JP6246307B2 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP6246307B2 JP6246307B2 JP2016239218A JP2016239218A JP6246307B2 JP 6246307 B2 JP6246307 B2 JP 6246307B2 JP 2016239218 A JP2016239218 A JP 2016239218A JP 2016239218 A JP2016239218 A JP 2016239218A JP 6246307 B2 JP6246307 B2 JP 6246307B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- film
- oxide semiconductor
- oxide
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 343
- 229910052760 oxygen Inorganic materials 0.000 claims description 186
- 239000001301 oxygen Substances 0.000 claims description 186
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 185
- 239000000758 substrate Substances 0.000 claims description 165
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 153
- 229910052710 silicon Inorganic materials 0.000 claims description 153
- 239000010703 silicon Substances 0.000 claims description 153
- 238000012360 testing method Methods 0.000 claims description 76
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 40
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 38
- 230000015572 biosynthetic process Effects 0.000 claims description 36
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 33
- 238000005530 etching Methods 0.000 claims description 32
- 230000003287 optical effect Effects 0.000 claims description 22
- 230000005684 electric field Effects 0.000 claims description 11
- 239000010408 film Substances 0.000 description 983
- 238000000034 method Methods 0.000 description 88
- 238000012545 processing Methods 0.000 description 79
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 75
- 239000007789 gas Substances 0.000 description 74
- 230000002829 reductive effect Effects 0.000 description 62
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 61
- 230000035882 stress Effects 0.000 description 59
- 238000010438 heat treatment Methods 0.000 description 57
- 229910044991 metal oxide Inorganic materials 0.000 description 56
- 150000004706 metal oxides Chemical class 0.000 description 56
- 239000001257 hydrogen Substances 0.000 description 55
- 229910052739 hydrogen Inorganic materials 0.000 description 55
- 239000011701 zinc Substances 0.000 description 53
- 239000012298 atmosphere Substances 0.000 description 41
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 41
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 37
- 229960001730 nitrous oxide Drugs 0.000 description 37
- 229910000077 silane Inorganic materials 0.000 description 37
- 235000013842 nitrous oxide Nutrition 0.000 description 35
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 34
- 239000010410 layer Substances 0.000 description 34
- 239000004973 liquid crystal related substance Substances 0.000 description 33
- 238000005259 measurement Methods 0.000 description 33
- 229910052581 Si3N4 Inorganic materials 0.000 description 32
- 238000004519 manufacturing process Methods 0.000 description 32
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 32
- 229910052757 nitrogen Inorganic materials 0.000 description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- 229910001868 water Inorganic materials 0.000 description 31
- 230000008569 process Effects 0.000 description 29
- 238000004544 sputter deposition Methods 0.000 description 29
- 239000013078 crystal Substances 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 26
- 239000012535 impurity Substances 0.000 description 23
- 239000000463 material Substances 0.000 description 23
- 239000002245 particle Substances 0.000 description 23
- 238000004435 EPR spectroscopy Methods 0.000 description 21
- 229910052782 aluminium Inorganic materials 0.000 description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 21
- 150000002431 hydrogen Chemical class 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 21
- 230000001681 protective effect Effects 0.000 description 20
- 239000010936 titanium Substances 0.000 description 19
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 18
- 230000008859 change Effects 0.000 description 18
- 238000000151 deposition Methods 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 229910052719 titanium Inorganic materials 0.000 description 18
- 230000008021 deposition Effects 0.000 description 17
- 229920005989 resin Polymers 0.000 description 17
- 239000011347 resin Substances 0.000 description 17
- 239000002585 base Substances 0.000 description 16
- 239000000565 sealant Substances 0.000 description 16
- 229910052721 tungsten Inorganic materials 0.000 description 16
- 239000010937 tungsten Substances 0.000 description 16
- 230000001590 oxidative effect Effects 0.000 description 15
- 238000011282 treatment Methods 0.000 description 15
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 14
- 125000004429 atom Chemical group 0.000 description 14
- 239000011521 glass Substances 0.000 description 14
- 229910052733 gallium Inorganic materials 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 206010021143 Hypoxia Diseases 0.000 description 12
- 230000007547 defect Effects 0.000 description 12
- 229910052735 hafnium Inorganic materials 0.000 description 11
- 229910052738 indium Inorganic materials 0.000 description 11
- 238000009832 plasma treatment Methods 0.000 description 11
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 10
- 239000011737 fluorine Substances 0.000 description 10
- 229910052731 fluorine Inorganic materials 0.000 description 10
- 238000000206 photolithography Methods 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 9
- 229910000449 hafnium oxide Inorganic materials 0.000 description 9
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 9
- 239000002356 single layer Substances 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 8
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 8
- 230000005669 field effect Effects 0.000 description 8
- 229910001195 gallium oxide Inorganic materials 0.000 description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- -1 tungsten nitride Chemical class 0.000 description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 7
- 229920001940 conductive polymer Polymers 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- 238000003795 desorption Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000011733 molybdenum Substances 0.000 description 7
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- 238000005477 sputtering target Methods 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- 239000011787 zinc oxide Substances 0.000 description 7
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 229910003437 indium oxide Inorganic materials 0.000 description 6
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 6
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 5
- 239000002156 adsorbate Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000013081 microcrystal Substances 0.000 description 5
- 238000009751 slip forming Methods 0.000 description 5
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 5
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 4
- 229910020994 Sn-Zn Inorganic materials 0.000 description 4
- 229910009069 Sn—Zn Inorganic materials 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical group [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 4
- VUFNLQXQSDUXKB-DOFZRALJSA-N 2-[4-[4-[bis(2-chloroethyl)amino]phenyl]butanoyloxy]ethyl (5z,8z,11z,14z)-icosa-5,8,11,14-tetraenoate Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)OCCOC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 VUFNLQXQSDUXKB-DOFZRALJSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000006356 dehydrogenation reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- UWCWUCKPEYNDNV-LBPRGKRZSA-N 2,6-dimethyl-n-[[(2s)-pyrrolidin-2-yl]methyl]aniline Chemical compound CC1=CC=CC(C)=C1NC[C@H]1NCCC1 UWCWUCKPEYNDNV-LBPRGKRZSA-N 0.000 description 2
- 229910018120 Al-Ga-Zn Inorganic materials 0.000 description 2
- 229910018137 Al-Zn Inorganic materials 0.000 description 2
- 229910018573 Al—Zn Inorganic materials 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 229910004129 HfSiO Inorganic materials 0.000 description 2
- 108010083687 Ion Pumps Proteins 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 229910020868 Sn-Ga-Zn Inorganic materials 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 229910007541 Zn O Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000003098 cholesteric effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 206010052128 Glare Diseases 0.000 description 1
- 239000005264 High molar mass liquid crystal Substances 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 102000006391 Ion Pumps Human genes 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- 229910020833 Sn-Al-Zn Inorganic materials 0.000 description 1
- 229910020944 Sn-Mg Inorganic materials 0.000 description 1
- 229910018725 Sn—Al Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000012905 input function Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66969—Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/34—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
- H01L21/46—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
- H01L21/461—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/469—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After-treatment of these layers
- H01L21/4757—After-treatment
- H01L21/47573—Etching the layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1222—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
- H01L27/1225—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1259—Multistep manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78696—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thin Film Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Formation Of Insulating Films (AREA)
- Electroluminescent Light Sources (AREA)
- Liquid Crystal (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Description
ているトランジスタは、ガラス基板上に形成されたアモルファスシリコン、単結晶シリコ
ンまたは多結晶シリコンなどのシリコン半導体によって構成されている。また、該シリコ
ン半導体を用いたトランジスタは、集積回路(IC)などにも利用されている。
技術が注目されている。なお、本明細書中では、半導体特性を示す金属酸化物を酸化物半
導体とよぶことにする。
ンジスタを作製し、該トランジスタを表示装置の画素のスイッチング素子などに用いる技
術が開示されている(特許文献1及び特許文献2参照)。
ランジスタの電気特性の不良に繋がる。例えば、膜中に酸素欠損が含まれている酸化物半
導体を用いたトランジスタは、しきい値電圧がマイナス方向に変動しやすく、ノーマリー
オン特性となりやすい。これは、酸化物半導体に含まれる酸素欠損に起因して電荷が生じ
てしまい、低抵抗化するためである。トランジスタがノーマリーオン特性を有すると、動
作時に動作不良が発生しやすくなる、または非動作時の消費電力が高くなるなどの、様々
な問題が生じる。
以下、BT(Bias−Temperature)ストレス試験ともいう。)により、ト
ランジスタの電気特性、代表的にはしきい値電圧の変動量が増大してしまうという問題が
ある。
量を低減することを課題の一とする。また、本発明の一態様は、酸化物半導体を用いた半
導体装置において、電気特性を向上させることを課題の一とする。
、ゲート絶縁膜を介してゲート電極と重なる酸化物半導体膜と、酸化物半導体膜に接する
一対の電極とを有するトランジスタ上に、ゲート絶縁膜、酸化物半導体膜、及び一対の電
極を覆う第1の酸化絶縁膜と、該第1の酸化絶縁膜を覆う第2の酸化絶縁膜を有し、第1
の酸化絶縁膜は緻密で硬い酸化絶縁膜であることを特徴とし、代表的には、25℃におい
て0.5重量%のフッ酸に対する第1の酸化絶縁膜のエッチング速度が10nm/分以下
であり、且つ第2の酸化絶縁膜より遅いことを特徴とする。
℃において0.5重量%のフッ酸に対するエッチング速度が10nm/分以下であり、且
つ第2の酸化絶縁膜より遅い絶縁膜であってもよい。
ート絶縁膜を介してゲート電極と重なる酸化物半導体膜、及び酸化物半導体膜に接する一
対の電極を有するトランジスタと、該トランジスタを覆う第1の絶縁膜及び該第1の絶縁
膜上に形成される第2の絶縁膜とを備える半導体装置であって、第1の絶縁膜は、酸素が
拡散する酸化絶縁膜であり、第2の絶縁膜は、化学量論的組成を満たす酸素よりも多くの
酸素を含む酸化絶縁膜であることを特徴とする。
ート絶縁膜を介してゲート電極と重なる酸化物半導体膜、及び酸化物半導体膜に接する一
対の電極を有するトランジスタと、該トランジスタを覆う酸化絶縁膜とを備える半導体装
置であって、トランジスタは、バイアス温度ストレス試験によってしきい値電圧が変動し
ない、またはプラス方向に変動する特性を有し、該変動量が3.0V以下、好ましくは2
.5V以下であることを特徴とする。
加するプラスBTストレス試験である。
加するマイナスBTストレス試験である。
り上記ゲート電極に高い電位を印加する光プラスBTストレス試験である。
り前記ゲート電極に低い電位を印加する光マイナスBTストレス試験である。
てゲート電極と重なる酸化物半導体膜を形成し、酸化物半導体膜に接する一対の電極を形
成する。次に、酸化物半導体膜の露出部を、酸素を有する雰囲気で発生させたプラズマに
曝した後、プラズマが曝された酸化物半導体膜、及び一対の電極上に、連続的に緻密で硬
い第1の絶縁膜を形成する。第1の絶縁膜は、真空排気された処理室内に載置された基板
を180℃以上400℃以下に保持し、処理室に原料ガスを導入して処理室内における圧
力を100Pa以上250Pa以下とし、処理室内に設けられる電極に高周波電力を供給
することにより形成する。
を満たす酸素よりも多くの酸素を含む絶縁膜であってもよい。化学量論的組成を満たす酸
素よりも多くの酸素を含む絶縁膜は、真空排気された処理室内に載置された基板を180
℃以上250℃以下に保持し、処理室に原料ガスを導入して前記処理室内における圧力を
100Pa以上250Pa以下とし、処理室内に設けられる電極に0.17W/cm2以
上0.5W/cm2以下の高周波電力を供給することにより形成する。
素、または空気の一以上を有する雰囲気である。
性気体を用いて、酸化シリコン膜または酸化窒化シリコン膜を形成する。
酸化窒化シリコン膜を形成する。
することで、酸化物半導体膜に含まれる酸素欠損量を低減することができる。また、当該
プラズマ処理の後、連続的に緻密で硬い第1の絶縁膜を形成することで、酸化物半導体膜
及び第1の絶縁膜の界面における不純物濃度を低減することが可能である。また、緻密で
硬い第1の絶縁膜を形成することで、後に形成する第2の絶縁膜の成膜時において、酸化
物半導体膜がプラズマに曝されず、酸化物半導体膜へのプラズマダメージを低減すること
ができる。これらのため、本発明の一態様により、優れた電気特性を有する半導体装置を
作製することができる。
化学量論的組成を満たす酸素よりも多くの酸素を含む酸化絶縁膜を形成することで、化学
量論的組成を満たす酸素よりも多くの酸素を含む酸化絶縁膜の酸素を酸化物半導体膜に拡
散させることができる。この結果、酸化物半導体膜に含まれる酸素欠損量を低減すること
ができる。また、優れた電気特性を有する半導体装置を作製することができる。
、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくそ
の形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、
本発明は、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではな
い。また、以下に説明する実施の形態及び実施例において、同一部分または同様の機能を
有する部分には、同一の符号または同一のハッチパターンを異なる図面間で共通して用い
、その繰り返しの説明は省略する。
瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない
。
に付したものであり、数的に限定するものではない。そのため、例えば、「第1の」を「
第2の」または「第3の」などと適宜置き換えて説明することができる。
などには入れ替わることがある。このため、本明細書においては、「ソース」や「ドレイ
ン」の用語は、入れ替えて用いることができるものとする。
中にある単位電荷が持つ静電エネルギー(電気的な位置エネルギー)のことをいう。ただ
し、一般的に、ある一点における電位と基準となる電位(例えば接地電位)との電位差の
ことを、単に電位もしくは電圧と呼び、電位と電圧が同義語として用いられることが多い
。このため、本明細書では特に指定する場合を除き、電位を電圧と読み替えてもよいし、
電圧を電位と読み替えてもよいこととする。
フォトリソグラフィ工程で形成したマスクはエッチング工程後に除去するものとする。
本実施の形態では、本発明の一態様である半導体装置、及びその作製方法について図面を
参照して説明する。
を示す。図1(A)はトランジスタ50の上面図であり、図1(B)は、図1(A)の一
点鎖線A−B間の断面図であり、図1(C)は、図1(A)の一点鎖線C−D間の断面図
である。なお、図1(A)では、明瞭化のため、基板11、下地絶縁膜13、トランジス
タ50の構成要素の一部(例えば、ゲート絶縁膜18)、絶縁膜23、絶縁膜24などを
省略している。
ート電極15を有する。また、下地絶縁膜13及びゲート電極15上に形成されるゲート
絶縁膜18と、ゲート絶縁膜18を介して、ゲート電極15と重なる酸化物半導体膜20
と、酸化物半導体膜20に接する一対の電極21とを有する。また、ゲート絶縁膜18、
酸化物半導体膜20、及び一対の電極21上には、絶縁膜23及び絶縁膜24で構成され
る保護膜25が形成される。
生したプラズマに曝された酸化物半導体膜であってもよい。酸化雰囲気としては、酸素、
オゾン、一酸化二窒素、二酸化窒素等の雰囲気がある。さらには、プラズマ処理において
、基板11側にバイアスを印加しない状態で発生したプラズマに曝された酸化物半導体膜
20であることが好ましい。このようなプラズマに酸化物半導体膜を曝すことで、酸化物
半導体膜にダメージを与えず、且つ酸素を供給することが可能であり、酸化物半導体膜2
0に含まれる酸素欠損量を低減することができる。
、緻密で硬い絶縁膜である。具体的には、25℃において、絶縁膜23における0.5重
量%のフッ酸に対するエッチング速度が10nm/分以下、好ましくは8nm/分以下で
あり、且つ絶縁膜24より遅い酸化シリコン膜または酸化窒化シリコン膜である。
半導体膜がプラズマに曝されず、酸化物半導体膜へのプラズマダメージを低減することが
できる。このため、酸化物半導体膜に含まれる酸素欠損の発生を抑制することができる。
て、シリコンのタングリングボンドを示すE’−center(g値が2.001)に現
れる信号のスピン密度が2×1015spins/cm3以下、さらに好ましくは検出下
限(1×1015spins/cm3)以下であることが好ましい。このような絶縁膜2
3は、シリコンのダングリングボンドが極めて少ない。このため、経時変化やBTストレ
ス試験において、当該絶縁膜23を有するトランジスタ50はしきい値電圧の変動が少な
く、トランジスタ50は優れた電気特性を有する。
成されている。絶縁膜23は、酸素が拡散する酸化絶縁膜である。なお、ここでの酸素の
拡散とは、絶縁膜23を通過して酸化物半導体膜20に酸素が移動することのほか、絶縁
膜23に留まる酸素の移動も含まれる。
縁膜24から放出される酸素を、絶縁膜23を介して酸化物半導体膜20に拡散させるこ
とができる。
以下、好ましくは10nm以上30nm以下の酸化シリコン、酸化窒化シリコン等を用い
ることができる。
に1×1015atoms/cm3以上5×1017atoms/cm3以下のインジウ
ムが含まれる場合がある。これは、絶縁膜23の成膜の際に酸化物半導体膜20に含まれ
るインジウムが絶縁膜23へと拡散するためである。なお、絶縁膜23の成膜温度が高く
なるにつれ、例えば350℃以上であると、絶縁膜23に含まれるインジウムの含有量が
増加する。
満たす酸素よりも多くの酸素を含む酸化絶縁膜である。
00nm以下の、酸化シリコン、酸化窒化シリコン等を用いることができる。
の一部が脱離する酸化絶縁膜である。このため、加熱処理により酸素の一部が脱離する酸
化絶縁膜を絶縁膜24として絶縁膜23上に設けることで、酸化物半導体膜20に酸素を
拡散させ、酸化物半導体膜20に含まれる酸素欠損を補填することが可能である。または
、加熱処理しながら絶縁膜24を絶縁膜23上に形成することで、酸化物半導体膜20に
酸素を拡散させ、酸化物半導体膜20に含まれる酸素欠損を補填することが可能である。
または、絶縁膜23上に絶縁膜24を形成した後加熱処理することより、酸素を酸化物半
導体膜20に拡散させ、酸化物半導体膜20に含まれる酸素欠損を補填することが可能で
ある。この結果、酸化物半導体膜に含まれる酸素欠損量を低減することができる。
対向する面と反対側の面)に、酸素が拡散する酸化絶縁膜を介して、化学量論的組成を満
たす酸素よりも多くの酸素を含む酸化絶縁膜を設けることで、酸化物半導体膜20のバッ
クチャネル側に酸素を拡散させることが可能であり、当該領域の酸素欠損を低減すること
ができる。このような構造を有するトランジスタ50は、BTストレス試験及び光BTス
トレス試験によってしきい値電圧が変動しない、またはプラス方向に変動する特性を有し
、該変動量(ΔVth)が3.0V以下、好ましくは2.5V以下、好ましくは0V以上
1.5V以下である。
ことで、酸化物半導体膜20からの酸素の外部への拡散と、外部から酸化物半導体膜20
への水素、水等の侵入を防ぐことができる。酸素、水素、水等のブロッキング効果を有す
る絶縁膜としては、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化
ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニ
ウム等がある。
トランジスタの電気特性を、図1(D)を用いて説明する。
特性変化(即ち、経年変化)を、短時間で評価することができる。特に、BTストレス試
験前後におけるトランジスタのしきい値電圧の変動量は、信頼性を調べるための重要な指
標となる。BTストレス試験前後において、しきい値電圧の変動量が少ないほど、信頼性
が高いトランジスタであるといえる。
特性を測定する。次に、トランジスタが形成されている基板の温度(基板温度)を一定に
維持し、トランジスタのソース電極及びドレイン電極として機能する一対の電極を同電位
とし、ソース電極及びドレイン電極として機能する一対の電極とは異なる電位をゲート電
極に一定時間印加する。基板温度は、試験目的に応じて適宜設定すればよい。次に、基板
の温度を初期特性を測定したときと同様の温度とし、トランジスタの電気特性を測定する
。この結果、初期特性におけるしきい値電圧、及びBTストレス試験後の電気特性におけ
るしきい値電圧の差を、しきい値電圧の変動量として得ることができる。
プラスBTストレス試験といい、ゲート電極に印加する電位がソース電極及びドレイン電
極の電位よりも低い場合をマイナスBTストレス試験という。また、光を照射しながらB
Tストレス試験を行うことを光BTストレス試験という。光が照射され、且つゲート電極
に印加する電位がソース電極及びドレイン電極の電位よりも高い場合を光プラスBTスト
レス試験といい、光が照射され、且つゲート電極に印加する電位がソース電極及びドレイ
ン電極の電位よりも低い場合を光マイナスBTストレス試験という。
界印加時間により決定することができる。ゲート絶縁膜に加えられる電界強度は、ゲート
電極と、ソース電極及びドレイン電極との電位差をゲート絶縁膜の厚さで除して決定され
る。例えば、厚さが100nmのゲート絶縁膜に印加する電界強度を3MV/cmとした
い場合は、ゲート電極と、ソース電極及びドレイン電極との電位差を30Vとすればよい
。
ン電流である。トランジスタの初期特性が破線41であり、BTストレス試験後の電気特
性が実線43である。本実施の形態に示すトランジスタは、破線41及び実線43におけ
るしきい値電圧の変動量が0V、またはプラス方向に変動する特性を有し、該変動量が3
.0V以下、好ましくは2.5V以下、好ましくは1.5V以下であり、さらに、変動量
が少ない。このため、本実施の形態に示すトランジスタは、BTストレス試験後の電気特
性において、しきい値電圧がマイナスシフトしない。即ち、長期間の使用によって、ノー
マリーオフ特性を有するトランジスタがノーマリーオン特性を有するトランジスタとはな
らない。この結果、本実施の形態に示すトランジスタ50は、信頼性が高いことが分かる
。
明細書において、ゲート電圧が0Vの場合、ドレイン電流が流れていないとみなすことが
できるトランジスタを、ノーマリーオフ特性を有するトランジスタと定義する。また、ゲ
ート電圧が0Vの場合、ドレイン電流が流れているとみなすことができるトランジスタを
、ノーマリーオン特性を有するトランジスタと定義する。
熱性を有している必要がある。例えば、ガラス基板、セラミック基板、石英基板、サファ
イア基板等を、基板11として用いてもよい。また、シリコンや炭化シリコンなどの単結
晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI
基板等を適用することも可能であり、これらの基板上に半導体素子が設けられたものを、
基板11として用いてもよい。
ランジスタ50を形成してもよい。または、基板11と下地絶縁膜13の間に剥離層を設
けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板11
より分離し、他の基板に転載するのに用いることができる。その際、トランジスタ50は
耐熱性の劣る基板や可撓性の基板にも転載できる。
リコン、酸化ガリウム、酸化ハフニウム、酸化イットリウム、酸化アルミニウム、酸化窒
化アルミニウム等がある。なお、下地絶縁膜13として、窒化シリコン、酸化ガリウム、
酸化ハフニウム、酸化イットリウム、酸化アルミニウム等を用いることで、基板11から
酸化物半導体膜20へ、アルカリ金属、水、水素等の不純物が拡散することを抑制できる
。なお、本明細書中において、酸化窒化シリコン膜とは、その組成として、窒素よりも酸
素の含有量が多い膜を指し、窒化酸化シリコン膜とは、その組成として、酸素よりも窒素
の含有量が多い膜を指す。
ステンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金
属元素を組み合わせた合金等を用いて形成することができる。また、マンガン、ジルコニ
ウムのいずれか一または複数から選択された金属元素を用いてもよい。また、ゲート電極
15は、単層構造でも、二層以上の積層構造としてもよい。例えば、シリコンを含むアル
ミニウム膜の単層構造、アルミニウム膜上にチタン膜を積層する二層構造、窒化チタン膜
上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造
、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造、チ
タン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成す
る三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、モリブ
デン、クロム、ネオジム、スカンジウムから選ばれた元素の膜、または複数組み合わせた
合金膜、もしくは窒化膜を用いてもよい。
物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物
、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添加し
たインジウム錫酸化物等の透光性を有する導電性材料を適用することもできる。また、上
記透光性を有する導電性材料と、上記金属元素の積層構造とすることもできる。
膜、In−Sn系酸窒化物半導体膜、In−Ga系酸窒化物半導体膜、In−Zn系酸窒
化物半導体膜、Sn系酸窒化物半導体膜、In系酸窒化物半導体膜、金属窒化膜(InN
、ZnN等)等を設けてもよい。これらの膜は5eV以上、好ましくは5.5eV以上の
仕事関数を有し、酸化物半導体の電子親和力よりも大きい値であるため、酸化物半導体を
用いたトランジスタのしきい値電圧をプラスにシフトすることができ、所謂ノーマリーオ
フ特性のスイッチング素子を実現できる。例えば、In−Ga−Zn系酸窒化物半導体膜
を用いる場合、少なくとも酸化物半導体膜20より高い窒素濃度、具体的には7原子%以
上のIn−Ga−Zn系酸窒化物半導体膜を用いる。
シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa−Zn系金属酸
化物などを用いればよく、積層または単層で設ける。また、ゲート絶縁膜18として、加
熱により酸素が脱離する酸化絶縁物を用いてもよい。ゲート絶縁膜18に加熱により酸素
が脱離する膜を用いることで、酸化物半導体膜20及びゲート絶縁膜18の界面における
界面準位を低減することが可能であり、電気特性の劣化の少ないトランジスタを得ること
ができる。また、ゲート絶縁膜18のゲート電極15側に、酸素、水素、水等のブロッキ
ング効果を有する絶縁膜を設けることで、酸化物半導体膜20からの酸素の外部への拡散
と、外部から酸化物半導体膜20への水素、水等の侵入を防ぐことができる。酸素、水素
、水等のブロッキング効果を有する絶縁膜としては、酸化アルミニウム、酸化窒化アルミ
ニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、
酸化ハフニウム、酸化窒化ハフニウム等がある。
れたハフニウムシリケート(HfSixOyNz)、窒素が添加されたハフニウムアルミ
ネート(HfAlxOyNz)、酸化ハフニウム、酸化イットリウムなどのhigh−k
材料を用いることでトランジスタのゲートリークを低減できる。
00nm以下、より好ましくは50nm以上250nm以下とするとよい。
鉛(Zn)を含むことが好ましい。または、InとZnの双方を含むことが好ましい。ま
た、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすため、それらと
共に、スタビライザーの一または複数を有することが好ましい。
ミニウム(Al)、またはジルコニウム(Zr)等がある。また、他のスタビライザーと
しては、ランタノイドである、ランタン(La)、セリウム(Ce)、プラセオジム(P
r)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(
Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウ
ム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)等がある
。
亜鉛、二元系金属酸化物であるIn−Zn系金属酸化物、Sn−Zn系金属酸化物、Al
−Zn系金属酸化物、Zn−Mg系金属酸化物、Sn−Mg系金属酸化物、In−Mg系
金属酸化物、In−Ga系金属酸化物、In−W系金属酸化物、三元系金属酸化物である
In−Ga−Zn系金属酸化物(IGZOとも表記する)、In−Al−Zn系金属酸化
物、In−Sn−Zn系金属酸化物、Sn−Ga−Zn系金属酸化物、Al−Ga−Zn
系金属酸化物、Sn−Al−Zn系金属酸化物、In−Hf−Zn系金属酸化物、In−
La−Zn系金属酸化物、In−Ce−Zn系金属酸化物、In−Pr−Zn系金属酸化
物、In−Nd−Zn系金属酸化物、In−Sm−Zn系金属酸化物、In−Eu−Zn
系金属酸化物、In−Gd−Zn系金属酸化物、In−Tb−Zn系金属酸化物、In−
Dy−Zn系金属酸化物、In−Ho−Zn系金属酸化物、In−Er−Zn系金属酸化
物、In−Tm−Zn系金属酸化物、In−Yb−Zn系金属酸化物、In−Lu−Zn
系金属酸化物、四元系金属酸化物であるIn−Sn−Ga−Zn系金属酸化物、In−H
f−Ga−Zn系金属酸化物、In−Al−Ga−Zn系金属酸化物、In−Sn−Al
−Zn系金属酸化物、In−Sn−Hf−Zn系金属酸化物、In−Hf−Al−Zn系
金属酸化物を用いることができる。
として有する酸化物という意味であり、InとGaとZnの比率は問わない。また、In
とGaとZn以外の金属元素が入っていてもよい。
で表記される材料を用いてもよい。なお、Mは、Ga、Fe、Mn及びCoから選ばれた
一の金属元素または複数の金属元素を示す。また、酸化物半導体として、In2SnO5
(ZnO)n(n>0、且つ、nは整数)で表記される材料を用いてもよい。
n=2:2:1(=2/5:2/5:1/5)、あるいはIn:Ga:Zn=3:1:2
(=1/2:1/6:1/3)の原子数比のIn−Ga−Zn系金属酸化物やその組成の
近傍の酸化物を用いることができる。あるいは、In:Sn:Zn=1:1:1(=1/
3:1/3:1/3)、In:Sn:Zn=2:1:3(=1/3:1/6:1/2)あ
るいはIn:Sn:Zn=2:1:5(=1/4:1/8:5/8)の原子数比のIn−
Sn−Zn系金属酸化物やその組成の近傍の酸化物を用いるとよい。なお、金属酸化物の
原子数比は、誤差として上記の原子数比のプラスマイナス20%の変動を含む。
い値電圧等)に応じて適切な組成のものを用いればよい。また、必要とする半導体特性及
び電気特性を得るために、キャリア密度や不純物濃度、欠陥密度、金属元素と酸素の原子
数比、原子間距離、密度等を適切なものとすることが好ましい。
ながら、In−Ga−Zn系金属酸化物でも、バルク内欠陥密度を低くすることにより移
動度を上げることができる。
2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上である。このように
、エネルギーギャップの広い酸化物半導体を用いることで、トランジスタのオフ電流を低
減することができる。
い。
AAC(C Axis Aligned Crystal)、多結晶、微結晶、非晶質部
の一以上を有する。非晶質部は、微結晶、CAACよりも欠陥準位密度が高い。また、微
結晶は、CAACよりも欠陥準位密度が高い。なお、CAACを有する酸化物半導体を、
CAAC−OS(C Axis Aligned Crystalline Oxide
Semiconductor)と呼ぶ。酸化物半導体膜20は、例えばCAAC−OS
を有してもよい。CAAC−OSは、例えば、c軸配向し、a軸または/およびb軸はマ
クロに揃っていない。
体を、微結晶酸化物半導体と呼ぶ。微結晶酸化物半導体膜は、例えば、1nm以上10n
m未満のサイズの微結晶(ナノ結晶ともいう。)を膜中に含む。
半導体を、非晶質酸化物半導体と呼ぶ。非晶質酸化物半導体膜は、例えば、原子配列が無
秩序であり、結晶成分を有さない。または、非晶質酸化物半導体膜は、例えば、完全な非
晶質であり、結晶部を有さない。
体の混合膜であってもよい。混合膜は、例えば、非晶質酸化物半導体の領域と、微結晶酸
化物半導体の領域と、CAAC−OSの領域と、を有する。また、混合膜は、例えば、非
晶質酸化物半導体の領域と、微結晶酸化物半導体の領域と、CAAC−OSの領域と、の
積層構造を有してもよい。
たは表面の法線ベクトルに平行な方向に揃っていることが好ましい。なお、異なる結晶部
間で、それぞれa軸およびb軸の向きが異なっていてもよい。そのような酸化物半導体膜
の一例としては、CAAC−OS膜がある。
、一辺が100nm未満の立方体内に収まる大きさであることが多い。また、透過型電子
顕微鏡(TEM:Transmission Electron Microscope
)による観察像では、CAAC−OS膜に含まれる結晶部と結晶部との境界は明確ではな
い。また、TEMによってCAAC−OS膜には明確な粒界(グレインバウンダリーとも
いう。)は確認できない。そのため、CAAC−OS膜は、粒界に起因する電子移動度の
低下が抑制される。
ベクトルまたは表面の法線ベクトルに平行な方向になるように揃い、かつab面に垂直な
方向から見て金属原子が三角形状または六角形状に配列を有し、c軸に垂直な方向から見
て金属原子が層状または金属原子と酸素原子とが層状に配列している。なお、異なる結晶
部間で、それぞれa軸及びb軸の向きが異なっていてもよい。本明細書において、単に垂
直と記載する場合、80°以上100°以下、好ましくは85°以上95°以下の範囲も
含まれることとする。また、単に平行と記載する場合、−10°以上10°以下、好まし
くは−5°以上5°以下の範囲も含まれることとする。
C−OS膜の形成過程において、酸化物半導体膜の表面側から結晶成長させる場合、被形
成面の近傍に対し表面の近傍では結晶部の占める割合が高くなることがある。また、CA
AC−OS膜へ不純物を添加することにより、当該不純物添加領域において結晶部の結晶
性が低下することもある。
ルまたは表面の法線ベクトルに平行な方向になるように揃うため、CAAC−OS膜の形
状(被形成面の断面形状または表面の断面形状)によっては互いに異なる方向を向くこと
がある。また、結晶部は、成膜したとき、または成膜後に加熱処理などの結晶化処理を行
ったときに形成される。従って、結晶部のc軸は、CAAC−OS膜が形成されたときの
被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向になるように揃う。
が小さい。よって、当該トランジスタは、信頼性が高い。
、酸化物半導体膜20を、第1の酸化物半導体膜と第2の酸化物半導体膜の積層として、
第1の酸化物半導体膜と第2の酸化物半導体膜に、異なる組成の金属酸化物を用いてもよ
い。例えば、第1の酸化物半導体膜に二元系金属酸化物乃至四元系金属酸化物の一を用い
、第2の酸化物半導体膜に第1の酸化物半導体膜と異なる二元系金属酸化物乃至四元系金
属酸化物を用いてもよい。
を異ならせてもよい。例えば、第1の酸化物半導体膜の原子数比をIn:Ga:Zn=1
:1:1とし、第2の酸化物半導体膜の原子数比をIn:Ga:Zn=3:1:2として
もよい。また、第1の酸化物半導体膜の原子数比をIn:Ga:Zn=1:3:2とし、
第2の酸化物半導体膜の原子数比をIn:Ga:Zn=2:1:3としてもよい。
ャネル側)の酸化物半導体膜のInとGaの含有率をIn>Gaとするとよい。またゲー
ト電極から遠い側(バックチャネル側)の酸化物半導体膜のInとGaの含有率をIn≦
Gaとするとよい。
体膜の構成元素を同一とし、且つそれぞれの組成を異ならせてもよい。例えば、第1の酸
化物半導体膜の原子数比をIn:Ga:Zn=1:3:2とし、第2の酸化物半導体膜の
原子数比をIn:Ga:Zn=3:1:2とし、第3の酸化物半導体膜の原子数比をIn
:Ga:Zn=1:1:1としてもよい。
Ga:Zn=1:3:2である第1の酸化物半導体膜は、Ga及びZnよりInの原子数
比が大きい酸化物半導体膜、代表的には第2の酸化物半導体膜、並びにGa、Zn、及び
Inの原子数比が同じ酸化物半導体膜、代表的には第3の酸化物半導体膜と比較して、絶
縁性が高い。また、原子数比がIn:Ga:Zn=1:3:2である第1の酸化物半導体
膜が非晶質構造であると、さらに絶縁性が高まる。このため、第2の酸化物半導体膜及び
第3の酸化物半導体膜がチャネル領域として機能し、第1の酸化物半導体膜はゲート絶縁
膜として機能する。
1の酸化物半導体膜は、第2の酸化物半導体膜との界面におけるトラップ準位が少ない。
このため、酸化物半導体膜20を上記構造とすることで、トランジスタの経時変化や光B
Tストレス試験によるしきい値電圧の変動量を低減することができる。
を多くすることにより、より多くのs軌道が重なるため、In>Gaの組成となる酸化物
はIn≦Gaの組成となる酸化物と比較して高い移動度を備える。また、GaはInと比
較して酸素欠損の形成エネルギーが大きく酸素欠損が生じにくいため、In≦Gaの組成
となる酸化物はIn>Gaの組成となる酸化物と比較して安定した特性を備える。
Gaの組成となる酸化物半導体を適用することで、トランジスタの電界効果移動度及び信
頼性をさらに高めることが可能となる。
化物半導体を適用してもよい。すなわち、単結晶酸化物半導体、多結晶酸化物半導体、微
結晶酸化物半導体、非晶質酸化物半導体、またはCAAC−OSを適宜組み合わせた構成
としてもよい。また、第1の酸化物半導体膜乃至第3の酸化物半導体膜の一以上に非晶質
酸化物半導体を適用すると、酸化物半導体膜20の内部応力や外部からの応力を緩和し、
トランジスタの特性ばらつきが低減され、また、トランジスタの信頼性をさらに高めるこ
とが可能となる。
0nm以下、更に好ましくは1nm以上30nm以下、更に好ましくは3nm以上20n
m以下とすることが好ましい。
18atoms/cm3以下、さらに好ましくは2×1016atoms/cm3以下で
あることが望ましい。アルカリ金属及びアルカリ土類金属は、酸化物半導体と結合すると
キャリアを生成する場合があり、トランジスタのオフ電流の上昇の原因となるためである
。
。
ットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンからなる単
体金属、またはこれを主成分とする合金を単層構造または積層構造として用いる。例えば
、シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上にチタン膜を積層する二
層構造、タングステン膜上にチタン膜を積層する二層構造、銅−マグネシウム−アルミニ
ウム合金膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、そのチタン膜
または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタ
ン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、
そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し
、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。な
お、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
ート電極15上にゲート絶縁膜18を形成する。
0nmの酸化窒化シリコン膜をCVD法により形成する。
法等により導電膜を形成し、導電膜上にフォトリソグラフィ工程によりマスクを形成する
。次に、該マスクを用いて導電膜の一部をエッチングして、ゲート電極15を形成する。
この後、マスクを除去する。
ット法等で形成してもよい。
フォトリソグラフィ工程によりマスクを形成し、当該マスクを用いてタングステン膜をド
ライエッチングして、ゲート電極15を形成する。
膜を形成する場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用い
ることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、ト
リシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、
二酸化窒素等がある。
ることが好ましい。はじめに、シラン、窒素、及びアンモニアの混合ガスを原料ガスとし
て用いたプラズマCVD法により、欠陥の少ない第1の窒化シリコン膜を形成する。次に
、原料ガスを、シラン及び窒素の混合ガスに切り替えて、水素濃度が少なく、且つ水素を
ブロッキングすることが可能な第2の窒化シリコン膜を成膜する。このような形成方法に
より、ゲート絶縁膜18として、欠陥が少なく、且つ水素ブロッキング性を有する窒化シ
リコン膜を形成することができる。
Organic Chemical Vapor Deposition)法を用いて
形成することができる。
リング法、塗布法、パルスレーザー蒸着法、レーザーアブレーション法等により酸化物半
導体膜を形成する。次に、酸化物半導体膜上にフォトリソグラフィ工程によりマスクを形
成した後、該マスクを用いて酸化物半導体膜の一部をエッチングすることで、図2(B)
に示すように、ゲート絶縁膜18上であって、ゲート電極15の一部と重なるように素子
分離された酸化物半導体膜19を形成する。この後、マスクを除去する。
ットを用い、スパッタリング法によって成膜する。当該スパッタリング用ターゲットにイ
オンが衝突すると、スパッタリング用ターゲットに含まれる結晶領域がa−b面から劈開
し、a−b面に平行な面を有する平板状またはペレット状のスパッタリング粒子として剥
離することがある。この場合、当該平板状のスパッタリング粒子が、結晶状態を維持した
まま基板に到達することで、CAAC−OS膜を成膜することができる。
る。例えば、成膜室内に存在する不純物濃度(水素、水、二酸化炭素および窒素など)を
低減すればよい。また、成膜ガス中の不純物濃度を低減すればよい。具体的には、露点が
−80℃以下、好ましくは−100℃以下である成膜ガスを用いる。
レーションが起こる。具体的には、基板加熱温度を100℃以上740℃以下、好ましく
は200℃以上500℃以下として成膜する。成膜時の基板加熱温度を高めることで、平
板状のスパッタリング粒子が基板に到達した場合、基板上でマイグレーションが起こり、
スパッタリング粒子の平らな面が基板に付着する。
を軽減すると好ましい。成膜ガス中の酸素割合は、30体積%以上、好ましくは100体
積%とする。
いて以下に示す。
、1000℃以上1500℃以下の温度で加熱処理をすることで多結晶であるIn−Ga
−Zn−O化合物ターゲットとする。なお、X、YおよびZは任意の正数である。ここで
、所定のmol数比は、例えば、InOX粉末、GaOY粉末およびZnOZ粉末が、2
:2:1、8:4:3、3:1:1、1:1:1、4:2:3または3:1:2である。
なお、粉末の種類、およびその混合するmol数比は、作製するスパッタリング用ターゲ
ットによって適宜変更すればよい。
19を直接形成することができる。
置は、RF電源装置、AC電源装置、DC電源装置等を適宜用いることができる。
酸素の混合ガス雰囲気を適宜用いる。なお、希ガス及び酸素の混合ガス雰囲気の場合、希
ガスに対して酸素のガス比を高めることが好ましい。
度を150℃以上750℃以下、好ましくは150℃以上450℃以下、さらに好ましく
は200℃以上350℃以下として、酸化物半導体膜を成膜することで、CAAC−OS
膜を形成することができる。
酸化物半導体膜上にマスクを形成し、酸化物半導体膜の一部を選択的にエッチングするこ
とで、酸化物半導体膜19を形成する。こののち、マスクを除去する。
法等で導電膜を形成する。次に、該導電膜上にフォトリソグラフィ工程によりマスクを形
成する。次に、該マスクを用いて導電膜の一部をエッチングして、一対の電極21を形成
する。この後、マスクを除去する。
ルミニウム膜、及び厚さ100nmのチタン膜を順にスパッタリング法により積層する。
次に、チタン膜上にフォトリソグラフィ工程によりマスクを形成し、当該マスクを用いて
タングステン膜、アルミニウム膜、及びチタン膜をドライエッチングして、一対の電極2
1を形成する。
とが好ましい。この洗浄処理を行うことで、一対の電極21の短絡を抑制することができ
る。当該洗浄処理は、TMAH(Tetramethylammonium Hydro
xide)溶液などのアルカリ性の溶液、希フッ酸、シュウ酸、リン酸などの酸性の溶液
、または水を用いて行うことができる。
に曝し、酸化物半導体膜19に酸素22を供給して、図2(D)に示す酸化物半導体膜2
0を形成してもよい。酸化雰囲気としては、酸素、オゾン、一酸化二窒素、二酸化窒素等
の雰囲気がある。さらに、プラズマ処理において、基板11が搭載される下部電極にバイ
アスを印加しない状態で発生したプラズマに酸化物半導体膜19を曝すことが好ましい。
この結果、酸化物半導体膜19にダメージを与えず、且つ酸素を供給することが可能であ
り、酸化物半導体膜20に含まれる酸素欠損量を低減することができる。
部電極に27.12MHzの高周波電源を用いて150Wの高周波電力を供給して発生さ
せた酸素プラズマに酸化物半導体膜19を曝し、酸化物半導体膜20を形成する。
体膜19に酸素を供給することが可能であり、酸化物半導体膜に含まれる酸素欠損量を低
減することができる。また、エッチング処理により酸化物半導体膜19の表面に残存する
不純物、例えば、フッ素、塩素等のハロゲン等を除去することができる。
膜23上に絶縁膜24を形成する。このとき、上記プラズマ処理によって酸化物半導体膜
20を形成した後、大気に曝すことなく絶縁膜23を形成することで、酸化物半導体膜2
0及び絶縁膜23の界面における不純物濃度を低減することが可能である。
とが好ましい。絶縁膜23を形成した後、大気開放せず、原料ガスの流量、圧力、高周波
電力及び基板温度の一以上を調整して、絶縁膜24を連続的に形成することで、絶縁膜2
3及び絶縁膜24における界面の大気成分由来の不純物濃度を低減することができると共
に、絶縁膜24に含まれる酸素を酸化物半導体膜20に拡散することが可能であり、酸化
物半導体膜20の酸素欠損量を低減することができる。
以下、さらに好ましくは200℃以上370℃以下に保持し、処理室に原料ガスを導入し
て処理室内における圧力を30Pa以上250Pa以下、さらに好ましくは40Pa以上
250Pa以下、さらに好ましくは100Pa以上250Pa以下とし、処理室内に設け
られる電極に高周波電力を供給する条件により、絶縁膜23として酸化シリコン膜または
酸化窒化シリコン膜を形成する。
が好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラ
ン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化
窒素等がある。
できる。また、絶縁膜23を設けることで、後に形成する絶縁膜24の形成工程において
、酸化物半導体膜20へのダメージ低減が可能である。また、絶縁膜23の成膜条件とし
て、処理室内の圧力を100Pa以上250Pa以下とすることで、酸化物半導体膜への
ダメージを低減することができる。
縁膜23に含まれる水素含有量を低減することが可能である。この結果、酸化物半導体膜
20に混入する水素量を低減できるため、トランジスタのしきい値電圧のマイナスシフト
を抑制することができる。
た基板を300℃以上400℃以下、さらに好ましくは320℃以上370℃以下に保持
し、処理室に原料ガスを導入して処理室内における圧力を100Pa以上250Pa以下
、さらに好ましくは100Pa以上200Pa以下とし、処理室内に設けられる電極に高
周波電力を供給する条件を用いて、酸化シリコン膜または酸化窒化シリコン膜を形成する
ことができる。
強くなる。この結果、絶縁膜23として、酸素が拡散し、緻密であり、且つ硬い酸化絶縁
膜、代表的には、25℃において0.5重量%のフッ酸に対するエッチング速度が10n
m/分以下、好ましくは8nm/分以下である酸化シリコン膜または酸化窒化シリコン膜
を形成することができる。
酸化二窒素を原料ガスとし、処理室の圧力を200Pa、基板温度を220℃とし、27
.12MHzの高周波電源を用いて100Wの高周波電力を平行平板電極の上部電極に供
給したプラズマCVD法により、厚さ10nmの酸化窒化シリコン膜を形成する。当該条
件により、酸素が拡散する酸化窒化シリコン膜を形成することができる。
℃以上260℃以下、好ましくは180℃以上250℃以下、さらに好ましくは180℃
以上230℃以下に保持し、処理室に原料ガスを導入して処理室内における圧力を100
Pa以上250Pa以下、さらに好ましくは100Pa以上200Pa以下とし、処理室
内に設けられる電極に0.17W/cm2以上0.5W/cm2以下、好ましくは0.2
6W/cm2以上0.35W/cm2以下、さらに好ましくは0.25W/cm2以上0
.40W/cm2以下の高周波電力を供給する条件により、酸化シリコン膜または酸化窒
化シリコン膜を形成する。
供給することで、プラズマ中で原料ガスの分解効率が高まり、酸素ラジカルが増加し、原
料ガスの酸化が進むため、絶縁膜24中における酸素含有量が化学量論比よりも多くなる
。一方、基板温度が、上記温度で形成された膜では、シリコンと酸素の結合力が弱いため
、後の工程の加熱処理により膜中の酸素の一部が脱離する。この結果、化学量論的組成を
満たす酸素よりも多くの酸素を含み、加熱により酸素の一部が脱離する酸化絶縁膜を形成
することができる。また、酸化物半導体膜20上に絶縁膜23が設けられている。このた
め、絶縁膜24の形成工程において、絶縁膜23が酸化物半導体膜20の保護膜となる。
この結果、酸化物半導体膜20へのダメージを低減しつつ、パワー密度の高い高周波電力
を用いて絶縁膜24を形成することができる。
一酸化二窒素を原料ガスとし、処理室の圧力を200Pa、基板温度を220℃とし、2
7.12MHzの高周波電源を用いて1500Wの高周波電力を平行平板電極の上部電極
に供給したプラズマCVD法により、厚さ400nmの酸化窒化シリコン膜を形成する。
なお、本実施の形態で用いたプラズマCVD装置は電極面積が6000cm2である平行
平板型のプラズマCVD装置であり、供給した電力を単位面積あたりの電力(電力密度)
に換算すると0.25W/cm2である。
マに曝すことで、酸化物半導体膜19に酸素を供給することが可能であり、酸化物半導体
膜に含まれる酸素欠損量を低減することができる。また、酸化物半導体膜19の表面にエ
ッチング処理で残存する不純物、例えば、フッ素、塩素等のハロゲン等を除去することが
できる。さらに、処理室の外部に基板を搬出し大気に曝すと、大気に含まれる不純物、例
えばボロンが酸化物半導体膜の表面に付着してしまう。しかしながら、プラズマCVD装
置において、酸化物半導体膜19の表面を酸化雰囲気で発生させたプラズマに曝した後、
大気に曝すことなく、処理室に絶縁膜23の原料ガスを導入し、圧力、高周波電力及び基
板温度を調整して、絶縁膜23を連続的に形成することで、酸化物半導体膜20及び絶縁
膜23の界面における不純物濃度を低減することが可能である。この結果、トランジスタ
の電気特性のばらつきを低減することができる。さらには、絶縁膜23を形成した後、大
気開放せず、原料ガスの流量、圧力、高周波電力及び基板温度を調整して、絶縁膜24を
連続的に形成することで、絶縁膜23及び絶縁膜24における界面の不純物濃度を低減す
ることができる。
、好ましくは200℃以上450℃以下、更に好ましくは300℃以上450℃以下とす
る。
、短時間に限り、基板の歪み点以上の温度で熱処理を行うことができる。そのため加熱処
理時間を短縮することができる。
m以下、好ましくは10ppb以下の空気)、または希ガス(アルゴン、ヘリウム等)の
雰囲気下で行えばよい。なお、上記窒素、酸素、超乾燥空気、または希ガスに水素、水等
が含まれないことが好ましい。
、酸化物半導体膜20に含まれる酸素欠損を補填することで、酸化物半導体膜20に含ま
れる酸素欠損量を低減することができる。
まれる酸素をより多く酸化物半導体膜20に拡散させ、酸化物半導体膜20に含まれる酸
素欠損を補填することができる。この時の加熱処理の温度は、250℃以上基板歪み点未
満、好ましくは250℃以上450℃以下、更に好ましくは300℃以上450℃以下と
することができる。
トランジスタを作製することができる。また、経時変化や光BTストレス試験による電気
特性の変動の少ない、代表的にはしきい値電圧が変動しない、またはプラス方向に変動す
る特性を有し、該変動量が3.0V以下、好ましくは2.5V以下である、信頼性の高い
トランジスタを作製することができる。
び方法などと適宜組み合わせて用いることができる。
本実施の形態では、実施の形態1に示すトランジスタと比較して、ゲート絶縁膜が異なる
トランジスタの構造及び作製方法について、図1(A)乃至図1(C)及び図3を用いて
説明する。
として、酸素が拡散し、緻密であり、且つ硬い酸化絶縁膜、代表的には、25℃において
0.5重量%のフッ酸に対するエッチング速度が10nm/分以下、好ましくは8nm/
分以下である酸化シリコン膜または酸化窒化シリコン膜を用いて形成する。
する場合は、実施の形態1に示す絶縁膜23と同様に、プラズマCVD装置の真空排気さ
れた処理室内に載置された基板を180℃以上400℃以下、好ましくは300℃以上4
00℃以下、さらに好ましくは320℃以上370℃以下に保持し、処理室に原料ガスを
導入して処理室内における圧力を30Pa以上250Pa以下、好ましくは40Pa以上
250Pa以下とし、処理室内に設けられる電極に高周波電力を供給する条件により、ゲ
ート絶縁膜18として酸化シリコン膜または酸化窒化シリコン膜を形成する。
ート絶縁膜18に含まれる水素含有量を低減することが可能である。この結果、酸化物半
導体膜20に混入する水素量を低減できるため、トランジスタのしきい値電圧のマイナス
シフトを抑制することができる。
酸素の結合力が強くなる。この結果、ゲート絶縁膜18として、緻密であり、硬い酸化絶
縁膜を形成することができる。また、成膜圧力を上記範囲においてより低くすることで、
ゲート絶縁膜18に含まれる欠陥、代表的にはシリコンのダングリングボンドの量を低減
することが可能である。この結果、しきい値電圧の変動が少なく、優れた電気特性を有す
るトランジスタを作製することができる。
mの一酸化二窒素を原料ガスとし、処理室の圧力を40Pa、基板温度を350℃とし、
27.12MHzの高周波電源を用いて100Wの高周波電力を平行平板電極の上部電極
に供給したプラズマCVD法により、厚さ100nmの酸化窒化シリコン膜を形成する。
当該条件により、酸素が拡散し、緻密であり、且つ硬い酸化窒化シリコン膜を形成するこ
とができる。
製方法を用いることで、しきい値電圧のマイナスシフトを抑制した、優れた電気特性を有
するトランジスタを作製することができる。また、経時変化や光BTストレス試験による
電気特性の変動の少ない、代表的にはしきい値電圧が変動しない、またはプラス方向に変
動する特性を有し、該変動量が3.0V以下、好ましくは2.5V以下である、信頼性の
高いトランジスタを作製することができる。
する絶縁膜16と、絶縁膜16上に形成され、酸化物半導体膜20に接する絶縁膜17と
の2層構造としてもよい。
コン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa−Z
n系金属酸化膜などを用いればよく、積層または単層で設ける。また、絶縁膜16として
、酸素、水素、水等のブロッキング効果を有する絶縁膜を設けることで、酸化物半導体膜
20からの酸素の外部への拡散と、外部から酸化物半導体膜20への酸素の侵入を防ぐこ
とができる。酸素、水素、水等のブロッキング効果を有する絶縁膜としては、酸化アルミ
ニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、
酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム等がある。
フニウムシリケート(HfSixOyNz)、窒素が添加されたハフニウムアルミネート
(HfAlxOyNz)、酸化ハフニウム、酸化イットリウムなどのhigh−k材料を
用いることでトランジスタのゲートリークを低減できる。
を用いることができる。または、酸素が拡散し、緻密であり、且つ硬い酸化絶縁膜、代表
的には、25℃において、0.5重量%のフッ酸に対するエッチング速度が10nm/分
以下、好ましくは8nm/分以下であり且つ絶縁膜24より遅い酸化シリコン膜、または
酸化窒化シリコン膜を用いて形成することができる。
但し、絶縁膜16及び絶縁膜17の厚さの合計の厚さが図1(A)乃至図1(C)に示す
トランジスタ50のゲート絶縁膜18の範囲となるように、適宜選択すればよい。
013Ω・cm以上1×1015Ω・cm以下の窒化シリコン膜と酸化窒化シリコン膜と
を積層することで、後に形成されるトランジスタのゲート電極15と、酸化物半導体膜2
0または一対の電極21との間に発生する静電気破壊を抑制することができる。
素を原料ガスとし、処理室の圧力を60Pa、基板温度を350℃とし、1500Wの高
周波電力を平行平板電極の上部電極に供給したプラズマCVD法により、厚さ50nmの
窒化シリコン膜を形成する。
二窒素を原料ガスとし、処理室の圧力を40Pa、基板温度を350℃とし、100Wの
高周波電力を平行平板電極の上部電極に供給したプラズマCVD法により、厚さ200n
m以下の酸化シリコン膜を形成する。当該条件により、酸素が拡散し、緻密であり、且つ
硬い酸化シリコン膜を形成することができる。
硬い酸化絶縁膜を用いて形成することで、しきい値電圧のマイナスシフトを抑制した、優
れた電気特性を有するトランジスタを作製することができる。また、経時変化や光BTス
トレス試験による電気特性の変動の少ない、代表的にはしきい値電圧が変動しない、また
はプラス方向に変動する特性を有し、該変動量が3.0V以下、好ましくは2.5V以下
である、信頼性の高いトランジスタを作製することができる。
本実施の形態では、実施の形態1及び実施の形態2と異なる構造のトランジスタについて
、図4を用いて説明する。本実施の形態に示すトランジスタ70は、酸化物半導体膜を介
して対向する複数のゲート電極を有することを特徴とする。
13上に形成されるゲート電極15とを有する。また、下地絶縁膜13及びゲート電極1
5上に形成されるゲート絶縁膜18と、ゲート絶縁膜18を介して、ゲート電極15と重
なる酸化物半導体膜20と、酸化物半導体膜20に接する一対の電極21と、を有する。
また、ゲート絶縁膜18、酸化物半導体膜20、及び一対の電極21上には、絶縁膜23
及び絶縁膜24で構成される保護膜25が形成される。また、保護膜25を介して酸化物
半導体膜20と重畳するゲート電極61を有する。
極15及びゲート電極61を有する。ゲート電極15とゲート電極61に異なる電位を印
加することで、トランジスタ70のしきい値電圧を制御し、好ましくは、しきい値電圧の
マイナスシフトを抑制することができる。また、酸化雰囲気で発生したプラズマに表面が
曝された酸化物半導体膜20と、当該プラズマ処理の後連続的に形成された絶縁膜23を
有することで、酸化物半導体膜20及びゲート電極61の間における不純物を低減するこ
とが可能であり、トランジスタ70のしきい値電圧のばらつきを低減することができる。
また、酸素欠損量が低減された酸化物半導体膜20を用いることで、しきい値電圧のマイ
ナスシフトを抑制したトランジスタとなる。また、経時変化や光BTストレス試験によっ
て、しきい値電圧の変動が少なく、代表的にはしきい値電圧が変動しない、またはプラス
方向に変動する特性を有し、該変動量が3.0V以下、好ましくは2.5V以下である、
優れた電気特性を有するトランジスタとなる。
本実施の形態では、実施の形態1乃至実施の形態3に示すトランジスタにおいて、酸化物
半導体膜中に含まれる水素濃度を低減したトランジスタの作製方法について説明する。な
お、本実施の形態に示す工程の一以上と、実施の形態1乃至実施の形態3に示すトランジ
スタの作製工程とが組み合わさればよく、全て組み合わせる必要はない。
cm3未満、好ましくは5×1018atoms/cm3未満、より好ましくは1×10
18atoms/cm3以下、より好ましくは5×1017atoms/cm3以下、さ
らに好ましくは1×1016atoms/cm3以下とすることが好ましい。
に、酸素が脱離した格子(あるいは酸素が脱離した部分)には欠損が形成されてしまう。
また、水素が酸素と結合することで、キャリアである電子が生じてしまう。これらのため
、酸化物半導体膜の成膜工程において、水素を含む不純物を極めて減らすことにより、酸
化物半導体膜の水素濃度を低減することが可能である。このため、水素をできるだけ除去
し、高純度化させた酸化物半導体膜をチャネル領域とすることにより、しきい値電圧のマ
イナスシフトを低減することができ、またトランジスタのソース電極及びドレイン電極に
おけるリーク電流を、代表的には、チャネル幅あたりのオフ電流を数yA/μm〜数zA
/μmにまで低減することが可能であり、トランジスタの電気特性を向上させることがで
きる。
成する前に、加熱処理またはプラズマ処理により、基板11、下地絶縁膜13、ゲート電
極、ゲート絶縁膜18それぞれに含まれる水素または水を脱離させる方法がある。この結
果、後の加熱処理において、基板11乃至ゲート絶縁膜18に付着または含有する水素若
しくは水が、酸化物半導体膜20中に拡散することを防ぐことができる。なお、加熱処理
は、不活性雰囲気、減圧雰囲気または乾燥空気雰囲気にて、100℃以上基板の歪み点未
満の温度で行う。また、プラズマ処理は、希ガス、酸素、窒素または酸化窒素(亜酸化窒
素、一酸化窒素、二酸化窒素等)を用いる。
タリング装置で成膜する前に、スパッタリング装置にダミー基板を搬入し、ダミー基板上
に酸化物半導体膜を成膜して、ターゲット表面、または防着板に付着した水素、水等を取
り除く方法がある。この結果、酸化物半導体膜中への水素または水等の混入を低減するこ
とが可能である。
る際に、例えば、スパッタリング法を用いる場合、基板温度を150℃以上750℃以下
、好ましくは150℃以上450℃以下、さらに好ましくは200℃以上350℃以下と
して、酸化物半導体膜を成膜する方法がある。この方法により、酸化物半導体膜中への水
素または水等の混入を低減することが可能である。
グ装置について、以下に詳細を説明する。
とすることが好ましく、それによりスパッタリング法により成膜する際、膜中への水素ま
たは水等の混入を低減することができる。
パッタイオンポンプ、ターボ分子ポンプ及びクライオポンプ等の高真空ポンプとを適宜組
み合わせて行うとよい。ターボ分子ポンプは大きいサイズの分子の排気が優れる一方、水
素及び水の排気能力が低い。さらに、水素の排気能力の高いスパッタイオンポンプまたは
水の排気能力の高いクライオポンプを組み合わせることが有効となる。
が、処理室を排気した際のガス放出の原因となる。そのため、リークレートと排気速度に
相関はないが、排気能力の高いポンプを用いて、処理室に存在する吸着物をできる限り脱
離し、予め排気しておくことが重要である。なお、吸着物の脱離を促すために、処理室を
ベーキングしてもよい。ベーキングすることで吸着物の脱離速度を10倍程度大きくする
ことができる。ベーキングは100℃以上450℃以下で行えばよい。このとき、不活性
ガスを導入しながら吸着物の除去を行うと、排気するだけでは脱離しにくい水などの脱離
速度をさらに大きくすることができる。
などにおいて、不純物の混入を極力抑えることによって、酸化物半導体膜に含まれる水素
または水等の混入を低減することができる。
不純物が除去された高純度ガスを用いる方法がある。この結果、酸化物半導体膜中への水
素または水等の混入を低減することが可能である。
た後、加熱処理を行う方法がある。当該加熱処理により、酸化物半導体膜の脱水化または
脱水素化をすることができる。
450℃以下、更に好ましくは300℃以上450℃以下とする。
素を含む不活性ガス雰囲気で行う。または、不活性ガス雰囲気で加熱した後、酸素雰囲気
で加熱してもよい。なお、上記不活性雰囲気及び酸素雰囲気に水素、水などが含まれない
ことが好ましい。処理時間は3分〜24時間とする。
水化または脱水素化のための加熱処理を行ってもよい。このような工程を経ることで、脱
水化または脱水素化のための加熱処理において、ゲート絶縁膜18に含まれる水素または
水等を効率よく放出させることができる。
兼ねてもよい。
図2(C)に示す酸化雰囲気のプラズマに曝す前に、プラズマCVD装置における加熱室
で基板を加熱することが好ましい。当該加熱処理をした後、大気に曝すことなく連続的に
、同プラズマCVD装置の処理室で酸化雰囲気のプラズマに酸化物半導体膜19を曝し、
さらに大気に曝すことなく連続的に絶縁膜23を形成することで、酸化物半導体膜20か
ら水素、水等の不純物を脱離させつつ、酸化物半導体膜20及び絶縁膜23の界面におけ
るボロン等の不純物量を低減することができる。
の形態1乃至実施の形態3に示すトランジスタの作製方法に組み合わせることで、水素ま
たは水等をできるだけ除去し、高純度化させた酸化物半導体膜にチャネル領域を有するト
ランジスタを作製することができる。この結果、しきい値電圧のマイナスシフトを低減す
ることができ、またトランジスタのソース電極及びドレイン電極におけるリーク電流を、
代表的には、チャネル幅あたりのオフ電流を数yA/μm〜数zA/μmにまで低減する
ことが可能であり、トランジスタの電気特性を向上させることができる。以上のことから
、本実施の形態により、しきい値電圧のマイナスシフトが低減され、リーク電流が低く、
優れた電気特性を有するトランジスタを作製することができる。
上記実施の形態で一例を示したトランジスタを用いて表示機能を有する半導体装置(表示
装置ともいう。)を作製することができる。また、トランジスタを含む駆動回路の一部ま
たは全体を、画素部と同じ基板上に一体形成し、システムオンパネルを形成することがで
きる。本実施の形態では、上記実施の形態で一例を示したトランジスタを用いた表示装置
の例について、図5及び図6を用いて説明する。なお、図6(A)及び図6(B)は、図
5(B)中でM−Nの一点鎖線で示した部位の断面構成を示す断面図である。
シール材905が設けられ、第2の基板906によって封止されている。図5(A)にお
いては、第1の基板901上のシール材905によって囲まれている領域とは異なる領域
に、別途用意された基板上に単結晶半導体または多結晶半導体で形成された信号線駆動回
路903、及び走査線駆動回路904が実装されている。また、信号線駆動回路903、
走査線駆動回路904、または画素部902に与えられる各種信号及び電位は、FPC(
Flexible printed circuit)918a、FPC918bから供
給されている。
走査線駆動回路904とを囲むようにして、シール材905が設けられている。また画素
部902と、走査線駆動回路904の上に第2の基板906が設けられている。よって画
素部902と、走査線駆動回路904とは、第1の基板901とシール材905と第2の
基板906とによって、表示素子と共に封止されている。図5(B)及び図5(C)にお
いては、第1の基板901上のシール材905によって囲まれている領域とは異なる領域
に、別途用意された基板上に単結晶半導体または多結晶半導体で形成された信号線駆動回
路903が実装されている。図5(B)及び図5(C)においては、別途形成された信号
線駆動回路903、走査線駆動回路904、または画素部902に与えられる各種信号及
び電位は、FPC918から供給されている。
基板901に実装している例を示しているが、この構成に限定されない。走査線駆動回路
を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部の
みを別途形成して実装しても良い。
ip On Glass)方法、ワイヤボンディング方法、或いはTAB(Tape A
utomated Bonding)方法などを用いることができる。図5(A)は、C
OG方法により信号線駆動回路903、走査線駆動回路904を実装する例であり、図5
(B)は、COG方法により信号線駆動回路903を実装する例であり、図5(C)は、
TAB方法により信号線駆動回路903を実装する例である。
を含むIC等を実装した状態にあるモジュールとを含む。
源(照明装置含む。)を指す。また、コネクター、例えばFPCもしくはTCPが取り付
けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、または表示
素子にCOG方式によりIC(集積回路)が直接実装されたモジュールも全て表示装置に
含むものとする。
おり、上記実施の形態で示したトランジスタを適用することができる。
(発光表示素子ともいう。)、を用いることができる。発光素子は、電流または電圧によ
って輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electr
o Luminescence)素子、有機EL素子等が含まれる。また、電子インクな
ど、電気的作用によりコントラストが変化する表示媒体も適用することができる。
916を有しており、接続端子電極915及び端子電極916はFPC918が有する端
子と異方性導電剤919を介して、電気的に接続されている。
、トランジスタ910、911の一対の電極と同じ導電膜で形成されている。
ンジスタを複数有しており、図6(A)及び図6(B)では、画素部902に含まれるト
ランジスタ910と、走査線駆動回路904に含まれるトランジスタ911とを例示して
いる。図6(A)では、トランジスタ910及びトランジスタ911上には実施の形態1
乃至実施の形態3に示す保護膜25、または該保護膜25と窒化シリコン膜の積層膜に相
当する絶縁膜924が設けられ、図6(B)では、絶縁膜924の上にさらに平坦化膜9
21が設けられている。なお、絶縁膜923は下地膜として機能する絶縁膜である。
示したトランジスタを適用することができる。
化物半導体膜のチャネル領域と重なる位置に導電膜917が設けられている例を示してい
る。本実施の形態では、導電膜917を第1の電極930と同じ導電膜で形成する。導電
膜917を酸化物半導体膜のチャネル領域と重なる位置に設けることによって、BTスト
レス試験前後におけるトランジスタ911のしきい値電圧の変動量をさらに低減すること
ができる。また、導電膜917の電位は、トランジスタ911のゲート電極と同じでもよ
いし、異なっていても良く、導電膜917を第2のゲート電極として機能させることもで
きる。また、導電膜917の電位は、GND、0V、或いはフローティング状態であって
もよい。
トランジスタを含む回路部)に作用しないようにする機能(特に静電気に対する静電遮蔽
機能)も有する。導電膜917の遮蔽機能により、静電気などの外部の電場の影響により
トランジスタの電気的な特性が変動することを防止することができる。導電膜917は、
上記実施の形態で示した、いずれのトランジスタにも適用可能である。
を構成する。表示素子は表示を行うことができれば特に限定されず、様々な表示素子を用
いることができる。
いて、表示素子である液晶素子913は、第1の電極930、第2の電極931、及び液
晶層908を含む。なお、液晶層908を挟持するように配向膜として機能する絶縁膜9
32、絶縁膜933が設けられている。また、第2の電極931は第2の基板906側に
設けられ、第1の電極930と第2の電極931とは液晶層908を介して重なる構成と
なっている。
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、イン
ジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電
性材料を用いることができる。
、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タ
ンタル(Ta)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、チタン(Ti
)、白金(Pt)、アルミニウム(Al)、銅(Cu)、銀(Ag)等の金属、またはそ
の合金、若しくはその金属窒化物から一つ、または複数種を用いて形成することができる
。
いう)を含む導電性組成物を用いて形成することができる。導電性高分子としては、いわ
ゆるπ電子共役系導電性高分子を用いることができる。例えば、ポリアニリンまたはその
誘導体、ポリピロールまたはその誘導体、ポリチオフェンまたはその誘導体、若しくはア
ニリン、ピロールおよびチオフェンの2種以上からなる共重合体若しくはその誘導体など
があげられる。
、第1の電極930と第2の電極931との間隔(セルギャップ)を制御するために設け
られている。なお球状のスペーサを用いていても良い。
晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これら
の液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイ
ラルネマチック相、等方相等を示す。
あり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直
前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善
するためにカイラル剤を混合させた液晶組成物を用いて液晶層に用いる。ブルー相を示す
液晶とカイラル剤とを含む液晶組成物は、応答速度が1msec以下と短く、光学的等方
性であるため配向処理が不要であり、視野角依存性が小さい。また配向膜を設けなくても
よいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊
を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる
。よって液晶表示装置の生産性を向上させることが可能となる。
ル材905は、熱硬化樹脂、光硬化樹脂などの有機樹脂を用いることができる。
変動量が少ない。また、比較的高い電界効果移動度が得られるため、高速駆動が可能であ
る。よって、表示機能を有する半導体装置の画素部に上記トランジスタを用いることで、
高画質な画像を提供することができる。また、同一基板上に駆動回路部または画素部を作
り分けて作製することが可能となるため、半導体装置の部品点数を削減することができる
。
ク電流等を考慮して、所定の期間の間電荷を保持できるように設定される。高純度の酸化
物半導体膜を有するトランジスタを用いることにより、各画素における液晶容量に対して
1/3以下、好ましくは1/5以下の容量の大きさを有する保持容量を設ければ充分であ
るため、画素における開口率を高めることができる。
防止部材などの光学部材(光学基板)などは適宜設ける。例えば、偏光基板及び位相差基
板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトなどを用
いてもよい。
ことができる。また、カラー表示する際に画素で制御する色要素としては、RGB(Rは
赤、Gは緑、Bは青を表す。)の三色に限定されない。例えば、RGBW(Wは白を表す
。)、またはRGBに、イエロー、シアン、マゼンタ等を一色以上追加したものがある。
なお、色要素のドット毎にその表示領域の大きさが異なっていてもよい。ただし、本発明
はカラー表示の表示装置に限定されるものではなく、モノクロ表示の表示装置に適用する
こともできる。
と対向電極との間に液晶が設けられている素子といえる。当該対向電極は画素部全てにお
いて同電位とすることが多い。そのため、当該対向電極は接続端子またはコモン電極とも
いう。そして、当該対向電極は駆動回路などの周辺回路によって電位操作されている。そ
して、対向電極の電位は、実際に画素電極に印加される信号線の電位に合わせて調整する
。実際に画素電極に印加される信号線の電位が変化してしまう場合、表示画面に不具合が
生じる恐れがあるため、画素電極の電位振幅の中心に一致するように対向電極の電位を最
適化することが好ましい。そこで、対向電極を、駆動回路部(走査線駆動回路及び信号線
駆動回路)に設けられる第1の対向電極と、画素部に設けられる第2の対向電極とに分け
て、それぞれ異なる電位を供給できるような構成を有する液晶表示装置について説明する
。
C)に示した表示装置において、第1の基板1210にFPCを貼り付ける前の液晶表示
装置の上面図である。図7(B)は、導電粒子と接続配線の接続領域を示す図7(A)の
一点鎖線E−Fの断面図を示す。
第1の基板1210と第1の対向電極1291、第2の対向電極1292が形成された第
2の基板1204とがシール材1205により貼り合わされており、シール材1205の
内部に液晶1280が充填されている。第1の基板1210上には信号線駆動回路120
0、走査線駆動回路1201、及び画素電極がマトリクス状に形成された画素部1202
が設けられている。
位である。画素部1202に設けられる第1の対向電極1291、及び駆動回路部に設け
られる第2の対向電極1292にはそれぞれ異なる電位を供給することができる。
際にスイッチング素子に接続される配線に与えられる電位より数ボルト低い可能性がある
。よって、第1の対向電極1291に印加する電位差(電圧)もその差分を考慮して、供
給する電位差(電圧)を設定することが好ましい。
口を有するパターンに加工してもよい。第2の対向電極1292を、開口を有するパター
ンに加工することによって駆動回路部に設けられるトランジスタに含まれる導電膜との間
に生じる寄生容量を軽減することもできる。これにより、液晶表示装置の低消費電力化を
実現できる。
スリット)とは、閉空間に開口されたパターンの他、一部開かれた屈曲部や枝分かれした
櫛歯状のようなパターンも含まれるものとする。
断面構成例を図7(B)に示す。
気的に接続される領域の断面図である。第1の基板1210上に接続配線1208が形成
される。接続配線1208上には画素電極と同時に形成される接続端子1241が形成さ
れる。接続端子1241は、接続配線1208及び導電粒子1270を介して、第1の対
向電極1291と電気的に接続される。また、接続端子1241はFPC(図示せず)と
接続される。なお、図7(B)において、導電粒子1270は樹脂層1235によって固
定されている。樹脂層1235としては、シール材1205で用いるような有機樹脂やフ
リットガラスを用いることができる。
きる。絶縁性球体は、シリカガラス、硬質樹脂等で形成される。金属薄膜は、金、銀、パ
ラジウム、ニッケル、酸化インジウムスズ、及び酸化インジウム亜鉛の単層または積層構
造とすることができる。例えば、金属薄膜として金薄膜や、ニッケル薄膜及び金薄膜の積
層等を用いることができる。絶縁性球体を中心に有する導電粒子1270を用いることで
、弾性が高まり、外部からの圧力に対する破壊を低減することができる。
れた導電性を有する樹脂層が設けられてもよい。導電性ポリマーの代表例としては、導電
性ポリアニリン、導電性ポリピロール、導電性ポリチオフェン、ポリエチレンジオキシチ
オフェン(PEDOT)とポリスチレンスルホン酸(PSS)の錯体等も用いることがで
きる。対向電極または接続配線に導電性ポリマーが接していることにより、導電粒子12
70と導電性ポリマーが接し、対向電極及び接続配線の接続抵抗を低減することが可能で
ある。
が導電粒子1270を介して導通する。また、接続配線1209と、第2の基板1204
上に形成される第2の対向電極1292が導電粒子1271を介して導通する(図7(A
)参照。)。また、接続配線1209と接続配線1208は異なる電位である。
対向電極1292)と端子部1240とを電気的に接続するために設ける共通接続部(コ
モンコンタクト部ともいう。)の断面図、及び当該共通接続部の上面図を図8及び図9に
示す。なお、第1の基板1210上に当該共通接続部を形成する例について示す。図8及
び図9には、当該共通接続部に加え、第1の基板1210に画素部1202に含まれてい
るトランジスタ1211が形成されている構成を示している。当該共通接続部の作製工程
は画素部1202のトランジスタ1211の作製工程と共通化させることで作製工程を複
雑にすることなく共通接続部を形成できる。また、第1の基板1210には当該共通接続
部の他に画素部1202だけではなく、駆動回路(走査線駆動回路1201)が形成され
ている構成としてもよく、当該共通接続部の作製工程は駆動回路(走査線駆動回路120
1)に含まれるトランジスタ910、911(図6(A)参照)の作製工程と共通化させ
てもよい。
け、共通接続部に重なるように導電粒子を含むペーストをシール材とは別途設けて、対向
電極と電気的に接続する。なお、共通接続部は、第1の基板1210と第2の基板120
4とを接着するためのシール材1205と重なる位置に配置され、シール材1205に含
まれる導電粒子1270を介して対向電極と電気的に接続してもよい。
れる配線を用いて接続配線1251が形成される共通接続部を示している。
ャネルエッチ型のトランジスタである。上記実施の形態に示すトランジスタを適宜用いて
トランジスタ1211を形成することができる。
図8(A)の共通接続部の断面に相当する。なお、図8(B)において図8(A)と同一
の部分には同じ符号を用いて説明する。また、ここでは、図面が煩雑になることを避ける
ため、接続端子1241はハッチングを用いず、破線で示す。
ス電極1259及びドレイン電極1261と同じ材料及び同じ工程で作製される。
51と重なる位置に複数の開口部を有している。この開口部は、トランジスタ1211の
ドレイン電極1261と画素電極1250とを接続するコンタクトホールと同じ工程で作
製される。
通接続部の開口部と使い分けて呼ぶこととする。また、図8(A)では、画素部1202
と共通接続部とで同じ縮尺で図示しておらず、例えば共通接続部の一点鎖線I−Jの長さ
が500μm程度であるのに対して、画素部1202のトランジスタのサイズは50μm
未満であり、実際には10倍以上面積サイズが大きいが、分かりやすくするため、図8(
A)に画素部1202と共通接続部の縮尺をそれぞれ変えて図示している。
250と同じ材料及び同じ工程で作製される。
の作製工程を行う。接続配線1251は金属配線として配線抵抗の低減を図る構成とする
ことが好ましい。
る第2の基板1204とをシール材1205を用いて固定する。
04の対向電極と電気的に接続される。
説明する。図9では、ゲート配線と同じ材料及び同じ工程で形成される接続電極1267
を設け、該接続電極1267に接続する接続配線1263として、ソース電極1259及
びドレイン電極1261と同じ材料並びに同じ工程で形成される配線(ソース配線及びド
レイン配線)を用いる共通接続部を示す。
A)の共通接続部の断面に相当する。また、ここでは、図面が煩雑になることを避けるた
め、接続端子1265はハッチングを用いず、破線で示す。
電極と同じ材料及び同じ工程で作製される。
1253及び保護膜1255は、接続電極1267と重なる位置に開口部1260を有し
ている。なお、該開口部1260は、ドレイン電極1261と画素電極1250とを接続
するコンタクトホールと同じ工程でエッチングした後、さらにゲート絶縁膜1253を選
択的にエッチングすることで形成される。
イン電極1261と同じ材料並びに同じ工程で作製される。
重なる位置に複数の開口部1262を有している。該開口部1262は、ドレイン電極1
261と画素電極1250とを接続するコンタクトホールと同じ工程で作製される。
と同じ材料及び同じ工程で作製される。
程と共通化させることができる。
開口部1260にのみ選択的に配置する。即ち、接続端子1265と接続電極1267と
が接している領域に複数の導電性粒子を配置する。接続電極1267及び接続配線126
3の両方と接触する接続端子1265は、導電性粒子と接触する電極であり、第2の基板
1204の対向電極と電気的に接続される。
ず、他の配線と接続する接続部や、外部接続端子などと接続する接続部に用いることがで
きる。また、図8に示した共通接続部の構成と、図9に示した共通接続部の構成は自由に
組み合わせることができる。
子を適用することができる。エレクトロルミネッセンスを利用する発光素子は、発光材料
が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機E
L素子、後者は無機EL素子と呼ばれている。
がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャ
リア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成
し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このよう
な発光素子は、電流励起型の発光素子と呼ばれる。
類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有
するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−ア
クセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、
さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利
用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明す
る。
て、基板上にトランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取り出す
上面射出や、基板側の面から発光を取り出す下面射出や、基板側及び基板とは反対側の面
から発光を取り出す両面射出構造の発光素子があり、どの射出構造の発光素子も適用する
ことができる。
素子963は、画素部902に設けられたトランジスタ910と電気的に接続している。
なお発光素子963の構成は、第1の電極930、発光層961、第2の電極931の積
層構造であるが、示した構成に限定されない。発光素子963から取り出す光の方向など
に合わせて、発光素子963の構成は適宜変えることができる。
材料を用い、第1の電極930上に開口部を形成し、その開口部の側壁が連続した曲率を
持って形成される傾斜面となるように形成することが好ましい。
いてもどちらでも良い。
1及び隔壁960上に保護層を形成してもよい。保護層としては、窒化シリコン、窒化酸
化シリコン、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、窒化酸化ア
ルミニウム、DLC膜等を形成することができる。また、第1の基板901、第2の基板
906、及びシール材936によって封止された空間には充填材964が設けられ密封さ
れている。このように外気に曝されないように気密性が高く、脱ガスの少ない保護フィル
ム(貼り合わせフィルム、紫外線硬化樹脂フィルム等)やカバー材で発光素子をパッケー
ジング(封入)することが好ましい。
トガラスなどを用いることができる。フリットガラスは、水や酸素などの不純物に対して
バリア性が高いため好ましい。また、シール材936としてフリットガラスを用いる場合
、図6(B)に示すように、絶縁膜924上にフリットガラスを設けることが好ましい。
絶縁膜924は、実施の形態1乃至実施の形態3に示す保護膜25、または該保護膜25
と窒化シリコン膜の積層膜に相当する無機絶縁膜であるため、フリットガラスとの密着性
を高めることができる。
熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル樹脂、ポリ
イミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(
エチレンビニルアセテート)を用いることができる。例えば充填材として窒素を用いれば
よい。
、位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けても
よい。また、偏光板または円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸に
より反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
どともいう)においては、取り出す光の方向、電極が設けられる場所、及び電極のパター
ン構造によって透光性、反射性を選択すればよい。
を設けることが好ましい。保護回路は、非線形素子を用いて構成することが好ましい。
信頼性のよい半導体装置を提供することができる。
である。
本明細書に開示する半導体装置は、さまざまな電子機器(遊技機も含む)に適用すること
ができる。電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョン
受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメ
ラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型
ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機、電子ペーパー
として適用することができる。電子ペーパーは、情報を表示するものであればあらゆる分
野の電子機器に用いることが可能である。例えば、電子ペーパーを用いて、電子書籍(電
子ブック)、ポスター、デジタルサイネージ、PID(Public Informat
ion Display)、電車などの乗り物の車内広告、クレジットカード等の各種カ
ードにおける表示等に適用することができる。電子機器の一例である携帯情報端末につい
て、図10を用いて説明する。
は、開いた状態であり、タブレット型端末は、筐体9630、表示部9631a、表示部
9631b、表示モード切り替えスイッチ9034、電源スイッチ9035、省電力モー
ド切り替えスイッチ9036、留め具9033、操作スイッチ9038、を有する。
た操作キー9638にふれることでデータ入力をすることができる。なお、表示部963
1aにおいては、一例として半分の領域が表示のみの機能を有する構成、もう半分の領域
がタッチパネルの機能を有する構成を示しているが該構成に限定されない。表示部963
1aの全ての領域がタッチパネルの機能を有する構成としても良い。例えば、表示部96
31aの全面をキーボードボタン表示させてタッチパネルとし、表示部9631bを表示
画面として用いることができる。
をタッチパネルの領域9632bとすることができる。また、タッチパネルのキーボード
表示切り替えボタン9639が表示されている位置に指やスタイラスなどでふれることで
表示部9631bにキーボードボタン表示することができる。
ッチ入力することもできる。
切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替えス
イッチ9036は、タブレット型端末に内蔵している光センサで検出される使用時の外光
の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光セン
サだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置を
内蔵させてもよい。
ているが特に限定されず、一方のサイズともう一方のサイズが異なっていてもよく、表示
の品質も異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネル
としてもよい。
33、充放電制御回路9634、バッテリー9635、DCDCコンバータ9636を有
する。なお、図10(B)では充放電制御回路9634の一例としてバッテリー9635
、DCDCコンバータ9636を有する構成について示している。
することができる。従って、表示部9631a、表示部9631bを保護できるため、耐
久性に優れ、長期使用の観点からも信頼性の優れたタブレット型端末を提供できる。
報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付または時刻な
どを表示部に表示する機能、表示部に表示した情報をタッチ入力操作または編集するタッ
チ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有す
ることができる。
表示部、または映像信号処理部等に供給することができる。なお、太陽電池9633は、
筐体9630の片面または両面に設けることができ、バッテリー9635の充電を効率的
に行う構成とすることができる。
)にブロック図を示し説明する。図10(C)には、太陽電池9633、バッテリー96
35、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3、
表示部9631について示しており、バッテリー9635、DCDCコンバータ9636
、コンバータ9637、スイッチSW1乃至SW3が、図10(B)に示す充放電制御回
路9634に対応する箇所となる。
太陽電池で発電した電力は、バッテリー9635を充電するための電圧となるようDCD
Cコンバータ9636で昇圧または降圧がなされる。そして、表示部9631の動作に太
陽電池9633からの電力が用いられる際にはスイッチSW1をオンにし、コンバータ9
637で表示部9631に必要な電圧に昇圧または降圧をすることとなる。また、表示部
9631での表示を行わない際には、SW1をオフにし、SW2をオンにしてバッテリー
9635の充電を行う構成とすればよい。
電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段によるバッ
テリー9635の充電を行う構成であってもよい。例えば、無線(非接触)で電力を送受
信して充電する無接点電力伝送モジュールや、また他の充電手段を組み合わせて行う構成
としてもよい。
である。
、及び光BTストレス試験の測定結果について説明する。具体的には本発明の一態様であ
るトランジスタのしきい値電圧及びシフト値の変動量について説明する。
本実施例では図2及び図3を参照して説明する。
により該タングステン膜上にマスクを形成し、該マスクを用いて該タングステン膜の一部
をエッチングし、ゲート電極15を形成した。
絶縁膜18を形成した。
nmの酸化窒化シリコン膜を形成した。該窒化シリコン膜は、シラン50sccm、窒素
5000sccmをプラズマCVD装置の処理室に供給し、処理室内の圧力を60Paに
制御し、27.12MHzの高周波電源を用いて150Wの電力を供給して形成した。該
酸化窒化シリコン膜は、シラン20sccm、一酸化二窒素3000sccmをプラズマ
CVD装置の処理室に供給し、処理室内の圧力を40Paに制御し、27.12MHzの
高周波電源を用いて100Wの電力を供給して形成した。なお、該窒化シリコン膜及び該
酸化窒化シリコン膜は、基板温度を350℃として形成した。
縁膜13が図示されているが、本実施例において下地絶縁膜13は形成していない。
。
で形成し、フォトリソグラフィ工程により該IGZO膜上にマスクを形成し、該マスクを
用いて該IGZO膜の一部をエッチングした。その後、エッチングされたIGZO膜に加
熱処理を行い、酸化物半導体膜19を形成した。なお、本実施例では厚さ35nmのIG
ZO膜を形成した。
のターゲットとし、スパッタリングガスとして50sccmのアルゴンと50sccmの
酸素をスパッタリング装置の処理室内に供給し、処理室内の圧力を0.6Paに制御し、
5kWの直流電力を供給して形成した。なお、IGZO膜を形成する際の基板温度は17
0℃とした。
素雰囲気で、450℃、1時間の加熱処理を行った。
により該導電膜上にマスクを形成し、該マスクを用いて該導電膜の一部をエッチングし、
一対の電極21を形成した。なお、該導電膜は、厚さ50nmのタングステン膜上に厚さ
400nmのアルミニウム膜を形成し、該アルミニウム膜上に厚さ100nmのチタン膜
を形成した。
上部電極に27.12MHzの高周波電源を用いて150Wの高周波電力を供給して発生
させた酸素プラズマに酸化物半導体膜19を曝して図2(D)に示す酸化物半導体膜20
を形成した。
対の電極21上に絶縁膜23を形成した。絶縁膜23としては、流量30sccmのシラ
ン及び流量4000sccmの一酸化二窒素を原料ガスとし、処理室の圧力を40Pa、
基板温度を220℃とし、150Wの高周波電力を平行平板電極の上部電極に供給したプ
ラズマCVD法により、酸化窒化シリコン膜を形成した。絶縁膜23の厚さがそれぞれ2
0nmの試料を試料A1、50nmの試料を試料A2、100nmの試料を試料A3とす
る。なお、本工程において基板温度が220℃と比較的低いため、酸化窒化シリコン膜に
窒素が含まれず、酸化シリコン膜が形成される場合がある。また、本工程において基板温
度が220℃と比較的低いため、350℃における成膜と比較して成膜過程における水素
脱離が少なく、酸化窒化シリコン膜(酸化シリコン膜)に水素が含まれる場合がある。
のシラン及び流量4000sccmの一酸化二窒素を原料ガスとし、処理室の圧力を20
0Pa、基板温度を220℃とし、1500Wの高周波電力を平行平板電極の上部電極に
供給したプラズマCVD法により、厚さ400nmの酸化窒化シリコン膜を形成した。当
該条件により、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化窒化シリコン膜
を形成することができる。即ち、加熱により酸素の一部が脱離する酸化窒化シリコン膜を
形成することができる。
囲気で1時間行った。
リル樹脂を形成した。こののち、加熱処理を行った。当該加熱処理は、温度を250℃と
し、窒素雰囲気で1時間行った。
用いて絶縁膜を形成した試料を試料A4とする。試料A4の絶縁膜23及び絶縁膜24の
形成方法を以下に示す。
極21上に絶縁膜23を形成した。絶縁膜23としては、流量20sccmのシラン及び
流量3000sccmの一酸化二窒素を原料ガスとし、処理室の圧力を200Pa、基板
温度を350℃とし、100Wの高周波電力を平行平板電極の上部電極に供給したプラズ
マCVD法により、厚さ20nmの酸化窒化シリコン膜を形成した。
における絶縁膜24と同様の形成条件を用い、厚さ380nmの酸化窒化シリコン膜を形
成した。
ジスタを作製した。
に連続的に窒化シリコン膜を形成し、350℃の窒素及び酸素雰囲気で加熱処理を行った
後、窒化シリコン膜上にアクリル樹脂を形成した試料を試料A5とした。
窒化シリコン膜を形成し、300℃の窒素及び酸素雰囲気で加熱処理を行った後、窒化シ
リコン膜上にアクリル樹脂を形成した試料を試料A6とした。
、流量5000sccmの窒素、及び流量100sccmのアンモニアを原料ガスとし、
処理室の圧力を200Pa、基板温度を220℃とし、1000Wの高周波電力を平行平
板電極の上部電極に供給したプラズマCVD法を用い、厚さ50nmの酸化窒化シリコン
膜を形成した。
に含まれるトランジスタは、試料A1〜試料A3に含まれる絶縁膜23を除いた構造であ
り、その他の構造及び作製方法は同様である。
験を行った。ここでは、BTストレス試験として、基板温度を80℃、ゲート絶縁膜に印
加する電界強度を1.2MV/cm、印加時間を2000秒とし、ゲート電極に電圧を印
加するBTストレス試験を行った。
白色光をトランジスタに照射してゲート電極に電圧を印加する光BTストレス試験を行っ
た。
する。BTストレス試験の対象となるトランジスタの初期特性を測定するため、基板温度
を25℃とし、ソース電極−ドレイン電極間電圧(以下、ドレイン電圧という。)を1V
、10Vとし、ソース電極−ゲート電極間電圧(以下、ゲート電圧という。)を−30V
〜+30Vまで変化させたときのソース電極−ドレイン電極間に流れる電流(以下、ドレ
イン電流という。)の変化特性、すなわちVg−Id特性を測定した。
極の電位を0Vとした。続いて、ゲート絶縁膜へ印加される電界強度が1.2MV/cm
となるようにゲート電極に電圧を印加し、2000秒保持した。
BTストレス試験では、ゲート電極に30Vを印加した。また、光マイナスBTストレス
試験では、LEDから発せられる3000lxの白色光を照射しつつ、ゲート電極に−3
0Vを印加した。また、光プラスBTストレス試験では、LEDから発せられる3000
lxの白色光を照射しつつ、ゲート電極に30Vを印加した。
5℃まで下げた。基板温度が25℃になった後、ゲート電極、ソース電極およびドレイン
電極への電圧の印加を終了させた。
光BTストレス試験後のVg−Id特性を得た。試料A1〜試料A4、及び比較試料A1
の初期特性のしきい値電圧とBTストレス試験後のしきい値電圧の差(即ち、しきい値電
圧の変動量(ΔVth))、及びシフト値の差(即ち、シフト値の変動量(ΔShift
))を図11に示す。また、試料A5及び試料A6のしきい値電圧の変動量(ΔVth)
及びシフト値の変動量(ΔShift)を図12に示す。図11及び図12において、縦
軸にΔVth及びΔShiftを示す。
レイン電流の平方根(Id1/2[A])を縦軸としてプロットした曲線312において
、最大傾きであるId1/2の接線314を外挿したときの、接線314とVg軸(即ち
、Id1/2が0A)との交点のゲート電圧で定義する(図13(A)参照)。なお、本
明細書中においては、ドレイン電圧Vdを10Vとして、しきい値電圧を算出する。
軸、ドレイン電流(Id[A])の対数を縦軸にプロットした曲線316において、最大
傾きであるIdの接線318を外挿したときの直線Id=1.0×10−12[A]との
交点のゲート電圧で定義する(図13(B)参照)。なお、本明細書中においては、ドレ
イン電圧Vdを10Vとして、シフト値を算出する。
シフト値がマイナスシフトしており、しかもしきい値電圧の変動量(ΔVth)及びシフ
ト値の変動量(ΔShift)が大きい。しかしながら、試料A1〜試料A6においては
、図11及び図12に示すように、BTストレス試験及び光BTストレス試験において、
しきい値電圧の変動量(ΔVth)及びシフト値の変動量(ΔShift)が小さい。さ
らには、試料A1〜試料A6においては、しきい値電圧及びシフト値がプラスシフトして
おり、且つしきい値電圧の変動量(ΔVth)及びシフト値の変動量(ΔShift)が
3.0V以下、好ましくは2.5V以下と小さくなりやすい。このことから、トランジス
タの保護膜として、酸素が拡散する酸化絶縁膜及び化学量論的組成を満たす酸素よりも多
くの酸素を含む酸化絶縁膜を積層することで、BTストレス試験及び光BTストレス試験
におけるしきい値電圧及びシフト値の変動量が少ないトランジスタを作製できることが分
かる。
寿命試験を行った。ここでは、試料A5及び試料A6と、比較試料として、比較試料A2
及び比較試料A3を用いて、耐湿評価の加速寿命試験を行った。
する。比較試料A2及び比較試料A3に含まれるトランジスタはそれぞれ、試料A5及び
試料A6における窒化シリコン膜の代わりに、流量50sccmのシラン及び流量500
0sccmの窒素を原料ガスとし、処理室の圧力を200Pa、基板温度を220℃とし
、1000Wの高周波電力を平行平板電極の上部電極に供給したプラズマCVD法を用い
、厚さ200nmの窒化シリコン膜を形成した。
ure Cooker Test)を行った。本実施例ではPCT試験として、温度13
0℃、湿度85%、圧力0.23MPaの条件で、試料A5及び試料A6、並びに比較試
料A2及び比較試料A3を15時間保持した。
、試料A5に含まれるトランジスタのVg−Id特性の初期特性を図14(B)に示す。
また、プレッシャークッカー試験後における、比較試料A2に含まれるトランジスタのV
g−Id特性の初期特性を図14(C)に示し、試料A5に含まれるトランジスタのVg
−Id特性の初期特性を図14(D)に示す。
に示し、試料A6に含まれるトランジスタのVg−Id特性の初期特性を図15(B)に
示す。また、プレッシャークッカー試験後における、比較試料A3に含まれるトランジス
タのVg−Id特性の初期特性を図15(C)に示し、試料A6に含まれるトランジスタ
のVg−Id特性の初期特性を図15(D)に示す。
間を流れるドレイン電流(Id)を表し、右縦軸は電界効果移動度(μFE)を表す。ま
た、実線はドレイン電圧(Vd)を1Vまたは10Vとした際の電流−電圧特性の初期特
性を表し、破線はVdを10Vとした際のゲート電圧に対する電界効果移動度を表す。な
お、当該電界効果移動度は各試料の飽和領域での結果である。また、各試料において20
個のトランジスタの電気特性を測定した。
ー試験後において、しきい値電圧がマイナスシフトしているが、試料A5及び試料A6に
おいては、しきい値電圧の変動が極めて少ない。このことから、絶縁膜24上に上記条件
で形成した窒化シリコン膜を形成することで、湿度の高い環境下においても劣化の少ない
トランジスタを作製することができる。
実施例では、SSDP−SIMS(裏面からのSIMS(Secondary Ion
Mass Spectrometry)測定)を用いて酸素の濃度を測定することで、酸
素の拡散について説明する。
酸化窒化シリコン膜(SiON)を形成した。ここでは、シリコンウェハをプラズマCV
D装置の処理室内に設置し、処理室内に原料ガスである流量30sccmのシラン及び流
量4000sccmの一酸化二窒素を供給し、処理室内の圧力を200Paに制御し、2
7.12MHzの高周波電源を用いて150Wの電力を供給して酸化窒化シリコン膜を形
成した。また、酸化窒化シリコン膜を形成する際のシリコンウェハの温度を220℃とし
た。なお、本実施例で用いたプラズマCVD装置は電極面積が6000cm2である平行
平板型のプラズマCVD装置であり、供給した電力を単位面積あたりの電力(電力密度)
に換算すると0.025W/cm2である。
(SiOx)を形成した。ここでは、シリコンウェハをスパッタリング装置の処理室内に
設置し、処理室内に原料ガスである流量300sccmの18O(16Oの同位体)を供
給し、処理室内の圧力を0.7Paに制御し、高周波電源を用いて8000Wの電力を供
給して18Oを含む酸化シリコン膜を形成した。当該試料を試料B1とする。
(裏面からの測定、ここではシリコンウェハからの測定)を用いて測定した。
に存在する。自然界における17O及び18Oの存在比率はそれぞれ、酸素原子全体の0
.038%、0.201%程度であることが知られている。つまり、酸化窒化シリコン膜
における16Oの濃度をSIMSで測定することで、17O及び18Oの濃度を見積るこ
とができる。ここで、酸化窒化シリコン膜中に含まれる18Oの濃度と、16Oに対する
存在比率から見積られる18Oの濃度を比較することで、酸化シリコン膜(SiOx)か
ら酸化窒化シリコン膜(SiON)中に18Oが拡散したか否かを判別することができる
。
オン種にはセシウム一次イオン(Cs+)を用いた。
測定された16Oの濃度プロファイルを元に、自然界における18Oの存在比率を用いて
算出された18Oの濃度プロファイルであり、曲線803は、SSDP−SIMSによっ
て測定された18Oの濃度プロファイルである。
測定された16Oの濃度プロファイルを元に算出された18Oの濃度プロファイルであり
、曲線813は、SSDP−SIMSによって測定された18Oの濃度プロファイルであ
る。
、試料B1のSiONにおいて、SiOxに含まれる18OがSiONに拡散していない
ことがわかる。
ている。即ち、加熱処理により、SiOxに含まれる18OがSiONに拡散し、SiO
Nにおける18Oの濃度が増加していることがわかる。
コン膜において、酸素が拡散する。即ち、当該酸化窒化シリコン膜に接する絶縁膜に含ま
れる過剰な酸素を、酸化窒化シリコン膜に拡散させることができる。
導体膜の欠陥の変化について説明する。本実施例では、酸化物半導体膜の酸素欠損量につ
いて、ESR(電子スピン共鳴)測定結果を用いて説明する。
ッタリング法で形成した。ここでは、IGZO膜は、スパッタリングターゲットをIn:
Ga:Zn=1:1:1(原子数比)のターゲットとし、スパッタリングガスとして50
sccmのアルゴンと50sccmの酸素をスパッタリング装置の処理室内に供給し、処
理室内の圧力を0.6Paに制御し、5kWの直流電力を供給して形成した。なお、IG
ZO膜を形成する際の基板温度は170℃とした。
シリコン膜975を形成した。ここでは、石英基板をプラズマCVD装置の処理室内に設
置し、処理室内に原料ガスである流量30sccmのシラン及び流量4000sccmの
一酸化二窒素を供給し、27.12MHzの高周波電源を用いて150Wの電力を供給し
て酸化窒化シリコン膜を形成した。また、酸化窒化シリコン膜を形成する際の石英基板の
温度を220℃とした。なお、本実施例で用いたプラズマCVD装置は電極面積が600
0cm2である平行平板型のプラズマCVD装置であり、供給した電力を単位面積あたり
の電力(電力密度)に換算すると0.025W/cm2である。
制御し、酸化窒化シリコン膜975の厚さを20nm、50nm、100nmとして複数
の試料C1を作製した。
を形成した。ここでは、石英基板をプラズマCVD装置の処理室内に設置し、処理室内に
原料ガスである流量160sccmのシラン及び流量4000sccmの一酸化二窒素を
供給し、処理室の圧力を200Pa、基板温度を220℃とし、1500Wの高周波電力
を平行平板電極の上部電極に供給したプラズマCVD法により、厚さ400nmの酸化窒
化シリコン膜977を形成した。
973bと示す。
OS膜であるIGZO膜を図17(C)においてIGZO膜973cと示す。
マイクロ波の吸収の起こる磁場の値(H0)から、式g=hν/βH0、を用いてg値と
いうパラメータが得られる。なお、νはマイクロ波の周波数である。hはプランク定数で
あり、βはボーア磁子であり、どちらも定数である。
Hzの高周波電力(マイクロ波パワー)を20mWとし、磁場の向きは作製した試料の膜
表面と平行とした。なお、IGZO膜に含まれる酸素欠損に由来するg(g値)=1.9
3に現れる信号のスピン密度の検出下限は2.2×1016spins/cm3であった
。
1におけるスピン密度を示し、図18(B)は試料C2におけるスピン密度を示し、図1
8(C)は試料C3におけるスピン密度を示す。なお、図18において、酸化窒化シリコ
ン膜975を1st−SiONと示す。
ZO膜をESR測定して得られた1次微分曲線を図19に示す。曲線981は、試料C2
において、酸化窒化シリコン膜975の成膜条件の圧力を40Paとし、酸化窒化シリコ
ン膜975の厚さを50nmとした一試料を測定した1次微分曲線である。
aとし、酸化窒化シリコン膜975の厚さを50nmとした一試料を測定した1次微分曲
線である。
る信号が検出されており、IGZO膜中に酸素欠損が含まれることが分かる。一方、試料
C3では酸素欠損に起因する対称性を有する信号が検出されず(即ち、検出下限以下であ
り)、IGZO膜中に含まれる酸素欠損の量が検出できないことが分かる。
IGZO膜973aに含まれる酸素欠損量が増加することが分かる。これは、酸化窒化シ
リコン膜975の厚さ厚い程、実施の形態1に示す絶縁膜24の条件を用いて形成した酸
化窒化シリコン膜977に含まれる過剰酸素がIGZO膜に移動しにくくなるためである
。また、酸化窒化シリコン膜975の成膜条件において、成膜圧力が低いほど酸化物半導
体膜にダメージが入り、酸素欠損量が増加するためである。
ことで、一部の試料においては酸素欠損量が増加するが、ほとんどの試料において、IG
ZO膜973bに含まれる酸素欠損量が検出下限以下となることが分かる。
含む酸化絶縁膜である酸化窒化シリコン膜977を形成することで、酸化窒化シリコン膜
977に含まれる過剰酸素が酸化窒化シリコン膜975を介してIGZO膜973bに拡
散し、IGZO膜973bに含まれる酸素欠損を補填することで、酸素欠損が低減するた
めである。
後、加熱処理を行うことで、IGZO膜973cに含まれる酸素欠損量が検出下限以下と
なることが分かる。
含む酸化絶縁膜である酸化窒化シリコン膜977を形成し加熱することで、酸化窒化シリ
コン膜977に含まれる過剰酸素が酸化窒化シリコン膜975を介してIGZO膜973
cに拡散し、IGZO膜973cに含まれる酸素欠損を補填することで、酸素欠損が低減
するためである。
体膜の酸素欠損量を低減することができる。また、当該構造をトランジスタに用いること
で、実施例1に示すように、しきい値電圧の変動量がプラス方向に変動し、該変動量が3
.0V以下、好ましくは2.5V以下であるトランジスタを作製することができる。
性について、図20乃至図24を用いて説明する。
なお、試料D1及び試料D2においては、実施の形態1に示す絶縁膜23の原料ガスの流
量が異なるのみである。
cmのシラン及び流量4000sccmの一酸化二窒素を原料ガスとし、プラズマCVD
装置の処理室の圧力を40Pa、基板温度を220℃とし、150Wの高周波電力を平行
平板電極の上部電極に供給したプラズマCVD法により、厚さ50nmの酸化窒化シリコ
ン膜を形成した。ここでは、シランに対する一酸化二窒素の流量は133倍であった。
cmのシラン及び流量4000sccmの一酸化二窒素を原料ガスとし、処理室の圧力を
40Pa、基板温度を220℃とし、150Wの高周波電力を平行平板電極の上部電極に
供給したプラズマCVD法により、厚さ50nmの酸化窒化シリコン膜を形成した。ここ
では、シランに対する一酸化二窒素の流量は50倍であった。
−Id特性をそれぞれ図20(A)及び図20(B)に示す。図20において、横軸はゲ
ート電圧(Vg)を表し、縦軸は一対の電極21間を流れるドレイン電流(Id)を表す
。また、ドレイン電圧(Vd)を1V、10Vとして、Vg−Id特性を測定した。また
、Vdを10Vとした際のゲート電圧に対する電界効果移動度を表す。なお、当該電界効
果移動度は各試料の飽和領域での結果である。なお、ここでは、24個のトランジスタの
Vg−Id特性を示した。
)より、試料D1においては、しきい値電圧のばらつきが少ない。このことから、絶縁膜
23の成膜条件として、シランに対する一酸化二窒素の流量を100倍以上とすると、良
好なVg−Id特性を得られることがわかる。
R測定を行った。
形成した。試料C1〜C3と同様の条件を用いてIGZO膜を形成した。
、厚さ400nmの酸化窒化シリコン膜を形成した。試料D1と同様に、シランに対する
一酸化二窒素の流量が100倍以上の条件(133倍)を用いて、酸化窒化シリコン膜を
形成した試料を試料D3とする。また、試料D2と同様に、シランに対する一酸化二窒素
の流量が100倍未満の条件(50倍)を用いて、酸化窒化シリコン膜を形成した試料を
試料D4とする。
料を、試料D5とする。試料D4を加熱して得た試料を、試料D6とする。
施例3に示すESR測定条件と同様の条件を用いた。
おいて縦軸はスピン密度を表す。
)に示し、試料D4及び試料D6についてESR測定して得られた1次微分曲線を図21
(C)に示す。
く、図21(B)及び図21(C)より、g値が1.93において酸素欠損に起因する対
称性を有する信号が検出されており、IGZO膜中に酸素欠損が含まれることが分かる。
一方、試料D5においては、図21(B)より、酸素欠損に起因する対称性を有する信号
が検出されず(即ち、検出下限以下であり)、図21(A)に示すように、IGZO膜中
に含まれる酸素欠損の量が検出できないことが分かる。
件を用いて酸化窒化シリコン膜を形成した後、加熱処理を行うことにより、IGZO膜に
含まれる酸素欠損量を低減できることが分かる。
損量についてESR測定を行った。
た絶縁膜23の成膜条件を用いて、石英基板上に厚さ400nmの酸化窒化シリコン膜を
形成した。試料D1と同様に、シランに対する一酸化二窒素の流量を100倍以上の条件
(133倍)を用いて、酸化窒化シリコン膜を形成した試料を試料D7とする。また、試
料D2と同様に、シランに対する一酸化二窒素の流量を100倍未満の条件(55倍)を
用いて、酸化窒化シリコン膜を形成した試料を試料D8とする。
った。測定温度は室温(25℃)とし、9.2GHzの高周波電力(マイクロ波パワー)
は20mWとし、磁場の向きは作製した試料の酸化窒化シリコン膜の表面と平行とし、酸
化窒化シリコン膜に含まれるシリコンのダングリングボンドに由来するg=2.001に
現れる信号のスピン密度の検出下限は1.0×1015spins/cm3である。スピ
ン密度が小さいほど酸化窒化シリコン膜に含まれるシリコンのダングリングボンドである
欠損は少ないといえる。
膜の1次微分曲線を示し、図22(B)は、試料D8における酸化窒化シリコン膜の1次
微分曲線を示す。図22から、試料D8においては、g値が2.001において、ダング
リングボンドに起因する対称性を有す信号が検出されているが、試料D7においては、ダ
ングリングボンドに起因する対称性を有す信号が検出されていない。即ち、試料D7にお
いては、酸化窒化シリコン膜のシリコンにおけるダングリングボンドの量が少ないことが
分かる。
化シリコン膜を形成することにより、酸化窒化シリコン膜に含まれるダングリングボンド
の量を低減できることが分かる。
24を積層したときの、酸素脱離量のTDS分析(昇温脱離ガス分析)の結果を説明する
。
構造2である。
条件を用いて絶縁膜993を形成した後、絶縁膜23と同様の条件を用いて絶縁膜993
上に絶縁膜995を形成した。
条件を用いて絶縁膜995を形成した後、絶縁膜24と同様の条件を用いて絶縁膜995
上に絶縁膜993を形成した。
00nmの酸化窒化シリコン膜を形成した。
0nmの酸化窒化シリコン膜を形成した。
の流量が100倍以上の条件(133倍)を用いて、酸化窒化シリコン膜を形成した試料
を試料E1とする。
の流量が100倍未満の条件(50倍)を用いて、酸化窒化シリコン膜を形成した試料を
試料E2とする。
の流量が100倍以上の条件(133倍)を用いて、酸化窒化シリコン膜を形成した試料
を試料E3とする。
の流量が100倍未満の条件(55倍)を用いて、酸化窒化シリコン膜を形成した試料を
試料E4とする。
含まれる酸化窒化シリコン膜と同様であり、シリコンダングリングボンドを有する酸化窒
化シリコン膜である。
示す。図24(A)は、試料E1のTDS分析の結果を表し、図24(B)は、試料E2
のTDS分析の結果を表し、図24(C)は、試料E3のTDS分析の結果を表し、図2
4(D)は、試料E4のTDS分析の結果を表す。図24(A)乃至図24(D)の横軸
は試料E1乃至試料E4の基板温度を表し、縦軸はTDSスペクトルのピーク強度を表す
。
れた、酸素の放出量を示す。
析した試料(本実施例では試料E1乃至試料E4)に含まれる酸素(詳細には酸素原子ま
たは酸素分子)が外部に放出されることで現れるピークである。なお、外部に放出される
酸素の総量は該ピークの積分値に相当する。また、酸化窒化シリコン膜において、化学量
論的組成を満たす酸素よりも多くの酸素を有する場合、過剰な酸素は脱離しやすく、外部
に放出されやすいと考えられる。それゆえ、該ピーク強度の強弱によって積層された酸化
窒化シリコン膜に含まれる酸素量を評価できる。
ン膜を有する試料(試料E2及び試料E4)は、酸素脱離量が低減していることが分かる
。このことから、酸素が拡散する絶縁膜がシリコンダングリングボンドを有することで、
化学量論的組成よりも多くの酸素を有する絶縁膜から拡散した酸素がシリコンダングリン
グボンドと結合してしまい、酸素の脱離量が低減することが分かる。即ち、トランジスタ
の保護膜として積層された絶縁膜23及び絶縁膜24において、シリコンダングリングボ
ンドの少ない絶縁膜23を形成することで、化学量論的組成よりも多くの酸素を有する絶
縁膜24に含まれる酸素を効率よくトランジスタの酸化物半導体膜へ拡散させ、酸化物半
導体膜に含まれる酸素欠損を補填することが可能である。この結果、図20に示すように
、トランジスタのしきい値電圧のばらつき、及びマイナスシフトを抑制することが可能で
ある。
濃度について、SIMS測定した結果を示す。
マ処理を行っていない。
膜23の形成を行わず、酸化物半導体膜19上に絶縁膜24を形成した。
絶縁膜24の水素、窒素、及びフッ素の濃度をそれぞれ、図25(A)、図25(B)、
図25(C)に示す。また、試料F2における絶縁膜24の水素、窒素、及びフッ素の濃
度をそれぞれ、図25(D)、図25(E)、図25(F)に示す。図25において、横
軸は各試料の表面からの深さを示し、縦軸は各元素の濃度を示す。
ていない。一方、フッ素濃度は絶縁膜23及び絶縁膜24の界面でピーク濃度を有する。
以下により、フッ素濃度が上記界面においてピークを有する。絶縁膜23を形成した後、
プラズマCVD装置の電力を切断した。次に、処理室内に導入する原料ガスの流量、及び
処理室内の圧力を変更した後、再度プラズマCVD装置に電力を投入して絶縁膜24を形
成した。当該絶縁膜23を形成した後から、絶縁膜24を形成する前までの間、絶縁膜2
3の表面は処理室内の雰囲気に曝された。
ており、処理室内壁から脱離した当該フッ素またはNF3が、絶縁膜23を形成した後か
ら、絶縁膜24を形成する前までの間において、絶縁膜23の表面に付着する。このため
、絶縁膜23及び絶縁膜24の界面において、フッ素濃度が高くなり、ピーク濃度を有す
る。
るため、図25(F)示すように、絶縁膜24においてピーク濃度を有さない。
ン膜の特性について説明する。具体的には、該作製方法で形成した酸化窒化シリコン膜の
エッチング速度について、図26を用いて説明する。
の酸化窒化シリコン膜を形成した試料G1、試料G2、及び比較試料G1である。なお、
試料G1は実施の形態1に示す絶縁膜23の条件を用いて形成した。比較試料G1は、実
施の形態1に示す絶縁膜24の条件を用いて形成した。
0sccmのシラン及び流量3000sccmの一酸化二窒素を供給し、処理室内の圧力
を200Paに制御し、27.12MHzの高周波電源を用いて100Wの電力を供給し
て酸化窒化シリコン膜を形成した。また、酸化窒化シリコン膜を形成する際の基板温度は
350℃とした。なお、ここで用いたプラズマCVD装置は電極面積が6000cm2で
ある平行平板型のプラズマCVD装置であり、供給した電力を単位面積あたりの電力(電
力密度)に換算すると0.017W/cm2である。
膜を形成した。当該方法で作製した試料を試料G2とする。
流量160sccmのシラン及び流量4000sccmの一酸化二窒素を供給し、処理室
内の圧力を200Paに制御し、27.12MHzの高周波電源を用いて1500Wの電
力を供給して酸化窒化シリコン膜を形成した。また、酸化窒化シリコン膜を形成する際の
基板温度は220℃とした。なお、ここで用いたプラズマCVD装置は電極面積が600
0cm2である平行平板型のプラズマCVD装置であり、供給した電力を単位面積あたり
の電力(電力密度)に換算すると0.25W/cm2である。
次に、試料G1、試料G2、及び比較試料G1を、0.5重量%のフッ酸に45秒浸した
。このときのフッ酸の温度を室温とする。次に、各試料の酸化窒化シリコン膜の膜厚を測
定した。これらの結果から、各試料の酸化窒化シリコン膜のエッチング速度を計算した。
各試料のエッチング速度を図26に示す。
m/min、比較試料G1のエッチング速度は13.5nm/minであった。
示す絶縁膜24の条件を用いて形成した酸化窒化シリコン膜と比較して、エッチング速度
が遅く、且つ10nm/min、好ましくは8nm/minの酸化窒化シリコン膜を形成
することができる。
Claims (8)
- 基板上のゲート電極と、
前記ゲート電極上のゲート絶縁膜と、
前記ゲート絶縁膜を介して前記ゲート電極と重なる酸化物半導体膜と、
前記酸化物半導体膜に接する一対の電極と、
前記酸化物半導体膜上に接する第1の絶縁膜と、前記第1の絶縁膜上に接する第2の絶縁膜と、を有し、
25℃において0.5重量%のフッ酸に対する前記第1の絶縁膜のエッチング速度は、25℃において0.5重量%のフッ酸に対する前記第2の絶縁膜のエッチング速度より遅く、
前記第1の絶縁膜は、酸素が拡散する酸化絶縁膜であり、
前記第2の絶縁膜は、化学量論的組成比を満たす酸素よりも多くの酸素を含む酸化絶縁膜であることを特徴とする半導体装置。 - 基板上のゲート電極と、
前記ゲート電極上のゲート絶縁膜と、
前記ゲート絶縁膜を介して前記ゲート電極と重なる酸化物半導体膜と、
前記酸化物半導体膜に接する一対の電極と、
前記酸化物半導体膜上に接する第1の絶縁膜と、前記第1の絶縁膜上に接する第2の絶縁膜と、を有し、
25℃において0.5重量%のフッ酸に対する前記第1の絶縁膜のエッチング速度は、25℃において0.5重量%のフッ酸に対する前記第2の絶縁膜のエッチング速度より遅く、
前記第1の絶縁膜は、酸素が拡散する酸化絶縁膜であり、
前記第2の絶縁膜は、化学量論的組成比を満たす酸素よりも多くの酸素を含む酸化絶縁膜であり、
前記酸化物半導体膜をチャネル形成領域に用いたトランジスタは、バイアス温度ストレス試験を行うことによって、前記トランジスタのしきい値電圧がプラス方向に変動する特性を有し、
前記しきい値電圧がプラス方向に変動する量は3.0V以下であることを特徴とする半導体装置。(但し、前記バイアス温度ストレス試験は、前記基板の温度が80℃で、前記ゲート絶縁膜に印加される電界強度が1.2MV/cmとなるゲート電圧を、2000秒間印加することとする。) - 基板上のゲート電極と、
前記ゲート電極上のゲート絶縁膜と、
前記ゲート絶縁膜を介して前記ゲート電極と重なる酸化物半導体膜と、
前記酸化物半導体膜に接する一対の電極と、
前記酸化物半導体膜上に接する第1の絶縁膜と、前記第1の絶縁膜上に接する第2の絶縁膜と、を有し、
25℃において0.5重量%のフッ酸に対する前記第1の絶縁膜のエッチング速度は、25℃において0.5重量%のフッ酸に対する前記第2の絶縁膜のエッチング速度より遅く、
前記ゲート絶縁膜及び前記第1の絶縁膜は、酸化シリコン膜または酸化窒化シリコン膜であり、
前記第2の絶縁膜は、酸化シリコン膜または酸化窒化シリコン膜であり、
前記酸化物半導体膜をチャネル形成領域に用いたトランジスタは、バイアス温度ストレス試験を行うことによって、前記トランジスタのしきい値電圧がプラス方向に変動する特性を有し、
前記しきい値電圧がプラス方向に変動する量は3.0V以下であることを特徴とする半導体装置。(但し、前記バイアス温度ストレス試験は、前記基板の温度が80℃で、前記ゲート絶縁膜に印加される電界強度が1.2MV/cmとなるゲート電圧を、2000秒間印加することとする。) - 基板上のゲート電極と、
前記ゲート電極上のゲート絶縁膜と、
前記ゲート絶縁膜を介して前記ゲート電極と重なる酸化物半導体膜と、
前記酸化物半導体膜に接する一対の電極と、
前記酸化物半導体膜上に接する第1の絶縁膜と、前記第1の絶縁膜上に接する第2の絶縁膜と、を有し、
25℃において0.5重量%のフッ酸に対する前記第1の絶縁膜のエッチング速度は、25℃において0.5重量%のフッ酸に対する前記第2の絶縁膜のエッチング速度より遅く、
前記第1の絶縁膜は、酸素が拡散する酸化絶縁膜であり、
前記第2の絶縁膜は、化学量論的組成比を満たす酸素よりも多くの酸素を含む酸化絶縁膜であり、
前記酸化物半導体膜をチャネル形成領域に用いたトランジスタは、光バイアス温度ストレス試験を行うことによって、前記トランジスタのしきい値電圧がプラス方向に変動する特性を有し、
前記しきい値電圧がプラス方向に変動する量は3.0V以下であることを特徴とする半導体装置。(但し、前記光バイアス温度ストレス試験は、前記基板の温度が80℃で、照射される光が3000lxで、前記ゲート絶縁膜に印加される電界強度が1.2MV/cmとなるゲート電圧を、2000秒間印加することとする。) - 基板上のゲート電極と、
前記ゲート電極上のゲート絶縁膜と、
前記ゲート絶縁膜を介して前記ゲート電極と重なる酸化物半導体膜と、
前記酸化物半導体膜に接する一対の電極と、
前記酸化物半導体膜上に接する第1の絶縁膜と、前記第1の絶縁膜上に接する第2の絶縁膜と、を有し、
25℃において0.5重量%のフッ酸に対する前記第1の絶縁膜のエッチング速度は、25℃において0.5重量%のフッ酸に対する前記第2の絶縁膜のエッチング速度より遅く、
前記ゲート絶縁膜及び前記第1の絶縁膜は、酸化シリコン膜または酸化窒化シリコン膜であり、
前記第2の絶縁膜は、酸化シリコン膜または酸化窒化シリコン膜であり、
前記酸化物半導体膜をチャネル形成領域に用いたトランジスタは、光バイアス温度ストレス試験を行うことによって、前記トランジスタのしきい値電圧がプラス方向に変動する特性を有し、
前記しきい値電圧がプラス方向に変動する量は3.0V以下であることを特徴とする半導体装置。(但し、前記光バイアス温度ストレス試験は、前記基板の温度が80℃で、照射される光が3000lxで、前記ゲート絶縁膜に印加される電界強度が1.2MV/cmとなるゲート電圧を、2000秒間印加することとする。) - 請求項3または請求項5において、
前記第1の絶縁膜は、酸素が拡散する酸化絶縁膜であり、
前記第2の絶縁膜は、化学量論的組成比を満たす酸素よりも多くの酸素を含む酸化絶縁膜であることを特徴とする半導体装置。 - 請求項2乃至請求項6のいずれか一項において、
前記ゲート電圧は、前記一対の電極に印加される電圧より高い電位であることを特徴とする半導体装置。 - 請求項2乃至請求項6のいずれか一項において、
前記ゲート電圧は、前記一対の電極に印加される電圧より低い電位であることを特徴とする半導体装置。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012092324 | 2012-04-13 | ||
JP2012092324 | 2012-04-13 | ||
JP2012108840 | 2012-05-10 | ||
JP2012108840 | 2012-05-10 | ||
JP2012125447 | 2012-05-31 | ||
JP2012125447 | 2012-05-31 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013051674A Division JP6059566B2 (ja) | 2012-04-13 | 2013-03-14 | 半導体装置の作製方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017218132A Division JP6630334B2 (ja) | 2012-04-13 | 2017-11-13 | 半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017059851A JP2017059851A (ja) | 2017-03-23 |
JP6246307B2 true JP6246307B2 (ja) | 2017-12-13 |
Family
ID=49324271
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013051674A Expired - Fee Related JP6059566B2 (ja) | 2012-04-13 | 2013-03-14 | 半導体装置の作製方法 |
JP2016239218A Expired - Fee Related JP6246307B2 (ja) | 2012-04-13 | 2016-12-09 | 半導体装置 |
JP2017218132A Active JP6630334B2 (ja) | 2012-04-13 | 2017-11-13 | 半導体装置 |
JP2019221353A Active JP6877519B2 (ja) | 2012-04-13 | 2019-12-06 | 半導体装置 |
JP2021074867A Active JP7095154B2 (ja) | 2012-04-13 | 2021-04-27 | 半導体装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013051674A Expired - Fee Related JP6059566B2 (ja) | 2012-04-13 | 2013-03-14 | 半導体装置の作製方法 |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017218132A Active JP6630334B2 (ja) | 2012-04-13 | 2017-11-13 | 半導体装置 |
JP2019221353A Active JP6877519B2 (ja) | 2012-04-13 | 2019-12-06 | 半導体装置 |
JP2021074867A Active JP7095154B2 (ja) | 2012-04-13 | 2021-04-27 | 半導体装置 |
Country Status (3)
Country | Link |
---|---|
US (2) | US9337342B2 (ja) |
JP (5) | JP6059566B2 (ja) |
KR (2) | KR102108303B1 (ja) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI658516B (zh) * | 2011-03-11 | 2019-05-01 | 日商半導體能源研究所股份有限公司 | 半導體裝置的製造方法 |
US8901556B2 (en) | 2012-04-06 | 2014-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Insulating film, method for manufacturing semiconductor device, and semiconductor device |
JP6128906B2 (ja) | 2012-04-13 | 2017-05-17 | 株式会社半導体エネルギー研究所 | 半導体装置 |
KR102254731B1 (ko) | 2012-04-13 | 2021-05-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
US8995607B2 (en) | 2012-05-31 | 2015-03-31 | Semiconductor Energy Laboratory Co., Ltd. | Pulse signal output circuit and shift register |
KR102113160B1 (ko) * | 2012-06-15 | 2020-05-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
KR102161077B1 (ko) | 2012-06-29 | 2020-09-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
JP2014042004A (ja) | 2012-07-26 | 2014-03-06 | Semiconductor Energy Lab Co Ltd | 半導体装置及びその作製方法 |
KR20140026257A (ko) | 2012-08-23 | 2014-03-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치 |
US9166021B2 (en) | 2012-10-17 | 2015-10-20 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP6300489B2 (ja) | 2012-10-24 | 2018-03-28 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
JP6320009B2 (ja) | 2012-12-03 | 2018-05-09 | 株式会社半導体エネルギー研究所 | 半導体装置及びその作製方法 |
TWI614813B (zh) | 2013-01-21 | 2018-02-11 | 半導體能源研究所股份有限公司 | 半導體裝置的製造方法 |
KR102304824B1 (ko) * | 2013-08-09 | 2021-09-23 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
US9443987B2 (en) | 2013-08-23 | 2016-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
TW202339281A (zh) | 2013-10-10 | 2023-10-01 | 日商半導體能源研究所股份有限公司 | 液晶顯示裝置 |
WO2015060318A1 (en) * | 2013-10-22 | 2015-04-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method of the same |
KR102283814B1 (ko) | 2013-12-25 | 2021-07-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
CN103730373B (zh) * | 2013-12-31 | 2016-09-07 | 京东方科技集团股份有限公司 | 一种半导体器件的制备方法及半导体器件 |
KR102317297B1 (ko) | 2014-02-19 | 2021-10-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 산화물, 반도체 장치, 모듈, 및 전자 장치 |
KR20160126991A (ko) * | 2014-02-28 | 2016-11-02 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 상기 반도체 장치를 포함하는 표시 장치 |
US9887291B2 (en) * | 2014-03-19 | 2018-02-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic device including the semiconductor device, the display device, or the display module |
JP6722980B2 (ja) * | 2014-05-09 | 2020-07-15 | 株式会社半導体エネルギー研究所 | 表示装置および発光装置、並びに電子機器 |
KR20150146409A (ko) | 2014-06-20 | 2015-12-31 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치, 표시 장치, 입출력 장치, 및 전자 기기 |
TWI666776B (zh) | 2014-06-20 | 2019-07-21 | 日商半導體能源研究所股份有限公司 | 半導體裝置以及包括該半導體裝置的顯示裝置 |
US9722091B2 (en) | 2014-09-12 | 2017-08-01 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
KR20160034200A (ko) | 2014-09-19 | 2016-03-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치의 제작 방법 |
JP6392061B2 (ja) * | 2014-10-01 | 2018-09-19 | 東京エレクトロン株式会社 | 電子デバイス、その製造方法、及びその製造装置 |
TWI567823B (zh) * | 2014-12-22 | 2017-01-21 | 群創光電股份有限公司 | 顯示面板與其製造方法 |
US9954112B2 (en) * | 2015-01-26 | 2018-04-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
KR102549926B1 (ko) * | 2015-05-04 | 2023-06-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치, 반도체 장치의 제작 방법, 및 전자기기 |
JP2017123427A (ja) | 2016-01-08 | 2017-07-13 | 株式会社ジャパンディスプレイ | 薄膜トランジスタ |
US20180136181A1 (en) * | 2016-11-15 | 2018-05-17 | Samsung Electronics Co., Ltd. | Composite filler structure, electronic device including the same, and method of manufacturing the same |
KR102556009B1 (ko) * | 2016-11-15 | 2023-07-18 | 삼성전자주식회사 | 필러 구조체 및 이를 포함하는 전자 기기 |
US11270995B2 (en) * | 2017-03-05 | 2022-03-08 | Intel Corporation | Isolation in integrated circuit devices |
JP2019121696A (ja) * | 2018-01-05 | 2019-07-22 | 株式会社ジャパンディスプレイ | 半導体装置およびその製造方法 |
KR102588958B1 (ko) * | 2018-01-19 | 2023-10-12 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치의 제작 방법 |
CN111788664B (zh) | 2018-03-01 | 2024-04-16 | 株式会社半导体能源研究所 | 半导体装置的制造方法 |
KR20210127183A (ko) * | 2019-02-15 | 2021-10-21 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치의 제작 방법 |
KR20210108508A (ko) * | 2020-02-24 | 2021-09-03 | 삼성디스플레이 주식회사 | 박막 트랜지스터, 이를 포함하는 표시 장치 및 이의 제조 방법 |
Family Cites Families (153)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60198861A (ja) | 1984-03-23 | 1985-10-08 | Fujitsu Ltd | 薄膜トランジスタ |
JPH0244256B2 (ja) | 1987-01-28 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244258B2 (ja) | 1987-02-24 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPS63210023A (ja) | 1987-02-24 | 1988-08-31 | Natl Inst For Res In Inorg Mater | InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法 |
JPH0244260B2 (ja) | 1987-02-24 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244262B2 (ja) | 1987-02-27 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244263B2 (ja) | 1987-04-22 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH05251705A (ja) | 1992-03-04 | 1993-09-28 | Fuji Xerox Co Ltd | 薄膜トランジスタ |
JP3479375B2 (ja) | 1995-03-27 | 2003-12-15 | 科学技術振興事業団 | 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法 |
WO1997006554A2 (en) | 1995-08-03 | 1997-02-20 | Philips Electronics N.V. | Semiconductor device provided with transparent switching element |
JP3625598B2 (ja) | 1995-12-30 | 2005-03-02 | 三星電子株式会社 | 液晶表示装置の製造方法 |
JP4170454B2 (ja) | 1998-07-24 | 2008-10-22 | Hoya株式会社 | 透明導電性酸化物薄膜を有する物品及びその製造方法 |
JP2000150861A (ja) | 1998-11-16 | 2000-05-30 | Tdk Corp | 酸化物薄膜 |
JP3276930B2 (ja) | 1998-11-17 | 2002-04-22 | 科学技術振興事業団 | トランジスタ及び半導体装置 |
TW460731B (en) | 1999-09-03 | 2001-10-21 | Ind Tech Res Inst | Electrode structure and production method of wide viewing angle LCD |
JP2001250956A (ja) | 2000-03-08 | 2001-09-14 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
JP4089858B2 (ja) | 2000-09-01 | 2008-05-28 | 国立大学法人東北大学 | 半導体デバイス |
KR20020038482A (ko) | 2000-11-15 | 2002-05-23 | 모리시타 요이찌 | 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널 |
TWI313059B (ja) * | 2000-12-08 | 2009-08-01 | Sony Corporatio | |
JP3997731B2 (ja) | 2001-03-19 | 2007-10-24 | 富士ゼロックス株式会社 | 基材上に結晶性半導体薄膜を形成する方法 |
JP2002289859A (ja) | 2001-03-23 | 2002-10-04 | Minolta Co Ltd | 薄膜トランジスタ |
JP3925839B2 (ja) | 2001-09-10 | 2007-06-06 | シャープ株式会社 | 半導体記憶装置およびその試験方法 |
JP4090716B2 (ja) | 2001-09-10 | 2008-05-28 | 雅司 川崎 | 薄膜トランジスタおよびマトリクス表示装置 |
US7061014B2 (en) | 2001-11-05 | 2006-06-13 | Japan Science And Technology Agency | Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film |
JP4164562B2 (ja) | 2002-09-11 | 2008-10-15 | 独立行政法人科学技術振興機構 | ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ |
JP4083486B2 (ja) | 2002-02-21 | 2008-04-30 | 独立行政法人科学技術振興機構 | LnCuO(S,Se,Te)単結晶薄膜の製造方法 |
CN1445821A (zh) | 2002-03-15 | 2003-10-01 | 三洋电机株式会社 | ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法 |
JP3933591B2 (ja) | 2002-03-26 | 2007-06-20 | 淳二 城戸 | 有機エレクトロルミネッセント素子 |
US7339187B2 (en) | 2002-05-21 | 2008-03-04 | State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University | Transistor structures |
JP2004022625A (ja) | 2002-06-13 | 2004-01-22 | Murata Mfg Co Ltd | 半導体デバイス及び該半導体デバイスの製造方法 |
US7105868B2 (en) | 2002-06-24 | 2006-09-12 | Cermet, Inc. | High-electron mobility transistor with zinc oxide |
US7067843B2 (en) | 2002-10-11 | 2006-06-27 | E. I. Du Pont De Nemours And Company | Transparent oxide semiconductor thin film transistors |
JP4166105B2 (ja) | 2003-03-06 | 2008-10-15 | シャープ株式会社 | 半導体装置およびその製造方法 |
JP2004273732A (ja) | 2003-03-07 | 2004-09-30 | Sharp Corp | アクティブマトリクス基板およびその製造方法 |
TWI221340B (en) * | 2003-05-30 | 2004-09-21 | Ind Tech Res Inst | Thin film transistor and method for fabricating thereof |
JP4108633B2 (ja) | 2003-06-20 | 2008-06-25 | シャープ株式会社 | 薄膜トランジスタおよびその製造方法ならびに電子デバイス |
US7262463B2 (en) | 2003-07-25 | 2007-08-28 | Hewlett-Packard Development Company, L.P. | Transistor including a deposited channel region having a doped portion |
JP4866609B2 (ja) * | 2003-10-23 | 2012-02-01 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法 |
US7145174B2 (en) | 2004-03-12 | 2006-12-05 | Hewlett-Packard Development Company, Lp. | Semiconductor device |
US7282782B2 (en) | 2004-03-12 | 2007-10-16 | Hewlett-Packard Development Company, L.P. | Combined binary oxide semiconductor device |
JP4620046B2 (ja) | 2004-03-12 | 2011-01-26 | 独立行政法人科学技術振興機構 | 薄膜トランジスタ及びその製造方法 |
US7297977B2 (en) | 2004-03-12 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Semiconductor device |
JP4211644B2 (ja) * | 2004-03-15 | 2009-01-21 | セイコーエプソン株式会社 | 電気光学装置の製造方法 |
US7504663B2 (en) * | 2004-05-28 | 2009-03-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device with a floating gate electrode that includes a plurality of particles |
US7211825B2 (en) | 2004-06-14 | 2007-05-01 | Yi-Chi Shih | Indium oxide-based thin film transistors and circuits |
JP2006100760A (ja) | 2004-09-02 | 2006-04-13 | Casio Comput Co Ltd | 薄膜トランジスタおよびその製造方法 |
US7285501B2 (en) | 2004-09-17 | 2007-10-23 | Hewlett-Packard Development Company, L.P. | Method of forming a solution processed device |
US7298084B2 (en) | 2004-11-02 | 2007-11-20 | 3M Innovative Properties Company | Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes |
US7453065B2 (en) | 2004-11-10 | 2008-11-18 | Canon Kabushiki Kaisha | Sensor and image pickup device |
CA2708335A1 (en) | 2004-11-10 | 2006-05-18 | Canon Kabushiki Kaisha | Amorphous oxide and field effect transistor |
US7791072B2 (en) | 2004-11-10 | 2010-09-07 | Canon Kabushiki Kaisha | Display |
WO2006051995A1 (en) | 2004-11-10 | 2006-05-18 | Canon Kabushiki Kaisha | Field effect transistor employing an amorphous oxide |
US7829444B2 (en) | 2004-11-10 | 2010-11-09 | Canon Kabushiki Kaisha | Field effect transistor manufacturing method |
AU2005302963B2 (en) | 2004-11-10 | 2009-07-02 | Cannon Kabushiki Kaisha | Light-emitting device |
US7863611B2 (en) | 2004-11-10 | 2011-01-04 | Canon Kabushiki Kaisha | Integrated circuits utilizing amorphous oxides |
US7579224B2 (en) | 2005-01-21 | 2009-08-25 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a thin film semiconductor device |
TWI562380B (en) | 2005-01-28 | 2016-12-11 | Semiconductor Energy Lab Co Ltd | Semiconductor device, electronic device, and method of manufacturing semiconductor device |
US7608531B2 (en) | 2005-01-28 | 2009-10-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, electronic device, and method of manufacturing semiconductor device |
US7858451B2 (en) | 2005-02-03 | 2010-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device, semiconductor device and manufacturing method thereof |
US7948171B2 (en) | 2005-02-18 | 2011-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US20060197092A1 (en) | 2005-03-03 | 2006-09-07 | Randy Hoffman | System and method for forming conductive material on a substrate |
US8681077B2 (en) | 2005-03-18 | 2014-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, and display device, driving method and electronic apparatus thereof |
WO2006105077A2 (en) | 2005-03-28 | 2006-10-05 | Massachusetts Institute Of Technology | Low voltage thin film transistor with high-k dielectric material |
US7645478B2 (en) | 2005-03-31 | 2010-01-12 | 3M Innovative Properties Company | Methods of making displays |
US8300031B2 (en) | 2005-04-20 | 2012-10-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element |
JP2006344849A (ja) | 2005-06-10 | 2006-12-21 | Casio Comput Co Ltd | 薄膜トランジスタ |
US7691666B2 (en) | 2005-06-16 | 2010-04-06 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
US7402506B2 (en) | 2005-06-16 | 2008-07-22 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
US7507618B2 (en) | 2005-06-27 | 2009-03-24 | 3M Innovative Properties Company | Method for making electronic devices using metal oxide nanoparticles |
KR100711890B1 (ko) | 2005-07-28 | 2007-04-25 | 삼성에스디아이 주식회사 | 유기 발광표시장치 및 그의 제조방법 |
JP2007059128A (ja) | 2005-08-23 | 2007-03-08 | Canon Inc | 有機el表示装置およびその製造方法 |
JP5116225B2 (ja) | 2005-09-06 | 2013-01-09 | キヤノン株式会社 | 酸化物半導体デバイスの製造方法 |
JP2007073705A (ja) | 2005-09-06 | 2007-03-22 | Canon Inc | 酸化物半導体チャネル薄膜トランジスタおよびその製造方法 |
JP4280736B2 (ja) | 2005-09-06 | 2009-06-17 | キヤノン株式会社 | 半導体素子 |
JP4850457B2 (ja) | 2005-09-06 | 2012-01-11 | キヤノン株式会社 | 薄膜トランジスタ及び薄膜ダイオード |
JP5064747B2 (ja) | 2005-09-29 | 2012-10-31 | 株式会社半導体エネルギー研究所 | 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法 |
JP5078246B2 (ja) | 2005-09-29 | 2012-11-21 | 株式会社半導体エネルギー研究所 | 半導体装置、及び半導体装置の作製方法 |
EP3614442A3 (en) | 2005-09-29 | 2020-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having oxide semiconductor layer and manufactoring method thereof |
JP5037808B2 (ja) | 2005-10-20 | 2012-10-03 | キヤノン株式会社 | アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置 |
KR101117948B1 (ko) | 2005-11-15 | 2012-02-15 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 액정 디스플레이 장치 제조 방법 |
TWI292281B (en) | 2005-12-29 | 2008-01-01 | Ind Tech Res Inst | Pixel structure of active organic light emitting diode and method of fabricating the same |
US7867636B2 (en) | 2006-01-11 | 2011-01-11 | Murata Manufacturing Co., Ltd. | Transparent conductive film and method for manufacturing the same |
JP4977478B2 (ja) | 2006-01-21 | 2012-07-18 | 三星電子株式会社 | ZnOフィルム及びこれを用いたTFTの製造方法 |
US7576394B2 (en) | 2006-02-02 | 2009-08-18 | Kochi Industrial Promotion Center | Thin film transistor including low resistance conductive thin films and manufacturing method thereof |
US7977169B2 (en) | 2006-02-15 | 2011-07-12 | Kochi Industrial Promotion Center | Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof |
KR20070101595A (ko) | 2006-04-11 | 2007-10-17 | 삼성전자주식회사 | ZnO TFT |
US20070252928A1 (en) | 2006-04-28 | 2007-11-01 | Toppan Printing Co., Ltd. | Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof |
JP5235333B2 (ja) * | 2006-05-26 | 2013-07-10 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
WO2007138937A1 (en) * | 2006-05-26 | 2007-12-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
JP5028033B2 (ja) | 2006-06-13 | 2012-09-19 | キヤノン株式会社 | 酸化物半導体膜のドライエッチング方法 |
JP4999400B2 (ja) | 2006-08-09 | 2012-08-15 | キヤノン株式会社 | 酸化物半導体膜のドライエッチング方法 |
JP4609797B2 (ja) | 2006-08-09 | 2011-01-12 | Nec液晶テクノロジー株式会社 | 薄膜デバイス及びその製造方法 |
JP4332545B2 (ja) | 2006-09-15 | 2009-09-16 | キヤノン株式会社 | 電界効果型トランジスタ及びその製造方法 |
JP4274219B2 (ja) | 2006-09-27 | 2009-06-03 | セイコーエプソン株式会社 | 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置 |
JP5164357B2 (ja) | 2006-09-27 | 2013-03-21 | キヤノン株式会社 | 半導体装置及び半導体装置の製造方法 |
US7622371B2 (en) | 2006-10-10 | 2009-11-24 | Hewlett-Packard Development Company, L.P. | Fused nanocrystal thin film semiconductor and method |
US7772021B2 (en) | 2006-11-29 | 2010-08-10 | Samsung Electronics Co., Ltd. | Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays |
JP2008140684A (ja) | 2006-12-04 | 2008-06-19 | Toppan Printing Co Ltd | カラーelディスプレイおよびその製造方法 |
KR101303578B1 (ko) | 2007-01-05 | 2013-09-09 | 삼성전자주식회사 | 박막 식각 방법 |
US8207063B2 (en) | 2007-01-26 | 2012-06-26 | Eastman Kodak Company | Process for atomic layer deposition |
US7988875B2 (en) * | 2007-02-08 | 2011-08-02 | Applied Materials, Inc. | Differential etch rate control of layers deposited by chemical vapor deposition |
KR100851215B1 (ko) | 2007-03-14 | 2008-08-07 | 삼성에스디아이 주식회사 | 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치 |
US7795613B2 (en) | 2007-04-17 | 2010-09-14 | Toppan Printing Co., Ltd. | Structure with transistor |
KR101325053B1 (ko) | 2007-04-18 | 2013-11-05 | 삼성디스플레이 주식회사 | 박막 트랜지스터 기판 및 이의 제조 방법 |
KR20080094300A (ko) | 2007-04-19 | 2008-10-23 | 삼성전자주식회사 | 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이 |
KR101334181B1 (ko) | 2007-04-20 | 2013-11-28 | 삼성전자주식회사 | 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법 |
WO2008133345A1 (en) | 2007-04-25 | 2008-11-06 | Canon Kabushiki Kaisha | Oxynitride semiconductor |
KR101345376B1 (ko) | 2007-05-29 | 2013-12-24 | 삼성전자주식회사 | ZnO 계 박막 트랜지스터 및 그 제조방법 |
US7598539B2 (en) * | 2007-06-01 | 2009-10-06 | Infineon Technologies Ag | Heterojunction bipolar transistor and method for making same |
US7838351B2 (en) | 2007-06-20 | 2010-11-23 | Sony Corporation | Thin film transistor manufacturing method, thin film transistor and display device using the same |
JP2009027122A (ja) * | 2007-06-20 | 2009-02-05 | Sony Corp | 薄膜トランジスタの製造方法、薄膜トランジスタおよび表示装置 |
JP5213422B2 (ja) * | 2007-12-04 | 2013-06-19 | キヤノン株式会社 | 絶縁層を有する酸化物半導体素子およびそれを用いた表示装置 |
JP5215158B2 (ja) | 2007-12-17 | 2013-06-19 | 富士フイルム株式会社 | 無機結晶性配向膜及びその製造方法、半導体デバイス |
KR101392208B1 (ko) * | 2008-01-22 | 2014-05-08 | 삼성디스플레이 주식회사 | 표시기판, 이의 제조방법 및 이를 갖는 표시장치 |
TWI500159B (zh) | 2008-07-31 | 2015-09-11 | Semiconductor Energy Lab | 半導體裝置和其製造方法 |
TWI622175B (zh) | 2008-07-31 | 2018-04-21 | 半導體能源研究所股份有限公司 | 半導體裝置 |
JP4623179B2 (ja) | 2008-09-18 | 2011-02-02 | ソニー株式会社 | 薄膜トランジスタおよびその製造方法 |
KR102187427B1 (ko) | 2008-09-19 | 2020-12-08 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체장치 |
JP5552753B2 (ja) * | 2008-10-08 | 2014-07-16 | ソニー株式会社 | 薄膜トランジスタおよび表示装置 |
JP5451280B2 (ja) | 2008-10-09 | 2014-03-26 | キヤノン株式会社 | ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置 |
JP5442234B2 (ja) | 2008-10-24 | 2014-03-12 | 株式会社半導体エネルギー研究所 | 半導体装置及び表示装置 |
EP2256814B1 (en) | 2009-05-29 | 2019-01-16 | Semiconductor Energy Laboratory Co, Ltd. | Oxide semiconductor device and method for manufacturing the same |
KR102097932B1 (ko) | 2009-07-31 | 2020-04-06 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 디바이스 및 그 형성 방법 |
KR101799252B1 (ko) | 2009-07-31 | 2017-11-17 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제작 방법 |
KR101506124B1 (ko) | 2009-09-04 | 2015-03-25 | 가부시끼가이샤 도시바 | 박막 트랜지스터 및 그 제조 방법 |
CN102511082B (zh) | 2009-09-16 | 2016-04-27 | 株式会社半导体能源研究所 | 半导体器件及其制造方法 |
KR101812683B1 (ko) | 2009-10-21 | 2017-12-27 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 제작방법 |
CN102668097B (zh) * | 2009-11-13 | 2015-08-12 | 株式会社半导体能源研究所 | 半导体器件及其制造方法 |
KR20190109597A (ko) * | 2009-11-20 | 2019-09-25 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 트랜지스터 |
KR101329849B1 (ko) * | 2009-11-28 | 2013-11-14 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제조 방법 |
KR101623961B1 (ko) * | 2009-12-02 | 2016-05-26 | 삼성전자주식회사 | 트랜지스터와 그 제조방법 및 트랜지스터를 포함하는 전자소자 |
KR101623956B1 (ko) * | 2010-01-15 | 2016-05-24 | 삼성전자주식회사 | 트랜지스터와 그 제조방법 및 트랜지스터를 포함하는 전자소자 |
US8947337B2 (en) * | 2010-02-11 | 2015-02-03 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
KR20190102090A (ko) * | 2010-02-19 | 2019-09-02 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 트랜지스터 및 이를 이용한 표시 장치 |
JP2012124446A (ja) | 2010-04-07 | 2012-06-28 | Kobe Steel Ltd | 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ |
KR101636008B1 (ko) | 2010-04-23 | 2016-07-06 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 반도체 장치의 제작 방법 |
WO2011135987A1 (en) * | 2010-04-28 | 2011-11-03 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US9490368B2 (en) | 2010-05-20 | 2016-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method of the same |
US8629438B2 (en) | 2010-05-21 | 2014-01-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
KR20130077839A (ko) * | 2010-05-21 | 2013-07-09 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제작 방법 |
WO2011155502A1 (en) | 2010-06-11 | 2011-12-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
KR101862808B1 (ko) * | 2010-06-18 | 2018-05-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
TWI541782B (zh) * | 2010-07-02 | 2016-07-11 | 半導體能源研究所股份有限公司 | 液晶顯示裝置 |
KR101125904B1 (ko) * | 2010-07-26 | 2012-03-21 | 서울대학교산학협력단 | 박막 트랜지스터 및 박막 트랜지스터의 제조 방법 |
TWI615920B (zh) * | 2010-08-06 | 2018-02-21 | 半導體能源研究所股份有限公司 | 半導體裝置及其製造方法 |
US8759820B2 (en) * | 2010-08-20 | 2014-06-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8664097B2 (en) * | 2010-09-13 | 2014-03-04 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
KR101932576B1 (ko) * | 2010-09-13 | 2018-12-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제작 방법 |
JP5898527B2 (ja) * | 2011-03-04 | 2016-04-06 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US8859330B2 (en) * | 2011-03-23 | 2014-10-14 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
KR102103913B1 (ko) * | 2012-01-10 | 2020-04-23 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 반도체 장치의 제작 방법 |
US8901556B2 (en) | 2012-04-06 | 2014-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Insulating film, method for manufacturing semiconductor device, and semiconductor device |
US9166021B2 (en) * | 2012-10-17 | 2015-10-20 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
-
2013
- 2013-03-14 JP JP2013051674A patent/JP6059566B2/ja not_active Expired - Fee Related
- 2013-03-15 US US13/833,389 patent/US9337342B2/en active Active
- 2013-04-12 KR KR1020130040334A patent/KR102108303B1/ko active IP Right Grant
-
2016
- 2016-05-05 US US15/147,105 patent/US10170599B2/en active Active
- 2016-12-09 JP JP2016239218A patent/JP6246307B2/ja not_active Expired - Fee Related
-
2017
- 2017-11-13 JP JP2017218132A patent/JP6630334B2/ja active Active
-
2019
- 2019-12-06 JP JP2019221353A patent/JP6877519B2/ja active Active
-
2020
- 2020-04-29 KR KR1020200052314A patent/KR102355315B1/ko active IP Right Grant
-
2021
- 2021-04-27 JP JP2021074867A patent/JP7095154B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP6059566B2 (ja) | 2017-01-11 |
KR20130116204A (ko) | 2013-10-23 |
JP7095154B2 (ja) | 2022-07-04 |
US20160247903A1 (en) | 2016-08-25 |
US20130270549A1 (en) | 2013-10-17 |
JP6877519B2 (ja) | 2021-05-26 |
KR102355315B1 (ko) | 2022-01-24 |
JP2020053695A (ja) | 2020-04-02 |
JP2018061045A (ja) | 2018-04-12 |
KR20200050921A (ko) | 2020-05-12 |
US10170599B2 (en) | 2019-01-01 |
JP6630334B2 (ja) | 2020-01-15 |
JP2017059851A (ja) | 2017-03-23 |
JP2021122051A (ja) | 2021-08-26 |
US9337342B2 (en) | 2016-05-10 |
KR102108303B1 (ko) | 2020-05-11 |
JP2014007381A (ja) | 2014-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6246307B2 (ja) | 半導体装置 | |
KR102427228B1 (ko) | 반도체 장치 및 그 제작 방법 | |
KR102497122B1 (ko) | 반도체 장치와 그 제작 방법 | |
TWI600089B (zh) | 半導體裝置及其製造方法 | |
TWI711183B (zh) | 半導體裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170113 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20170113 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20170404 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170411 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6246307 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |