JP4406226B2 - 生体情報映像装置 - Google Patents

生体情報映像装置 Download PDF

Info

Publication number
JP4406226B2
JP4406226B2 JP2003190336A JP2003190336A JP4406226B2 JP 4406226 B2 JP4406226 B2 JP 4406226B2 JP 2003190336 A JP2003190336 A JP 2003190336A JP 2003190336 A JP2003190336 A JP 2003190336A JP 4406226 B2 JP4406226 B2 JP 4406226B2
Authority
JP
Japan
Prior art keywords
image data
light
unit
electroacoustic
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003190336A
Other languages
English (en)
Other versions
JP2005021380A (ja
Inventor
省一 金山
和弘 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003190336A priority Critical patent/JP4406226B2/ja
Priority to CA2435990A priority patent/CA2435990C/en
Priority to US10/628,446 priority patent/US6979292B2/en
Priority to KR1020030055190A priority patent/KR20050003948A/ko
Priority to CNB031278434A priority patent/CN100512760C/zh
Priority to EP04251910.8A priority patent/EP1493380B1/en
Publication of JP2005021380A publication Critical patent/JP2005021380A/ja
Priority to KR1020060046474A priority patent/KR100805463B1/ko
Application granted granted Critical
Publication of JP4406226B2 publication Critical patent/JP4406226B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0091Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4312Breast evaluation or disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0825Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the breast, e.g. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5261Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/0672Imaging by acoustic tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7232Signal processing specially adapted for physiological signals or for diagnostic purposes involving compression of the physiological signal, e.g. to extend the signal recording period
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • G01N2021/1785Three dimensional
    • G01N2021/1787Tomographic, i.e. computerised reconstruction from projective measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0826Fibre array at source, distributing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02475Tissue characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change

Description

【0001】
【発明の属する技術分野】
本発明は、被検体内部に照射された光のエネルギーに基づいて発生する音響信号を収集して被検体の生体情報を画像化する生体情報映像装置に関する。さらに具体的には、検査を受ける被検者に照射した光のエネルギーから生成したものと、検査を受ける被写体に照射した超音波から生成した超音波エコー画像の二つの聴覚映像を撮影して重ねる方法と装置に関し、二つの画像を重ねることにより、被検者の組織の中の形態的な特徴に対する物質濃度の分布を知ることができるものである。
【0002】
【従来の技術】
被検体の血液や細胞液などの体液、あるいは生体組織に含まれる物質成分の濃度を測定する生体情報計測法は、健康管理、あるいは治療効果の判定等において従来から行われてきた。この物質成分の濃度計測を目的とした体液の成分分析においては、まず採血によって体液を体外に取り出す必要があり、従って、この方法は被検者に対して皮膚の損傷にともなう多大な苦痛を与えると共に、被検者や作業者を生物災害汚染の危険にさらすことになる。
【0003】
このような従来の問題点に対して、数多くの特許と新聞の記事が、人間の被検者の組織の中の検体濃度に関する情報を得る非侵襲的方法について説明している。これらの方法のうちの1つに“光音響分光分析法”がある。光音響分光分析法では、この光音響分光分析法では、所定の波長をもつ可視光、近赤外光、又は中間赤外光を被検体に照射した際に、被検体内の血液中に含まれるグルコースやヘモグロビンなどの特定物質がこの照射光のエネルギーを吸収した結果生じる音響波を検出して、その特定物質の濃度を定量的に計測するものである。これに関しては、米国特許第5,348,002号、欧州特許第9838904A1、欧州特許第0215776A1号では、光音響測定を使って人間の組織内の物質を非侵襲的に判定する方法について開示している。光は可視光でも、赤外線でも、あるいは中間赤外線でもよい。
【0004】
非侵襲生体情報計測の対象となる物質として上記のグルコースやヘモグロビンの他にコレステロール、中性脂肪、ビリルビン、コラーゲンなどがある。これらの中から最適な物質を選択し、その物質において吸収が最大となる光波長を用いた光音響分光分析による皮膚癌や乳癌などの診断は、近年、その臨床的有用性が明らかになりつつあり、更に、この新しい分光分析技術を適用し、上記物質の濃度分布を2次元画像として映像化する画像診断法に対しての期待も高まってきている。
【0005】
従来の非侵襲的なグルコース測定法は、被検体の皮膚表面などに異なる波長の近赤外光を照射し、このとき得られる音響波を演算処理することによりグルコース濃度を測定する方法がある(例えば、特許文献1および特許文献2参照。)。
【0006】
また、従来の光音響分光分析法では、音響波の検出にマイクロフォンやジルコン−チタン酸鉛系セラミックス(PZT)等の圧電素子を用いる方法が提案されている(例えば、特許文献3および特許文献4参照。)。
【0007】
ヘモグロビンやグルコースに加え、光音響分光分析法を使って、コレステロール、天然脂肪、ビルルビン、コラーゲンなどのような人間の組織の中の他の検体を判定することもできる。光音響分光分析法の結果に基づく皮膚がんや乳がんの診断が、医療分野で有効であることが最近証明された。光音響分光分析法は、これらの物質から選択した適当な物質と、選択した物質がもっとも吸収しやすい波長を有する光を使用する。さらに、これらの物質の濃度の分布を表す二次元の画像を提供する診断方法の発明に対する期待がますます高まっている。
【0008】
光音響分光分析法は、組織内の物質濃度を測定するために使用するのに対し、超音波画像は、人間の器官の中の嚢胞やしこりのような形態的特徴の存在を判定する場合に広く使用されてきた。人間の組織の中の物質の分布と形態的特徴を組み合わせることにより、組織をより細かく特徴付けられると共に、悪性腫瘍をより正確に診断でき、異常な病巣領域の限定をより正確に行ってこれらの領域の外科的除去に導くことができるため、よりよい診断と、改善された健康管理が実現する。
【0009】
乳がんは、女性の主な死亡原因のひとつである。乳がんのスクリーニングと早期診断は、死亡率を削減し、健康管理の費用の抑制において非常に大きな価値を持つ。現在の方法では、異常なしこりを発見するための乳房の組織の触診と、疑わしい組織変形を探すための定期的な乳房X線撮影を行う。乳房X線写真に疑わしい箇所があると、超音波撮像を行い、さらに外科的生体組織検査を行う。これらの一連の工程は、最終的な結論に達するまでにはかなりの時間がかかる。
【0010】
非侵襲的な光学技術により、組織内における血管の分布を判定することができるようになり、よって、組織領域内における異常血管新生によって、潜在的腫瘍の位置を知ることができる。
【0011】
非侵襲的な光学技術には、組織内の時間分解光伝達を含む。もう一つの方法は、組織内を光子密度波動の伝播に伴う変調と位相角の変化を測定するものである。これらは、いくつかの新聞記事で紹介された(B.チャンス“血液及び血液酸化の定量化に連続的位相変調パルス光を使った近赤外線画像”Advances in Optical Biopsy and Optical Mammography, R.Alfano ed, Annals of the New York Academy of Sciences 1998; 第838巻、29〜45頁、S.ファンティーニ他による“周波数領域光学乳房撮影法;エッジエフェクト修正”Medical Physics 1996”; 第23巻、1〜6頁、M.A.フランセッチーニ他“周波数領域技術が光学的乳房撮影法を進化させる;始めての医療結果”Proceedings of the National Academy of Sciences USA, 1997;第94巻、6468〜6473頁(1997年))。これらの方法では、画像変換の不正確性と乳房などの体の部位の縁部に近い領域における画像のゆがみが問題となっている。
【0012】
超音波、CAT走査、X線、MRIを含む従来の撮像方法は、ヘモグロビンの分布を示さずに、体の部位、この場合は胸の形態を示す。さらに、MRI及びCAT走査は、大型で高価な機器であり、容易に変形させることはできない。
【0013】
形態的画像と形態的特徴における物質の分布を利用した診断方法及び装置により、よりよい診断が行えるようになる。
【0014】
光音響撮像を使って胸の組織における検体の分布を判定する方法については、A.A.オラエフスキ他による“胸のレーザ光音響撮像:がんによる血管形成の検出”SPIE Proceedings 1999;第3597巻、352〜363頁、及びA.A.オラエフスキ他による、“血液の可視化のための光音響撮像と乳がんの診断”SPIE Proceedings 2002;第4618巻、81〜94頁で説明している。また、米国特許第5,840,023号では、“医療診断用の光音響撮像”を開示しており、欧州特許第01/10295号では、“血液の酸化の光音響による監視”、そして米国特許第6,309,352B1では、“組織の特性の変化の実時間光音響監視”においても説明している。
【0015】
オラエフスキー他は、光音響撮像のみを使用して超音波撮像とは組み合わせていない。彼らは、位置合わせした超音波振動子を使用して検出される光音響及び超音波画像の組み合わせについては教示していない。この方法によると、組織の体積弾性率に対する形態学的特性の影響により血管画像がゆがむ可能性がある。
【0016】
組織における検体分布の画像を生成するための光学的方法の他の応用については、Q.Zhu他による“超音波と光学を組み合わせた断層撮影画像” SPIE Proceedings 1999;第3579巻、364〜370頁と、Q.Zhu他による“良性の組織変形と悪性の組織変形の区別における超音波への付随物としての光学的撮像” SPIE Proceedings 1999;第3579巻、532〜539頁においても説明している。Zhu他は、超音波撮像を使用して組織における形態学的特性を定義し、周波数領域撮像を適用して血管新生、例えばヘモグロビンの分布を判定する。光ファイバー及び光電子増倍管は光学的方法の検出器として使用して、超音波振動子は、最適さにおいては劣る血管新生画像と形態学的画像の位置合わせによって超音波撮像を行うために使用する。位置合わせした超音波振動子を使って検出する光音響及び超音波画像の組み合わせについては教示していない。
【0017】
これに対して、近年、この光音響効果を乳癌の診断に適用した場合の映像法についての研究が進められている(例えば、非特許文献1参照。)。図14はこの非特許文献1に記載されている光音響画像データの収集システム100であり、パルス状の光を発生するレーザ発生器101と、この光パルスを被検体の乳房102に供給する光ファイバ103と、この光ファイバ103に対向させて配置される凹面状の配列型電気音響変換素子104と、光パルスの送信制御や音響波の収集、更には画像再構成を行うコンピュータシステム105から構成されている。この光ファイバ103と配列型電気音響変換素子104の間に乳房2を挿入した後、光ファイバ103から乳房102の内部組織に光(レーザ光)を照射することによって、内部組織の血液成分にて新たに発生する音響波を配列型電気音響変換素子104によって受信する。
【0018】
この方法によれば、所定の光波長による光音響効果により、例えば血中のヘモグロビンの濃度が他の物質成分と比較して感度よく計測できる。従って、血流量が正常組織より増大している乳癌などの腫瘍組織に対して得られる光音響画像は、従来行われてきた超音波診断装置やX線装置あるいはMRI装置などによって得られる画像より優れた検出能を有する可能性がある。これは、血管の数である血管新生と血管の流量が、腫瘍の中の高代謝活性に対応するために正常な組織より腫瘍組織内の方が高くなっているためである。腫瘍とその周りの血管が増えると、血管新生がより頻繁に起こるようになる。腫瘍の中の新しい血管の生成は血管形成として知られている。
【0019】
【特許文献1】
特公平3−47099号公報
【0020】
【特許文献2】
特公平5−58735号公報
【0021】
【特許文献3】
特開平10−189号公報
【0022】
【特許文献4】
特開平11−235331号公報
【0023】
【非特許文献1】
Alexander A,et.al:Laser optoacoustic imaging of breast cancer in vivo, Proc.SPIE , Vol.4256: pp.6-15,2001.
【0024】
【発明が解決しようとする課題】
しかしながら特許文献1乃至4において提案されている方法は、いずれも局所的な部位における特定物質の濃度の計測が目的であり、濃度分布の映像化技術については触れられていない。
【0025】
また非特許文献1で述べられている方法によれば、光ファイバ103と配列型電気音響変換素子104は、乳房102を挟んだ状態で対向して配置されているため、操作性に問題がある。特に生体内から音響波を受信して画像化を行う場合には、配列型電気音響変換素子104と生体の間に介在する空気を極力排除する必要があるため、光ファイバ103と配列型電気音響変換素子104は一体化させることが望ましい。
【0026】
更に、この音響波を用いた画像化(以下、光音響イメージング法)は、例えばヘモグロビンのように特定の成分についてのみ行われるものであり、この特定成分が無い領域からは信号が得られない。従って、例えば非特許文献1のように乳癌の検査に光音響イメージング法を適用する場合、周囲の正常乳腺組織に対する腫瘍組織の正確な位置関係が把握し難いという問題点があった。
【0027】
従って、形態学的特性とその特性の中に物質濃度の分布の撮像を組み合わせ、一方で、画像のゆがみをなくし、撮像測定と物質分布測定に対して共通のボディインターフェースと共通の検出器を組み込むことによって病気の状態を診断する方法と装置を開発する必要がある。この方法と装置は、撮像測定と物質分布測定に対して同じ圧力、同じ空隙、同じインターフェースを適用できるはずである。
【0028】
本発明は上記の問題点に鑑みてなされるものであり、その目的は生体内の光音響効果を用いて得られる生体情報の映像化(光音響イメージング法)において、操作性に優れたデータ収集システムを備え、更に、高いコントラスト分解能と空間分解能を有する画像データを生成することが可能な生体情報映像装置を提供することにある。
【0029】
【課題を解決するための手段】
上記課題を解決するために、本発明の生体情報映像装置では、特定波長成分を含む光を発生する光発生部と、この光発生部が発生する光を被検体内に照射する光照射部と、前記光発生部が発生する光を前記光照射部に導く導波手段と、前記光照射部が照射した光によって被検体内に発生する音響波を複数個配列された電気音響変換素子を用いて電気信号に変換する第1の電気音響変換手段と、この第1の電気音響変換手段によって得られる信号に基づいて第1の画像データを生成する第1の画像データ生成手段と、被検体内に超音波を送信する超音波送信手段と、この超音波送信手段によって送信する超音波のうち前記被検体内で反射する成分を複数個配列された電気音響変換素子を用いて電気信号に変換する第2の電気音響変換手段と、この第2の電気音響変換手段によって得られる信号に基づいて第2の画像データを生成する第2の画像データ生成手段と、前記第1の画像データと前記第2の画像データを表示する表示手段とを備え、前記導波手段は、複数の光ファイバから構成され、その一方の端部は前記光照射部に配列されて開口され、前記第1の電気音響変換手段および前記第2の電気音響変換手段の複数の電気音響変換素子は、前記複数の光ファイバ開口部の配列方向とほぼ同一方向に配列される
【0030】
【発明の実施の形態】
本発明の一つの局面は、人間の組織の中の検体濃度の分布を判定し、この分布を検査を受ける体の部位の形態学的画像上に重ね、より正確な診断を行う方法である。
【0031】
本発明の一つの局面は、
a)超音波撮像素子と光音響照射及び検出素子をさらに備えた診断プローブを胸の組織に接触させる工程と、
b)前記胸の組織をヘモグロビンの吸光スペクトルバンドにある波長を有する短い光パルスで照射し、光音響信号を生成する工程と、
c)超音波振動子を使って前記光音響信号を検出し、胸の組織における新生血管の分布を判定する工程と、
d)前記光音響信号の検出において使用する前記光音響検出振動子と位置合わせした超音波振動子を使って同時にまたは順に、前記人間の胸の組織の形態学の超音波画像を生成及び検出する工程と、
e)前記光音響ヘモグロビン分布画像を前記超音波形態学画像に重ねて胸の異なる形態学的構造における血管の分布の合成画像を生成し、前記形態学的構造は目的の腫瘍である工程と、
f)前記腫瘍上の前記新生血管の分布に基づいて診断の可能性を予測する工程とを含む、人間の乳がんを診断するための方法である。
【0032】
本発明の方法と装置を使用して、人間の正常な組織と悪性の組織における化学療法物質の濃度を判定することができ、よって治療の潜在的効果を引き出すための方法を提供する。このようなクラスの治療物質は、光力学療法に使用するものがある。よって、より良い、そしてより正確な診断を助けるだけでなく、本発明の方法と装置は、治療への方向付けのために使用することもできる。
【0033】
光の波長は、組織の水分や組織の色素によってあまり吸収されないで組織の中に十分に深く浸透できるものよりも、波長が長い可視近赤外線スペクトルの域のものである。好ましいスペクトル域は530nmから1300nmの間である。
【0034】
本発明の方法と装置に使用する光音響検出素子と超音波検出素子は共通である。これにより、二つの画像の間の位置合わせを最大限とし、二つの撮像方法の間の検出器と体の間の境界面の変化を最低限に抑えることができる。
【0035】
超音波振動子は、圧電セラミクス、またはフッ化ポリビニルピロリドンのような高分子フィルムのような圧電素子である。好ましい材料はPZNT(鉛・ジルコニウム・ニオブ・チタン)単結晶である。
【0036】
本発明のもう一つの局面は、しこりや腫瘍のような組織の形態的特性においてヘモグロビンのような物質の濃度を判定し、人間の乳がんのような病気の診断を改善するための装置である。この装置は、
a)特定の波長成分を有する光を生成する光生成装置と、
b)光生成装置によって生成された光を検査を受ける被検者に照射する照射装置と、
c)光生成装置によって生成した光を照射装置に誘導する導波手段と、
d)照射装置によって照射された光によって被検者内で生成された音波を、複数の電子音響変換素子の配列を使用することによって電気信号に変換するための第1の電子音響変換手段と、
e)第1の電子音響変換手段によって得た信号に基づいて第1の画像データを生成するための第1の画像データ生成手段と、
f)超音波を被検者に伝送する超音波伝送手段と、
g)超音波伝送手段によって伝送され、被検者の体内で反射した超音波の成分を、複数の電子音響変換素子の配列を使って、電気信号に変換する第2の電子音響変換手段と、
h)第2の電子音響変換手段によって得た信号に基づいて第2の画像データを生成するための第2の画像データ生成手段と、
i)第1の画像データと第2の画像データを表示するための表示手段とを備えている。
【0037】
この被検者情報撮像装置としての一般化された申請において、本発明の装置のいくつかの局面を次に示す8つの実施形態において説明する。
【0038】
(第1の実施の形態)
以下、本発明の第1の実施の形態について図1乃至図6を用いて説明する。
【0039】
この第1の実施の形態で述べる生体情報映像装置は、乳癌の診断を目的とした生体内のヘモグロビン分布の画像化を可能とするものであり、その特徴は、電気音響変換部に配列して置かれた電気音響変換素子の間隙に光照射部の光ファイバ出力端を配置することによって光照射部と一体化した電気音響変換部を形成する。そして、生体内の同一部位に対してこの電気音響変換部を用いた光音響イメージング法および従来のパルスエコー法によって得られるそれぞれの画像データを合成表示することにある。
【0040】
なお、以下では光音響イメージング法によって発生する音波を音響波と呼び、通常のパルスエコー法において送受信される音波を超音波と呼ぶ。
【0041】
図1および図2を用いて第1の実施の形態における生体情報映像装置の構成を説明する。図1は第1の実施の形態における生体情報映像装置全体の概略構成を示すブロック図であり、図2は生体情報映像装置の画像データ生成部2のブロック図を示す。
【0042】
この生体情報映像装置は、被検体7に所定波長の光を照射する光送信部1と、この光を被検体7に照射することによって得られる音響波に基づく光音響画像データと従来の超音波画像データを生成する画像データ生成部2と、この光音響画像データおよび超音波画像データを表示する表示部6と、操作者が患者情報や装置の撮影条件を入力するための操作部5と、これら各ユニットを統括的に制御するシステム制御部4とを備えている。
【0043】
光送信部1は、波長の異なる複数の光源を備える光源部11と、複数の波長の光を同一光軸上に合成する光合波部12と、この光を被検体7の体表面まで導く多チャンネルの導波部14と、この導波部14において使用するチャンネルを切り換えて走査を行う光走査部13と、導波部14によって供給される光を被検体7に照射する光照射部15とを備えている。
【0044】
光源部11は、異なる波長の光を発生する複数個の光源を有する。光源として、特定の波長成分又はその成分を含む単色光を発生する半導体レーザ(LD)、発光ダイオード(LED)、固体レーザ、ガスレーザ等の発光素子を用いる。例えば、被検体7のヘモグロビン濃度を測定する場合には、固体レーザの一種である波長が約1000nmのNd:YAGレーザや、ガスレーザの一種である633nmのHe-Neガスレーザを用い、10nsec程度のパルス幅を有したレーザ光を形成する。生体内のヘモグロビンは、その状態(酸化ヘモグロビン、還元ヘモグロビン、メトヘモグロビン、炭酸ガスヘモグロビン、等)により光学的な吸収特性が異なるが、一般的には600nmから1000nmの光を吸収する。
【0045】
また、LDやLED等の小型発光素子を用いる場合には、発光波長が550〜650nm程度ではInGaAlP、発光波長が650〜900nm程度ではGaAlAs、発光波長が900〜2,300nm程度ではInGaAsもしくはInGaAsPなどの材料を用いた素子を使用することができる。また最近では、波長が550nm以下で発光する InGaNを用いた発光素子も使用可能になりつつある。
【0046】
更には、波長可変可能な非線形光学結晶を用いたOPO(Optical Parametrical Oscillators)レーザを用いることもできる。
【0047】
光合波部12は、複数個の光源から発生する波長の異なる光を同一光軸に重ね合わせるためのものであり、それぞれの光は、まずコリメートレンズによって平行光線に変換され、次に直角プリズムやダイクロイックプリズムにより、光軸が合わせられる。このような構成により比較的小型の合波光学系とすることができるが、光通信用に開発されている市販の多重波長合波・分波器を用いてもよい。また光源部11に前述の波長が連続的に変更可能なOPOレーザ等の発生源を使用する場合は、この光合波部12は必ずしも必要ではない。
【0048】
導波部14は、光合波部12から出力される光を被検体7まで導くためのものであり、効率のよい光伝搬を行うために光ファイバや薄膜光導波路を用いるが、直接空間伝搬することも可能である。本発明の第1の実施の形態において使用する導波部14は、後述する複数の光ファイバ71から構成されており、これらの複数の光ファイバ71の中から所定の光ファイバ71を選択して光の供給を行う。
【0049】
光走査部13は、導波部14において配列される複数の光ファイバ71を順次選択しながら光の供給を行うことによって被検体7に対して光による走査を行う。
【0050】
光照射部15は、導波部14の出力端であり、後述する電気音響変換部23と一体化されている。例えば、この光照射部15における光ファイバ71の出力端部は、電気音響変換部23を構成する配列型の変換素子54に隣接して配置される。
【0051】
一方、生体情報映像装置の画像データ生成部2は、音響信号と電気信号の変換を行う電気音響変換部23と、この電気音響変換部23を選択駆動し、また電気音響変換部23からの受信信号を選択受信すると共に、送受信信号に所定の遅延時間を与え、整相加算を行う送受信部22と、電気音響変換部23の選択動作や送受信部22の遅延時間を制御する走査制御部24と、被検体7の内部に放射する送信超音波の繰り返し周期を設定するためのレートパルスを出力するレート信号発生部21と、送受信部22から得られる受信信号に対して各種の処理を行う信号処理部25とを備えている。
【0052】
電気音響変換部23は、1次元にM個配列される微小な変換素子54をその先端部に有しており、被検体7の体表面に対してその先端部を接触させ音響波や超音波の送受信を行う。この変換素子54は、送信時において電気的な駆動パルスを送信超音波に変換し、また受信時においては音響波や受信超音波を電気信号に変換する機能を有している。この電気音響変換部23は、一般に超音波プローブとも呼ばれ、小型、軽量に構成されており、多チャンネルケーブルによって後述する送受信部22に接続される。この電気音響変換部23は、セクタ走査対応、リニア走査対応、コンベックス走査対応等の中から診断部位に応じて選択されるが、本実施の形態ではリニア走査用の電気音響変換部23を用いた場合について述べる。
【0053】
送受信部22は、図2に示すように、送信遅延回路51と、パルサ52と、電子スイッチ53と、プリアンプ55と、受信遅延回路56と、加算器57とを備えている。
【0054】
送信遅延回路51は、送信時における送信超音波の収束距離を設定するための遅延回路であり、電気音響変換部23を構成するM個の変換素子54のうちのN’個(M>N’)の変換素子54を駆動するタイミングをレート信号発生部21から出力されるレートパルスに与え、パルサ52に供給する。
【0055】
また、パルサ52は、N’個の変換素子54を駆動するための高圧パルスを生成する駆動回路であり、送信遅延回路51の出力信号をトリガ信号として、例えば、波高値が数百Vのインパルスを形成する。
【0056】
電子スイッチ53は、パルスエコー法の送信時において、電気音響変換部23を構成するM個の変換素子54の中から隣接するN’個の変換素子54を選択する。また、光音響イメージング法の受信時においては、M個の変換素子54から隣接するN個の変換素子54を選択し、パルスエコー法の受信時においては、N’個の変換素子54を選択する。そして、これらN個、N’個の変換素子54によって得られるそれぞれの受信信号をプリアンプ55に供給する。
【0057】
一方、プリアンプ55は、電子スイッチ53によって選択されるN’個の変換素子54によって受信される微小な受信信号を増幅し、十分なS/Nを確保する。
【0058】
受信遅延回路56は、電子スイッチ53によって選択されるN個、あるいはN’(M>N’、M>N)の変換素子54から得られる音響受信信号、あるいは超音波受信信号に対して、所定の部位からの音響波、あるいは受信超音波の位相を一致させて収束受信ビーム形成するための遅延時間を与える。
【0059】
加算器57は、N’チャンネルの超音波受信信号、あるいはNチャンネルの音響受信信号を加算することによって1つの受信信号に纏める。このN’チャンネル、あるいはNチャンネルの加算によって所定の深さからの受信信号は整相加算され、受信収束点が設定される。
【0060】
レート信号発生部21は、所定の繰り返し周波数によって行う超音波パルスの送信タイミングを設定するためのクロックパルスを発生する。この繰り返し周波数は、画像の視野深度に依存するが本実施の形態では4KHz〜8KHzに設定される。
【0061】
走査制御部24は変換素子選択制御回路68とビーム集束制御回路67を備え、変換素子選択制御回路68は電子スイッチ53によって選択される送信時のN’個の変換素子54および受信時のN個あるいはN’個の変換素子54の位置情報を電子スイッチ53に供給する。一方、ビーム集束制御回路67は、上記N個の変換素子54およびN’個の変換素子54が形成する送信収束点および受信収束点を形成するための遅延時間情報を送信遅延回路51および受信遅延回路56に供給する。
【0062】
信号処理部25は、フィルタ66と、対数変換器58と、包絡線検波器59と、A/D変換器60と画像データメモリA61および画像データメモリB62とを備えている。送受信部22の加算器57の出力は、信号処理部25のフィルタ66において不要なノイズを除去した後、対数変換器58にて受信信号の振幅を対数変換し、弱い信号を相対的に強調する。一般に、被検体7からの受信信号は、80dB以上の広いダイナミックレンジをもった振幅を有しており、これを23dB程度のダイナミックレンジをもつ通常のCRTモニタに表示するためには弱い信号を強調する振幅圧縮が必要となる。
【0063】
なお、フィルタ66は、帯域通過特性を有し、受信信号における基本波を抽出するモードと高調波成分を抽出するモードを有している。包絡線検波器59は、対数変換された受信信号に対して包絡線検波を行い、A/D変換器60は、この包絡線検波器59の出力信号をA/D変換し画像データを形成する。
【0064】
なお、この画像データとは、光音響イメージング法によって被検体7に光を入射させた場合に得られる音響受信信号に基づいて生成される画像データ(以下、光音響画像データ)と、通常のパルスエコー法において広く行われているように、被検体7に送信超音波を送信した場合に反射波として得られる超音波受信信号に基づいて生成される画像データ(以下、超音波画像データ)をいう。画像データメモリA61は、前者の光音響画像データを保存する記憶回路であり、画像データメモリB62は、後者の超音波画像データを保存する記憶回路である。
【0065】
表示部6は、表示用画像メモリ63と変換器64とCRTモニタ65を備えている。表示用画像メモリ63は、CRTモニタ65に表示する画像データを一時的に保存するバッファメモリであり、画像データメモリA61に保存される光音響画像データと画像データメモリB62に保存される超音波画像データは、この表示用画像メモリ63において合成される。変換器64は、表示用画像メモリ63から読み出された合成画像データに対してD/A変換とテレビフォーマット変換を行い、その出力はCRTモニタ65において表示される。
【0066】
操作部5は、操作パネル上にキーボード、トラックボール、マウス等を備え、装置操作者が患者情報や装置の撮影条件など必要な情報を入力するために用いられる。
【0067】
システム制御部4は、図示しないCPUと図示しない記憶回路を備え、操作部5からのコマンド信号に従って光送信部1、画像データ生成部2、表示部6などの各ユニットの制御やシステム全体の制御を統括して行う。特に、内部のCPUには、操作部5を介して送られる操作者の入力コマンド信号が保存される。
【0068】
次に、光照射部15と電気音響変換部23を一体化したアプリケータ70について図3および図4を用いて説明する。図3(a)は導波部14を構成する光ファイバ71と電気音響変換部23を構成する変換素子54の配列方法の具体例を示したものであり、長さs、厚みt、幅aを有するM本の変換素子54−1〜54−Mが配列間隔dで1次元に配列されている。一方、光ファイバ71は、この変換素子54の配列隙間内で、且つ長さ方向の中心付近において変換素子54の配列方向と同一方向に配列されている。
【0069】
図3(b)は図3(a)のA−A断面におけるアプリケータ70の断面図を示す。すなわち、被検体7の体表面に直接接触し、照射光および送信超音波の照射と音響波および受信超音波の受信を行うアプリケータ70は、光照射用の光ファイバ71と、音響信号の受信および超音波の送受信を行う変換素子54とを備えている。そして、この変換素子54の第1の面(上面)および第2の面(下面)には、駆動信号の供給や、受信信号取り出しのための電極73−1、73−2がそれぞれ装着され、この電極73−1は支持台72に固定されている。また、他の電極73−2には、超音波の送受信を効率良く行うための音響マッチング層74が設けられ、更に、その表面は保護膜75によって覆われている。なお、図3(a)では支持台72、音響マッチング層74および保護膜75は省略されている。
【0070】
図4は前記アプリケータ70の外観図であり、このアプリケータ70の左面に配置される電気音響変換部23と光照射部15は、被検体7の表面に接触し、照射光の照射と音響波の受信および超音波の送受信が行われる。一方、光照射部15に繋がる光ファイバ71と変換素子54の電極73に接続される同軸ケーブル77は被覆76によって纏められ、この光ファイバ71の他の端部は光走査部13に、また同軸ケーブル77の他の端部は画像データ収集部2の送受信部22に接続されている。
【0071】
次に本発明の第1の実施の形態における光音響画像データの生成手順について図1乃至図6を用いて説明する。但し、図5はアプリケータ70における照射光の照射方法を、また図6は同じアプリケータ70における音響波の受信方法を示す図であり、この図においても支持台72、音響マッチング層74および保護膜75は省略されている。
【0072】
操作者は、光音響イメージング法およびパルスエコー法における必要な画像撮影条件を操作部5において設定する。画像撮影条件として、フレーム数、視野深度、レート周波数、画像表示方法の他にアプリケータ70の各種仕様などがある。更に、操作者は、光音響イメージングに用いる光波長など光源に関する諸条件の設定についても同時に行い、設定されたこれらの撮影条件をシステム制御部4の図示しない記憶回路に保存する。
【0073】
上記の各種撮影条件の設定が終了したならば、操作者は、アプリケータ70を被検体7の所定の位置に設置した後、光音響イメージングにおける光音響画像データの収集開始コマンドを操作部5より入力する。
【0074】
この光音響画像データの収集開始コマンドを受けたシステム制御部4は、内部の記憶回路から光源に関する設定条件を読み出し、この設定条件に従って光源部11より、例えばNd・YAGレーザを選択して1000nmの波長を有する単色光を発生する。光源部11で発生した単色光は、光合波部12を介して光走査部13に送られ、光走査部13は、図5に示すように配列された複数本の光ファイバ71(71−1〜71−M−1)の中の、例えば光ファイバ71−3を選択して上記単色光を供給する。選択された光ファイバ71−3は、この光をアプリケータ70の光照射部15まで導き、その先端部より被検体7に照射する。この場合、光ファイバ71−3から照射された単色光は、図5の矢印で示すように、アプリケータ70の被検体接触面に対してほぼ垂直の方向に照射される。
【0075】
被検体7の血液中のヘモグロビンは、照射された単色光のエネルギーを吸収して温度上昇を引き起こし、この温度上昇に起因する圧力変化によって音響波を発生する。このとき発生する音響波は、100KHz〜2MHzの広帯域スペクトル成分を有するパルス波である。
【0076】
なお、光音響効果では、計測しようとする物質によって照射する光の波長が決定され、この波長による照射の結果得られる音響波の大きさから、その成分量を定量化することが可能となる。すなわち、上記Nd・YAGレーザにより1000nmの波長を有する単色光を被検体7に照射することによって、照射部位におけるヘモグロビンの量を定量的に計測することができる。
【0077】
この被検体7への光の照射に引き続いて音響波の受信を行う。例えば、図6に示すようなアプリケータ70の被検体接触面から距離Lの部位の血管領域において発生する音響波に対して、システム制御部4は、その記憶回路に予め保存されている走査情報の中の変換素子54の選択情報を走査制御部24の変換素子選択制御回路68に供給し、また受信時の焦点距離設定に関する遅延時間情報を同じ走査制御部24のビーム収束制御回路67に供給する。
【0078】
電子スイッチ53は、変換素子選択制御回路68の制御信号に基づいて、アプリケータ70のM個の変換素子54−1〜54−Mの中から隣接するN本(N=6)の変換素子54−1〜54−6を選択する。一方、受信遅延回路56は、ビーム収束制御回路67の制御信号に基づいて、これらの変換素子54によって得られた受信信号に対して受信焦点距離をLに設定するための遅延時間を与える。すなわち、変換素子選択制御回路68は、システム制御部4から供給される変換素子54の選択情報に基づいて、電子スイッチ53−1〜53−N(N=6)をON状態にし、光照射時に選択して用いた光ファイバ71−3を中心として変換素子54−1〜54−6を受信用の変換素子54として選択する。被検体7の内部で発生した音響波は、変換素子54−1〜54−6で電気信号に変換された後、電子スイッチ53を介してプリアンプ55に供給され、所定の振幅に増幅されて受信遅延回路56に入力される。
【0079】
Nチャンネルから構成される受信遅延回路56において、n番目の受信遅延回路56は、変換素子54−nによって得られる受信信号に対して次式で示す遅延時間τ(n)を与える。
【0080】
τ(n)=d(N−1)−(2n−N−1)/8CFo ・・・(1)
但し、dは変換素子54の配列間隔、Cは被検体7の音響波伝播速度(約1500m/sec)、Foは受信焦点距離であり、Fo=Lに設定すれば変換素子54−1〜54−6によって得られる受信信号に対して上記の遅延時間が与えられた後加算器57において加算することにより、距離Lにおいて発生した音響波の位相を一致させて加算合成することできる。
【0081】
本実施の形態によれば、光が被検体7に照射されてから音響波が変換素子54によって受信されるまでの時間は距離Lの大きさに比例する。従って、音響波の受信において上記(1)式における受信焦点距離Foの値を時間的に増加させる、いわゆるダイナミック収束法が適用でき、光ファイバ71−3の照射によって発生する音響波は、深さ(距離)によらず、常に収束状態で受信されるため、これらの受信信号から良好な感度と空間分解能を有した光音響画像データを生成することが可能となる。
【0082】
加算器57において合成された変換素子54−1〜54−6の受信信号は、信号処理部25のフィルタ66においてノイズ成分が除去された後、対数変換器58および包絡線検波59において振幅圧縮と検波がなされ、更にA/D変換器60にてデジタル信号に変換されて、光音響画像データ用の画像データメモリA61に保存される。
【0083】
上記の手順によって光音響イメージングにおける第1の走査が終了したならば、
光ファイバ71−4を使用して第2の走査を行う。システム制御部4の制御信号に従い、光走査部13は、光ファイバ71(71−1〜71−M−1)の中の光ファイバ71−4を選択し、光源部11の単色光をアプリケータ70の光照射部15より被検体7に照射する。
【0084】
光ファイバ71−4による光の照射によって被検体7の内部で発生する新たな音響波に対して、変換素子選択制御回路68は、システム制御部4から供給される変換素子54の選択情報に基づいて、電子スイッチ53−2〜53−7をON状態にし、光の照射時に選択して用いた光ファイバ71−4を中心として変換素子54−2〜54−7を受信用の変換素子54として選択する。このとき、変換素子54−2〜54−6は、第1の走査と同様に電子スイッチ53−2〜53−6を介してプリアンプ55−2〜55−6、更には受信遅延回路56−2〜56−6に接続されるが、変換素子54−7は、電子スイッチ53−7を介してプリアンプ55−1、更には受信遅延回路56−1に接続される。
【0085】
この場合、変換素子54−2〜54−6の受信信号が供給される受信遅延回路56−2〜56−6を#1〜#5、また変換素子54−7の受信信号が供給される受信遅延回路56−1を#6とすると、#nの受信遅延回路56に供給される変換素子54の受信信号に対して前式(1)で示す遅延時間が与えられ、加算器57において加算合成される。なお、この場合も第1の走査と同様にダイナミック収束法を適用し、被検体7の内部で発生する音響波を深さによらずに常に収束状態で受信することができる。加算器57において合成された変換素子54−2〜54−7の受信信号は、フィルタ66、対数変換器58および包絡線検波59においてノイズ除去や振幅圧縮更には包絡線検波がなされ、更にA/D変換器60にてデジタル信号に変換されて、画像データメモリA61に保存される。
【0086】
以下同様にして、システム制御部4は、光走査部13において光ファイバ71−5、光ファイバ71−6・・・光ファイバ71−M−3を選択して被検体7に光を照射し、このとき新たに発生する音響波を電子スイッチ53により変換素子54−3〜54−8、変換素子54−4〜54−9・・変換素子54−M−5〜54−Mを選択して受信する。そして各々6チャンネルの受信信号は、プリアンプ55、受信遅延回路56、フィルタ66、対数変換器58、包絡線検波59、更にはA/D変換器60を介して光音響画像データとして画像データメモリA61に順次保存され、1枚分の画像データの収集を終了する。
【0087】
以上の手順により、光音響イメージング法による光音響画像データの収集が終了したならば、この光音響画像データと同時表示するパルスエコー法による超音波画像データの収集に移行する。装置の操作者は、上記の光音響画像データの収集が終了したことを確認したならば、操作部5よりパルスエコー法による超音波画像データ収集の開始コマンドを入力する。
【0088】
システム制御部4からパルスエコー法の第1走査の指示信号を受けた走査制御部24のビーム収束制御回路67は、送信超音波および受信超音波の収束点の設定に関するデータを送信用遅延回路51および受信用遅延回路56に送り、遅延時間の設定を行う。一方、走査制御回部24の変換素子選択制御回路68は、電子スイッチ53に対し、この第1の走査において選択して使用する電気音響変換部23の変換素子54に関するデータを供給し、所定のチャンネルをON状態に設定する。
【0089】
これらの設定が終了すると同時にレート信号発生部21から最初の超音波パルスの送信タイミングを決定するパルスがN’チャンネルで構成される送信遅延回路51に送られ、ここで送信超音波の収束距離を決定する遅延時間τfが与えられた後、パルサ52に供給される。ここでn’(n’=1〜N’)番目の遅延回路における遅延時間τf(n)は、次のように設定される。
【0090】
τf(n’)=d{(N’−1)ー(2n’−N’−1)}/8CF・・・(2)但し、dは変換素子54の配列間隔、Cは被検体7の音響波伝播速度、Foは送信集束点である。
【0091】
(2)式の送信遅延時間が与えられたレート信号発生部21の出力は、パルサ52に供給され、変換素子54を駆動して被検体7に超音波を放射するための駆動パルスが形成される。パルサ52の出力、すなわち変換素子54の駆動信号は、電子スイッチ53を介してM個配列された変換素子54のうちのN’個の変換素子54−1〜54−N’を選択駆動して送信超音波を被検体7に放射する。
【0092】
被検体7の内部に放射された超音波の一部は、臓器の境界面あるいは生体組織の音響散乱体にて反射し、受信超音波として再び変換素子54によって受信され、電気信号に変換される。電子スイッチ53は、変換素子54−1〜54−N’によって得られる超音波受信信号を選択し、これらのN’チャンネルの受信信号は、それぞれプリアンプ55を介して受信遅延回路56に送られ、受信超音波のビーム収束に必要な遅延時間が与えられた後、加算器57に供給される。この加算器57においてN’チャンネルの超音波受信信号は、加算合成され、更にフィルタ66、対数変換器58、包絡線検波器59においてノイズ除去や対数圧縮、更には包絡線検波が行われた後、A/D変換され、画像データメモリB62に第1の走査における画像データとして保存される。なお、受信時においては、ダイナミック収束法を適用することが好適であるが、その方法は、既に述べた光音響イメージング法の場合と同様であるため、詳細な説明は省略する。
【0093】
以上述べた第1の走査と同様な手順を繰り返すことによって第2以降の走査を行う。すなわち、第2の走査では、電子スイッチ53によって変換素子54−2〜54−N’+1を選択し、また、第3の走査では、変換素子54−3〜54−N’+2を選択して超音波の送受信を行い、このような動作は、変換素子54−M−N+1〜54−Mが選択駆動されるまで繰り返される。また、送信遅延回路51や受信遅延回路56によって送信超音波ビームおよび受信超音波ビームの収束が行われるが、その遅延時間の設定方法についても光音響イメージング法の場合とほぼ同様であるため、詳細な説明は省略する。
【0094】
以上述べた手順により、パルスエコー法によって得られる1枚分の画像データは、信号処理部25の画像データメモリB62に保存される。システム制御部4は、光音響画像データおよび超音波画像データの収集が終了したならば、光音響画像データと超音波画像データを画像データメモリA61および画像データメモリB62から読み出し、表示用画像メモリ63にて合成して一旦保存する。更に合成した画像データを変換回路64に供給してD/A変換とTVフォーマット変換を行った後、CRTモニタ65において表示する。
【0095】
このようにして光音響画像データと超音波画像データの収集を繰り返して行い、このとき得られる夫々の画像データを合成してCRTモニタ65に表示することによって、この合成画像を操作者は、リアルタイムで観測することが可能となる。
【0096】
なお、上記表示用画像メモリ63において光音響画像データと超音波画像データを合成してCRTモニタ65にて表示する場合、それぞれの画像データを重畳して表示することによって光音響画像による音響波発生源の把握が容易となる。この場合、例えば白黒の超音波画像に赤色の光音響画像を重畳表示するなど、両者を色によって識別して表示する方法が好適である。
【0097】
以上述べた第1の実施の形態によれば、光音響画像と超音波画像が同一の変換素子54を用いて収集できるため、それぞれの画像を精度よく重畳表示することが可能となる。特に、光音響画像の生成においては、多くの変換素子54から得られる音響受信信号の位相を合わせて加算する、いわゆる整相加算方式を行っているため、例え、被検体7に照射された光が散乱あるいは拡散しても音響波の発生源を正確に捉えることが可能となる。
【0098】
なお、上記の第1の実施の形態の説明において、光音響イメージングの音響受信信号の収集に使用した変換素子数は、説明の都合上6としたが、これに限定されない。また、パルスエコー法に使用した送信用変換素子数と受信用変換素子数は、いずれもN’としたが、夫々異なる変換素子数によって送受信を行ってもよい。
【0099】
また、この実施の形態の説明においては、光音響画像データの収集後に超音波画像データの収集を行ったが、これらの画像データの収集順序については限定されない。また、光音響画像データと超音波画像データをそれぞれ複数枚収集して前者を画像データメモリA61に、また後者を画像データメモリB62に一旦保存し、この画像データメモリA61および画像データメモリB62から所望の画像を選択して表示用画像メモリ63において合成してもよい。
【0100】
一方、光音響画像データを収集する場合、1つの物質に対して複数の波長の光を用いて、その成分量を求めてもよい。例えば、ヘモグロビンの成分量を計測する場合、前述の通り生体内のヘモグロビンは600nmから1000nmの光を吸収するが、600nm近傍では酸化ヘモグロビンに比べ還元ヘモグロビンの吸収が相対的に大きく、1000nm近傍では還元ヘモグロビンに比べ酸化ヘモグロビンの吸収が大きい。この様な吸収特性の違いを利用する事により、生体内中の酸化ヘモグロビンと還元ヘモグロビンを分離して定量化したり、総ヘモグロビン量を求めることができる。上記の1000nmのNd:YAGレーザや、633nmのHe-Neガスレーザを用い、それぞれの波長によって得られる計測結果を異なる色で識別して表示してもよい。この場合、光音響画像は超音波画像と重畳表示してもよいが、並べて表示することも可能である。
【0101】
また、同じ被検体7の部位に対して、コレステロールやグルコースなど、ヘモグロビン以外の物質についても最適な波長の単色光を用いて同様な手順で計測を行ない、その計測結果とヘモグロビンの計測結果を異なる色で識別して表示してもよい。この場合も光音響画像は超音波画像と重畳表示してもよいが、並べて表示することも可能であり、その表示方法は限定されない。
【0102】
(第2の実施の形態)
次に、本発明の第2の実施の形態として、超音波画像データをハーモニックイメージング法によって収集する場合につき図7を用いて説明する。なお、本実施の形態における光音響画像データの収集方法およびパルスエコー法における超音波の送信方法は、第1の実施の形態と同様であるため説明を省略する。
【0103】
光音響イメージング法における音響波の周波数スペクトラムは、1MHzを中心周波数として200KHz〜2MHzの範囲に分布しており、従って、電気音響変換部23の変換素子54は、この周波数成分に対応した特性を有するものを用いる必要があるが、これは通常のパルスエコー法の中心周波数(fo:例えば3.5MHz)と比較すると低い。
【0104】
第1の実施の形態では、光音響画像データと超音波画像データの収集を同一の変換素子54を用いて行うため、従来のパルスエコー法を適用して得られる超音波画像において空間分解能の劣化を招くことになる。
【0105】
このような問題点を改善するために、ハーモニックイメージング法を適用した超音波画像データの収集について説明する。ハーモニックイメージング法とは、被検体7の組織において生ずる超音波非線形現象を有効に利用したイメージング法であり、例えば、中心周波数がfoの超音波パルスを被検体7に放射した場合、被検体組織の非線型現象によって、例えば2倍の高調波成分(2fo)が新たに発生し、この高調波成分は、基本波成分(fo)とともに変換素子54によって受信される。この高調波成分の発生は、被検体7の組織性状や反射部位までの伝搬距離、あるいは反射部位における超音波強度に依存する。
【0106】
超音波画像データの収集において、被検体7に放射された送信超音波の一部は、音響インピーダンスの異なる被検体7の臓器の境界面あるいは組織にて反射する。これらの超音波は、組織の非線型特性により、中心周波数が2foの超音波パルスが新たに発生する。従って、被検体7の組織内にて反射して変換素子54に戻る受信超音波は、送信時の中心周波数foの超音波パルス(基本波成分)と中心周波数が2foの超音波パルス(高調波成分)が混在したものとなる。
【0107】
このときの受信超音波の周波数スペクトラムを図7に示す。図7(a)は被検体7に送信される送信超音波の周波数スペクトラムであり、foを中心に分布している。これに対して図7(b)に示した被検体7からの受信超音波の周波数スペクトラムは、foを中心に分布する基本波成分と、2foを中心に分布する高調波成分とで構成され、一般に、高調波成分は、基本波成分に対して約20dB小さい。因みに、この高調波の発生原因は超音波パルスの被検体組織内の伝播速度が超音波の音圧に依存するためであり、この性質のために受信信号に波形歪が生じ、高調波成分が発生することが知られている。
【0108】
被検体7からの受信超音波は、変換素子54において超音波から電気信号(超音波受信信号)に変換され、この超音波受信信号は、送受信部22を介して信号処理部25のフィルタ66に送られる。このフィルタ66は、図7(c)に示すような2foを中心とした帯域通過特性と図示しないfoを中心とした帯域通過特性を有している。ハーモニックイメージング法においては、このフィルタ66によって第2高調波成分が抽出され、その出力は、対数変換器58、包絡線検波器59、A/D変換器60を介して、画像データメモリB62に保存される。一方、光音響イメージング法においては、第1の実施の形態と同様にフィルタ66によって基本波成分が抽出され、その出力は対数変換器58、包絡線検波器59、A/D変換器60を介して、画像データメモリB62に保存される。
【0109】
次いで、システム制御部4は、画像データメモリB62に保存された超音波画像データと、画像データメモリA61に保存されている光音響画像データを読み出し、表示用画像メモリ63において合成した後、変換回路64を介してCRTモニタ65に表示する。
【0110】
この第2の実施の形態によれば、超音波画像データは、第1の実施の形態と比較して2倍の周波数成分によって生成される。従って、光音響画像データと超音波画像データを同一の変換素子54を用いて収集する場合においても解像度の優れた超音波画像に光音響画像を重畳して表示することが可能となり、更に、これらの画像データの収集と表示を同時に行うこともできるため操作性に優れた装置の提供が可能となる。
【0111】
なお、上記の本実施の形態の説明においては、第2高調波成分を用いたハーモニックイメージング法について述べたが、これに限定されるものではなく、第3次以上の高調波成分を用いて超音波画像データの生成を行ってもよい。
【0112】
(第3の実施の形態)
次に、本発明の第3の実施の形態として、光音響イメージングにおける簡易化した受信方法について図8を用いて説明する。なお、本実施の形態における超音波画像データの収集方法および光音響イメージング法の光照射方法は、第1の実施の形態と同様であるため説明を省略する。
【0113】
図8は第3の実施の形態における照射光の照射位置と音響波の受信位置を示した図であり、例えば、この図に示すように光ファイバ71−1を用いて光を被検体7に照射した場合、照射光は細い幅を維持したまま直進するため、強い指向性を有している。従って、音響波を受信する際の整相加算処理を行わなくても光音響画像の生成は可能となる。
【0114】
光音響イメージングの第1の走査において、光ファイバ71−1からの照射光によって被検体7の血液中のヘモグロビンは、照射された光のエネルギーを吸収して音響波を発生する。この音響波の受信に際して、システム制御部4は、その記憶回路に予め保存されている走査情報の中の変換素子54の選択情報を走査制御部24の変換素子選択制御回路68に供給する。
【0115】
変換素子選択制御回路68は、システム制御部4から供給される変換素子54の選択情報に基づいて、電子スイッチ53−1〜53−2をON状態にし、光の照射時に選択して用いた光ファイバ71−1の両側に位置する変換素子54−1〜54−2を受信用変換素子として選択する。被検体7の内部で発生した音響波は、変換素子54−1〜54−6で電気信号に変換された後、電子スイッチ53を介してプリアンプ55に供給され、所定の振幅に増幅されて受信遅延回路56に入力する。この受信遅延回路56は、同時表示される超音波画像データの収集のために備えられており、この光音響画像データ収集においては使用されない。すなわち、変換素子54−1および54−2によって得られる信号は、この受信遅延回路56をそのまま通過し、加算器57にて合成される。
【0116】
加算器57において合成された変換素子54−1〜54−2の音響受信信号は、信号処理部25のフィルタ66においてノイズ成分が除去された後、対数変換器58および包絡線検波59において振幅圧縮と検波がなされ、更に、A/D変換器60にてデジタル信号に変換されて、光音響画像データ用の画像データメモリA61に保存される。
【0117】
次いで行われる第2の走査では、光ファイバ71−2によって光の照射が行われ、変換素子54−2〜54−3を用いて音響波の受信が行われる。そしてこのとき得られた音響画像データも第1の走査と同様に画像データメモリA61に保存される。以上のような動作は光ファイバ71−M−1と変換素子54−M−1〜54−Mを用いた画像データの収集まで繰り返して行われ、このとき得られる1枚分の光音響画像データは画像データメモリA61に保存される。
【0118】
次に、画像データメモリA61に保存された光音響画像データと、後続して行われるパルスエコー法によって収集され、画像データメモリB62に保存される超音波画像データは、表示用画像メモリ63において合成された後、変換回路64を介してCRTモニタ65に表示される。
【0119】
この第3の実施の形態によれば、受信に用いる振動子数を大幅に低減することが出来るため、端部の光ファイバ71を有効に使用することができ、従って広い画像幅(視野幅)を得ることが可能となる。
【0120】
なお、上記の第3の実施の形態の説明では、音響波の受信に使用する変換素子数を2としたが、これに限定されない。
【0121】
(第4の実施の形態)
既に述べた第1乃至第3の実施の形態では、光ファイバ71と変換素子54を同一方向に複数個配列する際、図3において示したように変換素子54の間隙に光ファイバ71を配置した。この場合、各々の変換素子54では、その間隙に光ファイバ71が挿入されたことによって隣接の変換素子54との間で音響的なカップリングが発生して独立な素子としての機能を低下させる。すなわち、この音響的なカップリングが原因となって、光音響画像および超音波画像のいずれにおいても画質劣化を招く可能性がある。
【0122】
この第4の実施の形態では、光ファイバ71と変換素子54をアプリケータ70において一体化する場合に、変換素子54の性能を劣化させること無く光ファイバ71を配置する方法について図9乃至図11を用いて説明する。
【0123】
図9に本実施の形態に用いられるアプリケータ70の構成を示す。このアプリケータ70は、第1の実施の形態乃至第3の実施の形態において用いたアプリケータ70と同様に、光ファイバ71の出力端である光照射部15と、変換素子54を備える電気音響変換部23が一体化されているが、光照射部15から照射した光は、電気音響変換部23を透過して被検体7に照射されるように構成されている。すなわち、電気音響変換部23は、光の透過が可能な材料によって構成される。
【0124】
このような電気音響変換部23を構成する各々の材料につき図10を用いて説明する。但し、図10は第4の実施の形態において使用されるアプリケータ70の構成を示している。電気音響変換部23の変換素子54は、透明な圧電材料であるPZNT単結晶ウェハを所定の厚さtに研磨した後、この単結晶板をダイシングソーによってピッチdでアレイ状に切断し、この切断によって生じる幅bの間隙は光学的に透明な樹脂80を充填して硬化する。
【0125】
次に、1次元に配列された単結晶の第1の面には、夫々独立した電極73−1を、また第2の面には電極73−2をスパッタにより形成する。
【0126】
更に、電極73−2が装着された面には、音響的な音響マッチング層74と保護膜75を積層する。但し、音響マッチング層74や保護膜75にも光学的に透明な樹脂を使用する。また電極73の材料には、例えば、液晶ディスプレイやプラズマディスプレイ等に用いられているITO(indium-tin-oxide)、In(Sn)等の透明導電性物質を用いる。このように透明導電性物質を電極73に用い、音響マッチング層74や保護膜75、更に変換素子54の間隙に充填した樹脂80に光学的に透明な樹脂を用い、変換素子54にも透明な圧電単結晶を使用する。これらの材料を更に透明な樹脂からなる支持台72に固定して構成した電気音響変換部23は、光学的に透明に構成することが可能となり、光照射部15より照射した光は、電気音響変換部23を透過して被検体7に照射することが可能となる。
【0127】
なお第1乃至第3の実施の形態において、光ファイバ71の配列間隔は、変換素子54の配列間隔によって決定されたが、この第4の実施の形態においては、このような制約が無いため、図11に示すように、高密度に配列することが可能となる。光ファイバ71の配列間隔は、光音響イメージングにおける走査間隔を決定しており、従って、本実施の形態によれば、走査密度の高い光音響画像を得ることが可能となる。特に、第3の実施の形態のように照射光の指向性によって画像の空間分解能が決定される場合には、光の高密度走査により画質を改善することができる。
【0128】
以上述べた第4の実施の形態によれば、光学的に透明な電気音響変換部23を用いることによって光照射部15をこの電気音響変換部23の後方に配置することが可能となる。従って、変換素子54における音響的カップリングを低減することができるため、良好な光音響画像およびパルスエコー画像が得られる。
【0129】
更に、この方法によれば、光ファイバ71を高密度に配置することができるため光音響画像の空間分解能を向上させることが可能となる。
【0130】
(第5の実施の形態)
上記の第1乃至第4の実施の形態において、光走査部13は、複数配列された光ファイバ71を順次選択することによって、被検体7における照射位置の移動を行ったが、この方法によれば、導波部14における多くの光ファイバ71とこれらを選択する光走査部13が必要となり、装置を複雑にする。
【0131】
本実施の形態は、このような照射光の形成における問題点の改善を目的に行われるものであり、光音響イメージング法における照射光は、広範囲でほぼ一様な特性を有し、光音響画像の空間分解能は変換素子54における音響波の収束によって決定される。なお、本実施の形態における音響波の受信方法については、第1の実施の形態と同様である。
【0132】
以下に、本発明の第5の実施の形態における照射光の形成方法の概要を図12を用いて説明する。この図12(a)はこの実施の形態において新たに用いられるスリット板78と変換素子54の位置関係を、また図12(b)は本実施の形態におけるアプリケータ70の概略構成を示す図であり、電気音響変換部23は第4の実施の形態において述べたものと同様に光学的に透明な構成となっている。
【0133】
この実施の形態では、図12(a)に示すように、変換素子54の配列面に平行にスリット板78が配置される。このスリット板78のほぼ中央には、変換素子54の配列方向にスリットが開けられており、このスリットを通過した光は、変換素子54の配列方向に対して広いビーム幅を有し、一方、この配列方向と直角なスライス方向においては細いビーム幅を有する。
【0134】
図12(b)に示した本実施の形態におけるアプリケータ70は、前記スリット板78の他に、光照射部15から出力された拡散光を進行方向に対して平行ビームに形成するレンズ79を備えている。光照射部15に供給される光は、光源部11あるいは光合波部12から導波部14によって直接導くことが可能であり、光走査部13は不要となる。この場合の導波部14は、光ファイバ71に限定されず、十分なパワーが得られるものであれば1チャンネルでもよい。
【0135】
次に本実施の形態における光音響画像データの収集手順を図2、図6および図12を用いて説明する。
【0136】
操作者は、光音響イメージング法およびパルスエコー法における必要な画像撮影条件を操作部5において設定する。更に、操作者は、計測に使用される光波長など光源に関する諸条件の設定についても同時に行い、システム制御部4は、図示しない内部の記憶回路にこれらの撮影条件を保存する。上記の各種撮影条件の設定が終了したならば、操作者は、アプリケータ70を被検体7の所定の位置に設置した後、光音響画像データ収集の開始コマンドを操作部5より入力する。
【0137】
光音響画像データの収集開始コマンドを受けたシステム制御部4は、記憶回路から光源に関する設定条件を読み出し、この設定条件に従って光源部11における、例えばNd・YAGレーザを選択して1000nmの波長を有する単色光を発生させる。光源部11で発生した単色光は、例えば光ファイバ71で構成される導波部14によってアプリケータ70の光照射部15まで導かれ、その先端部より拡散して照射される。この拡散光は、レンズ79によって平行ビームに変換され、スリット板78のスリットに供給される。スリット板78のスリットを通過した光の配列方向のビーム幅とスライス方向のビーム幅は、スリットのそれぞれの方向における開口幅によって設定される。
【0138】
このスリットによってスライス方向のビーム幅が狭められた光は、光学的に透明な電気音響変換部23を透過して図12(b)に示した被検体7の光ビーム照射範囲に照射される。被検体7の血液中のヘモグロビンは、この照射光を吸収して音響波を発生する。
【0139】
図6において、アプリケータ70の被検体接触面から距離Lの部位の血管領域で発生する音響波に対して、アプリケータ70内の電気音響変換部23は、M個の変換素子54−1〜54−Mの中から54−1〜54−N(N=6)が選択され、これらの変換素子54によって受信された音響受信信号に対して受信焦点距離がLに設定される。すなわち、システム制御部4は、その記憶回路に予め保存されている走査情報の中から変換素子54の選択情報を走査制御部24の変換素子選択制御回路68に供給し、また、受信時の焦点距離に対応する遅延時間情報を同じ走査制御部24のビーム収束制御回路67に供給する。
【0140】
変換素子選択制御回路68は、システム制御部4から供給される変換素子54の選択情報に基づいて、電子スイッチ53−1〜53−N(N=6)をON状態にし、変換素子54−1〜54−6を受信用変換素子として選択する。被検体7の内部で発生する音響波は、変換素子54−1〜54−6で電気信号に変換された後、電子スイッチ53を介してプリアンプ55に供給され、所定の振幅に増幅されて受信遅延回路56に入力する。
【0141】
Nチャンネルから構成される受信遅延回路56において、n番目の受信遅延回路56に供給される変換素子54−nの音響受信信号に対して、第1の実施の形態の説明において示した式(1)の遅延時間が与えられる。ここでFo=Lとすれば変換素子54−1〜54−6によって得られるN(N=6)チャンネルの音響受信信号に対して上記の遅延時間が与えられた後加算器57において加算することにより、変換素子54−3と54−4の中点からの変換素子配列面に対する垂線(破線で示す)上で、距離Lの位置にて発生した音響波の位相を一致させて合成することができる。更に、本実施の形態においてもダイナミック収束法の適用を行い、深さ(距離)によらず常に収束状態で受信を行う。
【0142】
加算器57において合成された変換素子54−1〜54−6の音響受信信号は、信号処理部25のフィルタ66においてノイズ成分が除去された後、対数変換器58および包絡線検波器59において振幅圧縮と検波がなされ、更に、A/D変換器60にてデジタル信号に変換されて、光音響画像データ用の画像データメモリA61に保存される。
【0143】
上記の手順によって光音響イメージングにおける第1の走査が終了したならば、
第1の走査の場合と同様にしてレンズ79とスリット板78を用い、被検体7の光ビーム照射範囲に平行ビームを照射する。この照射光によって被検体7の内部で発生する新たな音響波に対して、変換素子選択制御回路68は、システム制御部4から供給される変換素子54の選択情報に基づいて、電子スイッチ53−2〜53−7をON状態にし、変換素子54−2〜54−7を受信用の変換素子54として選択する。このとき、変換素子54−2〜54−6は、第1の走査と同様に電子スイッチ53−2〜53−6を介してプリアンプ55−2〜55−6、更には受信遅延回路56−2〜56−6に接続されるが、変換素子54−7は、電子スイッチ53−7を介してプリアンプ55−1、更には受信遅延回路56−1に接続される。
【0144】
この場合、変換素子54−2〜54−6の受信信号が供給される受信遅延回路56−2〜56−6を#1〜#5、また変換素子54−7の受信信号が供給される受信遅延回路56−1を#6とすると、#nの受信遅延回路56に供給される変換素子54の受信信号に対して式(1)で示す遅延時間が与えられ、加算器57において加算合成される。なお、この場合も第1の走査と同様にダイナミック収束法を適用し、被検体7の内部で発生する音響波は、深さによらずに常に収束状態で受信することができる。この変換素子54−1〜54−6によって得られるN(N=6)チャンネルの音響受信信号に対して上記の遅延時間が与えられた後、加算器57において加算することにより、変換素子54−4と54−5の中点からの変換素子配列面に対する垂線(破線で示す)上で発生した音響波の位相を一致させて合成することができる。
【0145】
加算器57において合成された変換素子54−2〜54−7の音響受信信号は、フィルタ66、対数変換器58および包絡線検波器59においてノイズ除去や振幅圧縮、更には包絡線検波がなされ、更にA/D変換器60にてデジタル信号に変換されて、光音響画像データとして画像データメモリA61に保存される。
【0146】
以下同様にして第3以降の走査が行われ、システム制御部4は、平行光の照射によって得られる音響信号を電子スイッチ53により変換素子54−3〜54−8、変換素子54−4〜54−9・・変換素子54−M−5〜54−Mを用いて受信する。そして各々6チャンネルの受信信号は、プリアンプ55、受信遅延回路56、フィルタ66、対数変換器58、包絡線検波59、更にはA/D変換器60を介して光音響画像データとして画像データメモリA61に順次保存され、1枚分の音響画像データの生成を終了する。
【0147】
次いで、パルスエコー法による画像データの収集を行うが、本実施の形態におけるパルスエコー法の画像データの収集手順は、第1の実施の形態と同様であるため、説明を省略する
この第5の実施の形態によれば、導波部14における光ファイバ71の数を大幅に削減することができ、光走査部13も不要となる。更に照射光は配列方向において連続的に照射されているため、受信時の遅延時間設定によって走査密度は自由に設定することが可能であり、光ファイバ71を使用した場合の制約を排除することができる。
【0148】
なお、第5の実施の形態の説明において、受信収束点は破線で示した変換素子配列面に対する垂線上に設定される場合について述べたが、変換素子54から得られる受信信号の遅延時間制御によって収束点の位置は自由に設定できる。
【0149】
次に、本実施の形態における走査方法の変形例について図13を用いて説明する。上記の実施の形態における各画像データの収集は、フレーム単位で交互に行う場合について示したが走査単位で交互に行ってもよい。例えば光音響イメージング法による第1の方向に対する走査が終了したならばパルスエコー法による第1の方向に対する走査を行い、次いで光音響イメージング法の第2の方向に対する走査を行ってもよい。更に、上記の実施の形態においては光音響画像データの収集とパルスエコー画像データの収集を分離して行う場合について述べたが、システム制御回路4の制御信号に基づいて光送信部1の光源部11から発生する光パルスと、音響画像データ生成部2のレート信号発生部21から発生するレートパルスのタイミングを揃えることによって光音響画像データと超音波画像データを同時に収集してもよい。
【0150】
図13は上記の走査順序をの比較した図であり、図13(a)は第1の実施の形態において述べたフレーム単位の走査方法、また図13(b)は走査単位の走査方法、そして図13(c)は同時走査方法における光音響イメージング法及びパルスエコー法の走査順序を示しており、光音響画像データと超音波画像データはいずれもα方向(θ1乃至θα)の走査によって生成されている。
【0151】
即ち、図13(a)に示すフレーム単位の走査方法では、1枚分の光音響画像データ収集のための走査をθ1乃至θα方向に対してα回行った後、超音波画像データ収集のための走査をα回行う。これに対して、図13(b)に示す走査単位の走査方法では、光音響画像データ収集のためのθ1方向の走査を行った後、超音波画像データ収集のためのθ1方向の走査を行い、更に光音響画像データ収集のためのθ2方向の走査を行う。このような動作を繰り返す走査単位の走査方法によれば、所定方向におけるデータ間の収集タイミングのズレが大幅に短縮されるため、特に動きの速い臓器あるいは血液が計測の対象の場合であっても同じ時相の計測が可能となる。
【0152】
なお、図13(b’)は図13(b)の変形例であり、例えば光音響イメージングにおいて受信感度を改善するために送信の光量を増大させる場合には、生体安全確保のために単位時間当たりの照射回数を低減させる必要があるため、図13(b’)に示すように単位時間当たりの光音響イメージング法の走査数をパルスエコー法の走査数より低減させることが望ましい。
【0153】
一方、図13(c)に示した光音響イメージング法の走査とパルスエコー法の走査を同時に行う方法は、画像データ間の収集タイミングのズレがないため、上記走査単位の走査方法より更に動きの速い計測対象に対して正確な計測が可能となる。なお、この同時走査方法において、光音響イメージング法における音響波の周波数とパルスエコー法における超音波画像の周波数が同じ場合には、上記の2つの画像データは混合されて受信されるため、夫々をカラーによって識別して表示することは不可能となるが、信号処理部25のA/D変換器60の出力は、直接表示用画像メモリ63に保存すればよいため、画像データメモリA61および画像データメモリB62は削除でき、更に光音響画像データと超音波画像データの合成処理も不要となる。
【0154】
また、電気音響変換部13の変換素子54として2周波数プローブを用いることによって、同時走査方法においても光音響イメージング法とパルスエコー法の画像を識別して表示する。この2周波数プローブは特開昭61−100237号公報、あるいは特開昭62−39761号公報において記載されているように厚みの異なる2枚の変換素子54を接合することによって2種類の周波数の超音波を受信することができる。
【0155】
したがって、例えば、光音響イメージング法の音響波の周波数を1.5MHz、パルスエコー法の超音波の周波数を3Mzに設定することによって、これらの信号が同時に前記変換素子54によって受信されても、信号処理部22のフィルタ66によって弁別することによって光音響画像データと超音波画像データを独立に生成することが可能となり、更にカラーによって識別して表示部6のCRTモニタ65において表示することができる。(第6の実施の形態)
第6の実施の形態は、上述した実施の形態の電気音響変換部に関する。図15(a),図15(b)には本発明の第6の実施の形態に係る電気音響変換部の外観図を示している。図16には図15の電気音響変換部の平面図を示している。図15(a)には光透過性を有するPZNT単結晶を変換素子の圧電体に用いた例を示し、図15(b)には光透過性を有しないPZTセラミクスを変換素子の圧電体に用いた例を示している。
【0156】
図15(a)に示すように、光透過性を有する複数の圧電体81が一定の間隔を隔ててマトリスク状(2次元状)に配列される。近隣4個の圧電体81に囲まれたスペース各々には、光路83として例えば短い光ファイバが配置される。なお、光路83は、スキャン方向に関して隣り合う2個の圧電体81の間に配置されてもよい。圧電体81及び光路83の隙間には、圧電体81より高く、しかし光ファイバより低い光透過率を有する樹脂82が充填される。充填された樹脂82の硬化により、電気音響変換部は一体化される。
【0157】
ここで、中心周波数が1MHzであると仮定すると、圧電体81は幅が0.35mmで高さが0.58mmの直方体形状を有する。また、圧電体81は0.18mmの間隔を隔てて配置される。その場合、光路83は、例えば0.25mmの直径を有する。
【0158】
図16に示すように、スキャン方向に直交する方向に一列に配された複数の圧電体81には光透過性を有する単一の電極パターン87が共通に形成される。単一の電極パターン87に共通に接続された複数の圧電体81は、実質的に単一の圧電振動子を構成する。
【0159】
上記光路83には、光ファイバ71が光学用接着剤で接続される。光ファイバ71を経由して導かれた光は、光路83を介して被検体に照射される。なお、圧電体81及び樹脂82は、光透過性を有している、すなわち電気音響変換部は、光の透過が可能な材料によって構成されているので、光ファイバ71を光路83に接続して光路83を介して光を出力する構造を採用しなくても、上述した図9乃至図12に示したいずれかの構造を採用することができる。
【0160】
(第7の実施の形態)
第7の実施の形態は、上述した実施の形態の電気音響変換部に関する。図17(a),図17(b)には本発明の第7の実施の形態に係る電気音響変換部の外観図を示している。本実施の形態の電気音響変換部には、複数の光ファイバ93がテープ材に一定の間隔で整然と配列された多心光ファイバテープ88が採用される。PZNT又はPZTの複数の圧電体90が一列に配列される。各圧電体90の上下面にはそれぞれ電極が形成され、それにより圧電振動子が構成される。
【0161】
各振動子の前方には音響整合層89が個別に貼り付けられ、背面にはバッキング材91が共通に貼り付けられる。配列された複数の振動子の電極は配線用フレキシブルプリント基板(FPC)92により、配列と直交する向きに引き出される。2セットの振動子アレイ94が、上記多心光ファイバテープ88を挟んで張り合わされる。このような多心光ファイバテープ88の採用は、光ファイバにより光透過性を備えた電気音響変換部の製造を簡易化する。
【0162】
(第8の実施の形態)
第8の実施の形態は、上述した実施の形態の電気音響変換部に関する。図18(a),図18(b)には本発明の第8の実施の形態に係る電気音響変換部の外観図を示している。図18(a)に示すように、例えば0.05mmの厚さを有するフレキシブルプリント基板(FPC)97には、その略中心部分を挟んでペアの信号側電極98が形成され、同様にペアのグラウンド側電極99が略中心部分を挟んで形成されている。このフレキシブルプリント基板97の略中心部分には、例えば0.2mmの直径を有する光ファイバ110が貼り付けられる。光ファイバ110を挟んで一方の側の信号側電極98とグラウンド側電極99とにはPZNT又はPZTを圧電体とする振動子96の信号側電極とグラウンド側電極とがそれぞれAuスパッタ等により電気的に接続される。光ファイバ110を挟んで他方の側にも同様に、FPC97の信号側電極98とグラウンド側電極99とには振動子96の信号側電極とグラウンド側電極とがそれぞれAuスパッタ等により電気的に接続される。
【0163】
このように構成された複数の振動子板111は、図18(b)に示すように、スキャン方向に関して重ねられ、接着剤により一体に接着される。
【0164】
本実施の形態によっても、第7実施の形態と同様に、光ファイバにより光透過性を備えた電気音響変換部の製造を簡易化することができる。
【0165】
以上、本発明の実施の形態について述べてきたが、本発明は上記の実施の形態に限定されるものではなく、変形して実施することが可能である。例えば、上記実施の形態において電気音響変換部23の変換素子54および光照射部15の光ファイバ71は平面状に配列したが、凸面状あるいは凹面状に配列してもよい。
【0166】
また、表示部6において光音響画像と超音波画像は重畳表示する例を述べたが、光音響画像の重畳表示が超音波画像の観測を妨げる場合には、これら2つの画像は並べて表示してもよい。
【0167】
更に、光音響画像データおよび超音波画像データの収集は、操作者の収集開始コマンドに基づいて行う方法を示したが、例えば光音響画像データの収集が終了したならば自動的に超音波画像データの収集に移行してもよい。
【0168】
一方、本発明においては、光音響画像の表示範囲と超音波画像の表示範囲は一致させる必要はなく、例えば光音響画像において特定物質の分布が表示されている領域につき、超音波画像によって詳細に表示することが可能であり、この領域の選択は操作者が操作部5において入力する指示信号に基づいて操作制御部が行う方法が好適である。
【0169】
【発明の効果】
以上述べたように本発明によれば、被検体7のほぼ同一の部位において、コントラスト分解能に優れる光音響画像と空間分解能に優れる超音波画像の表示が可能となり、更に音響波の受信と超音波の送受信は同一の変換素子54を用いて行うため、操作性においても優れた生体情報映像装置を提供できる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態における生体情報映像装置の概略構成を示すブロック図。
【図2】 本発明の第1の実施の形態における生体情報映像装置の画像データ生成部のブロック図。
【図3】 本発明の第1の実施の形態におけるアプリケータの構成図。
【図4】 本発明の第1の実施の形態におけるアプリケータの外観図。
【図5】 本発明の第1の実施の形態における光ファイバによる照射方法を示す図。
【図6】 本発明の第1の実施の形態における音響波の受信方法を示す図。
【図7】 本発明の第2の実施の形態における受信超音波の周波数スペクトラムを示す図。
【図8】 本発明の第3の実施の形態における照射光の照射位置と音響波の受信位置を示した図。
【図9】 本発明の第4の実施の形態におけるアプリケータの構成図。
【図10】 本発明の第4の実施の形態における電気音響変換部の構成図。
【図11】 本発明の第4の実施の形態の変形例おけるアプリケータの構成図。
【図12】 本発明の第5の実施の形態におけるスリットを用いた照射方法を示す図。
【図13】 本発明の実施の形態における光音響イメージング法パルスエコー法の走査方法を示すタイムチャート。
【図14】 従来の光音響画像データの収集システムを示す図。
【図15】 本発明の第6の実施の形態における電気音響変換部の一部分の外観図。
【図16】 図14の電気音響変換部の一部分の平面図。
【図17】 本発明の第7の実施の形態における電気音響変換部の構成図。
【図18】 本発明の第8の実施の形態における電気音響変換部の構成図。
【符号の説明】
1…光送信部
2…画像データ生成部
4…システム制御部
5…操作部
6…表示部
7…被検体
11…光源部
12…光合波部
13…光走査部
14…導波部
15…光照射部
21…レート信号発生部
22…送受信部
23…電気音響変換部
24…走査制御部
25…信号処理部

Claims (2)

  1. 特定波長成分を含む光を発生する光発生部と、
    この光発生部が発生する光を被検体内に照射する光照射部と、
    前記光発生部が発生する光を前記光照射部に導く導波手段と、
    前記光照射部が照射した光によって被検体内に発生する音響波を複数個配列された電気音響変換素子を用いて電気信号に変換する第1の電気音響変換手段と、
    この第1の電気音響変換手段によって得られる信号に基づいて第1の画像データを生成する第1の画像データ生成手段と、
    被検体内に超音波を送信する超音波送信手段と、
    この超音波送信手段によって送信する超音波のうち前記被検体内で反射する成分を複数個配列された電気音響変換素子を用いて電気信号に変換する第2の電気音響変換手段と、
    この第2の電気音響変換手段によって得られる信号に基づいて第2の画像データを生成する第2の画像データ生成手段と、
    前記第1の画像データと前記第2の画像データを表示する表示手段とを備え、
    前記導波手段は、複数の光ファイバから構成され、その一方の端部は前記光照射部に配列されて開口され、
    前記第1の電気音響変換手段および前記第2の電気音響変換手段の複数の電気音響変換素子は、前記複数の光ファイバ開口部の配列方向とほぼ同一方向に配列されることを特徴とする生体情報映像装置。
  2. 前記第1の電気音響変換手段における複数の電気音響変換素子のうち少なくとも一つは、前記第2の電気音響変換手段における複数の電気音響変換素子のいずれかと共通に用いられることを特徴とする請求項1記載の生体情報映像装置。
JP2003190336A 2003-07-02 2003-07-02 生体情報映像装置 Expired - Fee Related JP4406226B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003190336A JP4406226B2 (ja) 2003-07-02 2003-07-02 生体情報映像装置
CA2435990A CA2435990C (en) 2003-07-02 2003-07-28 Method and apparatus for forming an image that shows information about a subject
US10/628,446 US6979292B2 (en) 2003-07-02 2003-07-29 Method and apparatus for forming an image that shows information about a subject
KR1020030055190A KR20050003948A (ko) 2003-07-02 2003-08-09 생체정보 영상장치 및 방법
CNB031278434A CN100512760C (zh) 2003-07-02 2003-08-11 显示患者有关信息之影像的形成方法和仪器
EP04251910.8A EP1493380B1 (en) 2003-07-02 2004-03-31 Method and apparatus for forming an image
KR1020060046474A KR100805463B1 (ko) 2003-07-02 2006-05-24 생체정보 영상장치 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190336A JP4406226B2 (ja) 2003-07-02 2003-07-02 生体情報映像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009212033A Division JP5525787B2 (ja) 2009-09-14 2009-09-14 生体情報映像装置

Publications (2)

Publication Number Publication Date
JP2005021380A JP2005021380A (ja) 2005-01-27
JP4406226B2 true JP4406226B2 (ja) 2010-01-27

Family

ID=33432325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190336A Expired - Fee Related JP4406226B2 (ja) 2003-07-02 2003-07-02 生体情報映像装置

Country Status (6)

Country Link
US (1) US6979292B2 (ja)
EP (1) EP1493380B1 (ja)
JP (1) JP4406226B2 (ja)
KR (2) KR20050003948A (ja)
CN (1) CN100512760C (ja)
CA (1) CA2435990C (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076244A1 (en) 2014-11-10 2016-05-19 Canon Kabushiki Kaisha Object information acquiring apparatus

Families Citing this family (291)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071491B2 (en) * 2001-11-07 2011-12-06 FledForm Technologies, LLC Process, composition and coating of laminate material
JP4405469B2 (ja) * 2003-07-22 2010-01-27 株式会社東芝 生体情報計測装置
JP4643153B2 (ja) * 2004-02-06 2011-03-02 株式会社東芝 非侵襲生体情報映像装置
US7397596B2 (en) * 2004-07-28 2008-07-08 Ler Technologies, Inc. Surface and subsurface detection sensor
US8320996B2 (en) 2004-11-29 2012-11-27 Hypermed Imaging, Inc. Medical hyperspectral imaging for evaluation of tissue and tumor
US8548570B2 (en) 2004-11-29 2013-10-01 Hypermed Imaging, Inc. Hyperspectral imaging of angiogenesis
IL166408A0 (en) * 2005-01-20 2006-01-15 Ultraview Ltd Combined 2d pulse-echo ultrasound and optoacousticsignal for glaucoma treatment
CA2947613C (en) * 2005-04-04 2019-11-05 Hypermed Imaging, Inc. Hyperspectral imaging in diabetes and peripheral vascular disease
JP5741885B2 (ja) * 2005-06-09 2015-07-01 ナヴィスイス エージー 物体の空間位置そして/または空間方位の非接触決定及び測定用システムと方法、特に医療器具に関するパターン又は構造体を含む特に医療器具の較正及び試験方法
US20070015992A1 (en) * 2005-06-30 2007-01-18 General Electric Company System and method for optoacoustic imaging
EP1951115A4 (en) * 2005-11-11 2013-10-30 Randall L Barbour FUNCTIONAL IMAGING OF SELF-REGULATION
WO2007084981A2 (en) * 2006-01-19 2007-07-26 The Regents Of The University Of Michigan System and method for photoacoustic imaging and monitoring of laser therapy
WO2007100937A2 (en) * 2006-01-19 2007-09-07 The Regents Of The University Of Michigan System and method for spectroscopic photoacoustic tomography
US20070171638A1 (en) * 2006-01-24 2007-07-26 Sbc Knowledge Ventures, L.P. Apparatus and methods for transmitting light over optical fibers
US7750536B2 (en) 2006-03-02 2010-07-06 Visualsonics Inc. High frequency ultrasonic transducer and matching layer comprising cyanoacrylate
CN100366227C (zh) * 2006-03-03 2008-02-06 华南师范大学 光声血管成像监测肿瘤光动力治疗效果的方法和装置
US7665364B2 (en) * 2006-03-21 2010-02-23 Ut-Battelle, Llc Method and apparatus for remote sensing of molecular species at nanoscale utilizing a reverse photoacoustic effect
US20070220979A1 (en) * 2006-03-21 2007-09-27 Ut-Battelle Llc Method and apparatus for remote sensing utilizing a reverse photoacoustic effect
JP4559995B2 (ja) * 2006-03-30 2010-10-13 株式会社東芝 腫瘍検査装置
US20090149761A1 (en) * 2006-05-25 2009-06-11 Koninklijke Philips Electronics N.V. Photoacoustic imaging method
US20070287912A1 (en) * 2006-05-31 2007-12-13 Khuri-Yakub Butrus T Functional imaging using capacitive micromachined ultrasonic transducers
EP2034878A2 (en) * 2006-06-23 2009-03-18 Koninklijke Philips Electronics N.V. Timing controller for combined photoacoustic and ultrasound imager
JP4820239B2 (ja) * 2006-08-28 2011-11-24 公立大学法人大阪府立大学 光トモグラフィ装置用プローブ
JP4909132B2 (ja) * 2006-08-28 2012-04-04 公立大学法人大阪府立大学 光トモグラフィ装置
JP4969985B2 (ja) * 2006-10-17 2012-07-04 株式会社東芝 超音波診断装置、及び超音波診断装置の制御プログラム
US20100056916A1 (en) * 2006-11-21 2010-03-04 Koninklijke Philips Electronics N.V. System, device, method, computer-readable medium, and use for in vivo imaging of tissue in an anatomical structure
GB2444078A (en) * 2006-11-24 2008-05-28 Ucl Business Plc Ultrasonic sensor which detects direct and reflected signals emanating from sample being imaged
EP2097010B1 (en) 2006-12-19 2011-10-05 Koninklijke Philips Electronics N.V. Combined photoacoustic and ultrasound imaging system
US8652040B2 (en) 2006-12-19 2014-02-18 Valencell, Inc. Telemetric apparatus for health and environmental monitoring
US8157730B2 (en) 2006-12-19 2012-04-17 Valencell, Inc. Physiological and environmental monitoring systems and methods
US20080173093A1 (en) * 2007-01-18 2008-07-24 The Regents Of The University Of Michigan System and method for photoacoustic tomography of joints
KR101517252B1 (ko) * 2007-01-19 2015-05-04 써니브룩 헬스 사이언시즈 센터 영상 탐침 장치의 스캐닝 메카니즘
JP5319121B2 (ja) * 2007-01-30 2013-10-16 株式会社東芝 診療支援システム及び診療支援装置
US20110021924A1 (en) * 2007-02-09 2011-01-27 Shriram Sethuraman Intravascular photoacoustic and utrasound echo imaging
US20080221647A1 (en) * 2007-02-23 2008-09-11 The Regents Of The University Of Michigan System and method for monitoring photodynamic therapy
JP4909131B2 (ja) * 2007-03-09 2012-04-04 公立大学法人大阪府立大学 光アシスト超音波速度変化イメージング装置および光アシスト超音波速度変化画像表示方法
US20080228073A1 (en) * 2007-03-12 2008-09-18 Silverman Ronald H System and method for optoacoustic imaging of peripheral tissues
US20090005685A1 (en) * 2007-06-29 2009-01-01 Canon Kabushiki Kaisha Ultrasonic probe and inspection apparatus equipped with the ultrasonic probe
JP5546111B2 (ja) * 2007-06-29 2014-07-09 キヤノン株式会社 超音波探触子、該超音波探触子を備えた検査装置
US20090030317A1 (en) * 2007-07-25 2009-01-29 Mayo Foundation For Medical Education And Research Ultrasonic imaging devices, systems, and methods
JP2009066110A (ja) * 2007-09-12 2009-04-02 Canon Inc 測定装置
JP5219440B2 (ja) * 2007-09-12 2013-06-26 キヤノン株式会社 測定装置
CN101854855B (zh) * 2007-09-25 2012-11-14 国立大学法人岐阜大学 磁共振成像装置及其工作方法、图像诊断系统
WO2009050632A1 (en) 2007-10-16 2009-04-23 Koninklijke Philips Electronics N.V. Apparatus, systems and methods for production and integration of compact illumination schemes
US8251903B2 (en) 2007-10-25 2012-08-28 Valencell, Inc. Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
EP2203733B1 (en) 2007-10-25 2017-05-03 Washington University in St. Louis Confocal photoacoustic microscopy with optical lateral resolution
KR101132531B1 (ko) * 2007-11-14 2012-04-03 삼성메디슨 주식회사 서로 마주 보는 트랜스듀서를 구비하는 초음파 진단 장치
BRPI0822064A2 (pt) * 2007-12-10 2015-06-23 Stc Unm Dispositivos de imageamento fotoacústico e métodos de imageamento
US20090156932A1 (en) * 2007-12-13 2009-06-18 Board Of Trustees Of The University Of Arkansas Device and method for in vivo flow cytometry using the detection of photoacoustic waves
US9451884B2 (en) 2007-12-13 2016-09-27 Board Of Trustees Of The University Of Arkansas Device and method for in vivo detection of clots within circulatory vessels
JP5284129B2 (ja) * 2008-02-06 2013-09-11 キヤノン株式会社 イメージング装置、及び解析方法
EP2131212A3 (en) 2008-06-05 2011-10-05 Medison Co., Ltd. Non-Rigid Registration Between CT Images and Ultrasound Images
JP4448189B2 (ja) * 2008-06-18 2010-04-07 キヤノン株式会社 生体情報取得装置
JP2013173060A (ja) * 2008-06-18 2013-09-05 Canon Inc 超音波探触子、該超音波探触子を備えた光音響・超音波システム並びに検体イメージング装置
JP5294998B2 (ja) * 2008-06-18 2013-09-18 キヤノン株式会社 超音波探触子、該超音波探触子を備えた光音響・超音波システム並びに検体イメージング装置
CN100571626C (zh) * 2008-07-03 2009-12-23 刘国栋 光声超声激发与传感一体化检测装置
JP2010179085A (ja) * 2008-07-11 2010-08-19 Canon Inc 生体情報取得装置
JP4829934B2 (ja) * 2008-07-11 2011-12-07 キヤノン株式会社 検査装置
WO2010013184A1 (en) * 2008-07-31 2010-02-04 Koninklijke Philips Electronics N.V. Analysis by photo acoustic displacement and interferometryl
US8194246B2 (en) 2008-08-11 2012-06-05 UT-Battellle, LLC Photoacoustic microcantilevers
US7961313B2 (en) 2008-08-11 2011-06-14 Ut-Battelle, Llc Photoacoustic point spectroscopy
US7924423B2 (en) * 2008-08-11 2011-04-12 Ut-Battelle, Llc Reverse photoacoustic standoff spectroscopy
JP5210087B2 (ja) * 2008-08-14 2013-06-12 富士フイルム株式会社 光超音波断層画像化装置
US8187897B2 (en) * 2008-08-19 2012-05-29 International Business Machines Corporation Fabricating product chips and die with a feature pattern that contains information relating to the product chip
JP5460000B2 (ja) * 2008-08-20 2014-04-02 キヤノン株式会社 イメージング装置およびイメージング方法
JP5419404B2 (ja) 2008-09-04 2014-02-19 キヤノン株式会社 光音響装置
EP2341832B1 (en) * 2008-10-13 2014-07-16 Academisch Medisch Centrum bij de Universiteit van Amsterdam Mammography-apparatus and method for screening the occurrence of malignant cells
NL2002092C (en) * 2008-10-13 2010-04-14 Academisch Medisch Ct Van De Universiteit Van Amsterdam Mammography-apparatus and method for screening the occurrence of malignant cells.
WO2010045421A2 (en) * 2008-10-15 2010-04-22 University Of Rochester Photoacoustic imaging using a versatile acoustic lens
US7802737B2 (en) * 2008-11-13 2010-09-28 Richard D Rayner Vehicle mounted, digital positioning spray system
US9351705B2 (en) 2009-01-09 2016-05-31 Washington University Miniaturized photoacoustic imaging apparatus including a rotatable reflector
JP5289073B2 (ja) * 2009-01-21 2013-09-11 キヤノン株式会社 超音波測定に用いられる圧迫装置とその圧迫制御方法、および光音響計測装置とその制御方法
JP5275830B2 (ja) * 2009-01-26 2013-08-28 富士フイルム株式会社 光超音波断層画像化装置および光超音波断層画像化方法
US9750462B2 (en) 2009-02-25 2017-09-05 Valencell, Inc. Monitoring apparatus and methods for measuring physiological and/or environmental conditions
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
EP3357419A1 (en) 2009-02-25 2018-08-08 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US8016419B2 (en) * 2009-03-17 2011-09-13 The Uwm Research Foundation, Inc. Systems and methods for photoacoustic opthalmoscopy
WO2010127199A2 (en) * 2009-05-01 2010-11-04 Visualsonics Inc. System for photoacoustic imaging and related methods
EP2260754A1 (en) * 2009-06-10 2010-12-15 Universiteit Twente Device and method for photon absorption coefficient measurement
US20110044516A1 (en) * 2009-08-21 2011-02-24 National Taiwan University Contrast improvement method and system for photoacoustic imaging
JP5528083B2 (ja) 2009-12-11 2014-06-25 キヤノン株式会社 画像生成装置、画像生成方法、及び、プログラム
TWI405560B (zh) * 2009-12-15 2013-08-21 Nat Univ Tsing Hua 鈣化點成像方法及系統
WO2011074102A1 (ja) * 2009-12-17 2011-06-23 キヤノン株式会社 測定システム、画像形成方法及びプログラム
US8592769B2 (en) * 2009-12-18 2013-11-26 Panasonic Corporation Component concentration meter, component concentration measurement method, shipping inspection system, and health management system
JP5448785B2 (ja) 2009-12-18 2014-03-19 キヤノン株式会社 測定装置、移動制御方法及びプログラム
WO2011091423A2 (en) * 2010-01-25 2011-07-28 The Arizona Board Of Regents On Behalf Of The University Of Arizona Ultrasonic/photoacoustic imaging devices and methods
US20110190612A1 (en) * 2010-02-02 2011-08-04 Nellcor Puritan Bennett Llc Continous Light Emission Photoacoustic Spectroscopy
JP5818444B2 (ja) * 2010-02-04 2015-11-18 キヤノン株式会社 機能情報取得装置、機能情報取得方法、及びプログラム
JP5725720B2 (ja) * 2010-02-16 2015-05-27 キヤノン株式会社 被検体情報処理装置
NL2005509C2 (en) 2010-02-19 2011-08-23 Academisch Medisch Ct Bij De Universiteit Van Amsterdam Mammography-apparatus.
JP5645421B2 (ja) 2010-02-23 2014-12-24 キヤノン株式会社 超音波画像装置および遅延制御方法
JP5424933B2 (ja) 2010-02-23 2014-02-26 キヤノン株式会社 生体情報処理装置
JP5448918B2 (ja) * 2010-02-24 2014-03-19 キヤノン株式会社 生体情報処理装置
US20110231966A1 (en) * 2010-03-17 2011-09-22 Ali Passian Scanning probe microscopy with spectroscopic molecular recognition
US8448261B2 (en) 2010-03-17 2013-05-21 University Of Tennessee Research Foundation Mode synthesizing atomic force microscopy and mode-synthesizing sensing
JP2011193978A (ja) * 2010-03-18 2011-10-06 Canon Inc 静電容量型電気機械変換装置の駆動装置及び駆動方法
JP5393552B2 (ja) * 2010-03-19 2014-01-22 キヤノン株式会社 測定装置
JP5441781B2 (ja) * 2010-03-25 2014-03-12 キヤノン株式会社 光音響イメージング装置、光音響イメージング方法及びプログラム
US20110238137A1 (en) * 2010-03-25 2011-09-29 Fujifilm Corporation Medical apparatus for photodynamic therapy and method for controlling therapeutic light
US9086365B2 (en) 2010-04-09 2015-07-21 Lihong Wang Quantification of optical absorption coefficients using acoustic spectra in photoacoustic tomography
JP5553672B2 (ja) * 2010-04-26 2014-07-16 キヤノン株式会社 音響波測定装置および音響波測定方法
CN103209643A (zh) * 2010-04-30 2013-07-17 视声公司 光声换能器及成像系统
CN102240213A (zh) * 2010-05-12 2011-11-16 国立清华大学 钙化点成像方法及系统
CN101912250B (zh) * 2010-05-24 2012-01-04 华南师范大学 一种血管内光声超声双模成像内窥镜装置及其成像方法
JP5389749B2 (ja) * 2010-06-24 2014-01-15 富士フイルム株式会社 生体情報画像化装置及び方法
US8080796B1 (en) 2010-06-30 2011-12-20 Ut-Battelle, Llc Standoff spectroscopy using a conditioned target
JP5761935B2 (ja) * 2010-07-22 2015-08-12 キヤノン株式会社 被検体情報取得装置、被検体情報取得方法および被検体情報取得プログラム
WO2012024687A2 (en) * 2010-08-20 2012-02-23 Purdue Research Foundation Bond-selective vibrational photoacoustic imaging system and method
US8686335B2 (en) 2011-12-31 2014-04-01 Seno Medical Instruments, Inc. System and method for adjusting the light output of an optoacoustic imaging system
US9289191B2 (en) 2011-10-12 2016-03-22 Seno Medical Instruments, Inc. System and method for acquiring optoacoustic data and producing parametric maps thereof
JP5502686B2 (ja) * 2010-09-30 2014-05-28 富士フイルム株式会社 光音響画像診断装置、画像生成方法、及びプログラム
JP5539145B2 (ja) * 2010-10-08 2014-07-02 キヤノン株式会社 被検体情報処理装置
JP5648957B2 (ja) * 2010-10-22 2015-01-07 浜松ホトニクス株式会社 乳房計測装置
JP5574927B2 (ja) * 2010-11-19 2014-08-20 キヤノン株式会社 測定装置
JP2012135610A (ja) * 2010-12-10 2012-07-19 Fujifilm Corp 光音響検査用探触子および光音響検査装置
TWI430778B (zh) * 2010-12-24 2014-03-21 Pai Chi Li 醫學成像系統及其醫學成像方法
US8888701B2 (en) 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
CN102183464A (zh) * 2011-01-28 2011-09-14 华南理工大学 一种线阵光纤耦合光声检测系统及其检测方法
CN102175616A (zh) * 2011-01-28 2011-09-07 华南理工大学 一种线阵光纤耦合光声检测探头
JP2012166009A (ja) * 2011-01-28 2012-09-06 Fujifilm Corp 超音波プローブ
JP5697615B2 (ja) * 2011-02-07 2015-04-08 富士フイルム株式会社 超音波プローブ
US20120203093A1 (en) * 2011-02-08 2012-08-09 Mir Imran Apparatus, system and methods for photoacoustic detection of deep vein thrombosis
US8997572B2 (en) 2011-02-11 2015-04-07 Washington University Multi-focus optical-resolution photoacoustic microscopy with ultrasonic array detection
JP5559081B2 (ja) * 2011-02-16 2014-07-23 富士フイルム株式会社 光音響撮像装置およびそれに用いられるプローブユニット
JP5559080B2 (ja) * 2011-02-16 2014-07-23 富士フイルム株式会社 光音響撮像装置、それに用いられるプローブユニットおよび光音響撮像装置の作動方法
JP5502777B2 (ja) * 2011-02-16 2014-05-28 富士フイルム株式会社 光音響撮像装置およびそれに用いられるプローブユニット
JP5564449B2 (ja) * 2011-02-16 2014-07-30 富士フイルム株式会社 光音響撮像装置、それに用いられるプローブユニットおよび光音響撮像装置の作動方法
JP2012173136A (ja) * 2011-02-22 2012-09-10 Fujifilm Corp 光音響撮像装置、それに用いられるプローブユニットおよび光音響撮像装置の作動方法
JP2012187389A (ja) * 2011-02-22 2012-10-04 Fujifilm Corp 光音響画像生成装置、及び方法
JP5611859B2 (ja) * 2011-02-24 2014-10-22 富士フイルム株式会社 光音響画像化装置の故障検知方法
JP5702313B2 (ja) * 2011-02-28 2015-04-15 富士フイルム株式会社 光音響分析用プローブユニットおよび光音響分析装置
JP5584154B2 (ja) * 2011-03-16 2014-09-03 富士フイルム株式会社 光音響画像化装置および光音響画像化方法並びに光音響画像化装置用プローブ
JP5685214B2 (ja) * 2011-03-16 2015-03-18 富士フイルム株式会社 光音響画像生成装置及び方法
JP5655021B2 (ja) 2011-03-29 2015-01-14 富士フイルム株式会社 光音響画像化方法および装置
JP2012210337A (ja) * 2011-03-31 2012-11-01 Fujifilm Corp 光音響画像化装置およびその故障検知方法
KR101749236B1 (ko) * 2011-04-01 2017-07-04 한국전자통신연구원 귀 속 삽입형 소형 진단 및 치료 장치
JP5704998B2 (ja) * 2011-04-06 2015-04-22 キヤノン株式会社 光音響装置およびその制御方法
JP5647941B2 (ja) * 2011-04-27 2015-01-07 富士フイルム株式会社 光音響撮像装置およびそれに用いられるプローブユニット並びに内視鏡
JP5647942B2 (ja) * 2011-04-27 2015-01-07 富士フイルム株式会社 光音響撮像装置およびそれに用いられるプローブユニット並びに内視鏡
JP5777394B2 (ja) * 2011-04-28 2015-09-09 富士フイルム株式会社 光音響画像化方法および装置
JP5959803B2 (ja) * 2011-05-02 2016-08-02 キヤノン株式会社 被検体情報取得装置およびその制御方法
JP5896623B2 (ja) * 2011-05-02 2016-03-30 キヤノン株式会社 被検体情報取得装置およびその制御方法
JP5864894B2 (ja) * 2011-05-10 2016-02-17 キヤノン株式会社 被検体情報取得装置および信号処理装置
JP5346987B2 (ja) * 2011-05-17 2013-11-20 富士フイルム株式会社 超音波診断装置
US9164066B1 (en) * 2012-06-19 2015-10-20 The Boeing Company Laser ultrasound array system
WO2012174413A1 (en) 2011-06-15 2012-12-20 University Of Southern California Optical coherence photoacoustic microscopy
WO2012176400A1 (en) 2011-06-22 2012-12-27 Canon Kabushiki Kaisha Specimen information acquisition apparatus and specimen information acquisition method
JP5719242B2 (ja) * 2011-06-27 2015-05-13 富士フイルム株式会社 ドプラ画像表示方法および装置
JP5694991B2 (ja) * 2011-07-14 2015-04-01 富士フイルム株式会社 光音響画像化方法および装置
US9427191B2 (en) 2011-07-25 2016-08-30 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
JP5713968B2 (ja) 2011-07-29 2015-05-07 富士フイルム株式会社 光音響画像生成装置及び音響波ユニット
JP5662973B2 (ja) 2011-07-29 2015-02-04 富士フイルム株式会社 レーザ光源ユニット、その制御方法、光音響画像生成装置及び方法
JP5795557B2 (ja) * 2011-07-29 2015-10-14 富士フイルム株式会社 光音響用アタッチメント及びプローブ
JP5681675B2 (ja) 2011-07-29 2015-03-11 富士フイルム株式会社 光音響画像生成装置及び音響波ユニット
CN102349835B (zh) * 2011-08-02 2013-06-19 中国科学院自动化研究所 无创血液成分动态检测装置
EP2739207B1 (en) 2011-08-02 2017-07-19 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
JP5847490B2 (ja) 2011-08-25 2016-01-20 キヤノン株式会社 被検体情報取得装置
JP5647584B2 (ja) * 2011-09-05 2015-01-07 富士フイルム株式会社 光音響画像生成装置及び方法
JP5208255B2 (ja) * 2011-09-15 2013-06-12 キヤノン株式会社 測定装置
JP5730253B2 (ja) 2011-09-27 2015-06-03 富士フイルム株式会社 レーザ光源ユニット及び光音響画像生成装置
WO2013047971A1 (ko) * 2011-09-27 2013-04-04 전북대학교산학협력단 근적외선 레이저를 이용한 광음향 이미징 장치
KR101427760B1 (ko) * 2011-09-27 2014-08-07 전북대학교산학협력단 근적외선 레이저를 이용한 광음향 이미징 장치
KR101287099B1 (ko) * 2011-10-11 2013-07-16 서강대학교산학협력단 석회화 조직을 검출하기 위한 광음향 영상 생성 방법 및 장치
KR102090840B1 (ko) * 2011-10-12 2020-03-18 세노 메디컬 인스투르먼츠 인코포레이티드 광음향 데이터를 획득하며 그것의 파라메트릭 맵들을 생성하기 위한 시스템 및 방법
JP5950540B2 (ja) * 2011-10-31 2016-07-13 キヤノン株式会社 被検体情報取得装置、該装置の制御方法、及びプログラム
US9733119B2 (en) * 2011-11-02 2017-08-15 Seno Medical Instruments, Inc. Optoacoustic component utilization tracking
WO2013067419A1 (en) * 2011-11-02 2013-05-10 Seno Medical Instruments, Inc. Dual modality imaging system for coregistered functional and anatomical mapping
US10433732B2 (en) 2011-11-02 2019-10-08 Seno Medical Instruments, Inc. Optoacoustic imaging system having handheld probe utilizing optically reflective material
US9445786B2 (en) 2011-11-02 2016-09-20 Seno Medical Instruments, Inc. Interframe energy normalization in an optoacoustic imaging system
US11191435B2 (en) 2013-01-22 2021-12-07 Seno Medical Instruments, Inc. Probe with optoacoustic isolator
US9743839B2 (en) 2011-11-02 2017-08-29 Seno Medical Instruments, Inc. Playback mode in an optoacoustic imaging system
US20130116538A1 (en) * 2011-11-02 2013-05-09 Seno Medical Instruments, Inc. Optoacoustic imaging systems and methods with enhanced safety
US9757092B2 (en) 2011-11-02 2017-09-12 Seno Medical Instruments, Inc. Method for dual modality optoacoustic imaging
US9730587B2 (en) 2011-11-02 2017-08-15 Seno Medical Instruments, Inc. Diagnostic simulator
US20140005544A1 (en) 2011-11-02 2014-01-02 Seno Medical Instruments, Inc. System and method for providing selective channel sensitivity in an optoacoustic imaging system
US9445785B2 (en) 2011-11-02 2016-09-20 Seno Medical Instruments, Inc. System and method for normalizing range in an optoacoustic imaging system
US9814394B2 (en) * 2011-11-02 2017-11-14 Seno Medical Instruments, Inc. Noise suppression in an optoacoustic system
US11287309B2 (en) * 2011-11-02 2022-03-29 Seno Medical Instruments, Inc. Optoacoustic component utilization tracking
US20130338475A1 (en) 2012-06-13 2013-12-19 Seno Medical Instruments, Inc. Optoacoustic imaging system with fiber optic cable
US20130289381A1 (en) 2011-11-02 2013-10-31 Seno Medical Instruments, Inc. Dual modality imaging system for coregistered functional and anatomical mapping
US20130296684A1 (en) * 2011-11-02 2013-11-07 Seno Medical Instruments, Inc. Probe holder
EP2773267B1 (en) * 2011-11-02 2024-03-13 Seno Medical Instruments, Inc. Dual modality imaging system for coregistered functional and anatomical mapping
JP5829897B2 (ja) * 2011-11-22 2015-12-09 富士フイルム株式会社 光音響診断用のプローブユニットおよびそれを用いた光音響診断装置
TW201323851A (zh) * 2011-12-05 2013-06-16 Ind Tech Res Inst 光聲影像裝置、光聲感測結構及擷取光聲影像的方法
AU2013212213B2 (en) * 2012-01-23 2018-06-28 Tomowave Laboratories, Inc. Laser optoacoustic ultrasonic imaging system (LOUIS) and methods of use
JP5840152B2 (ja) * 2012-02-03 2016-01-06 富士フイルム株式会社 プローブ
JP6132466B2 (ja) * 2012-02-07 2017-05-24 キヤノン株式会社 被検体情報取得装置及び被検体情報取得方法
JP5852597B2 (ja) 2012-02-13 2016-02-03 富士フイルム株式会社 光音響画像化方法および装置
JP5873816B2 (ja) * 2012-02-28 2016-03-01 富士フイルム株式会社 画像生成装置及び方法
CA2866840C (en) 2012-03-09 2022-03-29 Seno Medical Instruments, Inc. Statistical mapping in an optoacoustic imaging system
JP6146956B2 (ja) * 2012-03-13 2017-06-14 キヤノン株式会社 装置、表示制御方法、及びプログラム
JP6146955B2 (ja) * 2012-03-13 2017-06-14 キヤノン株式会社 装置、表示制御方法、及びプログラム
JP5855994B2 (ja) * 2012-03-27 2016-02-09 富士フイルム株式会社 音響波検出用のプローブおよびそれを備えた光音響計測装置
KR101974580B1 (ko) 2012-05-03 2019-05-02 삼성전자주식회사 레이저 유도 초음파 장치 및 이를 이용한 영상 생성 방법
JP5840070B2 (ja) 2012-05-08 2016-01-06 富士フイルム株式会社 光音響計測装置および光音響計測装置用プローブ
JP6261159B2 (ja) 2012-06-01 2018-01-17 キヤノン株式会社 被検体情報取得装置および被検体情報の取得方法
JP5860534B2 (ja) * 2012-06-04 2016-02-16 株式会社アドバンテスト 光音響診断装置、方法、プログラム、記録媒体
CN103462645B (zh) * 2012-06-07 2015-07-29 中国科学院深圳先进技术研究院 前视光声内窥镜
IN2014KN02685A (ja) * 2012-06-13 2015-05-08 Seno Medical Instr Inc
US9610043B2 (en) 2012-06-13 2017-04-04 Seno Medical Instruments, Inc. System and method for producing parametric maps of optoacoustic data
WO2013188713A1 (en) * 2012-06-13 2013-12-19 Seno Medical Instruments, Inc. System and method for normalizing range in an optoacoustic imaging system
JP2014039801A (ja) * 2012-07-27 2014-03-06 Fujifilm Corp 音響信号検出用のプローブおよびそれを備えた光音響計測装置
JP5856032B2 (ja) 2012-09-28 2016-02-09 富士フイルム株式会社 光音響計測装置および光音響計測装置用プローブ
WO2014063005A1 (en) 2012-10-18 2014-04-24 Washington University Transcranialphotoacoustic/thermoacoustic tomography brain imaging informed by adjunct image data
JP6292836B2 (ja) 2012-12-28 2018-03-14 キヤノン株式会社 被検体情報取得装置、表示方法、プログラム、処理装置
US20140182383A1 (en) * 2012-12-28 2014-07-03 Canon Kabushiki Kaisha Object information obtaining device, display method, and non-transitory computer-readable storage medium
JP6103931B2 (ja) * 2012-12-28 2017-03-29 キヤノン株式会社 被検体情報取得装置、被検体情報取得方法
WO2014115214A1 (en) * 2012-12-28 2014-07-31 Canon Kabushiki Kaisha Combined photoacoustic and ultrasound imaging apparatus and method
WO2014116942A2 (en) 2013-01-28 2014-07-31 Valencell, Inc. Physiological monitoring devices having sensing elements decoupled from body motion
KR101502572B1 (ko) 2013-02-19 2015-03-12 삼성메디슨 주식회사 복합 영상 장치 및 복합 영상 장치를 제어하는 방법
US9211110B2 (en) 2013-03-15 2015-12-15 The Regents Of The University Of Michigan Lung ventillation measurements using ultrasound
AU2014227709B2 (en) * 2013-03-15 2018-10-18 Seno Medical Instruments, Inc. Optoacoustic component utilization tracking
US9398893B2 (en) 2013-03-15 2016-07-26 Seno Medical Instruments, Inc. System and method for diagnostic vector classification support
JP6238539B2 (ja) * 2013-03-21 2017-11-29 キヤノン株式会社 処理装置、被検体情報取得装置、および、処理方法
JP6508867B2 (ja) 2013-03-29 2019-05-08 キヤノン株式会社 被検体情報取得装置およびその制御方法
KR102154211B1 (ko) 2013-04-22 2020-09-09 한국전자통신연구원 유방조직 이상 유무 자가 검사 장치 및 방법
KR101418405B1 (ko) * 2013-04-25 2014-07-09 포항공과대학교 산학협력단 고배율 표면 이미지에 광음향 단층 이미지를 포함하는 증강 현실 이미지를 중첩시켜 출력하는 수술용 현미경 시스템 및 그를 위한 증강 현실 이미지 제공 장치
US20160081557A1 (en) * 2013-04-30 2016-03-24 Alpinion Medical Systems Co., Ltd. Photoacoustic imaging probe
JP2015029048A (ja) * 2013-07-05 2015-02-12 富士フイルム株式会社 レーザ装置及び光音響計測装置
EP3054853A4 (en) 2013-10-11 2017-05-17 Seno Medical Instruments, Inc. Systems and methods for component separation in medical imaging
JP5619254B2 (ja) * 2013-10-17 2014-11-05 キヤノン株式会社 測定装置
KR101511085B1 (ko) 2013-11-01 2015-04-14 삼성메디슨 주식회사 광 음향 장치 및 그 동작방법
WO2015077355A1 (en) 2013-11-19 2015-05-28 Washington University Systems and methods of grueneisen-relaxation photoacoustic microscopy and photoacoustic wavefront shaping
JP5766273B2 (ja) * 2013-12-26 2015-08-19 キヤノン株式会社 測定装置
KR102188148B1 (ko) * 2014-01-17 2020-12-07 삼성메디슨 주식회사 광음향 영상 장치 및 광음향 영상 디스플레이 방법
JP6504826B2 (ja) * 2014-02-10 2019-04-24 キヤノン株式会社 情報処理装置および情報処理方法
EP3110312A4 (en) * 2014-02-27 2017-10-25 Seno Medical Instruments, Inc. Probe having light delivery through combined optically diffusing and acoustically propagating element
WO2015131098A1 (en) 2014-02-27 2015-09-03 Seno Medical Instruments, Inc. Probe adapted to control blood flow through vessels during imaging and method of use of same
CN106456111B (zh) 2014-03-12 2020-02-11 富士胶片索诺声公司 具有具有集成中心匹配层的超声透镜的高频超声换能器
JP5885768B2 (ja) * 2014-03-17 2016-03-15 キヤノン株式会社 生体検査装置
JP6033252B2 (ja) 2014-03-27 2016-11-30 富士フイルム株式会社 レーザ装置及びそれを備えた光音響計測装置
JP6152075B2 (ja) * 2014-07-02 2017-06-21 プレキシオン株式会社 光音響画像生成装置
US9538921B2 (en) 2014-07-30 2017-01-10 Valencell, Inc. Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same
EP4098178B1 (en) 2014-08-06 2024-04-10 Yukka Magic LLC Optical physiological sensor modules with reduced signal noise
JP6495296B2 (ja) * 2014-08-12 2019-04-03 プレキシオン株式会社 光音響画像化装置
JP6166700B2 (ja) * 2014-08-18 2017-07-19 プレキシオン株式会社 光音響画像化装置
JP5925267B2 (ja) * 2014-09-18 2016-05-25 キヤノン株式会社 測定装置
EP3195809B1 (en) 2014-09-19 2018-12-05 Fujifilm Corporation Photoacoustic image generation method and device
WO2016047049A1 (ja) 2014-09-24 2016-03-31 富士フイルム株式会社 光音響画像生成方法および装置
US9794653B2 (en) 2014-09-27 2017-10-17 Valencell, Inc. Methods and apparatus for improving signal quality in wearable biometric monitoring devices
JP5932932B2 (ja) * 2014-10-02 2016-06-08 キヤノン株式会社 光音響装置
JP6166708B2 (ja) * 2014-10-15 2017-07-19 プレキシオン株式会社 光音響波信号変換機および光音響波信号変換機内蔵プローブ
WO2016063163A1 (en) * 2014-10-23 2016-04-28 Koninklijke Philips N.V. Shape sensing for flexible ultrasound transducers
JP6621819B2 (ja) 2014-10-30 2019-12-18 セノ メディカル インストルメンツ,インク. 音響波を用いた光源および音響レシーバの相対的な向きの検出を伴う光音響撮像システム
EP4278979A3 (en) 2014-12-31 2024-02-21 BioVentures, LLC Devices and methods for fractionated photoacoustic flow cytometry
JP6548405B2 (ja) 2015-02-26 2019-07-24 キヤノン株式会社 ファントム
KR101638588B1 (ko) 2015-04-23 2016-07-12 포항공과대학교 산학협력단 소화기관의 비침습적 이미징 장치
US10898166B2 (en) 2015-05-14 2021-01-26 Endra Life Sciences Inc. Systems and methods for imaging biological tissue structures
EP3103396B1 (en) * 2015-06-10 2018-10-24 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH Device and method for hybrid optoacoustic tomography and ultrasonography
WO2017002337A1 (ja) * 2015-06-30 2017-01-05 富士フイルム株式会社 光音響画像生成装置及び挿入物
JP5946230B2 (ja) * 2015-07-07 2016-07-05 富士フイルム株式会社 光音響画像化方法および装置
JP2017047056A (ja) * 2015-09-04 2017-03-09 キヤノン株式会社 被検体情報取得装置
US10610158B2 (en) 2015-10-23 2020-04-07 Valencell, Inc. Physiological monitoring devices and methods that identify subject activity type
US10945618B2 (en) 2015-10-23 2021-03-16 Valencell, Inc. Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type
JP2017086172A (ja) * 2015-11-02 2017-05-25 キヤノン株式会社 被検体情報取得装置およびその制御方法
JP6598644B2 (ja) * 2015-11-10 2019-10-30 キヤノン株式会社 被検体情報取得装置
WO2017096406A1 (en) * 2015-12-04 2017-06-08 The Research Foundation For The State University Of New York Devices and methods for photoacoustic tomography
CN115290569A (zh) * 2015-12-09 2022-11-04 迪亚蒙泰克股份有限公司 用于分析材料的装置和方法
JP6188843B2 (ja) * 2016-02-08 2017-08-30 キヤノン株式会社 生体検査装置
JP6138313B2 (ja) * 2016-04-14 2017-05-31 キヤノン株式会社 装置
US10235551B2 (en) * 2016-05-06 2019-03-19 Qualcomm Incorporated Biometric system with photoacoustic imaging
GB2550582B (en) * 2016-05-23 2020-07-15 Bluedrop Medical Ltd A skin inspection device identifying abnormalities
JP6157693B2 (ja) * 2016-06-23 2017-07-05 キヤノン株式会社 被検体情報取得装置およびその制御方法
US10966662B2 (en) 2016-07-08 2021-04-06 Valencell, Inc. Motion-dependent averaging for physiological metric estimating systems and methods
JP6708529B2 (ja) * 2016-10-07 2020-06-10 キヤノン株式会社 制御装置、制御方法、制御システム及びプログラム。
JP6682150B2 (ja) * 2017-03-29 2020-04-15 富士フイルム株式会社 乳腺量取得装置、方法およびプログラム
JP6513121B2 (ja) * 2017-04-19 2019-05-15 キヤノン株式会社 処理装置、被検体情報取得装置、光音響画像の表示方法、及びプログラム
JP6362123B2 (ja) * 2017-04-27 2018-07-25 キヤノン株式会社 装置
US11672426B2 (en) 2017-05-10 2023-06-13 California Institute Of Technology Snapshot photoacoustic photography using an ergodic relay
JP6385526B2 (ja) * 2017-06-08 2018-09-05 キヤノン株式会社 装置および装置の制御方法
NL2019124B1 (en) 2017-06-27 2019-01-07 Sigmascreening B V Mammography apparatus
JP6444462B2 (ja) * 2017-08-03 2018-12-26 キヤノン株式会社 生体検査装置
NL2019834B1 (en) 2017-10-31 2019-05-08 Sigmascreening B V Mammography apparatus and method of pressurizing a breast
JP7158796B2 (ja) * 2017-12-07 2022-10-24 株式会社アドバンテスト 光超音波測定装置、方法、プログラム、記録媒体
CN108888236A (zh) * 2018-04-23 2018-11-27 深圳迈瑞生物医疗电子股份有限公司 一种多模态成像系统及方法
JP6686066B2 (ja) * 2018-04-26 2020-04-22 キヤノン株式会社 光音響装置
WO2019208767A1 (ja) * 2018-04-27 2019-10-31 富士フイルム株式会社 超音波システムおよび超音波システムの制御方法
WO2020037082A1 (en) 2018-08-14 2020-02-20 California Institute Of Technology Multifocal photoacoustic microscopy through an ergodic relay
EP3847453A4 (en) 2018-09-04 2022-06-22 California Institute of Technology PHOTOACOUSTIC INFRARED MICROSCOPY AND SPECTROSCOPY WITH INCREASED RESOLUTION
CN111214208B (zh) * 2018-11-26 2023-04-11 上海科技大学 光声成像系统、传输及成像方法、装置及存储介质
US11369280B2 (en) 2019-03-01 2022-06-28 California Institute Of Technology Velocity-matched ultrasonic tagging in photoacoustic flowgraphy
JP7463395B2 (ja) * 2019-03-15 2024-04-08 アイセラ・メディカル・ゲーエムベーハー 光音響データを解析するためのデバイスおよび方法、光音響システムならびにコンピュータプログラム
JP6736723B2 (ja) * 2019-04-25 2020-08-05 キヤノン株式会社 光音響トモグラフィの受信データ処理装置
KR102262755B1 (ko) * 2019-05-15 2021-06-08 서강대학교산학협력단 초음파 변환기 및 초음파 변환기의 제작방법
DE102019210073B4 (de) * 2019-07-09 2022-01-13 Trumpf Gmbh + Co. Kg Vorrichtung und Verfahren zur Durchführung ortsaufgelöster Photoakustik
US10841024B1 (en) * 2019-09-11 2020-11-17 Telefonaktiebolaget Lm Ericsson (Publ) Beam selection for high frequency wireless communication network
KR102411284B1 (ko) 2019-09-20 2022-06-21 포항공과대학교 산학협력단 투명 초음파 센서 및 그 제조방법
CN111035368B (zh) * 2020-01-07 2022-12-13 上海科技大学 单通道实时光声断层扫描成像系统与方法
KR20210104409A (ko) 2020-02-17 2021-08-25 삼성전자주식회사 신호 검출 센서, 대상체의 성분 분석 장치 및 방법
CN113243889B (zh) * 2020-08-10 2022-05-10 北京航空航天大学 获取生物组织的信息的方法和设备
KR20230109994A (ko) * 2022-01-14 2023-07-21 주식회사 옵티코 다파장 광음향 영상 및 초음파 영상을 이용한 종양 분류 방법 및 분석장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100237A (ja) 1984-10-23 1986-05-19 株式会社東芝 超音波診断装置
JPS6239761A (ja) 1985-08-16 1987-02-20 Toshiba Corp 超音波探触子
JPH09192218A (ja) * 1996-01-16 1997-07-29 Hitachi Ltd 血糖値管理システム
US5840023A (en) 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
US5713356A (en) 1996-10-04 1998-02-03 Optosonics, Inc. Photoacoustic breast scanner
JP3500259B2 (ja) * 1996-12-02 2004-02-23 花王株式会社 光音響信号測定装置
US5977538A (en) 1998-05-11 1999-11-02 Imarx Pharmaceutical Corp. Optoacoustic imaging system
US6212421B1 (en) 1999-09-03 2001-04-03 Lockheed Martin Energy Research Corp. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics
US6466806B1 (en) * 2000-05-17 2002-10-15 Card Guard Scientific Survival Ltd. Photoacoustic material analysis
IL138073A0 (en) 2000-08-24 2001-10-31 Glucon Inc Photoacoustic assay and imaging system
US6490470B1 (en) 2001-06-19 2002-12-03 Optosonics, Inc. Thermoacoustic tissue scanner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076244A1 (en) 2014-11-10 2016-05-19 Canon Kabushiki Kaisha Object information acquiring apparatus

Also Published As

Publication number Publication date
KR20060080562A (ko) 2006-07-10
JP2005021380A (ja) 2005-01-27
CN100512760C (zh) 2009-07-15
EP1493380B1 (en) 2014-09-10
US20050004458A1 (en) 2005-01-06
CA2435990C (en) 2010-06-01
EP1493380A1 (en) 2005-01-05
CA2435990A1 (en) 2005-01-02
KR20050003948A (ko) 2005-01-12
CN1575770A (zh) 2005-02-09
KR100805463B1 (ko) 2008-02-20
US6979292B2 (en) 2005-12-27

Similar Documents

Publication Publication Date Title
JP4406226B2 (ja) 生体情報映像装置
JP5525787B2 (ja) 生体情報映像装置
JP4643153B2 (ja) 非侵襲生体情報映像装置
US5840023A (en) Optoacoustic imaging for medical diagnosis
JP6322578B2 (ja) 機能的および解剖学的同時表示マッピングのための二重モダリティ画像処理システム
EP1077643B1 (en) Optoacoustic imaging system
US9220415B2 (en) Systems and methods for frequency-domain photoacoustic phased array imaging
KR101273585B1 (ko) 초음파 영상 장치 및 초음파 영상 표시방법
EP2527815B1 (en) Thermoacoustic imaging with quantitative extraction of an absorption image
Sinha et al. Differentiation between malignant and normal human thyroid tissue using frequency analysis of multispectral photoacoustic images
WO2008115089A1 (fr) Procédé de diagnostic utilisant des ondes ultrasonores, sonores ou électromagnétiques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4406226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees