JP2014213158A - 音響波計測装置 - Google Patents

音響波計測装置 Download PDF

Info

Publication number
JP2014213158A
JP2014213158A JP2013095676A JP2013095676A JP2014213158A JP 2014213158 A JP2014213158 A JP 2014213158A JP 2013095676 A JP2013095676 A JP 2013095676A JP 2013095676 A JP2013095676 A JP 2013095676A JP 2014213158 A JP2014213158 A JP 2014213158A
Authority
JP
Japan
Prior art keywords
acoustic wave
photoacoustic
amplification factor
wave
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013095676A
Other languages
English (en)
Inventor
村越 大
Masaru Murakoshi
大 村越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013095676A priority Critical patent/JP2014213158A/ja
Priority to PCT/JP2014/059795 priority patent/WO2014178257A1/ja
Publication of JP2014213158A publication Critical patent/JP2014213158A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/467Arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4417Constructional features of apparatus for radiation diagnosis related to combined acquisition of different diagnostic modalities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/899Combination of imaging systems with ancillary equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52033Gain control of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • G01S7/52084Constructional features related to particular user interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0204Acoustic sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Acoustics & Sound (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】音響波計測装置において、光音響波と反射音響波のそれぞれに合わせた増幅率で信号を増幅可能とする。
【解決手段】音響波検出器31は、被検体に対する光出射に起因して被検体内で発生した光音響波、及び、被検体に対して送信された音響波に対する反射音響波を検出する。増幅器42は、音響波検出器31が出力する光音響波の検出信号及び反射音響波の検出信号を増幅する。送受信制御部23は、増幅器42の増幅率を、光音響波の検出時と反射音響波の検出時とで個別に制御する。データ処理部22は、増幅された光音響波の検出信号及び反射音響波の検出信号に対してそれぞれ信号処理を行う。
【選択図】図2

Description

本発明は、音響波計測装置に関し、更に詳しくは、被検体への光出射後に光出射により被検体内で生じた光音響波と、送信された音響波に対する反射音響波とを検出する音響波計測装置に関する。
生体内部の状態を非侵襲で検査できる画像検査法の一種として、超音波検査法が知られている。超音波検査では、超音波(音響波)の送信及び受信が可能な超音波探触子を用いる。超音波探触子から被検体(生体)に超音波を送信させると、その超音波は生体内部を進んでいき、組織界面で反射する。その反射超音波を超音波探触子で検出し、検出信号に基づいて超音波画像を生成することで、被検体の内部を画像化することができる。
また、光音響効果を利用して生体の内部を画像化する光音響イメージングが知られている。一般に光音響イメージングでは、パルスレーザ光を生体内に照射する。生体内部では、生体組織がパルスレーザ光のエネルギーを吸収し、そのエネルギーによる断熱膨張により超音波(光音響信号)が発生する。この光音響信号を超音波探触子などで検出し、検出信号に基づいて光音響画像を生成することで、光音響信号に基づく生体内の可視化が可能である。
ここで、超音波画像と光音響画像との双方を生成し、両者を重畳して表示することが、特許文献1に記載されている。特許文献1では、反射超音波と光音響波との検出に、共通の電気音響変換部(検出手段)を用いる。特許文献1には、共通の検出器素子を用いて反射超音波と光音響波とを検出することで、超音波画像と光音響画像との間の位置合わせを最大限とし、二つの撮像方法の間の検出器と体との間の境界面の変化を最低限に抑えることができると記載されている。
特開2005−21380号公報
一般に、検出器素子の出力信号(検出信号)は小さく、検出信号を受信する受信回路には、検出信号を増幅するための増幅器(アンプ)が設けられる。反射超音波と光音響波とを共通の検出器素子で検出する場合、被検体内で発生する光音響波は反射超音波よりも弱いため、検出器素子から出力される光音響波の検出信号は反射超音波の検出信号よりも小さくなる。この場合、増幅器の増幅率(ゲイン)を反射超音波と光音響波のうちの一方に対して最適化すると、他方に対して最適ではなくなる。例えば、光音響波の検出信号の振幅に合わせて増幅器のゲインを設定すると、大きな反射超音波の検出信号が飽和レベルに達してクリップされる。また、反射超音波の検出信号の振幅に合わせてゲインを設定すると、増幅後の光音響波の検出信号の振幅が十分に大きくなく、超音波画像と光音響画像とを重ねて表示するときに、光音響画像が観察しにくくなる。
本発明は、上記に鑑み、光音響波と反射音響波のそれぞれに合わせた増幅率で信号を増幅できる光音響計測装置を提供することを目的とする。
上記目的を達成するために、本発明は、被検体に対する光出射に起因して被検体内で発生した光音響波、及び、被検体に対して送信された音響波に対する反射音響波を検出する音響波検出器素子を含むプローブと、音響波検出器素子が出力する光音響波の検出信号及び反射音響波の検出信号を増幅する増幅手段と、増幅手段の増幅率を、光音響波の検出時と反射音響波の検出時とで個別に制御する増幅率制御手段と、増幅された光音響波の検出信号及び反射音響波の検出信号に対してそれぞれ信号処理を行う信号処理手段とを備えたことを特徴とする音響波計測装置を提供する。
本発明の音響波計測装置では、光音響波及び反射音響波は、共通の音響波検出器素子で検出されてもよい。
本発明の音響波計測装置は、音響波検出器素子から被検体に向けて音響波を送信させる送信回路と、音響波検出器素子の接続先を、送信回路と増幅手段との間で切り替える送受信切替回路とを更に有する構成を採用できる。
増幅手段は、プローブ内に設けられた第1の増幅器と、プローブとケーブルを介して接続される、信号処理手段を含む信号処理ユニット内に設けられた第2の増幅器とを含んでいてもよい。
増幅率制御手段は、光音響波の検出時と反射超音波の検出時とのそれぞれで使用される増幅手段の増幅率を記憶するゲイン設定情報記憶部を参照して増幅手段の増幅率を制御することとしてもよい。
上記のゲイン設定情報記憶部は、増幅率とデータ取得条件とを対応付けて記憶していてもよい。
データ取得条件は被検体の撮影部位を含んでいてもよい。その場合、増幅率制御手段は、ゲイン設定情報記憶部から、光音響波及び反射音響波の検出を行う被検体の部位に対応する増幅率を読み出して増幅手段の増幅率を制御すればよい。
データ取得条件は光音響波の撮影対象を含んでいてもよい。その場合、増幅率制御手段は、ゲイン設定情報記憶部から、光音響波の撮影対象に対応する増幅率を読み出し、増幅手段の増幅率を制御すればよい。
データ取得条件は被検体に向けて出射される光の強度及び波長の少なくとも一方を含んでいてもよい。その場合、増幅率制御手段は、ゲイン設定情報記憶部から、被検体に向けて出射された光の強度及び波長の少なくとも一方に対応する増幅率を読み出し、増幅手段の増幅率を制御すればよい。
データ取得条件は使用されるプローブの識別情報を含んでいてもよい。その場合、増幅率制御手段は、ゲイン設定情報記憶部から、光音響波及び反射音響波の検出に用いられるプローブに対応する増幅率を読み出して増幅手段の増幅率を制御すればよい。
増幅率制御手段は、反射音響波の検出に対応した第1の期間では増幅手段の増幅率を反射音響波の検出信号の大きさに合わせた増幅率に制御し、光音響波の検出に対応した第2の期間では増幅手段の増幅率を光音響波の検出信号の大きさに合わせた増幅率に制御することが好ましい。
本発明の音響波計測装置において、光音響波の検出と反射音響波の検出とを交互に行うことができる。第1の期間は、被検体に対する音響波の送信から反射音響波の検出が開始するまでの間に開始されればよい。第2の期間は、反射音響波の検出終了から光音響波の検出が開始するまでの間に開始されればよい。
プローブは、光音響波及び反射音響波の少なくとも一方の検出時の増幅手段の増幅率を変更するための変更手段を更に含んでいてもよい。
本発明の音響波計測装置では、信号処理手段が、光音響波の検出信号に基づいて光音響画像を生成し、反射音響波の検出信号に基づいて反射音響波画像を生成する画像生成手段を含む構成を採用できる。この場合、音響波計測装置が、光音響画像と反射音響波画像とを重ねて、並べて、又は切り替えて画像表示装置に表示する画像表示制御手段を更に備える構成とすることが好ましい。
画像生成手段が、信号値と画像における画素の画素値との関係を定める表示条件を記憶する表示条件記憶部を参照して光音響画像及び反射超音波画像を生成することとしてもよい。
表示条件記憶部は、表示条件とデータ取得条件とを対応付けて記憶していてもよい。
データ取得条件は被検体の撮影部位を含んでいてもよい。その場合、画像生成手段は、表示条件記憶部から、光音響波及び反射音響波の検出を行った被検体の部位に対応する表示条件を読み出して光音響画像及び反射超音波画像を生成すればよい。
データ取得条件は光音響波の撮影対象を含んでいてもよい。その場合、画像生成手段は、表示条件記憶部から、光音響波の撮影対象に対応する表示条件を読み出し、光音響画像を生成すればよい。
データ取得条件は被検体に向けて出射される光の強度及び波長の少なくとも一方を含んでいてもよい。その場合、画像生成手段は、表示条件記憶部から、被検体に向けて出射された光の強度及び波長の少なくとも一方に対応する表示条件を読み出し、光音響画像を生成すればよい。
プローブが、光音響画像及び反射音響波画像の生成に使用される表示条件を変更するための変更手段を更に含んでいてもよい。
本発明では、光音響波の検出信号と反射音響波の検出信号とを増幅する増幅手段の増幅率を、光音響波の検出時と反射音響波の検出時とで、個別に制御する。このようにすることで、光音響波と反射音響波の大きさのそれぞれに合わせた増幅率で光音響波の検出信号と反射音響波の検出信号とを増幅することができる。
本発明の第1実施形態の音響波計測装置を示すブロック図。 プローブと信号処理制御部との接続を示すブロック図。 ゲイン設定情報記憶部に記憶されるゲイン設定情報の一例を示す図。 ゲイン設定情報記憶部に記憶されるゲイン設定情報の別の例を示す図。 ゲイン設定情報記憶部に記憶されるゲイン設定情報の更に別の例を示す図。 ゲイン設定情報記憶部に記憶されるゲイン設定情報の更に別の例を示す図。 ゲイン設定情報記憶部に記憶されるゲイン設定情報の更に別の例を示す図。 多段PGAで構成した増幅器を示すブロック図。 光音響画像及び反射超音波画像生成の動作手順を示すフローチャート。 光音響画像及び反射超音波画像の生成のタイミングチャート。 本発明の第2実施形態の音響波計測装置におけるプローブと信号処理制御部との接続を示すブロック図。 第2実施形態においてゲイン設定情報記憶部に記憶されるゲイン設定情報の例を示す図。 本発明の第3実施形態の音響波計測装置におけるプローブと信号処理制御部との接続を示すブロック図。 表示条件の一例を示すグラフ。 表示条件記憶部に記憶される表示条件の例を示す図。 変更手段を有するプローブを示す図。
以下、図面を参照し、本発明の実施の形態を詳細に説明する。図1は、本発明の第1実施形態の音響波計測装置(光音響画像生成装置)を示す。光音響画像生成装置10は、プローブ11、信号処理ユニット12、及び光源13を備える。なお、本発明の実施形態では、音響波として超音波を用いるが、超音波に限定されるものでは無く、被検対象や測定条件等に応じて適切な周波数を選択してさえいれば、可聴周波数の音響波を用いても良い。
光源13は、例えばレーザ光源として構成される。光源13は、例えばYAG(イットリウム・アルミニウム・ガーネット)や、Nd:YAG(ネオジウムYAG)、アレキサンドライトなどを用いた固体レーザを含む。プローブ11は、音響波検出器31と光出射部32とを有する。音響波検出器31は、被検体に対する光出射に起因して被検体内で発生した光音響波を検出する。また、検体に対して送信された超音波に対する反射超音波を検出する。光出射部32は、例えば導光板などを含む、光源13から出射した光を被検体方向に出射する。なお、被検体に対する光出射は、必ずしもプローブ11から行う必要はなく、プローブ11以外の場所から光出射を行うこととしてもよい。
プローブ11は、電気と光の複合ケーブルであるケーブル33を介して信号処理ユニット12及び光源13と接続される。光源13から出射した光は、光ファイバなどの光配線を通して光出射部32まで導光され、光出射部32から被検体に向けて出射される。音響波検出器31は、電気配線(信号線)を通じて光音響波の検出信号(光音響波信号)及び反射超音波の検出信号(反射超音波信号)を信号処理ユニット12に出力する。また、超音波の送信時は、信号処理ユニット12からの駆動信号が信号線を通して音響波検出器31に伝送され、音響波検出器31が駆動される。
信号処理ユニット12は、信号処理制御部21、データ処理部22、送受信制御部23、及び表示制御部24を有する。信号処理制御部21は、プローブ11が出力する光音響波信号及び反射超音波信号を受信する。また、プローブ11に対して駆動信号を送り、プローブ11から超音波を送信させる。送受信制御部23は、信号処理制御部21を制御し、超音波の送信、及び、光音響信号又は反射超音波信号の受信を制御する。また、光源13に対して光出射を指示する。
データ処理部22は、信号処理手段であり、光音響信号及び反射超音信号に対してそれぞれ信号処理を行う。データ処理部22が行う信号処理は例えば画像生成処理が含まれる。すなわち、データ処理部22は、光音響信号に基づいて光音響画像を生成し、反射超音波信号に基づいて反射超音波画像(反射音響波画像)を生成する画像生成手段を含む。光音響画像及び反射超音波画像の生成は、例えば画像再構成や、検波・対数変換などを含む。データ処理部22は、光音響画像の生成と反射超音波画像の生成とで、異なる画像生成手法を用いてもよい。表示制御部(画像表示制御手段)24は、生成された光音響画像と反射超音波画像とを、ディスプレイなどの表示部(画像表示装置)14に表示する。表示制御部24は、例えば光音響画像と反射超音波画像とを、重ねて、並べて、又は切り替えて表示する。
図2は、プローブ11と信号処理制御部21との接続を示す。信号処理制御部21は、パルサー(送信回路)41、増幅器42、AD変換器43、及び送受信切替回路44を有する。プローブ11の音響波検出器31は、例えば1次元的に配列された複数の検出器素子34を有する。信号処理制御部21は、プローブ11の検出器素子34の個数と同数の増幅器42及びAD変換器43を有している。ケーブル33は、少なくとも増幅器42の数と同数の信号線を有している。同一の信号線を用いて超音波の送信と光音響信号及び反射超音波信号の受信を行うために、送受信切替回路44が設けられる。送受信切替回路44は、信号線を介して各検出器素子34に接続されており、各検出器素子34の接続先を、パルサー41の出力と増幅器42の入力との間で切り替える。
送受信切替回路44は、光音響波及び反射超音波の検出時は、音響波検出器31の各検出器素子34と増幅器42とを接続する。増幅器42は、受信アンプであり、検出器素子34から出力される光音響信号及び反射超音波信号を増幅する。増幅器42は、可変ゲインアンプとして構成される。増幅器42の増幅率(ゲイン)は、送受信制御部23によって制御される。AD変換器43は、増幅された光音響信号及び反射超音波信号をサンプリングし、デジタルデータに変換する。デジタルデータに変換された光音響信号及び反射超音波信号は、画像生成手段を含むデータ処理部22で処理され、光音響画像及び反射超音波画像が生成される。
パルサー41は、音響波検出器31の検出器素子34から被検体に向けて超音波を送信させる送信回路である。送受信切替回路44は、超音波の送信時は、各検出器素子34とパルサー41とを接続する。パルサー41は、検出器素子34を駆動するための駆動信号(送信パルス)を出力する。パルサー41から出力された送信パルスは、送受信切替回路44を通して各検出器素子34に供給され、被検体に対する超音波送信が行われる。送信時と受信時とで、送受信切替回路44が各検出器素子34の接続先を切り替えることで、超音波送信時の駆動信号が増幅器42に入力されることを防ぐことができる。
なお、上記では、信号処理制御部21が、音響波検出器31の検出器素子34の数と同数の増幅器42及びAD変換器43を有することとしたが、これには限定されない。増幅器42及びAD変換器43の数は検出器素子34の数よりも少なくてもよく、音響波検出器31と増幅器42との間にマルチプレクサを設け、1つの増幅器42が複数の検出器素子34をカバーするように構成してもよい。また、上記では、光音響波及び反射超音波が共通の検出器素子34で検出されることとして説明したが、これには限定されない。音響波検出器31に、光音響波を検出するための検出器素子と反射超音波を検出するための検出器素子を設け、それらを切り替えて使用することとしてもよい。
光音響波の検出と反射超音波の検出とは、時間的に分離して行われる。例えば超音波の送信及び反射超音波の検出を行った後に、光照射及び光音響波の検出を行う。送受信制御部23は、増幅率制御手段としても働き、増幅器42の増幅率を、光音響波の検出時と反射超音波の検出時とで個別に制御する。増幅器42の増幅率を光音響波の検出時と反射超音波の検出時とで個別に制御することで、光音響信号と反射超音波信号とを、それぞれに合わせた増幅率で増幅することができる。送受信制御部23は、増幅率の制御の他に、送受信切替回路44の切り替えや、AD変換器43のサンプリング開始タイミングの制御なども行う。なお、増幅率が異なる光音響用の増幅器と反射超音波用の増幅器とを設け、スイッチなどの切替手段を用いて、送受信制御部23が、光音響波の検出時と反射超音波の検出時とで、信号ラインに接続される増幅器を、光音響用の増幅器と反射超音波用の増幅器との間で切り替えるように制御してもよい。
光音響波検出時及び反射超音波検出時の増幅器42の増幅率はプリセットされていてもよい。ゲイン設定情報記憶部25は、光音響波検出時と反射超音波検出時とのそれぞれで使用される増幅器42の増幅率に関する情報を記憶する。送受信制御部23は、ゲイン設定情報記憶部25を参照して増幅器42の増幅率を制御する。一般に、被検体内で発生する光音響波は反射超音波よりも弱い。ゲイン設定情報記憶部25は、音響波検出器31の検出器素子34から出力される光音響信号の大きさに合わせた増幅器42の増幅率と、反射超音波信号の大きさに合わせた増幅率とを記憶する。送受信制御部23は、ゲイン設定情報記憶部25から、光音響波の検出に対応した増幅率と反射超音波の検出に対応した増幅率とを読み出し、光音響波の検出と反射超音波の検出で、個別に増幅器42の増幅率を制御する。
例えば、ゲイン設定情報記憶部25は、光音響波の検出に対応した増幅器42の増幅率(利得)として30dBを記憶し、反射超音波の検出に対応した増幅器42の増幅率として20dBを記憶する。送受信制御部23は、例えば反射超音波の検出に対応した第1の期間では増幅器42の増幅率を20dBとし、光音響波の検出に対応した第2の期間では、増幅器42の増幅率を30dBとする。光音響波の検出時と反射超音波の検出時とで、それぞれの検出信号に合わせた増幅率を設定することで、光音響信号と反射音響信号のそれぞれに対して、増幅器42の増幅率を最適化できる。
なお、増幅器42の増幅率を時間経過と共に制御するSTC(sensitivity time control)と組み合わせ、深部からの光音響信号及び反射超音波信号ほど、増幅器42の増幅率が大きくなるように制御してもよい。例えば、光音響波の検出開始直後(t=0)における増幅器42の増幅率を30dBとし、時間経過と共に増幅率を30dBから増加させていってもよい。反射超音波についても同様に、検出開始直後では増幅器42の増幅率を20dBとし、時間経過と共に増幅率を20dBから増加させていってもよい。
増幅率のプリセットは、光音響波及び反射超音波を検出する際の条件であるデータ取得条件に関連付けられていてもよい。データ取得条件は、腕、頚部、手指関節などの撮影部位を含んでいてもよい。撮影部位に応じて、例えば血管などの光音響画像の関心対象が存在する深さ位置が異なることがあり、関心対象の位置が深いほど、光音響波及び反射超音波が減衰する。従って、関心対象の位置が深い部位ほど、増幅器42の増幅率を大きくすることが好ましい。
データ取得条件は、血管(動脈又は静脈)、注射針、薬剤などの光音響波の関心対象(撮影対象)を含んでいてもよい。関心対象に応じて、関心対象において発生する光音響波の強度が異なる場合がある。光音響波の強度は、光の波長と対象物の吸収率との関係で変化する。関心対象において発生する光音響波の強度が高いほど、増幅器42の増幅率を下げることが好ましい。例えば、波長752nmの光に対して、静脈は、動脈に比べて3倍ほど吸収率が高い。従って、関心対象が静脈のときの光音響波の増幅率は、関心像が動脈のときの増幅率に比べて、低く設定することが好ましい。また、血管は、その太さに応じて発生する光音響波の強度が変化する。細い血管を対象とする場合は、増幅率を上げることが好ましい。
データ取得条件は、被検体に向けて出射される光の強度及び波長の少なくとも一方を含んでいてもよい。被検体に向けて出射される光の波長は、光源レーザによって変わる。例えば光源13に、アレキサンドライトを用いた固体レーザを用いた場合は、波長752nmのレーザ光や、波長796nmのレーザ光が出射可能である。光源13に、Nd:YAGを用いた固体レーザを用いた場合は、レーザ光の波長は1064nmとなる。皮膚表面で単位面積あたりの安全上の許容光エネルギー(mJ/cm)は、波長に依存して変化する。例えば、波長752nmと波長1064nmとでは、波長1064nmの方が許容光エネルギーの安全しきい値が高い。従って、より強い光を被検体に照射可能である。レーザ光の強度は、例えば励起光(フラッシュランプ光)の強度で変えることができる。レーザ光の波長と強度とによって光音響波の強度が変化するため、発生する光音響波の強度に応じて増幅率を設定することが好ましい。
データ取得条件は、光音響波及び反射超音波の検出に用いられるプローブの機種を含んでいてもよい。信号処理ユニット12には、音響波検出器素子34の材料や、音響波検出器の構造(大きさ)、感度の周波数特性(3MHz、・・・、8MHz、20MHz)が異なる複数種類(機種)のプローブが接続可能である。使用するプローブが変わっても、データ処理部22で信号処理を行うときの光音響信号及び反射超音波信号の大きさが変わらないように、使用されたプローブに応じて、光音響波検出時及び反射超音波検出時の増幅器42の増幅率をそれぞれ制御することが好ましい。
ゲイン設定情報記憶部25は、例えば上記したようなデータ取得条件と増幅率とを対応付けて記憶する。ユーザは、入力部26などを用いてデータ取得条件を入力する。送受信制御部23は、入力されたデータ取得条件に対応する増幅率をゲイン設定情報記憶部25から読み出し、増幅器42の増幅率を制御する。ゲイン設定情報記憶部25に記憶された光音響波検出時の増幅率と、反射超音波検出時の増幅率とは、個別に設定可能である。
図3に、ゲイン設定情報記憶部25に記憶されるゲイン設定情報の一例を示す。この例では、データ取得条件は、被検体の撮影部位、すなわち光音響波及び反射超音波が検出される被検体の部位である。ゲイン設定情報記憶部25は、光音響波と反射超音波とのそれぞれに対し、頚部、腕、手指などの撮像部位と、それら部位で光音響波及び反射超音波が検出されるときに設定される増幅器42の増幅率とを対応付けて記憶する。送受信制御部23は、ゲイン設定情報記憶部25から、光音響波及び反射超音波の検出を行う被検体の部位に対応する増幅率を読み出して増幅器42の増幅率を制御する。
例えば、ユーザは、入力部26などを用いて撮像部位が「頚部」であることを入力する。その後、プローブ11を被検者の頚部に移動し、光音響画像及び反射超音波画像の生成を開始する。送受信制御部23は、ゲイン設定情報記憶部25から、「頚部」に対応した光音響波検出時の増幅率「40dB」と、反射超音波検出時の増幅率「25dB」を読み出す。送受信制御部22は、検出器素子34から光音響信号が出力されている期間では、増幅器42の増幅率を40dBに制御し、検出器素子34から反射超音波信号が出力されている期間では、増幅器42の増幅率を25dBに制御する。
図4に、ゲイン設定情報記憶部25に記憶されるゲイン設定情報の別の例を示す。この例では、データ取得条件は、光音響波の撮影対象(関心像)、すなわち光音響画像で画像化する対象である。ゲイン設定情報記憶部25は、血管、血管のうちの動脈、静脈、針、薬剤などの関心像と、光音響画像における関心像がそれらのときの増幅器42の増幅率とを対応付けて記憶する。送受信制御部23は、ゲイン設定情報記憶部25から、光音響波の関心像に対応する増幅率を読み出して増幅器42の増幅率を制御する。
例えば、ユーザは、入力部26などを用いて関心像が「動脈」であることを入力する。その後、プローブ11を所望の位置に移動し、光音響画像及び反射超音波画像の生成を開始する。送受信制御部23は、ゲイン設定情報記憶部25から、「動脈」に対応した光音響波検出時の増幅率「30dB」と、反射超音波検出時の増幅率「20dB」を読み出す。送受信制御部23は、検出器素子34から光音響信号が出力されている期間では、増幅器42の増幅率を30dBに制御し、検出器素子34から反射超音波信号が出力されている期間では、増幅器42の増幅率を20dBに制御する。
図5に、ゲイン設定情報記憶部25に記憶されるゲイン設定情報の更に別の例を示す。この例では、データ取得条件は被検体に向けて出射される光の強度及び波長である。ゲイン設定情報記憶部25は、光の強度と強度の組み合わせに対して、出射した光がそれらのときの増幅器42の増幅率を対応付けて記憶する。送受信制御部23は、ゲイン設定情報記憶部25から、被検体に照射された光の波長及び強度の組み合わせに対応する増幅率を読み出して増幅器42の増幅率を制御する。光強度及び波長の双方をデータ取得条件にするのに代えて、どちらか一方をデータ取得条件としてもよい。
例えば、ユーザは、入力部26などを用いてレーザ波長が「752nm」で強度が「20mJ」であることを入力する。レーザ波長や強度は、光源13から取得してもよい。その後、プローブ11を所望の位置に移動し、光音響画像及び反射超音波画像の生成を開始する。送受信制御部23は、ゲイン設定情報記憶部25から、レーザ波長「752nm」、強度「20mJ」に対応した光音響波検出時の増幅率「30dB」と、反射超音波検出時の増幅率「20dB」とを読み出す。送受信制御部23は、検出器素子34から光音響信号が出力されている期間では、増幅器42の増幅率を30dBに制御し、検出器素子34から反射超音波信号が出力されている期間では、増幅器42の増幅率を20dBに制御する。
図6に、ゲイン設定情報記憶部25に記憶されるゲイン設定情報の更に別の例を示す。この例では、データ取得条件は使用されるプローブの識別情報である。ゲイン設定情報記憶部25は、各プローブに対して、使用されるプローブがそれらのときの増幅器42の増幅率を対応付けて記憶する。送受信制御部23は、ゲイン設定情報記憶部25から、使用されるプローブに対応する増幅率を読み出して増幅器42の増幅率を制御する。
例えば、ユーザは、入力部26などを用いて使用するプローブが「プローブA」であることを入力する。プローブ11から識別情報を取得し、使用されるプローブを判別することとしてもよい。その後、プローブ11を所望の位置に移動し、光音響画像及び反射超音波画像の生成を開始する。送受信制御部23は、ゲイン設定情報記憶部25から、「プローブA」に対応した光音響波検出時の増幅率「30dB」と、反射超音波検出時の増幅率「20dB」とを読み出す。送受信制御部23は、検出器素子34から光音響信号が出力されている期間では、増幅器42の増幅率を30dBに制御し、検出器素子34から反射超音波信号が出力されている期間では、増幅器42の増幅率を20dBに制御する。
上記で例示したデータ取得条件は組み合わせて使用することも可能である。図7に、ゲイン設定情報記憶部25に記憶されるゲイン設定情報の更に別の例を示す。ゲイン設定情報記憶部25は、撮影部位、光音響画像の画像化の対象、レーザ波長、レーザ強度、及びプローブの組み合わせに対し、光音響波検出時の増幅率と反射超音波検出時の増幅率とを記憶する。各組み合わせに対して、プリセットA、プリセットBなどの名前を付けておく。ユーザは、選択可能なプリセットの中から、画像生成に適合したプリセットを選択する。
例えばユーザは、撮影部位が「手指」で、光音響画像の画像化の対象が「血管」で、レーザ波長が「752nm」で、レーザ強度が「20mJ」で、使用するプローブが「プローブA」のときは、「プリセットA」を選択する。送受信制御部23は、ゲイン設定情報記憶部25から、「プリセットA」に対応した光音響波検出時の増幅率「30dB」と、反射超音波検出時の増幅率「20dB」とを読み出す。送受信制御部23は、検出器素子34から光音響信号が出力されている期間では、増幅器42の増幅率を30dBに制御し、検出器素子34から反射超音波信号が出力されている期間では、増幅器42の増幅率を20dBに制御する。
なお、上記では、光音響波検出時の増幅率と反射超音波検出時の増幅率との双方をデータ取得条件と対応付けて記憶する例について説明したが、必ずしも、光音響波検出時の増幅率と反射超音波検出時の増幅率との双方についてデータ取得条件と対応付けられている必要はない。光音響波検出時の増幅率と反射超音波検出時の増幅率とのうちの何れか一方のみが、データ取得条件と対応付けられていてもよい。例えば、光音響波検出時の増幅率はデータ取得条件と対応させて記憶する。一方、反射超音波検出時の増幅率については、データ取得条件と対応付けずに、1つの値のみを記憶することとしてもよい。
ゲインが制御可能な増幅器42には、例えばPGA(programmable gate array)を用いることができる。PGAは、多段で形成してもよい。図8に、多段PGAで構成した増幅器42を示す。検出器素子34から出力された光音響信号及び反射超音波信号は、複数段のPGA45を経て、AD変換器43に入力される。各PGA45は、いくつかの増幅率がレジスタで選択可能に構成される。トータルの増幅率は、各PGA45のゲインの和で表わされる。送受信制御部23は、各PGA45のレジスタに適切な値を書き込むことによって、増幅器42のトータルの増幅率を制御する。複数段で構成されたPGA45の全てで信号増幅を行う必要はなく、複数段のPGA45のうちのいくつかは信号増幅なしであってもよい。
次に、動作手順について説明する。図9は、光音響画像及び反射超音波画像生成の動作手順を示す。ここでは反射超音波信号の検出を行った後に光音響信号を検出する例を説目するが、どちらを先に行ってもよい。送受信切替回路44はパルサー41を選択し、パルサー41と音響波検出器31の検出器素子34とを接続する。パルサー41から出力された送信パルスは、送受信切替回路44からケーブル33の信号線を通って各検出器素子へ供給され、各検出器素子34から被検体内に超音波が送信される(ステップS1)。
超音波の送信後、送受信切替回路44は増幅器42を選択し、検出器素子34と増幅器42とを接続する。送受信制御部23は、ゲイン設定情報記憶部25から反射超音波の検出に対応した増幅率を読み出し、増幅器42の増幅率を読み出した値に制御する(ステップS2)。増幅率がデータ取得条件と対応付けられて記憶されているときは、データ取得条件に対応する増幅率を読み出させばよい。検出器素子34は、送信された超音波に対する反射超音波を検出し、反射超音波信号を出力する(ステップS3)。増幅器42で増幅された反射超音波信号は、AD変換器43でデジタルデータに変換され、データ処理部22に送られる。
反射超音波の検出後、送受信制御部23は、ゲイン設定情報記憶部25から光音響波の検出に対応した増幅率を読み出し、増幅器42の増幅率を制御する(ステップS4)。送受信制御部23は、光源13に対して光出射を指示する。光源13は、光出射の指示を受けるとパルスレーザ光を出射する。光源13から出射した光は、ケーブル33の光配線を通ってプローブ11まで導光され、プローブ11の光出射部32から被検体に向けて出射する(ステップS5)。音響波検出器31の検出器素子34は、被検体に対する光照射により被検体内で発生した光音響波を検出し、光音響信号を出力する(ステップS6)。増幅器42で増幅された光音響信号は、AD変換器43でデジタルデータに変換され、データ処理部22に送られる。
データ処理部22は、反射超音波信号に基づいて反射超音波画像を生成し、光音響信号に基づいて光音響画像を生成する(ステップS7)。表示制御部24は、生成された反射超音波画像及び光音響画像を、表示部14の表示画面上に重ねて表示する(ステップS8)。重ねて表示するのに代えて、反射超音波画像と光音響画像とを、並べて、或いは切り替えて表示してもよい。
図10は、光音響画像及び反射超音波画像の生成のタイミングチャートを示す。超音波送信及び反射超音波の検出と、光出射及び光音響波の検出とは、交互に行われる。光音響波画像及び反射超音波画像の1フレームは、超音波送信の期間、反射超音波検出の期間、光出射の期間、及び光音響波検出の期間を含む。
パルサー41からの送信パルスが検出器素子34に供給されることにより、被検体内に超音波が送信される(a)。超音波の送信後、検出器素子34は、送信された超音波に対する反射超音波を検出し、反射超音波信号を出力する。反射超音波信号(US)は、AD変換器43にて、一定期間サンプリングされる(c)。送受信制御部23は、超音波送信から反射超音波の検出開始までの間に、増幅器42の増幅率を、反射超音波検出時の増幅率(US用のゲイン)に制御する(d)。別の言い方をすれば、増幅器42の増幅率がUS用のゲインに制御される第1の期間は、被検体に対する超音波の送信から反射超音波の検出が開始するまでの間に開始される。
反射超音波の検出が完了した後に、光源13からのパルスレーザ光が被検体に照射される(b)。被検体に対する光照射後、検出器素子34は、光照射に起因して被検体内で発生した光音響波を検出し、光音響信号を出力する。光音響信号(PA)は、AD変換器43にて、一定期間サンプリングされる(c)。送受信制御部23は、反射超音波の検出(サンプリング)の終了から光音響波の検出開始までの間に、増幅器42の増幅率を、光音響波検出時の増幅率(PA用のゲイン)に制御する。別の言い方をすれば、増幅器42の増幅率が光音響波検出に対応した増幅率に制御される第2の期間は、反射超音波の検出終了から光音響波の検出が開始するまでの間に開始される。
なお、増幅器42の増幅率は、光音響波の検出を開始するまでにPA用のゲインに制御されればいいため、光出射から光音響波の検出開始までの間に、増幅器42の増幅率をPA用のゲインに制御してもよい。しかしながら、被検体に照射されるパルスレーザ光のパルス時間幅は1ns〜100ns程度の時間であり、光照射の期間は短い。従って、反射超音波の検出終了後に、増幅器42の増幅率をPA用のゲインに制御するとよい。
本実施形態では、光音響信号及び反射超音波信号を増幅する増幅器42の増幅率を、光音響波の検出時と反射超音波の検出時とで個別に制御する。一般に、被検体内で発生する光音響波は反射超音波よりも弱く、光音響信号は反射超音波信号よりも小さい。増幅器42の増幅率を、光音響波の検出時と反射超音波の検出時とで個別に制御することで、光音響信号と反射超音波信号とを、それぞれの大きさに合わせた増幅率で増幅することができる。
光音響信号の増幅率及び反射超音波信号の増幅率は、例えばAD変換器43でサンプリングされる光音響信号の信号レベルと反射超音波信号の信号レベルとが同程度となるように、選定することが好ましい。光音響信号が反射超音波信号よりも小さいと、光音響信号に基づいて生成される光音響画像は、反射超音波信号に基づいて生成さえる反射超音波画像よりも表示輝度(表示濃度)が低くなる。サンプリングされる光音響信号の信号レベルと反射超音波信号の信号レベルとが同程度となるよう増幅器42の増幅率を選定しておくことで、光音響画像と反射超音波画像との表示輝度を同程度にすることができ、両画像を重ねて表示した際に光音響画像が見難くなることを避けることができる。
また、本実施形態では、光音響波検出時及び反射超音波検出時の増幅器42の増幅率をデータ取得条件と対応付けて記憶する。検出器素子34から出力される光音響信号及び反射超音波信号の大きさは常に一定ではなく、撮影部位や使用するプローブなどの相違に起因して変化することがある。特に光音響信号は、被検体に向けて出射される光の波長や強度に依存して、大きさが変化する。本実施形態では、撮影部位や関心像、レーザ光の波長、強度、使用するプローブなどのデータ取得条件と増幅器42の増幅率とを対応付けて記憶しており、画像生成の際のデータ取得条件に応じて、光音響信号及び反射超音波信号に対する増幅率をそれぞれ変化させることができる。このため、データ取得条件が変化し、検出器素子34から出力される光音響信号及び反射超音波信号の大きさが変化したときでも、光音響信号と反射超音波信号とをそれぞれの大きさに合わせた増幅率で増幅することができる。
次いで、本発明の第2実施形態を説明する。図11は、本発明の第2実施形態の音響波計測装置におけるプローブと信号処理制御部との接続を示す。音響波計測装置の全体の構成は、図1に示す第1実施形態における音響波計測装置の構成と同様である。本実施形態では、プローブ11aが、増幅器35と送受信切替回路36とを有する。その他の点は、第1実施形態と同様でよい。
本実施形態では、光音響信号及び反射超音波信号は、プローブ11a内に設けられた増幅器35と、プローブ11aとケーブル33を介して接続される信号処理ユニット12(図1)内に設けられた増幅器42とで増幅される。以下、プローブ11a内の増幅器35を前段増幅器と呼び、信号処理ユニット12(信号処理制御部21)内の増幅器42を後段増幅器と呼ぶ。前段増幅器35は第1の増幅器を構成し、後段増幅器42は第2の増幅器を構成する。前段増幅器35は、検出器素子34が出力する光音響信号及び反射超音波信号を、ケーブル33を通して信号処理制御部21に伝送する前に増幅する。より大きなゲインを得るために、前段増幅器35を多段構成にすることも可能である。
送受信切替回路36は、ケーブル33の同一の信号線を用いて超音波の送信と光音響信号及び反射超音波信号の受信を行う場合に設けられる。送受信切替回路36は、プローブ11a内で、超音波の送信と、光音響波及び反射超音波の検出(受信)とを切り替える。送受信切替回路44は、ケーブル33の信号線に接続されており、信号線の接続先を検出器素子34と前段増幅器35の出力との間で切り替える。送受信切替回路36は、超音波の送信時は、信号線を検出器素子34に接続して、パルサー41から出力された送信パルスを検出器素子34へ供給する。送受信切替回路36は、光音響波及び反射超音波の検出時は、信号線を前段増幅器35の出力に接続し、検出器素子34からの光音響信号及び反射超音波信号を信号処理制御部21へ伝送する。
ここで、探触子容量(検出器素子34の容量)が、後段増幅器42までの回路付加容量(寄生容量)に比して十分に大きくないと、検出器素子34から出力された信号(電圧信号)を後段増幅器42で増幅することができない。一般的に、探触子容量は100pF、ケーブル33などの後段増幅器42までの信号伝達回路を構成する部品の付加用量は数100pFである。本実施形態では、信号伝達回路容量による信号損失を減少させるために、検出器素子34の直後にバッファ(前段増幅器35)を配置する。特に、光音響信号では、検出器素子34から後段増幅器42までの経路で混入するノイズの影響が無視できない。ケーブル33の前段に前段増幅器35を設けることで、検出器素子34から後段増幅器42までの経路で混入するノイズの影響を相対的に小さくすることができる。
前段増幅器35の前段増幅器35を可変ゲインアンプとして構成し、その増幅率を、送受信制御部23により制御してもよい。あるいは、前段増幅器35の増幅率は固定であってもよい。前段増幅器35の増幅率が一定の場合には、後段増幅器42の増幅率を、光音響波の検出時と反射超音波の検出時とで、個別に制御すればよい。前段増幅器35の増幅率が可変である場合は、前段増幅器35と後段増幅器42の増幅率を、光音響波の検出時と反射超音波の検出時とで、それぞれ個別に制御すればよい。あるいは、後段増幅器42の増幅率を一定にして、前段増幅器35の増幅率を光音響波の検出時と反射超音波の検出時とで個別に制御してもよい。
光音響信号及び反射超音波信号のトータルの増幅率は、前段増幅器35のゲインと後段増幅器42のゲインの和で表わされる。前段増幅器35の増幅率と後段増幅器42の増幅率のバランスは、検出器素子34から後段増幅器42までの信号経路で混入するノイズの影響が小さい場合は、前段増幅器35の増幅率はできるだけ小さくすることが好ましい。これとは逆に、検出器素子34から後段増幅器42までの信号経路で混入するノイズの影響が大きい場合は、前段増幅器35の増幅率はできるだけ大きくすることが好ましい。
図12は、本実施形態においてゲイン設定情報記憶部25に記憶されるゲイン設定情報の例を示す。ゲイン設定情報記憶部25は、例えばプローブと、光音響波の検出時及び反射超音波の検出時に前段増幅器35及び後段増幅器42に設定する増幅率(ゲイン)とを対応付けて記憶する。ここでは、データ取得条件としてプローブの機種を考えるが、これには限定されず、他のデータ取得条件と対応付けて記憶することもできる。例えば、前段増幅器35及び後段増幅器42の増幅率を、第1実施形態で説明した、撮影部位、光音響画像の画像化の対象、レーザ波長、及びレーザ強度、又はそれらのうちの2以上の組み合わせと対応付けて記憶してもよい。
ゲイン設定情報記憶部25は、例えばプローブAに対して、反射超音波検出時の前段増幅器35の増幅率2dBを記憶し、後段増幅器42の増幅率18dBを記憶する。また、プローブBに対しては、反射超音波検出時の前段増幅器35の増幅率5dBを記憶し、後段増幅器42の増幅率15dBを記憶する。プローブAとプローブBとでは、反射超音波信号に対するトータルのゲインはどちらの場合も20dBであるが、前段増幅器35の増幅率と後段増幅器42の増幅率とのバランスが異なる。検出器素子34の感度が低いプローブを用いる場合は、光音響信号及び反射超音波信号がケーブル33を伝送する前に、信号レベルを上げておくことが好ましい。図12の例のように、プローブの機種に対応付けて前段増幅器35の増幅率と後段増幅器42の増幅率とを記憶することで、使用するプローブの特性に合わせた信号伝送が可能となる。
本実施形態では、光音響信号及び反射超音波信号を、ケーブル33の伝送前に、前段増幅器35で増幅する。前段増幅器35で増幅後に信号伝送を行うことで、信号伝達回路容量による信号損失を減少させることができる。また、本実施形態では、ゲイン設定情報記憶部25は、データ取得条件と、前段増幅器35の増幅率及び後段増幅器42の増幅率とを対応付けて記憶する。このようにする場合、データ取得条件に応じて、トータルの増幅率、及び、前段増幅器35の増幅率と後段増幅器42の増幅率とのバランスを任意に制御可能である。その他の効果は第1実施形態と同様である。
続いて、本発明の第3実施形態を説明する。図13は、本発明の第3実施形態の音響波計測装置におけるプローブと信号処理制御部との接続を示す。音響波計測装置の全体の構成は、図1に示す第1実施形態における音響波計測装置の構成と同様である。本実施形態は、図2に示す構成に加えて、表示条件記憶部27を更に有する。その他の点は、第1実施形態と同様でよい。本実施形態においても、第2実施形態と同様に、プローブ11内に前段増幅器35と送受信切替回路36を有する構成としてもよい。
表示条件記憶部27は、信号値と画像における画素値との関係を定める表示条件を記憶する。表示条件記憶部27は、光音響画像の生成と反射超音波画像の生成とのそれぞれに対応して表示条件を記憶する。表示条件記憶部27は、例えば、光音響信号及び反射超音波信号の信号値と、表示濃度(画素の表示階調、画素値)とをLUT(ルックアップテーブル)で表現した表示条件を記憶する。データ処理部22は、表示条件記憶部27を参照して、光音響画像及び反射超音波画像をそれぞれ生成する。データ処理部22は、光音響画像の生成と反射超音波画像の生成とで、異なる表示条件を用いて画像生成を行うことができる。
図14は、表示条件の一例を示す。この例では、表示条件は信号値と表示濃度との関係を定めたルックアップテーブルで表現されている。図14には、LUTAからLUTDまでの4つのルックアップテーブルで定義される信号値と表示濃度との関係が、グラフで示されている。これらグラフにおいて、表示濃度が最小(例えば黒)から立ち上がる信号値から、表示濃度が最大(例えば白)に達する信号値までの間が表示レンジを表す。例えばLUTA及びLUTDは、LUTB及びLUTCに比べて表示レンジが広くなっている。また、LUTAは、表示レンジの幅はLUTBと同等であるが、LUTDに比べて表示レンジが信号値が低い側にシフト(オフセット)している。LUTBは、表示レンジの幅はLUTCと同等であるが、LUTCに比べて表示レンジが信号値が低い側にシフトしている。
表示条件記憶部27は、表示条件とデータ取得条件とを対応付けて記憶していてもよい。データ取得条件としては、例えば撮影部位、光音響画像の画像化の対象、レーザ波長、レーザ強度、及びプローブの機種、又はそれらのうちの2以上の組み合わせが考えられる。データ取得条件に合わせて、表示レンジや同一信号値に対する表示輝度が異なる表示条件を用いて画像生成を行うことで、データ取得条件に合わせた画像生成が可能となる。また、光音響画像の生成と反射超音波画像の生成とで異なる表示条件で画像生成を行うことで、それぞれに合わせた表示レンジや表示輝度で画像を生成することができる。生成された光音響画像と反射超音波画像とは、表示部14(図1)に、重ねて、並べて、又は切り替えて表示される。
図15は、表示条件記憶部27に記憶される表示条件の例を示す。表示条件記憶部27は、光音響画像と反射超音波画像の生成に用いられるLUTの組み合わせを複数記憶する。図15におけるプリセット1〜3は何れかのデータ取得条件又はそれらの組み合わせであってよい。ユーザは、入力部26を用いてデータ取得条件を入力する。データ処理部22は、データ処理部22は、表示条件記憶部27から入力されたデータ取得条件に対応する表示条件を読み出し、光音響画像及び反射超音波画像を生成する。
ユーザは、例えば入力部26を用いてプリセット1を選択する。この場合、データ処理部22は、反射超音波画像の生成では、LUTDを用いて反射超音波信号から反射超音波画像を生成する。また、光音響画像の生成では、LUTAを用いて光音響信号から光音響画像を生成する。光音響画像生成時に使用される表示条件と反射超音波画像生成時に使用される表示条件とは、個別に調整可能であることが好ましい。例えばルックアップテーブルを編集可能にしておき、信号値と画素値との関係を任意に変更できるとよい。あるいは、光音響画像生成時と反射超音波画像生成時とで使用するルックアップテーブルの組み合わせを変更できるとよい。
なお、上記では、光音響画像生成時に使用する表示条件と反射超音波画像生成時に使用する表示条件との双方をデータ取得条件と対応付けて記憶する例について説明したが、必ずしも、光音響画像生成時の表示条件と反射超音波画像生成時の表示条件との双方についてデータ取得条件と対応付けられている必要はない。光音響画像生成時の表示条件と反射超音波画像生成時の表示条件とのうちの何れか一方のみが、データ取得条件と対応付けられていてもよい。例えば、光音響画像生成時に使用する表示条件はデータ取得条件と対応させて記憶する。一方、反射超音波画像生成時に使用する表示条件については、データ取得条件と対応付けずに、1つのみを記憶することとしてもよい。
本実施形態では、光音響画像生成時と反射超音波画像生成時とで、使用する表示条件を使い分けることができる。光音響画像生成時と反射超音波画像生成時とで異なる表示条件を使用することで、光音響信号の増幅率と反射超音波信号の増幅率とを個別に制御するだけでは吸収しきれない光音響画像と反射超音波画像との表示濃度の差を抑制できる。その他の効果は、第1実施形態と同様である。
ここで、光音響画像及び反射超音波画像は、その用途上、リアルタイム性が求められることが多い。光音響画像及び反射超音波画像の表示濃度を容易に変更可能とするために、プローブ11に、光音響画像及び反射超音波画像の生成に使用される表示条件を変更するための変更手段を設ける構成を採用することもできる。
図16は、変更手段を有するプローブを示す。この例では、プローブ11は、変更手段を構成するスライド式のポテンショメータ37及び38を有する。ポテンショメータ37は反射超音波画像に対応しており、ポテンショメータ37は光音響画像に対応している。ポテンショメータ37及び38は、それぞれのつまみの位置を検出する。ポテンショメータ37及び38のつまみは、紙面左右方向に動かすことができる。紙面向って右側が表示濃度を下げる方向であり、左側が表示濃度を上げる方向であるとする。
表示条件の変更は、例えば、ルックアップテーブルで定義される信号値と表示濃度との関係を、信号値が高い方又は低い方にシフトする(オフセットをさせる)ことで行う。データ処理部22は、つまみの位置に応じて、ルックアップテーブルで定義される信号値と表示濃度との関係を、信号値が高い方又は低い方にシフトした上で、画像生成を行う。ルックアップテーブルをオフセットさせるのに代えて、表示レンジを拡大することで、表示条件を変更してもよい。
例えば、データ処理部22が、LUTAを用いて光音響画像を生成し、LUTDを用いて反射超音波画像を生成するものとする(図15のプリセット1)。データ処理部22は、ポテンショメータ37のつまみが中央に位置するときは、LUTDをそのまま用いて反射超音波画像を生成し、ポテンショメータ38のつまみが中央に位置するときは、LUTAをそのまま用いて光音響画像を生成する。ユーザが光音響画像に対応したポテンショメータ38のつまみを紙面向って左側にずらすと、データ処理部22は、つまみの中央からの変位量に応じた量だけ、LUTAを信号値の低い側にシフトさせて光音響画像を生成する。このようにすることで、光音響画像は、つまみ変更前に比べて、低い信号値が高い表示濃度で表示されることになる。
上記では、ポテンショメータ37及び38のつまみの位置に応じて表示条件を変更することについて説明したが、これに代えて、又は加えて、光音響波検出時及び反射超音波検出時の増幅率を変更してもよい。すなわち、変更手段が、光音響波及び反射超音波の検出時の増幅率を変更するものであってもよい。その場合には、つまみの位置に応じて、増幅器42の増幅率、又は増幅器35(図11)と増幅器42の少なくとも一方の増幅率を、初期値から増減すればよい。その場合でも、光音響画像及び反射超音波画像の表示濃度を変更できる。
なお、第3実施形態では、光音響信号及び反射超音波信号をそれぞれに設定された増幅率で増幅した後に、それぞれに設定された表示条件を用いて光音響画像及び反射超音波画像を生成することを説明したが、これには限定されない。第3実施形態においては、必ずしも、光音響信号を増幅する際の増幅率と反射超音波信号を増幅する際の増幅率とを個別に制御する必要はなく、光音響波検出時と反射超音波検出時とで増幅率は一定であってもよい。この場合でも、信号値と表示濃度との関係が異なる表示条件を用いて画像生成を行うことで、検出器素子34から出力された光音響信号と反射超音波信号とに差がある場合でも、生成される光音響画像と反射超音波画像の表示濃度の違いを抑えることができる。
また、図16では、光音響画像(光音響波)と反射超音波画像(反射超音波)とのそれぞれに対応して2つの変更手段を設けることとしたがこれには限定されない。例えば、プローブ11に、光音響画像と反射超音波画像の切替スイッチと、スライド式のポテンショメータ1つとを設け、何れか一方の画像の生成に用いる表示条件又は光音響信号と反射超音波信号のうちの一方の増幅率を変更してもよい。また、変更手段はスライド式のポテンショメータには限定されない。例えば、プローブ11に+の押しボタンと−の押しボタンとを設け、ボタンを押すたびに画像生成に用いられる表示条件又は光音響信号及び反射超音波信号の増幅率を変更してもよい。また、ダイヤルやホイール式の入力装置を変更手段としてもよく、ホイールの回転方向に応じて、画像生成に用いられる表示条件又は光音響信号及び反射超音波信号の増幅率を変更してもよい。
以上、本発明をその好適な実施形態に基づいて説明したが、本発明の音響波計測装置は、上記実施形態にのみ限定されるものではなく、上記実施形態の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。
10:音響波計測装置
11:プローブ
12:信号処理ユニット
13:光源
14:表示部
21:信号処理制御部
22:データ処理部
23:送受信制御部
24:表示制御部
25:ゲイン設定情報記憶部
26:入力部
27:表示条件記憶部
31:音響波検出器
32:光出射部
33:ケーブル
34:検出器素子
35:増幅器
36:送受信切替回路
37、38:ポテンショメータ
41:パルサー
42:増幅器
43:AD変換器
44:送受信切替回路
45:PGA

Claims (21)

  1. 被検体に対する光出射に起因して被検体内で発生した光音響波、及び、被検体に対して送信された音響波に対する反射音響波を検出する音響波検出器素子を含むプローブと、
    前記音響波検出器素子が出力する光音響波の検出信号及び反射音響波の検出信号を増幅する増幅手段と、
    前記増幅手段の増幅率を、前記光音響波の検出時と前記反射音響波の検出時とで個別に制御する増幅率制御手段と、
    前記増幅された光音響波の検出信号及び反射音響波の検出信号に対してそれぞれ信号処理を行う信号処理手段とを備えたことを特徴とする音響波計測装置。
  2. 前記光音響波及び前記反射音響波が共通の音響波検出器素子で検出される請求項1に記載の音響波計測装置。
  3. 前記音響波検出器素子から前記被検体に向けて音響波を送信させる送信回路と、
    前記音響波検出器素子の接続先を、前記送信回路と前記増幅手段との間で切り替える送受信切替回路とを更に有する請求項1又は2に記載の音響波検出装置。
  4. 前記増幅手段が、プローブ内に設けられた第1の増幅器と、前記プローブとケーブルを介して接続される、前記信号処理手段を含む信号処理ユニット内に設けられた第2の増幅器とを含む請求項1から3何れか1項に記載の音響波計測装置。
  5. 前記増幅率制御手段が、前記光音響波の検出時と前記反射超音波の検出時とのそれぞれで使用される前記増幅手段の増幅率を記憶するゲイン設定情報記憶部を参照して前記増幅手段の増幅率を制御する請求項1から4何れか1項に記載の音響波計測装置。
  6. 前記ゲイン設定情報記憶部が、前記増幅率とデータ取得条件とを対応付けて記憶する請求項5に記載の音響波計測装置。
  7. 前記データ取得条件が被検体の撮影部位を含み、前記増幅率制御手段が、前記ゲイン設定情報記憶部から、前記光音響波及び前記反射音響波の検出を行う被検体の部位に対応する増幅率を読み出して前記増幅手段の増幅率を制御する請求項6に記載の音響波測定装置。
  8. 前記データ取得条件が光音響波の撮影対象を含み、前記増幅率制御手段が、前記ゲイン設定情報記憶部から、光音響波の撮影対象に対応する増幅率を読み出し、前記増幅手段の増幅率を制御する請求項6又は7に記載の音響波計測装置。
  9. 前記データ取得条件が被検体に向けて出射される光の強度及び波長の少なくとも一方を含み、前記増幅率制御手段が、前記ゲイン設定情報記憶部から、被検体に向けて出射された光の強度及び波長の少なくとも一方に対応する増幅率を読み出し、前記増幅手段の増幅率を制御する請求項6から8何れか1項に記載の音響波測定装置。
  10. 前記データ取得条件が使用されるプローブの識別情報を含み、前記増幅率制御手段が、前記ゲイン設定情報記憶部から、前記光音響波及び前記反射音響波の検出に用いられるプローブに対応する増幅率を読み出して前記増幅手段の増幅率を制御する請求項6から9何れか1項に記載の音響波測定装置。
  11. 前記増幅率制御手段が、前記反射音響波の検出に対応した第1の期間では前記増幅手段の増幅率を前記反射音響波の検出信号の大きさに合わせた増幅率に制御し、前記光音響波の検出に対応した第2の期間では前記増幅手段の増幅率を前記光音響波の検出信号の大きさに合わせた増幅率に制御する請求項1か10何れか1項に記載の音響波計測装置。
  12. 前記光音響波の検出と前記反射音響波の検出とを交互に行い、前記第1の期間が、被検体に対する音響波の送信から前記反射音響波の検出が開始するまでの間に開始され、前記第2の期間が、前記反射音響波の検出終了から前記光音響波の検出が開始するまでの間に開始される請求項11に記載の音響波計測装置。
  13. 前記プローブが、前記光音響波及び前記反射音響波の少なくとも一方の検出時の前記増幅手段の増幅率を変更するための変更手段を更に含む請求項1から12何れか1項に記載の音響波計測装置。
  14. 前記信号処理手段が、前記光音響波の検出信号に基づいて光音響画像を生成し、前記反射音響波の検出信号に基づいて反射音響波画像を生成する画像生成手段を含む請求項1から13何れか1項に記載の音響波計測装置。
  15. 前記光音響画像と前記反射音響波画像とを重ねて、並べて、又は切り替えて画像表示装置に表示する画像表示制御手段を更に備える請求項14に記載の音響波計測装置。
  16. 前記画像生成手段が、信号値と画像における画素の画素値との関係を定める表示条件を記憶する表示条件記憶部を参照して前記光音響画像及び前記反射超音波画像を生成する請求項14又は15に記載の音響波計装置。
  17. 前記表示条件記憶部が、前記表示条件とデータ取得条件とを対応付けて記憶する請求項16に記載の音響波計測装置。
  18. 前記データ取得条件が被検体の撮影部位を含み、前記画像生成手段が、前記表示条件記憶部から、前記光音響波及び前記反射音響波の検出を行った被検体の部位に対応する表示条件を読み出して前記光音響画像及び反射超音波画像を生成する請求項17に記載の音響波測定装置。
  19. 前記データ取得条件が光音響波の撮影対象を含み、前記画像生成手段が、前記表示条件記憶部から、光音響波の撮影対象に対応する表示条件を読み出し、前記光音響画像を生成する請求項17又は18に記載の音響波計測装置。
  20. 前記データ取得条件が被検体に向けて出射される光の強度及び波長の少なくとも一方を含み、前記画像生成手段が、前記表示条件記憶部から、被検体に向けて出射された光の強度及び波長の少なくとも一方に対応する表示条件を読み出し、前記光音響画像を生成する請求項17から19何れか1項に記載の音響波測定装置。
  21. 前記プローブが、前記光音響画像及び前記反射音響波画像の生成に使用される表示条件を変更するための変更手段を更に含む請求項16から20何れか1項に記載の音響波計測装置。
JP2013095676A 2013-04-30 2013-04-30 音響波計測装置 Pending JP2014213158A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013095676A JP2014213158A (ja) 2013-04-30 2013-04-30 音響波計測装置
PCT/JP2014/059795 WO2014178257A1 (ja) 2013-04-30 2014-04-03 音響波計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013095676A JP2014213158A (ja) 2013-04-30 2013-04-30 音響波計測装置

Publications (1)

Publication Number Publication Date
JP2014213158A true JP2014213158A (ja) 2014-11-17

Family

ID=51843392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095676A Pending JP2014213158A (ja) 2013-04-30 2013-04-30 音響波計測装置

Country Status (2)

Country Link
JP (1) JP2014213158A (ja)
WO (1) WO2014178257A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154779A (ja) * 2015-02-26 2016-09-01 富士フイルム株式会社 光音響計測装置
WO2017056463A1 (ja) * 2015-09-29 2017-04-06 富士フイルム株式会社 光音響計測装置及び方法
JP2017064170A (ja) * 2015-09-30 2017-04-06 富士フイルム株式会社 光音響計測装置及び方法
JP2017131367A (ja) * 2016-01-27 2017-08-03 富士フイルム株式会社 光音響画像生成装置、システム、及び方法
JP2018102630A (ja) * 2016-12-27 2018-07-05 富士フイルム株式会社 光音響画像生成装置および方法並びにプログラム
JP2018130506A (ja) * 2017-02-17 2018-08-23 プレキシオン株式会社 光音響画像化装置
JP2019520864A (ja) * 2016-05-06 2019-07-25 クアルコム,インコーポレイテッド 光音響撮像を伴うバイオメトリックシステム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6166700B2 (ja) * 2014-08-18 2017-07-19 プレキシオン株式会社 光音響画像化装置
US10082488B2 (en) 2015-12-02 2018-09-25 Butterfly Network, Inc. Time gain compensation circuit and related apparatus and methods
US10366269B2 (en) 2016-05-06 2019-07-30 Qualcomm Incorporated Biometric system with photoacoustic imaging
US10231713B2 (en) * 2016-09-13 2019-03-19 Butterfly Network, Inc. Analog-to-digital drive circuitry having built-in time gain compensation functionality for ultrasound applications

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1156852A (ja) * 1997-08-25 1999-03-02 Olympus Optical Co Ltd 超音波プローブ
JP4183312B2 (ja) * 1998-11-09 2008-11-19 株式会社東芝 超音波診断装置
JP4643153B2 (ja) * 2004-02-06 2011-03-02 株式会社東芝 非侵襲生体情報映像装置
JP2007117351A (ja) * 2005-10-27 2007-05-17 Konica Minolta Medical & Graphic Inc 小規模診断支援システム
JP5574724B2 (ja) * 2010-01-27 2014-08-20 キヤノン株式会社 被検体情報処理装置および被検体情報処理方法
JP5393552B2 (ja) * 2010-03-19 2014-01-22 キヤノン株式会社 測定装置
JP5473761B2 (ja) * 2010-04-30 2014-04-16 キヤノン株式会社 生体情報イメージング装置および生体情報イメージング方法
JP2012070949A (ja) * 2010-09-29 2012-04-12 Fujifilm Corp 光音響画像化装置、方法、及びプログラム
JP5896623B2 (ja) * 2011-05-02 2016-03-30 キヤノン株式会社 被検体情報取得装置およびその制御方法
JP5647584B2 (ja) * 2011-09-05 2015-01-07 富士フイルム株式会社 光音響画像生成装置及び方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154779A (ja) * 2015-02-26 2016-09-01 富士フイルム株式会社 光音響計測装置
WO2017056463A1 (ja) * 2015-09-29 2017-04-06 富士フイルム株式会社 光音響計測装置及び方法
JPWO2017056463A1 (ja) * 2015-09-29 2018-07-19 富士フイルム株式会社 光音響計測装置及び方法
US11071461B2 (en) 2015-09-29 2021-07-27 Fujifilm Corporation Photoacoustic measurement device and method
JP2017064170A (ja) * 2015-09-30 2017-04-06 富士フイルム株式会社 光音響計測装置及び方法
JP2017131367A (ja) * 2016-01-27 2017-08-03 富士フイルム株式会社 光音響画像生成装置、システム、及び方法
JP2019520864A (ja) * 2016-05-06 2019-07-25 クアルコム,インコーポレイテッド 光音響撮像を伴うバイオメトリックシステム
JP2018102630A (ja) * 2016-12-27 2018-07-05 富士フイルム株式会社 光音響画像生成装置および方法並びにプログラム
JP2018130506A (ja) * 2017-02-17 2018-08-23 プレキシオン株式会社 光音響画像化装置

Also Published As

Publication number Publication date
WO2014178257A1 (ja) 2014-11-06

Similar Documents

Publication Publication Date Title
WO2014178257A1 (ja) 音響波計測装置
US20140187903A1 (en) Object information acquiring apparatus
JP6049215B2 (ja) 光音響計測装置並びにそれに利用される信号処理装置および信号処理方法
JP6501474B2 (ja) 被検体情報取得装置
JP2010167167A (ja) 光超音波断層画像化装置および光超音波断層画像化方法
JP5694991B2 (ja) 光音響画像化方法および装置
JP2012070949A (ja) 光音響画像化装置、方法、及びプログラム
JP5777394B2 (ja) 光音響画像化方法および装置
JP2012254284A (ja) 断層画像生成装置、方法、及びプログラム
EP3243442B1 (en) Photoacoustic measuring device and photoacoustic measuring system
WO2017056463A1 (ja) 光音響計測装置及び方法
JP6404456B2 (ja) 光音響計測装置及びシステム
JP6628891B2 (ja) 光音響画像生成装置
JP2012231879A (ja) 光音響画像化方法および装置
JP6667649B2 (ja) 光音響画像生成装置
JP7127034B2 (ja) 画像生成装置および作動方法
WO2018180109A1 (ja) 光音響画像生成装置
JP6482686B2 (ja) 光音響画像生成システム、装置、及び方法
JP6847234B2 (ja) 光音響画像生成装置
JP5946230B2 (ja) 光音響画像化方法および装置
WO2016051764A1 (ja) 光音響画像生成装置
JP2017064170A (ja) 光音響計測装置及び方法
JP6864492B2 (ja) 光音響画像化装置
JPWO2018180223A1 (ja) 光音響画像生成装置
WO2019044212A1 (ja) 光音響画像生成装置および画像取得方法