WO2011074102A1 - 測定システム、画像形成方法及びプログラム - Google Patents

測定システム、画像形成方法及びプログラム Download PDF

Info

Publication number
WO2011074102A1
WO2011074102A1 PCT/JP2009/071062 JP2009071062W WO2011074102A1 WO 2011074102 A1 WO2011074102 A1 WO 2011074102A1 JP 2009071062 W JP2009071062 W JP 2009071062W WO 2011074102 A1 WO2011074102 A1 WO 2011074102A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
data
image
subject
converted
Prior art date
Application number
PCT/JP2009/071062
Other languages
English (en)
French (fr)
Inventor
卓司 大石
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to JP2011545904A priority Critical patent/JP5518096B2/ja
Priority to PCT/JP2009/071062 priority patent/WO2011074102A1/ja
Priority to CN200980162927.2A priority patent/CN102655815B/zh
Priority to EP09852294.9A priority patent/EP2514364B1/en
Priority to US12/964,654 priority patent/US8814794B2/en
Publication of WO2011074102A1 publication Critical patent/WO2011074102A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/56Details of data transmission or power supply, e.g. use of slip rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1706Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in solids

Definitions

  • the present invention relates to a measurement system that receives acoustic waves and generates image data, an image forming method that generates image data from acoustic waves, and a program for executing the image forming method.
  • pulse light is generated from a light source and irradiated on a subject.
  • This light propagates and diffuses in the subject, and the living tissue absorbs the energy of the light, so that an acoustic wave (typically an ultrasonic wave) is generated from the living tissue.
  • the generated acoustic wave is detected at a plurality of locations surrounding the subject, and the obtained signal is converted into image data by mathematical analysis processing.
  • these processes are called imaging.
  • Artifacts may appear in images obtained by imaging.
  • An artifact is an image that does not actually exist but appears as if something exists there, and is also called a ghost.
  • artifacts due to the band of the acoustic wave receiver appear prominently when the viewing angle is limited such that the acquisition position of the acoustic wave signal is a plane in a certain direction instead of 360 degrees around the subject. .
  • artifacts were indistinguishable from real light absorber images (real images).
  • an object of the present invention is to discriminate or reduce artifacts caused by the band of an acoustic wave receiver.
  • the measurement system of the present invention includes an acoustic wave receiver that receives an acoustic wave generated by irradiating a subject with light and converts it into an electrical signal, an image forming apparatus that generates image data using the electrical signal, and
  • the acoustic wave receiver includes a direct wave that directly reaches the acoustic wave receiver among acoustic waves generated from the detection target in the subject, and an acoustic wave generated from the detection target.
  • the image forming apparatus includes an electrical signal obtained by converting the direct wave
  • the electrical signal converted from the reflected wave is converted into voxel data or pixel data to generate image data, and the voxel data converted from the direct wave on the image data.
  • the determination unit determines whether the position of the pixel data and the position of the voxel data or pixel data into which the reflected wave is converted are symmetric with respect to the position on the corresponding image data of the acoustic wave reflection surface.
  • a processing unit that performs processing for discriminating or reducing an image of voxel data or pixel data determined to be not symmetric by the determination unit.
  • Another measurement system of the present invention includes an acoustic wave receiver that receives an acoustic wave generated by irradiating a subject with light and converts it into an electrical signal, and an image that generates image data using the electrical signal.
  • the acoustic wave receiver includes: a direct wave that directly reaches the acoustic wave receiver among acoustic waves generated from the detection target in the subject; and the detection target.
  • At least a reflected wave reflected by an acoustic wave reflecting surface provided on the subject is received and converted into an electrical signal, and the image forming apparatus converts the direct wave
  • An electrical signal and an electrical signal converted from the reflected wave are converted into voxel data or pixel data to generate image data, and the image data is converted into a corresponding image data of the acoustic wave reflection surface.
  • having a folded data creation unit that creates a folded data are turned back at the position on the data, and a superimposition processing unit a superimposition process performed with the previous of said image data to fold said wrapping data.
  • highly reliable image data can be acquired by performing processing for discriminating and reducing artifacts.
  • the acoustic wave includes an acoustic wave including an acoustic wave, an ultrasonic wave, and a photoacoustic wave, and is an elastic wave generated inside the subject by irradiating the subject with light (electromagnetic waves) such as near infrared rays. Indicates.
  • FIG. 1 is a schematic diagram of a measurement system to which the present invention can be applied.
  • light 2 pulse light
  • the subject 3 is irradiated with the light 2 via an optical device 4 such as a lens or a mirror.
  • the light absorber 5 detection target in the subject 3 absorbs light energy and generates an acoustic wave 6.
  • an acoustic wave that directly reaches the acoustic wave receiver 8 without being reflected is referred to as a direct wave
  • an acoustic wave that reaches the acoustic wave receiver 8 after being reflected by the acoustic wave reflection surface is referred to as a reflected wave.
  • the acoustic wave receiver 8 receives the acoustic wave, converts it into an electrical signal, and outputs it to the electrical signal processing circuit 9.
  • the electrical signal processing circuit 9 performs amplification and digital conversion of the electrical signal, and outputs the digitally converted electrical signal (digital signal) to the image forming apparatus 10.
  • the image forming apparatus 10 generates image data using the digital signal, and the generated image data is displayed as an image on the display device 11.
  • the acoustic wave receiver 8 is mechanically scanned by the scanning control device 12 and configured to be able to measure at various locations.
  • an acoustic wave reflection plate 7 that is an acoustic wave reflection surface is provided on the subject 3. It is preferable that the acoustic wave reflection plate 7 has a flat surface on the side of the subject 3 and has a greatly different acoustic impedance (for example, an acoustic impedance of about 3 ⁇ 10 6 Kg / m 2 ⁇ s). Furthermore, it is preferable to use a material that is transparent and allows the light 2 to sufficiently pass therethrough, because the subject can be irradiated with light from the acoustic wave reflection plate 7 side.
  • a compression plate provided on the opposite surface of the acoustic wave receiver 8 may be used as the acoustic wave reflection plate, and an acoustic wave reflection surface is provided on the compression plate. May be.
  • the light source 1 is intended to irradiate light having a specific wavelength that is absorbed by a specific component (for example, hemoglobin) among components constituting the living body.
  • the light source 1 includes at least one pulsed light source capable of generating pulsed light of 5 to 50 nanoseconds.
  • a laser capable of obtaining a large output is preferable, but a light emitting diode or the like can be used instead of the laser.
  • the laser various lasers such as a solid laser, a gas laser, a dye laser, and a semiconductor laser can be used.
  • the light may be irradiated from the acoustic wave receiver 8 side or may be irradiated from the side opposite to the acoustic wave receiver 8. Further, irradiation may be performed from both sides of the test pair.
  • the optical device 4 is, for example, a mirror that reflects light, a lens that collects or enlarges light, or changes its shape.
  • optical components include optical waveguides in addition to mirrors and lenses, and any optical component can be used as long as it can irradiate the subject 3 with the light 2 emitted from the light source 1 in a desired shape. Also good.
  • the region where the subject 3 is irradiated with the light 2 is movable on the subject. In other words, it is preferable that the light generated from the light source 1 is configured to be movable on the subject.
  • the region (light irradiated to the subject) where the subject 3 is irradiated with the light 2 moves in synchronization with the acoustic wave receiver 8.
  • a method of moving the region where light is irradiated to the subject there are a method using a movable mirror and the like, a method of mechanically moving the light source itself, and the like.
  • the acoustic wave receiver 8 has one or more elements that receive an acoustic wave and convert it into an electrical signal, and uses a transducer using a piezoelectric phenomenon, a transducer using optical resonance, and a change in capacitance. Consists of transducers and the like. Any acoustic wave receiver 8 may be used as long as it can receive acoustic waves and convert them into electrical signals. By arranging a plurality of acoustic wave receiving elements in one or two dimensions, it is possible to simultaneously receive acoustic waves at a plurality of locations, shorten the reception time, and reduce the influence of vibration of the subject. .
  • acoustic matching material such as gel between the acoustic wave receiver 8 and the subject in order to achieve acoustic matching.
  • Image data is data indicating information in a subject regardless of whether it is two-dimensional or three-dimensional.
  • two-dimensional data a plurality of pixel data are arranged.
  • three-dimensional data a plurality of voxel data are arranged.
  • Pixel data and voxel data are obtained by analyzing acoustic wave signals acquired at a plurality of positions using an image data generation method (image reconstruction method) such as a time domain or a Fourier domain.
  • image data generation method image reconstruction method
  • three-dimensional image data will be described, but the present invention can also be applied to two-dimensional image data.
  • FIG. 2 is an image diagram comparing the positional relationship of the image represented by the obtained image data with the position of the subject and the acoustic wave receiver.
  • the acoustic wave excited by light spreads in a spherical shape from the light absorber at the generation position.
  • a part of the acoustic wave directly reaches the acoustic wave receiver 8 as a direct wave, and a part thereof is reflected by the acoustic wave reflection surface 16 (acoustic wave reflection plate 7) having different acoustic impedances, and the reflected wave is received by the acoustic wave.
  • the acoustic wave receiver 8 receives direct waves and reflected waves, and converts them into electric signals.
  • voxel data that becomes the real image 14 of the light absorber and voxel data that becomes the reflected image 17 are obtained.
  • the real image 14 is an image formed by direct waves
  • the reflected image 17 is an image formed by reflected waves.
  • the reflected image 17 appears at a position based on the physical law of reflection. This can be calculated if the shape and position of the acoustic wave reflecting surface 16 are known.
  • the acoustic wave reflecting surface 16 is a plane, the relationship is like a real image reflected on a mirror and a reflected image. Specifically, in FIG.
  • the vibration (ringing portion) of the signal causing the artifact appears at a position later than the original signal in terms of time as viewed from the acoustic wave receiver. Therefore, when the analysis process is performed and the volume data is converted, the artifact always appears at a position behind the real image and the reflected image as seen from the acoustic wave receiver 8 as shown in FIG. That is, the relationship between the distance b 1 between the artifact 15 of the real image and the acoustic wave reflecting surface 16 and the distance b 2 between the reflected image 18 and the acoustic wave reflecting surface 16 is b 1 ⁇ b 2 .
  • an image of a light absorber that exists in a plane-symmetric position is an image of an actual light absorber, and an image that is not in a plane-symmetric position is an artifact.
  • FIG. 3 is a schematic diagram illustrating an internal configuration of the image forming apparatus according to the first embodiment
  • FIG. 4 is a flowchart of processing for determining an artifact.
  • the subject is irradiated with pulsed light (S1-1), and the acoustic wave excited by the light is received by the acoustic wave receiver (S1-2).
  • the electric signal output from the acoustic wave receiver is amplified and analog-digital converted by the electric signal processing circuit 9 and stored as a digital signal.
  • the acoustic wave receiver is set in a receivable state at least from the time when the subject is irradiated with light until the reflected wave reaches the acoustic wave receiver.
  • the electric signal processing circuit 9 needs to preserve
  • digital signals stored in the electric signal processing circuit 9 are obtained at a plurality of positions in the subject.
  • the volume data creation unit 101 in the image forming apparatus 10 converts these digital signals obtained at each position into voxel data indicating the spatial information inside the subject to generate image data (S1-3).
  • the symmetry determining unit 102 determines whether or not the position of the voxel data of the appearing image is plane-symmetric with respect to the position corresponding to the acoustic wave reflection surface on the generated image data (S1-4). ).
  • the position on the image data corresponding to the acoustic wave reflection surface is also known. Therefore, it can be determined whether the position of the voxel data of the image that appears is plane-symmetric with respect to the position on the image data corresponding to this known acoustic wave reflection surface.
  • a method using an acoustic wave generated on an acoustic wave reflection surface is conceivable.
  • the light absorption characteristics of the subject 3 and the acoustic wave reflection plate 7 are different, but at that time, an acoustic wave is generated at the interface (acoustic wave reflection surface) between the subject and the acoustic wave reflection plate.
  • an acoustic wave generated on the acoustic wave reflecting surface is received and converted into voxel data, an image based on the acoustic wave generated on the acoustic wave reflecting surface (hereinafter referred to as an “acoustic wave reflecting surface image”) is formed. .
  • the other images are plane-symmetrical based on the position of the voxel data of the image of the acoustic wave reflection surface (voxel data based on the acoustic wave generated on the acoustic wave reflection surface).
  • the tagging unit 103 attaches a tag to the voxel data of the non-plane-symmetric image identified as the artifact (S1-5).
  • the display device 11 uses a technique such as coloring the voxel data of the tagged image, that is, the voxel data of the non-plane-symmetric image identified as the artifact, by the processing unit 104.
  • a discrimination process is performed so that it can be discriminated as an artifact when displayed (S1-6).
  • discrimination processing such as color coding
  • reduction processing is performed on voxel data that has been identified as artifacts by relatively thinning the color or adding a background level color so that it is not displayed as an image. May be.
  • the display device 11 displays a cross section of voxel data, 3D rendering, and the like (S1-7).
  • FIG. 5 is a schematic diagram illustrating an internal configuration of the image forming apparatus according to the second embodiment
  • FIG. 6 is a flowchart of processing for reducing artifacts.
  • the second embodiment is the same as the first embodiment until image data is generated. That is, the processing up to S2-3 for generating image data in the volume data creation unit 101 is the same as the processing up to S1-3 in the first embodiment.
  • the aliasing data creation unit 105 the voxel data of the generated image data from the acoustic wave reflection surface as viewed from the acoustic wave detector, that is, the voxel data in the region having the voxel data to be a reflected image is reflected by the acoustic wave. Folding is performed so that the plane is symmetrical with respect to the plane, and folded data is created (S2-4).
  • the overlay processing unit 106 performs overlay processing on the folded data and the original image data (S2-5).
  • the real image voxel data by the existing light absorber and the reflected image voxel data overlap, so the signal strength increases, but the artifact voxel data does not overlap. However, the signal strength becomes weaker.
  • the voxel value (intensity) at the x, y, z position of the original image data is A 1 (x, y, z)
  • the voxel value (intensity) at the x, y, z position of the folded data is A 2 (x, y). , Z)
  • the specific overlay process is performed by equation (1).
  • the artifacts can be reduced without the step of identifying the artifacts.
  • Embodiment 3 In Embodiment 3, the case where the acoustic wave reflection plate 7 of FIG. 1 is a curved surface will be described.
  • image data is generated as in the first and second embodiments.
  • the acoustic wave reflector is a curved surface
  • the reflected image is distorted according to the shape of the curved surface. Therefore, the method of distortion of the reflected image is calculated from the shape of the reflective interface, and coordinate conversion is performed so that the position of the voxel data of the obtained reflected image is reflected by the flat reflector.
  • the position of the voxel data of the reflection image is coordinate-converted to the position of the voxel data obtained in the case of a flat acoustic wave reflection surface. If the distortion method is known in advance, a formula or table for coordinate conversion may be prepared, and the formula or table may be applied to each voxel data.
  • Embodiment 4 In the fourth embodiment, a case where an acoustic wave reflecting plate that is an acoustic wave reflecting surface does not physically exist will be described. If the method of the curved reflecting plate of Embodiment 3 is expanded, the present invention can be applied even when there is no reflecting plate.
  • the subject When the subject is in the air and the acoustic impedance of the subject is different from that of air, acoustic waves are reflected at the interface between the subject and air.
  • the interface shape between the subject and the air is read with a 3D scanning device, and the voxel data position of the obtained reflected image is reflected by the flat reflector in consideration of how the reflected image is distorted as in the third embodiment. Convert coordinates to.
  • the voxel data itself of the acoustic wave generated at the interface between the subject and air may be used. That is, if the position of the voxel data of the acoustic wave generated at the interface is used, it is possible to investigate the distortion method without reading the interface shape with a 3D scanning device.
  • the present invention can also be realized by executing the following processing. That is, the software (program) that realizes the functions of the first to fourth embodiments described above is supplied to a system or apparatus via a network or various storage media, and a computer (or CPU, MPU, etc.) of the system or apparatus is programmed. Is read and executed.
  • the experimental setup is described below.
  • the base material of the subject was a mixture of soybean oil injection intralipid and water, and was molded into a rectangular parallelepiped using agar.
  • a light absorber formed by mixing soybean oil injection intralipid, water, and ink ink into a spherical shape with agar was placed inside the subject.
  • the subject was placed in the air, and pulsed light of a nanosecond order with a wavelength of 1064 nm was spread from one side so as to hit the entire surface of the subject and repeatedly made incident using an Nd: YAG laser.
  • an acoustic wave transmission plate made of methylpentene polymer was brought into contact with the surface opposite to the surface on which the pulsed light was incident, and a 2D array acoustic wave receiver was installed with the acoustic wave transmission plate interposed therebetween.
  • an acoustic matching gel was applied to the interface between the subject and the acoustic wave transmitting plate and the interface between the acoustic wave transmitting plate and the acoustic wave receiver.
  • the 2D array acoustic wave receiver used has a pitch of 2 mm in both the X and Y directions, and is composed of a total of 324 elements, 18 in the X direction and 18 in the Y direction.
  • Each element has a frequency band of 1 MHz ⁇ 40%.
  • the acoustic wave reflector is not used, and the pulsed light incident surface is in contact with air having a different acoustic impedance. Therefore, the pulsed light incident surface is treated as an acoustic wave reflective surface.
  • FIG. 7 shows an MIP (Maximum Intensity Projection) diagram to which Embodiment 2 of the present invention is applied.
  • the superposition processing method used is equation (1).
  • the horizontal axis in FIG. 9 is the distance in the Z direction, and the vertical axis is the intensity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Analytical Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 光音響イメージングにおいて、アーティファクトは実在する光吸収体の像(実像)と区別がつかず、実際には何もないにも関わらず光吸収体があると判断する可能性があった。 被検体に設けられた音響波反射面を用い、画像データ上の光吸収体の実像、反射像、およびアーティファクトの各ボクセルデータの位置関係から、音響波受信器の帯域に起因するアーティファクトを判別又は低減する。

Description

測定システム、画像形成方法及びプログラム
 本発明は音響波を受信して画像データを生成する測定システム、音響波から画像データを生成する画像形成方法及び画像形成方法を実行させるためのプログラムに関する。
 レーザーなどの光源から被検体に照射した光を被検体内に伝播させ、被検体内の情報を得る光イメージング装置の研究が医療分野を中心に積極的に進められている。このような光イメージング技術の一つとして、Photoacoustic Tomography(PAT:光音響トモグラフィー)が提案されている(特許文献1参照)。
 光音響トモグラフィーにおいては、まず、光源からパルス光を発生して被検体に照射する。この光は、被検体内で伝播・拡散し、生体組織が光のエネルギーを吸収することで、生体組織から音響波(典型的には超音波)が発生する。発生した音響波を、被検体を取り囲む複数の個所で検出し、得られた信号を数学的に解析処理することにより画像データ化する。以下、これらの処理をイメージングと呼ぶ。このイメージングにより、被検体内の初期圧力発生分布あるいは光学特性値分布、特に光エネルギー吸収密度分布などを得ることができ、悪性腫瘍の位置など被検体内部情報を得ることができる。
米国特許第5840023号明細書
 イメージングによって得られた画像中にアーティファクトが現れる場合がある。アーティファクトとは、実際には存在しないのにあたかもそこに何か存在するように現れてしまう像であり、ゴーストとも呼ばれる。特に、音響波受信器の帯域に起因するアーティファクトは、音響波信号の取得位置が被検体の周囲360度ではなく一定方向の平面であるような、視野角が限定的である場合に顕著に現れる。従来、アーティファクトは実在する光吸収体の像(実像)と区別がつかなかった。
 そこで、本発明は、音響波受信器の帯域起因のアーティファクトを判別又は低減することを目的とする。
 本発明の測定システムは、被検体に光を照射することにより発生する音響波を受信し電気信号に変換する音響波受信器と、前記電気信号を用いて画像データを生成する画像形成装置と、を有する測定システムであって、前記音響波受信器は、前記被検体内の検出対象から発生した音響波のうち前記音響波受信器に直接到達する直接波と、前記検出対象から発生した音響波のうち前記被検体に設けられた音響波反射面で反射された反射波と、を少なくとも受信して夫々電気信号に変換し、前記画像形成装置は、前記直接波が変換された電気信号と、前記反射波が変換された電気信号と、をボクセルデータ又はピクセルデータに変換して画像データを生成するデータ作成部と、前記画像データ上において、前記直接波が変換されたボクセルデータ又はピクセルデータの位置と、前記反射波が変換されたボクセルデータ又はピクセルデータの位置と、が前記音響波反射面の対応する画像データ上の位置に対して対称であるかどうかを判定する判定部と、前記判定部により対称でないと判定されたボクセルデータ又はピクセルデータの像を判別又は低減するための処理を行う処理部と、を有することを特徴とする。
 また、本発明の別の測定システムは、被検体に光を照射することにより発生する音響波を受信し電気信号に変換する音響波受信器と、前記電気信号を用いて画像データを生成する画像形成装置と、を有する測定システムであって、前記音響波受信器は、前記被検体内の検出対象から発生した音響波のうち前記音響波受信器に直接到達する直接波と、前記検出対象から発生した音響波のうち前記被検体に設けられた音響波反射面で反射された反射波と、を少なくとも受信して夫々電気信号に変換し、前記画像形成装置は、前記直接波が変換された電気信号と、前記反射波が変換された電気信号と、をボクセルデータ又はピクセルデータに変換して画像データを生成するデータ作成部と、前記画像データを、前記音響波反射面の対応する画像データ上の位置で折り返して折り返しデータを作成する折り返しデータ作成部と、前記折り返しデータと折り返す前の前記画像データとの重ね合わせ処理を行う重ね合わせ処理部と、を有することを特徴とする。
 本発明により、アーティファクトを判別、低減するための処理を行うことによって、信頼性の高い画像データを取得することができる。
本発明を適用できる測定システムの構成の一例を示す模式図である。 本発明を適用できる測定システムによって得られる実像、反射像、それぞれのアーティファクトの位置関係の一例を説明する模式図である。 本発明の実施形態1の画像形成装置の内部構成の一例を示す模式図である。 本発明の実施形態1の処理の流れを示した図である。 本発明の実施形態2の画像形成装置の内部構成の一例を示す模式図である。 本発明の実施形態2の処理の流れを示した図である。 本発明を適用した場合の実施例の結果である。 従来手法の画像データ生成方法を用いた結果である。 図7及び図8におけるY=1.0cmでの断面の模式図である。
 以下、図面を用いて本発明を詳細に説明する。なお、本発明において、音響波とは、音波、超音波、光音響波と呼ばれるものを含み、被検体に近赤外線等の光(電磁波)を照射して被検体内部で発生する弾性波のことを示す。
 [実施形態1]
 本発明の実施形態1について図面を参照しながら説明する。本実施形態では、アーティファクトを特定し、判別又は低減(除去を含む)する形態について説明する。図1は、本発明の適用できる測定システムの模式図である。光音響トモグラフィーを用いた測定システムでは、光源1から光2(パルス光)を発生させ、レンズやミラー等の光学装置4を介して被検体3に光2を照射する。被検体3内の光吸収体5(検出対象)は光エネルギーを吸収して音響波6を発生する。発生した音響波6の一部は音響波受信器8に直接到達し、一部の音響波は音響波反射面としての音響波反射板7により反射されて音響波受信器8に到達する。以降の説明において、反射されずに直接音響波受信器8に到達する音響波を直接波とし、音響波反射面により反射されてから音響波受信器8に到達する音響波を反射波とする。音響波受信器8は音響波を受信して電気信号に変換し、電気信号処理回路9に出力する。電気信号処理回路9は前記電気信号の増幅やデジタル変換等を行い、デジタル変換された電気信号(デジタル信号)を画像形成装置10に出力する。画像形成装置10は前記デジタル信号を用いて画像データを生成し、生成された画像データは表示装置11により画像として表示される。また、音響波受信器8は走査制御装置12により機械的に走査され、様々な場所で測定できるように構成される。
 本発明において、音響波反射面である音響波反射板7は被検体3に設けられている。音響波反射板7は被検体3側の面が平面で、被検体との音響インピーダンスが大きく異なるもの(例えば音響インピーダンスが3×10Kg/m・s程度)が好ましい。さらに、透明で光2を十分に通す材料で構成されると音響波反射板7側から被検体に光を照射することができるため好ましい。被検体を両側から圧迫する圧迫板を設ける場合は、音響波受信器8の反対側の面に設けられた圧迫板を音響波反射板として用いても良く、圧迫板に音響波反射面を設けても良い。
 光源1は生体を構成する成分のうち特定の成分(例えばヘモグロビン)に吸収される特定の波長の光を照射することを目的とする。光源1としては5ナノから50ナノ秒のパルス光を発生可能なパルス光源を少なくとも一つは備える。光源としては大きな出力が得られるレーザーが好ましいが、レーザーのかわりに発光ダイオードなどを用いることも可能である。レーザーとしては、固体レーザー、ガスレーザー、色素レーザー、半導体レーザーなど様々なレーザーを使用することができる。また、光は音響波受信器8側から照射してもよく、音響波受信器8とは反対側から照射してもよい。さらに被検対の両側から照射してもよい。
 光学装置4は、例えば、光を反射するミラーや、光を集光したり拡大したり形状を変化させるレンズなどである。このような光学部品は、ミラーやレンズ以外にも、光導波路などが挙げられ、光源1から発せられた光2を被検体3に所望の形状で照射することができればどのようなものを用いてもよい。なお、光2はレンズで拡散させることにより、ある程度の面積に広げる方が好ましい。また、光2を被検体3に照射する領域は被検体上を移動可能であることが好ましい。言い換えると、光源1から発生した光が被検体上を移動可能となるように構成されていることが好ましい。移動可能であることにより、より広範囲に光を照射することができる。また、光2を被検体3に照射する領域(被検体に照射される光)は、音響波受信器8と同期して移動するとさらに好ましい。光を被検体に照射する領域を移動させる方法としては、可動式ミラー等を用いる方法や、光源自体を機械的に移動させる方法などがある。
 音響波受信器8は、音響波を受信して電気信号に変換する1つ以上の素子を有し、圧電現象を用いたトランスデューサー、光の共振を用いたトランスデューサー、容量の変化を用いたトランスデューサーなどで構成される。音響波を受信して電気信号に変換できるものであればどのような音響波受信器8を用いてもよい。音響波を受信する素子は1次元又は2次元に複数配列することにより、同時に複数の場所で音響波を受信することができ、受信時間を短縮できると共に、被検体の振動などの影響を低減できる。なお、1つ素子を走査することで、素子を2次元あるいは1次元に配置したものと同様な信号を得ることも可能である。被検体の全面に素子を設けても良い。また、音響波受信器8と被検体との間には、音響マッチングを図るためにジェルなどの音響マッチング材を塗布することが好ましい。
 次に画像形成装置10において解析処理を行い得られる画像データについて図2を用いて詳しく述べる。画像データとは2次元、3次元を問わず被検体内の情報を示すデータのことであり、2次元の場合は、ピクセルデータを複数並べて構成され、3次元の場合は、ボクセルデータを複数並べて構成される。ピクセルデータ及びボクセルデータは複数の位置で取得した音響波信号を、タイムドメインやフーリエドメイン等の画像データ生成法(画像再構成法)を用いて解析処理することで得られる。以下の説明においては、3次元の画像データについて説明するが、本発明は2次元の画像データにも適用できる。
 図2は、得られた画像データにより表れる像の位置関係を、被検体及び音響波受信器の位置と比較したイメージ図である。光により励起された音響波は発生位置となる光吸収体から球状に広がる。音響波の一部は直接波として直接、音響波受信器8に到達し、一部は音響インピーダンスの異なる音響波反射面16(音響波反射板7)において反射され、その反射波が音響波受信器8に到達する。音響波受信器8は直接波及び反射波を含めて受信し、夫々電気信号に変換する。直接波及び反射波の電気信号を含めて解析処理を行うと、光吸収体の実像14となるボクセルデータ及び反射像17となるボクセルデータが得られる。実像14は直接波により形成される像であり、反射像17は反射波により形成される像である。反射像17は、反射の物理的な法則に基づく位置に現れる。これは音響波反射面16の形状と位置が分かっていれば計算することが可能であり、音響波反射面16が平面の場合、鏡に映る実像と反射像のような関係になる。具体的には、図2において、反射像17の現れる位置は、実像14から音響波反射面16の法線方向に、音響波反射面16から実像14までの距離と等距離分だけ音響波反射面16から離れた位置、つまりa=aとなる位置である。また、アーティファクトは音響波受信器の帯域に起因しているので、実像14によるアーティファクト15だけでなく反射像17についても同様にアーティファクト18が現れる。
 ここで、本発明で注目する音響波受信器の帯域起因のアーティファクトについて、その発生メカニズムを説明する。光音響トモグラフィーでは光によって励起された音響波は広い帯域の周波数成分によって構成されることが知られている。その音響波を受信する音響波受信器は一般的に一部の帯域しか受信できないため、音響波受信器から出力される電気信号は一部の周波数帯のみによって構成される信号波形となる。このとき、信号は帯域不足に起因して、ベースラインに戻るときにオーバーシュートしてベースラインを行き過ぎ、リンギング(振動)が発生する。この音響波受信器の帯域に起因して生じるリンギング部分がアーティファクトの原因となる。これは、本来であれば、光吸収体からの信号部分のみが強め合うことで被検体の構造が再現されるが、リンギングが起こると、リンギング部分も強め合ってしまうことによりアーティファクトが生じているものと考えられる。
 アーティファクトの原因となる信号の振動(リンギング部分)は、音響波受信器から見て時間的に本来の信号より遅い位置に現れる。よって、解析処理を行ってボリュームデータに変換すると、図2に示すように、アーティファクトは必ず音響波受信器8から見て実像及び反射像の奥の位置に現れる。つまり、実像のアーティファクト15と音響波反射面16との距離b、反射像18と音響波反射面16との距離bの関係は、b≠bとなる。すなわち、音響波反射面16を境界にしてその像を比較したとき、面対称の位置にあるものが実在する光吸収体の像であり、面対称の位置にないものはアーティファクトである。
 次に図3および図4を用いて本発明の適用できるアーティファクトを特定し、判別又は低減するための具体的な方法を説明する。図3は、実施形態1の画像形成装置の内部構成を示す模式図であり、図4は、アーティファクトを判別する処理のフローチャートである。
 まず、パルス光を被検体に照射し(S1-1)、その光によって励起された音響波を音響波受信器によって受信する(S1-2)。音響波受信器により出力された電気信号は電気信号処理回路9で増幅やアナログ‐デジタル変換を行いデジタル信号として保存される。このとき、少なくとも光が被検体に照射されてから反射波が音響波受信器に到達するまでの間は、音響波受信器は受信可能な状態にしておく。そして、電気信号処理回路9はその間に受信した音響波をデジタル信号として保存しておく必要がある。つまり、電気信号処理回路9は直接波、反射波のデジタル信号を少なくとも保存している。また、電気信号処理回路9に保存されたデジタル信号は被検体中の複数の位置で得ている。画像形成装置10におけるボリュームデータ作成部101では、各位置で得たこれらデジタル信号をそれぞれ被検体内部の空間情報を示すボクセルデータに変換し、画像データを生成する(S1-3)。
 次に対称性判定部102において、生成された画像データ上で、音響波反射面に対応する位置に対して、現れる像のボクセルデータの位置が面対称であるかどうかを判断する(S1-4)。ここで、音響波反射面から音響波受信器までの距離は既知であるため、音響波反射面に対応する画像データ上の位置も既知である。よって、この既知の音響波反射面に対応する画像データ上の位置に対して、表れる像のボクセルデータの位置が面対称かどうかを判断することができる。また、別の方法としては、音響波反射面で発生する音響波を利用する方法が考えられる。多くの場合、被検体3と音響波反射板7の光吸収特性が異なるが、そのとき被検体と音響波反射板の界面(音響波反射面)で音響波が発生する。この音響波反射面で発生した音響波を受信して、ボクセルデータに変換すると、音響波反射面で発生した音響波に基づく像(以下、「音響波反射面の像」という)が形成される。よって、この音響波反射面の像のボクセルデータ(音響波反射面で発生した音響波に基づくボクセルデータ)の位置を基準に、その他の像が面対称かどうかを判断しても良い。以上の工程により、面対称でない像の場合、アーティファクトであると特定することができる。
 アーティファクトであると特定された面対称でない像のボクセルデータに対して、タグ付部103でタグを付ける(S1-5)。
 次に、タグを付けられた像のボクセルデータ、つまりアーティファクトであると特定された面対称でない像のボクセルデータに対して、処理部104で、色をつけるなどの手法を用い、表示装置11で表示された際にアーティファクトであると判別できるよう判別処理を行う(S1-6)。また、色分けのような判別処理だけでなく、アーティファクトであると特定されたボクセルデータに対し、相対的に色を薄くしたり、像として表示されないようにバッググラウンドレベルの色をつける低減処理を行っても良い。
 最後に、表示装置11でボクセルデータの断面や3Dレンダリングなどの表示を行う(S1-7)。以上の工程により、アーティファクトを特定し、判別又は低減することができる。
 [実施形態2]
 実施形態1ではアーティファクトを特定して判別、又は低減を行ったが、実施形態2では、画像データ中においてアーティファクトを特定せずに低減する形態について述べる。
 図5は、実施形態2の画像形成装置の内部構成を示す模式図であり、図6は、アーティファクトを低減する処理のフローチャートである。実施形態2も画像データを生成するまでは実施形態1と同じである。つまり、ボリュームデータ作成部101において画像データを生成するS2-3までの処理は実施形態1のS1-3までの処理と同様である。
 次に、折り返しデータ作成部105により、生成された画像データのうち、音響波検出器から見て音響波反射面より奥側、つまり反射像となるボクセルデータのある領域のボクセルデータを音響波反射面で面対称となるように折り返し、折り返しデータを作成する(S2-4)。
 そして、重ね合わせ処理部106にて、この折り返しデータと元の画像データを重ね合わせ処理を行う(S2-5)。重ね合わせ処理が施された画像データでは、実在する光吸収体による実像のボクセルデータと反射像のボクセルデータとは重なるため信号の強度は強め合うが、アーティファクトのボクセルデータは重ならないので、相対的に信号の強度は弱くなる。元の画像データのx,y,z位置におけるボクセル値(強度)をA(x,y,z)、折り返しデータのx,y,z位置におけるボクセル値(強度)をA(x,y,z)とすると、具体的な重ね合わせ処理は式(1)で行われる。
Figure JPOXMLDOC01-appb-M000001
 この重ね合わせ処理をすべてのボクセルについて行う。この重ね合わせ処理は単なる積であってもアーティファクトは低減される。しかしながら、実像のボクセル値(強度)は積によって値が二乗になってしまうため、ボクセル値の定量性、つまり線形性を保つには、根を取ることが好ましい。この重ね合わせ処理により、バックグラウンドがある場合にはアーティファクトは低減され、バックグラウンドがなければ、アーティファクトはゼロと掛け合わされるので、除去することができる。つまり、バックグラウンドが低ければ低いほどアーティファクト低減の効果は大きい。また、重ね合わせ処理は式(2)のようなものであってもよく、様々な手法が考えられる。
Figure JPOXMLDOC01-appb-M000002
 最後に、重ね合わせ処理を行って得られたデータを、表示装置11により断面表示や3Dレンダリングにて表示する(S2-6)。
 以上の工程により、アーティファクトを特定する工程がなくても、アーティファクトを低減することができる。
 [実施形態3]
 実施形態3では図1の音響波反射板7が曲面である場合について述べる。本実施形態においても実施形態1、2と同様に画像データを生成するが、音響波反射板が曲面である場合、その反射像は曲面の形状に従って歪む。そこで、反射界面の形状から反射像の歪み方を計算し、得られた反射像のボクセルデータの位置を平面反射板で反射したように座標変換する。つまり、反射像のボクセルデータの位置を、平面の音響波反射面の場合に得られるボクセルデータの位置に座標変換する。歪み方が予め分かっている場合は、座標変換するための式またはテーブルを用意しておき、ボクセルデータ毎にその式またはテーブルを適用しても良い。
 その後は、実施形態1、実施形態2と同様にアーティファクトの判別、低減を行うことができる。
 [実施形態4]
 実施形態4では、音響波反射面である音響波反射板が物理的に存在しない場合について述べる。実施形態3の曲面の反射板の手法を拡張すると、反射板がない場合でも本発明は適用可能である。被検体が空気中にあって、被検体の音響インピーダンスが空気と異なる場合、被検体と空気との界面で音響波の反射が起こる。被検体と空気の界面形状を3Dスキャン装置で読み取り、そこから実施形態3のように反射像の歪み方を考慮して、得られた反射像のボクセルデータの位置を平面反射板で反射したように座標変換する。また、被検体と空気との界面(つまり音響波反射面)では、音響波が発生するため、この被検体と空気との界面で発生した音響波のボクセルデータ自体を利用してもよい。つまり、界面で発生した音響波のボクセルデータの位置を利用すると界面形状を3Dスキャン装置で読み取らなくても、歪み方を調べることができる。
 その後は、実施形態1、実施形態2と同様にアーティファクトの判別、低減を行うことができる。
 また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態1~4の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
 本発明の実施形態2を適用して効果を確かめた実験結果を説明する。実験体系を以下に述べる。被検体の母材はダイズ油注射液イントラリピッドと水を混ぜたものであり、寒天を用いて直方体になるように成形した。被検体内部にはダイズ油注射液イントラリピッド、水及び墨汁を混ぜ合わせ、寒天で球状に成型した光吸収体を設置した。被検体は空気中に置かれ、片側からNd:YAGレーザーを用いて波長1064nmのナノ秒オーダーのパルス光を被検体の全面に当たるように広げて繰り返し入射させた。また、パルス光を入射させた面と反対側の面にメチルペンテンポリマーからなる音響波透過板を接触させ、この音響波透過板を挟んで2Dアレイ音響波受信器を設置した。なお、被検体と音響波透過板との界面、及び、音響波透過板と音響波受信器との界面には音響マッチングジェルを施した。使用された2Dアレイ音響波受信器はX、Y方向ともに2mmピッチで、X方向18個、Y方向18個の計324個の素子から構成される。各々の素子は1MHz±40%の周波数帯域を持っている。本実施例では音響波反射板は用いず、パルス光入射面が音響インピーダンスの異なる空気と接しているため、パルス光入射面を音響波反射面として扱った。
 本発明の実施形態2を適用したMIP(Maximum Intensity Projection)図を図7に示す。用いた重ね合わせ処理手法は式(1)である。また、図8に実験体系は同じで本発明を適用しない従来の画像データ生成手法で得られた画像データのMIP図を比較例として示す。図7、8において横軸はY方向の距離であり、縦軸はZ方向の距離である。Z=4.5cm付近に現れているものが光吸収体の実像14であり、Z=5.4cm付近の線が音響波反射面の像19、Z=6.1cm付近に現れているものが光吸収体の反射像17である。さらに、図8において、Z=4.7cm付近のものが実像のアーティファクト15であり、Z=6.3cm付近に現れているものが反射像のアーティファクト18である。
 図7から分かるように、図8と比較してアーティファクトは低減していることがわかる。
 また、本発明の効果を明らかに示すため、図7及び図8におけるY=1.0cmの断面の強度変化を図9に示す。図9の横軸はZ方向の距離であり、縦軸は強度である。また、点線は比較例の結果を表し、実線は実施例の結果を表しており、それぞれZ=4.5cm付近のピークによって規格化されている。この結果からわかるように、本発明の適用によって、実像及び反射像を表す大きなピークの後に表れるアーティファクトの強度がバックグラウンドレベルまで低減されているのがわかる。よって、アーティファクトを効果的に低減できる。
 1 光源
 2 光
 3 被検体
 4 光学部品
 5 光吸収体あるいは初期圧力分布
 6 音響波
 7 音響波反射板
 8 音響波受信器
 9 電気信号処理回路
 10 画像形成装置
 11 表示装置
 12 走査制御装置
 14 光吸収体の実像
 15 実像のアーティファクト
 16 音響波反射面
 17 光吸収体の反射像
 18 反射像のアーティファクト
 19 音響波反射面の像
 101 ボリュームデータ作成部
 102 対称性判定部
 103 タグ付け部
 104 処理部
 105 折り返しデータ作成部
 106 重ね合わせ処理部

Claims (9)

  1.  被検体に光を照射することにより発生する音響波を受信し電気信号に変換する音響波受信器と、前記電気信号を用いて画像データを生成する画像形成装置と、を有する測定システムであって、
     前記音響波受信器は、前記被検体内の検出対象から発生した音響波のうち前記音響波受信器に直接到達する直接波と、前記検出対象から発生した音響波のうち前記被検体に設けられた音響波反射面で反射された反射波と、を少なくとも受信して夫々電気信号に変換し、
     前記画像形成装置は、
     前記直接波が変換された電気信号と、前記反射波が変換された電気信号と、をボクセルデータ又はピクセルデータに変換して画像データを生成するデータ作成部と、
     前記画像データ上において、前記直接波が変換されたボクセルデータ又はピクセルデータの位置と、前記反射波が変換されたボクセルデータ又はピクセルデータの位置と、が前記音響波反射面の対応する画像データ上の位置に対して対称であるかどうかを判定する判定部と、
     前記判定部により対称でないと判定されたボクセルデータ又はピクセルデータの像を判別又は低減するための処理を行う処理部と、
     を有することを特徴とする測定システム。
  2.  被検体に光を照射することにより発生する音響波を受信し電気信号に変換する音響波受信器と、前記電気信号を用いて画像データを生成する画像形成装置と、を有する測定システムであって、
     前記音響波受信器は、前記被検体内の検出対象から発生した音響波のうち前記音響波受信器に直接到達する直接波と、前記検出対象から発生した音響波のうち前記被検体に設けられた音響波反射面で反射された反射波と、を少なくとも受信して夫々電気信号に変換し、
     前記画像形成装置は、
     前記直接波が変換された電気信号と、前記反射波が変換された電気信号と、をボクセルデータ又はピクセルデータに変換して画像データを生成するデータ作成部と、
     前記画像データを、前記音響波反射面の対応する前記画像データ上の位置で折り返して折り返しデータを作成する折り返しデータ作成部と、
     前記折り返しデータと折り返す前の前記画像データとの重ね合わせ処理を行う重ね合わせ処理部と、
     を有することを特徴とする測定システム。
  3.  前記音響波受信器により変換された電気信号をデジタル変換する電気信号処理回路を有し、
     前記データ作成部は、デジタル変換された電気信号をボクセルデータ又はピクセルデータに変換することを特徴とする請求項1又は2に記載の測定システム。
  4.  前記データ作成部は、前記音響波反射面が曲面である場合、前記反射波が変換されたボクセルデータ又はピクセルデータの位置を前記音響波反射面が平面である場合に得られるボクセルデータ又はピクセルデータの位置に座標変換して画像データを生成することを特徴とする請求項1乃至3のいずれか1項に記載の測定システム。
  5.  被検体に光を照射することにより発生する音響波を音響波受信器により受信して電気信号に変換し、前記電気信号を用いて画像データを生成する画像形成方法であって、
     前記被検体内の検出対象から発生した音響波のうち前記音響波受信器に直接到達する直接波が変換された電気信号と、前記検出対象から発生した音響波のうち前記被検体に設けられた音響波反射面で反射された反射波が変換された電気信号と、をボクセルデータ又はピクセルデータに変換し画像データを生成するデータ作成ステップと、
     前記画像データ上において、前記直接波が変換されたボクセルデータ又はピクセルデータの位置と、前記反射波が変換されたボクセルデータ又はピクセルデータの位置と、が前記音響波反射面の対応する前記画像データ上の位置に対して対称であるかどうかを判定する判定ステップと、
     前記判定ステップにより対称でないと判定されたボクセルデータ又はピクセルデータの像を判別又は低減するための処理を行う処理ステップと、
     を有することを特徴とする画像形成方法。
  6.  被検体に光を照射することにより発生する音響波を音響波受信器により受信して電気信号に変換し、前記電気信号を用いて画像データを生成する画像形成方法であって、
     前記被検体内の検出対象から発生した音響波のうち前記音響波受信器に直接到達する直接波が変換された電気信号と、前記検出対象から発生した音響波のうち前記被検体に設けられた音響波反射面で反射された反射波が変換された電気信号と、をボクセルデータ又はピクセルデータに変換し画像データを生成するデータ作成ステップと、
     前記画像データを、前記音響波反射面の対応する前記画像データ上の位置で折り返して折り返しデータを作成する折り返しステップと、
     前記折り返しデータと折り返す前の前記画像データとの重ね合わせ処理を行う重ね合わせステップと、
     を有することを特徴とする画像形成方法。
  7.  前記音響波受信器により変換された電気信号はデジタル変換されており、
     前記データ生成ステップにおいて、デジタル変換された電気信号をボクセルデータ又はピクセルデータに変換することを特徴とする請求項5又は6に記載の画像形成方法。
  8.  前記データ作成ステップにおいて、前記音響波反射面が曲面である場合、前記反射波が変換されたボクセルデータ又はピクセルデータの位置を前記音響波反射面が平面である場合に得られるボクセルデータ又はピクセルデータの位置に座標変換して画像データを生成することを特徴とする請求項5乃至7のいずれか1項に記載の画像形成方法。
  9.  請求項5乃至8のいずれか1項に記載の画像形成方法の各ステップをコンピュータに実行させるためのプログラム。
PCT/JP2009/071062 2009-12-17 2009-12-17 測定システム、画像形成方法及びプログラム WO2011074102A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011545904A JP5518096B2 (ja) 2009-12-17 2009-12-17 測定システム、画像形成方法及びプログラム
PCT/JP2009/071062 WO2011074102A1 (ja) 2009-12-17 2009-12-17 測定システム、画像形成方法及びプログラム
CN200980162927.2A CN102655815B (zh) 2009-12-17 2009-12-17 测量系统和图像形成方法
EP09852294.9A EP2514364B1 (en) 2009-12-17 2009-12-17 Measurement system, and image forming method and program
US12/964,654 US8814794B2 (en) 2009-12-17 2010-12-09 Measuring system, image forming method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/071062 WO2011074102A1 (ja) 2009-12-17 2009-12-17 測定システム、画像形成方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2011074102A1 true WO2011074102A1 (ja) 2011-06-23

Family

ID=44150854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071062 WO2011074102A1 (ja) 2009-12-17 2009-12-17 測定システム、画像形成方法及びプログラム

Country Status (5)

Country Link
US (1) US8814794B2 (ja)
EP (1) EP2514364B1 (ja)
JP (1) JP5518096B2 (ja)
CN (1) CN102655815B (ja)
WO (1) WO2011074102A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014213134A (ja) * 2013-04-30 2014-11-17 キヤノン株式会社 被検体情報取得装置、被検体情報取得装置の制御方法
WO2019013121A1 (ja) * 2017-07-13 2019-01-17 キヤノン株式会社 画像生成装置、画像生成方法、及びプログラム
US10265047B2 (en) 2014-03-12 2019-04-23 Fujifilm Sonosite, Inc. High frequency ultrasound transducer having an ultrasonic lens with integral central matching layer
US10478859B2 (en) 2006-03-02 2019-11-19 Fujifilm Sonosite, Inc. High frequency ultrasonic transducer and matching layer comprising cyanoacrylate

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441781B2 (ja) * 2010-03-25 2014-03-12 キヤノン株式会社 光音響イメージング装置、光音響イメージング方法及びプログラム
JP2014046069A (ja) * 2012-09-03 2014-03-17 Canon Inc 被検体情報取得装置
US9937422B2 (en) 2015-12-09 2018-04-10 Microsoft Technology Licensing, Llc Voxel-based, real-time acoustic adjustment
US10045144B2 (en) 2015-12-09 2018-08-07 Microsoft Technology Licensing, Llc Redirecting audio output
US10293259B2 (en) 2015-12-09 2019-05-21 Microsoft Technology Licensing, Llc Control of audio effects using volumetric data
US10345267B2 (en) * 2015-12-21 2019-07-09 The Boeing Company Composite inspection
WO2017173330A1 (en) * 2016-04-01 2017-10-05 The Board Of Regents Of The University Of Oklahoma System and method for nanoscale photoacoustic tomography
US10438382B2 (en) * 2017-03-27 2019-10-08 Canon Kabushiki Kaisha Image processing apparatus and image processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840023A (en) 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
JP2001507952A (ja) * 1996-10-04 2001-06-19 オプトソニクス,インコーポレイテッド 光音響胸部スキャナ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4406226B2 (ja) * 2003-07-02 2010-01-27 株式会社東芝 生体情報映像装置
JP4643153B2 (ja) * 2004-02-06 2011-03-02 株式会社東芝 非侵襲生体情報映像装置
US20060116579A1 (en) * 2004-11-29 2006-06-01 Pai-Chi Li Ultrasound imaging apparatus and method thereof
JP4422626B2 (ja) * 2005-01-25 2010-02-24 日本電信電話株式会社 生体画像化装置
GB2444078A (en) * 2006-11-24 2008-05-28 Ucl Business Plc Ultrasonic sensor which detects direct and reflected signals emanating from sample being imaged
CN101563035B (zh) * 2006-12-19 2012-08-08 皇家飞利浦电子股份有限公司 组合光声和超声成像系统
JP5424846B2 (ja) * 2009-12-11 2014-02-26 キヤノン株式会社 光音響イメージング装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840023A (en) 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
JP2001507952A (ja) * 1996-10-04 2001-06-19 オプトソニクス,インコーポレイテッド 光音響胸部スキャナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2514364A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10478859B2 (en) 2006-03-02 2019-11-19 Fujifilm Sonosite, Inc. High frequency ultrasonic transducer and matching layer comprising cyanoacrylate
JP2014213134A (ja) * 2013-04-30 2014-11-17 キヤノン株式会社 被検体情報取得装置、被検体情報取得装置の制御方法
US10265047B2 (en) 2014-03-12 2019-04-23 Fujifilm Sonosite, Inc. High frequency ultrasound transducer having an ultrasonic lens with integral central matching layer
US11083433B2 (en) 2014-03-12 2021-08-10 Fujifilm Sonosite, Inc. Method of manufacturing high frequency ultrasound transducer having an ultrasonic lens with integral central matching layer
US11931203B2 (en) 2014-03-12 2024-03-19 Fujifilm Sonosite, Inc. Manufacturing method of a high frequency ultrasound transducer having an ultrasonic lens with integral central matching layer
WO2019013121A1 (ja) * 2017-07-13 2019-01-17 キヤノン株式会社 画像生成装置、画像生成方法、及びプログラム

Also Published As

Publication number Publication date
JP5518096B2 (ja) 2014-06-11
JPWO2011074102A1 (ja) 2013-04-25
EP2514364B1 (en) 2020-02-12
US20110149680A1 (en) 2011-06-23
EP2514364A1 (en) 2012-10-24
CN102655815A (zh) 2012-09-05
CN102655815B (zh) 2015-07-01
EP2514364A4 (en) 2017-06-14
US8814794B2 (en) 2014-08-26

Similar Documents

Publication Publication Date Title
JP5518096B2 (ja) 測定システム、画像形成方法及びプログラム
JP5441781B2 (ja) 光音響イメージング装置、光音響イメージング方法及びプログラム
JP5441795B2 (ja) イメージング装置及びイメージング方法
KR102117132B1 (ko) 상호 정합된 기능적 및 해부학적 매핑을 위한 이중 방식 이미징 시스템
US9757092B2 (en) Method for dual modality optoacoustic imaging
JP6146955B2 (ja) 装置、表示制御方法、及びプログラム
US20170014101A1 (en) Dual modality imaging system for coregistered functional and anatomical mapping
EP2647334B1 (en) Object information acquiring apparatus
WO2012140865A1 (en) Object information acquiring apparatus and object information acquiring method
US9995717B2 (en) Object information acquiring apparatus and object information acquiring method
US10429233B2 (en) Object information obtaining device, display method, and non-transitory computer-readable storage medium
US20140039293A1 (en) Optoacoustic imaging system having handheld probe utilizing optically reflective material
JP5761935B2 (ja) 被検体情報取得装置、被検体情報取得方法および被検体情報取得プログラム
Kumavor et al. Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system
US20160135688A1 (en) Object information acquiring apparatus
JP6362301B2 (ja) 被検体情報取得装置、および、被検体情報取得装置の作動方法
Ermilov et al. Development of laser optoacoustic and ultrasonic imaging system for breast cancer utilizing handheld array probes
JP2013188311A (ja) 被検体情報取得装置に用いる信号処理装置および被検体情報取得方法
CN103845078B (zh) 对象信息获取设备和控制对象信息获取设备的方法
JP2012223567A (ja) 測定装置
Carp et al. Optoacoustic imaging based on the interferometric measurement of surface displacement
Ellwood et al. Photoacoustic tomography using orthogonal Fabry–Pérot sensors
JP2017047178A (ja) 被検体情報取得装置
JP6184146B2 (ja) 被検体情報取得装置およびその制御方法
JP6071589B2 (ja) 被検体情報取得装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162927.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852294

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009852294

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011545904

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE