JP4688525B2 - パターン修正装置および表示装置の製造方法 - Google Patents

パターン修正装置および表示装置の製造方法 Download PDF

Info

Publication number
JP4688525B2
JP4688525B2 JP2005057555A JP2005057555A JP4688525B2 JP 4688525 B2 JP4688525 B2 JP 4688525B2 JP 2005057555 A JP2005057555 A JP 2005057555A JP 2005057555 A JP2005057555 A JP 2005057555A JP 4688525 B2 JP4688525 B2 JP 4688525B2
Authority
JP
Japan
Prior art keywords
pattern
correction
mask
laser
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005057555A
Other languages
English (en)
Other versions
JP2006119575A (ja
Inventor
武 新井
信昭 中須
秀行 朴木
和士 吉村
雄一郎 田中
薫 山田
徹也 川村
政徳 大川
Original Assignee
株式会社 日立ディスプレイズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ディスプレイズ filed Critical 株式会社 日立ディスプレイズ
Priority to JP2005057555A priority Critical patent/JP4688525B2/ja
Priority to TW094114319A priority patent/TWI331687B/zh
Priority to KR1020050047001A priority patent/KR100780998B1/ko
Priority to US11/143,981 priority patent/US8035058B2/en
Publication of JP2006119575A publication Critical patent/JP2006119575A/ja
Application granted granted Critical
Publication of JP4688525B2 publication Critical patent/JP4688525B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods

Description

本発明は、所定のパターンが形成された基板のパターン形状の凸部分をレーザで修正するとともに、欠損部に配線材料を塗布して修正するパターン修正技術に係り、液晶表示装置の製造方法に好適なものである。また、本発明は、表示装置の製造技術に関し、特に、TFT基板等に作り込まれた回路パターンの不具合発生を未然に防止する技術に関する。
液晶表示装置は、2枚のガラス基板の間に液晶を挟み込んだ構造となっており、一方のガラス基板(カラーフィルタ(CF)基板とも言う)には青、緑、赤の樹脂(色樹脂)を交互に塗布したカラーフィルタが形成され、もう一方の基板(アクティブ・マトリクス基板、あるいは薄膜トランジスタ(TFT)基板とも言う)には薄膜トランジスタで構成された画素回路や配線、あるいは駆動回路などが形成されている。
カラーフィルタや配線にパターン欠陥を生じると表示異常となり、その液晶表示装置は不良品となる。表示異常には、例えば、カラーフィルタ基板では、カラーフィルタに塗布された色樹脂が隣の画素にはみ出したために生じる色不良(混色)や、樹脂の膜厚が均一でないために生じる塗布むらなどがあり、アクティブ・マトリクス基板では、配線間のショートや断線などがある。
液晶表示装置のカラーフィルタや配線は数層のパターンを重ね合わせて形成される。そのため、パターン欠陥は上層パターンを形成する前に修正する必要がある。パターン欠陥の検出方法には、画像処理を用いた一般的なパターン検査装置を用いることができる。
カラーフィルタの色樹脂のはみ出しや配線ショートの修正方法としては、特許文献1に開示されているように、ショート部分にレーザ光を照射して除去することによって修正する方法が一般的である。液晶表示装置のように、同一形状のパターンが繰り返し形成されている場合には、特許文献2に開示されているように、標準パターン形状を持つマスクを介してレーザ光を照射することにより、標準パターンと異なる部分を除去し、修正する方法がある。パターン欠損部に配線材料を塗布する方法としては、特許文献3に開示されているように先端径が細く絞られた中空のピペットをもちいて塗布する方法がある。
また、特許文献4には、半導体装置の回路パターンに発生したショート欠陥をレーザ加工によりオープンにすることで修正する技術が開示されている。また、引用文献5には、半導体装置の回路パターンに発生したオープン欠陥を、パラジウム等の金属材料(回路パターンの素材)を液状もしくはガス状にして、該オープン欠陥部分に塗布もしくは吹き付け、レーザ加工することにより修正する技術が開示されている。
特開平9-307217号公報 特開平5-27111号公報 特開平8-66652号公報 特開平10-177844号公報 特開平10-324973号公報
パターン欠陥にレーザを照射して修正する場合、修正作業を行うオペレータが欠陥位置にレーザ照射領域を合わせてから、レーザを照射する。また、標準パターンをもつマスクを介してレーザを照射する場合においても、オペレータが実パターンに合わせてレーザ照射領域を設定する必要がある。いずれの方法も、オペレータがレーザ照射位置を決めているため、修正後のパターン形状がオペレータの技量に左右されるだけでなく、すべての修正機にオペレータを配置しなければならず、コスト高となる。したがって、レーザ照射領域を自動的に決定できることが望まれる。
レーザ照射領域を自動的に決定する方法として、レーザ照射領域と実パターンの画像を取得し、画像処理によって、あらかじめ教示した基準点を検出した後、それらの基準点を重ね合わせることによってパターン合わせを行う方法がある。この方法によれば、自動修正が可能である。
しかし、基準点は形状に特徴のある位置に設定する必要があるため、基準点を設定できる領域は限られている。そのため、基準点に欠陥がある場合や基準点と欠陥位置が離れているために観察光学系の視野に同時に入らない場合には基準点が見つからず、パターン合わせができないという問題が生じる。
そこで、本発明の目的は、マスクを介してレーザ光を照射することによって得られるレーザ照射領域と実パターンをアライメントする機構を提供するとともに、自動でパターン欠陥を修正する装置を提供することにある。
また、上記の特許文献4、5に記載の技術は、表示装置に作り込まれた回路パターンを修正するため、修正によって回路パターンに凹凸ができる。したがって、所望の品質・精度を有する回路パターンを得ることが困難である。
また、従来、回路パターンの検査は、表示装置の完成後に行われていた。回路パターンはパターン層を複数積層することで表示装置に作り込まれるため、回路パターンの欠陥は表示装置の最上位層に形成されたパターンに対するもののみが修正可能であった。
本発明は上記事情に鑑みてなされたものであり、本発明の他の目的は、回路パターンの品質・精度を低下させることなく、表示装置に作り込まれた回路パターンの不具合発生を防止することにある。
上記課題を解決するために、本発明の第一の態様は、修正するパターンと同形状の標準パターンをもつマスクを対象パターンに応じて切り替えて使用し、基板を乗せた基板ステージとマスクを乗せたマスクステージを同期して移動させる機構とすることにより、基準点で基板とマスクの位置を重ね合わせた後、基板ステージとマスクステージを同期して欠陥位置まで移動させることができ、欠陥が大きい場合でも、基板上パターンとマスクパターンを精度良く重ね合わせてレーザ光を照射できるようにした。
また、検査装置から受け取る欠陥近傍画像から欠陥とパターンを検出し、その位置関係から基準点とレーザ照射領域をあらかじめ決定することにより、基板上パターンの基準点が見つからないという問題や、欠陥が大きいためにアライメントできないという問題を解決するとともに、基板上のパターンの基準点をサーチする時間を短縮できるようにした。
また、本発明の第二の態様は、上面にレジストパターンが形成された層をエッチングすることで形成されるパターン層を複数有する表示装置の製造方法であって、前記パターン層各々の形成工程において、前記エッチングに先立って、レジストパターンの検査工程と、前記検査工程の検査結果に従ってレジストパターンを修正する修正工程と、を行う。
ここで、前記修正工程は、前記検査工程での検査結果がレジストパターンのショート欠陥を示している場合、当該レジストパターンのショート欠陥部分をレーザ加工によりオープンにする処理を含むものでもよい。また、前記検査工程での検査結果がレジストパターンのオープン欠陥を示している場合、当該レジストパターンのオープン欠陥部分にレジスト材を再塗布する処理と、当該レジスト材の再塗布部分をレーザ加工して局所的にレジストパターンを再形成する処理と、を含むものでもよい。
本発明により、欠陥の修正精度が向上するだけでなく、修正の自動化が可能となるため、表示品質の向上とコスト低減を図ることができる。さらに、修正の自動化により、検査・修正が連続搬送で可能になり、検査・修正工程の処理時間低減と歩留まり向上によるコスト低減を図ることができる。
また、本発明によれば、レジストパターンに対して修正を行うのでパターン欠陥の修正によるパターン層への影響を低減できる。また、表示装置のパターン層各々の形成工程においてレジストパターンの検査および修正を行うので、各パターン層のパターン欠陥を修正できる。したがって、回路パターンの品質・精度を低下させることなく、表示装置に作り込まれた回路パターンの不具合発生を防止することができる。
以下、本発明の最良の実施形態につき、実施例の図面を用いて詳細に説明する。なお、実施例の説明では液晶表示装置の配線修正を例にとって説明するが、一般的に平面上に形成されたパターンの修正に適用可能であり、液晶表示装置に限定されるものではない。
一般的に、液晶表示装置は、2枚のガラス基板の間に液晶を挟み込んだ構造となっており、マトリクス配置した多数の画像の画素電極と対向電極および液晶で形成されるコンデンサ内の電界によって個々の画素の液晶の分子の向きを制御して電子潜像を生成し、透過型の液晶表示装置では、この電子潜像を背面に設けたバックライトの光の透過率を制御して可視化することで画像を表示するものである。アクティブ・マトリクス基板上には画素電極の印加電圧を制御する回路を形成し、カラーフィルタ基板上に例えば3色のカラーフィルタを形成することでカラー画像を表示する。
図1は、液晶表示装置のアクティブ・マトリクス基板に形成される画素の一例を説明する平面模式図である。図1には隣接する2画素分を示す。アクティブ・マトリクス基板に形成される各種の配線や電極は絶縁層を介在させた薄膜多層回路で構成される。図1において、ガラスを好適とする基板9上に多数のゲート配線31が1方向に平行に形成されている。ゲート配線31の一部に薄膜トランジスタのゲート電極31Aが画素内に突出して形成されている。ゲート電極31Aの上には活性層である半導体層(ここでは、a-Si層)32のアイランドがパターニングされている。
ゲート配線31を覆って図示しないゲート絶縁層が形成され、ゲート絶縁層で絶縁された複数のドレイン配線33がゲート配線31と交叉する他方向に平行に形成され、2本のゲート配線31と2本のドレイン配線33で囲まれた領域に1画素が形成される。ドレイン配線33の一部は半導体層32の上に延在して薄膜トランジスタのドレイン電極33Aとなっている。また、半導体層32の上で上記ドレイン電極33Aと近接して対峙し、薄膜トランジスタのチャネルを形成するソース電極33Bもドレイン電極33Aと同層に形成されている。
ゲート配線31やドレイン配線33の上層はパッシベーション層が成膜され、その上に画素電極34が形成されている。画素電極34はITOを好適とする透明電極であり、図示しないコンタクトホールを介してソース電極33Bに導電接続される。なお、ドレイン電極33Aとソース電極33Bは、動作中入れ替わるが、説明の便宜上、上記のように表記する。
ゲート配線31は走査配線、ドレイン配線33は信号配線であり、走査信号で選択されたゲート配線31に接続する薄膜トランジスタがオンとなり、そのドレイン配線33に供給される表示データに応じた電圧が画素電極34に生成される。この画素電極34と図示しない対向電極との間に当該画素電極34に生成される電圧に応じた大きさの電界が生成される。この電界により液晶の分子配向が制御されてバックライトからの照明光の透過量をコントロールして可視画素を形成する。
このような薄膜多層回路は、一般的にホトリソグラフィ技術により、ゲート電極31、ゲート絶縁膜、半導体層、ドレイン電極、画素電極の順に形成される。各層は重なる部分が存在するため、ショートや断線等のパターン異常は、次の層を形成する前に修正する必要がある。
ホトリソグラフィ技術による配線形成では、まず配線材料を基板全体に均一に成膜し、感光性樹脂であるホトレジストを塗布する。次に、回路パターンを形成したマスクを介して光を照射してホトレジストを感光させる。ポジ形ホトレジストの場合は、現像すると感光した部分が除去され、ホトレジストのパターンが形成される。さらに、エッチング工程、レジスト剥離工程を経て配線が形成される。
パターン形状異常の一つであるショートはエッチングされずに残った部分であり、レジスト残りやエッチング不足により生じる。特に、レジスト塗布時に付着した異物は表面張力により異物の周りにレジストが集まるため、巨大なレジスト残りが発生し、数画素にまたがる配線ショートが発生する。
図2は、複数の画素電極にまたがる巨大な短絡(ショート)21が存在する例を示す模式平面図である。ここでは、隣接4画素に跨って画素電極34が短絡した状態を示す。一般的なレーザ加工機は矩形形状のレーザを照射できるようになっており、ショート部分を数回に分けて除去する。しかし、図2のように画素電極のパターンが完全につぶれている場合には元の配線パターンが分からないため、電極の形状を高精度に修復することは困難である。
そこで、図3のようなショート21部分の配線パターンと同形状のレーザ透過パターン22を持つマスク5を介してレーザ光を照射することにより、ショート21の部分を除去して各画素毎の画素電極34のそれぞれに分離することで、高精度なパターン修正が可能である。
液晶表示装置の回路は数層のパターンを積層して形成されるため、パターン異常部以外にレーザを照射すると、既に形成された下の層が影響を受ける可能性がある。画素電極34のパターン異常の場合を例に取って説明する。一般的に、画素電極34はITO(Indium Tin Oxide)を使用し、ゲート配線31とドレイン配線33はアルミニウムを使用する。ITOは、短波長、例えば200〜300nmでの吸収率が高く、アルミニウムはその波長での反射率が高い。したがって、波長200〜300nmのレーザ光を照射すれば、ITOのみ除去することができる。所定の配線パターンを有するマスクを使用したレーザ修正では、修正するパターン異常部以外にもレーザ光を照射するが、材料のレーザ光吸収特性の差を利用することで、修正すべき箇所のみ除去することが可能である。
図4は、本発明に係るレーザ照射光学系構成の説明図である。また、図5は、本発明に係る修正装置のシステム構成の説明図である。レーザ発振器1から照射されたレーザ光100をビームエキスパンダ2で所定のビーム径に広げ、ホモジナイザ3でレーザ照射領域全面でのレーザ強度の均一性を確保する。整形したレーザ光をマスクステージ4上に設置されたマスク5を通過させ、さらに結像レンズ6と対物レンズ7を通過させた後、基板ステージ8に載置されたガラス基板9上の配線パターン10あるいは電極等の修正箇所11に照射する。
結像レンズ6と対物レンズ7はマスク5の像をガラス基板9上に投影するように配置されており、結像レンズ6と対物レンズ7の焦点距離の比(M=対物レンズ7の焦点距離/結像レンズ6の焦点距離)倍の大きさでガラス基板9上にマスク像を投影する。この光学系構成により、マスク5の透過部分を縮小した領域にレーザ光を照射することができる。
マスク5上には、ガラス基板9上に形成された配線パターン10の標準パターンを1/M倍したマスクパターン16が形成されている。マスクパターン16は,レーザ光100に対して反射率の高い材料、例えばアルミニウム等で形成するのがよい。
マスクステージ4と基板ステージ8は、レーザ照射光学系の光軸方向と垂直な面内で移動することができ、互いに同期して移動させることができる。マスクステージ4に搭載されたマスク5の像はガラス基板9上に1/Mに縮小されて投影されるため、マスクステージ4の移動量をVとすると、投影されたマスク像はV/M移動する。したがって、マスクステージ4の移動量と基板ステージ8の移動量の比がマスクパターン16と配線パターン10の大きさの比と等しくなるように、マスクステージ4と基板ステージ8を同期して移動させることにより、配線パターン10とレーザ照射パターンを一致させたまま移動させることができる。
前述の通り、マスクパターン16と配線パターン10の大きさの比は結像レンズ6と対物レンズ7の焦点距離の比と等しい。一般的に、結像レンズ6は固定であるため、マスクパターン16と配線パターン10の大きさの比は対物レンズ7によって決定される。したがって、対物レンズ7の交換機構と連動して、マスクステージ4の移動量と基板ステージ8の移動量の比を変更できる機構を付加することもできる。
マスク5を介して照射されるレーザ光パターンとガラス基板9上の配線パターン10の位置を合わせるためには、一般的に、それぞれのパターン上に基準点を設定し、それぞれの基準点の相対的位置が所定の値となるように位置合わせする。基準点の検出はパターンマッチング等の一般的な方法を用いることができる。パターンマッチングは、あらかじめパターンの特徴のある部分の画像をテンプレートとして登録するとともに、その画像上に基準点を設定し、実パターンの画像から登録した画像と一致する場所を検出することによって、基準点を検出する手法である。配線パターンの基準点は、このパターンマッチング手法によって容易に検出できる。
次に、マスク5を介して照射されるレーザ光パターンの基準点を検出する方法について図4を参照して説明する。まず、光源12から照射した照明光をレンズ13で集光してハーフミラー48aを介してマスク5に照射すると、結像レンズ6と対物レンズ7によってマスク5の像(マスク像、マスクパターン)がガラス基板9上に結像される。このマスクパターンを記憶するときには、マスク像以外のものが写らないようにする必要があるため、基板ステージ8上のパターン投影部20に投影するか、あるいはガラス基板9と同じ厚さを持つ板状の治具を基板ステージ8上に置き、該治具表面にマスク像を投影してもよい。
結像位置はガラス基板9の表面であるため、パターン投影部20の高さをガラス基板表面にあわせるが、ガラス基板9の厚さの変更に対応できるよう、対物レンズ7と基板ステージ8間の距離を変更できる機構を有する。基板ステージ8がガラス基板9をロード/アンロードするときの位置にあるとき、パターン投影部20が視野に入る位置に該パターン投影部20を取り付ける。これにより、修正すべきガラス基板を基板ステージ8にロードする度にレーザ照射領域の位置をチェックでき,誤修正することを防ぐことができる。
マスク5を照明する照明光として加工用のレーザ光を用いることもできる。一般的に、レーザを照射するために使用する結像レンズ6や対物レンズ7は、照射するレーザ波長に合わせた色補正をしたものを使用する。そのため、波長の異なる光を照明光として使用すると、屈折率の違いから、マスク像の位置がずれる。加工用のレーザ光を用いれば、このようなずれがなくなるというメリットがある。レーザ出力を小さくするか、マスク像投影部に加工されない材料を用いることで,容易に実現できる。
パターン投影部20に投影されたパターン像をハーフミラー48bを介して画像入力装置であるCCDカメラ14で撮影するとき、マスク全体の像を撮影するため、マスクステージ4をステップ送りして撮影する。このとき、マスクステージ4の移動量と撮影した画像を対応づけてマスク像記憶部60に保存する。
図5の修正装置のシステム構成は、レーザ発振器1とレーザコントローラ1A、レンズ切り替え機40、レンズコントローラ40A、マスクステージ4、マスクステージコントローラ4A、マスクステージのエンコーダ4B、画像入力装置14、基板ステージ8、基板ステージコントローラ8A、基板ステージのエンコーダ8B、マスク像記憶部60、基準点記憶部70、総合ステージコントローラ74を備える。また、画像データ取得部71、照射領域計画部72、装置コントローラ73、異物除去ノズル75を備え、各構成要素は図中に矢印で示した制御関係、被制御関係で接続されている。レーザ光パターンの基準点は、マスク像記憶部60に記憶したマスク像の配線パターンに設定した基準点に近い位置に設定する。
また、図4のハーフミラー48bの向きを90度回転させ、切り替え、レンズ15を対物レンズ7と同じ焦点距離のレンズに変更可能な機構を設けることにより、マスク像を直接CCDカメラ14上に結像させて撮影する方法を採用してもよい。
次に、レーザ光パターンと配線パターンを重ねたときのレーザ光パターンの基準点と配線パターンの基準点の相対的位置関係を求める方法を図4と図6を参照して説明する。なお、図6は、マスクと実パターンの基準点を取得する方法の第1例の説明図である。図4の基板ステージ8にガラス基板9を乗せ、正常な配線のパターン画像(A)をCCDカメラ14で撮影してモニタ64に表示する。このとき、図6に示すように、撮影した配線のパターン画像(A)とマスク像記憶部60に記憶されているマスク画像(B)を半透過画像の重ね合わせた合成画像(C)として表示する。
半透過画像を重ね合わせた合成画像(C)は、配線のパターン画像(A)の輝度値とマスク画像(B)の輝度値の平均値を算出することで容易に表示できる。画面上でのマスク画像は、マスクステージ4に同期して表示されており、マスクステージ4を移動すると、モニタ64の画面上のマスク画像も移動する。オペレータ操作により、二つの画像が一致するように基板ステージ8あるいはマスクステージ4を移動させ、一致したところで配線のパターン画像(A)の基準点とマスク画像(B)の基準点の相対的位置を記憶する。
図7は、マスクと実パターンの基準点を取得する方法の第2例の説明図である。配線のパターン画像(A)とマスク画像(B)をモニタ64に同時に表示する別の方法として、図7に示すように、マスク画像(B)から抽出した輪郭線であるマスクエッジ画像(B')を配線のパターン画像(A)に重ねて表示する方法としてもよい。マスクエッジ画像(B')は照明光が通過した部分と遮光された部分からなり、コントラストの高い画像である。したがって、その輪郭抽出は、一般的なエッジ検出手法を用いればよい。配線のパターン画像(A)とマスクエッジ画像(B')を重ね合わせて表示する方法としては、配線のパターン画像(A)が明るい(輝度値が高い)画像の場合は輪郭線位置に当たる画素を黒(輝度値が0に近い値)で表示し、配線パターン画像が暗い(輝度値が低い)画像の場合は白(輝度値が最大値に近い値)で表示すればよい。
図8は、マスクと実パターンの基準点を取得する方法の第3例の説明図、また、図9は、マスクと実パターンの基準点を取得する方法の第4例の説明図であり、図6で説明した配線のパターン画像(A)とマスク画像(B)を用いた他の基準点の取得方法である。図8では、配線のパターン画像(A)にマスク画像(B)の一部を上下に重ねて表示し、両画像の境界でのパターンの重なり方を比較する方法である。また、図9では、配線のパターン画像(A)にマスク画像(B)の一部を左右に重ねて表示し、両画像の境界でのパターンの重なり方を比較する方法である。
図10は、配線のパターンの基準点とマスク像の基準点との相対的位置関係を登録する別の方法を実現するレーザ照射光学系構成の説明図である。図4と同一符号は同一機能部分を示し、繰り返しの説明は省略する。図10は、図4の構成に光源12bとCCDカメラ14b、レンズ13b、15bを追加したものである。図10では、まず、光源12aで照明されたマスク像をCCDカメラ14bの撮像素子上に結像させて撮影するとともに、パターン投影部20上に結像させたマスク像をCCDカメラ14aで撮影する。CCDカメラ14a、14bで撮影した画像を図6〜図9に示した方法で同一画面に表示し、CCDカメラ14a、14bの位置を調整して一致させる。
次に、ガラス基板9を基板ステージ8に乗せ、光源12bを点灯し、ガラス基板9上の配線パターンが撮影できるようにする。CCDカメラ14a、14bで撮影した画像を図6〜図9の方法で同一画面に表示して、2つの画像が一致するようにマスクステージ4か基板ステージ8の位置を調整し、一致したところで配線のパターン画像の基準点とマスク像の基準点の相対的位置を記憶する。
修正部がレーザ照射領域より大きい場合は、レーザを数回に分けて照射し、当該修正部を除去する。このとき、パターンの基準点を起点として、ステップ移動しながら修正する。パターン基準点が修正部に含まれる場合にはパターンマッチングで基準点が見つからないため、隣接する配線のパターン画像の基準点を使用する。一般的には、最初の位置で基準点が見つからない場合は渦巻き状に視野を移動し、基準点が見つかるまでサーチする方法がとられる。
しかし、有効な基準点が見つかるまでサーチすると時間がかかり、所定の時間で修正することができなくなるだけでなく,欠陥を間違って基準点と判定する場合がある。そこで、検査装置から取得した欠陥近傍画像を使用して,使用するパターン基準点やステップ領域をあらかじめ計画して設定する。
ここで、レーザ照射領域の計画方法について説明する。まず,パターン基準点の検出方法について説明する。図11は、レーザ照射領域の計画方法の説明図であり、図11(a)は欠陥部を有する画素の配線パターンの平面図、図11(b)は抽出した欠陥部の説明図である。また、図12は、抽出したパターン基準点の説明図である。図11(a)の配線パターンを画像処理して図11(b)に示す欠陥画像を抽出するとともに、図12に示すパターンマッチングによりパターン基準点候補81a〜81eを検出する。
このパターンマッチングにおいて、マッチングするテンプレートの範囲に欠陥が存在すると検出誤差が大きくなるため、検出したマッチング領域80a、80b、80c、80d、80えと欠陥21の位置関係から欠陥21を含まないマッチング領域を選択する。このルールにより、図12の例では、マッチング領域80cは欠陥21を含むため除外される。残ったマッチング領域80a,80b,80d,80eの中から使用するパターン基準点を選択するが、例えば、基準点からの移動時間を短縮するため欠陥に最も近いパターン基準点81aを選択する。また、2つ以上の基準点を使用すると、位置合わせ精度がさらに向上するため、パターン基準点81aと81dを選択するのもよい。
次に、レーザ照射領域の設定法の一例を説明する。図13は、レーザ照射領域の検出法を説明する図である。図11に示した欠陥21は2値化画像で与えられているとする。図13に示すように、X座標値毎に欠陥21に含まれる画素数をカウントすることによってX軸への投影値を算出することができる。同様に、Y軸についても投影値を算出する。X軸,Y軸への投影値から得られた始点と終点から欠陥領域85を検出できる。一般的に、未加工部の発生を防ぐため、レーザ照射領域86は欠陥領域85より所定値だけ大きく設定する。ここで、パターン基準点81とレーザ照射領域86の相対的位置関係を記憶する。
図14は、レーザ照射領域の設定法の説明図である。また、図15は、レーザ照射領域形状の説明図である。欠陥21が大きいために、一回のレーザ照射で欠陥全体にレーザを照射できない場合には、図14(a)に示すように、数回に分けてレーザを照射する。レーザ照射領域86の大きさは既知であるため欠陥領域85の左上の点から所定量オフセットした点を始点として欠陥領域85を完全に含むようにレーザ照射領域86a、86b、86c、86dを設定する。未加工部の発生を防ぐため、各レーザ照射領域は若干量重ねて設定する。レーザ一回照射のときと同様に、パターン基準点81と各レーザ照射領域の相対的位置関係を記憶する。
レーザ照射領域86は、図14(b)に示すように六角形でもよい。一般的に光学系の視野は円形であるため、四角形より六角形の方が一度に照射される面積が大きくなり、ショット数を低減できるという効果がある。未加工部の発生を防ぐためレーザ照射域86を重ねて設定するため、複数回レーザを照射する領域が存在する。これを回避するため、図15(a)(b)のように角を切った形状や、図15(c)(d)のように円形形状にするとよい。
数回に分けてレーザを照射するとき、レーザ照射領域のステップ移動精度が高い必要がある。液晶表示装置の製造では基板サイズの大形化が進んでおり、1m超から2mの基板を使用する。それに伴い、基板ステージも大きくなっており、サブミクロンのステップ移動精度を確保するには、移動速度の低下やコスト増加を招く。そのため、修正装置では、一般的に、修正位置で再度アライメントする必要がある。しかし、前述の通り、アライメントに使用する基準点位置には制約があるため、必ずしも修正位置に基準点があるとは限らない。そこで、配線パターンや加工済み配線パターンを利用してアライメントする。
図16は、図11に示した欠陥を含む配線の修正途中のマスクアライメントの説明図である。この欠陥は図14に示したように、欠陥21を4回のレーザ照射で除去する。図16は図14(a)のレーザ照射領域86aにレーザを照射した後の図である。この次に、レーザ照射領域86bにレーザを照射するときにステップ移動するが、移動精度が不十分であるときには修正により形成された配線部87aと正常部87bのパターンを使って、レーザ照射領域86bを精密にアライメントする。この方法を用いれば、数回ステップ移動してもアライメントがずれることはない。また、レーザ照射領域よりも大きい欠陥であっても、修正済みパターン部分を重ねていくことで精密にアライメント可能である。
図17は、レーザ照射領域の他の設定方法を説明する図である。この設定方法は、パターン基準点81に対するレーザ照射領域86をあらかじめ設定しておき、図11(b)の欠陥画像と比較してレーザ照射する領域を選択する方式である。この方式は、あらかじめレーザ照射領域を設定できるため、例えば、図17(b)に示したように、TFT部91がレーザ照射領域86aの中心になるように設定することで図17(a)に示したパターン形状が複雑なTFT部91を高精度で加工できるだけでなく、レーザ照射領域の重なり部をレーザ照射による影響の小さいところに設定することが可能となる。
図18は、レーザ照射領域のさらに他の設定方法を説明する図である。あらかじめ設定するレーザ照射領域86は、図18に示したような形状でもよい。図18は、欠陥が発生する可能性がある領域のみ、レーザ照射領域を設定した例である。レーザを照射できない領域がある場合に有効な領域指定方法である。この例においても図11(b)の欠陥画像と比較してレーザ照射する領域を選択する。
図19は、マスクホルダの構成例の説明図である。前記したように、液晶表示装置のTFT基板は数層の薄膜を重ね合わせて形成する。そのため、数種類の修正パターンが存在する。一つ装置で一つのパターンしか修正できない構成とすると、修正層の変更や品種の変更毎にマスクを取り替える作業が必要となり、効率が悪い。そこで、図19(a)に示すような構造のマスクステージを使用するとよい。Xステージ52上に設置されたマスクホルダ51に数種類のマスク5を装着する。マスクホルダ51はXステージ52に対して相対的に移動できる構造となっており、修正対象によって使用するマスクを切り替えることができる。
Xステージ52とYステージ53は配線パターンとの位置合わせで使用する。θステージ54はマスク5と配線パターンの傾きを補正するために使用するが、マスク5をセットしたときの調整値を記憶しておき、マスク切り替え時には記憶した値で回転補正すればよい。スリットプレート56には矩形や円形斜め線などの単純な形状の穴が開けられており、マスクで修正したパターン形状を微調整したり、異物に集中的にレーザを照射して除去する等の用途に使用できる。
図19(b)はマスクステージの別の例である。マスクホルダ51はXステージ52に固定されており、Xステージ52とYステージ53を移動することでマスクを切り替えることができる。
さて、図4において、マスク5の代わりに液晶表示装置を用い、これに必要なパターンを形成することもできる。液晶表示装置を使用することで任意のパターンを作ることができるため、上記のようなマスクの切り替えをする必要がない。この際、レーザによる液晶表示装置のダメージを小さくするためには、パターンの縮小倍率を上げればよい。例えば、縮小率を1/100にすると、マスク位置にある液晶表示装置ではエネルギー密度が1/10000になるため、ダメージを小さくすることができる。
図20は、配線パターンと同形状のレーザ照射領域を設定する他のレーザ照射光学系構成の説明図である。図4、図10と同一符号は同一機能部分に対応し、繰り返しの説明は省略する。図20において、ミラー18は石英ガラス等の透明基板上にアルミニウム等のレーザ光の反射率が高い材料を蒸着して製作される。アルミニウム等で形成した反射部は、マスク5と同様に、レーザ光を照射したときに図3のようなレーザ照射領域となるようにパターンが形成されている。また、斜めから入射されたレーザ光を基板に垂直に照射するために、ミラーの反射面17はミラー18に対して角度をつけて形成されている。なお、ミラー18の代わりに、DMD(Digital Micromirror Device)を使用することで、CADデータから生成したパターン形状となるようDMDをコントロールし、任意形状の照射領域をもつレーザを照射することができる。
図21は、本発明のパターン修正装置の他の構成例の説明図である。図4、図10、図20と同一符号は同一機能部分に対応し、繰り返しの説明は省略する。図21において、レーザ発振器1から出力したスポット状のレーザ光をガルバノミラー98で反射させ、Fθレンズ97でマスク面に垂直にレーザ光を入射する。ガルバノミラー98の角度を変えることによりマスク5の面全体にレーザ光を照射することができる。この方式は、スポット光をスキャンするため、マスク5の面内で均一な強度でレーザを照射することが可能となる。
図22は、本発明のパターン修正装置の全体構成の一例を示す図である。図22(a)は、基板ステージ8上に基板9を設置し、基板ステージ8はY方向に移動する駆動軸を持つ。光学ユニット101は、図4、図10、図20、図21に示した光学系が設置されているユニットであり、X方向とZ方向に移動する駆動軸を持つ。レーザ照射位置の位置決めは基板ステージ8のY軸移動と光学ユニット101のX軸移動で行い、フォーカスは光学ユニット101のZ軸で合わせる。この構成は、フットプリントが大きくなるというデメリットがある反面、二軸を独立に制御できるため高精度に位置決め可能である。
図22(b)は別の装置構成例であり、光学ユニット101は光学ユニットステージ102に取り付けられている。光学ユニットステージ102はY方向に移動する駆動軸を持ち、光学ユニット101はX方向とZ方向に移動する駆動軸を持つ。この構成は、装置のフットプリントを小さくできるというメリットがある。
図23は、本発明のパターン修正装置の全体構成の他例を示す図である。図23(a)では、光学ユニットステージ103は床に設置されたレール104上に取り付けられている。一般的に、基板9は除振台105の上に設置するため、光学ユニット101が移動するときに発生する振動をガラス基板に伝えない構造であるだけでなく、除振台105を小さくすることができる。この構成において、図22(a)と同様に、基板ステージ8を移動させ、光学ユニットステージ102を固定する構成でもよい。
図23(b)は基板ステージ8を傾けた構造であり、ガラス基板9を基板ステージ8に吸着して移動させる。ガラス基板のロードとアンロードは、基板ステージ8を水平にして行う方法やガラス基板9を立てて保持することが可能な搬送装置を使用する方法などがある。装置の設置床面積すなわちフットプリント縮小のためには、基板ステージ8と水平面とのなす角度θの範囲は限定されないが、特に、80〜95度の範囲にあると、レーザ加工時に発生する加工屑の再付着やレンズ汚染を防止することができる。
図24は、光学ユニット101の付属装置の説明図である。図24(a)はレンズ保護カバーの一例を示す。レーザ加工時に発生する加工屑やヒュームがレンズ110の表面に付着することを防止するために、レンズ前面にこのようなレンズ保護カバーをつける。レンズ保護カバーを固定して使用するとカバー自体が汚れるため、フィルム状のレンズ保護カバー112をロール113に巻いて装着し、レーザ照射終了時に巻き取り、レーザ照射時には新しい部分を使用できるようにする。
レンズ110の交換を容易にするため、レンズカバーガイド111を取り付け、レンズ保護カバー112とレンズ110の間に隙間ができるようにする。加工対象が飛散物等の少ない加工物である場合には、定期的にカバーを取り替えればよいため、レンズ前面に取り付けられるキャップ状のカバーを取り付けてもよい。また、レンズ付近にヒュームを吸引するダクトを取り付ける方法やレンズ前面に窒素あるいは空気を吹きつけ、汚れの付着を防止する方法でもよい。
図24(b)は異物除去ノズルの一例である。パターン検査で検出される欠陥には異物も含まれるが、ガラス基板9の表面に付着しただけの異物116もある。このような異物116は異物除去ノズル115から窒素または空気を吹き付けることによって容易に除去することができる。
図25は、異物除去を実施するときの修正フローの説明図である。まず、修正装置にガラス基板をロードし(ステップ1、以下S1のように表記する)、欠陥位置に移動後(S2)、画像を取得する(S3)。窒素または空気を吹き付けて異物を除去した後(S4)、再度画像を取得する(S5)。窒素または空気を吹き付ける前後の画像を比較して(S6)、画像に差があれば異物が取り除かれたと判定してレーザを照射せず、画像に差がなければ異物が固着していると判断してレーザを照射する(S7)。次の欠陥存在をチェックし(S8)、欠陥があれば上記のステップを繰り返し、欠陥が無くなった時点でガラス基板をアンロードする(S9)。
欠陥修正の要否を図11に示すような欠陥近傍画像で判定できる。図12のようにパターン基準点81a〜81eが検出できるので、基準点との相対的位置関係から修正が必要な欠陥と修正不要な欠陥を容易に判定することができる。修正が不要な部分については、レーザを照射する必要はない。本実施例により、数画素にまたがるショート欠陥が存在しても、一括修正が可能となるため、コスト削減とともに修正精度向上を図ることができる。
図26は、本発明の実施例2を説明するプロセス図である。図26は実施例2での液晶パネルに用いるスイッチング素子である薄膜トランジスタが形成されるガラス基板の製造プロセスを示したものである。このスイッチング素子が形成されたガラス基板は通称「TFT基板」もしくは「アレイ基板」と呼ばれ、以下TFT基板と称する。実施例2では、先ず、TFT基板の製造に供するガラス基板に無機物もしくは有機物の成膜を施す(S10)。代表的な無機物としては、TFT基板の配線を構成する金属材料が挙げられる。成膜が完了したガラス基板にはレジスト塗布、焼成を施す(S11)。
ここで、レジストとは感光性の材料であり、成膜した材料を所定の形状に加工するために用いられるものである。次に、レジストに露光を施す(S12)ことにより、TFT基板を構成する配線パターンでレジストを露光させる。次に、レジストを現像することにより(S13)、TFT基板を構成する配線パターンと同一のレジストパターンが成膜されたガラス基板上に残る。
次に、ガラス基板上に形成されたレジストパターンの外観検査を実施する(S14)。外観検査では、ガラス基板に成膜された成膜材料とレジストパターンとのコントラストが明瞭に出る。従って、異物等が核になって、レジスト形状が異常となった部位が判別できる。次に、レジストパターンの外観検査に基づき、致命欠陥位置情報抽出を実施する(S15)。外観検査では一般管理基準を超えた形状異常、寸法異常となったパターン欠陥を致命欠陥候補として抽出する。レジスト形状の異常としては、本来独立しているべき複数の部位がつながってしまうショート不良と本来つながっているべき部位が欠損しているオープン不良に大別される。実施例2では特にショート不良を対象として説明する。
次に、液晶パネルを構成する配線パターンの設計情報に基づき、致命的な領域の位置情報を求め、レジストパターンの外観検査によって得られるレジストパターン形状、寸法、位置情報から、真の致命欠陥に関する位置情報を抽出する。ここで、致命的なレジストパターンの形状、寸法、位置情報に関する情報は配線パターンの形状、および電気特性から求められるものであり、TFT基板の設計仕様により異なる。
しかる後に、レジストパターン修正を実施する(S16)。レジストパターン修正では、致命欠陥位置情報を抽出した際に同時に獲得した致命欠陥の形状、寸法を用いて加工諸元を決定する。この場合のレジストパターン修正は既に他の実施例で説明した様に、ショートしたレジストをレーザ等により除去するものである。レジストパターン修正が完了したガラス基板は欠陥が存在しないので、次工程であるエッチング(S17)で、成膜した材料のうちレジストが覆い被さっていない部分が加工される。そして、レジスト剥離が完了することにより(S18)、成膜した材料が正規のパターン形状でガラス基板上に残る(S19)。これら成膜(S10)からレジスト剥離(S18)までの一連の処理を所定
数繰り返すことによりTFT基板が完成する。
図27は、本発明の実施例3を説明するプロセス図である。図27では、液晶パネルに用いるTFT基板の製造プロセスを示したものである。実施例3では、先ずTFT基板の製造に供するガラス基板に無機物もしくは有機物の成膜を施す(S30)。ここで成膜される代表的な無機物としてはTFT基板に設けられる透明金属であるITO(Indium Tin Oxicide)が挙げられるので、以下ITO膜を代表例として説明する。
成膜が完了した段階で、外観検査を実施する(S31)。ここで、ITOは透明膜であるために、ITO上に存在する異物とITOより下層に存在する異物との両方を認識できる。この成膜完了段階での外観検査の結果は成膜後外観検査結果の格納(S41)という処理によりデータを蓄積する。次に、TFT基板にはレジスト塗布と焼成(S32)、露光(S33)、現像(S34)を施した後にレジストパターンの外観検査を実施する(S35)。レジストパターンの外観検査の結果はレジストパターンの外観検査の結果の格納(S42)という処理によりデータを蓄積する。
ここで、レジストパターンの外観検査の結果には成膜上のレジストの形状異常位置情報とレジストは存在していないが透明膜下に存在する異物の両方が観測される。そこで差分処理(S43)によりレジストの塗布と焼成以降に発生したレジストパターンの形状異常部位だけを分離抽出する。分離抽出したレジストパターン形状異常部とTFT基板の設計仕様から致命欠陥位置情報抽出を実施する(S36)。
しかる後に、レジストパターン修正を実施し(S37)、エッチングを実施し(S37)、レジスト剥離を実施することにより(S39)、成膜した材料が正規のパターン形状でガラス基板上に残る。これら成膜(S30)からレジスト剥離(S39)までの一連の処理を所定回数繰り返すことによりTFT基板が完成する。
図28は、本発明の実施例4を説明するプロセス図である。図28では、先ず、TFT基板の製造に供するガラス基板に無機物もしくは有機物の成膜(S50)を施す。次に、外観検査を実施する(S51)。ここで、成膜上に存在し,かつ所定の管理寸法以上の異物を抽出する。次に、異物除去を実施する(S52)。ここでの異物除去には接触式の除去手段と非接触の除去手段の二種類の除去手段が適用可能である。接触式の除去手段としてはブラシの回転運動,往復運動振動に代表されるようにブラシを成膜上の異物に当てて除去する手段がある。また、ピンセットに代表されるような器具を用いて除去する手段、針状の構造体や刃物に類似する構造体で除去する手段が適用できる。そして、この際に異物除去座標情報の格納処理を実施する(S63)。一方、非接触の異物除去手段としては、レーザ光線および高圧流体が挙げられる。
次に、TFT基板にはレジスト塗布と焼成(S53)、露光(S54)、現像(S55)を施した後に、レジストパターンの外観検査を実施する(S56)。次に、致命欠陥位置情報抽出(S57)を実施後に、レジストパターンを修正し(S58)、レジストパターン修正結果の格納を実施する(S64)。しかる後に、エッチング(S59)、レジスト剥離を実施する(S60)。
次に、修正数管理基準判定に進む(S61)。ここでは、既に検査を実行したために蓄積されている異物除去座標情報とレジストパターン修正結果を用いる。異物除去座標情報から修正した異物の数が管理基準を満たさない場合は成膜に異物が多いことを意味しており、工程管理警告を発して(S65)、成膜装置内点検および対策を促す。また、ジストパターン修正結果の格納(S64)の結果が修正数管理基準を満たさない場合はレジスト塗布と焼成(S53)から現像(S55)までの間で不具合が発生していることを表しており、これも先程と同様に工程管理警告を発して(S65)、該当する装置の点検および対策を促す。勿論、修正数が管理基準を満足している場合にはTFT基板に対して次の成膜を施し(S62)、TFT基板を形成していく。これにより、常時工程を監視することが可能となり、修正するだけではなく、設備保全のタイミングの適正化を図ることができる。
以下、液晶表示装置の配線修正の実施例5を説明する。実施例5では、実施例1と同様に、液晶表示装置の配線修正を例にとって説明するが、平面上に形成された一般的なパターンの修正に適用可能であり、液晶表示装置に限定されるものではない。
図29は、液晶表示装置の配線パターンに断線がある場合の修正を説明する図である。
TFT基板におけるTFTアレイの形成工程、特に電極・配線の形成工程において、異物付着などの原因で図29に示したように、配線(ここでは、ドレイン配線33)に断線216が発生する場合がある。そのため、例えば、ドレイン配線33が形成された後で外観検査などにより該ドレイン配線33の断線の有無を検査し、断線を発見した場合には必要に応じて修正する。尚、ゲート配線31についても同様に断線が発生する場合があるが、以下に述べるようにドレイン配線の断線修正と同様に修正することが可能であるし、TFT基板の製造工程の初期段階のため、全配線、電極パターンを剥離除去して再製作しても良い。
図30は、実施例5の断線欠陥修正方法を実施するのに好適な修正装置の構成を示す図である。本装置は、実施例1で示したレーザによるショート修正が可能である自動修正装置の構成に断線修正用の材料塗布機構206が付加したものである。なお、符号201は修正統合コントローラ、204はレーザヘッド駆動軸、207はレーザ、208は欠陥部である。
図30には、材料塗布機構206をパターン修正装置光学系202の光軸に対して斜めに配置し、この斜め方向から断線修正用の材料を塗布する構成を示す。図31は、断線修正用の材料の塗布状態を説明する材料塗布機構の拡大図である。実施例5により、パターン修正装置光学系202の観察像で実時間で塗布位置や材料塗布状態を確認し、塗布機構制御装置203で制御することが可能となる。例えば、図31に示すように、材料塗布機構206を電子回路基板210(例えば、TFT基板)に接触させて塗布する際には、基板210に過度に接触して基板210を損傷させないように、または塗布機構206を損傷させないように基板210に塗布機構206が接触した状態を検出する必要がある。パターン修正装置光学系202でモニタすることで好適な接触状態で塗布材料を供給することが可能となる。
以下に、TFT基板の配線の一部が欠落している場合、すなわち断線状態にある場合を例に、断線欠陥を修正する手順について詳細に説明する。ここでは、図29に示した断線欠陥216を修正する場合を例としてについて説明する。検査装置(図示せず)により断線欠陥216が検出されたTFT基板210を搬送ロボット(図示せず)などにより修正装置に搬送し、ステージ209上に設置する。一方、検査装置で検出された欠陥位置情報を生産ラインのネットワーク205を介して受信し、その情報に基づいてステージ209を駆動して修正装置の光学系視野内に断線欠陥位置216を再現する。
その後、自動焦点機構(図示せず)により光学系全体をステージ209のTFT基板210を設置する面に垂直なZ方向に移動してTFT基板210表面に焦点を合わせる。基板ステージ209により基板210をZ方向に移動させても良い。光学系202を移動させる場合には、レーザ発振器および照射光学系も一体として移動させることでレーザ光学系の光軸を一定に保つことが可能である。ここで、レーザ光学系に搭載されているCCDカメラにより撮像された画像から、修正可能な断線欠陥216であるかを判定する。修正可能な断線欠陥216と判断されればソース電極33上に塗布材料(液状)243を塗布する。
異物が原因で断線欠陥216が発生し、異物が残っている場合には、パターン修正装置のパルスレーザにより異物を除去してから断線欠陥216修正を行う。また、必要に応じて、材料塗布243により接続する配線の酸化膜をレーザ照射などにより除去し、接続抵抗を減少させる。
材料塗布機構206の先端は、塗布材料243により固化しないように格納容器内に置かれている。これは、材料塗布機構243の先端部を一定状態に保つためである。断線欠陥216位置をパターン修正装置光学系202の視野のほぼ中心部に移動し、材料塗布機構206の先端部をこの視野中心部に来るように移動する。材料塗布機構206は、この部分のみが微小移動できる機能を有し、画像認識から自動で断線欠陥216位置への移動が可能である。
この状態から、材料塗布機構206を徐々に降下させると、先端部がドレイン線211の表面に接触する。さらに降下させると、材料塗布機構206の先端部が弾性力によりたわみ,観察視野内で先端方向にシフトする。このシフトを観察することで、材料塗布機構206の先端部がドレイン線211に接触したことを確認できる。常に一定のシフト量をモニタすることで、材料塗布機構206の降下量を安定化させることが可能である。また、シフト量を大きくしすぎるとソース電極33に力が加わり、ソース電極33に損傷を与える可能性があるため、このシフト量は,例えば数μm程度に設定する。接触を確認後、材料塗布機構206で材料の供給を行う。
図32は、材料塗布機構の説明図である。図33は、図29の断線欠陥216の部分に材料塗布機構で修正用の材料を塗布した状態の説明図である。材料塗布機構206は、金属膜の原料となる金属錯体を充填したピペット、例えばガラス材で形成されたガラスピペットである。材料塗布機構206は図32(a)に示すように、ピペット内に液体の塗布材料243を充填した構造をしている。このピペット内の材料243を図32(b)に示したように機械的手段238で押出したり、ガスによる圧力(材料との反応を抑制するため不活性ガスがよい)により断線欠陥216部に微量に塗布材料243を供給する(図33、図31)。塗布材料243を塗布する際は、図31に示すように、接続部を十分に確保し、配線接触抵抗を低減して配線接続が十分行われるよう正常部上にも塗布材料243を供給する。
図34は、断線欠陥の修正法の説明図である。塗布材料243を供給した後、図34(a)に示すように、塗布形状の整形を行う。この成形には、実施例1に示したように、マスクによる形状整形加工を行う。一般に、金属膜は熱加工による加工のため強い加工エネルギーが必要なため、加工条件やTFT基板210の積層状態によっては下地層に損傷を与える可能性がある。そのため、塗布材料243が金属錯体の状態である時に光化学反応による分子解離を主にした加工によるパターン形成を行うほうが望ましい。
アニール(熱処理)による金属膜の形成で体積変化が大きい場合は、仮アニールで一次処理をしてから整形処理すると、アニール後の体積変動が小さくより良い。アニール処理は赤外線ランプや基板ヒータ、あるいはレーザ照射により行う。レーザ照射では、塗布材料243に吸収のあるレーザ光を選択するのが好適である。レーザ照射による塗布材料243が除去加工されないように、レーザは連続発振を用い、連続的な熱処理を行う方が望ましい。さらに、これらレーザ照射などによるアニール工程では、断線修正部に不活性ガスを供給してアニール時の酸化および塗布材料243の金属膜が形成する前の材質変化を抑制することで信頼性の高い配線接続を行うことができる。
マスク加工により電子回路パターンの形状に整える(図34(a))。マスク加工では、実施例に示すように、パルス幅数nmのパルスレーザを用いることで熱影響の小さい加工が可能である。その後、アニールにより金属膜を析出し、断線修正を完了し、修正配線219を得る(図34(b))。必要に応じて金属膜形成後に配線整形の工程を入れても良い。
以上、TFT基板210のソース電極33の工程での断線欠陥216の修正について示したが、他のTFT層での欠落したパターン修正でも同様な処理により修正が可能である。さらに、TFT基板には残らない、生産工程上必要な中間層のパターンにも同様に適用することができる。この場合も含め、塗布材料243が光化学反応により材質が変動する場合は、塗布材料243や材料塗布機構206部を遮光し、安定した材料供給ができるような構造とする。
図35は、本発明の実施例5の修正作業のフローを説明する図である。上記した断線欠陥修正機構206により、図35に示すような修正システムが可能となる。外観検査などによる欠陥検出装置により検出・分類された電子回路基板の各種パターン欠陥は以下の手順で修正する。
[パターンA]・・ショート欠陥
図35において、ショート欠陥修正の手順を説明する。まず、電子回路基板210のパターンに合ったマスクを選定する(S1A)。修正対象層の材料,パターン(積層構造)などによりレーザエネルギーや波長,ショット数などの加工条件を選定する(S2A)。必要に応じて複数の条件を段階的に適用する。パターンを電子回路基板と合わせ、レーザによるマスク加工を行う(S3A)。1つのレーザ照射領域で修正領域が入らない場合は、複数に分割して、順次修正を行う。加工状態はパターン修正装置光学系202の撮像画像で実時間モニタし、修正完了か再加工か判定する(S4A)。
[パターンB]・・異物欠陥
異物が存在する場合、該異物は存在箇所や大きさにより修正対象層には影響していなくても、次の積層パターンに影響する場合がある。そのため、予め除去しておくことが基板210の生産工程上望ましい。ショート修正同様に、異物種(色や形状で判断)や異物発生位置、積層構造などにより加工条件を選定する(S1B)。この場合は、ショート修正同様にマスク修正を実施しても良いが、レーザエネルギーを有効に活用するため、矩形または円形にレーザ光を絞って異物を加工するのが有効である(S2B)。加工は観察光学系でモニタし,修正完了か判断する(S3B)。回路パターンに異物があり、除去加工を実施した場合に、パターンに影響があるかもしれないが、その場合は、次に説明する断線修正を行う。
[パターンC]・・断線欠陥
断線欠陥の修正手順について説明する。まず、材料塗布を行う(S1C)。塗布状態を観察光学系でモニタし、断線欠陥部が塗布材料で満たされているか判定を行う(S2C)。材料の体積変動が大きい場合や、接続信頼性を向上するのに材料をより安定化させるために、仮アニールで一次熱処理を行う(S2C)。前記した[パターンA]の手順でマスク修正を施し、電子回路パターンに合わせた形状に整形する(S4C)。整形後、アニール(S5C)で金属膜を析出する。修正状態は修正装置光学系202で実時間モニタし、修正完了の判断を行う(S6C)。以上の修正手順により修正された基板210は次工程へ搬送される。
図32に示した非接触型の材料塗布機構206では、実施例1で説明したマスク修正方式により、材料塗布後のパターン整形が可能であることから、従来のようにソース電極33幅に高精度に合わせた材料塗布は不要である。非接触型の材料塗布機構206により欠陥部を含む広領域に材料を塗布し、マスク加工によりパターン形成を行う。すなわち、不要な部分はレーザ加工により除去加工し、断線欠陥216のある配線上には塗布材料243が残り、これをアニールすることで金属配線を形成することができる。
この方式では、材料塗布機構206を基板210に接触させることなく塗布することができるため、材料塗布機構206の制御量、すなわち制御時間を短縮することができるため、修正処理時間が短くなる。この場合、材料塗布機構206の位置精度はレーザ修正光学系202と材料塗布機構206の位置補正を予め実施しておき、塗布材料243が断線欠陥部216に塗布材料243が正常部と重なって塗布する程度の位置精度を得る。塗布領域はマスク加工による整形工程があるため、必ずしもソース電極33の配線幅内である必要はない。断線欠陥部216が覆われていれば良い。図32(b)では基板に対して垂直方向に材料塗布機構206を配置し、塗布材料243を射出塗布しているが、図31で説明したように、斜方からでも良い。塗布状態はパターン修正装置光学系202の観察画像によりモニタし、射出量・位置の制御を行う。この方式では、接触型の材料塗布機構206よりも断線欠陥修正処理速度を向上することが可能である。
図36は、マスク交換機能を備えたレーザによる電子回路パターン修正装置を用いた検査・修正システムを説明する図である。ここでは、基板210を停止することなく、検査・修正工程を連続搬送により処理するシステムを説明する。検査工程250では、撮像素子225、例えばCCD素子を備えたラインセンサ227などにより基板210を撮像し、画像処理装置225で欠陥検出画像処理を行い、欠陥を顕在化する。ラインセンサは大型基板も検査可能なように1軸方向に複数個並べたり、複数列に千鳥状に並べる。照明は、落射(撮像素子と同軸にある)、斜方照明228、透過照明229を単独で用いたり、複合して照射したり、照明を切替えたりすることで欠陥の顕在化を容易にするだけではなく、欠陥種の分類も可能にする。また、必要に応じて偏光照明・偏光検出をすることで、偏光特性が変化させる有機物などから構成される薄膜や異物を顕在化しやすくする。検出画像は画像処理装置225に送られ、ここで必要な画像処理を施し、欠陥検出を行う。
これら検査工程250により検出された断線、ショート、異物の欠陥種と座標情報は生産ラインのネットワーク205を介して検査修正管理サーバ224にデータが送られる。
ここで、生産上致命となる欠陥、すなわち、配線ショートや断線欠陥、工程上問題となる異物などを抽出し、修正対象欠陥の絞込みと修正方法を決定する。
これらのデータを修正工程251の修正制御PC226に送る。また、欠陥数がある一定値を超え、生産工程に問題があると推測される場合には、生産管理PC(図示せず)にネットワーク205を通じて情報を送り、工程対策を実施するように警告する。
修正工程251は、3つの修正ヘッドである異物除去ヘッド(レーザ光学系)230、材料塗布ヘッド(材料塗布機構)206、ショート欠陥修正兼パターン形成ヘッド(レーザ光学系)232から構成されている。連続搬送での処理効率を上げるために、それぞれの修正ヘッドが独立に修正を行う。これらは、基板搬送方向に対して直行方向に移動して欠陥箇所を修正する。基板は常時搬送され移動しているため搬送方向にも移動するが、基板搬送速度に追従するだけの移動量があればよく、搬送方向に一定量移動したら原点に戻る機構を有する。原点に戻る際に欠陥位置が流れてきた場合は、これに追従して搬送方向に修正ヘッドを移動させる。修正もれが無いように、どの欠陥から修正するかなどの座標や対象欠陥などの修正手順は、検査修正管理サーバ224により決定されている。異物除去レーザ光学系230は基本的に異物を除去する機能であるが、必要に応じてショート修正用に用いることも可能である。
検査工程250は一定時間で処理されるが、修正工程251は修正対象の欠陥数により処理時間が決まる。すなわち、欠陥数により処理時間が変動する。そのため、修正工程251の方が処理時間を要する場合、基板210の搬送が滞ってしまう可能性がある。そのため、基板210の搬送には、基板半分から1基板分程度の間隔を空けて搬送し、修正工程251での処理時間の差はこの搬送間隔で調整する。すなわち、検査工程250と修正工程251で異なる搬送速度を実現するための速度制御機能233を設ける。これらは、修正対象数によっては各修正ヘッドを複数設けて処理速度を速めても良い。なお、符号209はステージである。
図37は、マスク交換機能を備えたレーザによる電子回路パターン修正装置を用いた他の検査・修正システムを説明する図である。図36と同一符号は同一機能部分に対応する。この構成は、修正工程251の搬送系209を2分岐にした例を示す。図36と同様に各修正ヘッドは搬送方向と搬送方向と直交方向に移動し,欠陥位置座標に移動し、修正を行う。搬送系は2分岐にするが修正ヘッドは1ユニットとし,両搬送系にまたいで移動して修正する。例えば、1つの欠陥に対してショート修正処理を行っている時間は異物除去ヘッド230と材料塗布ヘッド206が空いてしまうため、この空きヘッドでもう一方の基板の異物除去(ショート修正も可能)や断線部の材料塗布を行う。
また、搬送系209はそれぞれ独立に速度制御が可能であり,修正工程で2搬送系を有することで搬送調整も行い,検査工程250の処理速度を一定に保てるようにする。これらは,速度制御機能233で搬送速度の常時モニタし、制御を行い、検査修正管理サーバ224で修正方法、修正工程251の搬送方法を決定する。
以上、検査・修正工程を連続搬送により処理するシステムを説明したが、搬送をステップ送りにして検査修正しても良い。その場合、検査用カメラにはラインセンサではなく停止している際にエリアセンサで撮像を行う。また、連続搬送のようにラインセンサを用いる場合には、ステップ搬送中に動画を撮像する。修正工程ではステップ送りして停止した際に修正を行う。この場合も、検査ラインと搬送ラインは異なるステップと速度で移動する。さらに、検査工程は連続搬送、修正工程はステップ搬送でも上記検査・修正は達成できる。
以上、電子回路基板210を搭載するステージ209を装置設置面に対して水平にした場合について説明したが、電子回路基板210が大型化した場合には装置の設置面積が拡大する。そこで、図38に示すようにすることもできる。すなわち、図38は、電子回路基板の他の設置態様を説明する図である。異物除去ヘッドと材料塗布ヘッドが搭載された修正ユニット230は、移動ステージ235に設置され、基板210の任意の点を修正することができる。これまで説明した検査・修正システムの搬送形態を、図38に示したように、設置面に対して垂直または垂直に近い向きにすることで、装置設置面積を小さくすることが可能である。この場合、検査・修正工程の光学系も基板210の法線方向に構成することで、水平搬送と同様に検査・修正が可能である。
本発明の実施例8として、TFT(Thin Film Transistor)基板の製造方法を例にとり説明する。
TFT基板の製造プロセスは、ガラス基板上にゲート電極を形成する工程(ゲート電極形成工程)と、ゲート電極が形成されたガラス基板上にゲート絶縁膜を形成する工程(ゲート絶縁膜形成工程)と、アモルファス・シリコン等のTFT活性層(アイランド)を形成する工程(アイランド形成工程)と、ドレイン・ソース電極を形成する工程(ソース・ドレイン形成工程)と、保護膜を形成する工程(保護膜形成工程)とを含む。ここで、少なくとも、ゲート電極形成工程、アイランド形成工程、および、ドレイン・ソース電極形成工程(これらの工程を回路パターン形成工程と呼ぶ)は、回路パターン(ゲート電極、アイランド、ドレイン・ソース電極)の形成に、レジストパターンによるエッチングが利用される。実施例8では、これらの回路パターン形成工程各々において、エッチングに先立って、レジストパターンを検査し、その検査結果に従ってレジストパターンを修正することにより、回路パターンに生じるであろう不具合を、該回路パターンの形成前に修正している。
図39は、本発明の実施例8が適用された回路パターン形成工程を説明するためのプロセス図である。ここでは、回路パターンがドレイン・ソース電極である場合を例にとり説明する。
先ず、成膜工程により、ゲート電極、ゲート絶縁膜およびアイランドが形成されたガラス基板(中間品)上にドレイン・ソース膜を形成する(S3901)。次に、レジスト膜塗布・焼成工程によりレジスト液を塗布し焼成して、ドレイン・ソース膜上にレジスト膜を形成する(S3902)。次に、後述する露光工程を行って、下位層の回路パターン(ゲート電極、アイランド)に対するレジストパターンの修正履歴を、マスク投影パターンに反映させ(S3903)、現像(S3904)することで、ドレイン・ソース膜上にレジストパターンを形成する。
それから、レジストパターンの外観検査を行って、ショート欠陥、オープン欠陥、異物混入等の欠陥を検出する(S3905)。ここで、レジストパターンの外観検査には、例えば既存のパターンマッチング技術を利用できる。すなわち、エア吹き付けなどによりレジストパターン上の除去可能な異物を吹き飛ばした後、レジストパターンの撮像画像を予め用意しておいたレジストパターンの正常画像と比較して両者の不一致部分を検出する。次に、検出した不一致部分を、欠陥の種別(ショート、オープン、異物混入等)毎に予め用意しておいたレジストパターンの欠陥画像と比較する。そして、最も類似する欠陥画像に対応する欠陥種別を不一致部分で生じている欠陥として検出する。
S3905において、レジストパターンの外観検査に異常がない場合、エッチングを行なって(S3907)、レジストパターンを剥離することにより(S3908)、ドレイン・ソース電極を形成する。
一方、S3905において、レジストパターンの外観検査に異常がある場合、後述するレジストパターン修正工程を行って、ドレイン・ソース電極に対するレジストパターンを修正すると共に、ドレイン・ソース電極に対するレジストパターンの修正履歴を生成する(S3906)。それから、エッチングを行なって(S3907)、レジストパターンを剥離することにより(S3908)、ドレイン・ソース電極を形成する。
図40は、図39に示すレジストパターン修正工程(S3906)を説明するためのプロセス図である。
先ず、図39に示すレジストパターン検査工程(S3905)で検出された欠陥種別を確認する(S4001)。欠陥種別がショート欠陥の場合はS4002〜S4004のショート欠陥修正工程に進み、オープン欠陥の場合はS4005〜S4007のオープン欠陥修正工程に進み、そして、異物混入欠陥の場合はS4008〜S4011の異物混入欠陥修正工程に進む。
(1)ショート欠陥修正工程
図39に示すレジストパターン検査工程(S3905)において、図41(A)に示すような、本来分離されているべきレジストパターン4100、4101が部分Aにより互いに繋がっているショート欠陥が検出された場合、図41(B)に示すような、該部分Aにのみレーザ光を照射するための開口4103が形成された加工用マスク4102を選択する(S4002)。図3のようなショート21部分の配線パターンと同形状のレーザ透過パターン22を持つマスク5を介してレーザ光を照射することにより、ショート21の部分を除去して各画素毎の画素電極34のそれぞれに分離する。それから、修正するレジスト膜の材料、膜厚等に基づいてレーザ光の光強度、波長、ショット(パルス)数等の加工条件を選定する(S4003)。次に、図41(C)に示すように、選定した加工用マスク4102の部分Aへの位置合わせを行うと共に、選定した加工条件に従いレーザ光を、該加工用マスク4102を介してショート欠陥位置に照射する。この際、撮像装置で部分Aを撮像し、撮像した部分Aの画像に対して分光波形(例えばRGB強度)解析を行うことにより部分Aの分光特性を調べ、該分光特性から部分Aの残膜の厚みを測定し、該測定結果に応じてレーザ光の加工条件(ショット数等)を変更するようにフィードバック制御してもよい。例えば、1ショット当たりの膜厚の変化を測定し、測定結果を用いて残膜を除去するのに必要なショット数を計算して加工条件を変更してもよい。あるいは、部分Aの残膜の厚み分布を測定し、部分Aにおいて他の部分に比べ厚みが大きい(小さい)部分の光強度を強く(弱く)するように加工条件を変更してもよい。これにより、図41(D)に示すように、部分Aを除去して、レジストパターン4100、4101を分離する(S4004)。
(2)オープン欠陥修正工程
図39に示すレジストパターン検査工程(S3905)において、図42(A)に示すような、本来繋がっているべきレジストパターン4200、4201が部分Bにて互い分離しているオープン欠陥が検出された場合、図42(B)に示すように、部分Bに対してレジスト液4202を局所的に再塗布し、焼成する(S4005)。この際、撮像装置で部分Bを撮像し、撮像した部分Bの画像に対して分光波形解析を行うことにより部分Bの分光特性を調べ、該分光特性から部分Bに再塗布したレジスト液の膜厚あるいは硬度を測定し、該測定結果に応じてレジスト液のショット数等の塗布条件やヒータ温度等の焼成条件を変更するようにフィードバック制御してもよい。例えば、1ショット当たりの膜厚の変化を測定し、測定結果を用いて所定のレジスト膜を形成するのに必要なショット数を計算して塗布条件を変更してもよい。あるいは、部分Bに形成されたレジスト膜の硬度分布を測定し、部分Bにおいて他の部分に比べ硬化度合いの小さい(大きい)部分のヒータ温度を強く(弱く)するように焼成条件を変更してもよい。
なお、S4005に先立って、部分Bにレーザ光を照射して微細な凹部を形成し、あるいはラフネス形成してもよい。このようにすることで、レジスト液に塗布位置の自己アライメント機能を持たせることが可能となる。
次に、図42(C)に示すような、部分Bにレジストパターンを再形成するための再形成用マスク4203を選択する(S4006)。また、再塗布したレジスト膜の材料、膜厚等に基づいてレーザ光の光強度、波長、ショット数等の加工条件を選定する。それから、図42(D)に示すように、選定した再形成用マスク4203の部分Bへの位置合わせを行うと共に、選定した加工条件に従い、該局所露光用マスク4202を介して部分Bにレーザ光を照射し整形する(S4007)。これにより、図41(E)に示すように、部分Bにレジスト膜を形成して、レジストパターン4200、4201を接続する(S4007)。
なお、レジスト液の塗布はおおよその精度で行い、前述したように、回路パターンと同形状のマスクパターンを通してレーザを照射し、形状整形することも可能である。すなわち、図3のようなショート21部分の配線パターンと同形状のレーザ透過パターン22を持つマスク5を介してレーザ光を照射することにより、ショート21の部分を除去して各画素毎の画素電極34のそれぞれに分離する。
(3)異物混入欠陥修正工程
図39に示すレジストパターン検査工程(S3905)において、図43(A)に示すような、エア吹き付けなどでは除去できない異物4301がレジストパターン4300の部分Cに混入している異物混入欠陥が検出された場合、図43(B)に示すように、部分Cおよび迂回パターンが形成される部分を含む領域Dに対してレジスト液4303を局所的に再塗布し、焼成する(S4008)。この際、撮像装置で領域Dを撮像し、撮像した領域Dの画像に対して分光波形解析を行うことにより領域Dの分光特性を調べ、該分光特性から領域Dに再塗布したレジスト液の膜厚あるいは硬度を測定し、該測定結果に応じてレジスト液のショット数等の塗布条件やヒータ温度等の焼成条件を変更するようにフィードバック制御してもよい。例えば1ショット当たりの膜厚の変化を測定し、測定結果を用いて所定のレジスト膜を形成するのに必要なショット数を計算して塗布条件を変更してもよい。あるいは、領域Dに形成されたレジスト膜の硬度分布を測定し、領域Dにおいて他の部分に比べ硬化度合いの小さい(大きい)部分のヒータ温度を強く(弱く)するように焼成条件を変更してもよい。
次に、図43(C)に示すような、該部分Cを迂回してレジストパターンを形成するための迂回用マスク4302を選択する(S4009)。また、再塗布したレジスト膜の材料、膜厚等に基づいてレーザ光の光強度、波長等の加工条件を選定する。それから、図43(D)に示すように、選定した迂回用マスク4302の領域Dへの位置合わせを行うと共に、選定した加工条件に従い、該迂回用マスク4302を介して領域Dにレーザ光を照射し整形する(S4010)。これにより、図43(E)に示すように、領域Eに迂回パターン4304を形成する。
なお、S4009に先立って、部分Cにレーザ光を照射して異物混入したレジストパターンの部分を除去するようにしてもよい。この場合において、エッチング層(下地層)に膜剥がれ等が生じていない場合、(2)オープン欠陥修正工程の場合と同様の処理(S4005〜S4007)を行って、部分Cにレジストパターンを再形成してもよい。
図44は、図39に示す回路パターン形成工程(S3903)を説明するためのプロセス図である。
先ず、下位の回路パターン層に対して図40のS4008〜4010(異物混入欠陥修正工程)が実行されたか否かを調べる(S4401)。例えば、形成対象の回路パターンがドレイン・ソース電極である場合、下位の回路パターン層であるアイランド層あるいはゲート電極層に対して、図40のS4008〜4010が実行されたか否かを調べる(S4401)。
S4401で実行されていないと判断された場合には、通常の回路パターン工程を経る(S4402)。一方、S4401で実行されていると判断された場合には、迂回回路を形成しなくてはならない。回路パターン形成のための露光工程では、正常回路(迂回回路を形成しない状態)をパターン形成するため、図40のS4008〜4010で行った修正が活用されない。そこで、この座標部にレジストを塗布(正常回路パターン部をレジストで平坦化して再形成する)し(S4403)、新たに下層パターンに合わせた迂回回路をレーザ加工でパターン形成する(S4404)。
また、露光工程がDMDや液晶表示装置などを用いた、マスクレス露光工程においては、次の方法も有効である。すなわち、S4401で実行されていないと判断された場合は、形成対象の回路パターンのために用意された標準の露光用マスクを用いて露光を行う。一方、S4401で実行されていると判断された場合は、下位の回路パターン装置で用いられた迂回用マスクに合わせて露光マスクを局所的に変更して露光を行う。
例えば、アイランド層(TFT活性層)の形成工程において図40のS4008〜4010が実行された結果、図45(A)に示すように、アイランド4501が本来の形成位置Eから距離Hだけオフセットした位置Fに形成された場合、ドレイン・ソース電極層の形成工程において図44のS4403が実行され、該アイランド4501上に形成されるべきドレイン電極4502、ソース電極4503がこのオフセットに合わせて本来の電極端部4504から距離Hだけ延長されて形成されるように、ドレイン電極4502、ソース電極4503用の露光マスクを局所的に変更する。そして、該露光マスクを用いて露光を行う。
次に、図39に示すレジストパターン検査工程(S3905)およびレジストパターン修正工程(S3906)に用いるレジストパターン検査・修正システムを説明する。
図46は実施例8のレジストパターン検査工程およびレジストパターン修正工程に用いるレジストパターン検査・修正システムの一例を示す図である。
図示するように、レジストパターン検査・修正システムは、ステージ480上を流れるTFT基板の中間品(最上位層にレジストパターンが形成された状態のTFT基板)485に形成されたレジストパターンを検査するレジストパターン検査装置460と、レジストパターン検査装置460での検査結果に従い、ステージ480上を流れるTFT基板の中間品485に形成されたレジストパターンの欠陥を修正するレジストパターン修正装置470と、レジストパターン検査装置460およびレジストパターン修正装置470を接続するLAN等のネットワーク490と、を有する。
レジストパターン検査装置460は、ラインセンサ461と、欠陥検出装置462とを有する。ラインセンサ461は、TFT基板の中間品485が備える少なくとも1ライン分のTFT素子の中間品を撮像できるように、複数の撮像素子(例えばCCDカメラ)が配列されて構成されている。
欠陥検出装置462は、TFT基板の中間品485に形成されたレジストパターンの欠陥を検出するコンピュータである。欠陥検出装置462には、TFT基板に作り込まれるTFT素子について、ゲート電極用のレジストパターン、ゲート絶縁膜用のレジストパターン、アイランド用のレジストパターンおよびドレイン・ソース電極用のレジストパターンそれぞれの正常画像が予め登録されている。また、ゲート電極用のレジストパターン、ゲート絶縁膜用のレジストパターン、アイランド用のレジストパターンおよびドレイン・ソース電極用のレジストパターンのそれぞれについて、欠陥の種別(ショート、オープンおよび異物混入等)毎にレジストパターンの欠陥画像が予め登録されている。
欠陥検出装置462は、ラインセンサ461により撮像した各TFT素子の中間品のレジストパターン画像を、当該レジストパターンの正常画像と比較して、パターンマッチング技術により両者の不一致部分を検出する。そして、検出した不一致部分を、欠陥の種別毎に予め登録されている当該レジストパターンの欠陥画像と比較し、最も類似する欠陥画像に対応する欠陥種別を不一致部分で生じている欠陥として検出する。それから、欠陥種別と、欠陥発生箇所の座標情報と、欠陥発生箇所の撮像画像とを含む欠陥情報を作成し、ネットワーク490を介してレジストパターン修正装置470に送信する。
なお、欠陥検出装置462は、ラインセンサ461により撮像した各TFT素子の中間品のレジストパターン画像の各画素を隣接画素(正常部)と比較して、欠陥の存在を判定するようにしてもよい。また、レジストパターン画像から抽出した特徴量(形状、色、膜厚など)を用いて、欠陥の種類を判定してもよい。また、上述の登録画像と組み合わせて、欠陥の有無および種類を判定するようにしてもよい。
レジストパターン修正装置470は、レジスト液を局所的に塗布し焼成する塗布・焼成機構471と、マスクとTFT基板の中間品485の欠陥部分との位置合わせを行い、レーザ加工によりレジストパターンの欠陥部分を修正する撮像・レーザ光学系472と、制御装置473と、を有する。制御装置473は、塗布・焼成機構471および撮像・レーザ光学系472を制御するコンピュータである。
図47はレジストパターン修正装置470の概略構成図である。
塗布・焼成機構471(図46参照)は、塗布機構および焼成機構を有する。焼成機構は、熱量を局所的に変更可能なヒータ面を備えたヒータ4715を有する。塗布機構は、レジスト液を保持するディスペンサ4711と、ディスペンサ4711を駆動してディスペンサ4711からレジスト液を吐出する駆動装置4712とを有する。図48はディスペンサ4711の概略断面図である。
図示するように、ディスペンサ4711は、吐出口が形成された保持部47111と、ピストン部47112と、アシストガス誘導部47113とを有する。保持部47111にはレジスト液47114が保持される。ピストン部47112は駆動装置4712によって駆動され、保持部47111に保持されたレジスト液47114を吐出口から押し出す。なお、保持部47111に保持されているレジスト液47114とピストン部47111との間に、窒素などのレジスト液47114の材料安定化のための不活性ガス47115を充填しておくとよい。誘導部47113は、保持部47111の周囲に形成され、保持部47111の吐出口の周囲から保持部47111に保持されているレジスト液47114を押し出す方向に、駆動装置4712から供給される窒素などの不活性ガスを吹き出す。誘導部47113を設けることにより、ディスペンサ4711をTFT基板の中間品485の欠陥部分から離れた位置に配置した場合でも、該欠陥部分にレジスト液47114を塗布する(飛ばす)ことが可能となる。なお、該欠陥部分に塗布されたレジスト液の塗布状態や焼成状態、および、レーザ加工による整形状態等を後述する撮像光学系でリアルタイムでモニタできるようにするために、ディスペンサ4711は、図47に示すように、撮像光学系およびレーザ光学系の光軸Lに重ならない位置に配置するとよい。
撮像・レーザ光学系472(図46参照)は、レーザ光学系および撮像光学系を有する。ここで、レーザ光学系および撮像光学系は同じ光軸Lを有する。
レーザ光学系は、レーザ発振器4721と、ビームエキスパンダおよびホモジナイザ等からなるビーム整形機構4722と、マスクステージ等からなるマスク機構4723と、結像レンズ4724と、対物レンズ4725とを有する。レーザ発振器4721から照射されたレーザ光は、ビーム整形機構4722により、所定のビーム径に広げられ、且つ、レーザ照射領域におけるレーザ強度分布が所定の分布となるように整形される。次に、整形されたレーザ光は、マスク機構4741に設置されたマスクに応じたマスク投影パターンに整形され、その後、結像レンズ4724および対物レンズ3425を介して、ステージ480上に設置されたTFT基板の中間品485の欠陥部分に照射される。
撮像光学系は、AF(オートフォーカス)機構を搭載した撮像装置(例えばCCDカメラ)4731と、レンズ4732と、ハーフミラー4733と、レジストパターン撮像用照明装置(例えば光源用ファイバ)4734と、集光レンズ4735と、ハーフミラー4736と、マスク撮像用照明装置(例えば光源用ファイバ)4737と、集光レンズ4738と、ハーフミラー4739と、透過照明用照明装置(例えば光源用ファイバ)4740と、集光レンズ4741と、を有する。
撮像装置4731は、マスク機構4723に設置されたマスクの映像をハーフミラー4733、レンズ4732を介して撮像する。この際、マスクパターン撮像用照明装置4737の光を集光レンズ4738およびハーフミラー4739を介してマスク機構4723に設置されたマスクに照射することでマスクの映像の明るさを調節する。また、撮像装置4731は、ステージ480に設置されたTFT基板の中間品485の映像をハーフミラー4733、レンズ4732を介して撮像する。この際、レジストパターン撮像用照明装置4734の光を集光レンズ4735およびハーフミラー4736を介してステージ480に設置されたTFT基板の中間品485に照射することで中間品485の映像の明るさを調節する。また、透過照明用照明装置4740の光を集光レンズ4741を介してステージ480に設置されたTFT基板の中間品485に裏側から照射することで中間品485の映像の明るさを調節する。
制御装置473は、ネットワーク490を介して欠陥検出装置462から送られてきた欠陥情報に従い、レジストパターン修正装置470の各部を制御し、局所的なレジスト液の塗布・焼成、および、レジストパターンの欠陥修正を行う。
(1)局所的なレジスト液の塗布・焼成
制御装置471は、欠陥検出装置462より受信した欠陥情報に含まれている欠陥種別がオープン欠陥あるいは異物混入欠陥である場合に、局所的なレジスト液の塗布・焼成のためにレジストパターン修正装置470の各部を制御する。先ず、ステージ480を制御して、欠陥情報に含まれている欠陥発生箇所の座標情報が示す位置が、ディスペンサ4711によるレジスト液の塗布位置と一致するように、ステージ480上に設置されたTFT基板の中間品485を移動する。
次に、駆動装置471を制御してディスペンサ4711からレジスト液を吐出させ、該中間品のレジストパターン欠陥部分をレジスト液で覆うようにレジスト液を塗布する。この際、撮像装置4731で撮像したレジストパターン欠陥部分の映像を分光波形解析して、該欠陥部分の分光特性を調べ、制御装置471に予め登録されている分光特性とレジスト液の膜厚との関係情報から該欠陥部分に再塗布したレジスト液の膜厚を測定し、該測定結果に応じてレジスト液のショット数等の塗布条件を変更するようにフィードバック制御する。例えば、1ショット当たりの膜厚の変化を測定し、測定結果を用いて所定のレジスト膜を形成するのに必要なショット数のレジスト液がディスペンサ4711から吐出されるように駆動装置4712を制御する。なお、レジスト液の膜厚は、撮像装置4731が備えるAF機構の焦点位置の変化を用いて測定してもよい。また、再塗布されたレジスト液の押圧機構(へら等)を設け、レジスト液の膜厚をこの押圧機構により調節できるようにしてもよい。
次に、ヒータ4715を制御し、TFT基板の中間品485のレジストパターン欠陥部分に再塗布されたレジスト液を焼成する。この際、撮像装置4731で撮像したレジスト液の再塗布部分の映像を分光波形解析して、該再塗布部分の分光特性を調べ、制御装置471に予め登録されている分光特性とレジスト液の硬化度との関係情報から該再塗布部分のレジスト液の硬化度を測定し、該測定結果に応じてレジスト液の焼成条件を変更するようにフィードバック制御する。例えば、再塗布部分のレジスト膜の硬度分布を測定し、該再塗布において他の部分に比べ硬化度合いの小さい(大きい)部分のヒータ温度を強く(弱く)するようにヒータ4715を制御する。
(2)レジストパターンの欠陥修正
制御装置471は、欠陥検出装置462より受信した欠陥情報に従ってレジストパターンの欠陥部分を修正するためのレジストパターン修正装置470の各部を制御する。先ず、欠陥検出装置462より受信した欠陥情報に含まれているレジストパターン欠陥部分の撮像画像を図示していない表示装置に表示させ、操作者に該欠陥部分の修正に用いるマスク(加工用マスク、再形成用マスク、迂回用マスク)をマスク機構4723に設置させる。次に、マスク機構4723に設置されたマスクとステージ480に設置されたTFT基板の中間品485とを撮像装置4731で撮像し、例えばマスクに設けられた基準マークが中間品485の所定の位置と重なるように、ステージ480を制御して、ステージ480上に設置されたTFT基板の中間品485を移動する。
次に、レーザ発振器4721を制御して、TFT基板の中間品485のレジストパターンを整形する。この際、撮像装置4731で撮像したレジストパターンの欠陥部分の映像を分光波形解析して、該欠陥部分の分光特性を調べ、制御装置471に予め登録されている分光特性とレジスト膜の膜厚との関係情報から該欠陥部分のレジスト膜の膜厚を測定し、該測定結果に応じてレーザ光の加工条件を変更するようにフィードバック制御する。例えば、1ショット当たりの膜厚の変化を測定し、測定結果を用いて残膜を除去するのに必要なショット数のレーザパルスを出力するようにレーザ発振器4721を制御する。あるいは、欠陥部分の残膜の厚み分布を測定し、該欠陥部分において他の部分に比べ厚みが大きい(小さい)部分のレーザ強度を強く(弱く)するようにビーム整形機構4722を変更する。
なお、レジストパターン修正装置470は、図47に示すように、エア吹き付け、光分解、熱・化学処理分解等によりレジストパターンに混入した異物を除去するための異物除去機構4750を備えていてもよい。
以上、本発明の実施例8を説明した。実施例8では、レジストパターンに対して修正を行うのでパターン欠陥の修正によるパターン層への影響を低減できる。また、TFT基板のパターン層各々の形成工程においてレジストパターンの検査および修正を行うので、各パターン層のパターン欠陥を修正できる。したがって、回路パターンの品質・精度を低下させることなく、TFT基板に作り込まれた回路パターンの不具合発生を防止することができる。
なお、実施例8ではレジストパターンの欠陥部分にレジスト液を再塗布しているが、レジスト材は液状のものなくてもよい。例えば図49(A)に示すようなフィルム状のレジスト材4901を用いてよい。あるいは、図49(B)に示すような粒子状のレジスト材4902を用いてもよい。なお、図49において、符号4903はレジスト膜、符号4904はエッチング層(下地層)である。
液晶表示装置のアクティブ・マトリクス基板に形成される画素の一例を説明する平面模式図である。 複数の画素電極にまたがる巨大なショートが存在する例を示す模式平面図である。 ショート部分の配線パターンと同形状のレーザ透過パターンを持つマスクの説明図である。 本発明に係るレーザ照射光学系構成の説明図である。 本発明に係る修正装置のシステム構成の説明図である。 マスクと実パターンの基準点を取得する方法の第1例の説明図である。 マスクと実パターンの基準点を取得する方法の第2例の説明図である。 マスクと実パターンの基準点を取得する方法の第3例の説明図である。 マスクと実パターンの基準点を取得する方法の第4例の説明図である。 配線のパターンの基準点とマスク像の基準点との相対的位置関係を登録する別の方法を実現するレーザ照射光学系構成の説明図である。 レーザ照射領域の計画方法の説明図である。 抽出したパターン基準点の説明図である。 レーザ照射領域の検出法を説明する図である。 レーザ照射領域の設定法の説明図である。 レーザ照射領域形状の説明図である。 図11に示した欠陥を含む配線の修正途中のマスクアライメントの説明図である。 レーザ照射領域の他の設定方法を説明する図である。 レーザ照射領域のさらに他の設定方法を説明する図である。 マスクホルダの構成例の説明図である。 配線のパターンの基準点とマスク像の基準点との相対的位置関係を登録するさらに他の方法を実現するレーザ照射光学系構成の説明図である。 本発明のパターン修正装置の他の構成例の説明図である。 本発明のパターン修正装置の全体構成の一例を示す図である。 本発明のパターン修正装置の全体構成の他例を示す図である。 光学ユニットの付属装置の説明図である。 異物除去を実施するときの修正フローの説明図である。 本発明の実施例2を説明するプロセス図である。 本発明の実施例3を説明するプロセス図である。 本発明の実施例4を説明するプロセス図である。 液晶表示装置の配線パターンに断線がある場合の修正を説明する図である。 実施例5の断線欠陥修正方法を実施するのに好適な修正装置の構成を示す図である。 断線修正用の材料の塗布状態を説明する材料塗布機構の拡大図である。 材料塗布機構の説明図である。 図29の断線欠陥の部分に材料塗布機構で修正用の材料を塗布した状態の説明図である。 断線欠陥の修正法の説明図である。 本発明の実施例5の修正作業のフローを説明する図である。 マスク交換機能を備えたレーザによる電子回路パターン修正装置を用いた検査・修正システムを説明する図である。 マスク交換機能を備えたレーザによる電子回路パターン修正装置を用いた他の検査・修正システムを説明する図である。 電子回路基板の他の設置態様を説明する図である。 本発明の実施例8が適用された回路パターン形成工程を説明するためのプロセス図である。 図39に示すレジストパターン修正工程(S3906)を説明するためのプロセス図である。 ショート欠陥修正工程を説明するための図である。 オープン欠陥修正工程を説明するための図である。 異物混入欠陥修正工程を説明するための図である。 図39に示す回路パターン形成工程(S3903)を説明するためのプロセス図である。 露光マスクを局所的に変更して露光を行う場合を説明するための図である。 実施例8のレジストパターン検査工程およびレジストパターン修正工程に用いるレジストパターン検査・修正システムの一例を示す図である。 図47はレジストパターン修正装置470の概略構成図である。 図48はディスペンサ4711の概略断面図である。 再塗布するレジスト材の変形例を示す図である。
符号の説明
5…マスク、9…ガラス基板、21…欠陥、22…レーザ照射領域、31…ゲート配線、33…ドレイン配線、34…画素電極、50…ショート欠陥、51…マスクホルダ、206…材料塗布機構、243…塗布材料、460…レジストパターン検査装置、470…レジストパターン修正装置、480…ステージ、490…ネットワーク

Claims (12)

  1. 検査装置の検査データに基づいて、基板上に形成した電子回路パターンの欠陥を修正して正常化するパターン修正装置であって、
    修正部近傍画像と修正部座標を前記検査装置から受け取る検査データ受信手段と、
    前記修正部近傍画像から修正部とパターンを分離して検出する修正部・パターン検出手段と、
    レーザ光を照射するレーザ照射手段と、
    そのレーザ透過領域を前記レーザ光が通ることで、前記レーザ光の形状を変化させるマスクと、
    前記修正部・パターン検出手段で分離したパターンと照射するレーザ光が同じ形状となる位置に前記マスクを移動させるマスク移動手段と、
    前記修正部・パターン検出手段で分離した修正部を、複数領域に分割する照射領域設定手段と、を有し、
    前記レーザ透過領域は、前記レーザ光の照射領域より大きく、矩形以外の形状を有し、
    前記レーザ照射手段は、前記マスクを固定した状態で前記レーザ光を走査して、その矩形の形状を矩形以外の形状に変化させて、前記修正部の複数領域に照射すること
    を特徴とするパターン修正装置。
  2. 前記基板上の電子回路パターンと前記レーザが照射される照射領域とのずれ量を検出するパターンずれ検出手段と、
    前記パターンずれ検出手段で検出したずれ量に基づき、前記基板または前記マスクの少なくとも一方を移動させて前記基板上のパターンと前記照射領域との一致をとる位置調整手段と、をさらに有し、
    前記位置調整手段は、前記レーザ照射手段として標準パターンと同一あるいは数倍の大きさのパターンを形成したマスクまたはミラーを使用し、該マスクまたはミラーと前記基板を平行に、かつ同期して移動可能であり、
    前記マスクまたはミラーを前記基板と同方向に、かつ該マスクまたはミラーの移動量と前記基板の移動量の比が該マスクまたはミラー上に形成された前記パターンと前記標準パターンの大きさの比に等しくなるように移動させること
    を特徴とする請求項1に記載のパターン修正装置。
  3. 前記位置調整手段は、前記マスクまたはミラーの移動量と修正対象の前記基板の移動量の比を前記レーザ照射手段で該マスクまたはミラー上に形成されたパターンを投影するときの投影倍率に応じて変更すること
    を特徴とする請求項に記載のパターン修正装置。
  4. 前記修正部・パターン検出手段は、修正部とパターンの相対的位置関係から修正の要否を判定する判定手段を有すること
    を特徴とする請求項1に記載のパターン修正装置。
  5. 前記照射領域設定手段は、前記各分割領域内に正常パターン部あるいは修正済みパターン部を含むようにレーザ照射領域を分割すること
    を特徴とする請求項1に記載のパターン修正装置。
  6. 前記照射領域設定手段は、前記検査データ受信手段で取得した前記修正部近傍画像を使用して当該修正部近傍の基準点を決定するとともに、前記レーザ照射領域を分割すること
    を特徴とする請求項1に記載のパターン修正装置。
  7. 記ステージ上の所定位置に前記マスク像を投影し、該マスク像を前記基板上パターンを検出するための手段で検出し、これを記憶した後、前記基板上パターンと前記記憶したパターンのずれ量を検出するパターンずれ検出手段を備えたこと
    を特徴とする請求項1に記載のパターン修正装置。
  8. 前記マスク像投影位置として、前記基板を前記ステージに受け渡す位置に該ステージを移動させたとき、前記マスク像投影領域が前記基板上のパターンを検出するための手段の視野内に存在すること
    を特徴とする請求項に記載のパターン修正装置。
  9. 前記マスク像投影する手段が、パターン修正装置のレーザであること
    を特徴とする請求項に記載のパターン修正装置。
  10. 前記照射領域設定手段が、分割した前記修正部の複数の領域のうち、前記修正部・パターン検出手段で検出した修正部を含む領域のみレーザを照射するように設定すること
    を特徴とする請求項1に記載のパターン修正装置。
  11. 検査装置の検査データに基づいて、基板上に形成した電子回路パターンの欠陥を修正して正常化するパターン修正装置であって
    修正部近傍画像と修正部座標を検査装置から受け取る検査データ受信手段と、
    前記修正部近傍画像から修正部とパターンを分離して検出する修正部・パターン検出手段と、
    レーザ光を照射するレーザ照射手段と、
    そのレーザ透過領域を前記レーザ光が通ることで、前記レーザ光の形状を変化させるマスクと、
    前記修正部・パターン検出手段で分離したパターンと照射するレーザ光が同じ形状となる位置に前記マスクを移動させるマスク移動手段と、
    前記修正部・パターン検出手段で分離した修正部を、複数領域に分割する照射領域設定手段と、
    前記電子回路パターンと同等の機能を有する塗布材料を供給してパターン欠損部を補完する修正手段と、を有し、
    前記パターン欠損部より広い領域に塗布材料を塗布し、前記レーザ照射手段で電子回路パターンとして余分な部分を除去すること
    を特徴とするパターン修正装置。
  12. 検査装置の検査データに基づいて、基板上に形成した電子回路パターンの欠陥を修正して正常化するパターン修正装置であって、
    修正部近傍画像と修正部座標を検査装置から受け取る検査データ受信手段と、
    前記修正部近傍画像から修正部とパターンを分離して検出する修正部・パターン検出手段と、
    レーザ光を照射するレーザ照射手段と、
    そのレーザ透過領域を前記レーザ光が通ることで、前記レーザ光の形状を変化させるマスクと、
    前記修正部・パターン検出手段で分離したパターンと照射するレーザ光が同じ形状となる位置に前記マスクを移動させるマスク移動手段と、
    前記修正部・パターン検出手段で分離した修正部を、複数領域に分割する照射領域設定手段と、
    前記回路パターン上に存在する前記欠陥の抽出および欠陥種を分類する検査・分類手段と、
    前記回路パターンの欠損に、該パターンと同等の機能を有する補修材料を供給する材料塗布手段と、を有し、
    前記検査・分類手段が、前記欠陥が断線であると判断した場合に、断線した領域より広い範囲に前記材料塗布手段が補修材料を塗布し、前記レーザ照射手段で電子回路パターンとして余分な部分の補修材料を除去し、
    前記検査・分類手段が、前記欠陥がショートであると判定した場合に、前記レーザ照射手段で電子回路パターンとして余分な部分の配線を除去すること
    を特徴とするパターン修正装置。
JP2005057555A 2004-09-27 2005-03-02 パターン修正装置および表示装置の製造方法 Expired - Fee Related JP4688525B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005057555A JP4688525B2 (ja) 2004-09-27 2005-03-02 パターン修正装置および表示装置の製造方法
TW094114319A TWI331687B (en) 2004-09-27 2005-05-03 Apparatus for repairing circuit pattern and method for manufacturing display apparatus using the same
KR1020050047001A KR100780998B1 (ko) 2004-09-27 2005-06-02 패턴 수정 장치 및 표시 장치의 제조 방법
US11/143,981 US8035058B2 (en) 2004-09-27 2005-06-03 Apparatus for repairing circuit pattern and method for manufacturing display apparatus using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004278824 2004-09-27
JP2004278824 2004-09-27
JP2005057555A JP4688525B2 (ja) 2004-09-27 2005-03-02 パターン修正装置および表示装置の製造方法

Publications (2)

Publication Number Publication Date
JP2006119575A JP2006119575A (ja) 2006-05-11
JP4688525B2 true JP4688525B2 (ja) 2011-05-25

Family

ID=36097849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057555A Expired - Fee Related JP4688525B2 (ja) 2004-09-27 2005-03-02 パターン修正装置および表示装置の製造方法

Country Status (4)

Country Link
US (1) US8035058B2 (ja)
JP (1) JP4688525B2 (ja)
KR (1) KR100780998B1 (ja)
TW (1) TWI331687B (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7182738B2 (en) 2003-04-23 2007-02-27 Marctec, Llc Patient monitoring apparatus and method for orthosis and other devices
US7450307B2 (en) * 2003-09-09 2008-11-11 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
JP2007109980A (ja) * 2005-10-14 2007-04-26 Laserfront Technologies Inc 配線修正方法
US7371590B2 (en) * 2005-11-21 2008-05-13 General Electric Company Integrated inspection system and defect correction method
KR100926117B1 (ko) * 2005-12-30 2009-11-11 엘지디스플레이 주식회사 가상 리뷰를 이용한 검사 시스템 및 그 방법
WO2007124765A1 (de) * 2006-04-28 2007-11-08 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laserbearbeitungsmaschine und laserbearbeitungsverfahren
JP2008058352A (ja) * 2006-08-29 2008-03-13 Shimadzu Corp リペア装置
JP4931124B2 (ja) * 2006-10-17 2012-05-16 レーザーテック株式会社 欠陥修正装置、欠陥修正方法、及びパターン基板製造方法
JP2008221299A (ja) * 2007-03-14 2008-09-25 Hitachi Via Mechanics Ltd レーザ加工装置
JP4880561B2 (ja) * 2007-10-03 2012-02-22 新光電気工業株式会社 フリップチップ実装装置
JP2009103512A (ja) * 2007-10-22 2009-05-14 Hitachi Ltd 配線パターン処理装置
US20090212030A1 (en) * 2008-02-25 2009-08-27 Optisolar, Inc., A Delaware Corporation Autofocus for Ablation Laser
JP2009251200A (ja) * 2008-04-04 2009-10-29 Sony Corp 欠陥修復システム、サーバ、欠陥修復システムに用いる欠陥修復装置、欠陥修復プログラム、情報記録媒体及び欠陥修復装置
JP2009297781A (ja) * 2008-06-17 2009-12-24 Kataoka Seisakusho:Kk レーザ加工装置
US9063356B2 (en) * 2008-09-05 2015-06-23 Japan Display Inc. Method for repairing display device and apparatus for same
JP5339342B2 (ja) * 2008-09-26 2013-11-13 株式会社ジャパンディスプレイ 表示装置の修正方法およびその装置
JP2010085967A (ja) * 2008-09-08 2010-04-15 Ntn Corp パターン修正方法およびパターン修正装置
US8893061B2 (en) * 2009-01-30 2014-11-18 Synopsys, Inc. Incremental concurrent processing for efficient computation of high-volume layout data
US8065638B2 (en) * 2009-01-30 2011-11-22 Synopsys, Inc. Incremental concurrent processing for efficient computation of high-volume layout data
US8294760B2 (en) * 2009-04-21 2012-10-23 Samsung Techwin Co., Ltd. Electronic part recognition apparatus and chip mounter having the same
JP5640328B2 (ja) * 2009-05-20 2014-12-17 ソニー株式会社 欠陥修正装置及び欠陥修正方法
JP5534715B2 (ja) * 2009-05-27 2014-07-02 株式会社ジャパンディスプレイ 電子回路パターンの欠陥修正方法およびその装置
JP5479782B2 (ja) * 2009-06-02 2014-04-23 株式会社日立ハイテクノロジーズ 欠陥画像処理装置、欠陥画像処理方法、半導体欠陥分類装置および半導体欠陥分類方法
JP5495875B2 (ja) * 2010-03-18 2014-05-21 オリンパス株式会社 レーザ加工方法、及び、レーザ加工装置
JP5432804B2 (ja) * 2010-04-02 2014-03-05 株式会社日本マイクロニクス リペア装置
JP5853331B2 (ja) * 2011-03-11 2016-02-09 株式会社ブイ・テクノロジー レーザ照射装置及びそれを使用した液晶表示パネルの輝点修正方法
US8446275B2 (en) 2011-06-10 2013-05-21 Aliphcom General health and wellness management method and apparatus for a wellness application using data from a data-capable band
US9258670B2 (en) 2011-06-10 2016-02-09 Aliphcom Wireless enabled cap for a data-capable device
US20120315382A1 (en) * 2011-06-10 2012-12-13 Aliphcom Component protective overmolding using protective external coatings
US20120313296A1 (en) * 2011-06-10 2012-12-13 Aliphcom Component protective overmolding
JP5781859B2 (ja) * 2011-08-04 2015-09-24 株式会社Joled 表示装置の製造方法
CN102626829A (zh) * 2011-08-16 2012-08-08 北京京东方光电科技有限公司 基板的激光修复装置以及激光修复方法
JP5929106B2 (ja) * 2011-11-07 2016-06-01 凸版印刷株式会社 検査方法および検査装置
JP6030299B2 (ja) * 2011-12-20 2016-11-24 株式会社ディスコ レーザー加工装置
KR102015401B1 (ko) * 2012-12-21 2019-08-29 삼성디스플레이 주식회사 광학계 및 기판 밀봉 방법
US20140199910A1 (en) * 2013-01-15 2014-07-17 Shenzhen China Star Optoelectronics Technology Co., Ltd. Apparatus and method for repairing array substrate
US9304090B2 (en) * 2013-03-11 2016-04-05 Electro Scientific Industries, Inc. Systems and methods for providing polarization compensated multi-spectral laser repair of liquid crystal display panels
WO2015032535A1 (de) * 2013-09-04 2015-03-12 Saint-Gobain Glass France Verfahren zur herstellung einer scheibe mit einer elektrisch leitfähigen beschichtung mit elektrisch isolierten fehlstellen
US8972907B1 (en) * 2013-09-10 2015-03-03 Kabushiki Kaisha Toshiba Layout correcting method, recording medium and design layout correcting apparatus
JP6448220B2 (ja) * 2014-05-22 2019-01-09 キヤノン株式会社 露光装置、露光方法及びデバイスの製造方法
CN104570415B (zh) * 2014-12-05 2017-07-18 合肥鑫晟光电科技有限公司 金属线的修复方法及修复设备
US10578937B2 (en) * 2016-12-21 2020-03-03 HKC Corporation Limited Method and apparatus of repairing transistor
CN107193141A (zh) * 2017-07-18 2017-09-22 京东方科技集团股份有限公司 一种tft基板的检测装置及方法
JP2019120654A (ja) 2018-01-11 2019-07-22 株式会社ニューフレアテクノロジー 検査方法
JP7017239B2 (ja) * 2018-06-25 2022-02-08 株式会社ブイ・テクノロジー 露光装置および高さ調整方法
JP7310829B2 (ja) * 2018-10-31 2023-07-19 株式会社ニコン 加工システム、及び、加工方法
CN109490758B (zh) * 2018-12-12 2020-12-15 上海华力集成电路制造有限公司 一种短路失效的定位方法
JP2020148804A (ja) * 2019-03-11 2020-09-17 株式会社ブイ・テクノロジー レーザリペア方法、レーザリペア装置
JP7244067B2 (ja) * 2019-03-25 2023-03-22 株式会社日立ハイテクサイエンス マスク欠陥修正装置、及びマスク欠陥修正方法
JP7292138B2 (ja) * 2019-07-23 2023-06-16 株式会社ジャパンディスプレイ 表示装置のリペアシステム
CN113702290A (zh) * 2021-08-30 2021-11-26 德中(天津)技术发展股份有限公司 一种电路板阻焊图案自动光学检查及修正的方法及设备
CN113686899A (zh) * 2021-08-30 2021-11-23 德中(天津)技术发展股份有限公司 电路板导电图案光学检查及短路、断路修正的方法及设备
CN114594623B (zh) * 2022-04-20 2024-04-12 合肥京东方显示技术有限公司 液晶面板的修复装置和修复方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389511A (ja) * 1989-08-31 1991-04-15 Toppan Printing Co Ltd 露光装置
JPH06202128A (ja) * 1992-12-28 1994-07-22 Sharp Corp 薄膜加工方法
JPH0866652A (ja) * 1994-06-22 1996-03-12 Hitachi Ltd 液体材料微量供給装置とそれを使用するパターン修正方法
JPH10177844A (ja) * 1996-12-19 1998-06-30 Hitachi Ltd 平面ディスプレイパネルの製造方法およびプラズマディスプレイパネルの製造方法
JP2000305279A (ja) * 1999-04-19 2000-11-02 Ricoh Microelectronics Co Ltd リソグラフィ装置および電子機器
JP2001023982A (ja) * 1999-06-30 2001-01-26 Internatl Business Mach Corp <Ibm> 電子部品及び電子部品の欠陥修復方法
JP2002071939A (ja) * 1995-06-15 2002-03-12 Ntn Corp カラーフィルタの欠陥修正方法
JP2003042967A (ja) * 2001-07-27 2003-02-13 Hitachi Ltd パターン欠陥検査装置
JP2003282399A (ja) * 2002-03-20 2003-10-03 Hitachi Kokusai Electric Inc スポット露光装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708466A (en) * 1986-02-07 1987-11-24 Canon Kabushiki Kaisha Exposure apparatus
US5017755A (en) * 1988-10-26 1991-05-21 Kabushiki Kaisha Toshiba Method of repairing liquid crystal display and apparatus using the method
JP3056823B2 (ja) 1991-05-30 2000-06-26 エヌティエヌ株式会社 欠陥検査装置
US5175504A (en) * 1991-06-17 1992-12-29 Photon Dynamics, Inc. Method and apparatus for automatically inspecting and repairing a simple matrix circuit panel
JPH0527111A (ja) 1991-07-18 1993-02-05 Sharp Corp カラー液晶表示装置におけるカラーフイルタの欠陥修正方法
JP3051623B2 (ja) 1993-11-24 2000-06-12 シャープ株式会社 自動修正方法
JPH0866781A (ja) * 1994-08-30 1996-03-12 Mitsubishi Electric Corp エキシマレーザビーム照射装置
JP3789163B2 (ja) 1996-05-13 2006-06-21 Ntn株式会社 連続パターンの欠陥修正方法および欠陥修正装置
JPH10297127A (ja) * 1997-04-28 1998-11-10 Mitsubishi Electric Corp 印刷パターンの欠陥修正用シート及び印刷パターンの欠陥修正装置及び印刷パターンの欠陥修正方法
JP3036687B2 (ja) 1997-05-23 2000-04-24 日本電気株式会社 レーザcvd装置
CN1376100A (zh) * 1999-09-28 2002-10-23 住友重机械工业株式会社 激光钻孔的加工方法及其加工装置
JP2001133988A (ja) 1999-11-05 2001-05-18 Asahi Optical Co Ltd レーザ描画装置の描画方法
JP2001154371A (ja) * 1999-11-30 2001-06-08 Nikon Corp 回路デバイスや表示デバイスの製造方法、及び大型ディスプレー装置
JP2001315299A (ja) 2000-05-12 2001-11-13 Matsushita Electric Ind Co Ltd スクリーン印刷におけるスクリーンマスクの位置合わせ方法
JP3711083B2 (ja) * 2002-04-12 2005-10-26 株式会社東芝 パターン形成方法
US20040121246A1 (en) * 2002-09-20 2004-06-24 Brown David R. Lithography process to reduce seam lines in an array of microelements produced from a sub-mask and a sub-mask for use thereof
WO2004079799A1 (ja) * 2003-03-05 2004-09-16 Tadahiro Ohmi マスクレピータ及びマスク製造方法
KR100942841B1 (ko) * 2003-06-02 2010-02-18 엘지디스플레이 주식회사 액정표시소자의 검사 방법 및 장치와 리페어방법 및 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389511A (ja) * 1989-08-31 1991-04-15 Toppan Printing Co Ltd 露光装置
JPH06202128A (ja) * 1992-12-28 1994-07-22 Sharp Corp 薄膜加工方法
JPH0866652A (ja) * 1994-06-22 1996-03-12 Hitachi Ltd 液体材料微量供給装置とそれを使用するパターン修正方法
JP2002071939A (ja) * 1995-06-15 2002-03-12 Ntn Corp カラーフィルタの欠陥修正方法
JPH10177844A (ja) * 1996-12-19 1998-06-30 Hitachi Ltd 平面ディスプレイパネルの製造方法およびプラズマディスプレイパネルの製造方法
JP2000305279A (ja) * 1999-04-19 2000-11-02 Ricoh Microelectronics Co Ltd リソグラフィ装置および電子機器
JP2001023982A (ja) * 1999-06-30 2001-01-26 Internatl Business Mach Corp <Ibm> 電子部品及び電子部品の欠陥修復方法
JP2003042967A (ja) * 2001-07-27 2003-02-13 Hitachi Ltd パターン欠陥検査装置
JP2003282399A (ja) * 2002-03-20 2003-10-03 Hitachi Kokusai Electric Inc スポット露光装置

Also Published As

Publication number Publication date
US8035058B2 (en) 2011-10-11
KR100780998B1 (ko) 2007-11-29
TWI331687B (en) 2010-10-11
US20060065645A1 (en) 2006-03-30
TW200611016A (en) 2006-04-01
KR20060049481A (ko) 2006-05-19
JP2006119575A (ja) 2006-05-11

Similar Documents

Publication Publication Date Title
JP4688525B2 (ja) パターン修正装置および表示装置の製造方法
CN100419503C (zh) 图形修正装置和显示装置的制造方法
US8290239B2 (en) Automatic repair of electric circuits
JP4468696B2 (ja) 半導体ウエハ検査装置
US6897956B2 (en) Apparatus and method for measuring alignment accuracy, as well as method and system for manufacturing semiconductor device
JP4545412B2 (ja) 基板検査装置
JP5193112B2 (ja) 半導体ウエーハ外観検査装置の検査条件データ生成方法及び検査システム
US20080129950A1 (en) Repair method and apparatus therefor
US20050037272A1 (en) Method and apparatus for manufacturing semiconductor
KR20010101550A (ko) 결함검사데이터처리시스템
JP2023540683A (ja) 同軸透過型整列結像システム
JP2010139461A (ja) 目視検査システム
JP4076343B2 (ja) 半導体ウェハのドットマーク形成位置の位置決め方法とその位置決め装置
JP2008068284A (ja) 欠陥修正装置、欠陥修正方法、及びパターン基板の製造方法
JPH0389511A (ja) 露光装置
JPH10122817A (ja) レーザマスクリペアでのマスクの位置合せ方法
JP2007163822A (ja) 電子回路基板のパターン修正装置および修正方法
WO2020250685A1 (ja) レーザ修正方法、レーザ修正装置
JP2008147321A (ja) 電子回路基板の修正装置および製造方法
JP2008279471A (ja) レーザ加工装置、レーザ加工方法、tft基板、及び、tft基板の欠陥修正方法
CN220773415U (zh) 光掩模检查设备
JP5196723B2 (ja) 欠陥修正装置及び欠陥修正方法
KR200422077Y1 (ko) 아이디위치 검사기능을 갖는 레이저마킹 장치
JP2597754B2 (ja) 基板の回転補正方法
JPH11260868A (ja) 基板のマーキング方法、および基板検査方法ならびにそれに用いられる基板検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4688525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110228

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20110712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees