JP5766273B2 - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
JP5766273B2
JP5766273B2 JP2013269677A JP2013269677A JP5766273B2 JP 5766273 B2 JP5766273 B2 JP 5766273B2 JP 2013269677 A JP2013269677 A JP 2013269677A JP 2013269677 A JP2013269677 A JP 2013269677A JP 5766273 B2 JP5766273 B2 JP 5766273B2
Authority
JP
Japan
Prior art keywords
acoustic wave
wave receiver
time
movement control
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013269677A
Other languages
English (en)
Other versions
JP2014073410A (ja
Inventor
依田 晴夫
晴夫 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013269677A priority Critical patent/JP5766273B2/ja
Publication of JP2014073410A publication Critical patent/JP2014073410A/ja
Application granted granted Critical
Publication of JP5766273B2 publication Critical patent/JP5766273B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、光照射によって被検体から発生した音響波を音響波受信器により受信して画像データを生成する測定装置、音響波受信器の移動を制御する移動制御方法及び、そのプログラムに関する。
光を用いたイメージング技術の1つに、パルスレーザ光を被検体に照射し、被検体中の測定対象が熱膨張することによって発生する音響波を受信して画像化するPhotoacoustic Tomography(PAT:光音響トモグラフィー)がある。PATは、照射するパルスレーザ光の波長を吸収帯とするヘモグロビンやグルコースなどの生体内分布を画像化することができる。特許文献1では、PATを用いて広い検査領域の3次元画像を作成する方法として、音響波受信器を次々と位置決めしながら機械的に移動させ、複数の位置で音響波を受信する方法が示されている。
特表2001−507952
乳房のように比較的大きな被検体の内部構造をPATで画像化するためには、1次元又は2次元配列電気音響変換素子によって構成される音響波受信器を特許文献1のように被検体表面に沿って機械的に走査する方法が有用である。しかしならが、被験者の負担を軽減するために機械走査は出来るだけ短時間に終了することが望ましい。
そこで、本発明は、より短い時間で音響波受信器を移動させることが可能な測定装置及び音響波受信器の移動制御方法を提供することを目的とする。
本発明の装置は、パルス光を発生する光源と、前記パルス光が照射されることにより被検体内で発生した音響波を受信して電気信号に変換する音響波受信器と、前記音響波受信器で変換された電気信号をデジタル変換する受信信号処理部と、前記音響波受信器を前記被検体に対して相対的に移動させる移動制御手段と、前受信信号処理部でデジタル変換された電気信号を用いて被検体内の情報を取得する処理部と、を有し、前記移動制御手段は、前記パルス光の発生タイミングに基づき、パルス光の発光時点に前記音響波受信器が受信目標位置を通過するように、前記音響波受信器を移動させ、前記受信信号処理部は、前記音響波受信器が最初の目標位置を通過する時点から前記電気信号のデジタル変換を開始することを特徴とする。
本発明により、より短い時間で音響波受信器を移動させることが可能となり、被験者の負担を軽減することができる。
本発明の適用できる測定装置の全体構成を示す模式図である。 音響波受信器を移動させる方向を示す模式図である。 発光タイミング指示信号と発光信号及び発光同期制御信号の波形の例を示す模式図である。 音響波受信器の動作を示す模式図である。 移動制御部の構成を示す模式図である。 移動制御部の制御手順を示すフローチャートである。 ステッピングモータを使用したときの駆動パルス列を示す模式図である。 位置ずれを補正する時の音響波受信器の動作を示す模式図である。 位置ずれ補正する時の移動制御部の制御手順を示すフローチャートである。 音響波受信器の領域が重複する場合の模式図である。 音響波送受信器を一体化した時の様子の模式図である。 音響波送受信器からの電気信号を用いて生成したスライス画像を示す模式図である。 音響波送受信器を一体化した時の動作を示す模式図である。 反射音響波を同時取得する時の受信タイムチャートである。
音響波受信器を機械的に移動させる場合に、移動時間を短縮する最も有力な方法は、音響波受信器を等速で移動させながら音響波を受信する方法である。音響波受信器を等速で移動させることにより、音響波受信器の受信位置(目標測定位置)ごとの起動停止動作にかかる時間を削減することができる。この場合、レーザ光の照射時間は10〜20nsecの瞬時であり、音響波の受信時間も50〜100μsec程度と極めて短時間なので、移動しながら受信しても受信信号の品質に問題は生じない。
ここで、音響波受信器を等速で移動させる具体的な方法として、等速で移動する音響波受信器の位置を常時監視し、音響波受信器が各目標測定位置に達するごとにレーザ光を発光させる方法が考えられる。しかしながら、PATに好適な高出力のパルスレーザ装置は、発光光量を安定化させるために常時一定の周期で発光させておかなければならないという制限がある。そのため、音響波受信器の移動にあわせてレーザ光の発光周期を制御したり、発光の開始時刻を制御したりすることは困難である。よって、音響波受信器を等速で移動しながら音響波を受信するための有力な方法は、レーザの発光周期にあわせて音響波受信器を移動させる方法である。ただし、このような移動方法においても、レーザの発光にあわせて目標測定位置に到達させるためには工夫が必要である。以下の実施形態では、等速移動を実現するための具体的な移動制御装置及び制御方法について説明する。
また、音響波とは、音波、超音波、光音響波と呼ばれるものを含み、被検体に近赤外線等の光(電磁波)を照射して被検体内部で発生する弾性波のことを示す。
(実施形態1)
図1に本発明の適用できる測定装置の全体構成を示す。本実施形態においては、被検体1は圧迫板2a,2bによって固定されている。光源3から発生したパルスレーザ光は、圧迫板2aを透過して被検体に照射され、被検体内部の測定対象4に吸収される。測定対象4(新生血管等の光吸収体)からは音響波が発生し、発生した音響波は圧迫板2bの外側に沿って配置された音響波受信器5によって受信される。音響波受信器5は受信した音響波を電気信号(受信信号s1)に変換して、受信信号処理部10に出力する。受信信号s1は受信信号処理部10でデジタル変換され、中央処理装置であるCPU60に送られる。また、音響波受信器5はステージ6に搭載され、ステージ6によって圧迫板2bの表面に沿って移動する。ステージ6は移動制御部7から出力される駆動信号s4によって移動が制御される。つまり、音響波受信器5の移動は移動制御部によって制御される。
また、光源3は、発光制御部9が送信するパルス信号にしたがってパルスレーザ光を発生する。発光制御部9が送信するパルス信号は、タイミング発生回路9から出力される発光タイミング指示信号s2に基づいて生成される。さらに、タイミング発生回路8は発光制御部9に供給する発光タイミング指示信号s2に同期して、移動制御部7に対して発光同期制御信号s3を出力する。
音響波を測定するに際して、CPU60は一つ又は複数の目標測定位置データs8を移動制御部7に送信し、移動制御部7を起動する。移動制御部7は予めCPU60から転送された目標測定位置データs8と発光同期制御信号s3とを基に駆動信号s4を生成する。ステージ6は駆動信号s4により制御され、ステージ6に搭載された音響波受信器5は、レーザパルス光の発光時刻に各目標測定位置を通過できるよう等速移動される。ステージからは、位置信号s5が移動制御部7に出力される。
また、受信信号処理部10は、ステージ6に搭載された音響波受信器が最初の目標測定位置を通過する時点で移動制御手段7から出力される起動信号s6により起動し、受信信号s1をデジタル変換して記憶する。このデジタル変換された受信信号(デジタル受信信号)はCPU60に送信され、CPU60で各目標測定位置のデジタル受信信号を統合し、統合されたデジタル信号を元に測定範囲の2次元又は3次元の画像データを生成する。生成された画像データは必要に応じて表示部であるモニタ11に送信されて画像として表示される。このように音響波受信器を被検体に対して相対的に移動させて音響波を受信し、受信信号を基にして被検体内部の情報を2次元又は3次元画像として取得することが可能となる。
本発明において、音響波受信器5は、音響波を受信して電気信号に変換する変換素子を複数備える。変換素子は、圧電現象を用いた変換素子、光の共振を用いた変換素子、容量の変化を用いた変換素子等、音響波を受信して電気信号に変換できるものであればどのような変換素子を用いてもよい。また、音響波を受信する変換素子は1次元又は2次元に複数配列することにより、同時に複数の場所で音響波を受信することができ、受信時間を短縮できると共に、被検体の振動などの影響を低減できる。また、音響波受信器5と被検体との間には、音響マッチングを図るためにジェルなどの音響マッチング材を塗布することが好ましい。
光源3は生体を構成する成分のうち特定の成分(例えばヘモグロビン)に吸収される特定の波長の光を照射することを目的とする。光源1としては5〜50nsecのパルス光を発生可能なパルス光源を少なくとも一つは備える。光源3としては本実施形態で示すように、大きな出力が得られるレーザが好ましいが、レーザのかわりに発光ダイオードなどを用いることも可能である。レーザとしては、固体レーザ、ガスレーザ、色素レーザ、半導体レーザなど様々なレーザを使用することができる。また、光は音響波受信器5側から照射してもよく、音響波受信器5とは反対側から照射してもよい。さらに被検対の両側から照射してもよい。さらに、光を反射するミラーや、光を集光したり拡大したり形状を変化させるレンズ等の光学装置を用いて、光源から発せられた光を被検体まで導き、照射してもよい。なお、光はレンズで拡散させることにより、ある程度の面積に広げる方が好ましい。また、光を被検体に照射する領域は被検体上を移動可能であることが好ましい。言い換えると、光源から発生した光が被検体上を移動可能となるように構成されていることが好ましい。移動可能であることにより、より広範囲に光を照射することができる。また、光を被検体に照射する領域(被検体に照射される光)は、音響波受信器と同期して移動するとさらに好ましい。光を被検体に照射する領域を移動させる方法としては、可動式ミラー等を用いる方法や、光源自体を機械的に移動させる方法などがある。
また、本実施形態においては、圧迫板2a,2bにより被検体を固定しているが、被検体の測定位置の形状を一定に保つ形状維持部材であれば、圧迫機構が無くても構わない。このような形状維持部材は、被検体と音響波受信器との間に設けられた平板やおわん型の部材が考えられる。ただし、形状維持部材が本実施形態のように圧迫板であることにより、光が被検体の深部まで到達しやすいため好ましい。形状維持部材の材料としては、効率よく音響波を受信するために、被検体の音響インピーダンスと近いものを選ぶのが好ましい。被検体が乳房などの場合、ポリメチルペンテンからなる形状維持部材を使うことが好ましい。なお、形状維持部材が平板の場合、形状維持部材の厚さは音響波の減衰などを考慮すると薄いほうが好ましいが、その形状が変形しない程度に厚くする必要がある。典型的には5から10mm程度である。また、形状維持部材と被検体との間には空隙を無くすために形状維持部材と同程度の音響インピーダンス(例えば、被検体が乳房の場合、1.35×106Kg/m2・s)を持つ音響ジェルや、水などの液体で隙間を埋めることが好ましい(図示せず)。
図2は、音響波受信器5が圧迫板2bの表面21を機械走査する一例を示した図である。音響波受信器5は2次元に配列された複数の変換素子から構成される。音響波受信器5は、圧迫板表面を図2の経路22に沿って、横方向(変換素子の配列方向のうち一方の方向)に等速移動しながら各目標測定位置での音響波を受信する。横方向の受信が終了したら縦方向(前記一方の方向と直交する方向)に移動する。その次は、再び横方向に等速移動しながら各目標測定位置での音響波を受信する。このようにすれば、圧迫板表面21の測定領域の全面を高速に走査し、音響波を受信することが出来る。
図3に、本発明の実施に好適な発光同期制御信号s3の具体的な波形を示す。図3において、s2は発光タイミング指示信号の例であり、実施に好適な大出力パルスレーザを連続発光する場合には通常10Hz程度のパルス列信号となる。発光制御部9にこのような発光タイミング指示信号s2を入力すると、パルスレーザは発光信号s7で示すように100ns〜500ns程度遅れて周期的に発光する。発光は10ns〜20ns程度の極めて短時間であり、レーザ光の強度を毎回ほぼ均等にするために、10Hz程度の一定周期で駆動しなければならないという制限がある。発光同期制御信号s3は発光タイミング指示信号s2に対して、図3の様に僅かに早く(例えば10μs程度早く)立ち上がり、かつ移動制御部7が十分受信できる時間幅を持ったパルス信号列とする。この場合、CPU60から設定された目標測定位置データも発光同期制御信号s3が僅かに早く立ち上がるようにした分だけ、僅かに前の位置(例えば1μm程度前の位置)に修正しておくようにする。このようにすれば、移動制御部7が目標測定位置を通過したことを検知して受信信号処理部10がA/D変換等の受信信号処理を開始しても、レーザ発光直後の音響波の受信信号を処理することができる。
図4はステージ6の動作(つまり、音響波受信器5の動作)について説明した模式図である。図4において、横軸は時刻を表し、t1,t2,t3,....は等間隔のレーザ発光時刻を示す。また、縦軸はステージ位置を表し、x1,x2,x3,...は等間隔の目標測定位置を示す。レーザ発光時刻t1,t2,t3,....において、ステージが目標測定位置x1,x2,x3,...を通過するようにするためには、図4の測定ライン31に沿ってステージを等速に移動させればよい。この時、音響波を測定する際の音響波受信器5の目標速度Vmesは目標測定位置同士の間隔をレーザ発光の時間間隔で割った値となる。もし、目標速度Vmesがステージを移動可能な最大速度を超えている場合には、測定ライン32のようにレーザ発光を一つおきに使用することもできる。ここで、停止したステージを一定加速度Aで加速して、目標速度Vmesに達するまでの時間をΔTaとし、移動距離をΔXaとする。このΔTaとΔXaが既知であれば、次のステップを順に実行することによりステージ6を測定ライン31に乗せて移動させることができる。
1.ステージ6をx1から距離ΔXa手前の起動位置Xsに移動し、停止する。
2.音響波測定の対象とする最初の測定時刻t1からΔTa前の時点で、加速度Aの等加速度移動を開始する(第1の移動ステップ)。
3.時刻t1に目標速度Vmesでの等速移動に切り替える(第2の移動ステップ)。
ここで、ΔTaは既知としてよいから、レーザ発光の基準時刻t0からΔTs=(t1−t0−ΔTa)遅れた時点でステージの加速を開始するようにすればよい。このとき、遅れ時間ΔTsは正でなければならないが、発光時刻t1,t2,...は発光周期の整数倍で早くしたり遅くしたりすることが可能である。よって、遅れ時間ΔTs=(t1−t0−ΔTa)を最小の正値とする発光時刻をt1と決定すれば問題はない。
図5は、その動作をフローチャートで示したものである。詳細な説明は後述するが、移動制御部7は発光同期制御信号s3を監視し、発光同期制御信号s3の立ち上がりを検知したら、一定時間ΔTs待機した後、一定加速度Aによる等加速移動を開始する。一定時間ΔTaを経過して目標速度Vmesに達したらそのまま等速移動に移行し、最終の目標測定位置を通過したらステージの移動を終了する。
図6は移動制御部7の具体的構成例である。この構成例ではステージ6はステッピングモータ41で駆動することとし、駆動のためのパルス信号は組み込み計算機DSP45でその都度計算して発生するようにしている。すなわち、DSPが正方向パルスを出力すると、正方向パルス信号はステージドライバ回路42によって駆動信号s4に変換され、ステッピングモータ41は1パルス分の回転角だけ正方向に回転する。また、DSPが負方向パルスを出力すると、1パルス分の回転角だけ負方向に回転する。ステッピングモータ42によって駆動されたステージ6の位置(つまり音響波受信器5の位置)は、ステージに設けられた位置検出手段としてのエンコーダ43の出力パルスs5を位置カウンタ44でカウントすることによって読み込むことが出来る。
次にDSP45の処理を具体的に説明する。DSPはCPUから目標測定位置データが転送されると、最初に次のような計算ステップに従って、ステージの動作スケジュールを計算する。
1.目標速度Vmesを計算する。
目標速度Vmesは、目標測定位置の間隔をXp、パルスレーザ光の発生周期(発生の時間間隔)をTlとすると、
Vmes=Xp/Tl;
で計算できる。Vmesがステージの移動可能な最大速度を超えるときは、レーザがk回発光するごとに1回測定することとして、Vmesをk分の1に変更すればよい。ただし、ここでは説明を簡単にするために、Vmesは最大速度を超えないとする。
2.目標速度Vmesまで加速するのに必要な時間ΔTaと距離ΔXaを計算する。
時間ΔTaと距離ΔXaはステージの許容最高加速度をAmとして、次式で計算する。
ΔTa=Vmes/Am;
ΔXa=(1/2)*Am*(ΔTa)
加速度Amは必ずしも許容最大加速度である必要は無いが、許容最大加速度にすることによって測定時間を最短にすることが出来る。
3.ステージ起動位置Xs、起動遅れ時間ΔTsを計算する。
ステージ起動位置Xsは、最初の目標測定位置をx1とすると、
Xs=x1−ΔXa;
で計算できる。また、遅れ時間ΔTsは、ΔTs+ΔTaをレーザ発光周期Tlの整数倍とする最小の値として計算できる。ひとつのレーザ発光基準時刻をt0とし、計算されたΔTsを使用すると、各測定時刻(つまり、各レーザ光の発生時刻)t1,t2,t3,...は、
t1=t0+ΔTs+ΔTa
t2=t1+Tl;
t3=t1+2*Tl;
t4=t1+3*Tl;
・・・
のように計算できる。
以上の計算により、ステージ6の移動に必要な位置パラメータと時刻パラメータがすべて計算できるので、前述の図5のフローチャートに従った具体的動作のスケジューリングが可能になる。
次に、測定時のDSPの具体的な処理について図5のフローチャートを用いて説明する。DSP45はCPU60から起動指令を受けると、まずステージを起動位置Xsに移動して待機し(S1−1)、発光同期制御信号s3の立ち上がりを監視する(S1−2)。発光同期制御信号s3が立ち上がったらその時刻を基準時刻t0として、遅れ時間ΔTs待機し(S1−3)、加速度Amで等加速度移動を開始する(S1−4)。
現在時刻をt、ステッピングモータ41の1パルスあたりのステージ移動量をdXとすると、加速時間帯(t0+ΔTs<t<t1)の時刻tでのステージの速度Vは
V=Am*(t−t0−ΔTs)
となるので、速度Vでステージを移動させるために、DSPは、
dT=dX/(Am*(t−t0−ΔTs))
で示す時間間隔dTを計算し、dT経過ごとに1パルスをステージドライバに出力するようにする。時間間隔dTは時刻が経過するごとに短くなるので、それに従ってステージの速度は加速される。そして、ステージの速度は、音響波測定の最初の時刻t1において目標速度Vmesに一致する。
時刻tが測定時刻t1に達したら、DSP45はステージを目標速度Vmesでの等速移動に切り替える(S1−5)。ステージを目標速度Vmesで等速移動させるために、DSP45は
dT=dX/Vmes
で示す時間間隔dTを計算し、dT経過ごとに1パルスをステージドライバ42に出力する。その後は、測定終了時刻かどうかを判断し(S1−6)、終了時刻であれば(つまり、最後の目標測定位置を通過したら)移動を終了する。
図7は、DSP45が生成するパルスの時間タイミングを示したものである。このようにすれば、音響波受信器5は、レーザ発光時刻に、全ての目標測定位置を、等速で、通過することができ、図5のフローチャートを具体的に実現できる。
ここで、音響波の受信位置は目標測定位置に対して、変換素子の寸法の少なくとも5〜10%程度の精度で一致していることが望ましい。このような精度で一致させることにより、後述の実施形態3のように被検体内の同一位置から発生する音響波を受信した際、受信信号の位相のばらつきが低減し、画像データの分解能が向上する。すなわち、電気音響変換素子の寸法が2mmであれば、±50μm〜±100μm程度の精度で一致していることが好ましい。
また、本発明の発光同期制御信号s3は、前述のように発光タイミング指示信号s2を生成する同一のタイミング発生回路を用いれば、容易に生成することが出来る。また、発光同期制御信号s3は、レーザが一定周期で規則的に発光しているので、その周期が既知であればレーザ光の発光を直接検出して生成することも可能である。さらに、レーザ発光の周期が既知であれば、一回だけ何らかの手段で発光時刻を検知し、発光時刻を基準にして一定周期の発光同期制御信号を回路内部で生成することも可能である。これらは、本発明の実施形態の容易な変形であり、本発明に含まれる。
(実施形態2)
前述の実施形態を用いれば、DSPはステージ6が全ての目標測定位置をレーザ発光時刻に等速で通過するように制御できる。本実施形態では、移動制御部7が発光同期制御信号s3を監視し、発光同期制御信号s3の立ち上がり時点で位置カウンタ44の値を読み取る。そして、その時点での目標測定位置との間に誤差があれば、次のレーザ発光時刻までにその位置誤差を解消するようにステージの移動速度、すなわち駆動信号s4のパルス出力の時間間隔を調整する。このような制御をすることにより、DSP45におけるパルス生成時間間隔dTの計算や1パルスごとのステージ移動量などに僅かな計算誤差があった場合に、誤差が累積してレーザ発光時のステージ位置と目標測定位置との間に無視できない位置誤差が発生することを防止できる。また、ステッピングモータ41の位置検出を必要としないオープン制御の場合に、機構系のひずみなどに起因する誤差が位置誤差に加算されることも防止できる。
図8は本実施形態の場合の、ステージ6の移動の様子を示した模式図である。レーザ発光時刻t1に位置カウンタ44の値が位置x1dを示していたなら、目標測定位置x1との差を次のレーザ発光時刻t2までの間に縮小するように、時刻t2に達するまでの目標速度Vmesを、
Vmes=(x2−x1d)/(t2−t1)
のように変更して移動する。図9はこの場合のステージ動作をフローチャートの形で示したものである。ステップS2−1からS2−5は実施形態1のステップS1−1からS1−5までの手順と同じである。S2−6において、発光同期制御信号s3の立ち上がりを検出した時点で現在位置x1dを測定する。そして、位置誤差を検出し(S2−7)、速度を修正する(S2−8)。S2−9はS1−6と同様に、測定終了時刻かどうかを判断し、終了時刻であれば(つまり、最後の目標測定位置を通過したら)移動を終了する。このように制御すれば、発光同期制御信号s3の立ち上がり時点ごとに、前述の式に従って位置誤差を縮小する速度補正を行うことが出来る。本実施形態によれば、レーザ発光時刻で直接位置誤差を測定して補正するので、位置誤差の発生原因によらず、簡易な方法で位置誤差を補正することが出来、高価な装置を用いずとも正確な移動制御が可能となる。
以上の説明では、ステッピングモータを用いた場合の実施形態について説明したが、DCサーボモータなどを用いても同様である。
(実施形態3)
本実施形態では、隣り合う目標測定位置(第1の目標測定位置と第2の目標測定位置と)で、音響波受信器の範囲が重複する重複領域を有する形態について説明する。図10に各測定時刻における音響波受信器の位置を示す模式図を示す。本実施形態では図10に示すように、重複領域のうち同一位置Pに存在する変換素子から出力される電気信号同士を加算する加算回路を有する。以下、具体的に説明する。
音響波受信器5はレーザ光の発生時刻t=1で第1の目標測定位置を通過し、t=2で第2の目標測定位置を通過する。加算回路61は、一時記憶メモリに記憶されたt=1の時に位置Pで音響波を受信した変換素子の受信信号と、第2の目標測定位置において同じ位置Pで音響波を受信した変換素子の受信信号と、を加算平均する。このようにすれば、より雑音の少ない受信信号を生成することが出来る。この際、加算される受信信号はデジタル変換された信号である。また、加算回路で加算された受信信号は、図1のCPU60に送信され、整相加算等の画像再構成処理を行い画像データに変換される。
音響波受信器5の範囲の重複を横方向だけでなく、縦方向にも重複させるようにすれば、更に受信信号の雑音を減らすことができる。実施形態1又は2を用いることにより、ステージを等速で移動させているにもかかわらず、正確に目標測定位置での音響波を受信できるので、本実施形態2のような加算平均の実施は容易であり、高速かつ雑音の少ない光音響信号の受信が可能になる。
(実施形態4)
本実施形態では、光を照射することによって発生する音響波を受信する音響波受信器5と、音響波(典型的には超音波)を送信し測定対象で反射した反射音響波を受信する音響波送受信器51とを一体化する形態について説明する。以降の説明において、光を照射することによって発生する音響波を光音響波、音響波送受信器51により送信した音響波が測定対象で反射して戻ってきた反射音響波を超音波エコーと呼ぶ。
図11に示すように、本実施形態では、光音響波を受信する音響波受信器5と超音波エコーを受信する音響波送受信器51をステージ上に一体化して配置し、圧迫板表面21を移動させる。音響波送受信器51は1次元に配列された変換素子から構成されており、1次元配列方向の超音波ビーム走査によってスライス面内の超音波エコー画像を作成することが出来る。したがって、超音波エコー用の音響波送受信器51を等速移動し、図12のように移動方向の各位置x10,x11,x12,...において繰り返しスライス画像を作成することで、容易に被検体内部の3次元画像データを作成することができる。
超音波エコー画像データの作成においては、ステージ移動方向の分解能を高くするために、光音響波の受信間隔よりも細かいピッチで、かつ等間隔にスライス画像を作成するようにする。図13はその測定動作の実施形態を示したものである。各スライス画像データ作成のための超音波送受信の起動は、光音響信号測定ライン上の丸印、及び丸印の間を等分割した四角印で示した時点で行うようにする。
このうち丸印の時点は光音響波の測定時点と重複するが、図14に示すごとく、超音波送受信の起動が掛かってから超音波ビームの送受信を開始するまでの間に光音響波受信のための光音響信号入力期間を設け、その入力期間の範囲でレーザ発光と光音響波の受信を行うようにする。このようにすれば、光音響波と超音波エコーとが干渉することも無く、それぞれの正しい信号を受信できる。
レーザ発光の伴わない超音波送受信の起動時点でも、レーザ発光を伴う場合と全く同じタイミングで超音波エコーの受信動作を行うようにすれば、時間的にも位置的にも完全に等間隔なスライス画像の作成が可能になる。個々のスライス画像の作成には多数回の超音波ビーム送受信が必要であり、その時間に比較して光音響信号入力時間は極めて短いので、このように全てのスライス面のエコー信号入力時間を同一にしても、全体のスループットには殆ど影響を与えない。
本発明においては、レーザ発光時刻にステージが目標測定位置を等速で通過するため、光音響信号と超音波エコー信号が混信しないように、超音波送受信の起動時刻、又は起動位置を動作スケジュールとして計算しておくことが出来る。したがって、計算された起動時刻、又は起動位置に達するごとにDSPが超音波送受信起動を行うようにすれば、ステージを等速移動する方式であっても、光音響波と超音波エコーとを取得することが可能になる。
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態1〜4の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
1 被検体
2a 圧迫板
2b 圧迫板
3 光源
4 特定物質
5 音響波受信器
6 ステージ
7 移動制御部
8 タイミング発生回路
9 発光制御部
10 受信信号処理部
11 モニタ
s1 受信信号
s2 発光タイミング指示信号
s3 発光同期制御信号
s4 駆動信号
s5 位置信号
s6 起動信号
s7 発光信号
21 圧迫板の表面
22 圧迫板表面上の音響波受信器移動経路
31 測定ライン
32 測定ライン
41 ステッピングモータ
42 ステージドライバ回路
43 エンコーダ
44 位置カウンタ
45 DSP
51 音響波送受信器
60 CPU

Claims (9)

  1. パルス光を発生する光源と、
    前記パルス光が照射されることにより被検体内で発生した音響波を受信して電気信号に変換する音響波受信器と、
    前記音響波受信器で変換された電気信号をデジタル変換する受信信号処理部と、
    前記音響波受信器を前記被検体に対して相対的に移動させる移動制御手段と、
    前記受信信号処理部でデジタル変換された電気信号を用いて被検体内の情報を取得する処理部と、
    を有し、
    前記移動制御手段は、
    前記パルス光の発生タイミングに基づき、パルス光の発光時点に前記音響波受信器が受信目標位置を通過するよう、前記音響波受信器を移動させ
    前記受信信号処理部は、前記音響波受信器が最初の目標位置を通過する時点から前記電気信号のデジタル変換を開始することを特徴とする装置。
  2. 前記光源に前記発生タイミングを指示するタイミング発生回路を備え、
    前記タイミング発生回路は、前記発生タイミングに同期した信号を前記移動制御手段に出力することを特徴とする請求項1に記載の装置。
  3. 前記タイミング発生回路は、前記光源からパルス光を所定の周期で発光させることを特徴とする請求項2に記載の装置。
  4. 前記移動制御手段は、前記音響波受信器を受信目標位置ごとに停止せずに移動しながら音響波を受信するよう制御することを特徴とする請求項1乃至3のいずれか1項に記載の装置。
  5. 前記移動制御手段は、音響波を受信するための最初のパルス光が発生する時点に目標速度で最初の受信目標位置に達するように、前記音響波受信器を移動させることを特徴とする請求項1乃至4のいずれか1項に記載の装置。
  6. 前記移動制御手段は、前記発生タイミングに同期した信号を用いて前記音響波受信器を等速移動させることを特徴とする請求項2乃至5のいずれか1項に記載の装置。
  7. 前記音響波受信器の位置を検出する位置検出手段を有し、
    前記移動制御手段は、前記位置検出手段により検出された前記音響波受信器の位置と受信目標位置との誤差がある場合に、前記誤差を補正するように前記音響波受信器の移動速度を調整することを特徴とする請求項1乃至6のいずれか1項に記載の装置。
  8. 前記音響波受信器は音響波を電気信号に変換する変換素子を複数備えており、
    前記移動制御手段は、第1の受信目標位置と第2の受信目標位置とで、前記音響波受信器の領域が重複する重複領域を有するように前記音響波受信器を移動させることを特徴とする請求項1乃至7のいずれか1項に記載の装置。
  9. 音響波を前記被検体に送信し、前記被検体内の測定対象で反射した反射音響波を受信する音響波送受信器を有し、
    前記移動制御手段は、前記音響波受信器と前記音響波送受信器とを一体として移動させることを特徴とする請求項1乃至8のいずれか1項に記載の装置。
JP2013269677A 2013-12-26 2013-12-26 測定装置 Expired - Fee Related JP5766273B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013269677A JP5766273B2 (ja) 2013-12-26 2013-12-26 測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013269677A JP5766273B2 (ja) 2013-12-26 2013-12-26 測定装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009288458A Division JP5448785B2 (ja) 2009-12-18 2009-12-18 測定装置、移動制御方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2014073410A JP2014073410A (ja) 2014-04-24
JP5766273B2 true JP5766273B2 (ja) 2015-08-19

Family

ID=50748023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013269677A Expired - Fee Related JP5766273B2 (ja) 2013-12-26 2013-12-26 測定装置

Country Status (1)

Country Link
JP (1) JP5766273B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213934205U (zh) * 2017-08-30 2021-08-10 苏州宝时得电动工具有限公司 自移动设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713356A (en) * 1996-10-04 1998-02-03 Optosonics, Inc. Photoacoustic breast scanner
US6490470B1 (en) * 2001-06-19 2002-12-03 Optosonics, Inc. Thermoacoustic tissue scanner
JP4234393B2 (ja) * 2002-10-31 2009-03-04 株式会社東芝 生体情報計測装置
JP4406226B2 (ja) * 2003-07-02 2010-01-27 株式会社東芝 生体情報映像装置
JP4643153B2 (ja) * 2004-02-06 2011-03-02 株式会社東芝 非侵襲生体情報映像装置
JP2008514264A (ja) * 2004-09-29 2008-05-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 乳房の超音波画像診断を高精度で行う方法および装置
JP2008142329A (ja) * 2006-12-11 2008-06-26 Toshiba Corp 超音波探触子及び超音波診断装置
JP2008264218A (ja) * 2007-04-20 2008-11-06 Toshiba Corp 超音波プローブ
JP2009066110A (ja) * 2007-09-12 2009-04-02 Canon Inc 測定装置

Also Published As

Publication number Publication date
JP2014073410A (ja) 2014-04-24

Similar Documents

Publication Publication Date Title
JP5448785B2 (ja) 測定装置、移動制御方法及びプログラム
JP5896623B2 (ja) 被検体情報取得装置およびその制御方法
JP5623121B2 (ja) 被検体情報取得装置
JP2012005624A (ja) 超音波光音響撮像装置およびその作動方法
JP6261159B2 (ja) 被検体情報取得装置および被検体情報の取得方法
JP2013056032A (ja) 被検体情報取得装置および被検体情報取得方法
JP2011072721A (ja) 測定装置
US20170049331A1 (en) Object information acquiring apparatus and method of controlling the same
JP5864904B2 (ja) 生体情報取得装置
JP5572023B2 (ja) 測定装置
JP5766273B2 (ja) 測定装置
US9370307B2 (en) Subject information acquisition device
JP2016007256A (ja) 光音響計測装置及び光音響計測方法
US10365251B2 (en) Apparatus with laser controlling unit which decreases a time difference between subsequently pulsed lasers
US20170319077A1 (en) Sample information acquisition apparatus
US9924876B2 (en) Object information acquiring apparatus and method of controlling same
US20150119681A1 (en) Method and apparatus for scanning excitation light for a photoacoustic image
JP5868458B2 (ja) 測定装置
JP2016036652A (ja) 光音響画像化装置
JP2015019732A (ja) 被検体情報取得装置およびその制御方法、ならびに音響信号取得装置
JP2016036659A (ja) 光音響画像化装置
US20160183806A1 (en) Photoacoustic apparatus
JP2015112213A (ja) 被検体情報取得装置および被検体情報取得装置の制御方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150616

R151 Written notification of patent or utility model registration

Ref document number: 5766273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees