WO2018180109A1 - 光音響画像生成装置 - Google Patents

光音響画像生成装置 Download PDF

Info

Publication number
WO2018180109A1
WO2018180109A1 PCT/JP2018/007066 JP2018007066W WO2018180109A1 WO 2018180109 A1 WO2018180109 A1 WO 2018180109A1 JP 2018007066 W JP2018007066 W JP 2018007066W WO 2018180109 A1 WO2018180109 A1 WO 2018180109A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
photoacoustic
wave
acoustic
unit
Prior art date
Application number
PCT/JP2018/007066
Other languages
English (en)
French (fr)
Inventor
山本 勝也
覚 入澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019509012A priority Critical patent/JP6790235B2/ja
Publication of WO2018180109A1 publication Critical patent/WO2018180109A1/ja
Priority to US16/542,855 priority patent/US11921202B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8913Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using separate transducers for transmission and reception
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8918Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being linear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/892Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being curvilinear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8952Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using discrete, multiple frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/899Combination of imaging systems with ancillary equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information

Definitions

  • the present invention relates to a photoacoustic image generation apparatus that includes a photoacoustic wave generation unit that absorbs light and generates a photoacoustic wave, and includes an insert that is at least partially inserted into a subject.
  • An ultrasonic inspection method is known as a kind of image inspection method capable of non-invasively examining the state inside a living body.
  • an ultrasonic probe capable of transmitting and receiving ultrasonic waves is used.
  • the ultrasonic waves travel inside the living body and are reflected at the tissue interface.
  • the reflected ultrasound is received by the ultrasound probe, and the internal state can be imaged by calculating the distance based on the time until the reflected ultrasound returns to the ultrasound probe. .
  • photoacoustic imaging in which the inside of a living body is imaged using the photoacoustic effect.
  • a living body is irradiated with pulsed laser light. Inside the living body, the living tissue absorbs the energy of the pulsed laser light, and ultrasonic waves (photoacoustic waves) are generated by adiabatic expansion due to the energy.
  • ultrasonic waves photoacoustic waves
  • Patent Literature 1 proposes a puncture needle provided with a photoacoustic wave generation unit that absorbs light and generates a photoacoustic wave near the tip.
  • a puncture needle provided with a photoacoustic wave generation unit that absorbs light and generates a photoacoustic wave near the tip.
  • an optical fiber is provided up to the tip of the puncture needle, and light guided by the optical fiber is applied to the photoacoustic wave generation unit.
  • the photoacoustic wave generated in the photoacoustic wave generation unit is detected by an ultrasonic probe, and a photoacoustic image is generated based on the detection signal.
  • the portion of the photoacoustic wave generation unit appears as a bright spot, and the position of the puncture needle can be confirmed using the photoacoustic image.
  • the B-mode ultrasound image can be obtained with high resolution by imaging using a high-frequency ultrasound signal.
  • high-frequency ultrasound does not easily reach the deep part of the living body, in Patent Document 2, In the shallow part of the living body where the attenuation of the ultrasonic wave is low, it is imaged using a high frequency ultrasonic signal, and in the deep part of the living body where the attenuation of the ultrasonic wave is high, it is imaged using an ultrasonic signal of a low frequency. It has been proposed to acquire many images.
  • the photoacoustic image for specifying the tip position of the puncture needle is imaged using a photoacoustic wave signal having the same frequency as the generation of the B-mode ultrasound image
  • the photoacoustic image depends on the depth of the living tissue.
  • the resolution of the photoacoustic image also changes.
  • the tip position of the puncture needle is generally displayed as a bright spot.
  • the display size of this bright spot is the detection frequency of the photoacoustic wave signal when generating the photoacoustic image ( Depending on the wavelength), the lower the detection frequency (the longer the wavelength), the larger the image size for one wavelength, which is the minimum resolution, so that a larger bright spot is displayed. For this reason, the display size of the bright spot indicating the tip position of the puncture needle changes according to the depth of the living tissue, which may cause the user to feel uncomfortable.
  • the photoacoustic image for specifying the tip position of the puncture needle is imaged using a photoacoustic wave signal having a constant frequency.
  • imaging is performed using a low-frequency photoacoustic wave signal so that the tip position of the puncture needle can be detected at any depth inside the living body.
  • the display size of the bright spot is The area of the B-mode ultrasound image that becomes larger and is hidden by the bright spot becomes wider, and there is a problem that it is difficult to see the living tissue around the tip of the puncture needle.
  • puncturing since it is important whether the needle tip has reached the target biological tissue such as a blood vessel or a tumor, it is desired that the biological tissue around the tip of the puncture needle can be confirmed as clearly as possible.
  • the optimal display size of the bright spot in the photoacoustic image differs according to the resolution when displaying the B-mode ultrasonic image
  • a photoacoustic image having an appropriate resolution according to the resolution of the B-mode ultrasonic image can be obtained. It is hoped that it can be acquired.
  • the present invention provides a photoacoustic image having an appropriate resolution according to the resolution of a B-mode ultrasonic image in a photoacoustic image generation apparatus that acquires and synthesizes both a B-mode ultrasonic image and a photoacoustic image. It is an object of the present invention to provide a photoacoustic image generation apparatus that can acquire the above.
  • the photoacoustic image generation apparatus of the present invention is an insert in which at least a tip portion is inserted into a subject, a light guide member that guides light to the tip portion, and light guided by the light guide member.
  • An insert having a photoacoustic wave generation unit that absorbs and generates a photoacoustic wave, and a reflection that is detected by transmitting the acoustic wave to the subject and detecting the photoacoustic wave emitted from the photoacoustic wave generation unit Based on an acoustic wave detection unit that detects an acoustic wave, an acoustic image generation unit that generates a B-mode acoustic image based on the reflected acoustic wave detected by the acoustic wave detection unit, and a photoacoustic wave detected by the acoustic wave detection unit A photoacoustic image generation unit that generates a photoacoustic image, an image output unit that outputs a display image obtained by combining the B
  • the resolution of the B-mode acoustic image constituting the display image means the number of assigned pixels per predetermined length in the display image, and is expressed in units of Pixel / mm, for example.
  • the control unit uses the photoacoustic wave used when the photoacoustic image generation unit generates a photoacoustic image as the resolution of the B-mode acoustic image constituting the display image increases. It is preferable to control so as to increase the detection frequency.
  • the control unit multiplies the resolution of the B-mode acoustic image constituting the display image and the wavelength at the detection frequency of the photoacoustic wave used when generating the photoacoustic image.
  • the detection frequency of the photoacoustic wave used when generating the photoacoustic image in the photoacoustic image generation unit may be determined so that becomes a predetermined constant value.
  • control unit determines a predetermined constant value based on the minimum resolution of the B-mode acoustic image and the detection lower limit frequency in the acoustic wave detection unit.
  • the control unit generates a photoacoustic image in the photoacoustic image generation unit when the detection frequency of the photoacoustic wave used when generating the photoacoustic image in the photoacoustic image generation unit exceeds a predetermined upper limit value.
  • the detection frequency of the photoacoustic wave used at the time is determined as a predetermined upper limit value, and the photoacoustic image generated with the detection frequency of the photoacoustic wave as the predetermined upper limit value is reduced for the image output unit to reduce the B mode It is good also as what controls to synthesize
  • the predetermined upper limit value is set to be equal to or lower than the center frequency of the acoustic wave detection unit.
  • the relationship between the resolution of the B-mode acoustic image constituting the display image and the detection frequency of the photoacoustic wave used when generating the photoacoustic image in the photoacoustic image generation unit is provided, and the control unit determines the detection frequency of the photoacoustic wave used when the photoacoustic image generation unit generates the photoacoustic image based on the reference table. Also good.
  • the acoustic wave detection unit alternately detects a reflected acoustic wave for generating a B-mode acoustic image and a photoacoustic wave for generating a photoacoustic image.
  • the image output unit preferably outputs one display image based on the two images acquired in the order of the B-mode acoustic image and the photoacoustic image.
  • the insert is preferably a needle that is punctured by the subject.
  • the photoacoustic image generation apparatus of the present invention acquires both a B-mode ultrasound image and a photoacoustic image, combines them, and outputs them as a display image. Since the detection frequency of the photoacoustic wave used when generating the photoacoustic image is controlled based on the resolution of the mode acoustic image, a photoacoustic image having an appropriate resolution is selected according to the resolution of the B-mode ultrasonic image. Can be acquired.
  • Sectional drawing which shows the structure of the front-end
  • Graph showing relationship between photoacoustic wave detection frequency and display depth The flowchart for demonstrating the display image generation method in the photoacoustic image generation apparatus of 1st Embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of the first embodiment of the photoacoustic image generation apparatus of the present invention.
  • the photoacoustic image generation apparatus 10 of this embodiment includes an ultrasonic probe 11, an ultrasonic unit 12, a laser unit 13, and a puncture needle 15, as shown in FIG.
  • the puncture needle 15 and the laser unit 13 are connected by an optical cable 16 having an optical fiber.
  • the puncture needle 15 is detachable from the optical cable 16 and is configured to be disposable.
  • an ultrasonic wave is used as an acoustic wave.
  • the ultrasonic wave is not limited to an ultrasonic wave. If an appropriate frequency is selected according to an object to be examined or a measurement condition, an audible frequency is not limited. An acoustic wave may be used.
  • the laser unit 13 includes a solid-state laser light source using, for example, YAG (yttrium, aluminum, garnet) and alexandrite. Laser light emitted from the solid-state laser light source of the laser unit 13 is guided by the optical cable 16 and enters the puncture needle 15.
  • the laser unit 13 of this embodiment emits pulsed laser light in the near infrared wavelength region.
  • the near-infrared wavelength region means a wavelength region of about 700 nm to 850 nm.
  • the solid laser light source is used.
  • other laser light sources such as a gas laser light source may be used, or a light source other than the laser light source may be used.
  • the puncture needle 15 is an embodiment of the insert of the present invention, and is a needle that is punctured by a subject.
  • FIG. 2 is a cross-sectional view including a central axis extending in the length direction of the puncture needle 15.
  • the puncture needle 15 has an opening at the tip formed at an acute angle, and guides the laser light emitted from the hollow puncture needle main body 15a and the laser unit 13 to the vicinity of the opening of the puncture needle 15. It includes an optical fiber 15b (corresponding to the light guide member of the present invention) and a photoacoustic wave generator 15c that generates a photoacoustic wave by absorbing the laser light emitted from the optical fiber 15b.
  • the optical fiber 15b and the photoacoustic wave generator 15c are disposed in the hollow portion 15d of the puncture needle body 15a.
  • the optical fiber 15b is connected to the optical fiber in the optical cable 16 (see FIG. 1) via, for example, an optical connector provided at the proximal end portion of the puncture needle 15. For example, a 0.2 mJ laser beam is emitted from the light emitting end of the optical fiber 15b.
  • the photoacoustic wave generator 15c is provided at the light emitting end of the optical fiber 15b, and is provided near the tip of the puncture needle 15 and on the inner wall of the puncture needle body 15a.
  • the photoacoustic wave generation unit 15c absorbs the laser light emitted from the optical fiber 15b and generates a photoacoustic wave.
  • the photoacoustic wave generating unit 15c is formed of, for example, an epoxy resin, a polyurethane resin, a fluororesin, and a silicone rubber mixed with a black pigment. In FIG. 2, the photoacoustic wave generation unit 15c is drawn larger than the optical fiber 15b, but the photoacoustic wave generation unit 15c is approximately the same as the diameter of the optical fiber 15b. May be the size.
  • the photoacoustic wave generation unit 15c is not limited to the above-described one, and a metal film or an oxide film having light absorption with respect to the wavelength of the laser light may be used as the photoacoustic wave generation unit.
  • a metal film or an oxide film having light absorption with respect to the wavelength of the laser light may be used as the photoacoustic wave generation unit.
  • an oxide film such as iron oxide or chromium oxide and manganese oxide having high light absorption with respect to the wavelength of the laser beam can be used.
  • a metal film such as Ti (titanium) or Pt (platinum), which has lower light absorption than oxide but high biocompatibility, may be used as the photoacoustic wave generator 15c.
  • the position where the photoacoustic wave generator 15c is provided is not limited to the inner wall of the puncture needle body 15a.
  • a metal film or an oxide film which is the photoacoustic wave generation unit 15c is formed on the light emitting end of the optical fiber 15b by vapor deposition or the like to a thickness of, for example, about 100 nm, and the oxide film covers the light emitting end. You may make it cover.
  • at least a part of the laser light emitted from the light emitting end of the optical fiber 15b is absorbed by the metal film or oxide film covering the light emitting end, and a photoacoustic wave is emitted from the metal film or oxide film. Arise.
  • the ultrasonic probe 11 detects the photoacoustic wave emitted from the photoacoustic wave generation unit 15c after the puncture needle 15 is punctured into the subject.
  • the ultrasonic probe 11 includes an acoustic wave detection unit 20 that detects photoacoustic waves.
  • the acoustic wave detector 20 includes a piezoelectric element array in which a plurality of piezoelectric elements that detect photoacoustic waves are arranged one-dimensionally, and a multiplexer.
  • the piezoelectric element is an ultrasonic vibrator, and is a piezoelectric element composed of a polymer film such as piezoelectric ceramics or polyvinylidene fluoride (PVDF).
  • the acoustic wave detection unit 20 includes an acoustic lens, an acoustic matching layer, a backing material, a piezoelectric element array control circuit, and the like.
  • the ultrasonic probe 11 transmits acoustic waves (ultrasonic waves) to the subject and reflects reflected acoustic waves (for the transmitted ultrasonic waves ( (Reflected ultrasound) is received.
  • transmission and reception of ultrasonic waves may be performed at separate positions.
  • ultrasonic waves may be transmitted from a position different from the ultrasonic probe 11, and reflected ultrasonic waves for the transmitted ultrasonic waves may be received by the piezoelectric element array of the ultrasonic probe 11.
  • a linear ultrasonic probe, a convex ultrasonic probe, a sector ultrasonic probe, or the like can be used.
  • the ultrasonic unit 12 includes a reception circuit 21, a reception memory 22, a data separation unit 23, a photoacoustic image generation unit 24, an ultrasonic image generation unit 25, an image output unit 26, a transmission control circuit 27, and a control unit 28.
  • the ultrasonic unit 12 typically includes a processor, a memory, a bus, and the like.
  • a program relating to a photoacoustic image generation process, an ultrasonic image generation process, and a display image generation process in which an ultrasonic image and a photoacoustic image are synthesized is incorporated in a memory.
  • Functions of the data separation unit 23, the photoacoustic image generation unit 24, the ultrasonic image generation unit 25, and the image output unit 26 are realized by the program being operated by the control unit 28 configured by a processor. That is, each of these units is configured by a memory and a processor in which a program is incorporated.
  • the hardware configuration of the ultrasonic unit 12 is not particularly limited, and a plurality of ICs (Integrated Circuits), processors, ASICs (Application Specific Integrated Circuits), FPGAs (Field-Programmable Gate Arrays), memories, etc. Can be realized by appropriately combining the above.
  • the receiving circuit 21 receives the detection signal output from the ultrasound probe 11 and stores the received detection signal in the reception memory 22.
  • the reception circuit 21 typically includes a low noise amplifier, a variable gain amplifier, a low-pass filter, and an AD converter (Analog-to-Digital converter).
  • the detection signal of the ultrasonic probe 11 is amplified by a low noise amplifier, and then the gain is adjusted according to the depth in the variable gain amplifier. After the high-frequency component is cut by the low-pass filter, it is converted into a digital signal by the AD converter. It is converted and stored in the reception memory 22.
  • the receiving circuit 21 is configured by, for example, one IC (Integral Circuit).
  • the ultrasonic probe 11 outputs a photoacoustic wave detection signal and a reflected ultrasonic wave detection signal, and the reception memory 22 receives AD-converted photoacoustic wave and reflected ultrasonic wave detection signals (sampling data). Is stored.
  • the data separation unit 23 reads the photoacoustic wave detection signal from the reception memory 22 and transmits it to the photoacoustic image generation unit 24. Further, the reflected ultrasonic detection signal is read from the reception memory 22 and transmitted to the ultrasonic image generation unit 25.
  • the photoacoustic image generation unit 24 generates a photoacoustic image based on the photoacoustic wave detection signal detected by the ultrasonic probe 11.
  • the photoacoustic image generation processing includes, for example, image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like.
  • the ultrasonic image generation unit 25 displays a B-mode ultrasonic image (in the present invention) that displays the state of the inside of the living body of the subject as a two-dimensional image based on the detection signal of the reflected ultrasonic wave detected by the ultrasonic probe 11. Corresponding to a B-mode acoustic image).
  • the B-mode ultrasound image generation process also includes image reconstruction such as phase matching addition, detection, logarithmic transformation, and the like.
  • the image output unit 26 outputs the photoacoustic image and the B-mode ultrasonic image to the image display unit 30 such as a display device.
  • the control unit 28 controls each unit in the ultrasonic unit 12. When acquiring a photoacoustic image, the control unit 28 transmits a trigger signal to the laser unit 13 to emit laser light from the laser unit 13. In addition, a sampling trigger signal is transmitted to the receiving circuit 21 in accordance with the emission of the laser light to control the photoacoustic wave sampling start timing and the like. The sampling data received by the reception circuit 21 is stored in the reception memory 22.
  • the photoacoustic image generation unit 24 receives the sampling data of the detection signal of the photoacoustic wave via the data separation unit 23, detects it with a predetermined detection frequency, and generates a photoacoustic image.
  • the photoacoustic image generated by the photoacoustic image generation unit 24 is input to the image output unit 26.
  • the control unit 28 transmits an ultrasonic transmission trigger signal for instructing the transmission control circuit 27 to perform ultrasonic transmission.
  • the transmission control circuit 27 transmits ultrasonic waves from the ultrasonic probe 11.
  • the ultrasound probe 11 scans the reception area of the piezoelectric element group, for example, while shifting the reception area of the piezoelectric element group one line at a time, and detects reflected ultrasound.
  • the control unit 28 transmits a sampling trigger signal to the receiving circuit 21 in synchronization with the timing of ultrasonic transmission, and starts sampling of reflected ultrasonic waves.
  • the sampling data received by the reception circuit 21 is stored in the reception memory 22.
  • the ultrasonic image generation unit 25 receives the sampling data of the ultrasonic detection signal via the data separation unit 23, detects the data with a predetermined detection frequency, and generates a B-mode ultrasonic image.
  • the B-mode ultrasound image generated by the ultrasound image generation unit 25 is input to the image output unit 26.
  • the image output unit 26 generates a display image by synthesizing the photoacoustic image generated by the photoacoustic image generation unit 24 and the B-mode ultrasonic image generated by the ultrasonic image generation unit 25. Output to the image display unit 30. Note that the photoacoustic image and the B-mode ultrasound image can be individually output and displayed on the image display unit 30 without being synthesized.
  • FIG. 3 is a diagram illustrating an example of a display image
  • FIG. 4 is a diagram illustrating another example of a display image.
  • the display image I S are on B-mode ultrasound image I b, it is produced by superimposing the photoacoustic image I n.
  • B-mode ultrasound image I b on the basis of the two images obtained in the order of the photoacoustic image I n, shall generate an image I S for the single display.
  • detection frequency of B-mode ultrasound image I b generation time shall be controlled in accordance with the depth of the subject body tissue. Further, the detection frequency during photoacoustic image I n generation has the initial value of the fixed in accordance with the depth value is changed by the control of the time of the display image I S generated later.
  • f b is the detection frequency (MHz) when generating the B-mode ultrasound image I b
  • R b is the resolution (Pixel / mm) of the B-mode ultrasound image I b
  • f n is the photoacoustic image I. Let n be the detection frequency (MHz) at the time of generation.
  • the display image I is an image display unit depth display direction of S 30 such that the longitudinal direction across the image display region of the, in the case of displaying the display image I S of the living tissue in the horizontal direction 3 cm (30 mm) ⁇ depth 2 cm (20 mm), as B-mode ultrasound below the resolution
  • R b 20Pixel / mm image I b.
  • the depth display direction of the display image I S is the longitudinal direction across the image display area of the image display section 30, lateral 3 cm (30 mm) ⁇ depth 4 cm (40 mm ) in the case of displaying a display image I S of the living tissue of the resolution
  • R b 10Pixel / mm street B-mode ultrasound image I b below.
  • the setting of the display range of the display image I S as described above, is input to the controller 28 via the input unit 40 by a user.
  • the photoacoustic image I n indicate the position of the tip of the puncture needle 15, it is common to view the position of the tip of the puncture needle 15 in the bright spot P.
  • the display size of the bright point P depends on the photoacoustic image I n at a time of generating the photoacoustic wave signal detection frequency (wavelength), detection frequency is low (long wavelength) about one of the wavelengths is the minimum resolution Since the image size increases, the image is displayed with a large bright spot P.
  • B-mode ultrasound image I b resolution R b at photoacoustic image I n generated for detecting the frequency f n is too small, the display size of the bright point P becomes too large a diameter of about 6Pixel. Therefore, it becomes wider region of B-mode ultrasound image I b being obscured by bright point P, is a problem that the living tissue of the tip near the puncture needle 15 is difficult to see results.
  • detection frequency f n of the time of image display on the optimum photoacoustic image I n generation is present.
  • the photoacoustic image generating apparatus 10 of the present embodiment determines a detection frequency f n at photoacoustic image I n generated. That is, the detection frequency f n at the time of generating the photoacoustic image I n is controlled to be higher as the resolution R b of the B-mode ultrasonic image I b is higher.
  • is a bright spot display size adjustment parameter.
  • the detection frequency f n that can be handled by the apparatus takes a discrete value due to the limitation on the number of clocks, and therefore is a value obtained from a portion excluding ⁇ in Equation (1) (here, f). there is a case that can not be a f n.
  • is an adjustment parameter for adjusting such an error, and is obtained as follows.
  • Mod [frx_clock, f] is a remainder when the reception clock frequency frx_clock is divided by f.
  • f n ⁇ f ⁇ Mod [frx_clock, f]
  • the display size of the bright spot P can be made constant.
  • detection frequency f b of the B-mode ultrasound image I b generated when the shall be controlled according to the depth of the subject body tissue detection frequency f b is transmitted in the ultrasonic probe 11 It depends on the frequency and the depth position of the living tissue. Basically, detection frequency f b is using a transmission frequency in the shallowest region of the detection range, in the deepest area in the detection range using the frequency of the lower limit of the ultrasonic probe 11. Therefore, the upper limit value of the detection frequency f b is determined by the transmission condition, the lower limit is determined by the performance of the ultrasonic probe 11.
  • the photoacoustic image I n at generation there is no transmission from the ultrasonic probe 11, only the reception at the ultrasonic probe 11 is present, uniquely by the performance of the ultrasonic probe 11 It is desirable to decide.
  • the predetermined constant value (const) is preferably determined based on the minimum resolution R b_MIN of the B-mode ultrasound image I b and the detection lower limit frequency f MIN in the ultrasound probe 11 as described below.
  • R b_MIN the minimum resolution of the B-mode ultrasound image I b
  • f MIN the detection lower limit frequency
  • the detection lower limit frequency f MIN indicates the minimum value of the detection frequency f b when the B-mode ultrasonic image I b is generated.
  • the minimum value of the detection frequency is lowest usable frequency band (e.g., -20dB bandwidth) by the ultrasonic probe 11 a portion of the frequency, the value is the same value as B-mode ultrasound image I b.
  • the display depth may exceed 16 cm or 20 cm depending on the type of the ultrasound probe 11 and the observation target (eg, abdomen).
  • the maximum display depth is 16 cm
  • the bright spot P 0.75 Pixel
  • the display size (const) of the bright spot P 0.6 Pixel.
  • the detection frequency during photoacoustic image I n generation since the penetration depth towards the lower frequencies can receive a high signal, it is possible to perform stable image display.
  • the detection frequency f n of the photoacoustic image I n when generating obtained by the formula (1) exceeds a predetermined upper limit value f n_max, generates a photoacoustic image I n the detection frequency of the photoacoustic wave to be used for determining the f n_max, and it is preferable to synthesize the B-mode acoustic image detection frequency of the photoacoustic wave by reducing the photoacoustic image I n generated as f n_max .
  • the predetermined upper limit value f n_MAX is set to be equal to or lower than the center frequency of the ultrasonic probe 11. Thereby, stable image display becomes possible.
  • the reduced photoacoustic image I n and B-mode ultrasound image I b is synthesized, and the center position coordinates of the bright point P at the time of superimposing the B-mode ultrasound image I b photoacoustic image I n, the bright spot P Since it is sufficient if there is a peripheral image, only this information needs to be acquired.
  • the detection frequency f n of the photoacoustic wave used when generating the photoacoustic image In is expressed by the equation (1).
  • the f n_max is a frequency lower than the detection frequency f n obtained at the display size of the bright point P in the photoacoustic image I n acquired by the detection frequency f n_max becomes larger than 3Pixel.
  • generation of the display image I S by the control unit 28 is performed using the procedures in the flowchart shown in FIG.
  • control unit 28 the detection frequency f n at photoacoustic image I n generated in correspondence with the resolution R b of B-mode ultrasound image I b calculated by the above formula (1) (S1), the formula (1 It is determined whether the detection frequency f n obtained by (1) exceeds a predetermined upper limit value (S2).
  • control unit 28 If the calculated detection frequency f n does not exceed a predetermined upper limit value, the control unit 28, to generate a photoacoustic image I n at the detection frequency f n calculated for photoacoustic image generating section 24 (S3) to output a B-mode ultrasound image I b and photoacoustic image I n and the display image I S obtained by combining the relative image output unit 26 (S4).
  • the control unit 28 If the calculated detection frequency f n exceeds a predetermined upper limit value, the control unit 28, the reduction ratio of the photoacoustic image I n calculated by the above formula (2) (S5), the photoacoustic image generating unit 24 to generate photoacoustic image I n at the detection frequency f n_max the predetermined upper limit value for, the photoacoustic image I n to the image output unit 26 is reduction processing by the reduction ratio obtained by equation (2) ( S6), and outputs the display image I S obtained by synthesizing the photoacoustic image I n obtained by reducing the image output unit 26 and the B-mode ultrasound image I b (S4).
  • the appropriate resolution photoacoustic image I n it is possible to obtain a can be the size of the B-mode ultrasound image I b bright spot in the photoacoustic image I n, which is superimposed on the P to a proper size.
  • FIG. 7 is a block diagram showing a schematic configuration of the second embodiment of the photoacoustic image generation apparatus of the present invention
  • FIG. 8 is a diagram showing an example of a reference table in the photoacoustic image generation apparatus of the second embodiment.
  • the photoacoustic image generating apparatus 10 of the second embodiment such as the reference table shown in FIG. 8 as an example, B-mode ultrasound image I b resolution R b and photoacoustic image I n detection frequency f n of the generation time of Is provided with a reference table holding unit 29 for holding a reference table recording the relationship between The reference table holding unit 29 can be realized by a memory or the like, for example.
  • Control unit 28 when generating the display image I S, on the basis of a reference table stored in the reference table holding unit 29, determines a detection frequency f n at photoacoustic image I n generated. Even with such a configuration, it is possible to obtain the same effects as those of the photoacoustic image generation apparatus 10 of the first embodiment.
  • the puncture needle 15 is used as one embodiment of the insert, but the insert is not limited to this.
  • the insert may be a radiofrequency ablation needle containing an electrode used for radiofrequency ablation, a catheter inserted into a blood vessel, or a catheter inserted into a blood vessel. It may be a guide wire. Alternatively, an optical fiber for laser treatment may be used.
  • the insert is not limited to a needle such as an injection needle, and may be a biopsy needle used for biopsy. That is, it may be a biopsy needle that can puncture a living body inspection object and collect a tissue of a biopsy site in the inspection object. In that case, a photoacoustic wave may be generated in a collection part (inhalation port) for aspirating and collecting tissue at a biopsy site.
  • the needle may be used as a guiding needle for puncturing up to a deep part, such as subcutaneous and intraabdominal organs.
  • the photoacoustic measuring device of this invention is not limited only to the said embodiment, A various correction and change are carried out from the structure of the said embodiment. Those applied are also included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Bモード超音波画像と光音響画像の両方を取得して合成する光音響画像生成装置において、Bモード超音波画像の解像度に応じて適正な分解能の光音響画像を取得可能にする。 光音響波発生部を有する挿入物(15)と、光音響波および反射音響波を検出する音響波検出部(11)と、反射音響波に基づいてBモード音響画像を生成する音響画像生成部(25)と、光音響波に基づいて光音響画像を生成する光音響画像生成部(24)と、Bモード音響画像と光音響画像とを合成した表示用画像を出力する画像出力部(26)と、表示用画像を構成するBモード音響画像の解像度に基づいて、光音響画像生成部(24)において光音響画像を生成する際に用いる光音響波の検波周波数を制御する制御部(28)とを備える。

Description

光音響画像生成装置
 本発明は、光を吸収して光音響波を発生する光音響波発生部を有し、少なくとも一部が被検体に挿入される挿入物を備えた光音響画像生成装置に関する。
 生体内部の状態を非侵襲で検査できる画像検査法の一種として、超音波検査法が知られている。超音波検査では、超音波の送信および受信が可能な超音波探触子が用いられる。超音波探触子から被検体(生体)に超音波を送信させると、その超音波は生体内部を進んでいき、組織界面において反射する。その反射超音波を超音波探触子によって受信し、反射超音波が超音波探触子に戻ってくるまでの時間に基づいて距離を計算することにより、内部の様子を画像化することができる。
 また、光音響効果を利用して生体の内部を画像化する光音響イメージングが知られている。一般に光音響イメージングでは、パルスレーザ光を生体内に照射する。生体内部では、生体組織がパルスレーザ光のエネルギーを吸収し、そのエネルギーによる断熱膨張により超音波(光音響波)が発生する。この光音響波を超音波探触子などによって検出し、検出信号に基づいて光音響画像を構成することにより、光音響波に基づく生体内の可視化が可能である。
 また、光音響イメージングに関し、特許文献1には、光を吸収して光音響波を発生する光音響波発生部を先端付近に設けた穿刺針が提案されている。この穿刺針においては、穿刺針の先端まで光ファイバが設けられ、その光ファイバによって導光された光が光音響波発生部に照射される。光音響波発生部において発生した光音響波は超音波探触子によって検出され、その検出信号に基づいて光音響画像が生成される。光音響画像では、光音響波発生部の部分が輝点として現れ、光音響画像を用いて穿刺針の位置の確認が可能となる。
特開2015-231583号公報 特開2016-67552号公報
 特許文献1に記載のような穿刺針を用いた光音響イメージングでは、被検体の生体内部の状態を2次元画像により表示するBモード超音波画像上に、穿刺針の位置を示す光音響画像を合成し、生体内部における穿刺針の先端位置を容易に確認できるようにすることが提案されている。
 ここで、Bモード超音波画像は、高い周波数の超音波信号を用いて画像化することにより高い分解能が得られるが、高い周波数の超音波は生体深部まで到達しにくいため、特許文献2では、超音波の減衰が少ない生体浅部では高い周波数の超音波信号を用いて画像化し、超音波の減衰が多い生体深部では低い周波数の超音波信号を用いて画像化して、可能な限り情報量の多い画像を取得することが提案されている。
 このとき、穿刺針の先端位置を特定するための光音響画像について、Bモード超音波画像の生成と同じ周波数の光音響波信号を用いて画像化した場合には、生体組織の深さに応じて光音響画像の分解能も変化する。穿刺針の先端位置を示す光音響画像では、穿刺針の先端位置を輝点により表示するのが一般的だが、この輝点の表示サイズは光音響画像生成時の光音響波信号の検波周波数(波長)に依存し、検波周波数が低い(波長が長い)ほど最小解像度である1波長分の画像サイズが大きくなるため、大きい輝点により表示されることになる。そのため、生体組織の深さに応じて穿刺針の先端位置を示す輝点の表示サイズが変わってしまい、ユーザーに違和感を感じさせるおそれがある。
 このような問題を解消するために、穿刺針の先端位置を特定するための光音響画像については、一定の周波数の光音響波信号を用いて画像化することが考えられるが、この場合には、穿刺針の先端位置が生体内部のどの深さにあっても検出可能なように、低い周波数の光音響波信号を用いて画像化することが多い。
 この場合、例えばBモード超音波画像のうち生体浅部の高分解能の領域のみを高い解像度(Pixel/mm)により表示し、これに低分解能の光音響画像を合成すると、輝点の表示サイズが大きくなり、輝点により隠されてしまうBモード超音波画像の領域が広くなってしまい、穿刺針先端周辺の生体組織が見えづらくなるという問題が生じる。穿刺においては、血管や腫瘍など目的の生体組織に針先が到達したかが重要なため、なるべく穿刺針先端周辺の生体組織が明瞭に確認できることが望まれている。
 逆に、Bモード超音波画像について生体深部までの広い領域を低い解像度(Pixel/mm)により表示した場合には、輝点の表示サイズが小さくなりすぎて、穿刺針の先端位置が確認しづらくなるおそれがある。
 このようにBモード超音波画像を表示する際の解像度に応じて光音響画像における輝点の最適な表示サイズが異なるため、Bモード超音波画像の解像度に応じて適正な分解能の光音響画像が取得できることが望まれている。
 本発明は、上記事情に鑑み、Bモード超音波画像と光音響画像の両方を取得して合成する光音響画像生成装置において、Bモード超音波画像の解像度に応じて適正な分解能の光音響画像が取得可能な光音響画像生成装置を提供することを目的とするものである。
 本発明の光音響画像生成装置は、少なくとも先端部分が被検体内に挿入される挿入物であって、先端部分まで光を導光する導光部材と、導光部材により導光された光を吸収して光音響波を発生する光音響波発生部とを有する挿入物と、光音響波発生部から発せられた光音響波を検出し、かつ被検体に対する音響波の送信によって反射された反射音響波を検出する音響波検出部と、音響波検出部によって検出した反射音響波に基づいて、Bモード音響画像を生成する音響画像生成部と、音響波検出部によって検出した光音響波に基づいて、光音響画像を生成する光音響画像生成部と、Bモード音響画像と光音響画像とを合成した表示用画像を出力する画像出力部と、表示用画像を構成するBモード音響画像の解像度に基づいて、光音響画像生成部において光音響画像を生成する際に用いる光音響波の検波周波数を制御する制御部とを備えたことを特徴とする。
 ここで、「表示用画像を構成するBモード音響画像の解像度」とは、表示用画像における所定長さ当たりの割り当て画素数を意味し、例えばPixel/mmの単位により表されるものである。
 本発明の光音響画像生成装置においては、制御部が、表示用画像を構成するBモード音響画像の解像度が高くなる程、光音響画像生成部において光音響画像を生成する際に用いる光音響波の検波周波数を高くするように制御することが好ましい。
 また、本発明の光音響画像生成装置においては、制御部が、表示用画像を構成するBモード音響画像の解像度と光音響画像を生成する際に用いる光音響波の検波周波数における波長との積が所定の一定値となるように、光音響画像生成部において光音響画像を生成する際に用いる光音響波の検波周波数を決定するようにしてもよい。
 この場合、制御部が、Bモード音響画像の最小解像度と、音響波検出部における検出下限周波数とに基づいて、所定の一定値を決定することが好ましい。
 また、制御部が、光音響画像生成部において光音響画像を生成する際に用いる光音響波の検波周波数が所定の上限値を超えた場合に、光音響画像生成部において光音響画像を生成する際に用いる光音響波の検波周波数を所定の上限値に決定し、かつ、画像出力部に対して、光音響波の検波周波数を所定の上限値として生成した光音響画像を縮小してBモード音響画像と合成させる制御を行うものとしてもよい。
 この場合、所定の上限値が、音響波検出部の中心周波数以下に設定されていることが好ましい。
 本発明の光音響画像生成装置においては、表示用画像を構成するBモード音響画像の解像度と、光音響画像生成部において光音響画像を生成する際に用いる光音響波の検波周波数との関係を記録した参照テーブルを保持する参照テーブル保持部を備え、制御部が、参照テーブルに基づいて、光音響画像生成部において光音響画像を生成する際に用いる光音響波の検波周波数を決定するものとしてもよい。
 また、本発明の光音響画像生成装置においては、音響波検出部が、Bモード音響画像を生成するための反射音響波と、光音響画像を生成するための光音響波とを交互に検出し、画像出力部が、Bモード音響画像、光音響画像の順に取得した2つの画像に基づいて、1枚の表示用画像を出力することが好ましい。
 また、挿入物が、被検体に穿刺される針であることが好ましい。
 本発明の光音響画像生成装置は、Bモード超音波画像と光音響画像の両方を取得し、両者を合成して表示用画像として出力する光音響画像生成装置において、表示用画像を構成するBモード音響画像の解像度に基づいて、光音響画像を生成する際に用いる光音響波の検波周波数を制御するようにしたので、Bモード超音波画像の解像度に応じて適正な分解能の光音響画像を取得することができる。
本発明の光音響画像生成装置の第1の実施形態の概略構成を示すブロック図 穿刺針の先端部分の構成を示す断面図 表示用画像の一例を示す図 表示用画像の他の例を示す図 光音響波の検波周波数と表示深さとの関係を示すグラフ 第1の実施形態の光音響画像生成装置における表示用画像の生成方法を説明するためのフローチャート 本発明の光音響画像生成装置の第2の実施形態の概略構成を示すブロック図 第2の実施形態の光音響画像生成装置における参照テーブルの一例を示す図
 以下、本発明の光音響画像生成装置の第1の実施形態について、図面を参照しながら詳細に説明する。図1は本発明の光音響画像生成装置の第1の実施形態の概略構成を示すブロック図である。
 本実施形態の光音響画像生成装置10は、図1に示すように、超音波探触子11、超音波ユニット12、レーザユニット13、および穿刺針15を備えている。穿刺針15とレーザユニット13とは、光ファイバを有する光ケーブル16によって接続されている。穿刺針15は、光ケーブル16に対して着脱可能なものであり、ディスポーザブルに構成されたものである。なお、本実施形態では、音響波として超音波を用いるが、超音波に限定されるものでは無く、被検対象や測定条件等に応じて適切な周波数を選択してさえいれば、可聴周波数の音響波を用いても良い。
 レーザユニット13は、たとえばYAG(イットリウム・アルミニウム・ガーネット)およびアレキサンドライトなどを用いた固体レーザ光源を備えている。レーザユニット13の固体レーザ光源から出射されたレーザ光は、光ケーブル16によって導光され、穿刺針15に入射される。本実施形態のレーザユニット13は、近赤外波長域のパルスレーザ光を出射するものである。近赤外波長域とは、700nm~850nm程度の波長域を意味する。なお、本実施形態においては、固体レーザ光源を用いるようにしたが、気体レーザ光源などその他のレーザ光源を用いるようにしてもよいし、レーザ光源以外の光源を用いるようにしてもよい。
 穿刺針15は、本発明の挿入物の一実施形態であり、被検体に穿刺される針である。図2は、穿刺針15の長さ方向に伸びる中心軸を含む断面図である。穿刺針15は、鋭角に形成された先端に開口を有し、中空状に形成された穿刺針本体15aと、レーザユニット13から出射されたレーザ光を穿刺針15の開口の近傍まで導光する光ファイバ15b(本発明の導光部材に相当する)と、光ファイバ15bから出射したレーザ光を吸収して光音響波を発生する光音響波発生部15cとを含む。
 光ファイバ15bおよび光音響波発生部15cは、穿刺針本体15aの中空部15dに配置される。光ファイバ15bは、たとえば穿刺針15の基端部に設けられた光コネクタを介して光ケーブル16(図1を参照)内の光ファイバに接続される。光ファイバ15bの光出射端からは、たとえば0.2mJのレーザ光が出射される。
 光音響波発生部15cは、光ファイバ15bの光出射端に設けられており、穿刺針15の先端近傍かつ穿刺針本体15aの内壁に設けられる。光音響波発生部15cは、光ファイバ15bから出射されるレーザ光を吸収して光音響波を発生する。光音響波発生部15cは、たとえば黒顔料を混合したエポキシ樹脂、ポリウレタン樹脂、フッ素樹脂およびシリコーンゴムなどから形成されている。なお、図2では、光ファイバ15bよりも光音響波発生部15cの方が大きく描かれているが、これには限定されず、光音響波発生部15cは、光ファイバ15bの径と同程度の大きさであってもよい。
 光音響波発生部15cは、上述したものに限定されず、レーザ光の波長に対して光吸収性を有する金属膜または酸化物の膜を、光音響波発生部としてもよい。たとえば光音響波発生部15cとして、レーザ光の波長に対して光吸収性が高い酸化鉄や、酸化クロムおよび酸化マンガンなどの酸化物の膜を用いることができる。あるいは、光吸収性は酸化物よりも低いが生体適合性が高いTi(チタン)やPt(白金)などの金属膜を光音響波発生部15cとして用いてもよい。また、光音響波発生部15cが設けられる位置は穿刺針本体15aの内壁には限定されない。たとえば光音響波発生部15cである金属膜または酸化物の膜を、蒸着などにより光ファイバ15bの光出射端上に例えば100nm程度の膜厚により製膜し、酸化物の膜が光出射端を覆うようにしてもよい。この場合、光ファイバ15bの光出射端から出射されたレーザ光の少なくとも一部は、光出射端を覆う金属膜または酸化物の膜で吸収され、金属膜または酸化物の膜から光音響波が生じる。
 図1に戻り、超音波探触子11は、被検体に穿刺針15が穿刺された後に、光音響波発生部15cから発せられた光音響波を検出する。超音波探触子11は、光音響波を検出する音響波検出部20を備えている。
 音響波検出部20は、光音響波を検出する複数の圧電素子が一次元に配列された圧電素子アレイと、マルチプレクサとを備えている。圧電素子は、超音波振動子であり、たとえば圧電セラミクス、またはポリフッ化ビニリデン(PVDF)のような高分子フィルムから構成される圧電素子である。また、音響波検出部20は、図示省略しているが、音響レンズ、音響整合層、バッキング材、および圧電素子アレイの制御回路などを備えている。
 超音波探触子11は、音響波検出部20の圧電素子アレイによって、光音響波の検出に加えて、被検体に対する音響波(超音波)の送信、及び送信した超音波に対する反射音響波(反射超音波)の受信を行う。なお、超音波の送信と受信とは分離した位置で行ってもよい。たとえば超音波探触子11とは異なる位置から超音波の送信を行い、その送信された超音波に対する反射超音波を超音波探触子11の圧電素子アレイで受信してもよい。超音波探触子11としては、リニア超音波探触子、コンベクス超音波探触子、またはセクター超音波探触子などを用いることができる。
 超音波ユニット12は、受信回路21、受信メモリ22、データ分離部23、光音響画像生成部24、超音波画像生成部25、画像出力部26、送信制御回路27、および制御部28を有する。超音波ユニット12は、典型的にはプロセッサ、メモリ、およびバスなどを有する。超音波ユニット12には、光音響画像生成処理、超音波画像生成処理、および超音波画像と光音響画像とを合成した表示用画像の生成処理などに関するプログラムがメモリに組み込まれている。プロセッサによって構成される制御部28によってそのプログラムが動作することにより、データ分離部23、光音響画像生成部24、超音波画像生成部25、および画像出力部26の機能が実現する。すなわち、これらの各部は、プログラムが組み込まれたメモリとプロセッサにより構成されている。
 なお、超音波ユニット12のハードウェアの構成は特に限定されるものではなく、複数のIC(Integrated Circuit)、プロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、およびメモリなどを適宜組み合わせることによって実現することができる。
 受信回路21は、超音波探触子11が出力する検出信号を受信し、受信した検出信号を受信メモリ22に格納する。受信回路21は、典型的には、低ノイズアンプ、可変ゲインアンプ、ローパスフィルタ、およびAD変換器(Analog to Digital convertor)を含む。超音波探触子11の検出信号は、低ノイズアンプにより増幅された後に、可変ゲインアンプにおいて深度に応じたゲイン調整がなされ、ローパスフィルタで高周波成分がカットされた後にAD変換器によりデジタル信号に変換され、受信メモリ22に格納される。受信回路21は、例えば1つのIC(Integral Circuit)により構成される。
 超音波探触子11は、光音響波の検出信号と反射超音波の検出信号とを出力し、受信メモリ22には、AD変換された光音響波および反射超音波の検出信号(サンプリングデータ)が格納される。データ分離部23は、受信メモリ22から光音響波の検出信号を読み出し、光音響画像生成部24に送信する。また、受信メモリ22から反射超音波の検出信号を読み出し、超音波画像生成部25に送信する。
 光音響画像生成部24は、超音波探触子11で検出された光音響波の検出信号に基づいて光音響画像を生成する。光音響画像の生成処理は、たとえば位相整合加算などの画像再構成、検波および対数変換などを含む。超音波画像生成部25は、超音波探触子11で検出された反射超音波の検出信号に基づいて被検体の生体内部の状態を2次元画像により表示するBモード超音波画像(本発明のBモード音響画像に相当する)を生成する。Bモード超音波画像の生成処理も、位相整合加算などの画像再構成、検波および対数変換などを含む。画像出力部26は、光音響画像とBモード超音波画像とをディスプレイ装置などの画像表示部30に出力する。
 制御部28は、超音波ユニット12内の各部を制御する。制御部28は、光音響画像を取得する場合は、レーザユニット13にトリガ信号を送信し、レーザユニット13からレーザ光を出射させる。また、レーザ光の出射に合わせて、受信回路21にサンプリングトリガ信号を送信し、光音響波のサンプリング開始タイミングなどを制御する。受信回路21によって受信されたサンプリングデータは、受信メモリ22に格納される。
 光音響画像生成部24は、データ分離部23を介して光音響波の検出信号のサンプリングデータを受信し、所定の検波周波数により検波して光音響画像を生成する。光音響画像生成部24が生成した光音響画像は、画像出力部26に入力される。
 また、制御部28は、Bモード超音波画像を取得する場合は、送信制御回路27に超音波送信を指示する旨の超音波送信トリガ信号を送信する。送信制御回路27は、超音波送信トリガ信号を受けると、超音波探触子11から超音波を送信させる。超音波探触子11は、超音波画像を取得する場合には、制御部28による制御によって、たとえば圧電素子群の受信領域を一ラインずつずらしながら走査して反射超音波の検出を行う。制御部28は、超音波送信のタイミングに合わせて受信回路21にサンプリングトリガ信号を送信し、反射超音波のサンプリングを開始させる。受信回路21によって受信されたサンプリングデータは、受信メモリ22に格納される。
 超音波画像生成部25は、データ分離部23を介して超音波の検出信号のサンプリングデータを受信し、所定の検波周波数により検波してBモード超音波画像を生成する。超音波画像生成部25が生成したBモード超音波画像は、画像出力部26に入力される。
 画像出力部26は、光音響画像生成部24が生成した光音響画像と、超音波画像生成部25が生成したBモード超音波画像とを合成して表示用画像を生成し、ディスプレイ装置などの画像表示部30に出力する。なお、光音響画像とBモード超音波画像とを合成せずに、個別に画像表示部30に出力して表示させることも可能である。
 ここで、制御部28による表示用画像の生成方法について詳細に説明する。図3は表示用画像の一例を示す図、図4は表示用画像の他の例を示す図である。
 図3に示すように、表示用画像Iは、Bモード超音波画像I上に、光音響画像Iを重畳することにより生成される。本実施形態では、Bモード超音波画像I、光音響画像Iの順に取得した2つの画像に基づいて、1枚の表示用画像Iを生成するものとする。
 また、Bモード超音波画像I生成時の検波周波数は、被検体の生体組織の深さに応じて制御するものとする。また、光音響画像I生成時の検波周波数は、深さに応じて固定の初期値を有するが、後述の表示用画像I生成時の制御により値が変更される。なお、本説明において、fはBモード超音波画像I生成時の検波周波数(MHz)、RはBモード超音波画像Iの解像度(Pixel/mm)、fは光音響画像I生成時の検波周波数(MHz)とする。
 例えば、生体内の音速c=1500m/s(通常、生体内の音速は1540m/s程度であるが、ここでは簡略化して示す)、光音響画像I生成時の検波周波数の初期値f=5MHz(波長λ=300μm)、画像表示部30の画像表示領域の縦方向の画素数を400Pixelとし、図3に示すように、表示用画像Iの深さ表示方向が画像表示部30の画像表示領域の縦方向全体となるように、横方向3cm(30mm)×深さ方向2cm(20mm)の生体組織の表示用画像Iを表示した場合には、下記の通りBモード超音波画像Iの解像度R=20Pixel/mmとなる。
  R=400(Pixel)/20(mm)=20(Pixel/mm)
 そして、光音響画像I生成時の検波周波数の1波長分が表示される画素数は、下記の通り6Pixelとなる。
  20(Pixel/mm)×0.3(mm)=6(Pixel)
 また、図4に示すように、表示用画像Iの深さ表示方向が画像表示部30の画像表示領域の縦方向全体となるように、横方向3cm(30mm)×深さ方向4cm(40mm)の生体組織の表示用画像Iを表示した場合には、下記の通りBモード超音波画像Iの解像度R=10Pixel/mmとなる。
  R=400(Pixel)/40(mm)=10(Pixel/mm)
 そして、光音響画像I生成時の検波周波数の1波長分が表示される画素数は、下記の通り3Pixelとなる。
  10(Pixel/mm)×0.3(mm)=3(Pixel)
 なお、上記のような表示用画像Iの表示範囲の設定は、ユーザーにより入力部40を介して制御部28に入力される。
 このように、表示用画像Iの解像度が異なる場合に、光音響画像I生成時の検波周波数fを固定値とすると、fとRでトレードオフが生じる。図3、4に示すように、穿刺針15の先端位置を示す光音響画像Iでは、穿刺針15の先端位置を輝点Pで表示するのが一般的である。しかし、この輝点Pの表示サイズは光音響画像I生成時の光音響波信号の検波周波数(波長)に依存し、検波周波数が低い(波長が長い)ほど最小解像度である1波長分の画像サイズが大きくなるため、大きい輝点Pにより表示されることになる。
 輝点Pの表示サイズとして図4に示す直径3Pixel程度が最適と考えた場合、図3に示す例では、Bモード超音波画像Iの解像度Rに対して光音響画像I生成時の検波周波数fが小さすぎて、輝点Pの表示サイズが直径6Pixel程度と大きくなり過ぎてしまう。そのため、輝点Pにより隠されてしまうBモード超音波画像Iの領域が広くなってしまい、穿刺針15の先端周辺の生体組織が見えづらくなるという問題が生じる。
 逆に、Bモード超音波画像Iの解像度Rに対して光音響画像I生成時の検波周波数fが大きすぎると、輝点Pの表示サイズが小さくなり過ぎてしまい、穿刺針15の先端位置が確認しづらくなるという問題が生じる。例えば、図4の例と同じく、Bモード超音波画像Iの解像度R=10Pixel/mmとし、光音響画像I生成時の検波周波数fを10MHz(波長λ=150μm)に変更すると、光音響画像I生成時の検波周波数の1波長分が表示される画素数は、1.5Pixelとなる。
 すなわち、Bモード超音波画像Iの解像度Rに対して、画像表示上最適な光音響画像I生成時の検波周波数fが存在する。
 そこで、本実施形態の光音響画像生成装置10では、下記の通り、Bモード超音波画像Iの解像度Rと光音響画像I生成時の検波周波数fにおける波長λとの積が所定の一定値(const)となるように、光音響画像I生成時の検波周波数fを決定する。すなわち、Bモード超音波画像Iの解像度Rが高くなる程、光音響画像I生成時の検波周波数fが高くなるように制御される。ここで、αは輝点表示サイズ調整パラメータである。
  R×λ×α=(const)
 この式を光音響画像I生成時の検波周波数fの式として書き直すと、下記式(1)となる。
  R×c/f=(const)/α
  f=R×c×α/(const)+δ …(1)
 なお、装置が対応可能な検波周波数fは、クロック数の制限により離散的な値をとるため、式(1)のδを除いた部分から求めた値(ここではfとする)の通りのfとすることができない場合がある。式(1)におけるδは、そのような誤差を調整するための調整パラメータであり、下記の通り求められる。ここで、Mod[frx_clock,f]は、受信クロック周波数frx_clockをfで割った時の余りである。
  δ=f×f×Mod[frx_clock,f]
 このように、式(1)に従い、Bモード超音波画像Iの解像度Rに応じて光音響画像I生成時の検波周波数fを決定することにより、解像度Rの変化に依存せず、輝点Pの表示サイズを一定にすることができる。
 上記の通り、Bモード超音波画像I生成時の検波周波数fを被検体の生体組織の深さに応じて制御するものとした場合、検波周波数fは超音波探触子11における送信周波数と生体組織の深さ位置によって決まる。基本的に、検波周波数fは、検出範囲における最も浅い領域では送信周波数を用い、検出範囲における最も深い領域では超音波探触子11の下限の周波数を用いる。そのため、検波周波数fの上限値は送信条件によって決まり、下限値は超音波探触子11の性能によって決まる。
 また、光音響画像I生成時は、超音波探触子11からの送信が存在せず、超音波探触子11における受信のみが存在するので、超音波探触子11の性能によって一意に決まるのが望ましい。
 従って、所定の一定値(const)については、下記の通り、Bモード超音波画像Iの最小解像度Rb_MINと超音波探触子11における検出下限周波数fMINとに基づいて決定することが好ましい。
  (const)=Rb_MIN×c/fMIN×α
 ここで、検出下限周波数fMINとは、Bモード超音波画像I生成時の検波周波数fの最小値を示す。光音響画像Iにおいても同じ超音波探触子11からの受信信号を利用するため、検波周波数の最小値は超音波探触子11で使用可能な周波数帯域(例えば-20dB帯域)の最も低周波の部分であり、その値はBモード超音波画像Iと同じ値となる。
 この点について具体例を挙げて説明する。図5は光音響波の検波周波数と表示深さとの関係を示すグラフである。被検体の生体組織の検出最大深さ8cmとし、上記と同様に表示用画像Iの深さ表示方向が画像表示部30の画像表示領域の縦方向全体(400Pixel)となるように、深さ方向8cm(80mm)の生体組織の表示用画像Iを表示した場合には、Bモード超音波画像Iの最小解像度Rb_MIN=5Pixel/mmとなる。また、検出下限周波数fMIN=5MHz(波長λ=300μm)とし、輝点表示サイズ調整パラメータα=1とすると、輝点Pの表示サイズ(const)=1.5Pixelとなる。
  (const)=5(Pixel/mm)×0.3(mm)×1=1.5(Pixel)
 なお、超音波探触子11の種類と観察対象(腹部など)によっては、表示深度が16cm、または20cmを超える場合もある。画像表示部30の画像表示領域の縦方向全体の画素数(400Pixel)と、検出下限周波数fMIN=5MHz(波長λ=300μm)が同じ場合、最大表示深度が16cmの場合は輝点Pの表示サイズ(const)=0.75Pixelとなり、20cmの場合は輝点Pの表示サイズ(const)=0.6Pixelとなる。このように輝点Pの表示サイズが小さくなり過ぎる場合には、輝点表示サイズ調整パラメータαを調整することによって、輝点Pの表示サイズを調整することができる。
 光音響画像Iにおいて穿刺針15の先端位置を示す輝点Pは点として表示されるため、細かい画像情報を取得するより、位置を確実に把握することが重要である。光音響画像I生成時の検波周波数としては、低い周波数の方が深達度が高い信号を受信できるため、安定した画像表示が可能である。
 そのため、図5のグラフに示すように、式(1)で求められる光音響画像I生成時の検波周波数fが所定の上限値fn_MAXを超えた場合に、光音響画像Iを生成する際に用いる光音響波の検波周波数をfn_MAXに決定し、かつ、光音響波の検波周波数をfn_MAXとして生成した光音響画像Iを縮小してBモード音響画像と合成させることが好ましい。
 この場合、所定の上限値fn_MAXが、超音波探触子11の中心周波数以下に設定されていることが好ましい。これにより、安定した画像表示が可能となる。
 なお、光音響波の検波周波数をfn_MAXとして生成した光音響画像Iを縮小する際の縮小率(縮小後画像サイズ/縮小前画像サイズ)Rについては、下記式(2)により求められる。
  R=fn_MAX/f …(2)
 光音響画像Iを縮小する際は、光音響画像I中の輝点Pの中心位置を中心として縮小する。光音響画像Iを縮小するとBモード超音波画像Iと画像サイズが異なるようになるため、単純にBモード超音波画像Iと光音響画像Iとを合成することはできない。
 縮小した光音響画像IとBモード超音波画像Iと合成させる場合、Bモード超音波画像Iに光音響画像Iを重畳させる際の輝点Pの中心位置座標と、輝点P周辺の画像があればよいため、これらの情報のみを取得しておけばよい。
 輝点P周辺の画像については、例えば輝点Pの表示サイズ(const)=3Pixelとした場合、光音響画像Iを生成する際に用いる光音響波の検波周波数fについて、式(1)で求められた検波周波数fよりも低い周波数であるfn_MAXに抑えると、検波周波数fn_MAXで取得した光音響画像I中の輝点Pの表示サイズは3Pixelよりも大きくなる。従って、輝点周辺の画像範囲については、縮小率Rを考慮して少し広めに設定すればよい。例えば、最終的な輝点Pの表示サイズ(const)=3Pixelに対して縮小率R=0.5の場合には、6Pixel×6Pixelの領域の画像のみを取得しておけばよい。
 以上を踏まえ、本実施形態において、制御部28による表示用画像Iの生成は、図6に示すフローチャートの手順に沿って行われる。
 まず、制御部28は、Bモード超音波画像Iの解像度Rに応じた光音響画像I生成時の検波周波数fを上記の式(1)により計算し(S1)、式(1)により求められた検波周波数fが所定の上限値を超えるか判定する(S2)。
 算出された検波周波数fが所定の上限値を超えない場合、制御部28は、光音響画像生成部24に対して算出された検波周波数fで光音響画像Iを生成させ(S3)、画像出力部26に対してBモード超音波画像Iと光音響画像Iとを合成した表示用画像Iを出力させる(S4)。
 算出された検波周波数fが所定の上限値を超える場合、制御部28は、光音響画像Iの縮小率を上記の式(2)により計算し(S5)、光音響画像生成部24に対して所定の上限値の検波周波数fn_MAXで光音響画像Iを生成させ、画像出力部26に対してこの光音響画像Iを式(2)により求められた縮小率により縮小処理させ(S6)、画像出力部26に対してBモード超音波画像Iと縮小した光音響画像Iとを合成した表示用画像Iを出力させる(S4)。
 このような構成とすることにより、Bモード超音波画像Iの解像度Rに応じて光音響画像I生成時の適正な検波周波数fを設定し、適正な分解能の光音響画像Iを取得することができるため、Bモード超音波画像I上に重畳される光音響画像I中の輝点Pのサイズを適正な大きさにすることができる。
 次に、本発明の光音響画像生成装置の第2の実施形態について説明する。第1の実施形態の光音響画像生成装置10においては、Bモード超音波画像Iの解像度Rに応じた光音響画像I生成時の検波周波数fを、所定の計算式により決定していたが、第2の実施形態の光音響画像生成装置10においては、Bモード超音波画像Iの解像度Rに応じた光音響画像I生成時の検波周波数fを、予め用意された参照テーブルに基づいて決定するようにしたものである。その他の構成および作用については、第1の実施形態の光音響画像生成装置10と同様である。図7は本発明の光音響画像生成装置の第2の実施形態の概略構成を示すブロック図、図8は第2の実施形態の光音響画像生成装置における参照テーブルの一例を示す図である。
 第2の実施形態の光音響画像生成装置10は、一例として図8に示す参照テーブルのような、Bモード超音波画像Iの解像度Rと光音響画像I生成時の検波周波数fとの関係を記録した参照テーブルを保持する参照テーブル保持部29を備えている。この参照テーブル保持部29は、例えばメモリ等によって実現することができる。制御部28は、表示用画像Iを生成する際に、参照テーブル保持部29に保持されている参照テーブルに基づいて、光音響画像I生成時の検波周波数fを決定する。このような構成としても、上記第1の実施形態の光音響画像生成装置10と同様の効果を得ることができる。
 なお、上記第1および第2の実施形態では、挿入物の一実施形態として穿刺針15を用いるようにしたが、挿入物としては、これには限定されない。挿入物は、内部にラジオ波焼灼術に用いられる電極を収容するラジオ波焼灼用針であってもよいし、血管内に挿入されるカテーテルであってもよいし、血管内に挿入されるカテーテルのガイドワイヤであってもよい。あるいは、レーザ治療用の光ファイバであってもよい。
 また、挿入物は注射針のような針には限定されず、生体検査に用いられる生検針であってもよい。すなわち、生体の検査対象物に穿刺して検査対象物中の生検部位の組織を採取可能な生検針であってもよい。その場合には、生検部位の組織を吸引して採取するための採取部(吸入口)において光音響波を発生させればよい。また、針は、皮下および腹腔内臓器など、深部までの穿刺を目的とするガイディングニードルとして使用されてもよい。
 以上、本発明をその好適な実施形態に基づいて説明したが、本発明の光音響計測装置は、上記実施形態にのみ限定されるものではなく、上記実施形態の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。
10  光音響画像生成装置
11  超音波探触子
12  超音波ユニット
13  レーザユニット
15  穿刺針
15a 穿刺針本体
15b 光ファイバ
15c 光音響波発生部
15d 中空部
16  光ケーブル
20  音響波検出部
21  受信回路
22  受信メモリ
23  データ分離部
24  光音響画像生成部
25  超音波画像生成部
26  画像出力部
27  送信制御回路
28  制御部
29  参照テーブル保持部
30  画像表示部
40  入力部
  Bモード超音波画像
  光音響画像
  表示用画像
P   輝点

Claims (9)

  1.  少なくとも先端部分が被検体内に挿入される挿入物であって、前記先端部分まで光を導光する導光部材と、前記導光部材により導光された光を吸収して光音響波を発生する光音響波発生部とを有する挿入物と、
     前記光音響波発生部から発せられた光音響波を検出し、かつ前記被検体に対する音響波の送信によって反射された反射音響波を検出する音響波検出部と、
     前記音響波検出部によって検出した前記反射音響波に基づいて、Bモード音響画像を生成する音響画像生成部と、
     前記音響波検出部によって検出した前記光音響波に基づいて、光音響画像を生成する光音響画像生成部と、
     前記Bモード音響画像と前記光音響画像とを合成した表示用画像を出力する画像出力部と、
     前記表示用画像を構成する前記Bモード音響画像の解像度に基づいて、前記光音響画像生成部において前記光音響画像を生成する際に用いる前記光音響波の検波周波数を制御する制御部と
     を備えたことを特徴とする光音響画像生成装置。
  2.  前記制御部が、前記表示用画像を構成する前記Bモード音響画像の解像度が高くなる程、前記光音響画像生成部において前記光音響画像を生成する際に用いる前記光音響波の検波周波数を高くするように制御する
     請求項1記載の光音響画像生成装置。
  3.  前記制御部が、前記表示用画像を構成する前記Bモード音響画像の解像度と前記光音響画像を生成する際に用いる前記光音響波の検波周波数における波長との積が所定の一定値となるように、前記光音響画像生成部において前記光音響画像を生成する際に用いる前記光音響波の検波周波数を決定する
     請求項1または2記載の光音響画像生成装置。
  4.  前記制御部が、前記Bモード音響画像の最小解像度と、前記音響波検出部における検出下限周波数とに基づいて、前記所定の一定値を決定する
     請求項3記載の光音響画像生成装置。
  5.  前記制御部が、前記光音響画像生成部において前記光音響画像を生成する際に用いる前記光音響波の検波周波数が所定の上限値を超えた場合に、前記光音響画像生成部において前記光音響画像を生成する際に用いる前記光音響波の検波周波数を前記所定の上限値に決定し、かつ、前記画像出力部に対して、前記光音響波の検波周波数を前記所定の上限値として生成した前記光音響画像を縮小して前記Bモード音響画像と合成させる制御を行う
     請求項3または4記載の光音響画像生成装置。
  6.  前記所定の上限値が、前記音響波検出部の中心周波数以下に設定されている
     請求項5記載の光音響画像生成装置。
  7.  前記表示用画像を構成する前記Bモード音響画像の解像度と、前記光音響画像生成部において前記光音響画像を生成する際に用いる前記光音響波の検波周波数との関係を記録した参照テーブルを保持する参照テーブル保持部を備え、
     前記制御部が、前記参照テーブルに基づいて、前記光音響画像生成部において前記光音響画像を生成する際に用いる前記光音響波の検波周波数を決定する
     請求項1または2記載の光音響画像生成装置。
  8.  前記音響波検出部が、前記Bモード音響画像を生成するための前記反射音響波と、前記光音響画像を生成するための前記光音響波とを交互に検出し、
     前記画像出力部が、前記Bモード音響画像、前記光音響画像の順に取得した2つの画像に基づいて、1枚の表示用画像を出力する
     請求項1から7のいずれか1項記載の光音響画像生成装置。
  9.  前記挿入物が、前記被検体に穿刺される針である
     請求項1から8のいずれか1項記載の光音響画像生成装置。
PCT/JP2018/007066 2017-03-29 2018-02-27 光音響画像生成装置 WO2018180109A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019509012A JP6790235B2 (ja) 2017-03-29 2018-02-27 光音響画像生成装置
US16/542,855 US11921202B2 (en) 2017-03-29 2019-08-16 Photoacoustic image generation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017064579 2017-03-29
JP2017-064579 2017-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/542,855 Continuation US11921202B2 (en) 2017-03-29 2019-08-16 Photoacoustic image generation apparatus

Publications (1)

Publication Number Publication Date
WO2018180109A1 true WO2018180109A1 (ja) 2018-10-04

Family

ID=63675607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007066 WO2018180109A1 (ja) 2017-03-29 2018-02-27 光音響画像生成装置

Country Status (3)

Country Link
US (1) US11921202B2 (ja)
JP (1) JP6790235B2 (ja)
WO (1) WO2018180109A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6790235B2 (ja) * 2017-03-29 2020-11-25 富士フイルム株式会社 光音響画像生成装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133654A (ja) * 1995-11-08 1997-05-20 Hitachi Ltd 光音響分析装置
JP2015037519A (ja) * 2013-01-09 2015-02-26 富士フイルム株式会社 光音響画像生成装置及び挿入物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844319B2 (en) * 1998-11-04 2010-11-30 Susil Robert C Systems and methods for magnetic-resonance-guided interventional procedures
US6520915B1 (en) * 2000-01-28 2003-02-18 U-Systems, Inc. Ultrasound imaging system with intrinsic doppler capability
US20070088416A1 (en) * 2001-04-13 2007-04-19 Surgi-Vision, Inc. Mri compatible medical leads
US8532742B2 (en) * 2006-11-15 2013-09-10 Wisconsin Alumni Research Foundation System and method for simultaneous 3DPR device tracking and imaging under MR-guidance for therapeutic endovascular interventions
WO2011091423A2 (en) * 2010-01-25 2011-07-28 The Arizona Board Of Regents On Behalf Of The University Of Arizona Ultrasonic/photoacoustic imaging devices and methods
JP2012005624A (ja) * 2010-06-24 2012-01-12 Fujifilm Corp 超音波光音響撮像装置およびその作動方法
US9055869B2 (en) * 2011-10-28 2015-06-16 Covidien Lp Methods and systems for photoacoustic signal processing
JP5936330B2 (ja) * 2011-11-04 2016-06-22 キヤノン株式会社 音響波測定装置および音響波測定装置の制御方法
US9486143B2 (en) * 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
JP6066232B2 (ja) 2013-01-09 2017-01-25 富士フイルム株式会社 光音響画像生成装置及び挿入物
JP6373089B2 (ja) * 2014-06-26 2018-08-15 キヤノン株式会社 被検体情報取得装置
JP6152136B2 (ja) * 2014-08-27 2017-06-21 プレキシオン株式会社 光音響画像化装置
JP6152078B2 (ja) * 2014-08-27 2017-06-21 プレキシオン株式会社 光音響画像化装置
JP6501474B2 (ja) * 2014-09-29 2019-04-17 キヤノン株式会社 被検体情報取得装置
JP2018514748A (ja) * 2015-02-06 2018-06-07 ザ ユニバーシティ オブ アクロンThe University of Akron 光学撮像システムおよびその方法
US10806346B2 (en) * 2015-02-09 2020-10-20 The Johns Hopkins University Photoacoustic tracking and registration in interventional ultrasound
JP6790235B2 (ja) * 2017-03-29 2020-11-25 富士フイルム株式会社 光音響画像生成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133654A (ja) * 1995-11-08 1997-05-20 Hitachi Ltd 光音響分析装置
JP2015037519A (ja) * 2013-01-09 2015-02-26 富士フイルム株式会社 光音響画像生成装置及び挿入物

Also Published As

Publication number Publication date
JPWO2018180109A1 (ja) 2020-02-06
US20190369239A1 (en) 2019-12-05
JP6790235B2 (ja) 2020-11-25
US11921202B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
JP4590293B2 (ja) 超音波観測装置
WO2018056187A1 (ja) 光音響画像生成装置
JP2005253827A (ja) 超音波撮像方法及び装置
US20190307421A1 (en) Photoacoustic image generation apparatus
JP6790235B2 (ja) 光音響画像生成装置
JP6628891B2 (ja) 光音響画像生成装置
JP7127034B2 (ja) 画像生成装置および作動方法
JP2009297346A (ja) 超音波観測装置、超音波内視鏡装置、画像処理方法及び画像処理プログラム
JP6667649B2 (ja) 光音響画像生成装置
JP2006175006A (ja) 超音波観測装置、超音波内視鏡装置、及び、画像処理方法
JP6847234B2 (ja) 光音響画像生成装置
JP6685413B2 (ja) 光音響計測装置
WO2016051764A1 (ja) 光音響画像生成装置
JP6745888B2 (ja) 光音響計測装置
WO2019044212A1 (ja) 光音響画像生成装置および画像取得方法
WO2018180223A1 (ja) 光音響画像生成装置
KR20230100686A (ko) 치료 및 이미징 동시 수행방법 및 이를 위한 다기능 초음파 프로브
JP2014023680A (ja) 被検体情報取得装置およびその制御方法ならびに提示方法
JP2005253828A (ja) 超音波撮像装置
JP2019155004A (ja) 光音響装置および被検体情報取得方法
JPH03146041A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509012

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777270

Country of ref document: EP

Kind code of ref document: A1