JP5018725B2 - エジェクタ式冷凍サイクル - Google Patents

エジェクタ式冷凍サイクル Download PDF

Info

Publication number
JP5018725B2
JP5018725B2 JP2008259503A JP2008259503A JP5018725B2 JP 5018725 B2 JP5018725 B2 JP 5018725B2 JP 2008259503 A JP2008259503 A JP 2008259503A JP 2008259503 A JP2008259503 A JP 2008259503A JP 5018725 B2 JP5018725 B2 JP 5018725B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
ejector
compression mechanism
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008259503A
Other languages
English (en)
Other versions
JP2009276046A (ja
Inventor
洋 押谷
健一 藤原
春幸 西嶋
悦久 山田
徹 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008259503A priority Critical patent/JP5018725B2/ja
Priority to CN2009801062341A priority patent/CN101952670B/zh
Priority to PCT/JP2009/001767 priority patent/WO2009128271A1/ja
Priority to US12/867,025 priority patent/US10527329B2/en
Priority to DE112009000608.6T priority patent/DE112009000608B4/de
Publication of JP2009276046A publication Critical patent/JP2009276046A/ja
Application granted granted Critical
Publication of JP5018725B2 publication Critical patent/JP5018725B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Jet Pumps And Other Pumps (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、エジェクタを有するエジェクタ式冷凍サイクルに関する。
従来、冷媒減圧手段の機能および冷媒循環手段の機能を果たすエジェクタを有するエジェクタ式冷凍サイクルが知られている。例えば、特許文献1、2には、圧縮機吐出冷媒を放熱器にて室外空気と熱交換させることで放熱させ、放熱した高圧冷媒をエジェクタのノズル部へ供給するエジェクタ式冷凍サイクルが開示されている。
例えば、特許文献1のエジェクタ式冷凍サイクルでは、エジェクタのディフューザ部下流側に低圧冷媒の気液を分離する気液分離器を配置し、気液分離器の気相冷媒出口を圧縮機吸入口側へ接続するとともに液相冷媒出口を吸引側蒸発器の入口へ接続し、吸引側蒸発器の出口をエジェクタの冷媒吸引口に接続している。
また、特許文献2のエジェクタ式冷凍サイクルでは、エジェクタのディフューザ部下流側に、ディフューザ部から流出した冷媒の流れを分岐する分岐部を設け、分岐部で分岐された一方の冷媒を流出側蒸発器へ流入させ、他方の冷媒を吸引側蒸発器を介してエジェクタの冷媒吸引口側へ流入させている。これにより、双方の蒸発器において冷凍能力を発揮できるようにしている。
この種のエジェクタ式冷凍サイクルに適用されるエジェクタでは、エジェクタのノズル部にて高圧冷媒を減圧膨張させて噴射し、この噴射冷媒の圧力低下によって冷媒吸引口から蒸発器下流側の冷媒を吸引することで、ノズル部における減圧膨張時の運動エネルギの損失を回収している。
そして、回収した運動エネルギ(以下、回収エネルギという。)を、エジェクタのディフューザ部にて圧力エネルギに変換して、圧縮機吸入冷媒の圧力を上昇させることで、圧縮機の駆動動力を低減させてエジェクタ式冷凍サイクルの成績係数(COP)を向上させている。
特許第3322263号公報 特開2008−107055号公報
しかしながら、この種のエジェクタ式冷凍サイクルでは、ノズル部を通過する冷媒(以下、駆動流という。)の流量低下に伴って、エジェクタの吸引能力が低下してしまうので、回収エネルギ量も減少してしまう。このため、駆動流の流量低下に伴って、上述のCOP向上効果が低減してしまう。
例えば、特許文献1のエジェクタ式冷凍サイクルにおいて、外気温の低下に伴って高圧冷媒の圧力が低下すると、高圧冷媒と低圧冷媒との圧力差が縮小して、エジェクタの駆動流の流量が低下してしまう。
このような駆動流の流量低下が生じると、エジェクタの吸引能力が低下して、回収エネルギ量が減少するだけでなく、気液分離器から蒸発器へ液相冷媒が供給されにくくなり、サイクルが発揮できる冷凍能力も低下してしまう。その結果、駆動流の流量低下に伴って、COPが大幅に低減してしまう。
さらに、エジェクタの吸引能力が低下して、蒸発器へ冷媒が供給されなくなってしまうと、低圧冷媒が蒸発器にて吸熱作用を発揮できなくなり、サイクルが破綻してしまうという問題を引き起こす。
このことを図11により詳細に説明する。図11は、特許文献1のエジェクタ式冷凍サイクルの冷媒の状態を示すモリエル線図である(特許文献1の第2図参照)。なお、図11の実線は、通常運転時の冷媒の状態を示し、破線は、上述のサイクル破綻が生じた際の冷媒の状態を示している。
図11から明らかなように、外気温の低下等によって高圧冷媒と低圧冷媒との圧力差が縮小すると(図11の白抜矢印X11)、エジェクタの吸引能力が低下する。これにより、蒸発器に冷媒が供給されなくなると、低圧冷媒が蒸発器にて吸熱作用を発揮できなくなる(図11の白抜矢印Y11)。
このため、図11の破線に示すように、放熱器にて冷媒が放熱できる熱量は、圧縮機の圧縮仕事量相当になってしまう。その結果、実質的に、冷媒を介して低圧側から高圧側へ熱量を移動させることができなくなり、サイクルが破綻してしまう。
これに対して、特許文献2のエジェクタ式冷凍サイクルでは、圧縮機→放熱器→エジェクタ→流出側蒸発器→圧縮機の順で冷媒を環状に流すことができる。従って、高圧冷媒と低圧冷媒との圧力差の縮小によって駆動流の流量低下が生じ、エジェクタの吸引能力が低下しても、圧縮機の作用によって冷媒を流出側蒸発器に供給することができる。
これにより、特許文献1のエジェクタ式冷凍サイクルのようなサイクル破綻を回避することができる。しかしながら、駆動流の流量低下に伴って、圧縮機吸入冷媒の圧力を上昇量が低下してしまうことによるCOPの低減、および、吸引側蒸発器へ冷媒を供給できなくなることによるCOPの低減を回避することはできない。
すなわち、特許文献2のエジェクタ式冷凍サイクルであっても、駆動流の流量変動が生じると、高いCOPを発揮させながらサイクルを安定して作動させることができない。
本発明は、上記点に鑑み、エジェクタの駆動流の流量変動が生じても、エジェクタ式冷凍サイクルを安定して作動させることを目的とする。
上記の目的を達成するため、請求項1に記載の発明では、冷媒を圧縮して吐出する第1圧縮機構(11a)と、第1圧縮機構(11a)から吐出された高圧冷媒を放熱させる放熱器(12)と、放熱器(12)から流出した冷媒を減圧膨張させるノズル部(13a)から噴射する高速度の噴射冷媒の流れによって冷媒を冷媒吸引口(13b)から吸引して、噴射冷媒と冷媒吸引口(13b)から吸引された吸引冷媒との混合冷媒をディフューザ部(13d)にて昇圧するエジェクタ(13)と、ディフューザ部(13d)から流出した冷媒の流れを分岐する分岐部(18)と、分岐部(18)にて分岐された一方の冷媒を蒸発させて、第1圧縮機構(11a)吸入側へ流出させる流出側蒸発器(14)と、分岐部(18)にて分岐された他方の冷媒を減圧膨張させる吸引側減圧手段(19)と、吸引側減圧手段(19)にて減圧膨張された冷媒を蒸発させて、冷媒吸引口(13b)側へ流出させる吸引側蒸発器(16)と、吸引側蒸発器(16)出口側冷媒を吸引して、圧縮して吐出する第2圧縮機構(21a)と、第1圧縮機構(11a)の冷媒吐出能力を変更する第1吐出能力変更手段(11b)と、第2圧縮機構(21a)の冷媒吐出能力を変更する第2吐出能力変更手段(21b)と、第1吐出能力変更手段(11b)および第2吐出能力変更手段(21b)を制御する制御手段とを備え、
第1吐出能力変更手段(11b)および第2吐出能力変更手段(21b)は、それぞれ独立して第1圧縮機構(11a)および第2圧縮機構(21a)の冷媒吐出能力を変更可能に構成されており、制御手段は、第1圧縮機構(11a)での昇圧量と第2圧縮機構(21a)での昇圧量が同等となるように第1吐出能力変更手段(11b)および第2吐出能力変更手段(21b)を制御するエジェクタ式冷凍サイクルを特徴とする。
これによれば、第2圧縮機構(21a)を備えているので、エジェクタ(13)の駆動流の流量低下に伴ってエジェクタ(13)の吸引能力が低下するような運転条件であっても、第2圧縮機構(21a)によってエジェクタ(13)の吸引能力を補助することができる。
この際、2つの第1、第2圧縮機構(11a、21a)およびエジェクタ(13)のディフューザ部(13d)の昇圧作用によって冷媒を昇圧できるので、1つの圧縮機にて冷媒を昇圧する場合に対して、第1、第2圧縮機構(11a、21a)の駆動動力を低減させてCOPを向上できる。
つまり、ディフューザ部(13d)の昇圧作用によって、第1圧縮機構(11a)の吸入圧力を上昇させることで、第1圧縮機構(11a)の圧縮機駆動動力を低減させるだけでなく、それぞれの第1、第2圧縮機構(11a、21a)の吸入圧力と吐出圧力との圧力差を縮小できるので、第1、第2圧縮機構(11a、21a)の圧縮効率を向上できる。
その結果、駆動流の流量変動が生じてディフューザ部(13d)の昇圧能力が低下したとしても、エジェクタ式冷凍サイクルを高いCOPを発揮させた状態で安定して作動させることができる。
このことは、例えば、吸引側蒸発器(16)の冷媒蒸発温度を極低温(例えば、−30℃〜−10程度)まで低下させる冷凍サイクル装置のように、サイクルの高低圧差を大きく維持しておく必要のある冷凍サイクル装置において極めて効果的である。
さらに、流出側蒸発器(14)では、ディフューザ部(13d)にて昇圧された後の冷媒蒸発圧力(冷媒蒸発温度)となり、吸引側蒸発器(16)では、ディフューザ部(13d)にて昇圧された後の冷媒をさらに吸引側減圧手段(19)にて減圧した後の冷媒蒸発圧力となるので、吸引側蒸発器(16)および流出側蒸発器(14)の冷媒蒸発温度を異なる温度とすることができる。
また、請求項1に記載の発明では、上記したように、第1圧縮機構(11a)の冷媒吐出能力を変更する第1吐出能力変更手段(11b)と、第2圧縮機構(21a)の冷媒吐出能力を変更する第2吐出能力変更手段(21b)により、それぞれ独立して第1圧縮機構(11a)および第2圧縮機構(21a)の冷媒吐出能力を調整するに当たり、第1圧縮機構(11a)での昇圧量と第2圧縮機構(21a)での昇圧量が同等となるように第1吐出能力変更手段(11b)および第2吐出能力変更手段(21b)を制御する。
このように、第1、第2圧縮機構(11a、21a)での昇圧量を同等にする制御を行うことで、第1、第2圧縮機構(11a、21a)の圧縮効率をともに向上させて、エジェクタ式冷凍サイクル全体としてのCOPを略最大に近づけることができる。
請求項2に記載の発明では、請求項1に記載のエジェクタ式冷凍サイクルにおいて、放熱器(12)出口側からノズル部(13a)入口側へ至る冷媒通路に配置されて、放熱器(12)から流出した冷媒を減圧膨張させる高圧側減圧手段(17)を備えることを特徴とする。
これによれば、高圧側減圧手段(17)の作用によって、ノズル部(13a)へ流入する冷媒を気液二相冷媒となるまで減圧することができる。従って、ノズル部(13a)へ液相冷媒を流入させる場合に対して、ノズル部(13a)における冷媒の沸騰を促進させて、ノズル効率を向上させることができる。
その結果、ディフューザ部(13d)における昇圧量を増加させて、より一層、COPを向上できる。なお、ノズル効率とは、ノズル部(13a)において、冷媒の圧力エネルギを運動エネルギに変換する際のエネルギ変換効率である。
さらに、高圧側減圧手段(17)を可変絞り機構で構成することで、サイクルの負荷変動に応じて、ノズル部(13a)へ流入させる冷媒流量を変化させることができる。その結果、負荷変動が生じても、高いCOPを発揮させながらエジェクタ式冷凍サイクルを運転することができる。
請求項3に記載の発明では、請求項1または2に記載のエジェクタ式冷凍サイクルにおいて、放熱器(12)から流出した冷媒とサイクルの低圧側冷媒とを熱交換させる内部熱交換器(30、31)を備えることを特徴とする。これによれば、吸引側蒸発器(16)入口側冷媒のエンタルピと出口側冷媒のエンタルピとのエンタルピ差(冷凍能力)を拡大して、COPを向上できる。
具体的に、サイクルの低圧側冷媒は、請求項4に記載の発明のように、第1圧縮機構(11a)へ吸入される冷媒であってもよいし、請求項5に記載の発明のように、第2圧縮機構(21a)へ吸入される冷媒であってもよい。
請求項6に記載の発明では、請求項1ないし5のいずれか1つに記載のエジェクタ式冷凍サイクルにおいて、放熱器(12)は、冷媒を凝縮させる凝縮部(12b)、凝縮部(12b)から流出した冷媒の気液を分離する気液分離部(12c)、および、気液分離部(12c)から流出した液相冷媒を過冷却する過冷却部(12d)を有していることを特徴とする。
これによれば、過冷却されたエンタルピの低い冷媒を吸引側蒸発器(16)へ流入させることができるので、吸引側蒸発器(16)入口側冷媒のエンタルピと出口側冷媒のエンタルピとのエンタルピ差(冷凍能力)を拡大して、COPを向上できる。
この際、吸引側蒸発器(16)入口側冷媒のエンタルピを減少させるために、第1、第2圧縮機構(11a、21a)吸入冷媒のエンタルピを増加させることがないので、第1、第2圧縮機構(11a、21a)吸入冷媒の密度低下を抑制できる。従って、第1、第2圧縮機構(11a、21a)の吐出流量の低下を招くことを回避できる。
請求項7に記載の発明では、請求項1ないし6のいずれか1つに記載のエジェクタ式冷凍サイクルにおいて、吸引側減圧手段は、冷媒を体積膨張させて減圧させるとともに、冷媒の圧力エネルギを機械的エネルギに変換して出力する膨張機であることを特徴とする。これによれば、膨張機から出力された機械的エネルギを有効に活用することで、エジェクタ式冷凍サイクル全体としてのエネルギ効率を向上できる。
請求項に記載の発明では、請求項1ないしのいずれか1つに記載のエジェクタ式冷凍サイクルにおいて、第1圧縮機構(11a)および第2圧縮機構(21a)は、同一のハウジング内に収容されて、一体的に構成されていることを特徴とする。これによれば、第1圧縮機構(11a)および第2圧縮機構(21a)の小型化が可能となり、エジェクタ式冷凍サイクル全体としての小型化を図ることもできる。
また、請求項に記載の発明のように、請求項1ないしのいずれか1つに記載のエジェクタ式冷凍サイクルにおいて、第1圧縮機構(11a)は、冷媒を臨界圧力以上となるまで昇圧させるようになっていてもよい。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
図1、2により、本発明のエジェクタ式冷凍サイクルを冷凍・冷蔵装置に適用した例を説明する。この冷凍・冷蔵装置は、冷却対象空間である冷蔵庫内を0〜10℃程度の低温まで冷却し、さらに、別の冷却対象空間である冷凍庫内を−30〜−10℃程度の極低温まで冷却するものである。図1は、本実施形態のエジェクタ式冷凍サイクル10の全体構成図である。
エジェクタ式冷凍サイクル10において、第1圧縮機11は、冷媒を吸入し、圧縮して吐出するもので、吐出容量が固定された第1圧縮機構11aを第1電動モータ11bにて駆動する電動圧縮機である。第1圧縮機構11aとしては、具体的に、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用できる。
第1電動モータ11bは、後述する制御装置から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。そして、この回転数制御によって、第1圧縮機構11aの冷媒吐出能力が変更される。従って、第1電動モータ11bは、第1圧縮機構11aの冷媒吐出能力を変更する第1吐出能力変更手段を構成している。
第1圧縮機11の吐出口側には、放熱器12が接続されている。放熱器12は第1圧縮機11から吐出された高圧冷媒と冷却ファン12aにより送風される庫外空気(外気)とを熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。冷却ファン12aは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。
なお、本実施形態のエジェクタ式冷凍サイクル10では、冷媒として通常のフロン系冷媒を採用し、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。従って、放熱器12は冷媒を凝縮させる凝縮器として機能する。
また、放熱器12の出口側に、放熱器12から流出した冷媒の気液を分離して余剰液相冷媒を溜めておく高圧側気液分離器としてのレシーバ(受液器)を設けてもよい。そして、このレシーバから分離された飽和液相冷媒を下流側へ導出させるようにしてもよい。
放熱器12の出口側には、放熱器12から流出した高圧冷媒を減圧膨張させる高圧側減圧手段としての温度式膨張弁17が接続されている。
この温度式膨張弁17は、後述する流出側蒸発器14出口側冷媒通路に配置された感温部(図示せず)を有しており、流出側蒸発器14出口側冷媒の温度と圧力とに基づいて、流出側蒸発器14出口側冷媒の過熱度を検出し、この過熱度が予め設定された所定値となるように機械的機構により弁開度(冷媒流量)を調整する可変絞り機構である。
温度式膨張弁17の出口側には、エジェクタ13のノズル部13a入口側が接続されている。エジェクタ13は、冷媒を減圧膨張させる冷媒減圧手段であるとともに、高速で噴出する冷媒流の吸引作用によって冷媒の循環を行う冷媒循環手段でもある。
より具体的には、エジェクタ13は、温度式膨張弁17から流出した中間圧冷媒の通路面積を小さく絞って、冷媒を等エントロピ的に減圧膨張させるノズル部13a、ノズル部13aの冷媒噴射口と連通するように配置されて、後述する第2圧縮機21から吐出された冷媒を吸引する冷媒吸引口13b等を有して構成される。
さらに、ノズル部13aおよび冷媒吸引口13bの冷媒流れ下流側部位には、ノズル部13aから噴射する高速度の噴射冷媒と冷媒吸引口13bから吸引された吸引冷媒とを混合する混合部13cが設けられ、混合部13cの冷媒流れ下流側には昇圧部をなすディフューザ部13dが設けられている。
ディフューザ部13dは冷媒通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギを圧力エネルギに変換する作用を果たす。また、ディフューザ部13dの出口側には、ディフューザ部13d流出冷媒の流れを分岐する分岐部18が接続されている。
分岐部18は、3つの流入出口を有する三方継手で構成されており、流入出口のうち1つを冷媒流入口18aとし、2つを冷媒流出口18b、18cとしたものである。このような三方継手は、管径の異なる配管を接合して構成してもよいし、金属ブロックや樹脂ブロックに通路径の異なる複数の冷媒通路を設けて構成してもよい。
さらに、本実施形態の分岐部18は、一方の冷媒流出口18bから後述する流出側蒸発器14側へ流出する冷媒の流れ方向、および、他方の冷媒流出口18cから後述する固定絞り19側へ流出する冷媒の流れ方向が、ディフューザ部13d出口側から冷媒流入口18aへ流入する冷媒の流れ方向に対して、対象方向に向くとともに鋭角に交わるように略Y字型に形成されている。
従って、分岐部18へ流入した冷媒は、その流れが分岐される際に、不必要に流速を低下させることなく分岐部18から流出していく。これにより、分岐部18においてエジェクタ15から流出した冷媒の流速(動圧)が維持される。もちろん、分岐部18はこれに限定されることなく、略T字型等に形成してもよい。
流出側蒸発器14は、エジェクタ13のディフューザ部13dから流出した冷媒と送風ファン14aによって循環送風される冷蔵庫内空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。従って、流出側蒸発器14における熱交換対象流体は、冷蔵庫内空気である。
送風ファン14aは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。流出側蒸発器14の冷媒出口側には、第1圧縮機11の吸引口が接続されている。
また、分岐部18の他方の冷媒流出口には、固定絞り19を介して、吸引側蒸発器16が接続されている。固定絞り19は、分岐部18にて分岐された中間圧冷媒を減圧膨張させる吸引側減圧手段である。この固定絞り19としては、具体的に、オリフィスやキャピラリチューブを採用できる。
吸引側蒸発器16は、固定絞り19にて減圧膨張された低圧冷媒と送風ファン16aにより循環送風される冷凍庫内空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。従って、吸引側蒸発器16における熱交換対象流体は、冷凍庫内空気である。送風ファン16aは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。
吸引側蒸発器16の出口側には、第2圧縮機21の吸入口が接続されている。第2圧縮機21の基本的構成は第1圧縮機11と同様である。従って、第2圧縮機21は、固定容量型の第2圧縮機構21aを第2電動モータ21bにて駆動する電動圧縮機である。さらに、第2電動モータ21bは、第2圧縮機構21aの冷媒吐出能力を変更する第2吐出能力変更手段を構成している。
また、前述の如く、第2圧縮機21の吐出口には、エジェクタ13の冷媒吸引口13bが接続されている。
図示しない制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この制御装置は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、上述の各種電気式のアクチュエータ11b、12b、14a、16a、21a等の作動を制御する。
従って、この制御装置は、第1吐出能力変更手段である第1電動モータ11bの作動を制御する第1吐出能力制御手段としての機能、および、第2吐出能力変更手段である第2電動モータ21bの作動を制御する第2吐出能力制御手段としての機能を兼ね備えている。もちろん、第1吐出能力制御手段および第2吐出能力制御手段を異なる制御装置で構成してもよい。
また、制御装置には、外気温を検出する外気センサ、冷蔵庫内温度および冷凍庫内温度を検出する庫内温度センサ等の図示しないセンサ群の検出値や、冷凍機を作動させる作動スイッチ等が設けられた図示しない操作パネルの各種操作信号が入力される。
次に、上記構成における本実施形態の作動を図2のモリエル線図に基づいて説明する。操作パネルの作動スイッチが投入されると、制御装置が第1、第2電動モータ11b、21b、冷却ファン12a、送風ファン14a、16aを作動させる。これにより、第1圧縮機11が冷媒を吸入し、圧縮して吐出する。この時の冷媒の状態は、図2のa2点である。
第1圧縮機11から吐出された高温高圧状態の気相冷媒は放熱器12へ流入し、冷却ファン12aから送風された送風空気(外気)と熱交換して放熱して凝縮する(図2のa2点→b2点)。放熱器12から流出した冷媒は、温度式膨張弁17へ流入して、等エンタルピ的に減圧膨張して気液二相状態となる(図2のb2点→c2点)。
この際、温度式膨張弁17の弁開度は、流出側蒸発器14出口側冷媒の過熱度(図2のg2点)が予め定めた所定値となるように調整される。温度式膨張弁17から流出した中間圧冷媒は、エジェクタ13のノズル部13aへ流入して、等エントロピ的に減圧膨張する(図2のc2点→d2点)。
そして、この減圧膨張時に冷媒の圧力エネルギが速度エネルギに変換されて、冷媒がノズル部13aの冷媒噴射口から高速度となって噴射される。この噴射冷媒の冷媒吸引作用により、冷媒吸引口13bから第2圧縮機21吐出冷媒が吸引される。(図2のj2点→e2点)
さらに、ノズル部13aから噴射された噴射冷媒と冷媒吸引口13bから吸引された吸引冷媒がエジェクタ13の混合部13cにて混合されて、ディフューザ部13dに流入する(図2のd2点→e2点)。ディフューザ部13dでは通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換されるため、冷媒の圧力が上昇する(図2のe2点→f2点)。
ディフューザ部13dから流出した冷媒は、分岐部18にて、流出側蒸発器14側へ流入する冷媒流れと固定絞り19側へ流入する冷媒流れとに分流される。ここで、本実施形態では、分岐部18の冷媒流出口18b側の冷媒通路面積を、冷媒流出口18c側の冷媒通路面積よりも大きく設定することにより、流出側蒸発器14側へ流入する冷媒流量G1が固定絞り19側へ流入する冷媒流量G2よりも多くなるようにしてる。
分岐部18から流出側蒸発器14へ流入した冷媒は、送風ファン14aによって循環送風された冷蔵庫内空気から吸熱して蒸発する(図2のf2点→g2点)。これにより、冷蔵庫内空気が冷却される。そして、流出側蒸発器14から流出した冷媒は、第1圧縮機11に吸入され、再び圧縮される(図2のg2点→a2点)。
一方、分岐部18から固定絞り19へ流入した冷媒は、さらに等エンタルピ的に減圧膨張されて、その圧力を低下させる(図2のc2点→h2点)。固定絞り19にて減圧膨張された冷媒は、吸引側蒸発器16へ流入して、送風ファン16aにより循環送風される冷凍庫内空気から吸熱して蒸発する(図2のh2点→i2点)。これにより、冷凍庫内空気が冷却される。
そして、吸引側蒸発器16から流出した冷媒は、第2圧縮機21に吸入され、圧縮される(図2のi2点→j2点)。この際、制御装置は、エジェクタ式冷凍サイクル全体としてのCOPが略最大に近づくように、第1、第2電動モータ11b、21bの作動を制御する。具体的には、第1、第2圧縮機構11a、21aの圧縮効率を向上させるために、第1、第2圧縮機構11a、21aの昇圧量が略同等となるように制御する。
なお、圧縮効率とは、第1、第2圧縮機11、21にて冷媒が等エントロピ圧縮された際の冷媒のエンタルピの増加量をΔH1としたときに、この増加量ΔH1を、実際に第1、第2圧縮機11、21にて冷媒が昇圧された際の冷媒のエンタルピ増加分ΔH2で除した値である。
例えば、第1、第2圧縮機11、21の回転数や昇圧量(吐出圧力と吸入圧力との圧力差)が増加すると、その摩擦熱によって冷媒の温度が上昇して実際のエンタルピ増加分ΔH2が増加するため、圧縮効率も低下することになる。
さらに、第2圧縮機21から吐出された冷媒は、前述の如く、冷媒吸引口13bからエジェクタ13内へ吸引される(図2のj2点→e2点)。
本実施形態のエジェクタ式冷凍サイクル10は、上述の如く作動するので、以下のような効果を発揮できる。
(A)分岐部18にて冷媒の流れを分流して、流出側蒸発器14および吸引側蒸発器16の双方へ冷媒を供給しているので、流出側蒸発器14および吸引側蒸発器16の双方で同時に冷却作用を発揮できる。この際、流出側蒸発器14の冷媒蒸発圧力は、ディフューザ部13dで昇圧した後の圧力となり、一方、吸引側蒸発器16の冷媒蒸発圧力はディフューザ部13dで昇圧した後にさらに固定絞り19で減圧した後の圧力となる。
従って、流出側蒸発器14の冷媒蒸発圧力(冷媒蒸発温度)よりも吸引側蒸発器16の冷媒蒸発圧力(冷媒蒸発温度)を十分に低くすることができる。その結果、流出側蒸発器14を低温の冷蔵庫内の冷却用として用い、吸引側蒸発器16を極低温の冷凍庫内の冷却用として用いることができる。
(B)第2圧縮機21(第2圧縮機構21a)を備えているので、例えば、低外気温時等のように、高圧冷媒と低圧冷媒との圧力差が低下して、エジェクタ13の駆動流が流量低下するような運転条件、すなわち、エジェクタ13の吸引能力が低下するような運転条件であっても、第2圧縮機構21aによって、エジェクタ13の吸引能力を補助することができる。
この際、2つの第1、第2圧縮機構11a、21aおよびエジェクタ13のディフューザ部13dの昇圧作用によって冷媒を昇圧できるので、1つの圧縮機構にて冷媒を昇圧する場合に対して、第1、第2圧縮機構11a、21aの駆動動力を低減させてCOPを向上できる。
つまり、ディフューザ部13dの昇圧作用によって、第1圧縮機構11aの吸入圧力を上昇させることで、第1圧縮機構11aの駆動動力を低減できるだけでなく、それぞれの第1、第2圧縮機構11a、21aにおける吸入圧力と吐出圧力との圧力差を縮小できるので、それぞれの第1、第2圧縮機構11a、21aの圧縮効率を向上できる。
さらに、本実施形態では、第1、第2圧縮機構11a、21aの冷媒吐出能力を第1、第2電動モータ11b、21bが独立に変化させることができるので、第1、第2圧縮機構11a、21aの圧縮効率を効果的に向上させることができる。
その結果、駆動流の流量変動が生じてディフューザ部13dの昇圧能力が低下したとしても、エジェクタ式冷凍サイクルを高いCOPを発揮させた状態で安定して作動させることができる。
このことは、例えば、本実施形態のように吸引側蒸発器16の冷媒蒸発温度を−30〜−10℃といった極低温まで低下させる冷凍サイクル装置のように、サイクルの高低圧差を大きく維持しておく必要性がある冷凍サイクル装置では、極めて有効である。
(C)本実施形態のエジェクタ式冷凍サイクル10では、分岐部18から流出側蒸発器14側へ流入する冷媒流量G1が、分岐部18から固定絞り19側へ流入する冷媒流量G2よりも多くなるようにしてるので、より多くの冷媒を放熱器12にて放熱させることができる。これにより、サイクル全体として冷媒の吸熱量、すなわちサイクルの冷凍能力を拡大することができる。
(D)特許文献1のエジェクタ式冷凍サイクルに対して、第1圧縮機11の吸入側に流出側気液分離器としてのアキュムレータを廃止できるので、エジェクタ式冷凍サイクル10全体としての製造コストを低減できる。
(E)高圧側減圧手段として可変絞り機構である温度式膨張弁17を採用しているので、サイクルの負荷変動に応じて、エジェクタ13のノズル部13aへ流入させる冷媒流量を変化させることができる。その結果、負荷変動が生じても、高いCOPを発揮させながら、エジェクタ式冷凍サイクルを運転することができる。
(F)温度式膨張弁17にて減圧膨張された冷媒(図2のc2点)が気液二相状態となるので、エジェクタ13のノズル部13aへ気液二相状態の冷媒を流入させることができる。
従って、ノズル部13aへ液相冷媒を流入させる場合に対して、ノズル部13aにおける冷媒の沸騰を促進させることができ、ノズル効率を向上させることができる。その結果、回収エネルギ量を増加させて、ディフューザ部13dにおける昇圧量を増加させることができるので、より一層、COPを向上できる。
さらに、ノズル部13aへ液相冷媒を流入させる場合に対して、ノズル部13aの冷媒通路面積を拡大することができるので、ノズル部13aの加工が容易となる。その結果、エジェクタ13の製造コストを低減して、エジェクタ式冷凍サイクル10全体としての製造コストを低減できる。
(第2実施形態)
本実施形態では、図3の全体構成図に示すように、第1実施形態のエジェクタ式冷凍サイクル10に対して、放熱器12から流出した冷媒とサイクルの低圧側冷媒とを熱交換させる内部熱交換器30を追加した例を説明する。なお、図3では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面においても同様である。
内部熱交換器30は、高圧側冷媒流路30aを通過する放熱器12から流出した冷媒と低圧側冷媒流路30bを通過するサイクルの低圧側冷媒との間で熱交換を行うものである。より具体的には、本実施形態におけるサイクルの低圧側冷媒は、第2圧縮機構21aへ吸入される冷媒である。
また、内部熱交換器30の具体的構成としては、高圧側冷媒流路30aを形成する外側管の内側に低圧側冷媒流路30bを形成する内側管を配置する二重管方式の熱交換器構成を採用している。もちろん、高圧側冷媒流路30aを内側管として、低圧側冷媒流路30bを外側管としてもよい。
さらに、高圧側冷媒流路30aと低圧側冷媒流路30bとを形成する冷媒配管同士をろう付け接合して熱交換させる構成等を採用してもよい。その他の構成は、第1実施形態と同様である。
次に、図4のモリエル線図により、本実施形態のエジェクタ式冷凍サイクル10の作動を説明する。なお、図4における冷媒の状態を示す符号は、図2における同様の冷媒の状態を示す符号と同一の符号を用いるとともに、添字のみを変更している。このことは、以下の実施形態で説明するモリエル線図においても同様である。
本実施形態のエジェクタ式冷凍サイクル10を作動させると、内部熱交換器30の作用によって、第1実施形態に対して、第2圧縮機構21a吸入側冷媒のエンタルピが増加し(図4のi4点→i’4点)、温度式膨張弁17へ流入する冷媒のエンタルピが減少する(図4のb4点→b’4点)。その他の作動は、第1実施形態と同様である。
従って、本実施形態の構成においても、第1実施形態の(A)〜(F)と同様の効果を得ることができる。さらに、第1実施形態に対して、内部熱交換器30の作用によって、流出側蒸発器14および吸引側蒸発器16へ流入する冷媒のエンタルピを減少させることができる。
その結果、流出側蒸発器14および吸引側蒸発器16の入口側冷媒のエンタルピと出口側冷媒のエンタルピとのエンタルピ差を拡大させて冷凍能力を増大させることができるので、より一層、COPを向上できる。
(第3実施形態)
本実施形態では、図5の全体構成図に示すように、第1実施形態のエジェクタ式冷凍サイクル10に対して、放熱器12から流出した冷媒とサイクルの低圧側冷媒とを熱交換させる内部熱交換器31を追加した例を説明する。
この内部熱交換器31は、高圧側冷媒流路31aを通過する放熱器12から流出した冷媒と低圧側冷媒流路31bを通過するサイクルの低圧側冷媒との間で熱交換を行うものである。より具体的には、本実施形態におけるサイクルの低圧側冷媒は、第1圧縮機構11aへ吸入される冷媒である。また、内部熱交換器31の具体的構成は、第2実施形態と同様である。
次に、図6のモリエル線図により、本実施形態のエジェクタ式冷凍サイクル10の作動を説明する。本実施形態のエジェクタ式冷凍サイクル10を作動させると、内部熱交換器31の作用によって、第1実施形態に対して、第1圧縮機構11a吸入側冷媒のエンタルピが増加し(図6のg6点→g’6点)、温度式膨張弁17へ流入する冷媒のエンタルピが減少する(図6のb6点→b’6点)。その他の作動は、第1実施形態と同様である。
従って、本実施形態の構成においても、第1実施形態の(A)〜(F)と同様の効果を得ることができる。さらに、第2実施形態と同様に、流出側蒸発器14および吸引側蒸発器16の入口側冷媒のエンタルピと出口側冷媒のエンタルピとのエンタルピ差を拡大させて冷凍能力を増大させることができるので、より一層、COPを向上できる。
(第4実施形態)
本実施形態では、図7の全体構成図に示すように、第1実施形態のエジェクタ式冷凍サイクル10に対して、放熱器12の構成を変更した例を説明する。
具体的には、本実施形態の放熱器12は、冷媒を凝縮させる凝縮部12b、凝縮部12bから流出した冷媒の気液を分離する気液分離部12c(レシーバ部)、および、気液分離部12cから流出した液相冷媒を過冷却する過冷却部12dを有する、いわゆるサブクール型凝縮器として構成されている。その他の構成は、第1実施形態と同様である。
本実施形態のエジェクタ式冷凍サイクル10を作動させると、図8のモリエル線図に示すように、放熱器12の凝縮部12bで凝縮した冷媒が、気液分離部12cにて気液分離される。さらに、気液分離部12cにて分離された飽和液相冷媒が過冷却部12dにて過冷却化される(図8のb8点→b’8点)。
これにより、流出側蒸発器14および吸引側蒸発器16へ流入する冷媒のエンタルピを減少させることができる。その他の作動は、第1実施形態と同様である。
従って、本実施形態の構成においても、第1実施形態の(A)〜(F)と同様の効果を得ることができる。さらに、流出側蒸発器14および吸引側蒸発器16の入口側冷媒のエンタルピと出口側冷媒のエンタルピとのエンタルピ差を拡大させて冷凍能力を増大させることができる。
さらに、例えば、第2実施形態の内部熱交換器30を用いる場合のように、第2圧縮機構21a吸入側冷媒(サイクルの低圧側冷媒)のエンタルピを不必要に増加させてしまうことがない(図8のi8点)。従って、第2圧縮機構21a吸入冷媒の密度が低下してしまうことを抑制して、第2実施形態に対して、吸引側蒸発器16における冷媒蒸発圧力(冷媒蒸発温度)を低下させることもできる。
(第5実施形態)
上述の各実施形態では、冷媒として通常のフロン系冷媒を採用し、亜臨界冷凍サイクルを構成した例を説明したが、本実施形態では、冷媒として二酸化炭素を採用し、第1圧縮機11吐出冷媒の圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成した例を説明する。さらに、本実施形態では、図9の全体構成図に示すように、第1実施形態に対して、温度式膨張弁17を廃止している。その他の構成は、第1実施形態と同様である。
次に、図10のモリエル線図により、本実施形態のエジェクタ式冷凍サイクル10の作動を説明する。本実施形態のエジェクタ式冷凍サイクル10を作動させると、第1圧縮機11吐出冷媒が放熱器12にて放熱して冷却される。この際、放熱器12を通過する冷媒は、凝縮することなく超臨界状態のまま放熱する(図10のa10点→b10点)。
放熱器12から流出した超臨界状態の高圧冷媒は、ノズル部13aで等エントロピ的に減圧膨張する(図10のb10点→d10点)。その他の作動は、第1実施形態と同様である。従って、本実施形態の構成においても、第1実施形態の(A)〜(D)と同様の効果を得ることができる。
さらに、超臨界冷凍サイクルでは、高圧側冷媒圧力が亜臨界冷凍サイクルよりも高くなるので、サイクルの高低圧差(図10では、b10点とd10点の圧力差)が拡大し、エジェクタ13のノズル部13aにおける減圧量が増加する。これにより、ノズル部13a入口側冷媒のエンタルピとノズル部13a出口側冷媒のエンタルピとの差(回収エネルギ量)も増加するので、より一層、COPを向上できる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、以下のように種々変形可能である。
(1)上述の実施形態では、第1、第2圧縮機11、21として、それぞれ別体で構成された圧縮機を採用した例を説明したが、第1、第2圧縮機構11a、21aおよび第1、第2電動モータ11b、21bを一体的に構成してもよい。
例えば、第1、第2圧縮機構11a、21aおよび第1、第2電動モータ11b、21bを同一のハウジング内に収容して一体的に構成してもよい。この場合には、第1、第2圧縮機構11a、21aの回転軸を共通化して、共通する駆動源から供給される駆動力によって双方の圧縮機構を駆動するようにしてもよい。
これにより、第1、第2圧縮機構11a、21aを小型化して、エジェクタ式冷凍サイクル全体としての小型化を図ることができる。
(2)上述の実施形態では、第1、第2圧縮機11、21として、電動圧縮機を採用した例を説明したが、第1、第2圧縮機11、21の形式はこれに限定されない。
例えば、エンジン等を駆動源として、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機を採用してもよい。この場合は、吐出容量変更手段が、吐出能力変更手段となる。また、電磁クラッチの断続により駆動源との接続を断続的に変化させて冷媒吐出能力を調整する固定容量型圧縮機を使用してもよい。この場合は、電磁クラッチが、吐出能力変更手段となる。
さらに、第1、第2圧縮機11、21に、同一の形式の圧縮機構を採用してもよいし、異なる形式の圧縮機構を採用してもよい。
(3)上述の実施形態では、エジェクタ13としてノズル部13aの絞り通路面積が固定された固定式のエジェクタ13を採用しているが、ノズル部の絞り通路面積を変更可能に構成された可変エジェクタを採用してもよい。同様に、吸引側減圧手段として可変絞り機構を採用してもよい。
また、上述の実施形態では、高圧側減圧手段として、流出側蒸発器14出口側冷媒の過熱度が予め設定された所定値となるように調整する温度式膨張弁17を採用しているが、もちろん、吸引側蒸発器16出口側冷媒の過熱度が予め設定された所定値となるように調整する温度式膨張弁を採用してもよい。
さらに、高圧側減圧手段として、絞り開度(弁開度)を外部からの電気的制御信号によって調整可能な電気式膨張弁を採用してもよい。さらに、高圧側減圧手段として、可変絞り機構を採用することなく、固定絞り19と同様の構成の固定絞り機構を採用してもよい。さらに、第1〜第4実施形態において、高圧側減圧手段を廃止してもよい。
また、第5実施形態のように、超臨界冷凍サイクルを構成する場合には、高圧側減圧手段として、高圧側冷媒圧力を、放熱器12の出口側の高圧側冷媒温度に基づいてCOPが略最大となるように決定される目標高圧に調整する圧力制御弁を採用してもよい。
このような圧力制御弁としては、具体的に、放熱器12出口側に設けられた感温部を有し、この感温部の内部に放熱器12出口側の高圧冷媒の温度に対応した圧力を発生させ、感温部の内圧と放熱器12出口側の冷媒圧力とのバランスで弁開度を機械的機構により調整する構成等を採用できる。
(4)上述の各実施形態における高圧側減圧手段および低圧側減圧手段として、冷媒を体積膨張させて減圧させるとともに、冷媒の圧力エネルギを機械的エネルギに変換して出力する膨張機を採用してもよい。このような膨張機としては、具体的に、スクロール型、ベーン型、ローリングピストン型といった容積型圧縮機構を採用できる。
そして、容積型圧縮機構を圧縮機構として用いる場合の冷媒流れに対して逆流させるように冷媒を流すことで、冷媒を体積膨張させて減圧させながら、機械的エネルギを出力させることができる。例えば、膨張機として回転式の容積型圧縮機構を採用すれば、機械的エネルギとして回転エネルギを出力させることができる。
さらに、膨張機から出力された機械的エネルギを、例えば、第1、第2圧縮機構の補助動力源として利用すれば、エジェクタ式冷凍サイクル10全体としてのエネルギ効率を向上させることができる。また、膨張機から出力された機械的エネルギを、外部機器の動力源として利用してもよい。
例えば、外部機器として発電機を採用すれば、電気エネルギを得ることができる。また、外部機器としてフライホイールを採用すれば、膨張機から出力された機械的エネルギを運動エネルギとして蓄えることができる。また、外部機器として発条装置(ぜんまいばね)を採用すれば、膨張機から出力された機械的エネルギを弾性エネルギとして蓄えることもできる。
(5)上述の実施形態に対して、第1圧縮機11の吸入側に、第1圧縮機11へ吸入される冷媒の気液を分離して余剰冷媒を貯える流出側気液分離器としてのアキュムレータを設けてもよい。これにより、アキュムレータにて分離された気相冷媒のみを第1圧縮機構11aへ供給することができ、第1圧縮機構11aの液圧縮の問題を回避できる。
同様に、第2圧縮機構21aの吸入側にアキュムレータと同様の構成の吸引側気液分離器を配置してもよい。これにより、吸引側気液分離器にて分離された気相冷媒のみを第2圧縮機構21aへ供給することができ、第2圧縮機構21aの液圧縮の問題を回避できる。
(6)上述の実施形態では、流出側蒸発器14および吸引側蒸発器16にて異なる冷却対象空間(冷蔵庫内空間、冷凍庫内空間)を冷却する例を説明したが、同一の冷却対象空間を冷却するようにしてもよい。この場合は、流出側蒸発器14および吸引側蒸発器16を一体構造に組み付けて、送風ファンから送風された空気を流出側蒸発器14→吸引側蒸発器16の順に通過させることが望ましい。
その理由は、前述の如く、吸引側蒸発器16の冷媒蒸発圧力(冷媒蒸発温度)は、流出側蒸発器14の冷媒蒸発圧力(冷媒蒸発温度)よりも低くなるからである。つまり、送風ファンからの送風空気を上記の如く通過させることで、流出側蒸発器14および吸引側蒸発器16の冷媒蒸発温度と送風空気との温度差を確保して、効率的に送風空気を冷却できる。
また、流出側蒸発器14および吸引側蒸発器16を一体構造に組み付ける具体的手段として、例えば、双方の蒸発器14、16の構成部品をアルミニウムで構成してろう付け等の接合手段により一体構造に接合してもよい。さらに、ボルト締め等の機械的係合手段によって一体的に結合する構成でもよい。
また、流出側蒸発器14および吸引側蒸発器16として、フィンアンドチューブタイプの熱交換器を採用し、流出側蒸発器14および吸引側蒸発器16のフィンを共通化し、冷媒を通過させるチューブのパス構成(流路構成)で、2つの蒸発器に分割する構成としてもよい。
さらに、流出側蒸発器14および吸引側蒸発器16にて同一の冷凍庫内を冷却するように構成すると、送風空気流れの下流側の配置される吸引側蒸発器16の冷媒蒸発温度が着霜の生じる温度(0℃以下)になる。これに対して、流出側蒸発器14における冷媒蒸発温度を調整することで、吸引側蒸発器16に流入する送風空気の絶対湿度を予め低下させることができる。
これにより、吸引側蒸発器16における着霜の発生を抑制できる。さらに、着霜による送風空気の流通が妨げられることが防止できるので、吸引側蒸発器16のフィンピッチ等を縮小して、吸引側蒸発器16の小型化を図ることもできる。
(7)上述の実施形態では、第1、第2圧縮機構11a、21aのみを備えるエジェクタ式冷凍サイクル10について説明したが、さらに、追加の圧縮機構を設けてもよい。例えば、第1実施形態の吸引側蒸発器16に対して、並列的に追加の蒸発器を配置して、この蒸発器から流出した冷媒のみを吸入して圧縮するように追加の圧縮機構を設けてもよい。
(8)上述の実施形態では、本発明のエジェクタ式冷凍サイクル10を冷凍・冷蔵装置に適用した例を説明したが、本発明の適用はこれに限定されない。例えば、エジェクタ式冷凍サイクル10を、その他の定置用の冷凍サイクル装置、車両用空調装置等に適用してもよい。
(9)上述の実施形態では、吸引側蒸発器16を利用側熱交換器として、放熱器12を大気側へ放熱する室外熱交換器として構成しているが、逆に、吸引側熱交換器16を大気等の熱源から吸熱する室外側熱交換器として構成し、放熱器12を空気あるいは水等の被加熱冷媒を加熱する室内側熱交換器として構成するヒートポンプサイクルとしてもよい。
(10)上述の各実施形態の内部熱交換器30、31では、高圧側冷媒流路における冷媒流れ方向と低圧側冷媒流路における冷媒流れ方向について言及していないが、高圧側冷媒流路における冷媒流れ方向と低圧側冷媒流路における冷媒流れ方向が同一方向となる並向流としてもよいし、高圧側冷媒流路における冷媒流れ方向と低圧側冷媒流路における冷媒流れ方向が異なる方向となる対向流としてもよい。
第1実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第1実施形態のエジェクタ式冷凍サイクルの冷媒の状態を示すモリエル線図である。 第2実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第2実施形態のエジェクタ式冷凍サイクルの冷媒の状態を示すモリエル線図である。 第3実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第3実施形態のエジェクタ式冷凍サイクルの冷媒の状態を示すモリエル線図である。 第4実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第4実施形態のエジェクタ式冷凍サイクルの冷媒の状態を示すモリエル線図である。 第5実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第5実施形態のエジェクタ式冷凍サイクルの冷媒の状態を示すモリエル線図である。 従来技術のエジェクタ式冷凍サイクルの冷媒の状態を示すモリエル線図である。
符号の説明
11、12 第1、第2圧縮機
11a、21a 第1、第2圧縮機構
11b、21b 第1、第2電動モータ
12 放熱器
12b 凝縮部
12c 気液分離部
12d 過冷却部
13 エジェクタ
13a ノズル部
13b 冷媒吸引口
13d ディフューザ部
14 流出側蒸発器
16 吸引側蒸発器
17 温度式膨張弁
18 分岐部
19 固定絞り
30、31 内部熱交換器

Claims (9)

  1. 冷媒を圧縮して吐出する第1圧縮機構(11a)と、
    前記第1圧縮機構(11a)から吐出された高圧冷媒を放熱させる放熱器(12)と、
    前記放熱器(12)から流出した冷媒を減圧膨張させるノズル部(13a)から噴射する高速度の噴射冷媒の流れによって冷媒を冷媒吸引口(13b)から吸引して、前記噴射冷媒と前記冷媒吸引口(13b)から吸引された吸引冷媒との混合冷媒をディフューザ部(13d)にて昇圧するエジェクタ(13)と、
    前記ディフューザ部(13d)から流出した冷媒の流れを分岐する分岐部(18)と、
    前記分岐部(18)にて分岐された一方の冷媒を蒸発させて、前記第1圧縮機構(11a)吸入側へ流出させる流出側蒸発器(14)と、
    前記分岐部(18)にて分岐された他方の冷媒を減圧膨張させる吸引側減圧手段(19)と、
    前記吸引側減圧手段(19)にて減圧膨張された冷媒を蒸発させて、前記冷媒吸引口(13b)側へ流出させる吸引側蒸発器(16)と、
    前記吸引側蒸発器(16)出口側冷媒を吸引して、圧縮して吐出する第2圧縮機構(21a)と、
    前記第1圧縮機構(11a)の冷媒吐出能力を変更する第1吐出能力変更手段(11b)と、
    前記第2圧縮機構(21a)の冷媒吐出能力を変更する第2吐出能力変更手段(21b)と、
    前記第1吐出能力変更手段(11b)および前記第2吐出能力変更手段(21b)を制御する制御手段とを備え、
    前記第1吐出能力変更手段(11b)および前記第2吐出能力変更手段(21b)は、それぞれ独立して前記第1圧縮機構(11a)および前記第2圧縮機構(21a)の冷媒吐出能力を変更可能に構成されており、
    前記制御手段は、前記第1圧縮機構(11a)での昇圧量と前記第2圧縮機構(21a)での昇圧量が同等となるように前記第1吐出能力変更手段(11b)および前記第2吐出能力変更手段(21b)を制御することを特徴とするエジェクタ式冷凍サイクル。
  2. 前記放熱器(12)出口側から前記ノズル部(13a)入口側へ至る冷媒通路に配置されて、前記放熱器(12)から流出した冷媒を減圧膨張させる高圧側減圧手段(17)を備えることを特徴とする請求項1に記載のエジェクタ式冷凍サイクル。
  3. 前記放熱器(12)から流出した冷媒とサイクルの低圧側冷媒とを熱交換させる内部熱交換器(30、31)を備えることを特徴とする請求項1または2に記載のエジェクタ式冷凍サイクル。
  4. 前記サイクルの低圧側冷媒は、前記第1圧縮機構(11a)へ吸入される冷媒であることを特徴とする請求項3に記載のエジェクタ式冷凍サイクル。
  5. 前記サイクルの低圧側冷媒は、前記第2圧縮機構(21a)へ吸入される冷媒であることを特徴とする請求項3に記載のエジェクタ式冷凍サイクル。
  6. 前記放熱器(12)は、冷媒を凝縮させる凝縮部(12b)、前記凝縮部(12b)から流出した冷媒の気液を分離する気液分離部(12c)、および、前記気液分離部(12c)から流出した液相冷媒を過冷却する過冷却部(12d)を有していることを特徴とする請求項1ないし5のいずれか1つに記載のエジェクタ式冷凍サイクル。
  7. 前記吸引側減圧手段は、冷媒を体積膨張させて減圧させるとともに、冷媒の圧力エネルギを機械的エネルギに変換して出力する膨張機であることを特徴とする請求項1ないし6のいずれか1つに記載のエジェクタ式冷凍サイクル。
  8. 前記第1圧縮機構(11a)および前記第2圧縮機構(21a)は、同一のハウジング内に収容されて、一体的に構成されていることを特徴とする請求項1ないしのいずれか1つに記載のエジェクタ式冷凍サイクル。
  9. 前記第1圧縮機構(11a)は、冷媒を臨界圧力以上となるまで昇圧させることを特徴とする請求項1ないしのいずれか1つに記載のエジェクタ式冷凍サイクル。
JP2008259503A 2008-04-18 2008-10-06 エジェクタ式冷凍サイクル Expired - Fee Related JP5018725B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008259503A JP5018725B2 (ja) 2008-04-18 2008-10-06 エジェクタ式冷凍サイクル
CN2009801062341A CN101952670B (zh) 2008-04-18 2009-04-16 喷射器式制冷循环装置
PCT/JP2009/001767 WO2009128271A1 (ja) 2008-04-18 2009-04-16 エジェクタ式冷凍サイクル装置
US12/867,025 US10527329B2 (en) 2008-04-18 2009-04-16 Ejector-type refrigeration cycle device
DE112009000608.6T DE112009000608B4 (de) 2008-04-18 2009-04-16 Kälteerzeugungszyklusvorrichtung eines Ejektor-Typs

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008108676 2008-04-18
JP2008108676 2008-04-18
JP2008259503A JP5018725B2 (ja) 2008-04-18 2008-10-06 エジェクタ式冷凍サイクル

Publications (2)

Publication Number Publication Date
JP2009276046A JP2009276046A (ja) 2009-11-26
JP5018725B2 true JP5018725B2 (ja) 2012-09-05

Family

ID=41441645

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2008259501A Expired - Fee Related JP5018724B2 (ja) 2008-04-18 2008-10-06 エジェクタ式冷凍サイクル
JP2008259503A Expired - Fee Related JP5018725B2 (ja) 2008-04-18 2008-10-06 エジェクタ式冷凍サイクル
JP2008300785A Expired - Fee Related JP5206362B2 (ja) 2008-04-18 2008-11-26 エジェクタ式冷凍サイクル
JP2009002322A Expired - Fee Related JP5126072B2 (ja) 2008-04-18 2009-01-08 エジェクタ式冷凍サイクル
JP2009012922A Expired - Fee Related JP4849133B2 (ja) 2008-04-18 2009-01-23 エジェクタ式冷凍サイクル
JP2009040518A Expired - Fee Related JP4952731B2 (ja) 2008-04-18 2009-02-24 エジェクタ式冷凍サイクル
JP2009040517A Expired - Fee Related JP4952730B2 (ja) 2008-04-18 2009-02-24 エジェクタ式冷凍サイクル

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008259501A Expired - Fee Related JP5018724B2 (ja) 2008-04-18 2008-10-06 エジェクタ式冷凍サイクル

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2008300785A Expired - Fee Related JP5206362B2 (ja) 2008-04-18 2008-11-26 エジェクタ式冷凍サイクル
JP2009002322A Expired - Fee Related JP5126072B2 (ja) 2008-04-18 2009-01-08 エジェクタ式冷凍サイクル
JP2009012922A Expired - Fee Related JP4849133B2 (ja) 2008-04-18 2009-01-23 エジェクタ式冷凍サイクル
JP2009040518A Expired - Fee Related JP4952731B2 (ja) 2008-04-18 2009-02-24 エジェクタ式冷凍サイクル
JP2009040517A Expired - Fee Related JP4952730B2 (ja) 2008-04-18 2009-02-24 エジェクタ式冷凍サイクル

Country Status (1)

Country Link
JP (7) JP5018724B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359231B2 (ja) * 2008-12-03 2013-12-04 株式会社デンソー エジェクタ式冷凍サイクル
CN101514891B (zh) * 2009-03-20 2014-01-15 中国第一汽车股份有限公司 大型模具铸件毛坯的光学照相检测方法
WO2012012485A1 (en) * 2010-07-23 2012-01-26 Carrier Corporation Ejector-type refrigeration cycle and refrigeration device using the same
JP5533483B2 (ja) 2010-09-16 2014-06-25 株式会社デンソー 圧縮機のトルク推定装置
EP3543628B1 (en) 2010-11-30 2021-02-24 Carrier Corporation Ejector cycle
JP5640857B2 (ja) 2011-03-28 2014-12-17 株式会社デンソー 減圧装置および冷凍サイクル
WO2013005270A1 (ja) * 2011-07-01 2013-01-10 三菱電機株式会社 冷凍サイクル装置及び空気調和機
JP5729359B2 (ja) * 2012-07-09 2015-06-03 株式会社デンソー 冷凍サイクル装置
JP6248499B2 (ja) * 2013-09-23 2017-12-20 株式会社デンソー エジェクタ式冷凍サイクル
JP6102811B2 (ja) * 2014-03-26 2017-03-29 株式会社富士通ゼネラル 冷凍サイクル装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526522A (ja) * 1991-07-23 1993-02-02 Nippondenso Co Ltd 冷凍サイクル
JPH0712417A (ja) * 1993-06-25 1995-01-17 Toshiba Corp 空気調和機
JP3690030B2 (ja) * 1997-01-22 2005-08-31 株式会社デンソー 冷凍装置
JP3322263B1 (ja) * 2000-03-15 2002-09-09 株式会社デンソー エジェクタサイクル、これに用いる気液分離器、並びにこのエジェクタサイクルを用いた給湯器及び熱管理システム
JP4639541B2 (ja) * 2001-03-01 2011-02-23 株式会社デンソー エジェクタを用いたサイクル
JP4463466B2 (ja) * 2001-07-06 2010-05-19 株式会社デンソー エジェクタサイクル
JP4265228B2 (ja) * 2002-01-30 2009-05-20 株式会社デンソー エジェクタポンプを用いた冷凍機
JP4069656B2 (ja) * 2002-03-29 2008-04-02 株式会社デンソー 蒸気圧縮式冷凍機
JP4052020B2 (ja) * 2002-05-30 2008-02-27 株式会社デンソー ヒートポンプシステム
JP2004163084A (ja) * 2002-09-24 2004-06-10 Denso Corp 蒸気圧縮式冷凍機
JP2004205154A (ja) * 2002-12-26 2004-07-22 Nippon Soken Inc 冷凍機
JP2004251558A (ja) * 2003-02-20 2004-09-09 Matsushita Electric Ind Co Ltd 冷凍サイクル装置とその制御方法
JP3931899B2 (ja) * 2004-02-18 2007-06-20 株式会社デンソー エジェクタサイクル
JP2005233513A (ja) * 2004-02-19 2005-09-02 Nippon Soken Inc ヒートポンプ装置
JP4823501B2 (ja) * 2004-09-28 2011-11-24 株式会社デンソー ヒートポンプ式加熱装置
JP4270098B2 (ja) * 2004-10-19 2009-05-27 株式会社デンソー エジェクタサイクル
JP4358832B2 (ja) * 2005-03-14 2009-11-04 三菱電機株式会社 冷凍空調装置
JP4661449B2 (ja) * 2005-08-17 2011-03-30 株式会社デンソー エジェクタ式冷凍サイクル
JP4923838B2 (ja) * 2005-08-17 2012-04-25 株式会社デンソー エジェクタ式冷凍サイクル
JP4737001B2 (ja) * 2006-01-13 2011-07-27 株式会社デンソー エジェクタ式冷凍サイクル
JP4539571B2 (ja) * 2006-01-26 2010-09-08 株式会社デンソー 蒸気圧縮式サイクル
JP2007255771A (ja) * 2006-03-22 2007-10-04 Denso Corp エジェクタ式サイクル
JP4971877B2 (ja) * 2006-08-28 2012-07-11 カルソニックカンセイ株式会社 冷凍サイクル
JP4779928B2 (ja) * 2006-10-27 2011-09-28 株式会社デンソー エジェクタ式冷凍サイクル

Also Published As

Publication number Publication date
JP2009276045A (ja) 2009-11-26
JP2009276046A (ja) 2009-11-26
JP5126072B2 (ja) 2013-01-23
JP2009276048A (ja) 2009-11-26
JP5206362B2 (ja) 2013-06-12
JP4952731B2 (ja) 2012-06-13
JP2009276047A (ja) 2009-11-26
JP4952730B2 (ja) 2012-06-13
JP5018724B2 (ja) 2012-09-05
JP2009276051A (ja) 2009-11-26
JP4849133B2 (ja) 2012-01-11
JP2009276052A (ja) 2009-11-26
JP2009276049A (ja) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5018725B2 (ja) エジェクタ式冷凍サイクル
JP5195364B2 (ja) エジェクタ式冷凍サイクル
US10527329B2 (en) Ejector-type refrigeration cycle device
WO2009128271A1 (ja) エジェクタ式冷凍サイクル装置
JP4779928B2 (ja) エジェクタ式冷凍サイクル
JP5359231B2 (ja) エジェクタ式冷凍サイクル
US7694529B2 (en) Refrigerant cycle device with ejector
JP2007040690A (ja) エジェクタ式冷凍サイクル
JP2010164291A (ja) エジェクタ式冷凍サイクル
WO2013140990A1 (ja) 冷凍サイクル及び冷凍ショーケース
JP4400522B2 (ja) エジェクタ式冷凍サイクル
JP4550153B2 (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP5510441B2 (ja) エジェクタ式冷凍サイクル
JP4992819B2 (ja) エジェクタ式冷凍サイクル
JP4930214B2 (ja) 冷凍サイクル装置
JP5895662B2 (ja) 冷凍装置
JP2010038456A (ja) 蒸気圧縮式冷凍サイクル
JP5018756B2 (ja) エジェクタ式冷凍サイクル
JP5021326B2 (ja) エジェクタ式冷凍サイクル
JP2008261512A (ja) エジェクタ式冷凍サイクル
JP2006029714A (ja) エジェクタサイクル
JP4259605B2 (ja) エジェクタ式冷凍サイクル
JP5045677B2 (ja) エジェクタ式冷凍サイクル
JP2013210132A (ja) 冷凍装置
JP2013210131A (ja) 冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R151 Written notification of patent or utility model registration

Ref document number: 5018725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees