1 (en) 1999-01-27 2001-08-02 The Government Of The United States As Represented By The Administrator Of The National Aeronautics And Space Administration Ultrasonic apparatus and technique to measure changes in intracranial pressure
US6582496B1 (en) 2000-01-28 2003-06-24 Mykrolis Corporation Hollow fiber membrane contactor
US6337026B1 (en) 1999-03-08 2002-01-08 Whatman Hemasure, Inc. Leukocyte reduction filtration media
US6945411B1 (en) 1999-03-16 2005-09-20 Pall Corporation Biological fluid filter and system
US6097293A (en) 1999-04-15 2000-08-01 Industrial Technology, Inc. Passive electrical marker for underground use and method of making thereof
US6210601B1 (en) 1999-04-21 2001-04-03 Larry A. Hottle Method of making an oxygen scavenging sealant composition
US6455311B1 (en) 1999-04-30 2002-09-24 The General Hospital Corporation Fabrication of vascularized tissue
US6387461B1 (en) 1999-05-06 2002-05-14 Cryovac, Inc. Oxygen scavenger compositions
US6629919B2 (en) 1999-06-03 2003-10-07 Haemonetics Corporation Core for blood processing apparatus
US6610772B1 (en) 1999-08-10 2003-08-26 Eastman Chemical Company Platelet particle polymer composite with oxygen scavenging organic cations
US6287284B1 (en) 1999-09-27 2001-09-11 Npt, Inc. Silicone bag assembly
WO2001035737A1 (de) * 1999-11-16 2001-05-25 Acordis Industrial Fibers Gmbh Vorrichtung und verfahren zur konservierung eines zellpräparats
DE60033520T2 (de) 1999-12-08 2007-06-21 Baxter International Inc. (A Delaware Corporation), Deerfield Verfahren zur herstellung einer mikroporösen filtermembran
US6315815B1 (en) * 1999-12-16 2001-11-13 United Technologies Corporation Membrane based fuel deoxygenator
EP1289630B1 (de) 2000-03-07 2008-03-05 MAT Adsorption Technologies GmbH & Co. KG Modul mit membranelementen in cross-flow und in dead-end anordnung
US20010037078A1 (en) 2000-03-31 2001-11-01 Daniel Lynn Systems and methods for collecting leukocyte-reduced blood components, including plasma that is free or virtually free of cellular blood species
US6468732B1 (en) 2000-04-04 2002-10-22 Bayer Corporation Method and long-term stable bicarbonate-containing diluent composition, and storage means therefor, for reducing or reversing aeration induced cell shrinkage and storage induced cell swelling of a whole blood sample
ES2257315T3 (es) 2000-04-21 2006-08-01 Kuraray Co., Ltd. Tubo multicapa y dispositivo medico que comprende el tubo multicapa.
US6402818B1 (en) * 2000-06-02 2002-06-11 Celgard Inc. Degassing a liquid with a membrane contactor
US6558571B1 (en) 2000-08-11 2003-05-06 Multisorb Technologies, Inc. Oxygen-absorbing composition and method
US7904313B2 (en) 2000-08-24 2011-03-08 Quintiles, Inc. Recruiting a patient into a clinical trial
JP2002087971A (ja) 2000-09-07 2002-03-27 Asahi Medical Co Ltd 生体組織再生用細胞の分離方法及び装置
WO2002026114A2 (en) 2000-09-27 2002-04-04 Bitensky Mark W Cellular diagnostic arrays, methods of using and processes for producing same
EP1328312A4 (en) 2000-09-27 2007-08-01 Cobe Cardiovascular Inc blood perfusion system
US20080027368A1 (en) 2000-09-27 2008-01-31 Sorin Group Usa, Inc. Disposable cartridge for a blood perfusion system
WO2002026118A2 (en) 2000-09-29 2002-04-04 New Health Sciences, Inc. Systems and methods for assessing vascular effects of a treatment
US7104958B2 (en) 2001-10-01 2006-09-12 New Health Sciences, Inc. Systems and methods for investigating intracranial pressure
US6955648B2 (en) 2000-09-29 2005-10-18 New Health Sciences, Inc. Precision brain blood flow assessment remotely in real time using nanotechnology ultrasound
US7604599B2 (en) 2000-09-29 2009-10-20 New Health Sciences, Inc. Systems and methods for using dynamic vascular assessment to improve vascular stent placement, application, design and marketing
US6494909B2 (en) 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
US6770434B2 (en) 2000-12-29 2004-08-03 The Provost, Fellows And Scholars Of The College Of The Holy & Undivided Trinity Of Queen Elizabeth Near Dublin Biological assay method
AU2002239810A1 (en) 2001-01-02 2002-07-16 The Charles Stark Draper Laboratory, Inc. Tissue engineering of three-dimensional vascularized using microfabricated polymer assembly technology
US6773670B2 (en) 2001-02-09 2004-08-10 Cardiovention, Inc. C/O The Brenner Group, Inc. Blood filter having a sensor for active gas removal and methods of use
JP2002253936A (ja) 2001-02-28 2002-09-10 Japan Gore Tex Inc 分離膜チューブ及び分離膜モジュール
US6613280B2 (en) 2001-03-20 2003-09-02 Therox, Inc. Disposable cartridge for producing gas-enriched fluids
US6974447B2 (en) 2001-04-17 2005-12-13 Baxter International Inc. High gas barrier receptacle and closure assembly
US20030069480A1 (en) * 2001-04-28 2003-04-10 Baxter International Inc. A system and method for networking blood collection instruments within a blood collection facility
CN2502700Y (zh) 2001-05-10 2002-07-31 张明礼 血液收集装置
US6697667B1 (en) 2001-05-31 2004-02-24 Advanced Cardiovascular Systems, Inc. Apparatus and method for locating coronary sinus
ES2320424T3 (es) 2001-07-31 2009-05-22 Asahi Kasei Medical Co., Ltd. Filtro de eliminacion de leucocitos que comprende un recubrimiento polimerico.
US7909788B2 (en) 2001-08-01 2011-03-22 Battelle Memorial Institute Carbon dioxide removal from whole blood by photolytic activation
US6682698B2 (en) 2001-08-23 2004-01-27 Michigan Critical Care Consultants, Inc. Apparatus for exchanging gases in a liquid
DE10151343A1 (de) 2001-10-22 2003-05-08 Vita 34 Ag Beutelsystem für die Kryokonservierung von Körperflüssigkeiten
JP2005535279A (ja) 2001-11-16 2005-11-24 ホリンガー・ディジタル・インコーポレイテッド 栄養サプリメンテーションによる冷蔵赤血球の有効貯蔵期間を延長するための方法
CA2467087A1 (en) 2001-11-16 2003-05-30 Hemanext, Llc Additive solution for blood preservation
EP1455860B1 (en) 2001-12-10 2011-08-31 CaridianBCT, Inc. Method for the leukoreduction of red blood cells
EP1470686A1 (en) 2002-01-31 2004-10-27 Telefonaktiebolaget LM Ericsson (publ) Method for providing multiple sdp media flows in a single pdp context
JP2005535289A (ja) 2002-02-15 2005-11-24 ミレニアム・ファーマシューティカルズ・インコーポレイテッド 1414分子、1481分子、1553分子、34021分子、1720分子、1683分子、1552分子、1682分子、1675分子、12825分子、9952分子、5816分子、10002分子、1611分子、1371分子、14324分子、126分子、270分子、312分子、167分子、326分子、18926分子、6747分子、1793分子、1784分子または2045分子を用いて、aidsおよびhiv関連障害を処置するための方法および組成物
US6761695B2 (en) 2002-03-07 2004-07-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for non-invasive measurement of changes in intracranial pressure
AU2003213758A1 (en) 2002-03-14 2003-09-29 Fenwal, Inc. Compound removal device
CN1642628B (zh) 2002-03-19 2010-06-16 安格斯公司 中空纤维膜接触装置及方法
US20030183801A1 (en) 2002-03-28 2003-10-02 Hu Yang Porous oxygen scavenging material
US20030190272A1 (en) 2002-04-08 2003-10-09 Dennis Raine Sterilization containers and methods for radiation sterilization of liquid products
US6767466B2 (en) 2002-04-08 2004-07-27 Teva Medical Ltd. Leukocyte filter construction
US6773407B2 (en) 2002-04-08 2004-08-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Non-invasive method of determining absolute intracranial pressure
JP4376635B2 (ja) 2002-04-16 2009-12-02 カリディアンビーシーティー、インコーポレーテッド 血液成分処理システム、装置、および方法
US7183045B2 (en) 2002-04-24 2007-02-27 Gambro Inc. Removal of adenine during a pathogen reduction process in whole blood or red blood cell by dilution
MXPA04012771A (es) 2002-06-07 2005-05-27 Promethean Lifesciences Inc Esterilizacion, estabilizacion y conservacion de componentes biologicos funcionales.
US6899743B2 (en) 2002-06-12 2005-05-31 Membrane Technology And Research, Inc. Separation of organic mixtures using gas separation or pervaporation and dephlegmation
US6878335B2 (en) 2002-06-21 2005-04-12 Vital Signs, Inc. Process of manufacturing a breathing bag and breathing bag manufactured by such process
US6817979B2 (en) 2002-06-28 2004-11-16 Nokia Corporation System and method for interacting with a user's virtual physiological model via a mobile terminal
JP2004089495A (ja) 2002-08-30 2004-03-25 Terumo Corp バッグ連結体
US20080160107A1 (en) 2002-09-10 2008-07-03 Nitric Biotherapeutics, Inc. Use of nitric oxide gas to treat blood and blood products
AU2003290677B2 (en) 2002-11-08 2009-09-17 The Brigham And Women's Hospital, Inc. Compositions and methods for prolonging survival of platelets
US6899822B2 (en) 2002-11-18 2005-05-31 Multisorb Technologies, Inc. Oxygen-absorbing composition
DE10327988B4 (de) 2002-12-18 2009-05-14 Alpha Plan Gmbh Filtermodul zur Aufbereitung von Flüssigkeiten
ITTO20030039A1 (it) 2003-01-24 2004-07-25 Fresenius Hemocare Italia Srl Filtro per separare leucociti da sangue intero e/o da preparati derivati dal sangue, procedimento per la fabbricazione del filtro, dispositivo e utilizzazione.
US8828226B2 (en) 2003-03-01 2014-09-09 The Trustees Of Boston University System for assessing the efficacy of stored red blood cells using microvascular networks
US7517453B2 (en) 2003-03-01 2009-04-14 The Trustees Of Boston University Microvascular network device
US6709492B1 (en) * 2003-04-04 2004-03-23 United Technologies Corporation Planar membrane deoxygenator
US20040254560A1 (en) 2003-06-11 2004-12-16 Coelho Philip H. Rupture resistant blow molded freezer bag for containing blood products
US7078100B2 (en) 2003-08-28 2006-07-18 Cryovac, Inc. Oxygen scavenger compositions derived from isophthalic acid and/or terephthalic acid monomer or derivatives thereof
US7754798B2 (en) 2003-08-28 2010-07-13 Cryovac, Inc. Oxygen scavenger block copolymers and compositions
US8070952B2 (en) 2003-10-03 2011-12-06 Medical Service S.R.L. Apparatus and method for the treatment of blood
US7097690B2 (en) 2003-10-10 2006-08-29 Scimed Life Systems, Inc. Apparatus and method for removing gasses from a liquid
US20050085785A1 (en) 2003-10-17 2005-04-21 Sherwin Shang High impact strength film and non-pvc containing container and pouch and overpouch
CN1878582B (zh) 2003-11-24 2011-05-25 甘布罗伦迪亚股份公司 脱气设备以及具有这种脱气设备的过滤器的端盖组件
US20050137517A1 (en) 2003-12-19 2005-06-23 Baxter International Inc. Processing systems and methods for providing leukocyte-reduced blood components conditioned for pathogen inactivation
US7347887B2 (en) 2003-12-22 2008-03-25 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
US20050139806A1 (en) 2003-12-24 2005-06-30 Havens Marvin R. Oxygen scavenger compositions
US7125498B2 (en) 2004-02-04 2006-10-24 Multisorb Technologies, Inc. Oxygen-absorbing compositions and method
US9314014B2 (en) 2004-02-18 2016-04-19 University Of Maryland, Baltimore Compositions and methods for the storage of red blood cells
JP4579569B2 (ja) 2004-04-16 2010-11-10 株式会社クレハ 多層二軸延伸ブローボトル及びその製造方法
WO2006031385A2 (en) 2004-08-24 2006-03-23 The General Hospital Corporation Particle separating devices, systems and methods
US20060081524A1 (en) 2004-10-15 2006-04-20 Amitava Sengupta Membrane contactor and method of making the same
KR100721054B1 (ko) 2004-11-23 2007-05-25 주식회사 뉴하트바이오 혈액정화 및/또는 혈액산화용 필터모듈, 그를 이용한혈액정화 및 혈액산화 방법 그리고 그를 포함하는혈액정화 장치
CA2592432A1 (en) 2004-12-23 2006-07-06 Hospira, Inc. Port closure system for intravenous fluid container
US20100221697A1 (en) 2005-01-12 2010-09-02 BioVec Transfusions, LLC Composition for preserving platelets and method of using and storing the same
EP1683579A1 (fr) 2005-01-25 2006-07-26 Jean-Denis Rochat Dispositif jetable pour la séparation en continu par centrifugation d'un liquide physiologique
US7465335B2 (en) * 2005-02-02 2008-12-16 United Technologies Corporation Fuel deoxygenation system with textured oxygen permeable membrane
BRPI0520102A2 (pt) 2005-02-17 2009-04-22 Univ Cincinnati composiÇço aquosa para armazenagem de hemÁcias suspensço de hemÁcias, mÉtodo de preservaÇço de hemÁcias ou glàbulos vermelhos do sangue ("red blood cells" - rbc`s) durante um perÍodo de armazenagem, mÉtodo para aperfeiÇoamento da manutenÇço de membrana de hemÁcias ou glàbulos vermelhos do sangue ("red blood cells" - rbc) e supressço de apoptose de rbc`s durante um perÍodo de armazenagem, mÉtodo para reduÇço de fragilidade de hemÁcias (rbc`s) e supressço de hemàlise de rbc`s durante um perÍodo de armazenagem, mÉtodo para aumentar a viabilidade de hemÁcias (rbc`s), mÉtodo de preservaÇço de hamÁcias (rbc`s) durante um perÍodo de armazenagem, combinaÇço, e composiÇço aquosa
JP3772909B1 (ja) 2005-04-04 2006-05-10 東洋紡績株式会社 血液浄化器
US20060226087A1 (en) 2005-04-08 2006-10-12 Mission Medical, Inc. Method and apparatus for blood separations
CN2780207Y (zh) 2005-04-12 2006-05-17 浙江科锐生物科技有限公司 一次性使用的活性炭血液灌流器
AU2006236150A1 (en) 2005-04-20 2006-10-26 Fred Hutchinson Cancer Research Center Methods, compositions and articles of manufacture for enhancing survivability of cells, tissues, organs, and organisms
JP4584018B2 (ja) 2005-05-09 2010-11-17 日東電工株式会社 脱気装置
US7465336B2 (en) * 2005-06-09 2008-12-16 United Technologies Corporation Fuel deoxygenation system with non-planar plate members
US7575856B2 (en) 2005-10-28 2009-08-18 The United States Of America As Represented By The Department Of Veterans Affairs Compositions and methods for the evaluation and resuscitation of cadaveric hearts for transplant
CN2894710Y (zh) 2006-03-31 2007-05-02 天津市海河医院 医用血气交换器
DE102006020494A1 (de) * 2006-04-21 2007-10-25 Novalung Gmbh Künstliches Lungensystem und dessen Verwendung
US7763097B2 (en) 2006-06-08 2010-07-27 University of Pittsburgh—of the Commonwealth System of Higher Education Devices, systems and methods for reducing the concentration of a chemical entity in fluids
US7517146B2 (en) 2006-08-30 2009-04-14 Temptime Corporation Color-retaining excess-temperature exposure indicator
US7713614B2 (en) 2006-09-19 2010-05-11 Kuraray Co., Ltd. Resin composition and multilayer structure
EP1902740A1 (en) 2006-09-19 2008-03-26 Maco Pharma S.A. Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system
BRPI0717293A2 (pt) 2006-09-25 2013-10-15 Nipro Corp Recipiente de plástico moldado a sopro para infusão
US20080098894A1 (en) * 2006-11-01 2008-05-01 Sabatino Daniel R Acoustic degassing heat exchanger
US8887721B2 (en) 2006-11-07 2014-11-18 The General Hospital Corporation Attenuation of vasoactive oxygen carrier-induced vasoconstriction
JP2008161734A (ja) * 2006-12-26 2008-07-17 Ngk Insulators Ltd 機能水生成装置及びそれを用いた機能水生成方法
WO2008089337A1 (en) 2007-01-19 2008-07-24 The Regents Of The University Of Michigan Compositions and methods for preserving red blood cells
CL2008000793A1 (es) 2007-03-23 2008-05-30 Xenon Pharmaceuticals Inc Compuestos derivados de dihidroindazol; composicion farmaceutica que comprende a dichos compuestos; y su uso para tratar un trastorno del hierro.
JP2008253452A (ja) 2007-04-03 2008-10-23 Sekisui Chem Co Ltd 真空採血管
US8398743B2 (en) 2007-05-08 2013-03-19 General Electric Company Methods and systems for reducing carbon dioxide in combustion flue gases
KR101071402B1 (ko) 2007-09-11 2011-10-07 (주) 비에이치케이 혈액 정화장치
EP2252362A1 (en) 2008-02-07 2010-11-24 University of Pittsburgh - Of the Commonwealth System of Higher Education Intracorporeal gas exchange devices, systems and methods
EP2113266A1 (en) 2008-04-30 2009-11-04 Gambro Lundia AB Degassing device
EP2274083A1 (en) 2008-04-30 2011-01-19 Gambro Lundia AB Hydrophobic deaeration membrane
KR20110008319A (ko) * 2008-05-19 2011-01-26 엔테그리스, 아이엔씨. 액체 내에 가스의 무기포 용액을 제조하기 위한 기화 시스템 및 방법
JP5560459B2 (ja) 2008-10-17 2014-07-30 三菱マテリアル株式会社 金属ナノ粒子の合成方法
JP4967001B2 (ja) * 2009-03-13 2012-07-04 ミズ株式会社 水素含有生体適用液の製造方法、及びそのための装置
US8177884B2 (en) * 2009-05-20 2012-05-15 United Technologies Corporation Fuel deoxygenator with porous support plate
US8377172B2 (en) 2009-06-11 2013-02-19 Georgia Tech Research Corporation Fiber sorbents
AU2010278768A1 (en) * 2009-07-31 2012-03-15 New Health Sciences, Inc. Removal of oxygen from biological fluids
US9044880B2 (en) 2009-08-04 2015-06-02 Mitsubishi Gas Chemical Company, Inc. Method for producing container
US9199016B2 (en) 2009-10-12 2015-12-01 New Health Sciences, Inc. System for extended storage of red blood cells and methods of use
WO2011046841A1 (en) * 2009-10-12 2011-04-21 New Health Sciences, Inc. Blood storage bag system and depletion devices with oxygen and carbon dioxide depletion capabilities
WO2011046963A1 (en) 2009-10-12 2011-04-21 New Health Sciences, Inc. Oxygen depletion devices and methods for removing oxygen from red blood cells
JP2011092905A (ja) * 2009-10-30 2011-05-12 Japan Gore Tex Inc 脱気膜の製造方法、封筒状物、および該封筒状物を用いた脱気装置
WO2011068897A1 (en) 2009-12-01 2011-06-09 Exthera Medical, Llc Method for removing cytokines from blood with surface immobilized polysaccharides
US20130197420A1 (en) 2010-01-19 2013-08-01 William H. Fissell, IV Nanoporous membranes, devices, and methods for respiratory gas exchange
EP4091645A1 (en) 2010-08-25 2022-11-23 Hemanext Inc. Method for enhancing red blood cell quality and survival during storage
EP4218412A1 (en) 2010-11-05 2023-08-02 Hemanext Inc. Irradiation of red blood cells and anaerobic storage
JP5696527B2 (ja) * 2011-02-25 2015-04-08 東レ株式会社 血漿分離膜モジュールを用いた血漿の分離方法
US20120219633A1 (en) 2011-02-28 2012-08-30 Pall Corporation Removal of immunoglobulins and leukocytes from biological fluids
EP2684551B1 (en) 2011-03-09 2021-10-06 Terumo Kabushiki Kaisha System for delivering oxygen carrier, oxygenation device for oxygen carrier, and housing for oxygen carrier
AU2012294890B2 (en) 2011-03-28 2017-05-18 Hemanext Inc. Method and system for removing oxygen and carbon dioxide during red cell blood processing using an inert carrier gas and manifold assembly
US9067004B2 (en) 2011-03-28 2015-06-30 New Health Sciences, Inc. Method and system for removing oxygen and carbon dioxide during red cell blood processing using an inert carrier gas and manifold assembly
JP2014518283A (ja) 2011-07-05 2014-07-28 ニュー・ヘルス・サイエンシーズ・インコーポレイテッド 赤血球の長期保存システムおよび使用方法
EP4074395B1 (en) 2011-08-10 2024-01-24 Hemanext Inc. Integrated leukocyte, oxygen and/or co2 depletion, and plasma separation filter device
US20140086892A1 (en) 2011-09-19 2014-03-27 FENWAL, INC. a Delaware Corporation Red blood cell products and the storage of red blood cells in non-pvc containers
WO2013086011A1 (en) * 2011-12-05 2013-06-13 The Charles Stark Draper Laboratory, Inc. Method for reducing the blood priming volume and membrane surface area in microfluidic lung assist devices
US9742735B2 (en) 2012-04-13 2017-08-22 Ologn Technologies Ag Secure zone for digital communications
EP2852461B1 (en) 2012-05-22 2022-06-15 Hemanext Inc. Capillary network devices and methods of use
US9083010B2 (en) 2012-07-18 2015-07-14 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
FR2996413B1 (fr) 2012-10-10 2014-12-05 Maco Pharma Sa Procede pour conserver le sang placentaire
US9057901B2 (en) 2012-11-29 2015-06-16 Shenzhen China Star Optoelectronics Technology Co., Ltd Plastic frame, backlight module and liquid crystal display device
US20140158604A1 (en) 2012-12-12 2014-06-12 Jacques Chammas Platelet Storage Container
CA2902061C (en) 2013-02-28 2023-08-08 New Health Sciences, Inc. Gas depletion and gas addition devices for blood treatment
US20140248005A1 (en) 2013-03-01 2014-09-04 Stokely-Van Camp, Inc. Stand-Up Pouch
US9174771B2 (en) 2013-03-15 2015-11-03 Sangart, Inc. Packaging system for preserving a nonoxygenated hemoglobin based oxygen therapeutic product
WO2014194931A1 (en) 2013-06-03 2014-12-11 Onderzoeks- En Ontwikkelingsfonds Rode Kruis-Vlaanderen Pathogen reduction treatment
PT3268015T (pt) 2015-03-10 2022-01-06 Hemanext Inc Kits descartáveis de redução de oxigénio, dispositivos e métodos de utilização dos mesmos
EP3285711A4 (en) 2015-04-23 2018-11-07 New Health Sciences, Inc. Anaerobic blood storage containers

Also Published As

Publication number Publication date
EP3967143A1 (en) 2022-03-16
JP2016517395A (ja) 2016-06-16
US10687526B2 (en) 2020-06-23
JP2019065039A (ja) 2019-04-25
AU2014223165A1 (en) 2015-09-24
PT2961269T (pt) 2021-12-16
HK1219205A1 (zh) 2017-03-31
EP2961269A1 (en) 2016-01-06
US20160007588A1 (en) 2016-01-14
ES2900298T3 (es) 2022-03-16
CA2902061C (en) 2023-08-08
US9877476B2 (en) 2018-01-30
CA3205441A1 (en) 2014-09-04
CA2902061A1 (en) 2014-09-04
AU2014223165B2 (en) 2017-04-13
EP2961269B1 (en) 2021-09-15
US20180153157A1 (en) 2018-06-07
WO2014134503A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP6796664B2 (ja) 血液処理のためのガス枯渇化およびガス添加デバイス
JP6515122B2 (ja) 一体型の白血球、酸素及び/又は二酸化炭素減損・血漿分離フィルタ装置
CN107530377B (zh) 氧减少一次性套件、装置及其使用方法
CN115915933A (zh) 不含dehp的血液储存以及其使用方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201116

R150 Certificate of patent or registration of utility model

Ref document number: 6796664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250