JP7017239B2 - 露光装置および高さ調整方法 - Google Patents

露光装置および高さ調整方法 Download PDF

Info

Publication number
JP7017239B2
JP7017239B2 JP2018120227A JP2018120227A JP7017239B2 JP 7017239 B2 JP7017239 B2 JP 7017239B2 JP 2018120227 A JP2018120227 A JP 2018120227A JP 2018120227 A JP2018120227 A JP 2018120227A JP 7017239 B2 JP7017239 B2 JP 7017239B2
Authority
JP
Japan
Prior art keywords
support portion
unit
sliding surface
pillar
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018120227A
Other languages
English (en)
Other versions
JP2020003533A (ja
Inventor
良 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V Technology Co Ltd
Original Assignee
V Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V Technology Co Ltd filed Critical V Technology Co Ltd
Priority to JP2018120227A priority Critical patent/JP7017239B2/ja
Priority to TW108118015A priority patent/TWI809111B/zh
Priority to KR1020207033454A priority patent/KR20210023820A/ko
Priority to PCT/JP2019/024230 priority patent/WO2020004164A1/ja
Priority to CN201980041745.3A priority patent/CN112334836B/zh
Publication of JP2020003533A publication Critical patent/JP2020003533A/ja
Application granted granted Critical
Publication of JP7017239B2 publication Critical patent/JP7017239B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Description

本発明は、露光装置および高さ調整方法に関する。
特許文献1には、保持プレートの一端にボールねじが係合されており、このボールねじに連結されたサーボモータによって描画ヘッドが上下方向に所定の範囲内で移動する描画装置が開示されている。
特開平9-320943号公報
しかしながら、特許文献1に記載の発明では、描画ヘッドの移動にボールねじを用いているため、酔歩誤差(リードスクリュ1回転に対する雌ねじ部材の進み速度のむら)が発生し、描画ヘッドを正確に移動させることが出来ないという問題がある。
本発明はこのような事情に鑑みてなされたもので、光を照射する光学装置の高さ調整を正確に行うことができる露光装置および高さ調整方法を提供することを目的とする。
上記課題を解決するために、本発明に係る露光装置は、例えば、基板が載置される基板保持部と、磁性材料で形成された略棒状の支持部であって、長手方向が略水平方向となるように設けられた支持部と、前記支持部の両端にそれぞれ長手方向が略鉛直方向となるように設けられた棒状の柱と、を有する枠体であって、前記支持部には支持部側摺動面が形成され、前記柱には柱側摺動面が前記支持部側摺動面と対向する位置に形成された枠体と、前記支持部を鉛直方向に移動させる移動機構であって、前記支持部に設けられたラックと、前記柱に回転可能に設けられ、前記ラックと噛み合うピニオンと、前記ピニオンを回転させる回転駆動部と、を有する移動機構と、前記支持部に設けられ、前記基板に光を照射する光学装置と、前記柱に設けられ、永久磁石と電磁石とを有する永電磁石と、前記回転駆動部を駆動して前記支持部を移動させ、かつ、前記電磁石のコイルに電流を流して前記永久磁石に前記支持部を吸着させる制御部と、を備え、前記永電磁石が前記支持部を吸着して前記支持部側摺動面と前記柱側摺動面とを密着させ、前記支持部側摺動面と前記柱側摺動面との間の摩擦力により前記支持部を前記柱に固定することを特徴とする。
本発明に係る露光装置によれば、回転駆動部を駆動してピニオンを回転させて、ピニオンと噛み合うラックが設けられた支持部を高さ方向に移動する。また、永久磁石と電磁石とを有する永電磁石が有する電磁石のコイルに電流を流し、永電磁石が支持部を吸着することで支持部側摺動面と柱側摺動面とを密着させて、支持部側摺動面と柱側摺動面との間の摩擦力により支持部を固定する。これにより、光学装置の高さ調整を正確に行うことができる。また、支持部の吸着に永電磁石を用いるため、通電時間が短く、熱による支持部の変形、膨張等が発生しないため、光学装置の高さ調整を正確に行うことができる。
ここで、前記支持部に設けられた計測部であって、鉛直方向に略沿って設けられたスケールと、前記スケールの値を読み取って位置情報を出力するヘッドと、を有する計測部と、備え、前記支持部の移動時には、前記永電磁石は、前記移動機構が前記支持部を移動させないときの吸着力である第1吸着力より弱い第2吸着力で前記支持部を吸着し、前記計測部は、前記支持部の高さを連続して計測し、前記支持部側摺動面は、前記柱側摺動面に沿って摺動してもよい。これにより、支持部側摺動面と柱側摺動面とを密着させたときに支持部が傾かないため、支持部の傾きに起因する計測部の計測誤差をなくすことができる。
ここで、前記第2吸着力は、前記第1吸着力の略20%から略30%であってもよい。これにより、支持部を第2吸着力で吸着した時の計測部での計測結果と、支持部を第1吸着力で吸着した時の計測部での計測結果との差が最も小さくなる。
ここで、前記支持部と前記光学装置との間に設けられる略薄板状のガイド部材と、前記枠体に設けられ、前記光学装置を鉛直方向に移動させる駆動部と、を備え、前記支持部は、略水平に配置された板状部を有し、前記板状部には略鉛直方向に貫通する丸孔が形成され、前記ガイド部材は、平面視略円板形状であり、前記丸孔を覆うように前記板状部に設けられ、前記ガイド部材には、略中央に取付孔が形成され、前記取付孔は、前記丸孔と略同心円状に配置され、前記光学装置は、光軸が前記取付孔の中心と略一致するように前記取付孔に挿入されて前記ガイド部材に固定されていてもよい。これにより、駆動部が光学装置を高さ方向に移動させるときの光軸の振れを数nm以下と小さくことができる。
ここで、前記基板保持部を走査方向に移動させる移動部と、前記支持部に設けられ、前記基板までの距離を測定する測定部と、を備え、前記制御部は、前記移動部を介して前記基板保持部を前記走査方向に移動させながら前記測定部を介して前記基板までの距離を測定し、当該基板までの距離の最大値と最小値とから中央値を求め、当該中央値に基づいて前記駆動部の駆動量を求めてもよい。これにより、基板の高さが変化しても、常に基板に光学装置の焦点を合わせることができる。
ここで、前記光学装置は、下向きの光を照射するAF用光源と、反射光が入射するAFセンサと、を有するAF処理部を有し、前記制御部は、前記AF処理部を動作させながら前記支持部を移動させ、合焦していると判断される位置に前記光学装置が位置したら前記支持部側摺動面と前記柱側摺動面とを密着させてもよい。これにより、基板の高さが変化しても、常に基板に光学装置の焦点を合わせることができる。
上記課題を解決するために、本発明に係る高さ調整方法は、例えば、基板が載置される基板保持部と、磁性材料で形成された略棒状の支持部であって、長手方向が略水平方向となるように設けられた支持部と、前記支持部の両端にそれぞれ長手方向が略鉛直方向となるように設けられた棒状の柱と、を有する枠体であって、前記支持部には支持部側摺動面が形成され、前記柱には柱側摺動面が前記支持部側摺動面と対向する位置に形成された枠体と、前記支持部を鉛直方向に移動させる移動機構であって、前記支持部に鉛直方向に略沿って設けられたラックと、前記柱に回転可能に設けられ、前記ラックと噛み合うピニオンと、前記ピニオンを回転させる回転駆動部と、を有する移動機構と、前記支持部に設けられた計測部と、前記支持部に設けられ、前記基板に光を照射する光学装置と、前記柱に設けられ、永久磁石と電磁石とを有する永電磁石と、を有する装置を用いて前記支持部の高さを調整する高さ調整方法であって、前記電磁石のコイルに電流を流して前記永電磁石に前記支持部を第2吸着力で吸着させて、前記支持部側摺動面と前記柱側摺動面と当接させるステップと、前記計測部で前記支持部の高さを計測しながら、前記回転駆動部を駆動して前記ピニオンを回転させて、前記支持部を高さ方向に移動させるステップと、前記コイルに電流を流して前記永電磁石に前記支持部を前記第2吸着力より強い第1吸着力で吸着させて、前記支持部側摺動面と前記柱側摺動面と密着させて前記支持部を前記柱に固定するステップと、を含むことを特徴とする。これにより、支持部を第2吸着力で吸着したときと支持部を第1吸着力で吸着したときとで支持部が傾かないため、支持部の傾きに起因する計測部の計測誤差をなくすことができる。
本発明によれば、光照射部の高さ調整を正確に行うことができる。
第1の実施の形態に係る露光装置1の概略を示す斜視図である。 測定部40及びレーザ干渉計50がマスク保持部20の位置を測定する様子を示す概略図である。 枠体15の支持部15aの概略を示す斜視図であり、背面側(+x側)から見た図である。 枠体15の支持部15aの概略を示す斜視図であり、正面側(-x側)から見た図である。 図3の面Cで枠体15を切断したときの概略を示す図である 光照射部30aの概略を示す要部透視図である。 駆動部39aの概略を示す側面図である。 (A)は、ガイド部材70の概略を示す図であり、(B)は、ガイド部材70Aの概略を示す図である。 (A)は底板151にガイド部材70を取り付けたときの底板151とガイド部材70との位置関係を示し、(B)は支持板153にガイド部材70Aを取り付けたときの支持板153とガイド部材70Aとの位置関係を示す。 光照射部30aを支持板153に取り付ける取付構造の分解斜視図である。 枠体15に光照射部30aが取り付けられた状態を示す図である。 (A)は光照射部30aが移動していない状態(ストローク中央)を示し、(B)は光照射部30aが下側に移動した状態(ストローク下端)を示し、(C)は光照射部30aが上側に移動した状態(ストローク上端)を示す。 露光装置1の電気的な構成を示すブロック図である。 露光装置1の高さ調整処理の流れを示すフローチャートである。 ステップS20での測定結果の一例である。 支持部15aを上下動させる時の様子を模式的に示す図であり、(A)は支持部15aを吸着する場合(本実施の形態)であり、(B)、(C)は支持部15aを吸着しない場合である。
以下、本発明を、略水平方向に保持した感光性基板(例えば、ガラス基板)を走査方向に移動させながらレーザ等の光を照射してフォトマスクを生成する露光装置に適用した実施の形態を例に、図面を参照して詳細に説明する。各図面において、同一の要素には同一の符号が付されており、重複する部分については説明を省略する。
感光性基板としては、例えば、熱膨張率が非常に小さい(例えば、約5.5×10-7/K程度)石英ガラスが用いられる。露光装置により生成されるフォトマスクは、例えば液晶表示装置用の基板を製造するために用いられる露光用マスクである。フォトマスクは、一辺が例えば1mを超える(例えば、1400mm×1220mm)大型の略矩形形状の基板上に、1個または複数個のイメージデバイス用転写パターンが形成されたものである。以下、加工前、加工中及び加工後の感光性基板を包括する概念として、マスクMという用語を使用する。
ただし、本発明の露光装置は、マスク製造装置に限定されない。本発明の露光装置は、略水平方向に保持した基板を走査方向に移動させながら光(レーザ、UV、偏光光等を含む)を照射する様々な装置を含む概念である。また、本発明の光学装置も、感光性基板に光を照射する光照射部に限定されない。
図1は、第1の実施の形態に係る露光装置1の概略を示す斜視図である。露光装置1は、主として、定盤11と、板状部12と、レール13、14と、枠体15と、マスク保持部20と、光照射部30と、測定部40(図2参照)と、レーザ干渉計50(図2参照)と、測定部61(61a、61d、61g)と、を有する。なお、図1においては、一部の構成について図示を省略している。また、露光装置1は、装置全体を覆う図示しない温度調整部により、一定温度に保たれている。
定盤11は、略直方体形状(厚板状)の部材であり、例えば、石(例えば、花崗岩)や低膨張率の鋳物(例えば、ニッケル系の合金)で形成される。定盤11は、上側(+z側)に略水平(xy平面と略平行)な上面11aを有する。
定盤11は、設置面(例えば、床)上に載置された複数の除振台(図示せず)の上に載置される。これにより、定盤11が除振台を介して設置面上に載置される。除振台はすでに公知であるため、詳細な説明を省略する。なお、除振台は必須ではない。定盤11の+x側には、マスクMをマスク保持部20に設置するローダ(図示せず)が設けられる。
レール13は、セラミック製の細長い板状の部材であり、定盤11の上面11aに、長手方向が走査方向(x方向)に沿うように固定される。3本のレール13は、高さ(z方向の位置)が略同一であり、上面が高精度及び高平坦度で形成される。
ローダ側(+x側)のレール13は、端が上面11aの端部に配置され、反ローダ側(-x側)のレール13は、端が上面11aの端部より内側に配置される。
板状部12は、レール13の上に載置される。板状部12は、セラミック製の略板状の部材であり、全体として略矩形形状である。板状部12の下面(-z側の面)には、長手方向がx方向に沿うようにガイド部(図示せず)が設けられる。これにより、板状部12がx方向以外に移動しないように板状部12の移動方向が規制される。
板状部12の上面12aには、レール14が設けられる。レール14は、長手方向がy方向に沿うように固定される。レール14は、高さが略同一であり、上面が高精度及び高平坦度で形成される。
マスク保持部20は、平面視略矩形形状の略板状であり、熱膨張係数が略0.5~1×10-7/Kの低膨張性セラミックを用いて形成される。これにより、マスク保持部20の変形を防止することができる。なお、マスク保持部20は、熱膨張係数が略5×10-8/Kの超低膨張性ガラスセラミックを用いて形成することもできる。この場合には、制御しきれない温度変化が発生したとしても、マスク保持部20の変形を確実に防止することができる。なお、マスク保持部20をマスクMと同様に伸び縮みする材料で形成してもよい。
マスク保持部20は、レール14の上に載置される。言い換えれば、マスク保持部20は、板状部12及びレール13、14を介して上面11aに設けられる。
マスク保持部20の下面には、長手方向がy方向に沿うようにガイド部(図示せず)が設けられる。これにより、マスク保持部20、すなわち板状部12がy方向以外に移動しないようにマスク保持部20の移動方向が規制される。
このように、マスク保持部20(板状部12)は、レール13に沿ってx方向に移動可能に設けられ、マスク保持部20は、レール14に沿ってy方向に移動可能に設けられる。
マスク保持部20は、略水平な上面20aを有する。上面20aには、マスクM(図示省略)が載置される。また、上面20aには、バーミラー21、22、23が設けられる(図2参照)。
露光装置1は、図示しない駆動部81、82(図13参照)を有する。駆動部81、82は、例えばリニアモータである。駆動部81はマスク保持部20(板状部12)をレール13に沿ってx方向に移動させ、駆動部82はマスク保持部20をレール14に沿ってy方向に移動させる。駆動部81、82が板状部12やマスク保持部20を移動させる方法は、既に公知の様々な方法を用いることができる。
定盤11には、枠体15が設けられる。枠体15は、磁性材料、例えば低膨張率の鋳物(例えば、ニッケル系の合金)で形成される。枠体15は、支持部15aと、支持部15aを両端で支える2本の柱15cと、を有する。枠体15は、マスク保持部20の上方(+z方向)に光照射部30を保持する。支持部15aには、光照射部30が取り付けられる。枠体15については後に詳述する。
光照射部30は、マスクMに光(本実施の形態では、レーザ光)を照射する。光照射部30は、y方向に沿って一定間隔(例えば、略200mmおき)で設けられる。本実施の形態では、7個の光照射部30a、光、光照射部30b、光照射部30c、光照射部30d、光照射部30e、光照射部30f、光照射部30gを有する。移動機構161(後に詳述)は、光照射部30a~30gの焦点位置がマスクMの上面に合うように、光照射部30a~30g全体を10mm程度の範囲で鉛直方向(z方向)に移動させる。また、駆動部39(39a(図6参照)~39g、後に詳述)は、光照射部30a~30gの焦点位置の微調整のため、光照射部30a~30gを30μm(マイクロメートル)程度の範囲でz方向に微動させる。光照射部30については後に詳述する。
光照射部30a~30gには、それぞれ図示しない読取部が設けられる。読取部は、マスクMに形成されたパターンを読み取るものである。
測定部40(図2参照)は、例えばリニアエンコーダであり、マスク保持部20の位置を測定するレーザ干渉計50は、レーザ干渉計51、52(図1では図示省略、図2参照)を有する。枠体15の-y側に設けられた柱には、レーザ干渉計51が設けられる。また、定盤11の+x側の側面には、レーザ干渉計52(図1では図示省略)が設けられる。
図2は、測定部40及びレーザ干渉計50がマスク保持部20の位置を測定する様子を示す概略図である。なお、図2では、レール13、14の一部のみ図示している。また、図2では、光照射部30a、30gのみ図示し、光、光照射部30b~30fについては図示を省略する。
測定部40は、位置測定部41、42を有する。位置測定部41、42は、それぞれ、スケール41a、42aと、検出ヘッド41b、42bとを有する。
スケール41aは、+y側のレール13の+y側の端面及び-y側のレール13の-y側の端面に設けられる。検出ヘッド41bは、板状部12(図2では図示省略)の+y側及び-y側の端面に設けられる。図2では、+y側のスケール41a及び検出ヘッド41bについての図示を省略する。
スケール42aは、+x側のレール14の+x側の端面及び-x側のレール13の-x側の端面に設けられる。検出ヘッド42bは、マスク保持部20の+x側及び-x側の端面に設けられる。図2では、-x側のスケール42a及び検出ヘッド42bについての図示を省略する。
スケール41a、42aは、例えばレーザホログラムスケールであり、0.512μm(ナノメートル)ピッチでメモリが形成されている。検出ヘッド41b、42bは、光(例えば、レーザ光)を照射し、スケール41a、42aで反射された光を取得し、これにより発生する信号を512等分して1nmを得、これにより発生する信号を1024等分して0.5nmを得る。位置測定部41、42はすでに公知であるため、詳細な説明を省略する。
光照射部30aには、xz平面と略平行な反射面を有するミラー55aが設けられる。光照射部30gには、xz平面と略平行な反射面を有するミラー55b、55cが設けられる。ミラー55a、55b、55cは、x方向の位置が重ならないように設けられる。
光照射部30aには、yz平面と略平行な反射面を有するミラー56aが設けられる。光照射部30gには、yz平面と略平行な反射面を有するミラー56gが設けられる。
レーザ干渉計51、52は、4本のレーザ光を照射する。レーザ干渉計51は、レーザ干渉計51a、51b、51cを有する。レーザ干渉計52は、レーザ干渉計52a、52gを有する。
図2において、レーザ光の経路を2点鎖線で示す。レーザ干渉計51a、51b、51cから照射される光のうちの2本は、バーミラー23で反射されて、その反射光がレーザ干渉計51a、51b、51cで受光される。
レーザ干渉計51aから照射される光のうちの残りの2本はミラー55aで反射して、その反射光がレーザ干渉計51aで受光される。レーザ干渉計51bから照射される光のうちの残りの2本はミラー55bで反射して、その反射光がレーザ干渉計51bで受光される。レーザ干渉計51cから照射される光のうちの残りの2本はミラー55cで反射して、その反射光がレーザ干渉計51cで受光される。
レーザ干渉計51a~51cは、それぞれミラー55a~55cの位置を基準としバーミラー23の位置を測定することで、光照射部30a、30gとマスク保持部20とのy方向の位置関係を測定する。
レーザ干渉計52aから照射される光のうちの2本は、バーミラー22で反射されて、その反射光がレーザ干渉計52aで受光される。レーザ干渉計52gから照射される光のうちの2本は、バーミラー21で反射されて、その反射光がレーザ干渉計52gで受光される。
レーザ干渉計52aから照射される光のうちの残りの2本はミラー56aで反射して、その反射光がレーザ干渉計52aで受光される。レーザ干渉計52gから照射される光のうちの残りの2本はミラー56gで反射して、その反射光がレーザ干渉計52gで受光される。
レーザ干渉計52a、52gは、それぞれミラー56a、56gの位置を基準としバーミラー21、22の位置を測定することで、光照射部30a~30gとマスク保持部20とのx方向の位置関係を測定する。
本実施の形態では、光照射部30b~30fにはミラーが設けられず、そのミラーの位置を測定するレーザ干渉計も設けられない。これは、光照射部30a~30gを30μm程度の範囲でz方向に移動させるときの光軸の振れが数nm以下と小さく(後に詳述)、光照射部30b~30fの位置を光照射部30a、30gの位置に基づいて内挿により求められるためである。これにより、装置を小型化することができ、かつコストを下げることができる。
次に、枠体15について説明する。図3、4は、枠体15の支持部15aの概略を示す斜視図である。図3は背面側(-x側)から見た図であり、図4は正面側(+x側)から見た図である。図3、4は、説明のため、支持部15aと柱15cとを多少離して図示しているが、実際は支持部15aと柱15cとは隣接している。
支持部15aは、断面形状が略矩形形状の略棒状であり、内部は空洞になっている。支持部15aは、長手方向が略水平方向(ここではy方向)となるように配置されている。柱15cは、支持部15aの両端にそれぞれ設けられている。
支持部15aは、主として、底板151と、支持板153と、底板151及び支持板153の両側に設けられた側板152、154と、仕切り壁159とを有する。底板151及び支持板153は略水平に配置され、側板152、154は略鉛直に配置される。
本実施の形態では、底板151、支持板153及び側板152、154の板厚は略15mm~20mmであり、底板151、支持板153及び側板152、154のy方向の長さ(図9におけるW1)は略2.2mである。
底板151及び支持板153には、それぞれ、y方向に沿って丸孔155a~155g、156a~156gが形成される。丸孔155a~155g、156a~156gは、それぞれ底板151及び支持板153を略鉛直方向に貫通する孔であり、平面視略円形である。平面視において、丸孔155a~155gの中心の位置と、丸孔156a~156gの中心の位置とは略一致する。
丸孔155a~155g、156a~156gには、それぞれ、丸孔155a~155g、156a~156gを覆うようにガイド部材70、70A(後に詳述)が設けられ、ガイド部材70、70Aに光照射部30a~30gが取り付けられる。言い換えれば、光照射部30a~30gは、ガイド部材70、70Aを介して枠体15に設けられる。光照射部30a~30gを枠体15に取り付ける取付構造については後に詳述する。
また、底板151には、丸孔155a~155gに隣接して丸孔157a~157gが形成される。丸孔157a~157gには、読取部(図示せず)の鏡筒が挿入される。
側板152、154には、それぞれ孔152a~152i、154a~154iが形成される。孔152a~152g、154a~154gは、それぞれ、丸孔155a~155g、156a~156gとy方向の位置が重なるように設けられる。孔152a~152g、154a~154gは、丸孔157a~157gへ読取部60を取り付けるのに用いられる。孔152h、152iは、孔152a~152gの両側にそれぞれ設けられ、孔154h、154iは、丸孔154a~154gの両側にそれぞれ設けられる。枠体15は鋳物であり、孔152a~152i、154a~154iは鋳造時に鋳砂を排出して内部空間を形成するための鋳抜き穴として用いられる。
支持部15aの内部は空洞であるが、補強として支持部15aの内部に仕切り壁159を設けている。仕切り壁159は、板状の部材であり、端面が底板151、支持板153及び側板152、154に当接している。これにより、仕切り壁159が設けられた位置においては支持部15aの内部の空洞がなくなり、支持部15aの振動や変形(撓み、捩れ等)が防止される。
枠体15は、支持部15aを柱15cに沿ってz方向に移動させる移動機構161を有する。移動機構161は、支持部15aをz方向に10mm程度の範囲で移動させる。本実施の形態の移動機構161は、支持部15aの長手方向と略直交する端面にz方向に沿って設けられたラック161aと、柱15cに回転可能に設けられたピニオン161bと、ピニオン161bを回転させる回転駆動部161f(図13参照)とを有する。ラック161aは、支持部15aの長手方向と略直交する端面の略中央に設けられ、支持部15aの側面から外側に向けて突出する凸部158にねじ等(図示省略)を用いて固定される。ピニオン161bは、柱15cに回転可能に設けられており、ラック161aと噛み合う。
柱15cには、2つの永電磁石163が設けられる。2つの永電磁石163は、柱15cに設けられており、支持部15aの長手方向の両端近傍に配置される。永電磁石163は、ラック161aが設けられた端面に隣接する側板154に沿って設けられる。
永電磁石163は、永久磁石163a(図13参照)と電磁石163b(図13参照)とを有する永電磁式であり、着磁及び脱磁時のみ電磁石163bのコイルに電流を流し、内蔵されている永久磁石163aのON-OFFを行う。枠体15に用いられる低膨張合金は磁性材料であるため、永電磁石163により移動可能である。永電磁石163はON-OFF時に短時間(例えば0.2秒程度)だけ通電すればよいため、発熱がほとんどない。また、永電磁石163は、永久磁石がONされた後の磁力が変化しない。
また、永電磁石163は、調整ダイヤル163c(図13参照)を有する。調整ダイヤル163cは、電磁石163bのコイルに流す電流を調整するものであり、例えば1~10の10段階で電流が調整可能に構成されている。本実施の形態では、調整ダイヤル163cの値が“10”のときには永電磁石163が支持部15aを吸着する吸着力が第1吸着力(後に詳述)となり、調整ダイヤル163cの値が“2”又は“3”のとき(調整ダイヤル163cの値が“10”のときの電流値の略20%から略30%)には永電磁石163が支持部15aを吸着する吸着力が第2吸着力(後に詳述)となる。電流値と磁束密度及び吸着力とは比例するため、調整ダイヤル163cを調整することで、永電磁石163の磁束密度及び吸着力が変化する。
支持部15aには、計測部164が設けられる。計測部164は、鉛直方向に略沿って設けられたスケール164a(図5参照)と、スケール164aの値を読み取って位置情報を出力する検出ヘッド164b(図5参照)とを有する。スケール164aは、スケール41a、42aと同様に、例えばレーザホログラムスケールである。検出ヘッド164bは、検出ヘッド41b、42bと同様に、光(例えば、レーザ光)を照射し、スケール164aで反射された光を取得し、これにより発生する信号に基づいて位置情報を得る。スケール164aは、側板154と反対側の側板152に設けられる。
また、側板152には、マスクMまでの距離を測定する測定部61(61a、61d、61g)が設けられる。測定部61a、61d、61gは、例えば、センサから発光されたレーザ光に基づいて対象物(ここではマスクM)の高さを検知する変位センサである。測定部61aは光照射部30aに隣接して設けられ、測定部61dは光照射部30dに隣接して設けられ、測定部61gは光照射部30gに隣接して設けられる。
図5は、図3の面Cで枠体15を切断したときの概略を示す図である。柱15cには、凸部161cが形成されている。凸部161cの+x側の面は摺動面161dであり、摩擦抵抗を減らす磨き加工であるキサゲ加工が施される。
支持部15aの-x側の面は摺動面161eである。摺動面161eは摺動面161dと対向する位置に設けられる。摺動面161eには、摺動面161dと同様にキサゲ加工が施される。摺動面161eと摺動面161dとの間には、摺動面161d、161eの微小な凹凸に溜まった潤滑油により数μm程度の油膜を有する。本実施の形態では、潤滑油として、常温下で液体の粘度の低い鉱物油を使用する。
柱15cに設けられたピニオン161bを回転させることで、ラック161aが固定された支持部15aが上下動する。移動機構161が支持部15aを上下動させるときに、摺動面161dと摺動面161eとの間に形成された油膜により、摺動面161dと摺動面161eとが滑らかに摺動する。
ラック161aは、y方向に沿って見たときに、ラック161aの歯が支持部15aのx方向における中心線c上に位置する。言い換えれば、ラック161aの歯は、支持部15aの重心を通り、かつz方向と略平行な線上に位置する。したがって、ピニオン161bが回転してラック161a(支持部15a)を上下動させるときにモーメントを発生させない。
図3、4に示すように、ラック161a及びピニオン161bが設けられていない側の柱15cにも、キサゲ加工が施された摺動面161dが形成される。そして、この摺動面と当接するように支持部15aにはキサゲ加工が施された摺動面161e(図5参照)が形成される。
支持部15aの端には、柱15cに沿って弾性部材160が設けられている。図3、4では、-y側の端に設けられた弾性部材160についてのみ表示し、+y側の端に設けられた弾性部材160については図示を省略している。図5に示すように、弾性部材160は、支持部15aの下側に設けられる。弾性部材160と支持部15aとの間には、位置決め部材162が設けられる。位置決め部材162の底面に形成された凹部162aに弾性部材160が挿入されることで、弾性部材160のxy方向の位置が決められ、支持部15aの上下動にともなって弾性部材160が伸縮可能となる。このように、支持部15aの両端に設けられた弾性部材160が支持部15aの重さを支える。支持部15aは略660kg~700kgであり、弾性部材160は略600kgの重さを支持可能である。
弾性部材160が支えきれない支持部15aの重量は、摺動面161dと摺動面161eとの間の摩擦力により支える。永電磁石163は、柱15cに設けられており、電磁石163b(図13参照)のコイルに電流を流すことで支持部15aを吸着する。
移動機構161が柱15cに沿って支持部15aを上下動させないときには、永電磁石163が支持部15aを第1吸着力で吸着することで、支持部15a、すなわちラック161a及び摺動面161eが図5左方向(図5の矢印参照)に移動し、摺動面161dと摺動面161eとが密着する。第1吸着力は略12000Nであり、永電磁石163が支持部15aを第1吸着力で吸着するときの永電磁石163の磁束密度は略0.3T(テスラ)である。また、永電磁石163が支持部15aを第1吸着力で吸着するときの摺動面161dと摺動面161eとの間に生じる面圧は、略0.8MPaである。
このように摺動面161dと摺動面161eとの間に生じる面圧を高くし、摺動面161dと摺動面161eとを密着(強く圧縮)することで、摺動面161dと摺動面161eとの間に形成された油膜を排除する。その結果、摺動面161dと摺動面161eとの間に摩擦が発生する。
油膜が排除されたときの摺動面161dと摺動面161eとの摩擦係数が0.1~0.2であり、永電磁石163の吸着力が1500kgだとすると、摺動面161dと摺動面161eとの間の摩擦により150kgの重さを支える。摺動面は支持部15aの両側に2箇所存在するため、弾性部材160が支えきれない支持部15aの重さta(略60kg~100kg)は摩擦力により支持可能である。このように、移動機構161が支持部15aを上下動させないときには、支持部15aの高さ方向(z方向)の位置が変わらないように、支持部15aが支えられる。
移動機構161が柱15cに沿って支持部15aを上下動させるときには、永電磁石163が支持部15aを弱い力(第2吸着力)で吸着する。支持部15aを上下動させるときの吸着力(第2吸着力)は、支持部15aを上下動させないときの吸着力(第1吸着力)より弱い。本実施の形態では、第2吸着力が第1吸着力の略20%から略30%である。第2吸着力は略2400~略3600Nであり、永電磁石163が支持部15aを第1吸着力で吸着するときの永電磁石163の磁束密度は略0.06~略0.09Tである。また、永電磁石163が支持部15aを第2吸着力で吸着するときの摺動面161dと摺動面161eとの間に生じる面圧は、略0.16~略0.24MPaである。
永電磁石163が支持部15aを第2吸着力で吸着することにより、摺動面161dと摺動面161eとが当接する。このとき摺動面161dと摺動面161eとは密着しておらず、摺動面161dと摺動面161eとの間に形成された油膜は排除されない。
摺動面161dと摺動面161eとが当接しているため、支持部15aが上下動するときに柱15cに対して支持部15aが傾かない。配置位置の制約上、永電磁石163と計測部164とは移動機構161を挟んで反対側に配置されるが、本実施の形態では支持部15aが傾かないため、計測部164が永電磁石163から離れた位置にあったとしても、計測部164の計測結果が安定し、支持部15aを正確に上下動させることができる。
ここで、第2吸着力が第1吸着力の略20%から略30%であることが望ましい理由について説明する。表1、2は、永電磁石163の着磁力を変えたときの回転駆動部161f(ここでは、モータ)のトルクを示す表である。表1、2は、異なるモータを用いて実験を行った結果を示すものである。表1、2は、回転駆動部161fを駆動してピニオン161bを回転させることで支持部15aを高さ方向に移動させ、そのときの回転駆動部161fのトルクを測定して得られたものであり、各セルの値はトルク(N・m)である。
吸着力は、永電磁石163の磁束密度、すなわち永電磁石163に加える電圧に比例する。表1、2における吸着力は、永電磁石163に加える電圧と、永電磁石163の磁束密度が最大となるときに永電磁石163に加えられた電圧と、の比に基づいて求められる。なお、吸着力0%は、脱磁状態を示す。
Figure 0007017239000001
Figure 0007017239000002
表1、2に示すように、吸着力が18.5%及び24%のときの回転駆動部161fのトルクは、脱磁状態のときの回転駆動部161fのトルクとほとんど変わらない。つまり、第2吸着力が第1吸着力の略24%以下であれば、摺動面161dと摺動面161eとの間に形成された油膜は排除されず、摺動面161dと摺動面161eとの間に摩擦が発生しない。
それに対して、吸着力が39%のときの回転駆動部161fのトルクは、脱磁状態のときの回転駆動部161fのトルクの倍程度であり、脱磁状態のときの回転駆動部161fのトルクに対して大きく異なっている。これにより、吸着力が39%のときは、摺動面161dと摺動面161eとの間に形成された油膜が排除され、摺動面161dと摺動面161eとの間に摩擦が発生していることが分かる。
以上より、摺動面161dと摺動面161eとの間に摩擦が発生しないという観点からは、第2吸着力を第1吸着力の略39%とするのは適切でなく、第2吸着力を第1吸着力の略30%以下とすることが望ましい。
ただし、第2吸着力が第1吸着力の略20%より小さい場合には、支持部15aを第2吸着力で吸着した状態から支持部15aを第1吸着力で吸着した状態へと変化させたときに計測部164での計測結果が変化してしまう。これにより、第2吸着力が第1吸着力の略20%より小さい場合には、摺動面161dと摺動面161eとが当接しておらず、支持部15aが上下動するときに柱15cに対して支持部15aが傾いてしまっていることが分かる。以上より、第2吸着力を第1吸着力の略20%から略30%とすることが望ましい。
次に、光照射部30について説明する。図6は、光照射部30aの概略を示す要部透視図である。光照射部30aは、主として、DMD31aと、対物レンズ32aと、光源部33aと、AF処理部34aと、筒状部35aと、フランジ36aと、取付部37a、38aと、駆動部39aとを有する。光照射部30b~光照射部30gは、それぞれDMD31b~31gと、対物レンズ32b~32gと、光源部33b~33gと、AF処理部34b~34gと、筒状部35b~35gと、フランジ36b~36gと、取付部37b~37g、38b~38gと、駆動部39b~39gとを有する。光照射部30b~光照射部30gは、光照射部30aと同一の構成であるため説明を省略する。
DMD31aは、デジタルミラーデバイス(Digital Mirror Device、DMD)であり、面状のレーザ光が照射可能である。DMD31aは、多数の可動式のマイクロミラー(図示省略)を有し、1枚のマイクロミラーから1画素分の光が照射される。マイクロミラーは、大きさが略10μmであり、2次元状に配置されている。DMD31aには光源部33a(後に詳述)から光が照射され、光は各マイクロミラーで反射される。マイクロミラーは、その対角線と略平行な軸を中心に回転可能であり、ON(マスクMに向けて光を反射させる)とOFF(マスクMに向けて光を反射させない)との切り替えが可能である。DMD31aはすでに公知であるため、詳細な説明を省略する。
対物レンズ32aは、DMD31aの各マイクロミラーで反射されたレーザ光をマスクMの表面に結像させる。描画時には、光照射部30a~光照射部30gのそれぞれから光が照射され、この光がマスクM上で結像することにより、マスクMにパターンが描画される。
光源部33aは、主として、光源331と、レンズ332と、フライアイレンズ333と、レンズ334、335と、ミラー336とを有する。光源331は、例えばレーザダイオードであり、光源331から出射された光は、光ファイバ等を介してレンズ332に導かれる。
光は、レンズ332からフライアイレンズ333に導かれる。フライアイレンズ333は複数枚のレンズ(図示せず)を2次元状に配置したものであり、フライアイレンズ333において多数の点光源が作られる。フライアイレンズ333を通過した光は、レンズ334、335(例えば、コンデンサレンズ)を通って平行光となり、ミラー336でDMD31aに向けて反射される。
AF処理部34aは、マスクMへ照射される光の焦点をマスクMに合わせるものであり、主として、AF用光源341と、コリメータレンズ342と、AF用シリンドリカルレンズ343、ペンタプリズム344、345と、レンズ346と、AFセンサ347、348とを有する。AF用光源341から照射された光は、コリメータレンズ342で平行光となり、AF用シリンドリカルレンズ343で線状の光となり、ペンタプリズム344で反射されてマスクMの表面に結像する。マスクMで反射した光は、ペンタプリズム345で反射され、レンズ346で集光されて、AFセンサ347、348に入射する。ペンタプリズム344、345は、略97度の曲げ角度で光を曲げる。なお、ペンタプリズム344、345の代わりにミラーを用いてもよいが、ミラーの角度ズレにより焦点ボケを起こすため、ペンタプリズムを用いることが望ましい。AF処理部34aは、AFセンサ347、348で受光された結果に基づいて合焦位置を求めるオートフォーカス処理を行う。なお、このような光テコ式によるオートフォーカス処理はすでに公知であるため、詳細な説明を省略する。
光照射部30aは、内部に光学系(対物レンズ32aを含む)が設けられた略円筒形状の筒状部35aを有する。筒状部35aの上側の端には、フランジ36aが設けられる。フランジ36aは、上側にレンズ332、フライアイレンズ333及びレンズ334、335を保持する。そのため、光照射部30aの重心は、光軸axよりも図6における左方向にずれる。
また、筒状部35aには、取付部37a、38aが設けられる。取付部37a、38aは、枠体15への取り付けに用いられる。取付部37aは、フランジ36aの近傍に設けられ、取付部38aは、筒状部35aの下端近傍に設けられる。取付部37aには、取付部38aの外径より大きい直径を有する中空部372が形成される。これにより、筒状部35aが上方に引き抜き可能となる。なお図6では、取付部37a、38aに形成されたねじ孔371、381(後に詳述)の図示を省略している。
取付部37a(すなわち、光照射部30a)は、駆動部39aにより鉛直方向(z方向)に移動される。図7は、駆動部39aの概略を示す側面図である。駆動部39aは、主として、圧電素子391と、連結部392とを有する。
圧電素子391は、電圧を印加することで変位が生じる固体アクチュエータ(ピエゾ素子)である。圧電素子391は、変位しない部分(たとえば、下端)が取付部395を介して枠体15の支持部15aに設けられる(図11参照)。圧電素子391に電圧を印加すると、圧電素子391が伸び、圧電素子391の上側の端が上方向に移動する。図7の点線は圧電素子391が縮んだ状態を示し、図7の実線は圧電素子391が延びた状態を示す。
連結部392は、下端が圧電素子391に螺合された略円柱形状の部材である。連結部392は、圧電素子391の伸び縮みに伴って上下動する。
連結部392の上端には、先端が円弧形状の凸部393が設けられる。凸部393の先端は、取付部37a(図6参照)の下側に当接する。したがって、圧電素子391が伸びると光照射部30aが+z方向に移動し、圧電素子391が縮むと光照射部30aが-z方向に移動する。
連結部392の側面には、複数の溝394が形成されている。溝394は、中心軸に近づくにつれて斜め下方向に切り込むように形成されている。したがって、圧電素子391が曲がって伸びた(図7二点鎖線参照)としても、連結部392が溝394の部分で変形し、凸部393を水平方向に移動させず鉛直方向にだけ移動させることができる。
次に、光照射部30a~30gを枠体15に取り付ける取付構造について説明する。本実施の形態の取付構造では、底板151にガイド部材70を取り付け、支持板153にガイド部材70Aを取り付け、ガイド部材70、70Aに光照射部30a~30gを取り付けることで、光照射部30a~30gを枠体15に取り付ける。つまり、ガイド部材70、70Aは、光照射部30aと枠体15(ここでは、支持板153)との間に設けられる。
まず、ガイド部材70、70Aについて説明する。ガイド部材70、70Aは、支持部15a(底板151、支持板153)と光照射部30との間に設けられる略薄板状の部材である。
図8(A)は、ガイド部材70の概略を示す図であり、図8(B)は、ガイド部材70Aの概略を示す図である。ガイド部材70とガイド部材70Aとは直径が異なる。
ガイド部材70、70Aは、略薄板状であり、平面視略円板形状である。ガイド部材70、70Aは、厚さが略0.5~1mm程度の金属で形成される。本実施の形態では、ガイド部材70は略0.5mmであり、ガイド部材70Aは略1mmである。金属としては、ステンレス鋼、リン青銅等を用いることができるが、より均質なリン青銅を用いることが望ましい。なお、本発明における略0.5~1mm程度とは、略0.5~1mmに対して略0.5mm以下の誤差を含むものである。
ガイド部材70、70Aには、略中央に取付孔74、74Aが形成される。また、ガイド部材70、70Aには、孔77が外周に沿って複数形成され、取付孔74、74Aに沿って孔78が複数形成される。
ガイド部材70には、ガイド部材70が変形しやすいように、略円弧形状の切抜き孔79A、79Bがそれぞれ複数形成される。切抜き孔79A、79Bは、それぞれ、周方向に沿って等間隔に配置される。切抜き孔79Aの半径は切抜き孔79Bの半径より小さく、切抜き孔79Bは切抜き孔79Aの外側に配置される。また、切抜き孔79Aの端を含む端部領域79Aaと、切抜き孔79Bの端を含む端部領域79Baとは、周方向の位置が略一致する。なお、端部領域79Aa、79Baは、それぞれ切抜き孔79A、79Bの両端に存在する。
ガイド部材70Aには、ガイド部材70Aが変形しやすいように、略円弧形状の切抜き孔79C、79Dがそれぞれ複数形成される。切抜き孔79C、79Dは、それぞれ、周方向に沿って等間隔に配置される。切抜き孔79Cの半径は切抜き孔79Dの半径より小さく、切抜き孔79Dは切抜き孔79Cの外側に配置される。また、切抜き孔79Cの端を含む端部領域79Caと、切抜き孔79Dの端を含む端部領域79Daとは、周方向の位置が略一致する。なお、端部領域79Ca、79Daは、それぞれ切抜き孔79C、79Dの両端に存在する。
本実施の形態では、切抜き孔79A、79B、79C、79Dは各4個であるが、切抜き孔79A、79B、79C、79Dの位置及び数はこれに限られない。
端部領域79Aaと端部領域79Baとの周方向の位置が略一致し、この重なる位置は周方向に均等(例えば略45度毎)に配置される。また、端部領域79Caと端部領域79Daとの周方向の位置が略一致し、この重なる位置は周方向に均等(例えば略45度毎)に配置される。したがって、ガイド部材70、70Aの中心点から径方向に放射状に伸びる線を引くと、その線は必ず切抜き孔79A~79Dの少なくとも1つを通過する。そのため、ガイド部材70、70Aの変形量は、周方向の場所によらず略一定である。また、このように切抜き孔79A~79Dを配置することで、厚さが1mm程度の厚めの薄板をガイド部材70、70Aに用いても、略30μmの筒状部35aの上下動に合わせてガイド部材70、70Aが伸び縮みする。
図9(A)は底板151にガイド部材70を取り付けたときの底板151とガイド部材70との位置関係を示し、図9(B)は支持板153にガイド部材70Aを取り付けたときの支持板153とガイド部材70Aとの位置関係を示す。
ガイド部材70は、丸孔155a~155gを覆うように、底板151に7個設けられる。ガイド部材70Aは、丸孔156a~156gを覆うように、支持板153に7個設けられる。取付孔74、74Aは、丸孔155a~155g、156a~156gと略同心円状に配置される。
ガイド部材70及び丸孔155a~155gは、底板151の中央部分に均等に配置され、ガイド部材70A及び丸孔156a~156gは、支持板153の中央部分に均等に配置される。隣接する丸孔155a~155g(すなわちガイド部材70)の間隔及び隣接する丸孔156a~156g(すなわちガイド部材70A)の間隔W2は、光照射部30a~30gの間隔と略同一である。
丸孔155a、156aに設けられたガイド部材70、70Aには、光照射部30aの筒状部35が設けられる。丸孔155b、156bに設けられたガイド部材70、70Aには、光、光照射部30bが設けられる。同様に、丸孔155c~155g、156c~156gに設けられたガイド部材70、70Aには、それぞれ光照射部30c~30gが設けられる。
丸孔155aと丸孔156aとは、平面視における位置が重なるように形成される。同様に、丸孔155b~155gと丸孔156b~156gとは、それぞれ平面視における位置が重なるように形成される。
次に、光照射部30aの取り付けについて説明する。図10は、光照射部30aを支持板153に取り付ける取付構造の分解斜視図である。なお、光照射部30b~30gを底板151に取り付ける取付構造及び光、光照射部30b~30gを支持板153に取り付ける取付構造は、光照射部30aを底板151に取り付ける取付構造と同一であるため、説明を省略する。
ガイド部材70Aは、丸孔156aを覆うように支持板153に設けられる。ねじ85を孔77に挿入し、支持板153に形成されたねじ孔156hにねじ85を螺合させることで、ガイド部材70Aが支持板153に固定される。
光照射部30a(すなわち、筒状部35a)は、取付部37aを介してガイド部材70Aに設けられる。ねじ86を孔78に挿入し、ねじ孔371にねじ86を螺合させることで、ガイド部材70Aが取付部37aに固定される。これにより、光照射部30aは、光軸が取付孔74Aの中心と略一致するように取付孔74Aに挿入されてガイド部材70Aに固定される。
図11は、枠体15(ここでは、支持部15a)に光照射部30aが取り付けられた状態を模式的に示す図である。図11では、取付孔74及び孔75、76の中心を通る面で切断した状態を示す。図11では、一部の構成要件を断面表示している。また、図11では、ねじ85、86等の締結部材及びこれらが設けられる穴の図示を省略する。
筒状部35aは、ガイド部材70、70Aの取付孔74、74Aに挿入されている。ガイド部材70の上側に取付部38aが位置し、筒状部35aの取付部38aより下側の部分がガイド部材70より下側に位置した状態でガイド部材70と取付部38aとが固定されている。また、ガイド部材70Aの上側に取付部37aが位置し、筒状部35aの取付部37aより下側の部分がガイド部材70Aより下側に位置した状態でガイド部材70Aと取付部37aとが固定されている。
なお、ガイド部材70、70Aを枠体15及び光照射部30に取り付けるときに押さえリングを用いてもよい。押さえリングを用いることで、ガイド部材70、70Aの変形を防止することができる。
平面視において、丸孔155aの中心と丸孔156aの中心とは略一致するため、光軸axが略鉛直方向となるように光照射部30aが支持部15aに取り付けられる。
孔79Aは、AF用光源341から下向きに照射された光及びマスクMでの反射光が通過できるように、それぞれAF用光源341及びAFセンサ347、348と水平方向の位置が一致する。言い換えれば、孔79Aの位置は、面視においてAF用光源341及びAFセンサ347、348の位置と重なる。
駆動部39aは、取付部395を介して支持部15aに設けられており、取付部37aを押し上げて鉛直方向に移動させる。光照射部30aの重心Gは、駆動部39aが取付部37aを押し上げる位置の近傍に位置する。したがって、駆動部39aは重心Gの近くで光照射部30aを押し上げる。これにより、光照射部30aの上下動が安定する。
図12は、(A)は光照射部30aが移動していない状態(ストローク中央)を示し、(B)は光照射部30aが下側に移動した状態(ストローク下端)を示し、(C)は光照射部30aが上側に移動した状態(ストローク上端)を示す。
ガイド部材70、70Aが取付部37a、38a(図12では図示省略)を介して筒状部35aに固定されているため、駆動部39aにより筒状部35aが上下動すると、それに伴ってガイド部材70、70Aが変形する。
駆動部39aによる筒状部35aの移動量は略40μm(±略20μm)である。ガイド部材70、70Aは薄い金属製であるため、略40μmの筒状部35aの上下動に合わせてガイド部材70、70Aが伸び縮み(弾性変形)する。ガイド部材70、70Aは平面視略円形状であるため、ガイド部材70、70Aの変形量は場所によらず略一定であり、筒状部35aがxy方向に移動しない。
図13は、露光装置1の電気的な構成を示すブロック図である。露光装置1は、CPU(Central Processing Unit)201と、RAM(Random Access Memory)202と、ROM(Read Only Memory)203と、入出力インターフェース(I/F)204と、通信インターフェース(I/F)205と、メディアインターフェース(I/F)206とを有し、これらは光照射部30、位置測定部41、42、レーザ干渉計51、52、測定部61、駆動部81、82、回転駆動部161f、永電磁石163、計測部164、圧電素子391等と互いに接続されている。
CPU201は、RAM202、ROM203に格納されたプログラムに基づいて動作し、各部の制御を行う。CPU201には、位置測定部41、42、レーザ干渉計51、52、測定部61、計測部164等から信号が入力される。CPU201から出力された信号は、光照射部30、駆動部81、82、回転駆動部161f、永電磁石163、圧電素子391等に出力される。
RAM202は、揮発性メモリである。ROM203は、各種制御プログラム等が記憶されている不揮発性メモリである。CPU201は、RAM202、ROM203に格納されたプログラムに基づいて動作し、各部の制御を行う。また、ROM203は、露光装置1の起動時にCPU201が行うブートプログラムや、露光装置1のハードウェアに依存するプログラム、マスクMへの描画データなどを格納する。また、RAM202は、CPU201が実行するプログラム及びCPU201が使用するデータなどを格納する。
CPU201は、入出力インターフェース204を介して、キーボードやマウス等の入出力装置211を制御する。通信インターフェース205は、ネットワーク212を介して他の機器からデータを受信してCPU201に送信すると共に、CPU201が生成したデータを、ネットワーク212を介して他の機器に送信する。
メディアインターフェース206は、記憶媒体213に格納されたプログラム又はデータを読み取り、RAM202に格納する。なお、記憶媒体213は、例えば、ICカード、SDカード、DVD等である。
なお、各機能を実現するプログラムは、例えば、記憶媒体213から読み出されて、RAM202を介して露光装置1にインストールされ、CPU201によって実行される。
CPU201は、入力信号に基づいて露光装置1の各部を制御する制御部201aの機能を有する。制御部201aは、CPU201が読み込んだ所定のプログラムを実行することにより構築される。制御部201aは、回転駆動部161fを駆動して支持部15aをz方向に移動させる。また、制御部201aは、電磁石163bのコイルに電流を流し、第1吸着力又は第2吸着力で支持部15aを吸着する。制御部201aが行う処理については、後に詳述する。
図13に示す露光装置1の構成は、本実施形態の特徴を説明するにあたって主要構成を説明したのであって、例えば一般的な情報処理装置が備える構成を排除するものではない。露光装置1の構成要素は、処理内容に応じてさらに多くの構成要素に分類されてもよいし、1つの構成要素が複数の構成要素の処理を実行してもよい。
このように構成された露光装置1の作用について説明する。以下の処理は、主として制御部201aによって行われる。
図14は、露光装置1の高さ調整処理の流れを示すフローチャートである。制御部201aは、ローダ(図示せず)を用いてマスクMをマスク保持部20に設置する(ステップS10)。その後、制御部201aは、駆動部81、82を介してマスク保持部20を移動して、マスクMの位置を調整する(ステップS12)。なお、ステップS10、S12の処理は既に公知であるため、説明を省略する。
次に、制御部201aは、支持部15aを高さ方向に移動して、支持部15aの高さ方向の位置を原点位置へ移動させる(ステップS14)。原点位置とは、マスク保持部20の高さ(あらかじめ記憶されている)及び設置されたマスクMの規格により求められるものであり、これらの部品が規格値にある場合に光照射部30の焦点がマスクM上に結ばれる位置である。なお、ステップS14における支持部15aのx方向の位置は、中心位置(xセンター)である。
ここで、制御部201aが支持部15aを高さ方向への移動させる処理について説明する。まず制御部201aは、電磁石163bのコイルに電流を流す。調整ダイヤル163cにより電流が調整されているため、永電磁石163は第2吸着力で支持部15aを吸着する。その後、制御部201aは、回転駆動部161fを駆動してピニオン161bを回転させることで、ラック161aすなわち支持部15aを高さ方向に移動させる。このとき制御部201aは、計測部164での計測結果を連続的に取得し、計測部164での計測結果が目的の値となるまで回転駆動部161fを駆動する。
永電磁石163が第2吸着力で支持部15aを吸着しているため、摺動面161dと摺動面161eとが当接しているが、摺動面161dと摺動面161eとの間に形成された油膜は排除されていない。したがって、支持部15aがz方向に移動する時には、摺動面161dに沿って摺動面161eが摺動する。このように、支持部15aがz方向に移動するときに柱15cに対して支持部15aが傾かないため、計測部164での計測結果が安定する。
ここまで(ステップS10~S14)が、光照射部30の高さ調整を行うための準備段階である。次に、制御部201aは、駆動部81、82を介してマスク保持部20をx方向に移動させながら、測定部61a、61gによりマスクMの高さを計測する(ステップS20)。そして、制御部201aは、ステップS20での測定結果に基づいて、光照射部30の高さ方向の移動量(駆動部39aの駆動量及び支持部15aの移動量)を算出する(ステップS22)。以下、ステップS22の処理に付いて詳細に説明する。
図15は、ステップS20での測定結果の一例である。ここでは、測定部61aでの測定結果を例示しており、求められる値は光照射部30aに対する値である。制御部201aは、測定結果の最低値(BOTTOM)と最高値(PEAK)の中心位置(厚みセンター)を数式(1)を用いて算出する。
[数1]
(PEAK+BOTTOM)/2=厚みセンター ・・・(1)
また制御部201aは、x方向の中心位置(xセンター)における測定結果と、厚みセンターとの差異をPZT-OFSとして算出する。PZT-OFSは、支持部15aのx方向の位置がxセンターに位置し、かつ、圧電素子391がストロークセンターに位置しているときに、光照射部30の合焦位置が厚みセンターになるように支持部15aの高さを調整したときの、圧電素子391の駆動量である。PZT-OFSは、厚みセンターより測定結果が大きいときは正の値であり、厚みセンターより測定結果が小さいときは負の値である。
なお本実施の形態では、ステップS14で支持部15aをxセンターに移動し、ステップS22でxセンターにおける測定結果に基づいてPZT-OFSを求めたが、例えば、ステップS14で支持部15aを-x端に移動し、ステップS22で-x端における測定結果に基づいてPZT-OFSを求めてもよい。つまり、ステップS14、S22におけるxセンターは一例であり、x方向の位置はxセンターに限られない。
制御部201aは、PZT-OFSに圧電素子391をストロークセンターに配置するための値(ここでは、20μm)を加えた値を光照射部30の鉛直方向の移動量として算出する。なお、20μmという値は、圧電素子391の種類によって変化する。
ステップS20では測定部61a、61gを用いて測定しているため、測定結果からは光照射部30a、30gの高さ方向の移動量が求められる。ステップS22において、制御部201aは、測定結果から直接求められる光照射部30a、30gの高さ方向の移動量に基づいて、光照射部30b~30fの高さ方向の移動量(厚みセンター及びPZT-OFS)を内挿により算出する。
図14の説明に戻る。制御部201aは、光照射部30a~30gに設けられた圧電素子391のそれぞれについて、ステップS22で算出された値(PZT-OFSに20μmを加えた値)だけ、圧電素子391を下端位置から駆動する(ステップS24)。
次に、制御部201aは、光照射部30a~30gのそれぞれに対して、AF処理部34を介してマスクMへ照射される光の焦点がマスクMに合っているかどうかを確認しながら、回転駆動部161fを駆動して支持部15aを高さ方向へ移動させる(ステップS26)。
ステップS14において第2吸着力で支持部15aを吸着したため、永電磁石163は、継続して支持部15aを第2吸着力で吸着している。したがって、ステップS26においても、摺動面161dと摺動面161eとが当接しており、摺動面161dに沿って摺動面161eが摺動する。
AF処理部34では、合焦位置までどの程度移動させる必要があるか連続的に求め、制御部201aは、その結果を連続的に取得する。制御部201aは、計測部164での計測結果を連続的に取得しながら回転駆動部161fを駆動し、AF処理部34で求められた移動距離だけ支持部15aを高さ方向へ移動させる。
ステップS24で、圧電素子391が下端位置からPZT-OFSに20μmを加えた値だけ駆動されているため、ステップS26で支持部15aが移動された結果、圧電素子391がストロークセンターにあるときに光照射部30から照射される光が厚みセンターに合焦する。これにより、マスクMの高さが変化しても、圧電素子391の移動により、常にマスクMに光照射部30の焦点を合わせることができる。
その後制御部201aは、AF処理部34を介して光照射部30から照射される光がマスクMに合焦しているかどうかを判定する(ステップS28)。ステップS24、S26で光照射部30が移動されているため、ステップS28では、通常、光照射部30から照射される光はマスクMに合焦する。仮に合焦していると判断される位置に光照射部30が位置していない場合(ステップS28でNO)には、制御部201aは処理をステップS26に戻す。
合焦していると判断される位置に光照射部30が位置している場合(ステップS28でYES)には、制御部201aは、電磁石163bのコイルに電流を流して、永電磁石163に第1吸着力で支持部15aを吸着させて、摺動面161dと摺動面161eとを密着させる(ステップS30)。その結果、摺動面161dと摺動面161eとの間に摩擦が発生し、摩擦力により支持部15aが柱15cに固定される。
ステップS14で永電磁石163が第2吸着力で支持部15aを吸着したため、ステップS30の前までは永電磁石163が第2吸着力で支持部15aを吸着し続けている。この状態で調整ダイヤル163cの値を“10”に移動すると、電磁石163bのコイルに流れる電流値が上がり、永電磁石163の吸着力が第2吸着力から第1吸着力に変化する。永電磁石163の性質上、吸着力を第2吸着力から第1吸着力へ上げることは可能である(吸着力を第1吸着力から第2吸着力へ下げることはできない)。
本実施の形態では、支持部15aの移動時に摺動面161dと摺動面161eとが当接し、摺動面161eに沿って摺動面161dが摺動するため、永電磁石163の吸着力により摺動面161dと摺動面161eとを密着させたとしても、摺動面161dすなわち支持部15aが傾かない。そのため、支持部15aが移動していても移動していなくても計測部164での計測結果が変わらない。
例えば図16(B)、(C)に示すように、柱15cに対して支持部15aが傾いた状態(摺動面161eに対して摺動面161dが傾いた状態)で支持部15aを高さ方向に移動させる場合(図16(B)、(C)の白抜き矢印参照)には、摺動面161dと摺動面161eとを密着させたときに支持部15aが回転し(図16(B)、(C)の太矢印参照)、計測部164での計測結果が変わってしまう。このときの摺動面161dの傾きが1度以下の微小な角度であったり、摺動面161dと摺動面161eとの間の隙間が数μm程度と小さかったとしても、支持部15aが大きく、また計測部164を永電磁石163が設けられた面と反対側の面に設けなければならないという制約から、計測部164での測定結果に無視できない誤差が生じてしまう。それに対し、図16(A)に示すように(本実施の形態)、摺動面161dと摺動面161eとを当接させながら支持部15aを高さ方向に移動させると、摺動面161dと摺動面161eとを密着させたときに支持部15aが傾かないため、支持部15aが移動していても移動していなくても計測部164での計測結果が変わらない。このように本実施の形態では、支持部15aの傾きに起因する誤差を無くすことができる。
支持部15aの高さを固定(ステップS30)したら、制御部201aは、駆動部81、82を介してマスク保持部20をx方向、y方向に移動させながら、AF処理部34a~34gのそれぞれを用いて、光照射部30a~30gから照射される光をマスクM上に合焦させるためにどの程度移動させる必要があるかを示すAFマップを作成し、圧電素子391の駆動量が±20μmを超えないかどうか確認する(ステップS32)。AFマップの作成は既に公知であるため、説明を省略する。
仮に圧電素子391の駆動量が±20μmを超えてしまった場合には、制御部201aは、圧電素子391の駆動量が±20μmを超えてしまった方向に支持部15aを移動させる。
これにより、図14に示す処理を終了する。なお、図14に示す処理は一例であり、処理の順番や処理内容はこれに限られない。
その後、図示しない描画処理が行われる。制御部201aは、位置測定部41、42の測定結果に基づいてマスク保持部20をx方向及びy方向に移動させる。制御部201aは、マスク保持部20を移動させつつ、光照射部30の下側をマスクMが通過するときに光照射部30から光を照射して、描画処理を行う。描画処理は、マスク保持部20にマスクMを載置してから数時間経過した後に行なわれるため、制御部201aがステップS32の処理を行う余裕は十分にある。
本実施の形態によれば、ラック161a及びピニオン161bを含む移動機構161を用いて光照射部30が設けられた支持部15aを上下動させるため、ボールねじを用いる場合と異なり酔歩誤差が発生しない。したがって、光照射部の高さ調整を正確に行うことができる。
また、本実施の形態によれば、永電磁石163を用いて第1吸着力で支持部15aを吸着し、摺動面161dと摺動面161eとを密着させて摺動面161dと摺動面161eとの間の油膜を排除することで、摺動面161dと摺動面161eとの間に発生する摩擦力で支持部15a保持することができる。また、永電磁石163を用いて第2吸着力(第2吸着力<第1吸着力)で支持部15aを吸着し、摺動面161dと摺動面161eとを当接させた状態で支持部15aを上下動させることで、支持部15aが移動している時もしていない時も計測部164での計測結果が変わらず、支持部15aの傾きに起因する誤差を無くすことができる。
また、本実施の形態によれば、永電磁石163を用いるため、通電時間が短く、熱による支持部15aの変形、膨張等が発生しない。したがって、支持部15a、すなわち光照射部の高さ調整を正確に行うことができる。
以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。当業者であれば、実施形態の各要素を、適宜、変更、追加、変換等することが可能である。
また、本発明において、「略」とは、厳密に同一である場合のみでなく、同一性を失わない程度の誤差や変形を含む概念である。例えば、略水平とは、厳密に水平の場合には限られず、例えば数度程度の誤差を含む概念である。また、例えば、単に平行、直交等と表現する場合において、厳密に平行、直交等の場合のみでなく、略平行、略直交等の場合を含むものとする。また、本発明において「近傍」とは、基準となる位置の近くのある範囲(任意に定めることができる)の領域を含むことを意味する。例えば、Aの近傍という場合に、Aの近くのある範囲の領域であって、Aを含んでもいても含んでいなくてもよいことを示す概念である。
1 :露光装置
11 :定盤
11a :上面
12 :板状部
12a :上面
13、14:レール
15 :枠体
15a :支持部
15c :柱
20 :マスク保持部
20a :上面
21、22、23:バーミラー
30(30a~30g):光照射部
31(31a~31g):DMD
32(32a~32g):対物レンズ
33(33a~33g):光源部
34(34a~34g):AF処理部
35(35a~35g):筒状部
36(36a~36g):フランジ
37(37a~37g)、38(38a~38g):取付部
39(39a~39g):駆動部
40 :測定部
41、42:位置測定部
41a、42a:スケール
41b、42b:検出ヘッド
50、51(51a、51b、51c)、52(52a、52g):レーザ干渉計
55a、55b、55c、56a、56g:ミラー
60 :読取部
61(61a、61d、61g):測定部
70、70A:ガイド部材
74、74A:取付孔
75、76、77、78:孔
79A、79B、79C、79D:切抜き孔
79Aa、79Ba、79Ca、79Da:端部領域
81、82 :駆動部
85、86 :ねじ
151 :底板
152、154:側板
152a~152i、154a~154i:孔
153 :支持板
155a~155g、156a~156g:丸孔
156h :ねじ孔
157a~157g:丸孔
158 :凸部
159 :仕切り壁
160 :弾性部材
161 :移動機構
161a :ラック
161b :ピニオン
161c :凸部
161d、161e:摺動面
161f :回転駆動部
162 :位置決め部材
162a :凹部
163 :永電磁石
163a :永久磁石
163b :電磁石
163c :調整ダイヤル
164 :計測部
164a :スケール
164b :検出ヘッド
201 :CPU
201a :制御部
202 :RAM
203 :ROM
204 :入出力インターフェース
205 :通信インターフェース
206 :メディアインターフェース
211 :入出力装置
212 :ネットワーク
213 :記憶媒体
331 :光源
332 :レンズ
333 :フライアイレンズ
334、335:レンズ
336 :ミラー
341 :AF用光源
342 :コリメータレンズ
343 :AF用シリンドリカルレンズ
344、345:ペンタプリズム
346 :レンズ
347、348:センサ
371 :ねじ孔
372 :中空部
381 :ねじ孔
391 :圧電素子
392 :連結部
393 :凸部
394 :溝
395 :取付部

Claims (7)

  1. 基板が載置される基板保持部と、
    磁性材料で形成された略棒状の支持部であって、長手方向が略水平方向となるように設けられた支持部と、前記支持部の両端にそれぞれ長手方向が略鉛直方向となるように設けられた棒状の柱と、を有する枠体であって、前記支持部には支持部側摺動面が形成され、前記柱には柱側摺動面が前記支持部側摺動面と対向する位置に形成された枠体と、
    前記支持部を鉛直方向に移動させる移動機構であって、前記支持部に設けられたラックと、前記柱に回転可能に設けられ、前記ラックと噛み合うピニオンと、前記ピニオンを回転させる回転駆動部と、を有する移動機構と、
    前記支持部に設けられ、前記基板に光を照射する光学装置と、
    前記柱に設けられ、永久磁石と電磁石とを有する永電磁石と、
    前記回転駆動部を駆動して前記支持部を移動させ、かつ、前記電磁石のコイルに電流を流して前記永久磁石に前記支持部を吸着させる制御部と、
    を備え、
    前記永電磁石が前記支持部を吸着して前記支持部側摺動面と前記柱側摺動面とを密着させ、前記支持部側摺動面と前記柱側摺動面との間の摩擦力により前記支持部を前記柱に固定することを特徴とする露光装置。
  2. 前記支持部に設けられた計測部であって、鉛直方向に略沿って設けられたスケールと、前記スケールの値を読み取って位置情報を出力するヘッドと、を有する計測部と、備え、
    前記支持部の移動時には、前記永電磁石は、前記移動機構が前記支持部を移動させないときの吸着力である第1吸着力より弱い第2吸着力で前記支持部を吸着し、前記計測部は、前記支持部の高さを連続して計測し、前記支持部側摺動面は、前記柱側摺動面に沿って摺動する
    ことを特徴とする請求項1に記載の露光装置。
  3. 前記第2吸着力は、前記第1吸着力の略20%から略30%である
    ことを特徴とする請求項2に記載の露光装置。
  4. 前記支持部と前記光学装置との間に設けられる略薄板状のガイド部材と、
    前記枠体に設けられ、前記光学装置を鉛直方向に移動させる駆動部と、
    を備え、
    前記支持部は、略水平に配置された板状部を有し、
    前記板状部には略鉛直方向に貫通する丸孔が形成され、
    前記ガイド部材は、平面視略円板形状であり、前記丸孔を覆うように前記板状部に設けられ、
    前記ガイド部材には、略中央に取付孔が形成され、
    前記取付孔は、前記丸孔と略同心円状に配置され、
    前記光学装置は、光軸が前記取付孔の中心と略一致するように前記取付孔に挿入されて前記ガイド部材に固定されている
    ことを特徴とする請求項1から3のいずれか一項に記載の露光装置。
  5. 前記基板保持部を走査方向に移動させる移動部と、
    前記支持部に設けられ、前記基板までの距離を測定する測定部と、
    を備え、
    前記制御部は、前記移動部を介して前記基板保持部を前記走査方向に移動させながら前記測定部を介して前記基板までの距離を測定し、当該基板までの距離の最大値と最小値とから中央値を求め、当該中央値に基づいて前記駆動部の駆動量を求める
    ことを特徴とする請求項4に記載の露光装置。
  6. 前記光学装置は、下向きの光を照射するAF用光源と、反射光が入射するAFセンサと、を有するAF処理部を有し、
    前記制御部は、前記AF処理部を動作させながら前記支持部を移動させ、合焦していると判断される位置に前記光学装置が位置したら前記支持部側摺動面と前記柱側摺動面とを密着させる
    ことを特徴とする請求項1から5のいずれか一項に記載の露光装置。
  7. 基板が載置される基板保持部と、
    磁性材料で形成された略棒状の支持部であって、長手方向が略水平方向となるように設けられた支持部と、前記支持部の両端にそれぞれ長手方向が略鉛直方向となるように設けられた棒状の柱と、を有する枠体であって、前記支持部には支持部側摺動面が形成され、前記柱には柱側摺動面が前記支持部側摺動面と対向する位置に形成された枠体と、
    前記支持部を鉛直方向に移動させる移動機構であって、前記支持部に鉛直方向に略沿って設けられたラックと、前記柱に回転可能に設けられ、前記ラックと噛み合うピニオンと、前記ピニオンを回転させる回転駆動部と、を有する移動機構と、
    前記支持部に設けられた計測部と、
    前記支持部に設けられ、前記基板に光を照射する光学装置と、
    前記柱に設けられ、永久磁石と電磁石とを有する永電磁石と、
    を有する装置を用いて前記支持部の高さを調整する高さ調整方法であって、
    前記電磁石のコイルに電流を流して前記永電磁石に前記支持部を第2吸着力で吸着させて、前記支持部側摺動面と前記柱側摺動面と当接させるステップと、
    前記計測部で前記支持部の高さを計測しながら、前記回転駆動部を駆動して前記ピニオンを回転させて、前記支持部を高さ方向に移動させるステップと、
    前記コイルに電流を流して前記永電磁石に前記支持部を前記第2吸着力より強い第1吸着力で吸着させて、前記支持部側摺動面と前記柱側摺動面と密着させて前記支持部を前記柱に固定するステップと、
    を含むことを特徴とする高さ調整方法。
JP2018120227A 2018-06-25 2018-06-25 露光装置および高さ調整方法 Active JP7017239B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018120227A JP7017239B2 (ja) 2018-06-25 2018-06-25 露光装置および高さ調整方法
TW108118015A TWI809111B (zh) 2018-06-25 2019-05-24 曝光裝置及高度調整方法
KR1020207033454A KR20210023820A (ko) 2018-06-25 2019-06-19 노광 장치 및 높이 조정 방법
PCT/JP2019/024230 WO2020004164A1 (ja) 2018-06-25 2019-06-19 露光装置および高さ調整方法
CN201980041745.3A CN112334836B (zh) 2018-06-25 2019-06-19 曝光装置以及高度调整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018120227A JP7017239B2 (ja) 2018-06-25 2018-06-25 露光装置および高さ調整方法

Publications (2)

Publication Number Publication Date
JP2020003533A JP2020003533A (ja) 2020-01-09
JP7017239B2 true JP7017239B2 (ja) 2022-02-08

Family

ID=68985411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018120227A Active JP7017239B2 (ja) 2018-06-25 2018-06-25 露光装置および高さ調整方法

Country Status (5)

Country Link
JP (1) JP7017239B2 (ja)
KR (1) KR20210023820A (ja)
CN (1) CN112334836B (ja)
TW (1) TWI809111B (ja)
WO (1) WO2020004164A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022129897A (ja) * 2021-02-25 2022-09-06 株式会社Screenホールディングス 描画装置、描画方法およびプログラム
JP2022183616A (ja) * 2021-05-31 2022-12-13 株式会社ジャノメ 経路教示データ作成装置及びその方法並びにプログラム
WO2023145085A1 (ja) * 2022-01-31 2023-08-03 ファナック株式会社 支持構造

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3112123B2 (ja) 1991-08-19 2000-11-27 バルツァース ウント ライボルト ドイチュラント ホールディング アクチエンゲゼルシャフト ワークを自動的に注型、被覆、塗装、検査かつ分別するための装置
JP2004302043A (ja) 2003-03-31 2004-10-28 Nikon Corp 露光装置及び露光方法
JP2006119575A (ja) 2004-09-27 2006-05-11 Hitachi Displays Ltd パターン修正装置および表示装置の製造方法
US20080297922A1 (en) 2007-06-01 2008-12-04 Stmicroelectronics (Grenoble) Sas Mobile lens unit with detection device
WO2017154659A1 (ja) 2016-03-07 2017-09-14 株式会社ブイ・テクノロジー マスク製造装置
JP2017181579A (ja) 2016-03-28 2017-10-05 株式会社ブイ・テクノロジー マスク製造装置及びマスク製造装置の制御方法
JP6314426B2 (ja) 2013-10-31 2018-04-25 セイコーエプソン株式会社 ロボット制御装置およびロボット制御方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748335A (en) * 1985-04-19 1988-05-31 Siscan Systems, Inc. Method and aparatus for determining surface profiles
JPH03112123A (ja) * 1989-09-27 1991-05-13 Canon Inc 露光装置
JPH09320943A (ja) 1996-05-31 1997-12-12 Dainippon Screen Mfg Co Ltd 描画装置および自動焦点制御方法
JP2006286131A (ja) * 2005-04-04 2006-10-19 Ricoh Co Ltd ワーク回転駆動装置及び光ディスク原盤露光装置
DE102005030304B4 (de) * 2005-06-27 2008-06-26 Xtreme Technologies Gmbh Vorrichtung und Verfahren zur Erzeugung von extrem ultravioletter Strahlung
DE102006008080A1 (de) * 2006-02-22 2007-08-30 Kleo Maschinenbau Ag Belichtungsanlage
JPWO2008139964A1 (ja) * 2007-05-11 2010-08-05 株式会社ニコン 光学素子駆動装置、鏡筒及び露光装置ならびにデバイスの製造方法
JP5139922B2 (ja) * 2008-08-25 2013-02-06 株式会社ディスコ レーザー加工装置
CN102483580B (zh) * 2009-08-20 2015-04-01 株式会社尼康 物体处理装置、曝光装置及曝光方法、以及元件制造方法
NL2004527A (en) * 2009-08-25 2011-02-28 Asml Netherlands Bv Optical apparatus, and method of orienting a reflective element.
JP2011119551A (ja) * 2009-12-04 2011-06-16 Nikon Corp 光学部材変形装置、光学系、露光装置、デバイスの製造方法
JP2011242563A (ja) * 2010-05-18 2011-12-01 Hitachi High-Technologies Corp 露光装置、露光装置のランプ位置調整方法、及び表示用パネル基板の製造方法
US8988655B2 (en) * 2010-09-07 2015-03-24 Nikon Corporation Exposure apparatus, movable body apparatus, flat-panel display manufacturing method, and device manufacturing method
JP5663449B2 (ja) * 2011-10-12 2015-02-04 オリンパスイメージング株式会社 操作装置
DE102012201410B4 (de) * 2012-02-01 2013-08-14 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage mit einer Messvorrichtung zum Vermessen eines optischen Elements
JP6150043B2 (ja) * 2012-03-29 2017-06-21 株式会社ブイ・テクノロジー 露光装置
JP5863149B2 (ja) * 2012-04-04 2016-02-16 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
NL2010628A (en) * 2012-04-27 2013-10-29 Asml Netherlands Bv Lithographic apparatus comprising an actuator, and method for protecting such actuator.
US9360757B2 (en) * 2013-08-14 2016-06-07 Carbon3D, Inc. Continuous liquid interphase printing
JP2015070014A (ja) * 2013-09-27 2015-04-13 株式会社ニコン 基板保持方法及び装置、並びに露光方法及び装置
JP6484853B2 (ja) * 2014-04-17 2019-03-20 株式会社ブイ・テクノロジー 露光装置用反射鏡ユニット及び露光装置
JP2018031824A (ja) * 2016-08-22 2018-03-01 株式会社ブイ・テクノロジー 露光装置
JP2019095662A (ja) * 2017-11-24 2019-06-20 株式会社ブイ・テクノロジー 光学装置の取付構造及び露光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3112123B2 (ja) 1991-08-19 2000-11-27 バルツァース ウント ライボルト ドイチュラント ホールディング アクチエンゲゼルシャフト ワークを自動的に注型、被覆、塗装、検査かつ分別するための装置
JP2004302043A (ja) 2003-03-31 2004-10-28 Nikon Corp 露光装置及び露光方法
JP2006119575A (ja) 2004-09-27 2006-05-11 Hitachi Displays Ltd パターン修正装置および表示装置の製造方法
US20080297922A1 (en) 2007-06-01 2008-12-04 Stmicroelectronics (Grenoble) Sas Mobile lens unit with detection device
JP6314426B2 (ja) 2013-10-31 2018-04-25 セイコーエプソン株式会社 ロボット制御装置およびロボット制御方法
WO2017154659A1 (ja) 2016-03-07 2017-09-14 株式会社ブイ・テクノロジー マスク製造装置
JP2017181579A (ja) 2016-03-28 2017-10-05 株式会社ブイ・テクノロジー マスク製造装置及びマスク製造装置の制御方法

Also Published As

Publication number Publication date
KR20210023820A (ko) 2021-03-04
TWI809111B (zh) 2023-07-21
CN112334836B (zh) 2024-03-08
TW202001323A (zh) 2020-01-01
JP2020003533A (ja) 2020-01-09
WO2020004164A1 (ja) 2020-01-02
CN112334836A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
JP7017239B2 (ja) 露光装置および高さ調整方法
JP4860557B2 (ja) 共振走査ミラー
JP4782820B2 (ja) リソグラフィ装置及びデバイス製造方法
JP4676205B2 (ja) 露光装置および露光方法
KR102598555B1 (ko) 광학 장치의 부착 구조 및 노광 장치
JP6228878B2 (ja) リソグラフィ装置およびデバイス製造方法
JP2009246165A (ja) 露光装置
JP5534080B2 (ja) 露光装置及び露光方法
WO2021015099A1 (ja) 露光装置及び露光方法
US7894140B2 (en) Compensation techniques for fluid and magnetic bearings
JPH11251409A (ja) 位置決め装置、及び露光装置
JP4237727B2 (ja) リソグラフィ装置及びデバイス製造方法
CN111033388A (zh) 曝光装置
JP2009188012A (ja) 露光装置
JP6774038B2 (ja) 露光装置及び露光方法、並びにフラットパネルディスプレイの製造方法、及びデバイス製造方法
JP5489050B2 (ja) 露光装置
JP2006234950A (ja) 走査装置
JP2009186557A (ja) 露光装置
JP2010102130A (ja) 露光装置
JP2009186558A (ja) 露光装置及び露光方法
JP2007519147A (ja) 波面補正器を有する光学装置
JP2012237793A (ja) 光スキャナー及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120

R150 Certificate of patent or registration of utility model

Ref document number: 7017239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150