KR20210104409A - 신호 검출 센서, 대상체의 성분 분석 장치 및 방법 - Google Patents

신호 검출 센서, 대상체의 성분 분석 장치 및 방법 Download PDF

Info

Publication number
KR20210104409A
KR20210104409A KR1020200019096A KR20200019096A KR20210104409A KR 20210104409 A KR20210104409 A KR 20210104409A KR 1020200019096 A KR1020200019096 A KR 1020200019096A KR 20200019096 A KR20200019096 A KR 20200019096A KR 20210104409 A KR20210104409 A KR 20210104409A
Authority
KR
South Korea
Prior art keywords
signal
component
analyzing
time intervals
ultrasound
Prior art date
Application number
KR1020200019096A
Other languages
English (en)
Inventor
심재욱
문현석
송종근
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020200019096A priority Critical patent/KR20210104409A/ko
Priority to US16/995,306 priority patent/US11181468B2/en
Priority to EP20193689.5A priority patent/EP3865049A1/en
Publication of KR20210104409A publication Critical patent/KR20210104409A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0097Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying acoustic waves and detecting light, i.e. acoustooptic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7228Signal modulation applied to the input signal sent to patient or subject; demodulation to recover the physiological signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1706Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in solids

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Acoustics & Sound (AREA)
  • Emergency Medicine (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

일 실시예에 따르면 대상체의 성분 분석 장치는 대상체를 향해 광을 조사하는 광원, 대상체로부터 산란 또는 반사된 광의 신호를 검출하는 디텍터, 대상체를 향해 불규칙한 시간 간격으로 초음파를 발신하여 상기 대상체에 조사된 광의 주파수를 변조하는 초음파 발생기를 포함하는 신호 검출 센서 및 신호 검출 센서를 제어하고, 디텍터에 의해 검출된 신호를 기초로 대상체의 대상체의 성분을 분석하는 프로세서를 포함할 수 있다.

Description

신호 검출 센서, 대상체의 성분 분석 장치 및 방법{SIGNAL DETECTION SENSOR, APPARATUS AND METHOD FOR ANALYZING COMPONENT OF OBJECT}
초음파 발생기가 결합된 신호 검출 센서와 그 신호 검출 센서를 이용하여 대상체의 성분을 분석하는 기술에 관한 것이다.
최근 비침습적으로 인체 질환을 모니터링하는 등 다양한 분야에서 광학센서를 활용하는 기술들이 발전하고 있다. 특히 당뇨병은 다양한 합병증을 일으키며 치료가 잘 안 되는 만성질환이어서 규칙적으로 혈당을 체크해서 합병증 발생을 예방해야 한다. 또한 인슐린을 투여하는 경우에는 저혈당을 대비하고 인슐린 투여량을 조절하기 위해 혈당을 체크해야 한다. 일반적으로 비침습적인 방식은 침습적인 방식에 비해 간편하게 진단이 가능하나 정확성이 감소될 수 있다. 최근에는 광학센서에 초음파 발신 장치를 결합하여 비침습적 진단 방법의 정확성을 향상시키는 기술이 연구되고 있다.
초음파 발신 시간 간격 조절을 통해 검출 신호의 성능을 향상시키는 신호 검출 센서 및 그 신호 검출 센서를 이용한 대상체의 성분을 분석하는 장치 및 방법이 제시된다.
일 양상에 따르면, 대상체의 성분 분석 장치는 대상체를 향해 광을 조사하는 광원, 대상체로부터 산란 또는 반사된 광의 신호를 검출하는 디텍터, 대상체를 향해 불규칙한 시간 간격으로 초음파를 발신하여 상기 대상체에 조사된 광의 주파수를 변조하는 초음파 발생기 및 초음파 발생기의 초음파 발신 시간 간격을 불규칙하게 제어하는 제어부를 포함하는 신호 검출 센서 및 신호 검출 센서를 제어하고, 상기 디텍터에 의해 검출된 신호를 기초로 대상체의 성분을 분석하는 프로세서를 포함할 수 있다.
제어부는 초음파 발생기의 초음파 발신 순서에 따라 시간 간격을 점차적으로 증가 또는 감소시키거나, 미리 정의된 서로 다른 복수의 시간 간격 중에서 의사 난수(pseudo random) 시퀀스를 사용하여 무작위로 초음파 발신 시간 간격에 할당할 수 있다.
제어부는 i(i≥1인 정수) 번째의 발신 시간 간격(Ti)과 (i+1)번째의 발신 시간 간격(Ti+1)의 차이가 소정 임계치 보다 크도록 제어할 수 있다.
소정 임계치는 초음파 발생기의 초음파 발신파의 길이보다 큰 값을 갖도록 설정될 수 있다.
소정 임계치는 디텍터에 의해 초음파 발생기의 초음파 발신파에 대한 메인 반사파가 수신되는 시간 길이보다 큰 값을 갖도록 설정될 수 있다.
제어부는 i(i≥1인 정수) 번째의 발신 시간 간격(Ti)과 j(j≥1인 정수, i≠j) 번째의 발신 시간 간격의 차이(Ti-Tj)가 i와 j의 차이(i-j)에 소정 임계치를 곱한 값과 같아지도록 제어할 수 있다.
제어부는 미리 정의된 서로 다른 복수의 시간 간격 중에서 둘 이상의 시간 간격을 선택하고, 선택된 둘 이상의 시간 간격을 상기 초음파 발신 시간 간격에 반복적으로 할당할 수 있다.
제어부는 서로 다른 복수의 시간 간격 중에서 시간 간격의 크기가 서로 연속되는 둘 이상의 시간 간격을 선택할 수 있다.
프로세서는 디텍터에 의해 검출된 제1 신호에서 복수의 시간 구간의 제2 신호들을 추출하고, 추출된 제2 신호들을 앙상블 평균(ensemble average)하여 앙상블 평균 결과를 기초로 대상체의 성분을 분석할 수 있다.
프로세서는 제1 신호에서 각 초음파의 발신 시점을 기준으로 동일한 시간 구간으로 제2 신호들을 추출할 수 있다.
프로세서는 앙상블 평균 결과에서 신호 세기를 기초로 메인 광신호가 수신되는 시간 구간을 검출하고, 검출된 시간 구간의 신호를 기초로 대상체의 성분을 분석할 수 있다.
프로세서는 앙상블 평균 결과에서 초음파 발신 구간의 신호를 제외한 나머지 시간 구간 중에서 신호 세기가 가장 큰 시간 구간을 상기 메인 광신호가 수신되는 시간구간으로 검출할 수 있다.
대상체의 성분은 항산화 관련 성분, 혈당, 중성지방, 콜레스테롤, 칼로리, 단백질, 카로테노이드, 젖산(lactate) 및 요산 중의 하나 이상을 포함할 수 있다.
일 양상에 따르면, 대상체의 성분 분석 방법은 대상체를 향해 광을 조사하는 단계, 대상체로부터 산란 또는 반사된 광의 신호를 검출하는 디텍터 및 대상체를 향해 불규칙한 시간 간격으로 초음파를 발신하는 단계, 초음파에 의해 주파수 변조되어 대상체로부터 산란 또는 반사된 광의 신호를 검출하는 단계 및 검출된 신호를 기초로 대상체의 성분을 분석하는 단계를 포함할 수 있다.
초음파를 발신하는 단계는 초음파 발신 순서에 따라 시간 간격을 점차적으로 증가 또는 감소시키거나, 미리 정의된 서로 다른 복수의 시간 간격 중에서 의사 난수(pseudo random) 시퀀스를 사용하여 무작위로 초음파 발신 시간 간격에 할당할 수 있다.
초음파를 발신하는 단계는 미리 정의된 서로 다른 복수의 시간 간격 중에서 둘 이상의 시간 간격을 선택하고, 선택된 둘 이상의 시간 간격을 상기 초음파 발신 시간 간격에 반복적으로 할당할 수 있다.
대상체의 성분을 분석하는 단계는 광의 신호를 검출하는 단계에서 검출된 제1 신호에서 복수의 시간 구간의 제2 신호들을 추출하는 단계, 상기 추출된 제2 신호들을 앙상블 평균(ensemble average)하는 단계 및 앙상블 평균 결과를 기초로 대상체의 성분을 분석하는 단계를 포함할 수 있다.
대상체의 성분을 분석하는 단계는 앙상블 평균 결과에서 신호 세기를 기초로 메인 광신호가 수신되는 시간 구간을 검출하고, 검출된 시간 구간의 신호를 기초로 대상체의 성분을 분석할 수 있다.
일 양상에 따르면, 신호 검출 센서는 대상체를 향해 광을 조사하는 광원, 대상체로부터 산란 또는 반사되는 광신호를 검출하는 디텍터, 대상체를 향해 상기 광의 조사 방향과는 다른 방향에서 초음파를 발신하여 상기 광신호를 변조하는 초음파 발생기 및, 초음파 발생기의 초음파 발신 시간 간격을 불규칙하게 제어하는 제어부를 포함할 수 있다.
제어부는 초음파 발생기의 초음파 발신 순서에 따라 시간 간격을 점차적으로 증가 또는 감소시키거나, 미리 정의된 서로 다른 복수의 시간 간격 중에서 의사 난수(pseudo random) 시퀀스를 사용하여 무작위로 초음파 발신 시간 간격에 할당하거나, 서로 다른 복수의 시간 간격 중에서 둘 이상의 시간 간격을 선택하고 선택된 둘 이상의 시간 간격을 초음파 발신 시간 간격에 반복적으로 할당할 수 있다.
초음파 발생기의 초음파 발신 시간 간격을 조절함으로써 검출 신호의 성능을 향상시킬 수 있다. 또한, 성능이 향상된 검출 신호를 이용하여 대상체의 성분을 정확하게 추정할 수 있다.
도 1은 일 실시예에 따른 신호 검출 센서의 블록도이다.
도 2a 및 도 2b는 초음파 발생기 구동 방식을 설명하기 위한 도면이다.
도 3은 일 실시예에 따른 대상체의 성분 분석 장치의 블록도이다.
도 4는 다른 실시예에 따른 대상체의 성분 분석 장치의 블록도이다.
도 5는 일 실시예에 따른 대상체의 성분 분석 방법의 흐름도이다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다. 기재된 기술의 이점 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
이하, 신호 검출 센서, 대상체의 성분 분석 장치 및 방법의 실시예들을 도면들을 참고하여 자세히 설명하도록 한다.
도 1은 일 실시예에 따른 신호 검출 센서의 블록도이다.
일 실시예에 따른 신호 검출 센서(100)는 대상체로부터 산란 또는 반사되는 광의 신호를 검출하는 센서로서, 광의 신호를 이용하여 대상체의 성분을 분석하는 장치 내에 하나의 모듈로 장착될 수 있다. 또는, 별도의 센서 장치로 형성될 수 있으며 대상체의 성분을 분석하는 장치와 전기적으로 연결되거나 무선 통신을 통해 연결될 수 있다.
도 1을 참조하면, 신호 검출 센서(100)는 광원(110), 디텍터(120), 초음파 발생기(130) 및 제어부(140)를 포함할 수 있다.
광원(110)은 대상체(OBJ)를 향해 하나 이상의 파장의 광을 조사한다. 광원(110)은 LED(light emitting diode), 레이저 다이오드(laser diode) 및 형광체 등을 포함할 수 있으나 이에 제한되는 것은 아니다. 예컨대, 광원(110)은 하나의 LED로 형성되어 하나 이상의 파장의 광을 시분할 방식으로 대상체에 조사할 수 있다. 또는 광원(110)은 복수의 LED 어레이로 형성될 수 있으며, 각 LED는 동일한 파장 또는 서로 다른 파장의 광을 조사할 수 있다.
디텍터(120)는 광원(110)에 의해 대상체(OBJ)를 향해 조사된 광이 대상체(OBJ)로부터 산란 또는 반사되면, 산란 또는 반사된 광을 검출한다. 디텍터(120)는 포토다이오드(photodiode), 포토 트랜지스터(photo transistor) 또는 이미지 센서를 포함할 수 있다. 다만, 이에 제한되는 것은 아니다. 예를 들어, 디텍터(120)는 하나의 포토 다이오드 또는 복수의 포토 다이오드 어레이로 형성될 수 있다. 디텍터(120)는 검출된 광의 신호를 전기적인 신호로 출력할 수 있다.
초음파 발생기(130)는 대상체의 측정 부위를 향해 초음파를 조사하며, 광원(110)의 조사 방향과는 다른 방향에서 대상체(OBJ)를 향해 초음파를 발신할 수 있다. 초음파 발생기(130)는 초음파 트랜스듀서(ultrasonic transducer)일 수 있다. 다만, 이에 한정되지 않는다. 초음파 발생기(130)는 제어부(140)의 제어에 따라 소정 주파수의 초음파를 발신하며 초음파는 대상체(OBJ) 내의 측정 부위(BV)에 수렴될 수 있다.
광원(110)에 의해 조사된 광은 대상체(OBJ) 내의 측정 부위(BV)에서 초음파와 상호 작용을 일으켜 광 특성 예컨대 광의 산란 또는 반사 능력이 변경될 수 있다. 즉, 광원(110)에 의해 조사되어 측정 부위(BV)에서 산란 또는 반사되는 광신호의 주파수는 초음파의 주파수에 의해 변조되고 디텍터(120)에 의해 검출될 수 있다. 이를 통해 측정 부위(BV)의 위치를 효율적으로 탐색할 수 있어 대상체의 성분을 보다 정확하게 분석할 수 있다.
제어부(140)는 광원(110), 디텍터(120) 또는 초음파 발생기(130)와 전기적으로 연결될 수 있다. 제어부(140)는 광원(110)을 구동하여 소정 시간 동안 대상체(OBJ)의 측정 부위(BV)를 향해 연속적으로 소정 파장의 광을 조사할 수 있다. 또한, 제어부(140)는 초음파 발생기(130)를 제어하여 대상체(OBJ)를 향해 초음파를 조사할 수 있다. 한편, 제어부(140)는 광 및 초음파가 대상체(OBJ)의 측정 부위(BV)에서 수렴할 수 있도록 광원(110) 및/또는 초음파 발생기(130)의 조사 방향을 조절할 수 있다.
광원(110)에 의해 조사된 광은 대상체(OBJ)의 측정 부위(BV)에서 초음파의 파동에 주파수가 변조되고, 주파수가 변조되어 산란 또는 반사된 광 신호는 디텍터(120)에 의해 검출된다. 디텍터(120)는 검출된 광의 신호를 대상체의 성분을 분석하는 장치에 출력하고, 대상체의 성분을 분석하는 장치는 광 신호의 주파수 분석을 통해 대상체의 성분을 분석할 수 있다.
도 2a 및 도 2b는 초음파 발생기의 구동 방식을 설명하기 위한 도면이다.
예를 들어, 대상체의 성분을 분석할 때 신호 대 잡음비를 향상시키기 위해 소정 시간 동안 신호를 복수 회 측정하고 측정된 신호를 중첩하여 대상체의 성분을 분석할 수 있다.
도 2a를 참조하면, 일반적으로 초음파 발생기(130)의 초음파 발신 주기(T)를 일정하게 하여 복수의 초음파(TX1,TX2)를 균일한 시간 간격으로 발신할 수 있다. 이 경우, 대상체(OBJ)의 측정 부위(BV)에서 초음파에 대한 다양한 반사파가 존재하게 되고, 이러한 반사파들은 측정하고자 하는 광 신호에 간섭신호로 영향을 주게 된다.
예를 들어, 도시된 바와 같이 디텍터(120)에서는 제1, 제2 및 제3 광신호(MS1,MS2,MS3))가 검출될 수 있다. 이때 제2 광신호(MS2)는 제1 초음파(TX1)의 기생 반사파에 의해 변조될 수 있으며, 제3 광신호(MS3)는 제2 초음파(TX2)의 메인 반사파에 의해 변조될 수 있다. 또한, 제1 초음파(TX1) 및 제2 초음파(TX2)에 의한 전기적 간섭신호(IS1, IS3), 제1 초음파(TX1)의 메인 반사파(MW_TX1)에 의한 간섭신호(IS2), 제2 초음파(TX2)의 메인 반사파(MW_TX2)에 의한 간섭신호(IS5), 제1 초음파(TX1)의 기생 반사파(PW_TX1)에 의한 간섭신호(IS4) 등이 디텍터(120)에서 검출될 수 있다.
이와 같이 디텍터에서 소정 시간 동안 검출된 신호에는 측정 부위에서 산란 또는 반사된 메인 광신호 외에 여러 간섭신호들이 혼재되어 있고, 그 간섭신호들로 인해 메인 광신호의 세기 등에 영향을 주어 대상체 성분 분석의 정확성에 영향을 주게 된다. 예컨대, 신호 대 잡음비의 향상을 위해 광신호의 반복 측정을 통해 광신호를 중첩하는 방식을 활용하는 경우 메인 광신호와 여러 간섭신호들의 구분이 힘들어져 대상체의 성분 분석에 필요한 메인 광신호를 추출하기 어려워지고 그 결과 대상체의 성분 분석의 정확성은 감소할 수 있다.
본 실시예에 따르면 제어부(140)는 광신호의 반복 측정을 통한 광신호의 중첩을 통해 대상체의 성분을 분석하는 방법의 정확성을 높이기 위해 초음파 발생기(130)의 초음파 발신 주기를 불규칙하게 조절할 수 있다.
도 2b를 참조하면, N번의 신호를 검출하여 중첩한다고 할 때, 제어부(140)는 복수의 시점(t1,t2,t3,t4,t5,…,tN-1,tN)에 초음파 발신기(130)를 제어하여 초음파를 발신하도록 할 수 있다. 제어부(140)는 N 번의 초음파 발신 시간 간격(T1,T2,T3,T4,…,TN-1,TN)을 불규칙하게 조절할 수 있다.
일 예로, 제어부(140)는 초음파 발신 시간 간격을 초음파 발신 시간 순에 따라 점차적으로 증가 또는 감소하도록 제어할 수 있다. 이때, 각 초음파 발신 시간 간격(T1,T2,T3,T4,…,TN-1,TN)을 소정 임계치(Tmin) 보다 큰 값을 갖도록 제어할 수 있다. 예컨대, 소정 임계치(Tmin)는 초음파 수신단에서 초음파 발신 신호의 메인 반사파가 수신되는 시간 보다 큰 값으로 설정될 수 있다.
예컨대, 제어부(140)는 i(i≥1인 정수) 번째의 발신 시간 간격(Ti)과 (i+1)째의 발신 시간 간격(Ti+1) 간의 차이(Di)가 소정 임계치(Dmin)보다 크도록 제어할 수 있다. 이때, 소정 임계치(Dmin)는 초음파 발신파의 길이(Tburst)보다 큰 값을 갖도록 설정될 수 있다.
제어부(140)는 초음파 발신 시간 간격을 점차 증가 또는 감소하도록 제어하되, 초음파 발신 시간 간격의 증가 또는 감소 폭을 점차 증가 또는 감소시킬 수 있다. 예컨대, 제1, 제2 및 제3 초음파 발신 시간 간격(T1,T2,T3)을 각각 1, 2, 4와 같이 설정함으로써 발신 시간 간격의 증가 폭이 점차 증가하도록 할 수 있다. 이때, 초음파 발신 시간 간격의 증가 또는 감소 폭은 미리 설정될 수 있다.
또는, 제어부(140)는 초음파 발신 시간 간격을 초음파 발신 시간 순에 따라 점차적으로 증가 또는 감소하도록 제어하되, 초음파 발신 시간 간격의 증가 또는 감소 폭을 동일하게 유지할 수 있다. 예컨대, i 번째의 발신 시간 간격(Ti)과 j(i≥1인 정수, i≠j)번째의 발신 시간 간격의 차이가(Tj-Ti) i와 j의 차이(i-j)에 소정 임계치(D)를 곱한 값과 같도록 제어할 수 있다. 이때, 소정 임계치(D)는 미리 설정될 수 있다.
다른 예로, 제어부(140)는 미리 정의된 서로 다른 복수의 시간 간격 중에서 의사 난수(pseudo random) 시퀀스를 이용하여 무작위로 각 초음파 발신 시간 간격에 할당할 수 있다. 예컨대, 앞에서 설명한 바와 같이 초음파 발신 시간 순에 따라 점차 증가 또는 감소하도록 복수의 시간 간격이 미리 정의될 수 있다. 제어부(140)는 미리 정의된 복수의 서로 다른 시간 간격의 값들을 무작위로 각 초음파 발신 시간 간격에 할당함으로써 일정한 패턴을 갖지 않는 불규칙한 시간 간격으로 초음파를 발신하도록 할 수 있다.
또 다른 예로, 제어부(140)는 미리 정의된 복수의 서로 다른 시간 간격의 값들 중에서 둘 이상의 시간 간격을 선택하고, 선택된 시간 간격을 초음파 발신 시간 간격에 반복적으로 할당할 수 있다. 예컨대, 서로 다른 복수의 시간 간격의 값들의 세트{T1,T2,T3,T4,T5,…,TN}가 미리 정의되어 있을 때, 제어부(140)는 그 값들 중에서 연속적인 둘 이상의 값(예: T1,T2,T3)을 선택하거나, 불연속적인 둘 이상의 값(예: T1,T3,TN)들을 선택하여 초음파 발신 시간 간격에 반복적으로 할당할 수 있다.
앞에서 초음파 발신 시간 간격을 불규칙하게 제어하는 다양한 실시예들을 설명하였다. 다만, 여기 예시된 바에 국한되는 것은 아니며 그 밖의 다양한 방식으로의 변형되어 실시될 수 있다.
다시 도 2b를 참조하면, 이와 같이 디텍터에서 검출된 신호들을 소정 시간 단위(W1,W2,W3,W5,WN-1,WN)로 중첩하고 앙상블 평균을 하게 되면 메인 광수신 신호(EMS)와 초음파 발신 신호에 의한 간섭신호(EIS1)는 신호 세기가 증가하고, 나머지 기생 반사파에 의한 광수신 신호(EPS)와 그 밖의 간섭신호(EIS2,EIS3)들은 중첩되지 않거나 중첩되는 정도가 작아 상대적인 신호 세기가 약하게 검출된다. 따라서, 메인 광수신 신호의 신호 대 잡음비를 향상시킬 수 있으며, 이를 통해 메인 광수신 신호의 발생 시점을 정확하게 검출할 수 있고, 정확한 위치에서 검출된 메인 광수신 신호를 이용하여 대상체의 성분을 분석함으로써 정확성을 향상시킬 수 있다.
도 3은 일 실시예에 따른 대상체의 성분 분석 장치의 블록도이다.
본 실시예의 성분 분석 장치(300)는 전술한 신호 검출 센서(100) 또는 그 신호 검출 센서(100)의 다양한 기능을 구현하기 위해 별도로 제작된 모듈이 장착될 수 있다. 성분 분석 장치(300)는 소형으로 제작되어 사용자의 손목 등에 착용이 가능한 웨어러블 기기나 사용자가 휴대할 수 있는 스마트 기기에 탑재되어 비침습적으로 성분을 분석하는데 활용될 수 있다. 다만, 이에 제한되는 것은 아니며 광 신호의 분석을 통해 인체의 질환을 진단 및 연구하는 의료 기관 등에서 사용할 수 있는 비침습적 또는 생체 내(in-vivo) 분석 장치에 탑재될 수 있다. 또는 생체의 성분 분석 이외의 광 신호를 활용하는 다양한 분야의 분석 장치에 탑재될 수도 있다.
도 3을 참조하면, 성분 분석 장치(300)는 신호 검출 센서(310) 및 프로세서(320)를 포함할 수 있다.
신호 검출 센서(310)는 광원 및 디텍터를 포함할 수 있다. 광원 및 디텍터는 대상체의 성분 분석을 위해 광 신호 검출을 수행할 수 있다. 이때, 대상체는 인체의 피부 조직과 같은 생체 조직일 수 있으나 이에 제한되는 것은 아니며 그 밖의 광 신호 분석을 활용할 수 있는 물체들을 포함할 수 있다. 이하, 설명의 편의를 위해 인체 피부와 같은 생체 조직을 예로 들어 설명한다.
예를 들어, 광원은 하나 이상의 LED 등으로 형성될 수 있으며 대상체의 혈관 방향으로 광을 조사할 수 있다. 디텍터는 하나 이상의 포토다이오드 등으로 형성될 수 있으며 대상체의 혈관벽이나 혈관 내부에서 산란 또는 반사되거나 그 밖의 생체 조직 내의 성분들에 의에 반사 또는 산란되는 광 신호를 검출할 수 있다.
또한, 신호 검출 센서(310)는 광원에 의해 조사된 광 신호를 변조시키기 위해 측정 부위를 향해 초음파를 발신하는 초음파 발생기를 더 포함할 수 있다. 초음파를 통해 측정 부위의 위치 예컨대 혈관의 깊이를 특정할 수 있다. 초음파 발생기는 소정 주파수를 갖는 복수의 초음파를 복수 회 발신할 수 있다. 이때, 초음파 발생기는 불규칙한 시간 간격으로 초음파를 발신할 수 있다.
광원에 의해 조사된 광은 측정 부위에서 초음파와 상호 작용을 하여 주파수가 변조된다. 예컨대, 광원에 의해 조사된 광의 주파수는 혈관 벽에 의해 반사되어 제1 주파수로 변조될 수 있다. 또한, 혈관 내부로 진입한 광은 흐르는 혈액 내에서 도플러 효과에 의해 초음파 주파수 대비 일정 정도 도플러 시프트되어 제2 주파수로 변조될 수 있다. 이와 같이 주파수가 변조된 광 신호들은 디텍터에 의해 검출될 수 있다. 디텍터는 검출된 광 신호를 전기적인 신호로 변환하여 프로세서(320)에 전달할 수 있다.
또한, 신호 검출 센서(310)는 초음파를 발신하는 시간 간격을 불규칙하게 제어하는 제어부를 더 포함할 수 있다. 제어부는 프로세서(320)와 통합될 수 있다. 일 예로, 제어부는 초음파 발신 시간 간격을 점차적으로 증가 또는 감소시킬 수 있다. 이때, 초음파 발신 시간 간격의 증가 또는 감소 폭을 서로 동일하게 하거나 다르게 할 수 있다. 다른 예로, 제어부는 미리 정의된 복수의 서로 다른 시간 간격의 값들 중에서 무작위로 각 초음파의 발신 시간 간격에 할당할 수 있다. 또는 복수의 서로 다른 시간 간격 중에서 임의의 둘 이상의 시간 간격의 값들을 선택하고 선택된 값들이 반복적으로 할당되도록 할 수 있다. 이에 대하여 도 1 내지 도 2b를 참조하여 자세히 설명한 바 있으므로 이하 생략한다.
프로세서(320)는 신호 검출 센서(310)의 디텍터로부터 수신된 신호를 이용하여 대상체의 성분을 분석할 수 있다. 예를 들어, 대상체의 성분은 혈당, 중성지방, 콜레스테롤, 칼로리, 단백질, 항산화 관련 성분, 카로테노이드, 젖산(lactate) 및 요산 중의 하나 이상을 포함할 수 있으나 이에 제한되는 것은 아니다.
예를 들어, 프로세서(320)는 디텍터에 의해 검출된 제1 신호에서 복수의 시간 구간의 제2 신호들을 추출하고, 추출된 제2 신호들을 앙상블 평균하여 대상체의 성분을 분석할 수 있다. 예컨대, 프로세서(320)는 도 2b에 도시된 바와 같이 제1 신호에서 각 초음파의 발신 시점을 기준으로 동일한 시간 구간의 윈도우를 앙상블 평균하고, 앙상블 평균을 통해 획득된 신호에서 메인 광 신호를 추출할 수 있다.
프로세서(320)는 앙상블 평균한 신호에서 신호 세기를 기초로 메인 광 신호를 추출할 수 있다. 예를 들어, 프로세서(320)는 초음파 발신 시점의 신호를 제외하고 세기가 가장 큰 시간 구간의 신호를 메인 광신호로 추출할 수 있다. 초음파 발신 시간 간격을 불규칙하게 함으로써 앙상블 평균을 하게 되면 메인 광 신호가 중첩되어 메인 광신호의 세기는 증가하고 나머지 간섭신호들의 세기는 상대적으로 감소하게 되므로 메인 광신호의 수신 시점을 비교적 정확하게 특정할 수 있다.
프로세서(320)는 검출된 메인 광신호를 이용하여 대상체의 성분을 분석할 수 있다. 예를 들어, 메인 광신호의 세기와 분석하고자 하는 성분 간의 상관관계를 정의한 성분 추정 모델을 이용하여 성분을 추정할 수 있다. 다만, 이에 제한되는 것은 아니며 그 밖에 알려진 다양한 성분 분석 기법이 활용될 수 있다.
이와 같이 초음파에 의해 주파수 변조된 메인 광 신호를 보다 정확하게 추출함으로써, 분석하고자 하는 측정 부위에서 산란되거나 반사된 광의 신호를 성분 분석에 활용할 수 있어 성분 분석 성능을 향상시킬 수 있다.
도 4는 다른 실시예에 따른 대상체의 성분 분석 장치의 블록도이다.
도 4를 참조하면, 성분 분석 장치(400)는 신호 검출 센서(410), 프로세서(420), 출력부(430), 저장부(440) 및 통신부(450)를 포함할 수 있다. 신호 검출 센서(410) 및 프로세서(420) 구성은 앞에서 자세히 설명하였으므로 이하 생략한다.
출력부(430)는 프로세서(120)의 처리 결과를 출력하여 사용자에게 제공할 수 있다. 예를 들어, 대상체의 성분 분석 결과를 디스플레이와 같은 시각적 출력 모듈, 스피커와 같은 음성 출력 모듈 또는 진동이나 촉감 등으로 정보를 제공하는 햅틱 모듈 등을 이용하여 사용자에게 제공할 수 있다. 또한, 성분 분석 결과를 기초로 사용자의 건강 상태를 모니터링할 수 있으며, 건강 상태의 위험이 예상되는 경우 경고를 출력할 수 있다.
저장부(440)는 대상체의 성분 분석에 필요한 각종 기준 정보나 프로세서(420)의 처리 결과를 저장할 수 있다. 예를 들어, 기준 정보는 광원 구동 조건이나 초음파 발생 주파수 등과 같이 신호 검출 센서의 구동에 관한 정보, 대상체의 성분 분석에 필요한 추정 모델 등의 정보를 포함할 수 있다. 또는, 사용자의 건강 상태나 연령, 성별 등과 같은 사용자의 개인 특성에 관한 정보를 포함할 수 있다. 다만, 이에 제한되는 것은 아니다.
저장부(440)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어, SD 또는 XD 메모리 등), 램(Random Access Memory: RAM) SRAM(Static Random Access Memory), 롬(Read-Only Memory: ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있으며 이에 제한되는 것은 아니다.
통신부(450)는 외부 기기와 통신 연결하여 대상체의 신호 검출 및 성분 분석에 관한 데이터를 송수신할 수 있다. 이때, 외부 기기는 스마트폰, 태블릿 PC, 데스크탑 PC, 노트북 PC 등과 같은 사용자의 휴대 장치나 전문 의료 기관 등의 장치를 포함할 수 있다. 통신부(450)는 블루투스(Bluetooth) 통신, BLE(Bluetooth Low Energy) 통신, 근거리 무선 통신(Near Field Communication unit), WLAN(와이파이) 통신, 지그비(Zigbee) 통신, 적외선(IrDA, infrared Data Association) 통신, WFD(Wi-Fi Direct) 통신, UWB(ultra wideband) 통신, Ant+ 통신, WIFI 통신, 3G, 4G 및 5G 통신 기술 등을 활용할 수 있다. 다만, 이에 한정되지 않는다.
도 5는 일 실시예에 따른 대상체의 성분 분석 방법의 흐름도이다. 도 5는 도 3 또는 도 4의 성분 분석 장치(300,400)에 의해 수행되는 성분 분석 방법의 일 실시예일 수 있다.
성분 분석 장치(300,400)는 대상체를 향해 광을 조사할 수 있다(510). 사용자 또는 외부 기기로부터 대상체의 성분 분석 요청이 수신되면, 성분 분석 장치는 광원을 구동하여 소정 시간 동안 연속적으로 소정 파장의 광을 조사할 수 있다.
그 다음, 초음파 발생기를 통해 초음파를 복수 회 대상체를 향해 발신할 수 있다(520). 이때, 초음파의 발신 시간 간격을 불규칙하게 할 수 있다. 예를 들어, 초음파의 발신 시간 간격을 점차 증가 또는 감소시키거나, 미리 정의된 서로 다른 시간 간격을 무작위로 각 초음파 발신 시간에 할당할 수 있다. 또는 서로 다른 둘 이상의 시간 간격을 반복적으로 할당하는 것도 가능하다.
이때, 단계(510) 및 단계(520)는 그 순서의 선후가 명확하게 구분되는 것은 아니다. 예컨대, 먼저 초음파를 발신하여 대상체에서 측정하고자 하는 부위를 특정하고, 그 다음, 해당 측정 부위에 광을 조사할 수 있다.
그 다음, 디텍터를 통해 대상체로부터 산란 또는 반사되어 돌아온 광 신호를 검출할 수 있다(530). 대상체의 측정 부위에 조사된 광은 측정 부위에서 초음파와 상호 작용을 통해 변조된다. 예컨대 혈액 내의 혈류 흐름에 따라 도플러 효과에 의해 시프트 되어 변조될 수 있다. 이와 같이 도플러 효과에 따라 주파수 변조된 광을 검출함으로써 원하는 측정 부위의 광 신호를 보다 정확하게 검출할 수 있다.
그 다음, 단계(530)에서 검출된 광신호를 이용하여 성분을 분석할 수 있다(540). 디텍터에서 소정 시간 동안 검출된 신호를 소정 시간 구간 단위로 앙상블 평균하여 메인 광 신호를 추출할 수 있다. 초음파 발신 시간 간격을 규칙적이지 않도록 함으로써 앙상블 평균을 할 때 메인 광 신호의 중첩에 비해 주변 간섭신호들의 중첩되는 폭이 상대적으로 감소하게 되므로 이러한 특징을 이용하여 메인 광 신호가 수신되는 시간 위치를 보다 정확하게 검출할 수 있다. 예컨대, 초음파 발신 시점의 간섭 신호를 제외하고 신호의 세기가 가장 큰 위치의 신호 또는 다른 시점의 신호들의 세기에 비해 소정 임계치 이상 큰 위치의 신호를 메인 광 신호로 획득할 수 있다. 이때 획득된 메인 광 신호는 원하는 혈관 내부에서 산란 또는 반사된 광 신호이므로 원하는 혈관 부위에서의 성분을 정확하게 추정할 수 있다.
한편, 본 실시 예들은 컴퓨터로 읽을 수 있는 기록 매체에 컴퓨터가 읽을 수 있는 코드로 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록 매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록 장치를 포함한다.
컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현하는 것을 포함한다. 또한, 컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산 방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고 본 실시예들을 구현하기 위한 기능적인(functional) 프로그램, 코드 및 코드 세그먼트들은 해당 기술 분야의 프로그래머들에 의하여 용이하게 추론될 수 있다.
본 개시가 속하는 기술분야의 통상의 지식을 가진 자는 개시된 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
100: 신호 검출 센서
110: 광원
120: 디텍터
130: 초음파 발생기
140: 제어부
300,400: 성분 분석 장치
310: 신호 검출 센서
320,420: 프로세서
430: 출력부
440: 저장부
450: 통신부

Claims (20)

  1. 대상체를 향해 광을 조사하는 광원, 대상체로부터 산란 또는 반사된 광의 신호를 검출하는 디텍터, 대상체를 향해 불규칙한 시간 간격으로 초음파를 발신하여 상기 대상체에 조사된 광의 주파수를 변조하는 초음파 발생기 및 초음파 발생기의 초음파 발신 시간 간격을 불규칙하게 제어하는 제어부를 포함하는 신호 검출 센서; 및
    상기 신호 검출 센서를 제어하고, 상기 디텍터에 의해 검출된 신호를 기초로 대상체의 대상체의 성분을 분석하는 프로세서를 포함하는 대상체의 성분 분석 장치.
  2. 제1항에 있어서,
    상기 제어부는
    상기 초음파 발생기의 초음파 발신 순서에 따라 시간 간격을 점차적으로 증가 또는 감소시키거나, 미리 정의된 서로 다른 복수의 시간 간격 중에서 의사 난수(pseudo random) 시퀀스를 사용하여 무작위로 초음파 발신 시간 간격에 할당하는 대상체의 성분 분석 장치.
  3. 제2항에 있어서,
    상기 제어부는
    i(i≥1인 정수) 번째의 발신 시간 간격(Ti)과 (i+1)번째의 발신 시간 간격(Ti+1)의 차이가 소정 임계치 보다 크도록 제어하는 대상체의 성분 분석 장치.
  4. 제3항에 있어서,
    상기 소정 임계치는
    상기 초음파 발생기의 초음파 발신파의 길이보다 큰 값을 갖도록 설정되는 대상체의 성분 분석 장치.
  5. 제3항에 있어서,
    상기 소정 임계치는
    상기 디텍터에 의해 상기 초음파 발생기의 초음파 발신파에 대한 메인 반사파가 수신되는 시간 길이보다 큰 값을 갖도록 설정되는 대상체의 성분 분석 장치.
  6. 제2항에 있어서,
    상기 제어부는
    i(i≥1인 정수) 번째의 발신 시간 간격(Ti)과 j(j≥1인 정수, i≠j) 번째의 발신 시간 간격의 차이(Ti-Tj)가 i와 j의 차이(i-j)에 소정 임계치를 곱한 값과 같아지도록 제어하는 대상체의 성분 분석 장치.
  7. 제1항에 있어서,
    상기 제어부는
    미리 정의된 서로 다른 복수의 시간 간격 중에서 둘 이상의 시간 간격을 선택하고, 선택된 둘 이상의 시간 간격을 상기 초음파 발신 시간 간격에 반복적으로 할당하는 대상체의 성분 분석 장치.
  8. 제7항에 있어서,
    상기 제어부는
    상기 서로 다른 복수의 시간 간격 중에서 시간 간격의 크기가 서로 연속되는 둘 이상의 시간 간격을 선택하는 대상체의 성분 분석 장치.
  9. 제1항에 있어서,
    상기 프로세서는
    상기 디텍터에 의해 검출된 제1 신호에서 복수의 시간 구간의 제2 신호들을 추출하고, 추출된 제2 신호들을 앙상블 평균(ensemble average)하여 앙상블 평균 결과를 기초로 대상체의 성분을 분석하는 대상체의 성분 분석 장치.
  10. 제9항에 있어서,
    상기 프로세서는
    상기 제1 신호에서 각 초음파의 발신 시점을 기준으로 동일한 시간 구간으로 상기 제2 신호들을 추출하는 대상체의 성분 분석 장치.
  11. 제9항에 있어서,
    상기 프로세서는
    상기 앙상블 평균 결과에서 신호 세기를 기초로 메인 광신호가 수신되는 시간 구간을 검출하고, 검출된 시간 구간의 신호를 기초로 대상체의 성분을 분석하는 대상체의 성분 분석 장치.
  12. 제11항에 있어서,
    상기 프로세서는
    상기 앙상블 평균 결과에서 초음파 발신 구간의 신호를 제외한 나머지 시간 구간 중에서 신호 세기가 가장 큰 시간 구간을 상기 메인 광신호가 수신되는 시간구간으로 검출하는 대상체의 성분 분석 장치.
  13. 제1항에 있어서,
    상기 대상체의 성분은
    항산화 관련 성분, 혈당, 중성지방, 콜레스테롤, 칼로리, 단백질, 카로테노이드, 젖산(lactate) 및 요산 중의 하나 이상을 포함하는 대상체의 성분 분석 장치.
  14. 대상체를 향해 광을 조사하는 단계;
    대상체로부터 산란 또는 반사된 광의 신호를 검출하는 디텍터 및 대상체를 향해 불규칙한 시간 간격으로 초음파를 발신하는 단계;
    상기 초음파에 의해 주파수 변조되어 대상체로부터 산란 또는 반사된 광의 신호를 검출하는 단계; 및
    상기 검출된 신호를 기초로 대상체의 대상체의 성분을 분석하는 단계를 포함하는 대상체의 성분 분석 방법.
  15. 제14항에 있어서,
    상기 초음파를 발신하는 단계는
    초음파 발신 순서에 따라 시간 간격을 점차적으로 증가 또는 감소시키거나, 미리 정의된 서로 다른 복수의 시간 간격 중에서 의사 난수(pseudo random) 시퀀스를 사용하여 무작위로 초음파 발신 시간 간격에 할당하는 대상체의 성분 분석 방법.
  16. 제14항에 있어서,
    상기 초음파를 발신하는 단계는
    미리 정의된 서로 다른 복수의 시간 간격 중에서 둘 이상의 시간 간격을 선택하고, 선택된 둘 이상의 시간 간격을 상기 초음파 발신 시간 간격에 반복적으로 할당하는 대상체의 성분 분석 방법.
  17. 제14항에 있어서,
    상기 대상체의 성분을 분석하는 단계는
    상기 광의 신호를 검출하는 단계에서 검출된 제1 신호에서 복수의 시간 구간의 제2 신호들을 추출하는 단계;
    상기 추출된 제2 신호들을 앙상블 평균(ensemble average)하는 단계; 및
    상기 앙상블 평균 결과를 기초로 대상체의 성분을 분석하는 단계를 포함하는 대상체의 성분 분석 방법.
  18. 제17항에 있어서,
    상기 대상체의 성분을 분석하는 단계는
    상기 앙상블 평균 결과에서 신호 세기를 기초로 메인 광신호가 수신되는 시간 구간을 검출하고, 검출된 시간 구간의 신호를 기초로 대상체의 성분을 분석하는 대상체의 성분 분석 방법.
  19. 대상체를 향해 광을 조사하는 광원;
    대상체로부터 산란 또는 반사되는 광신호를 검출하는 디텍터;
    상기 대상체를 향해 상기 광의 조사 방향과는 다른 방향에서 초음파를 발신하여 상기 광신호를 변조하는 초음파 발생기; 및
    상기 초음파 발생기의 초음파 발신 시간 간격을 불규칙하게 제어하는 제어부를 포함하는 신호 검출 센서.
  20. 제19항에 있어서,
    상기 제어부는
    상기 초음파 발생기의 초음파 발신 순서에 따라 시간 간격을 점차적으로 증가 또는 감소시키거나, 미리 정의된 서로 다른 복수의 시간 간격 중에서 의사 난수(pseudo random) 시퀀스를 사용하여 무작위로 초음파 발신 시간 간격에 할당하거나, 상기 서로 다른 복수의 시간 간격 중에서 둘 이상의 시간 간격을 선택하고 선택된 둘 이상의 시간 간격을 초음파 발신 시간 간격에 반복적으로 할당하는 신호 검출 센서.
KR1020200019096A 2020-02-17 2020-02-17 신호 검출 센서, 대상체의 성분 분석 장치 및 방법 KR20210104409A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020200019096A KR20210104409A (ko) 2020-02-17 2020-02-17 신호 검출 센서, 대상체의 성분 분석 장치 및 방법
US16/995,306 US11181468B2 (en) 2020-02-17 2020-08-17 Signal detection sensor, apparatus and method for analyzing component of object
EP20193689.5A EP3865049A1 (en) 2020-02-17 2020-08-31 Signal detection sensor, apparatus and method for analyzing component of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200019096A KR20210104409A (ko) 2020-02-17 2020-02-17 신호 검출 센서, 대상체의 성분 분석 장치 및 방법

Publications (1)

Publication Number Publication Date
KR20210104409A true KR20210104409A (ko) 2021-08-25

Family

ID=72292419

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200019096A KR20210104409A (ko) 2020-02-17 2020-02-17 신호 검출 센서, 대상체의 성분 분석 장치 및 방법

Country Status (3)

Country Link
US (1) US11181468B2 (ko)
EP (1) EP3865049A1 (ko)
KR (1) KR20210104409A (ko)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153666A (ja) 1997-11-20 1999-06-08 Hotoron:Kk 超音波センサの誤検出防止方法
JP4406226B2 (ja) 2003-07-02 2010-01-27 株式会社東芝 生体情報映像装置
US20050107694A1 (en) 2003-11-17 2005-05-19 Jansen Floribertus H. Method and system for ultrasonic tagging of fluorescence
EP1810610B1 (en) 2006-01-20 2016-09-14 Olympus Corporation Method and apparatus for analyzing characteristic information of object with the use of mutual interaction between ultrasound wave and light
JP4809685B2 (ja) 2006-01-31 2011-11-09 株式会社ユーシン精機 成形品取出機
US7541602B2 (en) * 2007-06-04 2009-06-02 Or-Nim Medical Ltd. System and method for noninvasively monitoring conditions of a subject
JP5235586B2 (ja) 2008-10-03 2013-07-10 キヤノン株式会社 生体情報処理装置及び生体情報処理方法
JP5815243B2 (ja) 2011-01-20 2015-11-17 キヤノン電子株式会社 重送検知装置
US20120197133A1 (en) 2011-01-28 2012-08-02 Nellcor Puritan Bennett Llc Advanced Ultrasound Modulated Optical Spectroscopy And Its Application To Patient Monitoring
KR101583302B1 (ko) 2014-04-18 2016-01-07 부경대학교 산학협력단 진단 치료 겸용 광융합형 초음파기기
DE102014107261A1 (de) 2014-05-22 2015-11-26 Nirlus Engineering Ag Verfahren zur nichtinvasiven optischen Messung von Eigenschaften von fließendem Blut
EP3170446A1 (de) 2015-11-20 2017-05-24 NIRLUS Engineering AG Verfahren und vorrichtung zur nichtinvasiven optischen in-vivo-bestimmung der glukosekonzentration in fliessendem blut
WO2019055981A1 (en) 2017-09-18 2019-03-21 The Charles Stark Draper Laboratory, Inc. MASSIVELY MULTI-FREQUENCY ULTRASOUND CODING TOMOGRAPHY

Also Published As

Publication number Publication date
US11181468B2 (en) 2021-11-23
EP3865049A1 (en) 2021-08-18
US20210255092A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
US11538272B2 (en) Apparatus and method for measuring signal and obtaining bio-information
EP3456251B1 (en) Bio-information measuring apparatus and bio-information measuring method
KR102411658B1 (ko) 생체 정보 검출 장치
KR102487982B1 (ko) 혈압 측정 장치, 및 광원 선택 프로세스를 포함하는 혈압 측정 장치
KR102531994B1 (ko) 생체 성분 측정 장치 및 방법
KR102655737B1 (ko) 생체 성분 추정 장치 및 방법
KR102409382B1 (ko) 생체 정보 검출 장치 및 방법
EP2704621B1 (en) Object information acquiring apparatus and control method thereof
US20130190589A1 (en) Multiple peak analysis in a photoacoustic system
KR102441333B1 (ko) 생체정보 측정 장치 및 방법, 생체정보 측정 장치 케이스
US8886294B2 (en) Methods and systems for photoacoustic monitoring using indicator dilution
KR20180054351A (ko) 생체 성분 측정 장치 및 방법
US20120184831A1 (en) Systems, devices and methods for monitoring hemodynamics
JP6982619B2 (ja) ウェアラブルデバイスによりもたらされる紅斑の検出
CN109069011A (zh) 用于心血管诊断的光学测量设备
US20220369942A1 (en) Light-based non-invasive blood pressure systems and methods
US20220087556A1 (en) Apparatus and method for obtaining bio-information
EP3342328B1 (en) Human body sleep monitoring device and monitoring method
US11204276B2 (en) Apparatus and method for analyzing component of object, and image sensor
KR102630393B1 (ko) 생체정보 측정 장치 및 방법
EP3639732B1 (en) Apparatus and method for estimating bio-information
KR20210104409A (ko) 신호 검출 센서, 대상체의 성분 분석 장치 및 방법
KR20200047981A (ko) 생체성분 추정 장치 및 방법
KR20180106902A (ko) 광음향장치 및 그 제어 방법, 및 광음향 프로브
US20220233149A1 (en) Apparatus and method for estimating body component

Legal Events

Date Code Title Description
A201 Request for examination