JP4643153B2 - 非侵襲生体情報映像装置 - Google Patents

非侵襲生体情報映像装置 Download PDF

Info

Publication number
JP4643153B2
JP4643153B2 JP2004030578A JP2004030578A JP4643153B2 JP 4643153 B2 JP4643153 B2 JP 4643153B2 JP 2004030578 A JP2004030578 A JP 2004030578A JP 2004030578 A JP2004030578 A JP 2004030578A JP 4643153 B2 JP4643153 B2 JP 4643153B2
Authority
JP
Japan
Prior art keywords
light
subject
light irradiation
unit
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004030578A
Other languages
English (en)
Other versions
JP2005218684A (ja
Inventor
省一 金山
和弘 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2004030578A priority Critical patent/JP4643153B2/ja
Priority to CA2462378A priority patent/CA2462378C/en
Priority to EP04251911A priority patent/EP1561424B1/en
Priority to US10/812,884 priority patent/US8353830B2/en
Priority to DE602004014095T priority patent/DE602004014095D1/de
Priority to CNB2004100366546A priority patent/CN100353910C/zh
Priority to KR1020040030120A priority patent/KR100686409B1/ko
Publication of JP2005218684A publication Critical patent/JP2005218684A/ja
Priority to US12/950,689 priority patent/US8480584B2/en
Application granted granted Critical
Publication of JP4643153B2 publication Critical patent/JP4643153B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G19/00Table service
    • A47G19/02Plates, dishes or the like
    • A47G19/025Plates, dishes or the like with means for amusing or giving information to the user
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G23/00Other table equipment
    • A47G23/02Glass or bottle holders
    • A47G23/0208Glass or bottle holders for drinking-glasses, plastic cups, or the like
    • A47G23/0216Glass or bottle holders for drinking-glasses, plastic cups, or the like for one glass or cup
    • A47G23/0225Glass or bottle holders for drinking-glasses, plastic cups, or the like for one glass or cup attachable to a plate, table, or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G23/00Other table equipment
    • A47G23/03Underlays for glasses or drinking-vessels
    • A47G23/0306Underlays for glasses or drinking-vessels with means for amusing or giving information to the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0091Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4312Breast evaluation or disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G2400/00Details not otherwise provided for in A47G19/00-A47G23/16
    • A47G2400/08Stabilizing containers or articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、被検体内部に照射された光のエネルギーに基づいて発生する音響信号を収集して被検体の生体機能情報を映像化する非侵襲生体情報映像装置及び非侵襲生体情報映像方法に関する。さらに具体的には、検査を受ける被検者に照射した光のエネルギーから生成したものと、検査を受ける被写体に照射した超音波から生成した超音波エコー画像の二つの聴覚映像を撮影して重ねる方法と装置に関し、二つの画像を重ねることにより、被検者の組織の中の形態的な特徴に対する物質濃度の分布を知ることができるものである。
被検体の血液や細胞液などの体液、あるいは生体組織に含まれる物質成分の濃度を測定する生体情報計測法は、健康管理、あるいは治療効果の判定等において従来から行われてきた。この物質成分の濃度計測を目的とした体液の成分分析においては、まず採血によって体液を体外に取り出す必要があり、従って、この方法は被検者に対して皮膚の損傷にともなう多大な苦痛を与えると共に、被検者や作業者を生物災害汚染の危険にさらすことになる。
このような従来の問題点に対して、数多くの特許と新聞の記事が、人間の被検者の組織の中の検体濃度に関する情報を得る非侵襲的方法について説明している。これらの方法のうちの1つに“光音響分光分析法”がある。光音響分光分析法では、この光音響分光分析法では、所定の波長をもつ可視光、近赤外光、又は中間赤外光を被検体に照射した際に、被検体内の血液中に含まれるグルコースやヘモグロビンなどの特定物質がこの照射光のエネルギーを吸収した結果生じる音響波を検出して、その特定物質の濃度を定量的に計測するものである。これに関しては、米国特許第5,348,002号、欧州特許第9838904A1、欧州特許第0215776A1号では、光音響測定を使って人間の組織内の物質を非侵襲的に判定する方法について開示している。光は可視光でも、赤外線でも、あるいは中間赤外線でもよい。
非侵襲生体情報計測の対象となる物質として上記のグルコースやヘモグロビンの他にコレステロール、中性脂肪、ビリルビン、コラーゲンなどがある。これらの中から最適な物質を選択し、その物質において吸収が最大となる光波長を用いた光音響分光分析による皮膚癌や乳癌などの診断は、近年、その臨床的有用性が明らかになりつつあり、更に、この新しい分光分析技術を適用し、上記物質の濃度分布を2次元画像として映像化する画像診断法に対しての期待も高まってきている。
従来の非侵襲的なグルコース測定法は、被検体の皮膚表面などに異なる波長の近赤外光を照射し、このとき得られる音響波を演算処理することによりグルコース濃度を測定する方法がある(例えば、特許文献1および特許文献2参照。)。
また、従来の光音響分光分析法では、音響波の検出にマイクロフォンやジルコン−チタン酸鉛系セラミックス(PZT)等の圧電素子を用いる方法が提案されている(例えば、特許文献3および特許文献4参照。)。
ヘモグロビンやグルコースに加え、光音響分光分析法を使って、コレステロール、天然脂肪、ビルルビン、コラーゲンなどのような人間の組織の中の他の検体を判定することもできる。光音響分光分析法の結果に基づく皮膚がんや乳がんの診断が、医療分野で有効であることが最近証明された。光音響分光分析法は、これらの物質から選択した適当な物質と、選択した物質がもっとも吸収しやすい波長を有する光を使用する。さらに、これらの物質の濃度の分布を表す二次元の画像を提供する診断方法の発明に対する期待がますます高まっている。
光音響分光分析法は、組織内の物質濃度を測定するために使用するのに対し、超音波画像は、人間の器官の中の嚢胞やしこりのような形態的特徴の存在を判定する場合に広く使用されてきた。人間の組織の中の物質の分布と形態的特徴を組み合わせることにより、組織をより細かく特徴付けられると共に、悪性腫瘍をより正確に診断でき、異常な病巣領域の限定をより正確に行ってこれらの領域の外科的除去に導くことができるため、よりよい診断と、改善された健康管理が実現する。
乳がんは、女性の主な死亡原因のひとつである。乳がんのスクリーニングと早期診断は、死亡率を削減し、健康管理の費用の抑制において非常に大きな価値を持つ。現在の方法では、異常なしこりを発見するための乳房の組織の触診と、疑わしい組織変形を探すための定期的な乳房X線撮影を行う。乳房X線写真に疑わしい箇所があると、超音波撮像を行い、さらに外科的生体組織検査を行う。これらの一連の工程は、最終的な結論に達するまでにはかなりの時間がかかる。
非侵襲的な光学技術により、組織内における血管の分布を判定することができるようになり、よって、組織領域内における異常血管新生によって、潜在的腫瘍の位置を知ることができる。
非侵襲的な光学技術には、組織内の時間分解光伝達を含む。もう一つの方法は、組織内を光子密度波動の伝播に伴う変調と位相角の変化を測定するものである。これらは、いくつかの新聞記事で紹介された(B.チャンス“血液及び血液酸化の定量化に連続的位相変調パルス光を使った近赤外線画像”Advances in Optical Biopsy and Optical Mammography, R.Alfano ed, Annals of the New York Academy of Sciences 1998; 第838巻、29〜45頁、S.ファンティーニ他による“周波数領域光学乳房撮影法;エッジエフェクト修正”Medical Physics 1996”; 第23巻、1〜6頁、M.A.フランセッチーニ他“周波数領域技術が光学的乳房撮影法を進化させる;始めての医療結果”Proceedings of the National Academy of Sciences USA, 1997;第94巻、6468〜6473頁(1997年))。これらの方法では、画像変換の不正確性と乳房などの体の部位の縁部に近い領域における画像のゆがみが問題となっている。
超音波、CAT走査、X線、MRIを含む従来の撮像方法は、ヘモグロビンの分布を示さずに、体の部位、この場合は胸の形態を示す。さらに、MRI及びCAT走査は、大型で高価な機器であり、容易に変形させることはできない。
形態的画像と形態的特徴における物質の分布を利用した診断方法及び装置により、よりよい診断が行えるようになる。
光音響撮像を使って胸の組織における検体の分布を判定する方法については、A.A.オラエフスキ他による“胸のレーザ光音響撮像:がんによる血管形成の検出”SPIE Proceedings 1999;第3597巻、352〜363頁、及びA.A.オラエフスキ他による、“血液の可視化のための光音響撮像と乳がんの診断”SPIE Proceedings 2002;第4618巻、81〜94頁で説明している。また、米国特許第5,840,023号では、“医療診断用の光音響撮像”を開示しており、欧州特許第01/10295号では、“血液の酸化の光音響による監視”、そして米国特許第6,309,352B1では、“組織の特性の変化の実時間光音響監視”においても説明している。
オラエフスキー他は、光音響撮像のみを使用して超音波撮像とは組み合わせていない。彼らは、位置合わせした超音波振動子を使用して検出される光音響及び超音波画像の組み合わせについては教示していない。この方法によると、組織の体積弾性率に対する形態学的特性の影響により血管画像がゆがむ可能性がある。
組織における検体分布の画像を生成するための光学的方法の他の応用については、Q.Zhu他による“超音波と光学を組み合わせた断層撮影画像” SPIE Proceedings 1999;第3579巻、364〜370頁と、Q.Zhu他による“良性の組織変形と悪性の組織変形の区別における超音波への付随物としての光学的撮像” SPIE Proceedings 1999;第3579巻、532〜539頁においても説明している。Zhu他は、超音波撮像を使用して組織における形態学的特性を定義し、周波数領域撮像を適用して血管新生、例えばヘモグロビンの分布を判定する。光ファイバー及び光電子増倍管は光学的方法の検出器として使用して、超音波振動子は、最適さにおいては劣る血管新生画像と形態学的画像の位置合わせによって超音波撮像を行うために使用する。位置合わせした超音波振動子を使って検出する光音響及び超音波画像の組み合わせについては教示していない。
これに対して、近年、この光音響効果を乳癌の診断に適用した場合の映像法についての研究が進められている(例えば、非特許文献1参照。)。図14はこの非特許文献1に記載されている光音響画像データの収集システム100であり、パルス状の光を発生するレーザ発生器101と、この光パルスを被検体の乳房102に供給する光ファイバ103と、この光ファイバ103に対向させて配置される凹面状の配列型電気音響変換素子104と、光パルスの送信制御や音響波の収集、更には画像再構成を行うコンピュータシステム105から構成されている。この光ファイバ103と配列型電気音響変換素子104の間に乳房2を挿入した後、光ファイバ103から乳房102の内部組織に光(レーザ光)を照射することによって、内部組織の血液成分にて新たに発生する音響波を配列型電気音響変換素子104によって受信する。
この方法によれば、所定の光波長による光音響効果により、例えば血中のヘモグロビンの濃度が他の物質成分と比較して感度よく計測できる。従って、血流量が正常組織より増大している乳癌などの腫瘍組織に対して得られる光音響画像は、従来行われてきた超音波診断装置やX線装置あるいはMRI装置などによって得られる画像より優れた検出能を有する可能性がある。これは、血管の数である血管新生と血管の流量が、腫瘍の中の高代謝活性に対応するために正常な組織より腫瘍組織内の方が高くなっているためである。腫瘍とその周りの血管が増えると、血管新生がより頻繁に起こるようになる。腫瘍の中の新しい血管の生成は血管形成として知られている。
特公平3−47099号公報 特公平5−58735号公報 特開平10−189号公報 特開平11−235331号公報 Alexander A,et.al:Laser optoacoustic imaging of breast cancer in vivo, Proc.SPIE , Vol.4256: pp.6-15,2001.
しかしながら特許文献1乃至4において提案されている方法は、いずれも局所的な部位における特定物質の濃度の計測が目的であり、濃度分布の映像化技術については触れられていない。
また非特許文献1で述べられている方法によれば、光ファイバ103と配列型電気音響変換素子104は、乳房102を挟んだ状態で対向して配置されているため、操作性に問題がある。特に生体内から音響波を受信して画像化を行う場合には、配列型電気音響変換素子104と生体の間に介在する空気を極力排除する必要があるため、光ファイバ103と配列型電気音響変換素子104は一体化させることが望ましい。
更に、この音響波を用いた画像化(以下、光音響イメージング法)は、例えばヘモグロビンのように特定の成分についてのみ行われるものであり、この特定成分が無い領域からは信号が得られない。従って、例えば非特許文献1のように乳癌の検査に光音響イメージング法を適用する場合、周囲の正常乳腺組織に対する腫瘍組織の正確な位置関係が把握し難いという問題点があった。
従って、形態学的特性とその特性の中に物質濃度の分布の撮像を組み合わせ、一方で、画像のゆがみをなくし、撮像測定と物質分布測定に対して共通のボディインターフェースと共通の検出器を組み込むことによって病気の状態を診断する方法と装置を開発する必要がある。この方法と装置は、撮像測定と物質分布測定に対して同じ圧力、同じ空隙、同じインターフェースを適用できるはずである。
本発明は上記の問題点に鑑みてなされるものであり、その目的は、被検体のボリュームに関する生体機能情報を、それと同じボリュームに関する組織形態情報とともに取得することにある。
実施形態によれば、特定波長成分を含む光を発生する光発生部と、前記光発生部が発生する光を被検体内に照射する光照射部と、前記光発生部により発生される光を前記光照射部に導く導波手段と、前記被検体からの音響波を電気信号に変換する2次元状に配列された複数の電気音響変換素子と、前記複数の電気音響変換素子を駆動して超音波を前記被検体に送信する送信手段と、前記複数の電気音響変換素子により変換された複数の電気信号から受信指向性を有する受信信号を生成する受信手段と、前記光照射部から照射した光によって前記被検体内に発生する音響波に対応する受信信号を処理して生体機能に関するボリュームデータを生成し、前記超音波の送信によって前記被検体内に発生するエコーに対応する受信信号を処理して組織形態に関するボリュームデータを生成する信号処理手段とを具備し、前記光照射部は、前記複数の電気音響変換素子とともに共通のボディインターフェースに形成され、前記複数の電気音響変換素子は縦横に所定の間隙を隔てて配列され、複数の前記光照射部が前記間隙に離散的に配置されることを特徴とする非侵襲生体情報映像装置が提供される。
また実施形態によれば、特定波長成分を含む光を発生する光発生部と、前記光発生部が発生する光を被検体内に照射する光照射部と、前記光発生部により発生される光を前記光照射部に導く導波手段と、前記被検体からの音響波を電気信号に変換する2次元状に配列された複数の電気音響変換素子と、前記複数の電気音響変換素子を駆動して超音波を前記被検体に送信する送信手段と、前記複数の電気音響変換素子により変換された複数の電気信号から受信指向性を有する受信信号を生成する受信手段と、前記光照射部から照射した光によって前記被検体内に発生する音響波に対応する受信信号を処理して生体機能に関するボリュームデータを生成し、前記超音波の送信によって前記被検体内に発生するエコーに対応する受信信号を処理して組織形態に関するボリュームデータを生成する信号処理手段とを具備し、前記光照射部は、前記複数の電気音響変換素子とともに共通のボディインターフェースに形成され、前記光は、前記複数の光照射位置から順番に照射されることを特徴とする非侵襲生体情報映像装置が提供される。
また実施形態によれば、特定波長成分を含む光を発生する光発生部と、前記光発生部が発生する光を被検体内に照射する光照射部と、前記光発生部により発生される光を前記光照射部に導く導波手段と、前記被検体からの音響波を電気信号に変換する2次元状に配列された複数の電気音響変換素子と、前記複数の電気音響変換素子を駆動して超音波を前記被検体に送信する送信手段と、前記複数の電気音響変換素子により変換された複数の電気信号から受信指向性を有する受信信号を生成する受信手段と、前記光照射部から照射した光によって前記被検体内に発生する音響波に対応する受信信号を処理して生体機能に関するボリュームデータを生成し、前記超音波の送信によって前記被検体内に発生するエコーに対応する受信信号を処理して組織形態に関するボリュームデータを生成する信号処理手段とを具備し、前記光照射部は、前記複数の電気音響変換素子とともに共通のボディインターフェースに形成され、前記光は、前記複数の光照射位置から一斉に照射されることを特徴とする非侵襲生体情報映像装置が提供される。
また実施形態によれば、特定波長成分を含む光を発生する光発生部と、前記光発生部が発生する光を被検体内に照射する光照射部と、前記光発生部により発生される光を前記光照射部に導く導波手段と、前記被検体からの音響波を電気信号に変換する2次元状に配列された複数の電気音響変換素子と、前記複数の電気音響変換素子を駆動して超音波を前記被検体に送信する送信手段と、前記複数の電気音響変換素子により変換された複数の電気信号から受信指向性を有する受信信号を生成する受信手段と、前記光照射部から照射した光によって前記被検体内に発生する音響波に対応する受信信号を処理して生体機能に関するボリュームデータを生成し、前記超音波の送信によって前記被検体内に発生するエコーに対応する受信信号を処理して組織形態に関するボリュームデータを生成する信号処理手段とを具備し、前記光照射部は、前記複数の電気音響変換素子とともに共通のボディインターフェースに形成され、前記光は、前記複数の光照射位置の中の離散的な所定数の光照射位置から同時に照射されることを特徴とする非侵襲生体情報映像装置が提供される。
また実施形態によれば、特定波長成分を含む光を発生する光発生部と、前記光発生部が発生する光を被検体内に照射する光照射部と、前記光発生部により発生される光を前記光照射部に導く導波手段と、前記被検体からの音響波を電気信号に変換する2次元状に配列された複数の電気音響変換素子と、前記複数の電気音響変換素子を駆動して超音波を前記被検体に送信する送信手段と、前記複数の電気音響変換素子により変換された複数の電気信号から受信指向性を有する受信信号を生成する受信手段と、前記光照射部から照射した光によって前記被検体内に発生する音響波に対応する受信信号を処理して生体機能に関するボリュームデータを生成し、前記超音波の送信によって前記被検体内に発生するエコーに対応する受信信号を処理して組織形態に関するボリュームデータを生成する信号処理手段とを具備し、前記光照射部は、前記複数の電気音響変換素子とともに共通のボディインターフェースに形成され、前記光の照射と前記超音波の送信とは交互に行われることを特徴とする非侵襲生体情報映像装置が提供される。
また実施形態によれば、特定波長成分を含む光を発生する光発生部と、前記光発生部が発生する光を被検体内に照射する光照射部と、前記光発生部により発生される光を前記光照射部に導く導波手段と、前記被検体からの音響波を電気信号に変換する2次元状に配列された複数の電気音響変換素子と、前記複数の電気音響変換素子を駆動して超音波を前記被検体に送信する送信手段と、前記複数の電気音響変換素子により変換された複数の電気信号から受信指向性を有する受信信号を生成する受信手段と、前記光照射部から照射した光によって前記被検体内に発生する音響波に対応する受信信号を処理して生体機能に関するボリュームデータを生成し、前記超音波の送信によって前記被検体内に発生するエコーに対応する受信信号を処理して組織形態に関するボリュームデータを生成する信号処理手段とを具備し、前記光照射部は、前記複数の電気音響変換素子とともに共通のボディインターフェースに形成され、前記信号処理手段は、前記電気音響変換素子により出力される電気信号を入力し、前記照射光に起因する音響波に基づいてボリュームに関する第1の画像データを生成する第1の画像データ生成手段と、前記電気音響変換素子により出力される電気信号を入力し、前記送信超音波に起因する音響波に基づいて前記ボリュームに関する第2の画像データを生成する第2の画像データ生成手段と、前記第1の画像データ及び前記第2の画像データを表示する表示手段と、を備えることを特徴とする非侵襲生体情報映像装置が提供される。
本発明によれば、被検体のボリュームに関する生体機能情報を、それと同じボリュームに関する組織形態情報とともに取得することができる。
以下、本発明の実施形態について図面を参照して説明する。本実施形態に係る非侵襲生体情報映像装置は、主に乳癌の診断を目的とした生体内のヘモグロビン分布の映像化を可能とするものであり、特に、複数の電気音響変換素子を縦横に所定の間隙を隔てて2次元配列するとともに、電気音響変換素子の間隙に光照射のための複数の光ファイバの光出力端部を2次元配置することによって光照射部と電気音響変換部とを一体化したアプリケータを構成し、その構成を使って光照射部からの光照射とそれにより発生する音響波の電気音響変換部による検出とによる2次元での光音響走査(光音響走査)により生体機能を表す3次元領域に対応するボリュームデータを取得し、それと同一領域に関する組織形態を表すボリュームデータを電気音響変換部による超音波の送信とエコーの検出とによる超音波走査(超音波走査)によって取得することにある。
なお、以下では光音響走査法によって発生する音波を音響波と呼び、通常の超音波走査において送受信される音波を超音波と呼んで両者を区別する。
図1は本実施形態における非侵襲生体情報映像装置全体の概略構成を示すブロック図であり、図2は図1の画像データ生成部2のブロック図を示す。図3は、図1のアプリケータ内の光照射部と電気音響変換部の配列構造を示す平面略図であり、図4は図1のアプリケータ内の光照射部と電気音響変換部の配列構造を示す外観及び断面図である。また、図5は図1のアプリケータの外観を示している。
本実施形態による非侵襲生体情報映像装置は、特定波長成分を含む光を発生する光送信部1と、この光を被検体7に照射することによって被検体内で発生する音響波を受信して生体機能に関するボリュームデータ及び任意断面の機能画像データを生成し、また被検体7に送信した超音波のエコーを受信して生体の組織形態に関するボリュームデータ及び任意断面の形態画像データを生成する画像データ生成部2と、この機能画像データおよび形態画像データを表示する表示部6と、操作者が患者情報や装置の撮影条件を入力するための操作部5と、これら各ユニットを統括的に制御するシステム制御部4とを備えている。
光送信部1は、波長の異なる複数の光源を備える光源部11と、複数の波長の光を同一光軸上に合成する光合波部12と、この光を被検体7の体表面まで導く多チャンネルの導波部14と、この導波部14において使用するチャンネルを切り換えて走査を行う光走査部13と、導波部14によって供給される光を被検体7に照射する光照射部15とを備えている。
光源部11は、異なる波長の光を発生する複数個の光源を有する。光源として、特定の波長成分又はその成分を含む単色光を発生する半導体レーザ(LD)、発光ダイオード(LED)、固体レーザ、ガスレーザ等の発光素子を用いる。例えば、被検体7のヘモグロビン濃度を測定する場合には、固体レーザの一種である波長が約1000nmのNd:YAGレーザや、ガスレーザの一種である633nmのHe-Neガスレーザを用い、10nsec程度のパルス幅を有したレーザ光を形成する。生体内のヘモグロビンは、その状態(酸化ヘモグロビン、還元ヘモグロビン、メトヘモグロビン、炭酸ガスヘモグロビン、等)により光学的な吸収特性が異なるが、一般的には600nmから1000nmの光を吸収する。
また、LDやLED等の小型発光素子を用いる場合には、発光波長が550〜650nm程度ではInGaAlP、発光波長が650〜900nm程度ではGaAlAs、発光波長が900〜2,300nm程度ではInGaAsもしくはInGaAsPなどの材料を用いた素子を使用することができる。また最近では、波長が550nm以下で発光する InGaNを用いた発光素子も使用可能になりつつある。更には、波長可変可能な非線形光学結晶を用いたOPO(Optical Parametrical Oscillators)レーザを用いることもできる。
光合波部12は、複数個の光源から発生する波長の異なる光を同一光軸に重ね合わせるためのものであり、それぞれの光は、まずコリメートレンズによって平行光線に変換され、次に直角プリズムやダイクロイックプリズムにより、光軸が合わせられる。このような構成により比較的小型の合波光学系とすることができるが、光通信用に開発されている市販の多重波長合波・分波器を用いてもよい。また光源部11に前述の波長が連続的に変更可能なOPOレーザ等の発生源を使用する場合は、この光合波部12は必ずしも必要ではない。
導波部14は、光合波部12から出力される光を被検体7まで導くためのものであり、効率のよい光伝搬を行うために光ファイバや薄膜光導波路を用いるが、直接空間伝搬することも可能である。ここでは、導波部14は、複数の光ファイバ71から構成される。これらの複数の光ファイバ71の中から所定の光ファイバ71を選択して被検体7に対して選択した光ファイバ71光を照射を行う。
光走査部13は、導波部14において配列される複数の光ファイバ71を順次選択しながら光の供給を行うことによって被検体7に対して光による走査を行う。
光照射部15は、複数の光ファイバ71の複数の端部から構成される。光照射部15は、電気音響変換部23とともに、アプリケータ70を構成する。光照射部15を構成する複数の光ファイバ71の複数の端部は、M×Nの2次元状に配列される。電気音響変換部23を構成する複数の変換素子54は、(M+1)×(N+1)の2次元状に配列される。なお、複数の光ファイバ71の複数の端部は、電気音響変換部23を構成する複数の変換素子54とともに、平面、凸面あるいは凹面を形成する。ここでは平面とする。
非侵襲生体情報映像装置の画像データ生成部2は、音響信号と電気信号の変換を行う電気音響変換部23と、この電気音響変換部23を選択駆動するとともに、また電気音響変換部23からの電気信号に所定の遅延時間を与え、整相加算を行うことにより受信指向性を有する受信信号を生成する送受信部22と、電気音響変換部23の選択動作や送受信部22の遅延時間を制御する走査制御部24と、被検体7の内部に放射する送信超音波の繰り返し周期を設定するためのレートパルスを出力するレート信号発生部21と、送受信部22から得られる受信信号に対して各種の処理を行う信号処理部25とを備えている。
電気音響変換部23は、図3、図4に示すように、2次元状に配列される微小な複数の変換素子54から構成される。電気音響変換部23は、光照射部15からの光の照射により被検体内に発生する音響波の受信と、電気音響変換部23から送信した超音波のエコーの受信とを兼用する。この変換素子54は、送信時において電気的な駆動パルスを送信超音波に変換し、また受信時においては音響波やエコーを電気信号に変換する機能を有している。電気音響変換部23は、一般に超音波プローブとも呼ばれ、小型、軽量に構成されており、多チャンネルケーブルによって後述する送受信部22に接続される。この電気音響変換部23は、セクタ走査対応、リニア走査対応、コンベックス走査対応等の中から診断部位に応じて選択されるが、本実施の形態ではリニア走査用の電気音響変換部23を用いた場合について述べる。
送受信部22は、図2に示すように、送信遅延回路51と、パルサ52と、電子スイッチ53と、プリアンプ55と、受信遅延回路56と、加算器57とを備えている。送信遅延回路51は、送信時における送信超音波の収束距離を設定するための遅延回路であり、レート信号発生部21から出力されるレートパルスに与え、パルサ52に供給する。また、パルサ52は、変換素子54を駆動するための高圧パルスを生成する駆動回路であり、送信遅延回路51の出力信号をトリガ信号として、例えば、波高値が数百Vのインパルスを形成する。
電子スイッチ53は、超音波走査の送信時において、電気音響変換部23を構成する変換素子54の全て又は隣接する一部の変換素子54を選択する。また、光音響走査又は超音波走査における音響波又はエコーの受信に際しては、所定数の変換素子54を選択する。変換素子54によって得られるそれぞれの電気信号はプリアンプ55に供給される。一方、プリアンプ55は、電子スイッチ53によって選択される変換素子54によって受信される微小な電気信号を増幅し、十分なS/Nを確保する。
受信遅延回路56は、電子スイッチ53によって選択された変換素子54から得られる音響波又はエコーの電気信号に対して、所定の方向からの音響波、あるいはエコーの位相を一致させて収束受信ビーム形成するための遅延時間を与える。加算器57は、遅延された複数チャンネルの電気信号を加算することによって1つの受信信号に纏める。この加算によって所定の深さからの受信信号は整相加算され、受信収束点が設定される。
レート信号発生部21は、所定の繰り返し周波数によって行う超音波パルスの送信タイミングを設定するためのクロックパルスを発生する。この繰り返し周波数は、画像の視野深度に依存するが本実施の形態では4KHz〜8KHzに設定される。
走査制御部24は変換素子選択制御回路68とビーム集束制御回路67を備え、変換素子選択制御回路68は電子スイッチ53によって選択される送信時の所定数の変換素子54および受信時の所定数の変換素子54の位置情報を電子スイッチ53に供給する。一方、ビーム集束制御回路67は、所定数個の変換素子54が形成する送信収束点および受信収束点を形成するための遅延時間情報を送信遅延回路51および受信遅延回路56に供給する。
信号処理部25は、フィルタ66と、対数変換器58と、包絡線検波器59と、A/D変換器60と画像データメモリA61および画像データメモリB62とを備えている。送受信部22の加算器57の出力は、信号処理部25のフィルタ66において不要なノイズを除去した後、対数変換器58にて受信信号の振幅を対数変換し、弱い信号を相対的に強調する。一般に、被検体7からの受信信号は、80dB以上の広いダイナミックレンジをもった振幅を有しており、これを23dB程度のダイナミックレンジをもつ通常のCRTモニタに表示するためには弱い信号を強調する振幅圧縮が必要となる。
なお、フィルタ66は、帯域通過特性を有し、受信信号における基本波を抽出するモードと高調波成分を抽出するモードを有している。包絡線検波器59は、対数変換された受信信号に対して包絡線検波を行い、A/D変換器60は、この包絡線検波器59の出力信号をA/D変換し、ボリュームデータを形成する。
なお、このボリュームデータには、光音響走査のもとで音響波に基づいて生成される生体機能を表すボリュームデータと、超音波走査において広く行われているように、被検体7に送信した超音波のエコーに基づいて生成される組織形態を表すボリュームデータとの2種類がある。画像データメモリA61は、前者の生体機能ボリュームデータを保存する記憶回路であり、画像データメモリB62は、後者の組織形態ボリュームデータを保存する記憶回路である。システム制御部4の制御のもとで、画像データメモリA61から任意断面のデータが読み出され、その読出しに際して空間的に補間されることにより、当該断面の生体機能画像データが生成される。システム制御部4の制御のもとで、画像データメモリB62から同じ断面のデータが読み出され、その読出しに際して空間的に補間されることにより、当該断面の組織形態画像データが生成される。
表示部6は、表示用画像メモリ63と変換器64とCRTモニタ65を備えている。表示用画像メモリ63は、CRTモニタ65に表示する画像データを一時的に保存するバッファメモリであり、画像データメモリA61からの生体機能画像データと画像データメモリB62からの組織形態画像データは、この表示用画像メモリ63において1フレームに合成される。変換器64は、表示用画像メモリ63から読み出された合成画像データに対してD/A変換とテレビフォーマット変換を行い、その出力はCRTモニタ65において表示される。操作部5は、操作パネル上にキーボード、トラックボール、マウス等を備え、装置操作者が患者情報、装置の撮影条件、表示断面など必要な情報を入力するために用いられる。
システム制御部4は、図示しないCPUと図示しない記憶回路を備え、操作部5からのコマンド信号に従って光送信部1、画像データ生成部2、表示部6などの各ユニットの制御やシステム全体の制御を統括して行う。特に、内部のCPUには、操作部5を介して送られる操作者の入力コマンド信号が保存される。
次に、光照射部15と電気音響変換部23を一体化したアプリケータ70について図3および図4を用いて説明する。なお、図4(b)は図3のA−A断面におけるアプリケータ70の断面図を示している。各変換素子54は、圧電素子73−3と、圧電素子73−3の上面と下面とにそれぞれ装着された駆動信号の供給及び電気信号取り出しのための電極73−1、73−2とからなる。電極73−2には、超音波の送受信を効率良く行うための音響マッチング層74が設けられ、更に、その表面は保護膜75によって覆われている。
複数の変換素子54は、長さs、厚みt、幅aを有する。複数の変換素子54は、支持台72上に縦横に一定の間隙dを隔てて2次元状に配列されている。各光ファイバ71は、それを中心とした近傍4個の変換素子54に囲まれるように、複数の光ファイバ71が変換素子54の間隙に2次元状に配列されている。
図5はアプリケータ70の外観図であり、このアプリケータ70の先端に配置される電気音響変換部23と光照射部15は、被検体7の表面に接触し、照射光の照射と音響波の受信および超音波の送受信が行われる。一方、光照射部15に繋がる光ファイバ71と変換素子54の電極73に接続される同軸ケーブル77は被覆76によって纏められ、この光ファイバ71の端部は光走査部13に、また同軸ケーブル77の他の端部は画像データ収集部2の送受信部22に接続されている。
図6(a)、図6(b)、図7、図8(a)には、本実施形態における基本的な光音響走査の手順を示している。なお、説明の便宜上、光ファイバ71は、M×Nのマトリクスに配列され、それぞれの端面の中心位置をその配列順に沿って(1,1)、(1,2)、…、(M,N)と略記する。操作者は、光音響走査における必要な画像撮影条件を操作部5において設定する。画像撮影条件には、フレーム数、視野深度、レート周波数、画像表示方法の他にアプリケータ70の各種仕様などがある。更に操作者は、光音響走査に用いる光波長など光源に関する諸条件の設定についても同時に行い、設定されたこれらの撮影条件をシステム制御部4の図示しない記憶回路に保存する。
上記の各種撮影条件の設定が終了したならば、操作者は、アプリケータ70を被検体7の所定の位置に設置した後、光音響走査における光音響画像データの収集開始コマンドを操作部5より入力する。
この光音響画像データの収集開始コマンドを受けたシステム制御部4は、内部の記憶回路から光源に関する設定条件を読み出し、この設定条件に従って光源部11より、例えばNd・YAGレーザを選択して1000nmの波長を有する単色光を発生する。光源部11で発生した単色光は、光合波部12を介して光走査部13に送られる。
光走査部13は、図7、図8(a)に示すように、複数の光ファイバ71を一本ずつその配列順に沿って順番に一定の周期で選択する。選択された光ファイバ71は、この光をアプリケータ70の光照射部15まで導く。光は、光ファイバ71の端部から被検体7に照射される。この場合、光ファイバ71から照射された単色光は、図6(a)の矢印で示すように、アプリケータ70の被検体接触面に対してほぼ垂直、つまり光ファイバ71及び変換素子54の2次元配列平面に対して垂直な方向に照射される。
被検体7の血液中のヘモグロビンは、照射された単色光のエネルギーを吸収して分子衝突による熱の生成を引き起こし、この熱の拡散に伴う圧力変化によって音響波を発生する。このとき発生する音響波は、100KHz〜2MHzの広帯域スペクトル成分を有するパルス波である。光音響効果では、計測しようとする物質によって照射する光の波長が決定され、この波長の光による照射の結果得られる音響波の大きさから、その成分量を定量化することが可能となる。すなわち、上記Nd・YAGレーザにより1000nmの波長を有する単色光を被検体7に照射することによって、照射部位におけるヘモグロビンの量を定量的に計測することができる。
光照射により発生する音響波は、その照射位置の近傍に配置されている所定数の変換素子54で検出される。例えば、図6(b)に示すように、音響波は、光照射位置を中心とする近傍4個の変換素子54で検出される。音響波を同時検出する変換素子の数は4個に限定されるものではない。例えば、図9(a)、図9(b)に示すように、音響波は、例えば光照射位置を中心とする近傍6×6個の変換素子54で検出される。
実際的には、アプリケータ70の被検体接触面から距離Lの部位の血管領域において発生する音響波に対して、システム制御部4は、その記憶回路に予め保存されている走査情報の中の変換素子54の選択情報を走査制御部24の変換素子選択制御回路68に供給し、また受信時の収束点距離設定に関する遅延時間情報を同じ走査制御部24のビーム収束制御回路67に供給する。
電子スイッチ53は、変換素子選択制御回路68の制御信号に基づいて、アプリケータ70の変換素子54の中から近隣の上記4個の変換素子54を選択する。一方、受信遅延回路56は、ビーム収束制御回路67の制御信号に基づいて、これらの4個の変換素子54によって得られた電気信号各々に対して、受信収束点が、当該光照射位置を通り、光ファイバ71及び変換素子54の2次元配列平面に対して垂直な直線上であって、光ファイバ71及び変換素子54の表面から所定深度離れた位置に設定するために必要な遅延時間を与える。
すなわち、変換素子選択制御回路68は、システム制御部4から供給される変換素子54の選択情報に基づいて、光照射位置を中心とする近隣4個の電子スイッチ53をON状態にし、光照射時に選択して用いた光ファイバ71を中心として近傍4個の変換素子54を受信用の変換素子54として選択する。被検体7の内部で発生した音響波は、変換素子54で電気信号に変換された後、電子スイッチ53を介してプリアンプ55に供給され、所定の振幅に増幅されて受信遅延回路56に入力される。
例えば、K個のチャンネルから構成される受信遅延回路56において、k番目の受信遅延回路56は、k番目の変換素子54によって得られる受信信号に対して次式で示す遅延時間τ(k)を与える。
τ(k)=d(K−1)−(2k−K−1)/8CFo ・・・(1)
但し、dは変換素子54の配列間隔、Cは被検体7の音響波伝播速度(約1500m/sec)、Foは受信収束点距離であり、Fo=Lに設定すれば変換素子54によって得られる受信信号に対して上記の遅延時間が与えられた後加算器57において加算することにより、距離Lにおいて発生した音響波の位相を一致させて加算合成することできる。
光が被検体7に照射されてから音響波が変換素子54によって受信されるまでの時間は距離Lの大きさに比例する。従って、音響波の受信において上記(1)式における受信収束点距離Foの値を時間的に増加させる、いわゆるダイナミック収束法が適用でき、選択された光ファイバ71からの光照射によって発生する音響波は、深さ(距離)によらず、常に収束状態で受信されるため、これらの受信信号から良好な感度と空間分解能を有した光音響によるボリュームデータを生成することが可能となる。
加算器57において合成された変換素子54の電気信号は、指向性を持った受信信号として信号処理部25のフィルタ66においてノイズ成分が除去された後、対数変換器58および包絡線検波59において振幅圧縮と検波がなされ、更にA/D変換器60にてデジタル信号に変換されて、光音響画像データ用の画像データメモリA61に保存される。
上記の光照射と音響波の検出は、光照射位置を移動しながら、一通り順番に繰り返される。光照射と音響波の検出は、M×N回繰り返される。それによって1ボリューム分の光音響走査が終了する。この1ボリューム分の光音響走査は、繰り返される。
図8(b)、図10は、1ボリューム分の光音響走査に要する時間を短縮するための走査手順を示している。2次元状に配列された光ファイバ71及び変換素子54は、複数のセクションに分けられる。図8(b)、図10では、2次元状に配列された光ファイバ71及び変換素子54は、4つのセクションA,B,C,Dに分けられる。セクションAに含まれる光ファイバ71の本数及び変換素子54の個数は、セクションB,C,D各々に含まれる光ファイバ71の本数及び変換素子54の個数と同数である。ここでは、各セクションには、m×nの光ファイバ71が含まれると仮定する。
各セクション内では、図8(a)で示した操作手順と同じ操作手順で、光照射及び音響波の検出が、光照射位置を移動しながら、m×n回繰り返される。つまり、一定の周期で複数の光ファイバ71の中から1本の光ファイバ71がその配列に従って順番に選択される。それにより光照射位置が移動しながら被検体に光が繰り返し照射される。それぞれの光照射により被検体内に発生する音響波は、次の光照射までの期間内に、それぞれの光照射位置を中心とする近傍4個の変換素子54により検出される。検出された4つの電気信号は、当該光照射位置の真下の深度Lの位置で受信収束点を形成するために必要な遅延時間を与えられ、加算される。
4つのセクションで、上記光照射及び音響波検出が同期して繰り返される。セクション間での音響波のクロストークは、セクション間で同時に照射される光の光照射位置の間に一定の距離を保つことで、低減又は回避される。換言すると、セクション間での音響波のクロストークを低減又は回避するために必要な距離に従って、セクションサイズ(n×m)が決定されている。
図11には、1ボリューム分の光音響走査に要する時間をさらに短縮する方法を示している。M×Nの2次元状に配列された全ての光ファイバ71から同時に光が被検体に照射される。光照射直後に、音響波が、(M+1)×(N+1)の2次元状に配列された全ての変換素子54で検出される。送受信部22は、検出された(M+1)×(N+1)個の電気信号から、光照射位置(1,1)〜(M,N)にそれぞれ対応するM×N個の受信信号を生成する。各受信信号は、それぞれの光照射位置を取り囲む4個又はそれ以上の変換素子54の電気信号(実際にはディジタルデータ)に遅延時間を与えて加算することにより生成される。
図12(a)に示すように、1ボリューム分の光音響走査は、1ボリューム分の超音波走査と、交互に行われる。複数の超音波走査線は、複数の光照射位置に対してそれぞれ対応する。複数、ここではM×N本の超音波走査線は、(1,1)〜(M,N)の位置を通り、光ファイバ71及び変換素子54の2次元配列平面に対して垂直な方向に設定される。送信収束点及び受信収束点は、光音響走査における受信収束点と同じ深度Lに設定される。1ボリューム分の超音波走査は、1ボリュームを構成するM×N本の超音波走査線に対して超音波送信及びエコー受信を繰り返すことにより完了する。
このように1ボリューム分の光音響走査と、1ボリューム分の超音波走査とが同じボリュームに対して交互に行われることにより、時間が接近した、つまり1ボリューム分の走査時間だけずれた、生体機能ボリュームデータとそれと同じボリュームに関する組織形態ボリュームデータとが取得され得る。
なお、受信収束点は変換素子配列面に対する垂線上に設定される場合について述べたが、変換素子54から得られる受信信号の遅延時間制御によって収束点の位置は自由に設定できる。
光音響走査と超音波走査は、次のように変形可能である。光音響走査と超音波走査は、図12(a)では、ボリューム単位で交互に行われた。しかし、光音響走査と超音波走査は、図12(b)に示すように、走査線単位で交互に行うようにしてもよい。光音響走査による第1の位置で光を照射し音響波を検出した後、その同じ第1の位置に対応する超音波走査線に対して超音波を送信し、エコーを受信する。次いで光音響走査による隣の第2の位置で光を照射し音響波を検出した後、その同じ第2の位置に対応する超音波走査線に対して超音波を送信し、エコーを受信する。このような動作を繰り返すことにより、所定方向におけるデータ間の収集タイミングのズレが大幅に短縮されるため、特に動きの速い臓器あるいは血液が計測の対象の場合であっても、生体機能ボリュームデータとそれと同じボリュームに関する組織形態ボリュームデータとを、ほぼ同じ時相で計測可能となる。なお、例えば光音響走査において受信感度を改善するために送信の光量を増大させる場合には、生体安全確保のために単位時間当たりの照射回数を低減させる必要があるため、図12(d)に示すように単位時間当たりの光音響走査法の走査数を超音波走査の走査数より低減させることが望ましい。
図12(c)に示すように、光音響走査の光照射及び音響波検出と、超音波走査の超音波送信及びエコー受信とを同時に行うようにしてもよい。データ間の収集タイミングのズレがないため、上記走査単位の走査方法より更に動きの速い計測対象に対して正確な計測が可能となる。なお、この同時走査方法において、光音響走査における音響波の周波数と、超音波走査における超音波の周波数が同じ場合には、受信信号から音響波成分とエコー成分とを分離することは不可能となるが、信号処理部25のA/D変換器60の出力は、直接表示用画像メモリ63に保存すればよいため、画像データメモリA61および画像データメモリB62は削除でき、更に光音響画像データと超音波画像データの合成処理も不要となる。一方、離間した2つの周波数で振動可能な変換素子54は、音響波成分とエコー成分とを分離することを可能にする。この種の変換素子54は、特開昭61−100237号公報、あるいは特開昭62−39761号公報において記載されているように厚みの異なる2枚の圧電素子を接合することによって2種類の周波数の超音波を受信することができる。
したがって、例えば、光音響走査法の音響波の周波数を1.5MHz、超音波走査の超音波の周波数を3Mzに設定することによって、これらの信号が同時に前記変換素子54によって受信されても、信号処理部22のフィルタ66によって弁別することによって光音響画像データと超音波画像データを独立に生成することが可能となり、更にカラーによって識別して表示部6のCRTモニタ65において表示することができる。
表示に際しては、図13に示すように、操作者により指定された断面のデータが、画像データメモリA61に記憶されている生体機能ボリュームデータから読み出され、その読出しに際して空間的に補間されることにより、当該指定断面の生体機能に関する断面像データが生成される。同じ断面のデータが、画像データメモリB61に記憶されている組織形態ボリュームデータから読み出され、その読出しに際して空間的に補間されることにより、当該指定断面の組織形態に関する断面像データが生成される。生体機能に関する断面像データは、それと同じ断面の組織形態に関する断面像データと共に、表示用画像メモリ63において1フレームに並べられ、変換器64を経てCRTモニタ65において表示される。または、生体機能に関する断面像データは、カラーマップに変換され、組織形態に関する断面像データと、表示用画像メモリ63において重畳され、CRTモニタ65において表示される。
以上述べたように、光音響画像と超音波画像が同一の変換素子54を用いて収集できるため、それぞれの画像を精度よく重畳表示することが可能となる。特に、光音響画像の生成においては、多くの変換素子54から得られる音響受信信号の位相を合わせて加算する、いわゆる整相加算方式を行っているため、例え、被検体7に照射された光が散乱あるいは拡散しても音響波の発生源を正確に捉えることが可能となる。
なお、上述においては、光音響画像データの収集後に超音波画像データの収集を行ったが、これらの画像データの収集順序については限定されない。また、光音響画像データと超音波画像データをそれぞれ複数枚収集して前者を画像データメモリA61に、また後者を画像データメモリB62に一旦保存し、この画像データメモリA61および画像データメモリB62から所望の画像を選択して表示用画像メモリ63において合成してもよい。
また、光音響画像データを収集する場合、1つの物質に対して複数の波長の光を用いて、その成分量を求めてもよい。例えば、ヘモグロビンの成分量を計測する場合、前述の通り生体内のヘモグロビンは600nmから1000nmの光を吸収するが、600nm近傍では酸化ヘモグロビンに比べ還元ヘモグロビンの吸収が相対的に大きく、1000nm近傍では還元ヘモグロビンに比べ酸化ヘモグロビンの吸収が大きい。この様な吸収特性の違いを利用する事により、生体内中の酸化ヘモグロビンと還元ヘモグロビンを分離して定量化したり、総ヘモグロビン量を求めることができる。上記の1000nmのNd:YAGレーザや、633nmのHe-Neガスレーザを用い、それぞれの波長によって得られる計測結果を異なる色で識別して表示してもよい。この場合、光音響画像は超音波画像と重畳表示してもよいが、並べて表示することも可能である。
また、同じ被検体7の部位に対して、コレステロールやグルコースなど、ヘモグロビン以外の物質についても最適な波長の単色光を用いて同様な手順で計測を行ない、その計測結果とヘモグロビンの計測結果を異なる色で識別して表示してもよい。この場合も光音響画像は超音波画像と重畳表示してもよいが、並べて表示することも可能であり、その表示方法は限定されない。
また、超音波画像生成法にハーモニックイメージングを採用しても良い。光音響走査法における音響波の周波数スペクトラムは、例えば1MHzを中心周波数として200KHz〜2MHzの範囲に分布しており、従って、電気音響変換部23の変換素子54は、この周波数成分に対応した特性を有するものを用いる必要があるが、これは通常の超音波走査の中心周波数(fo:例えば3.5MHz)と比較すると低い。
光音響画像データと超音波画像データの収集を同一の変換素子54を用いて行うため、従来の超音波走査を適用して得られる超音波画像において空間分解能の劣化を招くことになる。このような問題点を改善するために、ハーモニックイメージング法を適用した超音波画像データの収集について説明する。ハーモニックイメージング法とは、被検体7の組織において生ずる超音波非線形現象を有効に利用したイメージング法であり、例えば、中心周波数がfoの超音波パルスを被検体7に送信した場合、被検体組織の非線型現象によって、例えば2倍の高調波成分(2fo)が新たに発生し、この高調波成分は、基本波成分(fo)とともに変換素子54によって受信される。この高調波成分の発生は、被検体7の組織性状や反射部位までの伝搬距離、あるいは反射部位における超音波強度に依存する。
超音波走査において、被検体7に放射された送信超音波の一部は、音響インピーダンスの異なる被検体7の臓器の境界面あるいは組織にて反射する。これらの超音波は、組織の非線型特性により、中心周波数が2foの超音波パルスが新たに発生する。従って、被検体7の組織内にて反射して変換素子54に戻る受信超音波は、送信時の中心周波数foの超音波パルス(基本波成分)と中心周波数が2foの超音波パルス(高調波成分)が混在したものとなる。
このときの送信超音波の周波数スペクトラムは、foを中心に分布している。これに対して受信超音波の周波数スペクトラムは、foを中心に分布する基本波成分と、2foを中心に分布する高調波成分とで構成され、一般に、高調波成分は、基本波成分に対して約20dB小さい。因みに、この高調波の発生原因は超音波パルスの被検体組織内の伝播速度が超音波の音圧に依存するためであり、この性質のために受信信号に波形歪が生じ、高調波成分が発生することが知られている。
被検体7からの受信超音波は、変換素子54において超音波から電気信号(超音波受信信号)に変換され、この超音波受信信号は、送受信部22を介して信号処理部25のフィルタ66に送られる。このフィルタ66は、2foを中心とした帯域通過特性と図示しないfoを中心とした帯域通過特性を有している。ハーモニックイメージング法においては、このフィルタ66によって第2高調波成分が抽出され、その出力は、対数変換器58、包絡線検波器59、A/D変換器60を介して、画像データメモリB62に保存される。一方、光音響走査法においては、第1の実施の形態と同様にフィルタ66によって基本波成分が抽出され、その出力は対数変換器58、包絡線検波器59、A/D変換器60を介して、画像データメモリB62に保存される。
次いで、システム制御部4は、画像データメモリB62に保存された超音波画像データと、画像データメモリA61に保存されている光音響画像データを読み出し、表示用画像メモリ63において合成した後、変換回路64を介してCRTモニタ65に表示する。
このようにハーモニックイメージングを採用することにより、超音波画像データは、基本波成分の2倍の周波数成分によって生成される。従って、光音響画像データと超音波画像データを同一の変換素子54を用いて収集する場合においても解像度の優れた超音波画像に光音響画像を重畳して表示することが可能となり、更に、これらの画像データの収集と表示を同時に行うこともできるため操作性に優れた装置の提供が可能となる。
また、上述では、光音響走査において、照射位置を中心とした4個の変換素子54の4つの電気信号を整相加算することにより受信信号に指向性を与えている。しかし、光ファイバ71から光を被検体7に照射する場合、照射光は細い幅を維持したまま直進するため、強い指向性を有している。従って、音響波を受信する際の整相加算処理を行わなくても光音響画像の生成は可能となる。光ファイバ71からの照射光によって被検体7の血液中のヘモグロビンは、照射された光のエネルギーを吸収して音響波を発生する。この音響波は光照射位置を中心とした4個の変換素子54で電気信号に変換される。4つの電気信号は、受信遅延回路56を実質的にパスして、遅延時間を与えられることなく、加算器57にて加算される。受信に用いる振動子数を大幅に低減することが出来るため、端部の光ファイバ71を有効に使用することができ、従って広い画像幅(視野幅)を得ることが可能となる。
図14には本実施形態の電気音響変換部の製造方法の一例を示している。例えば0.05mmの厚さを有するフレキシブルプリント基板(FPC)97には、一定の間隔を隔てて複数の信号側電極98が形成される。同様にFPC97には、複数のグラウンド側電極99が一定の間隔を隔てて形成される。信号側電極98とグラウンド側電極99にはPZNT又はPZTを圧電体とする振動子96の信号側電極とグラウンド側電極とがそれぞれAuスパッタ等により電気的に接続される。隣り合う振動子96の間隙には、例えば0.2mmの直径を有する光ファイバ71が貼り付けられる。このように構成された複数の振動子板111は、重ねられ、接着剤により一体に接着される。
この方法によれば、光ファイバにより光透過性を備えた電気音響変換部を簡易に製造することができる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。以下に、本実施形態の変形例を説明する。
上述では、変換素子54の間隙に光ファイバ71を配置した。この場合、各々の変換素子54では、その間隙に光ファイバ71が挿入されたことによって隣接の変換素子54との間で音響的なカップリングが発生して独立な素子としての機能を低下させることがある。すなわち、この音響的なカップリングが原因となって、光音響画像および超音波画像のいずれにおいても画質劣化を招く可能性がある。そこで、図15に示すように、光照射部15から照射した光が、電気音響変換部23を透過して被検体7に照射される。すなわち、電気音響変換部23は、光の透過が可能な材料によって構成される。電気音響変換部23の変換素子54は、透明な圧電材料であるPZNT単結晶ウェハを所定の厚さtに研磨した後、この単結晶板をダイシングソーによってピッチdで2次元状に切断し、この切断によって生じる幅bの間隙は光学的に透明な樹脂80を充填して硬化する。次に、2次元に配列された単結晶の第1の面には、夫々独立した電極73−1を、また第2の面には電極73−2をスパッタにより形成する。更に、電極73−2が装着された面には、音響的な音響マッチング層74と保護膜75を積層する。但し、音響マッチング層74や保護膜75にも光学的に透明な樹脂80を使用する。また電極73の材料には、例えば、液晶ディスプレイやプラズマディスプレイ等に用いられているITO(indium-tin-oxide)、In(Sn)等の透明導電性物質を用いる。このように透明導電性物質を電極73に用い、音響マッチング層74や保護膜75、更に変換素子54の間隙に充填した樹脂80に光学的に透明な樹脂を用い、変換素子54にも透明な圧電単結晶を使用する。これらの材料を更に透明な樹脂からなる支持台72に固定して構成した電気音響変換部23は、光学的に透明に構成することが可能となり、光照射部15より照射した光は、電気音響変換部23を透過して被検体7に照射することが可能となる。
なお上述では、光ファイバ71の配列間隔は、変換素子54の配列間隔によって決定されたが、図15の例では、このような制約が無いため、高密度に配列することが可能となる。光ファイバ71の配列間隔は、光音響走査における走査間隔を決定しており、従って、走査密度の高い光音響画像を得ることが可能となる。特に、照射光の指向性によって画像の空間分解能が決定される場合には、光の高密度走査により画質を改善することができる。
なお、図11に示した光一斉照射の場合、図16に示すように、1本又は数本の光ファイバ71からなる導波部14を介して光照射部15から出力される拡散光を、レンズ179で平行光線に変換して、光透過型の電気音響変換部23の全域に照射するようにしても良い。
上述の光走査部13は、複数配列された光ファイバ71を順次選択することによって、光照射位置の移動を行ったが、この方法によれば、導波部14における多くの光ファイバ71とこれらを選択する光走査部13が必要となり、装置を複雑にする。このような照射光の形成における問題点の改善を目的として、図17(a)、図17(b)に示すように、変換素子54の配列面に平行にスリット板178が配置される。このスリット板178のほぼ中央には、一方向にスリットが開けられており、このスリットを通過した光は、変換素子54の配列方向に対して広いビーム幅を有し、一方、この配列方向と直角なスライス方向においては細いビーム幅を有する。図17(b)に示したように、スリット板178の他に、光照射部15から出力された拡散光を進行方向に対して平行ビームに形成するレンズ79を備えている。光照射部15に供給される光は、光源部11あるいは光合波部12から導波部14によって直接導くことが可能であり、光走査部13は不要となる。この場合の導波部14は、光ファイバ71に限定されず、十分なパワーが得られるものであれば1チャンネルでもよい。
光源部11で発生した単色光は、例えば光ファイバ71で構成される導波部14によってアプリケータ70の光照射部15まで導かれ、その先端部より拡散して照射される。この拡散光は、レンズ179によって平行ビームに変換され、スリット板178のスリットに供給される。スリット板178のスリットを通過した光の配列方向のビーム幅とスライス方向のビーム幅は、スリットのそれぞれの方向における開口幅によって設定される。このスリットによってスライス方向のビーム幅が狭められた光は、光学的に透明な電気音響変換部23を透過して図17(b)に示した被検体7の光ビーム照射範囲に照射される。被検体7の血液中のヘモグロビンは、この照射光を吸収して音響波を発生する。音響波は、スリットに対応する1列又は数列分の変換素子54で電気信号に変換される。上述と同様に、電気信号の整相加算により、スリットに対応する一列の光照射位置に対応する複数の受信信号が生成される。スリット板178が往復移動している間、光は連続的又は断続的に照射され、またスリットの位置に応じた変換素子54による音響波の検出が繰り返される。スリット板178が往路又は復路を移動することにより、1ボリューム分の光音響走査が完了する。
スリット板178の採用は、導波部14における光ファイバ71の数を大幅に削減することができ、光走査部13を不要にすることができる。更に照射光は配列方向において連続的に照射されているため、受信時の遅延時間設定によって走査密度は自由に設定することが可能であり、光ファイバ71を使用した場合の制約を排除することができる。
スリット板178の採用と同様な効果は、図18に示すように、光照射部15を短軸長の複数の光ファイバ72から構成し、一列分の光ファイバ72と同じ本数の光ファイバ71から導波部14を構成し、導波部14を上記スリット板178と同様に移動する機構を設けることにより実現できる。図18の構成では、導波部14の断続的な移動を同期して、一列分の光ファイバ71の中から1本の光ファイバ71を光走査部13で順番に選択することにより、図7に示した光音響走査を実現できる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
本発明の実施形態における非侵襲生体情報映像装置の概略構成を示すブロック図。 図1の画像データ生成部のブロック図。 図1のアプリケータ内の光照射部と電気音響変換部の配列構造を示す平面略図。 図1のアプリケータ内の光照射部と電気音響変換部の配列構造を示す外観及び断面図。 図1のアプリケータの外観図。 本実施形態における光照射と近傍4素子による音響波検出を示す図。 図6に対応する光音響順次走査を示す図。 図7の補足図。 本実施形態における光照射と近傍36素子による音響波検出を示す図。 本実施形態における光音響並列走査を示す図。 本実施形態における光音響一斉走査を示す図。 本実施形態における光音響走査と超音波走査とのバリエーションを示すタイムチャート。 図1の信号処理部で生成される生体機能に関する画像データと組織形態に関する画像データとを示す模式図。 図4のアプリケータ内の光照射部と電気音響変換部の配列構造の作成方法を示す図。 図1のアプリケータの他の構造を示す断面図。 図1のアプリケータのさらに他の構造を示す断面図。 図1のアプリケータのさらに他の構造を示す断面図。 図1のアプリケータのさらに他の構造を示す断面図。 従来の光音響画像データの収集システムを示す図。
符号の説明
1…光送信部、2…画像データ生成部、4…システム制御部、5…操作部、6…表示部、7…被検体、11…光源部、12…光合波部、13…光走査部、14…導波部、15…光照射部、21…レート信号発生部、22…送受信部、23…電気音響変換部、24…走査制御部、25…信号処理部。

Claims (27)

  1. 特定波長成分を含む光を発生する光発生部と、
    前記光発生部が発生する光を被検体内に照射する光照射部と、
    前記光発生部により発生される光を前記光照射部に導く導波手段と、
    前記被検体からの音響波を電気信号に変換する2次元状に配列された複数の電気音響変換素子と、
    前記複数の電気音響変換素子を駆動して超音波を前記被検体に送信する送信手段と、
    前記複数の電気音響変換素子により変換された複数の電気信号から受信指向性を有する受信信号を生成する受信手段と、
    前記光照射部から照射した光によって前記被検体内に発生する音響波に対応する受信信号を処理して生体機能に関するボリュームデータを生成し、前記超音波の送信によって前記被検体内に発生するエコーに対応する受信信号を処理して組織形態に関するボリュームデータを生成する信号処理手段とを具備し、
    前記光照射部は、前記複数の電気音響変換素子とともに共通のボディインターフェースに形成され
    前記複数の電気音響変換素子は縦横に所定の間隙を隔てて配列され、複数の前記光照射部が前記間隙に離散的に配置されることを特徴とする非侵襲生体情報映像装置。
  2. 前記導波手段は複数の光ファイバから構成され、
    前記光照射部は前記複数の光ファイバの端部から構成され、
    前記複数の光ファイバの複数の端部は、前記間隙に離散的且つ2次元状に配列されることを特徴とする請求項1記載の非侵襲生体情報映像装置。
  3. 前記複数の光ファイバの端部の各々は、4つの電気音響変換素子に囲まれることを特徴とする請求項2記載の非侵襲生体情報映像装置。
  4. 前記複数の電気音響変換素子は、前記光の透過が可能な材料によって収納されて縦横に所定の間隙を隔てて配列され、
    前記導波手段は複数の光ファイバから構成され、
    前記光照射部は前記複数の光ファイバの端部から構成され、
    前記複数の光ファイバの複数の端部は、当該端部より照射される光が前記材料を透過し前記被検体に照射するよう配置されることを特徴とする請求項1記載の非侵襲生体情報映像装置。
  5. 前記複数の光ファイバの複数の端部から順番に光を前記被検体に照射するための光走査手段をさらに備えることを特徴とする請求項2または請求項4のいずれか1項に記載の非侵襲生体情報映像装置。
  6. 前記受信手段は、前記光の照射により発生する音響波に対応する受信信号を、前記光を照射した光ファイバの端部に近傍の所定数の電気音響変換素子の電気信号から生成することを特徴とする請求項5記載の非侵襲生体情報映像装置。
  7. 前記端部が所定距離以上離間する2以上の光ファイバの端部から光を同時に照射するための光走査手段をさらに備えることを特徴とする請求項2または請求項4のいずれか1項に記載の非侵襲生体情報映像装置。
  8. 前記受信手段は、前記光の照射により発生する音響波に対応する受信信号を、前記光を照射した光ファイバの端部に近傍の所定数の電気音響変換素子の電気信号から生成することを特徴とする請求項7記載の非侵襲生体情報映像装置。
  9. 前記複数の光ファイバの複数の端部から一斉に光を照射することを特徴とする請求項2または請求項4のいずれか1項に記載の非侵襲生体情報映像装置。
  10. 前記受信手段は、前記光ファイバ各々の端部に近傍の所定数の電気音響変換素子の電気信号から前記光ファイバ各々の端部に対応する受信信号を生成することを特徴とする請求項9記載の非侵襲生体情報映像装置。
  11. 前記光ファイバの端部からの光の照射と前記光の照射により発生する音響波の前記電気音響変換素子による検出とによる前記生体機能に関するボリュームデータを生成するための光音響走査と、前記電気音響変換素子による超音波の送信とエコーの検出とによる前記組織形態に関するボリュームデータを生成するための超音波走査とは、交互に行われることを特徴とする請求項2または請求項4のいずれか1項に記載の非侵襲生体情報映像装置。
  12. 前記前記生体機能に関するボリュームデータを生成するための前記光ファイバの端部からの光の照射と、前記組織形態に関するボリュームデータを生成するための前記電気音響変換素子による超音波の送信とは、交互に行われることを特徴とする請求項2または請求項4のいずれか1項に記載の非侵襲生体情報映像装置。
  13. 前記信号処理手段は、前記生体機能に関するボリュームデータと前記組織形態に関するボリュームデータとから同一断面に関する生体機能画像データと組織形態画像データとをそれぞれ生成することを特徴とする請求項1記載の非侵襲生体情報映像装置。
  14. 前記生体機能画像データは前記組織形態画像データと同一画面に並べて表示される若しくは前記生体機能画像データ又は前記組織形態画像データのうち一方を表示することを特徴とする請求項13記載の非侵襲生体情報映像装置。
  15. 前記生体機能画像データは前記組織形態画像データに重畳されて表示されることを特徴とする請求項13記載の非侵襲生体情報映像装置。
  16. 前記光は、前記複数の光照射位置から順番に照射されることを特徴とする請求項1記載の非侵襲生体情報映像装置。
  17. 前記光は、前記複数の光照射位置から一斉に照射されることを特徴とする請求項1記載の非侵襲生体情報映像装置。
  18. 前記光は、前記複数の光照射位置の中の離散的な所定数の光照射位置から同時に照射されることを特徴とする請求項1記載の非侵襲生体情報映像装置。
  19. 前記光の照射と前記超音波の送信とは交互に行われることを特徴とする請求項1記載の非侵襲生体情報映像装置。
  20. 前記信号処理手段は、
    前記電気音響変換素子により出力される電気信号を入力し、前記照射光に起因する音響波に基づいてボリュームに関する第1の画像データを生成する第1の画像データ生成手段と、
    前記電気音響変換素子により出力される電気信号を入力し、前記送信超音波に起因する音響波に基づいて前記ボリュームに関する第2の画像データを生成する第2の画像データ生成手段と、
    前記第1の画像データ及び前記第2の画像データを表示する表示手段と、を備えることを特徴とする請求項1記載の非侵襲生体情報映像装置。
  21. 前記送信手段は、前記電気音響変換素子と一部共通に用いられることを特徴とする請求項1記載の非侵襲生体情報映像装置。
  22. 前記光の波長は、530nmから1300nmの間のスペクトル域に含まれることを特徴とする請求項1に記載の非侵襲生体情報映像装置。
  23. 特定波長成分を含む光を発生する光発生部と、
    前記光発生部が発生する光を被検体内に照射する光照射部と、
    前記光発生部により発生される光を前記光照射部に導く導波手段と、
    前記被検体からの音響波を電気信号に変換する2次元状に配列された複数の電気音響変換素子と、
    前記複数の電気音響変換素子を駆動して超音波を前記被検体に送信する送信手段と、
    前記複数の電気音響変換素子により変換された複数の電気信号から受信指向性を有する受信信号を生成する受信手段と、
    前記光照射部から照射した光によって前記被検体内に発生する音響波に対応する受信信号を処理して生体機能に関するボリュームデータを生成し、前記超音波の送信によって前記被検体内に発生するエコーに対応する受信信号を処理して組織形態に関するボリュームデータを生成する信号処理手段とを具備し、
    前記光照射部は、前記複数の電気音響変換素子とともに共通のボディインターフェースに形成され、
    前記光は、前記複数の光照射位置から順番に照射されることを特徴とする非侵襲生体情報映像装置。
  24. 特定波長成分を含む光を発生する光発生部と、
    前記光発生部が発生する光を被検体内に照射する光照射部と、
    前記光発生部により発生される光を前記光照射部に導く導波手段と、
    前記被検体からの音響波を電気信号に変換する2次元状に配列された複数の電気音響変換素子と、
    前記複数の電気音響変換素子を駆動して超音波を前記被検体に送信する送信手段と、
    前記複数の電気音響変換素子により変換された複数の電気信号から受信指向性を有する受信信号を生成する受信手段と、
    前記光照射部から照射した光によって前記被検体内に発生する音響波に対応する受信信号を処理して生体機能に関するボリュームデータを生成し、前記超音波の送信によって前記被検体内に発生するエコーに対応する受信信号を処理して組織形態に関するボリュームデータを生成する信号処理手段とを具備し、
    前記光照射部は、前記複数の電気音響変換素子とともに共通のボディインターフェースに形成され、
    前記光は、前記複数の光照射位置から一斉に照射されることを特徴とする非侵襲生体情報映像装置。
  25. 特定波長成分を含む光を発生する光発生部と、
    前記光発生部が発生する光を被検体内に照射する光照射部と、
    前記光発生部により発生される光を前記光照射部に導く導波手段と、
    前記被検体からの音響波を電気信号に変換する2次元状に配列された複数の電気音響変換素子と、
    前記複数の電気音響変換素子を駆動して超音波を前記被検体に送信する送信手段と、
    前記複数の電気音響変換素子により変換された複数の電気信号から受信指向性を有する受信信号を生成する受信手段と、
    前記光照射部から照射した光によって前記被検体内に発生する音響波に対応する受信信号を処理して生体機能に関するボリュームデータを生成し、前記超音波の送信によって前記被検体内に発生するエコーに対応する受信信号を処理して組織形態に関するボリュームデータを生成する信号処理手段とを具備し、
    前記光照射部は、前記複数の電気音響変換素子とともに共通のボディインターフェースに形成され、
    前記光は、前記複数の光照射位置の中の離散的な所定数の光照射位置から同時に照射されることを特徴とする非侵襲生体情報映像装置。
  26. 特定波長成分を含む光を発生する光発生部と、
    前記光発生部が発生する光を被検体内に照射する光照射部と、
    前記光発生部により発生される光を前記光照射部に導く導波手段と、
    前記被検体からの音響波を電気信号に変換する2次元状に配列された複数の電気音響変換素子と、
    前記複数の電気音響変換素子を駆動して超音波を前記被検体に送信する送信手段と、
    前記複数の電気音響変換素子により変換された複数の電気信号から受信指向性を有する受信信号を生成する受信手段と、
    前記光照射部から照射した光によって前記被検体内に発生する音響波に対応する受信信号を処理して生体機能に関するボリュームデータを生成し、前記超音波の送信によって前記被検体内に発生するエコーに対応する受信信号を処理して組織形態に関するボリュームデータを生成する信号処理手段とを具備し、
    前記光照射部は、前記複数の電気音響変換素子とともに共通のボディインターフェースに形成され、
    前記光の照射と前記超音波の送信とは交互に行われることを特徴とする非侵襲生体情報映像装置。
  27. 特定波長成分を含む光を発生する光発生部と、
    前記光発生部が発生する光を被検体内に照射する光照射部と、
    前記光発生部により発生される光を前記光照射部に導く導波手段と、
    前記被検体からの音響波を電気信号に変換する2次元状に配列された複数の電気音響変換素子と、
    前記複数の電気音響変換素子を駆動して超音波を前記被検体に送信する送信手段と、
    前記複数の電気音響変換素子により変換された複数の電気信号から受信指向性を有する受信信号を生成する受信手段と、
    前記光照射部から照射した光によって前記被検体内に発生する音響波に対応する受信信号を処理して生体機能に関するボリュームデータを生成し、前記超音波の送信によって前記被検体内に発生するエコーに対応する受信信号を処理して組織形態に関するボリュームデータを生成する信号処理手段とを具備し、
    前記光照射部は、前記複数の電気音響変換素子とともに共通のボディインターフェースに形成され、
    前記信号処理手段は、
    前記電気音響変換素子により出力される電気信号を入力し、前記照射光に起因する音響波に基づいてボリュームに関する第1の画像データを生成する第1の画像データ生成手段と、
    前記電気音響変換素子により出力される電気信号を入力し、前記送信超音波に起因する音響波に基づいて前記ボリュームに関する第2の画像データを生成する第2の画像データ生成手段と、
    前記第1の画像データ及び前記第2の画像データを表示する表示手段と、を備えることを特徴とする非侵襲生体情報映像装置。
JP2004030578A 2004-02-06 2004-02-06 非侵襲生体情報映像装置 Expired - Fee Related JP4643153B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004030578A JP4643153B2 (ja) 2004-02-06 2004-02-06 非侵襲生体情報映像装置
CA2462378A CA2462378C (en) 2004-02-06 2004-03-26 Non-invasive subject-information imaging method and apparatus
US10/812,884 US8353830B2 (en) 2004-02-06 2004-03-31 Non-invasive subject-information imaging method and apparatus
DE602004014095T DE602004014095D1 (de) 2004-02-06 2004-03-31 Verfahren und Gerät zur nichtinvasiven Diagnostik-Bilderzeugung
EP04251911A EP1561424B1 (en) 2004-02-06 2004-03-31 Non-invasive diagnostic imaging method and apparatus
CNB2004100366546A CN100353910C (zh) 2004-02-06 2004-04-29 非探入式受检体信息成象装置
KR1020040030120A KR100686409B1 (ko) 2004-02-06 2004-04-29 비침습적 생체정보 영상화 방법 및 장치
US12/950,689 US8480584B2 (en) 2004-02-06 2010-11-19 Non-invasive subject-information imaging method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030578A JP4643153B2 (ja) 2004-02-06 2004-02-06 非侵襲生体情報映像装置

Publications (2)

Publication Number Publication Date
JP2005218684A JP2005218684A (ja) 2005-08-18
JP4643153B2 true JP4643153B2 (ja) 2011-03-02

Family

ID=34675554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030578A Expired - Fee Related JP4643153B2 (ja) 2004-02-06 2004-02-06 非侵襲生体情報映像装置

Country Status (7)

Country Link
US (2) US8353830B2 (ja)
EP (1) EP1561424B1 (ja)
JP (1) JP4643153B2 (ja)
KR (1) KR100686409B1 (ja)
CN (1) CN100353910C (ja)
CA (1) CA2462378C (ja)
DE (1) DE602004014095D1 (ja)

Families Citing this family (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080154257A1 (en) * 2006-12-22 2008-06-26 Shiva Sharareh Real-time optoacoustic monitoring with electophysiologic catheters
US8071491B2 (en) * 2001-11-07 2011-12-06 FledForm Technologies, LLC Process, composition and coating of laminate material
EP1647225B1 (en) * 2003-07-22 2018-06-06 Toshiba Medical Systems Corporation Biological information measurement device
JP4947440B2 (ja) * 2005-11-10 2012-06-06 バイオボーション・アーゲー 身体組織中のグルコース・レベルを割り出すための装置
WO2007072490A1 (en) * 2005-12-23 2007-06-28 Ultraview Ltd. An operating mode for ultrasound imaging systems
WO2007084981A2 (en) * 2006-01-19 2007-07-26 The Regents Of The University Of Michigan System and method for photoacoustic imaging and monitoring of laser therapy
WO2007100937A2 (en) * 2006-01-19 2007-09-07 The Regents Of The University Of Michigan System and method for spectroscopic photoacoustic tomography
JPWO2007088709A1 (ja) * 2006-01-31 2009-06-25 関西ティー・エル・オー株式会社 光音響断層撮影装置及び光音響断層撮影方法
US7750536B2 (en) 2006-03-02 2010-07-06 Visualsonics Inc. High frequency ultrasonic transducer and matching layer comprising cyanoacrylate
JP4559995B2 (ja) * 2006-03-30 2010-10-13 株式会社東芝 腫瘍検査装置
EP2034878A2 (en) 2006-06-23 2009-03-18 Koninklijke Philips Electronics N.V. Timing controller for combined photoacoustic and ultrasound imager
RU2457776C2 (ru) * 2006-11-21 2012-08-10 Конинклейке Филипс Электроникс Н.В. Система, устройство, способ, машиночитаемый носитель и применение для визуализации ткани in vivo в анатомической структуре
US20080123083A1 (en) * 2006-11-29 2008-05-29 The Regents Of The University Of Michigan System and Method for Photoacoustic Guided Diffuse Optical Imaging
US9561017B2 (en) 2006-12-19 2017-02-07 Koninklijke Philips N.V. Combined photoacoustic and ultrasound imaging system
US20080173093A1 (en) * 2007-01-18 2008-07-24 The Regents Of The University Of Michigan System and method for photoacoustic tomography of joints
KR100871074B1 (ko) * 2007-02-01 2008-11-28 삼성전자주식회사 비침습형 혈당 측정 장치 및 그 방법
WO2008103982A2 (en) * 2007-02-23 2008-08-28 The Regents Of The University Of Michigan System and method for monitoring photodynamic therapy
US20080228073A1 (en) * 2007-03-12 2008-09-18 Silverman Ronald H System and method for optoacoustic imaging of peripheral tissues
JP4739363B2 (ja) * 2007-05-15 2011-08-03 キヤノン株式会社 生体情報イメージング装置、生体情報の解析方法、及び生体情報のイメージング方法
US20090005685A1 (en) * 2007-06-29 2009-01-01 Canon Kabushiki Kaisha Ultrasonic probe and inspection apparatus equipped with the ultrasonic probe
JP4914786B2 (ja) * 2007-08-28 2012-04-11 オリンパス株式会社 被検体内位置検出システム
JP5219440B2 (ja) * 2007-09-12 2013-06-26 キヤノン株式会社 測定装置
JP5317449B2 (ja) * 2007-09-12 2013-10-16 キヤノン株式会社 測定装置
JP2009066110A (ja) * 2007-09-12 2009-04-02 Canon Inc 測定装置
US20090076396A1 (en) * 2007-09-17 2009-03-19 The General Hospital Corporation Optical wavelength range for high contrast imaging of cancer
US8529454B2 (en) * 2007-12-10 2013-09-10 Stc.Unm Photoacoustic imaging devices and methods of imaging
JP5284129B2 (ja) * 2008-02-06 2013-09-11 キヤノン株式会社 イメージング装置、及び解析方法
US8880141B2 (en) * 2008-05-30 2014-11-04 Stc. Unm Photoacoustic imaging devices and methods of making and using the same
JP5294998B2 (ja) * 2008-06-18 2013-09-18 キヤノン株式会社 超音波探触子、該超音波探触子を備えた光音響・超音波システム並びに検体イメージング装置
JP5159803B2 (ja) * 2008-06-18 2013-03-13 キヤノン株式会社 被検体情報取得装置
JP4448189B2 (ja) * 2008-06-18 2010-04-07 キヤノン株式会社 生体情報取得装置
JP4829934B2 (ja) * 2008-07-11 2011-12-07 キヤノン株式会社 検査装置
EP2328480B1 (en) 2008-07-18 2016-01-06 University Of Rochester Low-cost device for c-scan photoacoustic imaging
JP5749164B2 (ja) * 2008-07-25 2015-07-15 ヘルムホルツ・ツェントルム・ミュンヒェン・ドイチェス・フォルシュンクスツェントルム・フューア・ゲズントハイト・ウント・ウムベルト(ゲーエムベーハー)Helmholtz Zentrum MuenchenDeutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH) 組織バイオマーカーの定量的多重スペクトル光音響トモグラフィ
JP5210087B2 (ja) * 2008-08-14 2013-06-12 富士フイルム株式会社 光超音波断層画像化装置
US8187897B2 (en) * 2008-08-19 2012-05-29 International Business Machines Corporation Fabricating product chips and die with a feature pattern that contains information relating to the product chip
JP5419404B2 (ja) * 2008-09-04 2014-02-19 キヤノン株式会社 光音響装置
JP5451014B2 (ja) * 2008-09-10 2014-03-26 キヤノン株式会社 光音響装置
JP2010125260A (ja) * 2008-12-01 2010-06-10 Canon Inc 生体検査装置
JP5241465B2 (ja) * 2008-12-11 2013-07-17 キヤノン株式会社 光音響イメージング装置および光音響イメージング方法
US20100160790A1 (en) * 2008-12-23 2010-06-24 Effiong Etukudo Iboksunnyvale Wearable photoacoustic vascular imaging system
EP2422185A4 (en) * 2009-04-20 2013-02-13 Univ Missouri PHOTOACOUSTIC DETECTION OF SUBSTANCES TO BE ANALYZED IN SOLID TISSUE AND DETECTION SYSTEM
CN102573621A (zh) * 2009-05-01 2012-07-11 视声公司 用于光声成像的系统及方法
JP5393256B2 (ja) * 2009-05-25 2014-01-22 キヤノン株式会社 超音波装置
EP2449362B1 (en) 2009-06-29 2016-09-28 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Thermoacoustic imaging with quantitative extraction of absorption map
EP2459987A1 (en) 2009-07-27 2012-06-06 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Imaging device and method for optoacoustic imaging of small animals
JP5713550B2 (ja) * 2009-09-30 2015-05-07 キヤノン株式会社 被検体情報処理装置
JP5692988B2 (ja) * 2009-10-19 2015-04-01 キヤノン株式会社 音響波測定装置
JP5709368B2 (ja) * 2009-11-04 2015-04-30 キヤノン株式会社 生体情報取得装置
JP5528083B2 (ja) * 2009-12-11 2014-06-25 キヤノン株式会社 画像生成装置、画像生成方法、及び、プログラム
TWI405560B (zh) * 2009-12-15 2013-08-21 Nat Univ Tsing Hua 鈣化點成像方法及系統
JP5518096B2 (ja) * 2009-12-17 2014-06-11 キヤノン株式会社 測定システム、画像形成方法及びプログラム
JP5448785B2 (ja) * 2009-12-18 2014-03-19 キヤノン株式会社 測定装置、移動制御方法及びプログラム
JP5634077B2 (ja) * 2010-02-02 2014-12-03 キヤノン株式会社 音響波受信装置
JP5818444B2 (ja) * 2010-02-04 2015-11-18 キヤノン株式会社 機能情報取得装置、機能情報取得方法、及びプログラム
JP5424933B2 (ja) * 2010-02-23 2014-02-26 キヤノン株式会社 生体情報処理装置
JP5448918B2 (ja) * 2010-02-24 2014-03-19 キヤノン株式会社 生体情報処理装置
JP5441781B2 (ja) * 2010-03-25 2014-03-12 キヤノン株式会社 光音響イメージング装置、光音響イメージング方法及びプログラム
JP5553672B2 (ja) * 2010-04-26 2014-07-16 キヤノン株式会社 音響波測定装置および音響波測定方法
US20130190591A1 (en) * 2010-04-30 2013-07-25 Desmond Hirson Photoacoustic transducer and imaging system
JP5761935B2 (ja) 2010-07-22 2015-08-12 キヤノン株式会社 被検体情報取得装置、被検体情報取得方法および被検体情報取得プログラム
US8904871B2 (en) * 2010-07-23 2014-12-09 Board Of Regents, The University Of Texas System Temperature dependent photoacoustic imaging
US9289191B2 (en) 2011-10-12 2016-03-22 Seno Medical Instruments, Inc. System and method for acquiring optoacoustic data and producing parametric maps thereof
JP2012075555A (ja) * 2010-09-30 2012-04-19 Advantest Corp 変換器および測定装置
US8839672B2 (en) * 2010-10-19 2014-09-23 Board Of Regents, The University Of Texas System Combined ultrasound and photoacoustic imaging of metal objects
JP5653882B2 (ja) 2010-10-27 2015-01-14 富士フイルム株式会社 光音響撮像装置およびその作動方法
TWI430778B (zh) * 2010-12-24 2014-03-21 Pai Chi Li 醫學成像系統及其醫學成像方法
JP5697615B2 (ja) 2011-02-07 2015-04-08 富士フイルム株式会社 超音波プローブ
JP5611859B2 (ja) * 2011-02-24 2014-10-22 富士フイルム株式会社 光音響画像化装置の故障検知方法
JP5796896B2 (ja) * 2011-03-10 2015-10-21 富士フイルム株式会社 断層画像生成装置及び方法
JP6010306B2 (ja) * 2011-03-10 2016-10-19 富士フイルム株式会社 光音響計測装置
JP5584154B2 (ja) * 2011-03-16 2014-09-03 富士フイルム株式会社 光音響画像化装置および光音響画像化方法並びに光音響画像化装置用プローブ
JP5655021B2 (ja) * 2011-03-29 2015-01-14 富士フイルム株式会社 光音響画像化方法および装置
JP2012210337A (ja) * 2011-03-31 2012-11-01 Fujifilm Corp 光音響画像化装置およびその故障検知方法
JP5777394B2 (ja) * 2011-04-28 2015-09-09 富士フイルム株式会社 光音響画像化方法および装置
JP5959803B2 (ja) * 2011-05-02 2016-08-02 キヤノン株式会社 被検体情報取得装置およびその制御方法
JP6012216B2 (ja) * 2011-05-12 2016-10-25 キヤノン株式会社 被検体情報取得装置及び被検体情報取得方法
JP2016209725A (ja) * 2011-05-12 2016-12-15 キヤノン株式会社 被検体情報取得装置及び被検体情報取得方法
JP5864904B2 (ja) * 2011-05-20 2016-02-17 キヤノン株式会社 生体情報取得装置
US10076245B2 (en) 2011-06-22 2018-09-18 Canon Kabushiki Kaisha Specimen information acquisition apparatus and specimen information acquisition method
US20140150182A1 (en) * 2011-07-26 2014-06-05 Canon Kabushiki Kaisha Property information acquiring apparatus
JP5681675B2 (ja) * 2011-07-29 2015-03-11 富士フイルム株式会社 光音響画像生成装置及び音響波ユニット
JP5713968B2 (ja) * 2011-07-29 2015-05-07 富士フイルム株式会社 光音響画像生成装置及び音響波ユニット
JP5662973B2 (ja) * 2011-07-29 2015-02-04 富士フイルム株式会社 レーザ光源ユニット、その制御方法、光音響画像生成装置及び方法
TW201310018A (zh) * 2011-08-19 2013-03-01 Ind Tech Res Inst 光聲影像裝置
JP5208255B2 (ja) * 2011-09-15 2013-06-12 キヤノン株式会社 測定装置
FI124387B (en) * 2011-11-01 2014-08-15 Oscare Medical Oy Bone method and arrangement utilizing electromagnetic waves
US20130116538A1 (en) 2011-11-02 2013-05-09 Seno Medical Instruments, Inc. Optoacoustic imaging systems and methods with enhanced safety
US9757092B2 (en) * 2011-11-02 2017-09-12 Seno Medical Instruments, Inc. Method for dual modality optoacoustic imaging
US20130338475A1 (en) 2012-06-13 2013-12-19 Seno Medical Instruments, Inc. Optoacoustic imaging system with fiber optic cable
US11191435B2 (en) 2013-01-22 2021-12-07 Seno Medical Instruments, Inc. Probe with optoacoustic isolator
US9445786B2 (en) 2011-11-02 2016-09-20 Seno Medical Instruments, Inc. Interframe energy normalization in an optoacoustic imaging system
US9730587B2 (en) 2011-11-02 2017-08-15 Seno Medical Instruments, Inc. Diagnostic simulator
US20140005544A1 (en) 2011-11-02 2014-01-02 Seno Medical Instruments, Inc. System and method for providing selective channel sensitivity in an optoacoustic imaging system
US20130289381A1 (en) 2011-11-02 2013-10-31 Seno Medical Instruments, Inc. Dual modality imaging system for coregistered functional and anatomical mapping
US9814394B2 (en) 2011-11-02 2017-11-14 Seno Medical Instruments, Inc. Noise suppression in an optoacoustic system
US9743839B2 (en) 2011-11-02 2017-08-29 Seno Medical Instruments, Inc. Playback mode in an optoacoustic imaging system
US10433732B2 (en) 2011-11-02 2019-10-08 Seno Medical Instruments, Inc. Optoacoustic imaging system having handheld probe utilizing optically reflective material
US11287309B2 (en) 2011-11-02 2022-03-29 Seno Medical Instruments, Inc. Optoacoustic component utilization tracking
MX2014005408A (es) * 2011-11-02 2015-02-12 Seno Medical Instr Inc Sistema de imagenología de modalidad doble para mapeo funcional y anatómico corregistrado.
JP5779567B2 (ja) * 2011-11-22 2015-09-16 富士フイルム株式会社 光音響信号処理装置及び方法
JP5779169B2 (ja) * 2011-12-28 2015-09-16 富士フイルム株式会社 音響画像生成装置およびそれを用いて画像を生成する際の進捗状況の表示方法
EP2806803B1 (en) * 2012-01-23 2019-03-13 Tomowave Laboratories, Inc. Laser optoacoustic ultrasonic imaging system (louis) and methods of use
KR101907948B1 (ko) * 2012-01-30 2018-10-16 한국전자통신연구원 광음향 영상 장치
JP5762995B2 (ja) * 2012-02-28 2015-08-12 富士フイルム株式会社 光音響画像生成装置及び方法
JP6025345B2 (ja) 2012-03-02 2016-11-16 キヤノン株式会社 被検体情報取得装置
KR102105728B1 (ko) * 2012-03-09 2020-04-28 세노 메디컬 인스투르먼츠 인코포레이티드 광음향 이미징 시스템에서의 통계적 매핑
JP6004714B2 (ja) * 2012-04-12 2016-10-12 キヤノン株式会社 被検体情報取得装置およびその制御方法
JP5840069B2 (ja) 2012-05-08 2016-01-06 富士フイルム株式会社 光音響画像生成装置、システム、及び方法
JP6261159B2 (ja) * 2012-06-01 2018-01-17 キヤノン株式会社 被検体情報取得装置および被検体情報の取得方法
MX2014015274A (es) * 2012-06-13 2015-02-20 Seno Medical Instr Inc Sistema y metodo para producir mapas parametricos de datos optoacusticos.
JP2014023914A (ja) * 2012-06-20 2014-02-06 Fujifilm Corp プローブ及びその保護カバー
WO2014036630A1 (en) * 2012-09-04 2014-03-13 Ryerson University Method, system and apparatus for the detection, characterization and classification of particles using photoacoustic and ultrasound techniques
US20140100437A1 (en) * 2012-10-04 2014-04-10 Chang Gung Medical Foundation Chang Gung Memorial Hospital, Linkou Non-invasive diagnostic method for breast cancer
JP6029413B2 (ja) * 2012-10-12 2016-11-24 キヤノン株式会社 プローブ及び被検体情報取得装置
JP6150496B2 (ja) 2012-11-12 2017-06-21 キヤノン株式会社 被検体情報取得装置およびその制御方法
JP6305742B2 (ja) 2012-11-30 2018-04-04 キヤノンメディカルシステムズ株式会社 医用画像診断装置、表示方法
EP2742854B1 (en) 2012-12-11 2021-03-10 iThera Medical GmbH Handheld device and method for tomographic optoacoustic imaging of an object
JP6086719B2 (ja) * 2012-12-25 2017-03-01 オリンパス株式会社 光音響顕微鏡
JP6086718B2 (ja) * 2012-12-25 2017-03-01 オリンパス株式会社 光音響顕微鏡
WO2014103106A1 (ja) * 2012-12-25 2014-07-03 オリンパス株式会社 光音響顕微鏡
EP2749209A1 (en) * 2012-12-28 2014-07-02 Canon Kabushiki Kaisha Object information acquisition apparatus, display method, and program
JP6292836B2 (ja) 2012-12-28 2018-03-14 キヤノン株式会社 被検体情報取得装置、表示方法、プログラム、処理装置
JP2018086291A (ja) * 2012-12-28 2018-06-07 キヤノン株式会社 被検体情報取得装置、表示方法、プログラム、処理装置
US20140182383A1 (en) 2012-12-28 2014-07-03 Canon Kabushiki Kaisha Object information obtaining device, display method, and non-transitory computer-readable storage medium
EP2754388B1 (en) 2013-01-15 2020-09-09 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH System and method for quality-enhanced high-rate optoacoustic imaging of an object
KR101502572B1 (ko) * 2013-02-19 2015-03-12 삼성메디슨 주식회사 복합 영상 장치 및 복합 영상 장치를 제어하는 방법
US9398893B2 (en) * 2013-03-15 2016-07-26 Seno Medical Instruments, Inc. System and method for diagnostic vector classification support
JP5924298B2 (ja) * 2013-03-19 2016-05-25 コニカミノルタ株式会社 超音波探触子及び超音波画像診断装置
JP6238539B2 (ja) * 2013-03-21 2017-11-29 キヤノン株式会社 処理装置、被検体情報取得装置、および、処理方法
JP6161941B2 (ja) * 2013-04-15 2017-07-12 株式会社アドバンテスト 光音響波測定器、光音響波測定装置、方法、プログラム、記録媒体
JP6139234B2 (ja) * 2013-04-15 2017-05-31 株式会社アドバンテスト 光音響波測定器
JP2014213158A (ja) * 2013-04-30 2014-11-17 富士フイルム株式会社 音響波計測装置
US20140346329A1 (en) * 2013-05-24 2014-11-27 Fujifilm Sonosite, Inc. Photoacoustic transducer with optical feedback
JP6253323B2 (ja) * 2013-09-26 2017-12-27 キヤノン株式会社 被検体情報取得装置およびその制御方法
KR102185362B1 (ko) 2013-10-08 2020-12-02 삼성전자주식회사 초음파 프로브 및 이를 포함한 의료 장치
WO2015054688A2 (en) 2013-10-11 2015-04-16 Seno Medical Instruments, Inc. Systems and methods for component separation in medical imaging
KR20150046637A (ko) * 2013-10-22 2015-04-30 삼성전자주식회사 광음향 이미지와 초음파 이미지를 위한 광대역 초음파 프로브
EP2868279A1 (en) * 2013-10-31 2015-05-06 Canon Kabushiki Kaisha Subject information acquisition apparatus
JP5766273B2 (ja) * 2013-12-26 2015-08-19 キヤノン株式会社 測定装置
JP2014073411A (ja) * 2013-12-26 2014-04-24 Canon Inc 被検体情報処理装置
KR102168579B1 (ko) 2014-01-06 2020-10-21 삼성전자주식회사 트랜스듀서 지지체, 초음파 프로브 장치 및 초음파 영상 장치
JP6049215B2 (ja) * 2014-01-16 2016-12-21 富士フイルム株式会社 光音響計測装置並びにそれに利用される信号処理装置および信号処理方法
US10258241B2 (en) 2014-02-27 2019-04-16 Seno Medical Instruments, Inc. Probe adapted to control blood flow through vessels during imaging and method of use of same
JP2017507736A (ja) 2014-03-12 2017-03-23 フジフィルム ソノサイト インコーポレイテッド 統合中心整合層を伴う超音波レンズを有する高周波数超音波変換器
JP6464165B2 (ja) * 2014-06-26 2019-02-06 富士フイルム株式会社 光音響計測装置及び光音響計測用プローブ
US20170231503A1 (en) * 2014-08-12 2017-08-17 Prexion Corporation Photo-Acoustic Imaging Device
JP2016049125A (ja) * 2014-08-28 2016-04-11 プレキシオン株式会社 光音響波検出器、及び装置光音響画像化装置
WO2016047049A1 (ja) 2014-09-24 2016-03-31 富士フイルム株式会社 光音響画像生成方法および装置
JP5932932B2 (ja) * 2014-10-02 2016-06-08 キヤノン株式会社 光音響装置
JP6621819B2 (ja) 2014-10-30 2019-12-18 セノ メディカル インストルメンツ,インク. 音響波を用いた光源および音響レシーバの相対的な向きの検出を伴う光音響撮像システム
JP6478570B2 (ja) * 2014-11-12 2019-03-06 キヤノン株式会社 プローブ及び被検体情報取得装置
JP6399911B2 (ja) * 2014-11-28 2018-10-03 キヤノン株式会社 被検体情報取得装置
JP6723727B2 (ja) 2014-11-28 2020-07-15 キヤノン株式会社 プローブ、及び被検体情報取得装置
JP6525565B2 (ja) * 2014-11-28 2019-06-05 キヤノン株式会社 被検体情報取得装置および被検体情報取得方法
JP5901739B2 (ja) * 2014-12-22 2016-04-13 キヤノン株式会社 被検体情報処理装置
GB201500641D0 (en) * 2015-01-15 2015-03-04 Ucl Business Plc Ultrasound probe
JP6732476B2 (ja) * 2015-03-04 2020-07-29 キヤノン株式会社 被検体情報取得装置
US9861319B2 (en) 2015-03-23 2018-01-09 University Of Kentucky Research Foundation Noncontact three-dimensional diffuse optical imaging of deep tissue blood flow distribution
KR101638588B1 (ko) 2015-04-23 2016-07-12 포항공과대학교 산학협력단 소화기관의 비침습적 이미징 장치
JP6100322B2 (ja) * 2015-07-02 2017-03-22 キヤノン株式会社 音響波測定装置および音響波測定方法
US20170055844A1 (en) * 2015-08-27 2017-03-02 Canon Kabushiki Kaisha Apparatus and method for acquiring object information
WO2017096406A1 (en) * 2015-12-04 2017-06-08 The Research Foundation For The State University Of New York Devices and methods for photoacoustic tomography
JP6632368B2 (ja) * 2015-12-21 2020-01-22 キヤノン株式会社 情報処理装置、光音響装置、情報処理方法、及びプログラム
RU169745U1 (ru) * 2016-06-21 2017-03-30 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр Институт прикладной физики Российской академии наук" (ИПФ РАН) Оптоакустический микроскоп для биоимиджинга
WO2018049415A1 (en) * 2016-09-12 2018-03-15 Board Of Regents, The University Of Texas System Ultrasound-guided optoacoustic monitoring of oxygen saturation
JP6812193B2 (ja) 2016-10-07 2021-01-13 キヤノン株式会社 画像表示システム、画像表示方法、及びプログラム
US11096657B2 (en) * 2016-12-05 2021-08-24 Fujifilm Sonosite, Inc. Laser light source for instrument tip visualization
JP2018093901A (ja) * 2016-12-08 2018-06-21 国立大学法人 東京大学 光音響センサおよび血流診断システム
JP2018126389A (ja) * 2017-02-09 2018-08-16 キヤノン株式会社 情報処理装置、情報処理方法、およびプログラム
CN106897715A (zh) * 2017-03-31 2017-06-27 努比亚技术有限公司 一种指纹解锁处理方法及移动终端
JP6526163B2 (ja) * 2017-11-28 2019-06-05 キヤノン株式会社 光音響トモグラフィの受信データ処理装置
CN108178121B (zh) * 2018-02-07 2024-05-03 北京先通康桥医药科技有限公司 触诊探头及其制造方法
CN112770677B (zh) * 2018-08-24 2024-10-15 数字谐波有限责任公司 随时间测量活细胞和组织中的振动频谱的系统和方法
CN111214208B (zh) * 2018-11-26 2023-04-11 上海科技大学 光声成像系统、传输及成像方法、装置及存储介质
US20220133273A1 (en) * 2019-02-11 2022-05-05 The Penn State Research Foundation Transparent ultrasound transducers for photoacoustic imaging
KR102262755B1 (ko) * 2019-05-15 2021-06-08 서강대학교산학협력단 초음파 변환기 및 초음파 변환기의 제작방법
KR102112699B1 (ko) * 2019-06-12 2020-05-19 주식회사 뷰노 시계열적 신호 시각화 방법 및 이를 이용한 장치
CN110623645A (zh) * 2019-10-18 2019-12-31 南昌航空大学 一种光学相干层析成像与光声成像集成装置
WO2021095230A1 (ja) * 2019-11-15 2021-05-20 日本電信電話株式会社 光音響分析方法および装置
CN111837135B (zh) * 2020-01-22 2024-04-30 深圳市汇顶科技股份有限公司 生物活体光声检测系统、生物信息检测装置、电子设备及生物活体检测方法
EP3859307A1 (en) * 2020-01-28 2021-08-04 Infineon Technologies AG Light emitting structure, photo-acoustic spectroscopy sensing device, method for operating a photo-acoustic spectroscopy sensing device and apparatus for obtaining an information about a target gas
US11857291B2 (en) * 2020-07-16 2024-01-02 Photosound Technologies Inc. Serial architecture and energy saving methods for ultrasound and thermoacoustic systems
CN112363238B (zh) * 2020-11-25 2022-09-06 上海长江电气设备集团有限公司 光幕光束对齐修正方法、光幕接收器、发射器及存储介质
CN112545457B (zh) * 2020-12-01 2023-04-18 浙江清华柔性电子技术研究院 脑成像检测装置及脑成像检测方法
KR102709881B1 (ko) * 2021-04-13 2024-09-26 주식회사 포스코 투명 초음파 센서 기반 광학-초음파 융합 내시경 프로브, 내시경 장치 및 카테터 장치
US11609326B2 (en) * 2021-05-11 2023-03-21 The Hong Kong Polytechnic University Transparent ultrasound transducer with light beam shaping and the method for assembling the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725835A (en) * 1980-07-23 1982-02-10 Olympus Optical Co Measuring device for bloodstream in bio-tissue
JPH03165257A (ja) * 1989-11-22 1991-07-17 Aloka Co Ltd 光音響映像装置
JP2001507952A (ja) * 1996-10-04 2001-06-19 オプトソニクス,インコーポレイテッド 光音響胸部スキャナ
JP2004000613A (ja) * 2002-05-17 2004-01-08 Ge Medical Systems Global Technology Co Llc サブトラクション撮像手法のための表示法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO833673L (no) 1983-10-10 1985-05-06 Isto Hamunen Anordning ved seilbrett
AU658177B2 (en) * 1991-03-07 1995-04-06 Masimo Corporation Signal processing apparatus and method
US5348002A (en) 1992-04-23 1994-09-20 Sirraya, Inc. Method and apparatus for material analysis
US5999836A (en) * 1995-06-06 1999-12-07 Nelson; Robert S. Enhanced high resolution breast imaging device and method utilizing non-ionizing radiation of narrow spectral bandwidth
US6216540B1 (en) * 1995-06-06 2001-04-17 Robert S. Nelson High resolution device and method for imaging concealed objects within an obscuring medium
US6309352B1 (en) 1996-01-31 2001-10-30 Board Of Regents, The University Of Texas System Real time optoacoustic monitoring of changes in tissue properties
US5840023A (en) 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
US5941821A (en) * 1997-11-25 1999-08-24 Trw Inc. Method and apparatus for noninvasive measurement of blood glucose by photoacoustics
US5977538A (en) * 1998-05-11 1999-11-02 Imarx Pharmaceutical Corp. Optoacoustic imaging system
DE59900103D1 (de) * 1999-10-01 2001-06-28 Storz Karl Gmbh & Co Kg Bildgebendes Verfahren zum Ermitteln des Zustands von Gewebe
CN1198536C (zh) * 1999-12-28 2005-04-27 平迪产品公司 血糖非侵入性分析的方法和设备
IL138073A0 (en) * 2000-08-24 2001-10-31 Glucon Inc Photoacoustic assay and imaging system
US6747735B2 (en) * 2000-12-13 2004-06-08 Spelman College Multiplex coherent raman spectroscopy detector and method
US6490470B1 (en) * 2001-06-19 2002-12-03 Optosonics, Inc. Thermoacoustic tissue scanner
US6537220B1 (en) * 2001-08-31 2003-03-25 Siemens Medical Solutions Usa, Inc. Ultrasound imaging with acquisition of imaging data in perpendicular scan planes
JP4406226B2 (ja) * 2003-07-02 2010-01-27 株式会社東芝 生体情報映像装置
EP1711101A1 (en) * 2004-01-15 2006-10-18 Glucon Inc. Wearable glucometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725835A (en) * 1980-07-23 1982-02-10 Olympus Optical Co Measuring device for bloodstream in bio-tissue
JPH03165257A (ja) * 1989-11-22 1991-07-17 Aloka Co Ltd 光音響映像装置
JP2001507952A (ja) * 1996-10-04 2001-06-19 オプトソニクス,インコーポレイテッド 光音響胸部スキャナ
JP2004000613A (ja) * 2002-05-17 2004-01-08 Ge Medical Systems Global Technology Co Llc サブトラクション撮像手法のための表示法

Also Published As

Publication number Publication date
US20110066023A1 (en) 2011-03-17
US20050187471A1 (en) 2005-08-25
EP1561424B1 (en) 2008-05-28
US8480584B2 (en) 2013-07-09
KR100686409B1 (ko) 2007-02-23
US8353830B2 (en) 2013-01-15
KR20050079610A (ko) 2005-08-10
CA2462378A1 (en) 2005-08-06
CA2462378C (en) 2011-03-01
JP2005218684A (ja) 2005-08-18
CN100353910C (zh) 2007-12-12
DE602004014095D1 (de) 2008-07-10
CN1650794A (zh) 2005-08-10
EP1561424A1 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
JP4643153B2 (ja) 非侵襲生体情報映像装置
JP4406226B2 (ja) 生体情報映像装置
JP5525787B2 (ja) 生体情報映像装置
JP5284129B2 (ja) イメージング装置、及び解析方法
US9220415B2 (en) Systems and methods for frequency-domain photoacoustic phased array imaging
EP1535575B1 (en) Optoacoustic imaging system
US5840023A (en) Optoacoustic imaging for medical diagnosis
JP6322578B2 (ja) 機能的および解剖学的同時表示マッピングのための二重モダリティ画像処理システム
JP5683383B2 (ja) 光音響撮像装置およびその作動方法
JP2018011950A (ja) 超音波及び光音響波に由来する情報を取得する装置、方法、及びプログラム
JP2018011949A (ja) 超音波画像及び光音響画像を表示させる装置、方法、及びプログラム
JP2013226335A (ja) 音響波診断装置および画像表示方法
JP2016171909A (ja) 超音波診断装置及び生体検査装置
JP6847234B2 (ja) 光音響画像生成装置
Singh Identification and elimination of reflection artifacts in biomedical photoacoustic imaging
CN116211339A (zh) 诊疗设备、控制方法及存储介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Ref document number: 4643153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees