JP4216348B2 - 干渉計システムおよびそのようなシステムを含むリソグラフィー装置 - Google Patents

干渉計システムおよびそのようなシステムを含むリソグラフィー装置 Download PDF

Info

Publication number
JP4216348B2
JP4216348B2 JP52990399A JP52990399A JP4216348B2 JP 4216348 B2 JP4216348 B2 JP 4216348B2 JP 52990399 A JP52990399 A JP 52990399A JP 52990399 A JP52990399 A JP 52990399A JP 4216348 B2 JP4216348 B2 JP 4216348B2
Authority
JP
Japan
Prior art keywords
measurement
substrate
mirror
measuring
interferometer system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP52990399A
Other languages
English (en)
Other versions
JP2001510577A (ja
Inventor
ロープストラ,エリク,ロエロフ
ストラーイエル,アレグザンダー
Original Assignee
エーエスエムエル ネザーランズ ビー. ブイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーエスエムエル ネザーランズ ビー. ブイ. filed Critical エーエスエムエル ネザーランズ ビー. ブイ.
Publication of JP2001510577A publication Critical patent/JP2001510577A/ja
Application granted granted Critical
Publication of JP4216348B2 publication Critical patent/JP4216348B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7084Position of mark on substrate, i.e. position in (x, y, z) of mark, e.g. buried or resist covered mark, mark on rearside, at the substrate edge, in the circuit area, latent image mark, marks in plural levels

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Description

この発明は、XYZ座標系のXY平面に平行な平面での物体の位置および変位を、その物体のホルダに配置したXおよびY測定ミラーによって測定するための干渉計システムで、複数の測定ビームを発生し、上記測定ビームをこのXY平面に平行でこれらの測定ミラーへおよびそれらから伸びる複数の測定軸に沿って向けるための手段、並びにこれらの測定ミラーが反射した測定ビームを電気測定信号に変換するための放射線感応性検出器を備え、XおよびY測定軸の数が少なくとも干渉計的に測定すべき物体の運動数に等しいシステムに関する。
この発明は、そのような干渉計システムを含む、リソグラフィー投影装置にも関する。この装置は、ステッパまたはステップアンドスキャナでもよい。
この干渉計システムの測定軸は、物体の与えられた点の与えられた方向(XまたはY)での変位の位置を測定する軸を意味するものと理解する。この測定軸が、この測定のために使用する測定ビームの主光線と一致する必要はない。もし、測定ビームをこのシステムを通して2度送り、この物体によってほゞ同じ点で2度反射すると、この測定軸が第1通路での測定ビームの主光線と第2通路でのこのビームの主光線の間に位置する。
EP−A0498499は、そのような干渉計システムと、そのようなシステムを含み、マスクパターン、例えば集積回路(IC)のパターンの縮小像を放射線感応層を備える基板上に繰返し結像する光学的リソグラフィー投影装置との実施例を開示している。同じ基板上のマスクパターンの二つの連続する像間で、この基板およびマスクが互いに関して、例えば、XYZ座標系のXまたはY方向に動き、一方この基板面およびマスク面はXY平面に平行である。
この投影装置は、集積回路を製造するためにマスキングおよび拡散技術と組合わせて使用する。この方法で、第1マスクパターンを多数、例えば百回基板のIC領域に結像する。次に、この基板を所望の物理的および/または化学的処理工程に掛けるためにこの投影装置から取除く。続いて、この基板の異なるIC領域に第2マスクパターンの像を作るために、この基板を同じ、またはもう一つの類似の投影装置に配置する、等々。そこで、マスクパターンの像を基板フィールドに関して非常に正確に配置しなければならない。
このため、現在使用する投影装置は:
− 基板テーブルの運動、すなわち基板ホルダおよび基板の運動が正確に追従でき、基板の位置を正確に決められる基板テーブル用干渉計システム;
− マスクを基板に関して整列でき、この干渉計システムと密接に協同する整列システム;
− 基板のIC領域に作ったマスクパターンの像が常に鮮鋭であることを保証する焦点合せ誤差検出システム;並びに
− この焦点合せ誤差検出システムと組合わせ可能の、基板とマスクパターンの像の互いに対する倒れを検出するための倒れ検出システムすなわち焦点合せおよび水平検出システムでの検出システムを含む。
公知の複合干渉計システムは、3本の測定軸を有してもよく、これにより基板のX方向およびY方向の運動並びに、この投影系の光軸であるZ軸周りの基板の回転φzを測定できる。EP−A0498499による干渉計システムの空間的特徴は、5本の測定軸を有し、基板のX軸およびY軸に沿う変位並びにZ軸周りの回転を非常に正確に測定できるだけでなく、X軸周りの倒れφxおよびY軸周りの倒れφyも測定できることである。この干渉計システムを使うとき、基板の各フィールドをマスクパターンに関して、フィールド毎の別々の整列を必要とすることなく、非常に正確に配置できる。従って、基板を照明するために必要な時間をかなり短縮できる。
以後フォトリソグラフィー装置とも称する、光学的リソグラフィー投影装置では、投影系の像界が基板表面と一致しなければならない、即ち、像面のZ位置と基板ホルダの表面のそれらの間に与えられた関係が存在すべきである。基板テーブルが常に投影レンズ系の下に配置され且つ最大で基板寸法のオーダである距離に亘って動かされる、現在使用するフォトリソグラフィー装置では、この関係を上記焦点合せおよび水平検出システムによって制御し、その要素をこの投影系にしっかりと結合した板の形の測定フレームに配置する。上記検出システムおよびそれらが一部を形成するサーボシステムを使えば、基板およびマスクパターンを互いに関して全体的に配置できるだけでなく、フィールド毎に十分正確にも配置できる。現在開発している新世代のフォトリソグラフィー投影装置では、それを使って多数の部品を有するICを製造しなければ成らず、即ち、それによって更なる詳細すらも基板フィールドに結像しなければ成らず且つそれでは基板テーブルを基板寸法より大きい距離に亘って動かすため、新しい問題が現れる。一方で、更に一層正確な整列の必要性の問題があり、他方で、上記の関係が上述の方法ではもう制御できないという問題がある。従って、投影系とチャックとも称する基板ホルダとの間の、Z方向の、距離を測定する、もう一つのモードが必要である。
この発明の目的は、所望の測定ができ、とりわけ、基板とマスクパターンを互いに関して整列する目的で、フォトリソグラフィー装置内で基板の変位の非常に正確且つ確実に測定可能にする、干渉計システムを提供することである。この干渉計システムは、この物体のZ位置をこの物体のホルダ上にXY平面に鋭角に配置したZ測定ミラーによって測定するようにもされ、このためにこの干渉計システムがZ測定軸を有し、Z測定ビームを発生し且つ上記測定ビームをこのZ測定ミラー上に向けるための手段、およびこのZ測定ミラーからのZ測定ビームをこの物体のZ位置周りの情報を含む信号に変換するためのZ検出器を備えることを特徴とする。
この発明は、XおよびY方向の正確且つ確実な干渉計測定のためには、Z方向の基板の変位を考慮に入れて補償しなければならないが、公知の干渉計システムを、Z測定ビームを放射線源からZ測定ミラーまでXY平面に平行に発して、Z測定ミラーによって反射基準要素へ反射させ、反射基準要素に関して基板のZ位置を測定するように用途を広げるだけの簡単な方法でこのZ変位を、測定できるという認識に基づく。
Z測定ミラーを使用することによって、所望のZ位置測定を、拡張性のXY干渉計システムで実行できるXまたはY位置測定に変形する。そうなると、基板のZ位置測定および倒れ位置測定のために、投影レンズ系の下に別の光学的倒れ検出システムを配置する必要がもう無い。このZ位置および倒れ位置は、例えば、容量式または誘導式センサによっても測定できる。しかし、位置を測定しなければならない物体の全2次元表面は、実際には実現できい、または実現困難な平面性要件に従うべきである。Z測定軸を備える干渉計システムを使うとき、Z測定ミラーは、ある方向の長さが、その方向に物体ホルダが横切って動く距離のオーダだけあればよく、一方、この方向と直角方向には、この測定ミラーがこの測定ミラーの位置でのZ測定ビームの断面のオーダの幅があればよい。それで、平面性要件を容易に満足できるように、ストリップ形のミラーを使えば十分である。
基板テーブルのX、YおよびZ位置を測定するための複合干渉計システムが日本国特許公開公報H04−179115の英文要約書に記載されていることに注目すべきである。測定ミラーが、基板テーブルの一部である基板ホルダではなくて、基板テーブルの側面に配置されている。これらの測定ミラーを、各々反射性の側面および下面を有する四つの要素によって作り、これらの下面をZ位置測定のために使い、側面をXおよびY位置測定のために使う。公知のシステムは、四つの従来のマイケルソン干渉計を含み、その第1のものをX位置だけの測定に使い、第2をY位置だけの測定に使い、他の二つをZ位置だけの測定に使う。これらのZ干渉計は、余分なスペースが要るので、基板テーブルの下に配置する。公知のシステムでは、それに関する基板ホルダのZ位置を測定しなければならない物体上に配置したZ反射器に関する基板ホルダのZ位置ではなく、基板テーブルのZ位置をZ干渉計に関して測定する。
この発明による干渉計システムは、もし、基板位置の測定をマスクパターンを介する基板の照明とかなり異なる瞬間に行うならば、排他的にではないが、顕著に適用可能である。特にその場合、再現性のあるZ位置の測定が非常に重要である。異なる瞬間での基板の測定と照明は、単一基板テーブルを備えるフォトリソグラフィー装置で行ってもよいが、照明ステーションおよび別の整列ステーション、並びに二つの基板テーブルを備えるフォトリソグラフィー装置に特に適した方法である。この装置の使用中、第1基板ホルダ上にある第1基板の全てのIC領域を照明ステーションでマスクパターンで照明し、一方、第2基板の整列マークは、整列ステーションで第2基板テーブル上に設けた整列マークに関して整列する。第1基板を完全に照明してから、この基板テーブルを照明ステーションから取除き、その後第1基板をこの基板テーブルから除去し、第3基板を第1基板テーブル上に設け、続いてこの基板を整列ステーションで第1基板テーブルに関して整列する。この間に、第2基板テーブルを照明ステーションへ動かし、このテーブルの整列マークをマスクマークに関して整列し、基板マークもマスクマークに関して整列して、第1基板テーブルに関する第3基板の整列中に、第2基板を照明できるようにする。すなわち、整列手続の大部分を照明ステーションの外部で行い、このステーションが実際の照明または投影に適する期間を最大とし、この装置が照明できる単位時間当りの基板数を最大としている。この点は、ICのフォトリソグラフィー製造法では重要な側面となる。
この発明による干渉計システムの好適実施例は、更に、Z測定ミラーを物体のホルダ上にXY平面に実質的に45°の角度で配置することを特徴とする。
もし、基準ミラーがXY平面に平行であれば、Z測定ビームがZ反射器へ向い、反射器から反射する場合同じ経路を辿るので、Z測定ミラーを最小の幅とすることができる。
この発明による干渉計システムの実施例は、更に、Z測定ミラーをXまたはY測定ミラーの傾斜部によって構成することを特徴としてもよい。
Z方向に見て、この目的に適する物体ホルダの側面を直線部およびこの直線部と好ましくは45°の角度の傾斜部に分割し、両部分をミラーにする。
しかし、この干渉計システムの好適実施例は、Z測定ミラーを、XまたはY測定ミラーも配置した物体ホルダの側面上に設けた傾斜したバーによって構成し、上記バーが上記側面の僅かな部分に亘ってだけZ方向におよびこの側面全体に亘ってそれに垂直方向に拡がることを特徴とする。
この基準反射器は、投影レンズホルダに対しては配置しないので、例えば70mmのオーダの、与えられた距離がフォトリソグラフィー装置でこの反射器の一端と投影レンズの軸の間に存在するだろう。Z測定ミラーが反射した測定ビームがZ反射器に、基板ホルダの極端位置にも到達できるためには、投影レンズの軸とZ測定ミラーの中心の間の位置での距離が最小限上記距離に等しくなければならない。これは、基板ホルダをZ測定のために拡大しなければならないことを意味する。このホルダが所与の高さがなければならないので、またXまたはY測定ミラーもZ測定ミラーを設ける側面上に設けなければならないので、Z測定ミラーのための基板ホルダの寸法の増加は、その重量をかなり引き上げる。Z測定ミラーを基板ホルダに固定結合した薄いバー上に設けることによって、このホルダの重量をかなり軽減できる。
Z測定ミラーは、物体ホルダのこの物体から遠い側に配置するのが好ましい。Z測定ミラーをホルダの下側におよびXまたはY測定ミラーをその上に置くことによって、アッベの誤差が起る危険を緩和できる。更に、基板ホルダの関連する側面の最大限の部分およびZ測定ミラーと投影系の間の最大限のスペースを他の測定に利用できる。
この干渉計システムでは、Z測定ビームに関連する基準ビーム用に別の基準ミラーを設けてもよい。すると、このZ測定ビームおよびZ基準ビームを受けるZ検出器は、Z位置についての情報が、もしZ測定ミラーを物体ホルダのX測定ミラーと同じ側面に配置するなら、X位置についての情報と、または、もしZ測定ミラーをY測定ミラーと同じ側面に配置するなら、Y位置についての情報と混ざった信号を提供する。そこでX位置信号またはY位置信号による電子的微分をまだこの信号に行わなければならない、即ち、純粋なZ位置を得るために、この信号をX位置、またはY位置信号と組合せなければならない。
しかし、この干渉計システムは、更に、Z測定ビームに関連する基準ビーム用基準ミラーを、Z測定ミラーも配置した物体ホルダの側面上に配置したXまたはY測定ミラーによって構成することを特徴とするのが好ましい。
そこで光学的微分を行い、このZ検出器の出力信号が純粋なZ位置情報を含む。それで、電子微分を行う必要がない。光学微分は、一つは電子回路の処理速度にもう依存しないという利点を有する。
Z測定軸用に、ビームスプリッタが測定ビームと関連する基準ビームを、それらが、それぞれ、測定ミラーおよび基準ミラーによって反射されてから、組合せて、これらのビームがZ検出器の平面に作る放射線スポットが出来るだけ満足に一致するようにしなければならない。すると、この検出器が提供する信号は、最大の振幅を有する。しかし、これらの放射線スポットは、これらのビームに関連する測定ミラーの不必要な倒れのために、検出器に関してオフセットし、これらのビームの方向が変るかも知れない。この現象は、ビームウォークオフとして知られる。Z測定ビームをZ反射素子は勿論Z測定ミラーが反射するので、Z測定ビームに対するビームウォークオフは、Z基準ビームに対するそれより大きい。もし上記の光学微分法を使えば、即ち、もしZ基準ビームをXまたはY測定ミラーへ送れば、ビームウォークオフを減少できる。実際、するとビームウォークオフが両ビームに対して同じ方向に及ぶ。それで、光学微分法が第2の利点をもたらす。
ビームウォークオフを更に減らすためには、この干渉計システムが、更に、Z測定ビームの経路に再帰反射器を含み、その反射器で測定ミラーによって反射され検出器の方へ向けられるZ測定ビームを更に反射するためにZ測定ミラーへ反射されることを特徴とするのが好ましい。
測定ミラーでのZ測定ビームのこの余分な反射のために、この測定ビームの元の方向が、このビームの経路のミラーの有り得る倒れと無関係に、維持される。
この干渉計システムのXおよびY測定軸の数は、このシステムの用途に依って変ってもよい。しかし、このシステムが、更に、Z測定軸に加えて、少なくとも5本の更なる測定軸を含むことを特徴とするのが好ましい。
このシステムでは、XおよびY方向の最大限の測定精度の利点を特別な測定能力、即ち、Z測定のそれと組合せる。
この干渉計測定を測定ビームが伝播する媒体の屈折率の変動と無関係にするために、この干渉計システムは、更に、異なる波長の二つの測定ビームが沿って伝播する測定軸を有することを特徴としてもよい。
同じ距離を波長の異なる二つのビームで測定し、媒体の屈折率は、波長に依存するので、有り得る屈折率変動を測定でき、干渉計システムの測定結果をそれによって補償できる。上記測定軸は、別の基準測定軸でもよく、他の測定軸の一つで構成してもよい。
この発明は、マスクパターンを基板上に繰返し投影するための投影装置であって、投影ビームを供給するための照明ユニット、マスクホルダを備えるマスクテーブル、基板ホルダを備える基板テーブル、この投影ビームの経路に配置した投影系、およびこの基板の位置および方向を測定するための光学測定システムを含む装置にも関する。この投影装置は、光学測定システムが先に説明した干渉計システムであり、そこで物体および物体ホルダが、それぞれ、この基板およびこの基板ホルダであることを特徴とする。
この装置の精度は、投影装置に干渉計システムを使用することにより、特に、この装置が上に記した目的で二つの基板テーブルを備えるとき、かなり改善される。
この投影装置は、更に、測定ミラーを除いて、Z反射器は勿論、干渉計システムの部品を剛性フレームに配置し、それに投影系もしっかりと固定し、そのフレームをこの装置の他の部品から動的に絶縁して懸架することを特徴とするのが好ましい。
この測定は、所望の測定精度を実現するためにかなり貢献する。干渉計ユニットを、今度は、投影系への外乱なくしっかりと結合する。計測フレームとも称する、上記フレームを動的に絶縁するように、または振動なく、この装置に懸架するので、その中に存在する干渉計ユニットの位置がもう、基板テーブルおよびマスクテーブルの駆動力のような外力に影響されない。Z反射器は、投影系に固定した反射器で、Z測定ミラーからのZ測定ビームをこのミラーへ反射する。
この投影装置は、更に、XおよびY測定ビームに関連する基準ビーム用基準ミラーをこの投影系のホルダ上に配置することを特徴としてもよい。
すると、基板のXおよびY位置をもう干渉計素子に関してでなく、投影系に関して測定する。すると、計測フレームの有り得る変形が位置測定に無視できるほど僅かな影響しか与えない。
この投影装置は、更に、マスクの位置および方向を測定するための光学測定システムを含んでもよく、そこでこの光学測定システムが先に説明した干渉計システムであり、そこで物体および物体ホルダが、それぞれ、基板および基板ホルダであることを特徴としてもよい。
そのような装置では、マスクも非常に正確に配置できる。
この発明のこれらおよびその他の側面は、以下に説明する実施例から明白でありおよびそれらを参照すれば明らかになるだろう。
図面で:
図1は、基板上にマスクパターンを繰返し結像するためのフォトリソグラフィー装置の実施例を図式的に示し;
図2は、この装置に使用するための3本の測定軸を備える公知の干渉計システムを示し;
図3は、1軸干渉計システムの原理を示し;
図4は、5本の測定軸を備える公知の干渉計システムの透視図であり;
図5は、Z測定を行うリソグラフィー装置の実施例を示し;
図6および図7は、二つのZ測定を行うリソグラフィー装置の第1および第2の実施例を示し;
図8は、改作したZ測定ミラーを備えるリソグラフィー装置の実施例を示し;
図9は、三つのZ測定ミラーおよび3本のZ測定軸を備える基板ホルダを示し;
図10は、Z測定軸を備える干渉計ユニットの第1実施例の第1部分を示し;
図11は、そのような干渉計ユニットの第2実施例を示し;
図12は、第1部分を図10が示す干渉計ユニットの第2部分を示し;
図13は、このユニットに使用する反射器システムを示し;
図14は、干渉計ユニットの測定ビームおよび測定軸が、基板ホルダ上に配置した測定ミラーに当る位置を示し;
図15は、2本のZ測定軸を備える干渉計ユニットの更なる実施例を示し;
図16は、計測フレームおよびアクチュエータフレームを備えるリソグラフィー装置を示し;
図17は、二つの基板ホルダおよび一つの別の整列ステーションを備えるリソグラフィー装置を示し;
図18は、この装置の整列ステーションでおよび照明ステーションで基板について行う干渉計測定の概観であり;
図19は、ステップアンドスキャナでマスクについて行う干渉計測定を示し;および
図20は、図17の装置で二つの基板ホルダが行う動作を示す。
図1は、基板上にマスクパターンを繰返し結像するためのフォトリソグラフィー装置の実施例の光学素子を図式的に示す。この装置の主要部品は、投影レンズ系PLを収容する投影コラムである。中に結像すべきマスクパターンCがあるマスクMA用のマスクホルダMHをこの系の上に配置する。このマスクホルダは、マスクテーブルMT内にある。基板テーブルWTをこの投影レンズ系PLの下に配置する。このテーブルは、基板W用基板ホルダWHを収容し、その基板は、感光層を備え、その上にこのマスクパターンを多数回、各回毎に異なるIC領域Wdに、結像しなければならない。この基板テーブルは、あるIC領域にマスクパターンを結像してから、次のIC領域をこのマスクパターンの下に配置できるように、XおよびY方向に可動である。
この装置は、更に、放射線源LA、例えば、弗化クリプトンエキシマレーザまたは水銀灯、レンズ系LS、反射器REおよびコンデンサレンズCOを含む照明システムを有する。この照明システムが供給する投影ビームPBがマスクパターンCを照明する。このパターンを投影レンズ系PLによって基板WのIC領域に結像する。この照明システムは、代りにEP−A0658810に記載されているように実施してもよい。この投影レンズ系は、倍率が、例えば、M=1/4、開口数NA=0.6および直径22mmの回折限界像界を有する。
この装置は、更に、複数の測定システム、即ち、マスクMAをXY平面で基板Wに関して整列するためのシステム、基板ホルダの、従って基板のXおよびY位置並びに方向を測定するための干渉計システム、並びに投影レンズ系PLの焦点面または結像面と基板W上の感光層の表面との間の偏差を測定するための焦点合せ誤差検出システムを含む。これらの測定システムは、電子信号処理および制御回路並びにドライバまたはアクチュエータを含むサーボシステムの一部であり、それによって基板の位置および方向並びに焦点合せをこれらの測定システムが供給する信号に関して補正できる。
この整列システムは、図1の右上隅に示すマスクMAの中の二つの整列マークM1およびM2を使う。これらのマークは、回折格子から成るのが好ましいが、その代りに、光学的にそれらの周囲と異なる、正方形またはストリップのような、その他のマークで作ってもよい。これらの整列マークは、2次元であるのが好ましく、即ち、それらは、二つの相互に垂直方向、図1でXおよびY方向に拡がる。基板Wは、少なくとも二つの整列マークを有し、それらも2次元回折格子であるのが好ましく、それらの二つP1およびP2を図1に示す。マークP1およびP2は、パターンCの像を作らねばならない基板Wの領域の外側にある。格子マークP1およびP2は、位相格子であるのが好ましく、格子M1およびM2マークは、振幅格子であるのが好ましい。
図1は、整列システムの特別の実施例、即ち、2本の整列ビームbおよびb’を、それぞれ、基板整列マークP2をマスク整列マークM2上に、および基板整列マークP1をマスク整列マークM1上に整列するために使用する、複式整列システムを示す。ビームbを反射素子30、例えば、ミラーによってプリズム26の反射面27へ反射する。面27は、このビームbを基板整列マークP2へ反射し、それが放射線の一部をビームb1として関連するマスク整列マークM2へ送り、そこにマークP2の像を作る。反射素子11、例えば、プリズムをマークM2の上に配置し、そのプリズムは、マークM2が通した放射線を放射線感応検出器13の方へ向ける。第2整列ビームb’をミラー31が投影レンズ系PLの中の反射器29へ反射する。反射器29は、ビームb’をプリズム26の第2反射面28へ通し、その面がビームb’を基板整列マークP1へ向ける。このマークは、ビームb’の放射線の一部をb1’としてマスク整列マークM1へ反射し、そこにマークP1の像を作る。ビームb1のマークM1を通過する放射線は、反射器11’が放射線感応検出器13’の方へ向ける。この複式整列システムの作用は、米国特許第4,778,275号に記載されていて、このシステムの更なる詳細はそれを参照する。
図1による整列システムの実施例は、整列ビームがかなり長い波長、例えば、633nmであるのに対して、投影ビームPBが短い波長、例えば、248nmを有するように投影レンズ系PLを設計した装置に特に適する。実際、このシステムは、投影コラムの中に特別なレンズすなわち補正レンズ25を組込んでいる。このレンズは、基板整列マークをマスク整列マークの平面内に、この投影レンズ系が整列ビームの波長に最適化されていないという事実にも拘らず、正確な倍率で結像することを保証する。この補正レンズは、投影コラムの中に、一方で、基板整列マークによって生ずる、整列ビームの異なる回折次数のサブビームを、これらのサブビームが別々に影響できるように、補正レンズの平面で十分に分離し、および、他方で、この補正レンズが投影ビームおよびそれで作ったマスクパターンCの像に与える影響が無視できるような高さに配置する。補正レンズ25は、投影レンズ系のフーリエ平面に配置するのが好ましい。もし、補正レンズを、図1に示すように、整列ビームbおよびb1の主光線が互いに交差する平面に配置すると、この補正レンズは、2本の整列ビームを補正するために使うことができる。補正レンズ25の目的および作用についての更なる詳細は、米国特許第5,100,237号を参照する。
楔またはその他の偏向素子、例えば、回折素子を整列ビームの経路内に整列マークに近接して配置するのが好ましい。そのような偏向素子(図1には示さず)で、検出器13または13’が捕えた、選択した整列ビーム部分内の不用意な位相差から生ずる整列誤差を防ぐかも知れず、その位相差は、もし、基板整列マークから来る整列ビーム部分の対称軸がこのマスク板と垂直でなく、それで擬似反射がこの板内で起るかも知れない。そのような偏向素子を備える整列システムは、米国特許第5,481,362号に記載されている。
基板全体をマスクに関して整列するために使用し、全体的整列と称する、図1に示す全体的整列マークP1およびP2に加えて、基板は更なる整列マーク、例えばIC領域毎に一つのマークを備え、各IC領域のマスクパターンに関して関連する領域を整列してもよい。このマスクは、三つ以上の整列マークを有してもよく、そしてこれらの更なるマークを、例えば、Z軸周りのマスクの回転を測定し、それによって補正するために使ってもよい。
この投影装置は、更に、投影レンズ系PLの焦点面と基板W上の感光層の表面との間の偏差を決定するための焦点合せ誤差検出システムを含み、この偏差を、例えば、基板表面の高さを基板テーブルにあるZアクチュエータで制御することによって、補正できるようにしてもよい。この焦点合せ誤差検出システムは、投影レンズ系に固定したホルダ(図示せず)に配置した、または中にやはり投影レンズ系が配置されている計測フレーム内に配置した、素子40、41、42、43、44、45および46によって構成してもよい。素子40は、放射線源、例えば焦点合せビームb3を出すダイオードレーザである。このビームを反射プリズム42によって非常に小さい角度で基板上に向ける。この表面で反射したビームをプリズム43によって再帰反射器44の方へ向ける。この素子44は、このビーム(b3’)がプリズム43、基板表面およびプリズム42の反射を経てもう一度同じ経路を辿るようにビームそれ自体を反射する。このビームb3’は、部分反射素子41および反射素子45を経て放射線感応検出システム46に達する。このシステムは、例えば、位置依存検出器または二つの別々の検出器を含む。このシステムのビームが作る放射線スポットの位置は、投影レンズ系の焦点面が基板Wの表面と一致する程度に依存する。この焦点合せ誤差検出システムの広範囲の説明については、米国特許第4,356,392号を参照する。
基板テーブルWTのXおよびY位置を正確に測定するために、公知の投影装置は、多軸干渉計システムを含む。米国特許第4,251,160号は、2軸システムを記載し、米国特許第4,737,283号は、3軸システムを記載している。図1に、そのような干渉計システムを素子50、51、52および53によって図式的に表し、この図は一つの測定軸、X軸だけを示す。放射線源50、例えばレーザが出すビームb4をビームスプリッタ51によって測定ビームb4,mと基準ビームb4,rに分ける。測定ビームは、基板ホルダWHの反射側面54に達し、この側面によって反射した測定ビームを、固定反射器52、例えば、“コーナキューブ”反射器によって反射した基準ビームとビームスプリッタで組合せる。この組合せたビームの強度を検出器53で測定でき、基板ホルダWHの、この場合X方向の、変位をこの検出器の出力信号から得ることができ、このホルダの瞬間位置も確立できる。
図1に図式的に示すように、簡単のために一つの信号S53で表す干渉計信号、並びに整列システムの信号S13およびS13’を信号処理ユニットSPU、例えばマイコンに加え、それが上記信号を処理し、基板テーブルWTを介して基板ホルダをXY平面で動かすアクチュエータACのための信号SACを制御する。
図1に示すX測定軸だけでなく、Y測定軸もおよび事によると第3の測定軸も含む干渉計システムで、整列マークP1、P2およびM1、M2の位置、およびそれらの間の相互距離を、マスクの基板に関する初期、または全体的整列中に固定干渉計システムが形成する座標系に定めることができる。この干渉計システムは、基板テーブルを非常に正確に歩進できるようにするため、即ち、それを所定の距離および方向に動かすためにも使用する。そのような歩進は、マスクパターンを最初のIC領域またはフィールドに1回以上のフラッシュで結像してから、次のICフィールドをこのマスクパターンおよび投影レンズ系の下へ配置して、マスクパターンをこのフィールドにも結像できるようにするために行う。これらの歩進および結像作業は、全てのICフィールドがマスクパターン像を備えるまで続ける。この様に作用するリソグラフィー装置をステッパと称する。
一方で、ICフィールドの単位表面当りの電子部品の増加、および他方で、大きなICフィールドに対する要求のために、益々厳しい要求が投影レンズ系の分解能および像界に課されている。これらの技術的に矛盾する要求を緩和するために、既にステップアンドスキャナを使うことが提案されている。そのような装置では、ステッパと同じ歩進運動を行うが、マスクパターンをICフィールドに結像するとき、毎回マスクパターンの僅かな部分だけをICフィールドの対応するサブフィールドに結像する。マスクパターンの相次ぐ部分をIC領域の相次ぐサブフィールドに結像することによって、マスクパターン全体の像をICフィールド上に得る。このために、マスクパターンをこのマスクパターンの位置で小さい、例えば矩形またはアーチ形の、照明スポットを形成する投影ビームで照明し、基板テーブルを投影レンズ系および投影ビームに関して与えられた方向、即ち走査方向に動かし、マスクテーブルを同じまたは反対方向動かし、同時に基板テーブルの速度をM掛けるマスクテーブルの速度にする。Mは、マスクパターンを結像する倍率である。このマスクと基板がどの瞬間にも正しい相互位置にあることを保証すべきで、それはマスクと基板の運動の非常に正確な同期によって実現でき、即ち、基板の速度Vsubが常にM掛けるマスクの速度VMAに等しい。
この条件Vsub=M・VMAをチェックするため、ステップアンドスキャナは、基板干渉計システムだけでなく、マスクの運動および位置を正確に測定できるマスク干渉計システムも含むべきである。最後に述べたシステムの測定ミラーは、マスクホルダに固定するのが好ましい。このマスク干渉計システムを図1に、素子60、61、62、63および64によって示し、それらは、基板干渉計システムの素子50、51、52、53および54と同じ機能を有する。簡単のために図1に一つの信号S63によって表す、マスク干渉計システムの信号を信号処理ユニットSPUに加え、そこでこれらの信号を基板干渉計システムの対応する信号と比較する。すると、このマスクと基板が相互に正しい位置にあるか、および/または同期して動いているかどうかが確認できる。
もし、マスクのXおよびY方向の測定した位置をXr、Yrで表し、および基板のそれらをXW、YWで表し、並びにZ軸の回転をφZ,rおよびφZ,Wで表すと、マスクと基板が互いに関して正しい位置にあれば、次の条件を満たす:
W−MXr=0 (1)
W−MYr=0 (2)
φZ,W−φZ,r=0 (3)
但し、Mは投影レンズ系の倍率である。マスクと基板は、反対方向に動くと仮定した。もし、これらの要素が同じ方向に動くならば、前記の条件でマイナス符号をプラス符号に換えれば良い。
これらの条件が満足されているかどうかを確認するためには、基板用の干渉計システムとマスク用のそれの両方が3本の測定軸を有すれば十分である。しかし、基板干渉計システムは、5本の測定軸を有するのが好ましい。EP−A0498499に記載されているように、X、YおよびφZ,Wだけでなく、φx,Wおよびφy,W、即ち、基板のX軸およびY軸周りの倒れも測定できる。5軸干渉計システムから成る干渉計ユニットの異なる実施例については、EP−A0498499に詳細に説明されている。マスクについてもX軸およびY軸周りの倒れを測定できるようにするためには、5軸マスク干渉計システムを使ってもよい。しかし、その代りに、3軸マスク干渉計システムを、X軸およびY軸周りのマスクの倒れを測定するための他のセンサ、例えば、容量式センサと組合せることも可能である。
もし、XW、YW、φx,W、φy,Wおよび、Xr、Yr、φx,r、φy,rを測定し、焦点合せ検出システムを使って、ZWおよびZr即ち、基板およびマスクのZ軸に沿う位置を測定すれば、条件(1)、(2)および(3)だけでなく、条件:
2・ZW−Zr=0 (4)
M・φx,W−φx,r=0 (5)
M・φy,W−φy,r=0 (6)
を満足し、換言すれば、マスクおよび基板表面のZ方向の相互位置が正しいかどうか(4)並びに基板およびマスクがX軸周りに(5)およびY軸周りに(6)相互に傾いていないかどうかを確認できる。
基板またはマスクのX軸およびY軸に沿う運動および位置、並びに基板またはマスクのZ軸周りの回転を測定できる、3測定軸を備える干渉計システムの実施例は、SPIE、第1088巻:光学式/レーザ マイクロリソグラフィ、pp.268−272の論文“ウェーハ段階計測のための直線/角度変位干渉計”に記載されている。図2は、基板ホルダWHと共に、そのような干渉計システムの線図を示す。この複合干渉計システムは、レーザ70、例えばヘリウムネオンレーザ、二つのビームスプリッタ71および72並びに三つの干渉計ユニット73、74および75を含む。このレーザからのビームb5の一部をビームスプリッタ71によってビームb6として、基板ホルダWHのミラーR1と協同する干渉計ユニット73へ反射する。ビームスプリッタ71が通したビームb7をビームスプリッタ72によって、干渉計ユニット74へ反射するビームb8と干渉計ユニット75へ通過するビームb9に分ける。干渉計ユニット74は、測定ミラーR1と協同し、一方、干渉計ユニット75は、測定ミラーR2と協同する。
図3は、干渉計ユニット73の原理を図解する。このユニットは、ビームスプリッタ80、例えば、入来ビームb6を測定ビームb6,mと基準ビームb6,rに分ける半透明ミラーを含む。この測定ビームを基板ホルダミラーR1へ通し、それがこのビームをビームスプリッタ80へ反射し、それが今度はビームb6,mの一部を検出器76へ反射する。ビームスプリッタ80が反射した基準ビームb6,rを固定配置した基準ミラー81によってビームスプリッタ80へ反射し、それがこのビームの一部を検出器76へ通す。基板ホルダミラーをX方向に動かすとき、検出器76に入射するビームb6,mとb6,rの間に建設的干渉と破壊的干渉が交互に起り、それで基板ホルダをλ/4の距離以上に変位するといつでもこの検出器の出力信号が最大値から最小値へ、およびその逆に、変化し、但しλはビームb6の波長である。検出器信号S76の最大値と最小値の計測した数は、基板ホルダのX方向の変位の尺度である。λ/4より遥かに小さい、例えば、λ/128またはλ/512さえのミラーR1の運動を、干渉計技術で知られる電子内挿法を使うことによって測定できる。
干渉計ユニット74および75は、干渉計ユニット73と同じ構成を有し、同様に作用する。Y方向のマスクホルダの運動は、干渉計ユニット75および関連する検出器78によって測定する。X方向の第2測定は、干渉計ユニット74および関連する検出器77で行う。このホルダのZ軸周りの回転は、信号S76およびS77から計算する。この回転は:
Figure 0004216348
によって与えられ、但し、dはミラーR1に入射する測定ビームb6,mとb6,rの主光線がミラーR1に入射する点の間の距離である。
図3は、干渉計ユニットの原理だけを示すことに注意すべきである。実際には、偏光感応ビームスプリッタ80並びに図3に要素82および83で表す、多数のλ/4板をビーム分割および組合せのために使う。すると、放射線損失が最小で、それは、もし異なる干渉計ユニットに一つのレーザ70しか使わなければ、特に重要である。二つの相互に垂直な偏光成分で異なる周波数のビームを出す、ゼーマンレーザを放射線源として使うのが好ましい。すると、これらのビーム成分が測定ビームと基準ビームを構成し、それで測定が位相測定に基づく。更に、前記のSPIE、第1088巻:光学式/レーザ マイクロリソグラフィII、pp.268−272の論文に記載されているような再帰反射器を干渉計ユニットに組込んでもよく、それらの再帰反射器は、測定ビームを測定ミラーによる反射後、再びこの測定ミラーへ反射し、関連する干渉計で行った測定が関連する測定ミラーの倒れと無関係である。
3軸干渉計システムによって所望の精度で基板上のX、Yおよびφx測定ができるためには、次の二つの条件を満足すべきである:
1.干渉計ビームの主光線が基板の表面と一致する平面内に位置しなければならない。
2.X軸およびY軸に沿う変位並びにZ軸周りの有り得る回転中、基板ホルダを他の自由度φx,Wおよびφy,Wに固定しなければならない。
EP−A0498499に記載されているように、これらの条件は、実際には満足するのが殆ど不可能または容易でないが、基板のより多くの運動が測定でき、それがXおよびY運動をより正確に測定する可能性をもたらす、5軸干渉計システムを使用することによって出し抜くことができる。
図4は、5自由度:X、Y、φx,W、φy,WおよびφZ,Wの測定をするためのそのようなシステムの原理を示し、そこでの基板ホルダは、二つのミラーR1およびR2から成る1体のミラーブロックを備える。このシステムは、例えば、ビームb20およびb30を供給する、二つの干渉計ユニット100および150を含む。これらのビームは、ゼーマン型であってもなくてもよいが、レーザ50、例えばヘリウムネオンレーザが出す。このレーザから来るビームb10は、最初にレンズ90によって図式的に示すビーム拡張光学系を通り、次にビームスプリッタ92によって二つのビームb20およびb30に分けられる。素子91、93および94は、ビームを干渉計ユニット100および150に正しい角度で入射するように偏向することを保証する反射器である。干渉計ユニット100は、測定ビームを測定軸MAX,1、MAX,2およびMAX,3に沿って測定ミラーR1の方へ出し且つこのミラーからのこれらのビームを受けるように実施してもよい。これらのビームで、軸MAX,1およびMAX,2の一つによる信号が提供する、基板ホルダのX方向の変位、測定軸MAX,3が提供する信号と測定軸MAX,1およびMAX,2の一つの信号の差からの、Y軸周りの倒れ、並びに測定軸MAX,1およびMAX,2の信号の差からの、Z軸周りの回転を測定できる。第2干渉計ユニットは、2本の測定ビームをMAX,4およびMAX,5に沿って測定ミラーR2の方へ出し且つそれからのこれらのビームを受ける。これらのビームで、基板ホルダ、従って基板のY方向変位を測定軸MAX,4およびMAX,5の一つの信号から測定でき、X軸周りの倒れφxをこれらの測定軸の信号の差から測定できる。測定軸MAX,5およびMAX,3は、測定軸MAX,4に関して変位し、測定軸MAX,1およびMAX,2は、Z方向に変位し、一方、測定軸MAX,1は、測定軸MAX,2に関してY方向に変位する。更に、測定軸MAX,1、MAX,2およびMAX,4は、アッベの誤差が最小で、測定したXおよびY変位が基板の実際の変位と最高に等しいように、出来るだけ基板ホルダの表面に近付けて配置する。
干渉計ユニット100および150は、種々の方法で実施できる。詳細については、EP−A0498499を参照し、それを参考までにこゝに援用する。
この発明によれば、基板干渉計システムは、基板ホルダにしっかりと固定したZ測定ミラーと協同する、少なくとも一つのZ測定軸も有する。それによって、基板のZ位置もこの干渉計システムで測定できる。このZ測定は、上記の焦点合せ誤差検出システムまたは焦点合せおよび水平検出システムによるZ測定を補う、またはそれに置き換わる役をするかも知れない。
この新規な干渉計システムのZ測定軸は、別の干渉計ユニットの測定軸でもよい。しかし、このZ測定軸は、既に存在する干渉計ユニット、例えば図5に正面図で線図的に示すように干渉計ユニット100、の特別な測定軸であるのが好ましい。この実施例では、基板ホルダWHの側面の一つ159が傾斜した反射部分160を備える。この部分がZ測定ミラーR3を構成する。この側面の反射性直線部161は、図4の直線ミラーR1と同じ機能を有する。干渉計ユニット100は、測定軸MAX,2およびMAX,3だけでなく、基板ホルダの上面に出来るだけ近付いて位置する、Z測定軸MAX,7も含む。測定ミラーR3は、測定軸MAX,7の測定ビームを更なる反射器である、Z反射器164へ反射し、それは、この投影系のホルダLHにしっかりと固定され且つ計測フレームの一部を成してもよい板163上に配置されている。このZ反射器は、測定ビームを測定ミラーR3へ反射し、次にそれがこの測定ビームを干渉計ユニット100へ反射する。このユニットは、Z測定ビーム用の別の検出器を収容し、その出力信号を他の信号と共に処理してZ測定信号を作る。
Z測定ミラー160(図5でR3)は、XおよびY測定ビームが伝播するXY平面に45°の角度に配設する。原理上は、Z測定ミラーがこのXY平面に異なる角度で拡がってもよい。しかし、Z測定ビームがZ反射器164へおよびそれから同じ経路を辿るので、45°の角度が好ましく、そうすればZ測定ミラーの幅が最小でもよい。
Z測定ビームが、基板ホルダの上面に近接する、従って基板に近接する位置で、Z測定ミラーに入射する、この干渉計システムの実施例では、基板の有り得る倒れが基板の測定したZ位置に無視できる影響しか与えない。
Z測定ビームに関連するのは、基準ミラーによる反射後に、Z測定ミラー160およびZ反射器163によって反射された測定ビームとZ検出器で組合される基準ビームである。この基準ミラーは、干渉計ユニット100内の固定ミラーでもよい。そこで、Z検出器が提供する信号は、純粋なZ位置情報ではなく、Z位置情報がその信号の中のX位置情報と混ざっている。純粋なZ位置情報を得るためには、X位置情報を検出器信号から除去しなければならず、従ってこの信号から差し引かねばならず;換言すれば、電子微分を使わねばならない。
別の固定Z基準ミラーの代りに、図5に示すように、X測定ミラー161をZ測定のための基準ミラーとして使うのが好ましい。すると、このミラーで反射した基準ビームbZ,rは、X位置情報を含み、Z検出器でこの基準ビームをZ測定ビームと組合せると、この検出器の出力が純粋なZ位置信号であるという結果になる。この様に、光学的微分を実行し、それは、電子微分に比べて、電子回路の処理速度によって制限されないという利点を有する。この光学的微分、従ってXまたはY測定ミラーをZ測定用基準ミラーとして使うことは、これから説明する実施例にも使用できる。
図6は、二つのZ測定を行う干渉計システムの実施例を示す。このために、基板ホルダWHの第1Z測定ミラーR3と反対の側面165も傾斜し、第2Z測定ミラーR4を備える。このミラーは、Z測定軸MAX,8に沿って伸びる第2Z測定ビームと協同する。この第2Z測定ビームは、測定ミラーR4によって、板163の下側に配設された第2Z反射器168の方へ反射される。この第2Z測定ビームは、Z反射器168によって測定ミラーR4の方へ反射され、次にそれがこの測定ビームを測定軸MAX,8に関連する検出器へ反射する。測定軸MAX,7およびMAX,8が提供する信号を加算することによって、基板の平均Z位置を決められる。この様にして得たZ位置の値は、基板ホルダのX位置と無関係である。
図6に示す実施例によって、Y軸周りの基板の倒れを示す信号も得ることができる。この信号は、MAX,7およびMAX,8測定軸が提供する信号の差に比例する。
図6に示す実施例では、特別な放射線源を備え且つ第2Z検出器を収容する、別の干渉計ユニット180を要する。図7は、特別な干渉計ユニットが必要ない干渉計システムの実施例を示す。この実施例では、MAX,8測定軸用の測定ビームを、第2Z検出器も含む干渉計ユニット100が供給する。MAX,8測定軸用の測定ビームは、基板と投影レンズの間のスペースを辿り、二つの反射面171および172を備える屋根型反射器170によってZ測定ミラーR4へ反射される。ミラーR4は、この測定ビームをZ反射器168へ反射し、それが次にこの測定ビームを測定ミラーR4へ反射し、その後このビームは、検出器ユニット100への経路を辿る。このユニットの中で、前記の第2検出器がこの測定ビームを受ける。
Z測定ミラーR3およびR4は、基板ホルダの長さ全体にわたって、Y方向、図5、図6および図7の面に垂直方向に拡がる。もし、このリソグラフィー装置がステップアンドスキャナであれば、このY方向は走査方向で、Z測定を走査長さ全体にわたって実行できる。
原理上は、Z測定ミラーの幅がこのミラーの領域でのZ測定ビームの断面の直径に等しいか、またはもし、このビームがZ反射器への経路を2度辿るならば、僅かに大きい。これは、この幅を制限でき、Z測定ミラーの表面を小さいまゝにできることを意味する。それらの全表面が小さいために、測定ミラーを実際に所望の表面精度で製造できる。
図7に示すように、投影レンズ系PLの主軸AA’とZ反射器168の端の間に与えられた距離fがある。この距離は、例えば、70mmのオーダである。Z測定を、図8に示すように、基板の右極端部を照明する、基板ホルダWHの極端X位置ででも出来るためには、軸AA’と測定ミラーR4の間の距離hが少なくともその位置に対する距離fに等しくあるべきである。これは、Z測定のためには、X方向の基板ホルダの幅を与えられた値だけ大きくすべきであることを意味するかも知れない。もし、MAX,8測定軸を介するZ測定に加えて、MAX,7測定軸を介するZ測定も行うならば、基板ホルダの幅をこの値の2倍だけ増すべきである。基板ホルダは、Z測定ミラーとXおよびY測定ミラーの両方をその側面に配置できるために、与えられた高さも有するべきであるので、X方向の大寸法がホルダの重量をかなり増すだろう。これは、ホルダに必要な駆動力および安定性要件のために、望ましくない。従って、Z測定ミラーは、傾斜した側面を持つバー形要素上に配置し、その要素を基板ホルダにしっかりと結合するのが好ましい。
図8は、二つのZ測定ミラーR3およびR4をバー形要素191、192上に配置した、干渉計システムの実施例を示す。この構成は、測定ミラーに必要な幅がやはりこのミラーの領域での測定ビームの断面の直径に等しいか、僅かに大きく、それでバー形要素のZ方向の大きさを制限できる。上述したZ測定を行うに適するようにするために基板ホルダに加える余分な重量は、それによって制限される。図8に示すように、二つのZ測定ミラーを基板ホルダの下部に配置する。従って、干渉計ユニット100に関連するX測定軸を基板ホルダの上面に近接して配置でき、これらの測定軸に対するアッベの誤差を減少できる。更に、基板ホルダの側面の最大限の部分および投影レンズ系と基板ホルダの間の最大限のスペースを、説明した以外で本発明に無関係な測定を行うために利用できる。
図8で基板ホルダWH上にMAX,4およびMAX,5と印したスポットは、測定軸MAX,4およびMAX,5に関連する干渉計ユニット150(図4)の測定ビームが基板ホルダのこの側面に配置したX測定ミラーに入射する位置である。
図8で、Z測定軸MAX,7およびMAX,8に関連し、X測定ミラー190および193へ至る基準ビームをbZ,1,rおよびbZ,2,rで示す。上に説明したように、これらの基準ビームは、光学的微分を行うために使う。この光学的微分は、もし、実際に望む通りに、基板ホルダが大きい速度および加速度で動くならば、特に重要である。すると、検出器信号が非常に急激に変化する。十分に正確且つ確実な測定値を得るためには、干渉計システムは、XまたはY測定ミラーに達しないZ基準ビームを使うとき、非常に速い信号処理回路を備えなければならないだろう。これは、もし光学的微分を適用するならば、必要ない。
図8は、投影ビームPBも示す。ステップアンドスキャンニング・リソグラフィー装置の場合、このビームは、基板の領域で長方形、例えば矩形、断面で、その縦軸がX方向に平行である。マスクパターンを基板のICフィールドに結像する度毎に、マスクおよび基板を投影ビームおよび投影レンズ系に関してY方向に動かすことによって、このビームを基板を横切ってY方向に動かす。
更なる実施例では、干渉計システムが3本のZ測定軸を含み、基板ホルダが三つのZ測定ミラーを備える。図9は、三つのZ測定ミラーR3、R4およびR5を備える基板ホルダ並びに関連するZ測定軸MAX,7、MAX,8およびMAX,10の非常に図式的な平面図である。基板のZ位置を全く同一の基準に関して3点で測定するので、板163の反射性下側、接合Z測定軸が、基板のZ位置についてだけでなく、X軸およびY軸周りの有り得る倒れについても情報を提供できる。これらの倒れ測定は、測定軸の総数を6に減少できるように、測定軸MAX,3およびMAX,5を使うこれらの測定で置換えてもよい。しかし、その代りに、Z測定軸による倒れ測定を追加の測定、例えばMAX,3およびMAX,4測定軸による倒れ測定をチェックするために利用することが可能である。
図10は、Z測定軸を備える干渉計ユニットの実施例、例えば図4のユニット100を示す。このユニットは、偏光感応ビームスプリッタ201、2枚のλ/4板203、204、基準反射器205、二つの再帰反射器206、207、複合プリズム208および二つの反射器213、215を含む。二つの反射器は、図4に示す干渉計ユニット100の面95に配置してもよい。この干渉計ユニットは、ヘテロダイン型である。それでビームb20がゼーマンレーザとして実施するヘリウムネオンレーザから来る。そのようなレーザは、例えば6MHzの光学周波数差を有する、二つの相互に垂直な偏光成分を持つビームを供給する。これらの二つの成分を図10では、それぞれ、実線および破線で示す。これらの放射線成分を、US−A5,485,272(PHN14.702)に記載されているように、通常のレーザ、ビームスプリッタおよび音響-光学的変調器の組合せで得てもよい。
プリズム201に入るビームb20を偏光感応境界面202によって測定ビームb20,mと基準ビームb20,rに分ける。ビームb20,mを基板ホルダの測定ミラーR1へ通し、位置Px,1でこのミラーによって反射する。2度通過する反射測定ビームの偏光方向を入来ビームビームb20の偏光方向に関して90°回転することを保証するλ/4板203をプリズム201とミラーR1の間に配置する。次に、この反射測定ビームを境界面202によって、例えば、3次元コーナキューブプリズムの形の再帰反射器206へ反射する。このプリズムが反射したビームを続いて境界面202によって反射し、測定ビームb’20,mとして再び測定ミラーR1へ送り、位置Px,2でこのミラーによって再びプリズム201へ反射する。次に、このビームが再びλ/4板203を2度通り、その偏光方向が再び90°回転し、境界面202を通る。ビームb’20,mは、続いてプリズムシステム208に達し、その面209によって反射され、結局、偏光検光子212を経て放射線感応検出器213に達する。
境界面202が反射した基準ビームb20,rは、λ/4板204を通り、基準反射器205によって反射され、このλ/4板をもう一度通る。境界面202に入射するビームb20,rの偏光方向は、90°回転し、このビームが再帰反射器206へ移す。この素子が反射したビームb’20,rを基準ビームとして再び基準反射器205へ送り、この反射器が境界面202へ反射し、偏光方向が再び90°回転する。この境界面は、続いてこのビームをプリズムシステム208へ反射し、その面209がこのビームb’20,rを検出器213へ反射する。検光子212の偏光方向は、ビームb’20,mおよびb’20,rの二つの相互に垂直な偏光方向に対して45°の角度に拡がる。この検光子を通過するこれらのビームの成分は、同じ偏光方向を有し、互いに干渉する。検出器213の出力信号S213は、ゼーマン周波数差+/−測定ミラーR1のX方向の変位に依存する周波数シフトに等しい周波数で強度変調する。
原理上は、検出器213に入射する測定ビームおよび基準ビームが基板測定ミラーR1によって1度しか反射されないように、再帰反射器206も省略してよい。再帰反射器206を使って測定ビームをビームb20,mおよびb’20,mとして測定ミラー上に2度反射する、図10の干渉計ユニット100の特別の実施例は、結局検出器213に入射する測定ビームb’20,mの方向がX軸に垂直な軸周りの有り得るミラーR1の回転と無関係であるという大きな利点を有する。それで信号S213が純粋なX変位情報だけを含む。同じ理由で、基準反射器205の有り得る回転が信号S213に何も影響しない。
図10で図面に垂直である、Z軸周りの基板ホルダの回転は、図10の干渉計ユニットによっても測定できる。これは、第1X測定を行う位置Px,1(Px,2)から最大限の距離の位置Px,3(Px,4)での第2X測定によって実現する。このため、プリズムシステム208の面210を半透明ミラーとして実施し、これにより測定ビームb’20,mおよび基準ビームb’20,rの一部を、それぞれ、新しい基準ビームb21,rおよび新しい測定ビームb21,mとしてビーム分割プリズム201へ送る。二つのビームの偏光方向は、これらのビームの機能が入れ替るように、λ/2板によって最初に90°回転する。測定ビームb21,mを偏光感応境界面202によって基板測定ミラーR1へ通し、一方、基準ビームb21,rは、基準反射器205へ反射する。ビームb21,mおよびb21,rが辿る経路は、ビームb20,mおよびb20,rが辿る経路に等しい。測定ビームおよび基準ビームを、それぞれ、ビームb’21,mおよびb’21,rとしてもう一度基板測定ミラーR1および基準反射器205へ送ることを保証する、第2再帰反射器207を設けるのが好ましい。プリズムシステム208および第2偏光検光子214を経て、もう一度反射された測定ビームb’21,mおよび基準ビームb’21,rが第2検出器215に達し、そこでこれらのビームが互いに干渉する。
この検出器の出力信号出力信号S215は、ゼーマン差周波数とZ軸周りの測定ミラーR1の有り得る回転に依存する周波数シフトとの和あるいは差に等しい周波数で強度変調する。実際に、もしそうのような回転が起ると、このシステムを最初に通過するときの、位置Px,1およびPx,2で反射が起る、測定ビームと基準ビームの間の周波数シフトは、このシステムを2番目に通過するときの、位置Px,3およびPx,4で反射が起る、周波数シフトと異なる。検出器215によって測定する周波数差は、上記周波数シフトの間の差である。もし、基板測定ミラーR1がZ軸周りに回転しなければ、結果として生じる周波数差は、ゼロに等しい。
これらの周波数差から基板ホルダのX変位およびZ軸周りの回転を得るために、信号S213およびS215を電子的に処理する方法については、例としてSPIE、第1088巻“光学式/レーザ マイクロリソグラフィ”、II、1989、pp.268−272の論文を参照してもよい。
二つの周波数成分のあるビームb20の代りに、一つの周波数しかないビームを使ってもよく、その場合測定ミラーR1の変位または回転は、測定ビームと基準ビームの間の位相差を定量することによって測定する。
この発明によれば、干渉計ユニット100をZ測定が出来るように拡張してもよい。図11は、Z測定軸を備える干渉計ユニット101の実施例を、XZ平面による断面で示す。このユニットは、例えば、X測定軸MAX,1およびMAX,2用のビームb20を供給する第1放射線源225並びにZ測定軸MAX,7用のビームb25を供給する第2放射線源229を含む。
ビームb25を偏光感応性分割プリズム201によって測定ビームb25,mと基準ビームb25,rに分ける。測定ビームb25,mを境界面がZ測定ミラーR3へ通す。このミラーは、測定ビームをZ反射器164へ反射し、それがこのビームをZ測定ミラーR3へ戻す。このミラーは、b25,mを再び境界面202へ反射する。それが2度目にこの境界面に達すると、b25,mは、λ/4板203を2度通過し、その偏光方向がこのビームの元の偏光方向に関して90°回転しているので、ビームb25,mがこの境界面によってZ検出器235へ反射される。
基準ビームb25,rは、境界面202によって基準反射器205へ反射され、この反射器によってこの境界面へ反射され、そこでこのビームがλ/4板204を2度通過する。境界面202に達すると、ビームb25,rの偏光方向がこのビームの元の偏光方向に関して90°回転し、それでこの境界面がビームb25,rを検出器235へ通す。偏光検光子234がこの検出器に先行し、それでビームb25,mおよびb25,rの成分が検出器235の領域で互いに干渉できる。この検出器の出力信号S235は、ゼーマン周波数+/−Z測定ミラーのZ反射器164に関するZ方向の変位に依存する周波数成分に等しい周波数で強度変調する。純粋なZ位置信号を得るためには、検出器213または215のX位置信号、またはこれらの信号の組合せを検出器235の出力信号から差し引かねばならない。
図11で点PX,1およびPX,3は、X測定軸がX測定ミラーと交差する点である。この実施例では再帰反射器を使わず、X測定ビームを測定ミラーR1で1度だけ反射するので、測定軸MAX,1およびMAX,2がこれらの測定ビームの主軸と一致する。これらの測定ビームを境界面202が、それぞれ、検出器213および215へ反射し、そこへ関連する基準ビームが基準反射器205によって反射されてから到達する。また、Z測定ビームがZ測定ミラーを介してZ反射器164へおよびその逆の経路をこの実施例では1度だけ辿るので、やはり測定軸MAX,7がZ測定ビームの主軸と一致する。
二つの別々の放射線源ではなく、放射線源と偏光中性ビームスプリッタの組合せをZ測定軸を備える干渉計ユニットにビームb20およびb25を供給するために代りに使ってもよい。二つの周波数成分を持つビームではなく、一つの周波数だけの一つのビームをビームb20およびb25の各々に使ってもよい。その場合、関連する測定ミラーの変位は、関係する測定ビームおよび基準ビームの位相差を定量することによって測定する。
図10にブロック220によって線図的に示すように、ミラーR1が反射するX測定ビームをZ測定ビームb’20,mとしても使ってよい。このため、プリズムシステム208の表面209を、ビームb’20,mおよび基準ビームb’20,rの一部を通す、半透明反射器として実施してもよい。Z測定ビームおよび基準ビーム、b26,mおよびb26,rとして使う、通過したビーム成分の経路に、反射器システム220を配置する。このシステムは、ビームb26,mおよびb26,rをビームスプリッタ201へ反射し、これらのビームをそれら自体に平行にZ方向に変位し、これらのビームが図10で図面の前に位置する第2XY平面内に伸びるようにし、それでこのZ測定ビームがZ測定ミラーR3に到達できる。上記第2XY平面を図12にZ測定ビームb26,mおよびZ基準ビームb26,rと共に示す。
ビームb26,mおよびb26,rの経路は、ビームスプリッタ201の前に、これらのビームの偏光方向を90°回転する、λ/2板224を包含し、基準ビームおよび測定ビームの機能を入替える。Z測定軸用に再帰反射器228を設け、このビームをビームb26,mおよびb’26,mとして、それぞれ、位置PX,7およびPX,8で、Z測定ミラーによってZ検出器164へ2度反射し、および基準ビームを基準ミラー205によってビームb26,rおよびb’26,rとして2度反射する。このZ測定ビームおよびZ基準ビームがこの干渉計ユニットを通って辿る経路は、X測定ビームおよびX基準ビームが辿る経路に類似する。
ビームb’26,mおよびb’26,rは、結局偏光検光子226に達し、それは、これらのビームの同じ偏光方向を有して互いに干渉する成分を検出器227へ通す。この検出器の出力信号S227は、ゼーマン差周波数+/−Z測定ミラーのZ方向の変位に依存する周波数成分に等しい周波数で強度変調する。実際、もしそのような変位が起ると、測定ビームb’26,mと基準ビームb’26,rの間の周波数シフトが測定ビームb’20,mと基準ビームb’20,rの間の周波数シフトと異なる。検出器227によって測定する周波数差は、これらの周波数シフトの間の差である。もし、Z方向に変位がなければ、結果として生じる周波数差は、ゼロの等しい。
図13は、反射器システム220の実施例を詳細に示す。このシステムは、X軸に平行にZ軸の方向に伸びるビームb’20,mおよびb’20,rを反射する第1反射器221並びにこれらのビームを再びX軸に平行方向に反射する第2反射器222を含む。それでこの反射器対221、222は、これらのビームをそれら自体に平行にZ軸に沿って変位する。
説明した実施例では、測定ビームと関連する基準ビームは、単一放射線スポットではなくて干渉縞が関連する検出器の位置で起るのを防ぐように、各測定軸に対して互いに平行であるのが好ましい。ビームスプリッタ201の、プリズムシステム208のおよび反射器システム220の表面の平面性によって、並びにプリズムシステム208の表面209と210の間の角度および反射器システムの表面221と222の間の角度によって決る、この平行度は、上記表面を3秒の角度内で正確に平坦にできるので、および上記角度を正確に90°に等しく作れるので、実際には満足に実現できる。反射器システム220は、組立中の整列問題を避け且つ時間安定性を保証するために、プリズムシステム208と一体にするのが好ましい。
図10、図11および図12に示す干渉計ユニットは、測定軸に関連する測定ビームおよび基準ビームがビームスプリッタ201に関して対称であり且つこのビームスプリッタを通る経路長が同じであるという利点を有する。これが不安定性の危険を実質的に除去する。
図10および図12による装置では、Z軸周りの回転およびZ位置を測定するために必要な、測定軸MAX,1、MAX,2およびMAX,7に関する信号の間の差を光学的に決める。もし、これらの測定軸を介して得た情報をIMAX,1、IMAX,2およびIMAX,7で表すならば、図10および図12の実施例での検出器信号S213、S215およびS227は次の式によって与えられる:
213=IMAX,1 (11)
215=IMAX,1−IMAX,2 (12)
227=IMAX,1−IMAX,7 (13)
X軸およびZ軸に沿う変位、並びにZ軸周りの回転の大きさおよび方向についての情報を含む信号S(X)、S(Z)およびS(φ2)は:
Figure 0004216348
パラメータgおよびhを図14に示す。この図で、測定ビームb20,m、b’20,m、b21,m、b’21,m、b26,mおよびb’26,mの主光線ミラーR1およびR3に入射する点を、それぞれ、Px,1、Px,2、Px,3、Px,4、Px,7およびPx,8で示す。先の図でMAX,1、MAX,2およびMAX,7で示す測定軸は、測定ビームの各対に関連する。これらの測定軸がミラーR1およびR3に入射する点を図14にQ1、Q2およびQ3で示す。これらの信号を使い、アッベの誤差に関する較正パラメータを考慮に入れて、X位置、Z位置およびZ軸周りの回転を定量することができる。
既に記したように、異なる測定軸に関連する信号間の差を光学的に測定すること、即ち、図10、図12および図13を参照して説明した光学的微分を使うことが好ましい。状況によっては、代りに電子的微分を使ってもよい。その場合、図15に示すように、3本の異なるビームをビームスプリッタに供給すべきである。
ビームb20の経路は、偏光感応ビームスプリッタ201の前に、偏光中性ビームスプリッタ230を取込み、それはビームb20を主軸が第1XY平面、即ち図14の図面にある第1および第2ビームb41およびb42、並びに主軸が図14の図面の前の第2XY平面にある第3ビームb43に分ける。ビームスプリッタ230は、部分的にまたは部分的でなく透明な反射器の組合せを含み、種々の方法で実施してもよい。例えば、これらの反射器は、ビームb41、b42およびb43が満足に平行であるように、平行平面板の面でもよい。これらの各ビームを境界面202が測定ビームと基準ビーム、それぞれ、b41,mとb41,r、b42,mとb42,r、b43,mとb43,rに分ける。明確のために、基準ビームb41,rについては放射線経路の一部しか示さない。
再帰反射器206、207および208をビームb41、b42およびb43の経路に配置し、結局ビームスプリッタ201を出る測定ビームb41,m、b42,mおよびb43,mが関連する測定ミラーR1またはR3によって2度反射されるようにするのが好ましい。各測定ビームは、関連する基準ビームと共に、検光子212、214および226を経て別々の検出器213、215または227に入射する。
図15の実施例で、検出器信号S213、S215およびS227と測定軸を介して得た情報の間の関係は:
213=IMAX,1 (17)
215=IMAX,2 (18)
227=IMAX,7 (19)
測定信号S(X)、S(2)およびS(Z)は、今度は:
Figure 0004216348
3本の独立した測定軸を備える装置と3本の結合した測定軸を備える装置の間の選択は、一方で、基板ホルダの運動速度、従って測定軸の情報の変化割合、および他方で、信号処理電子ユニットの速度によって決るかも知れない。高速の基板ホルダでは、結合した測定軸を備える装置を選ぶだろう。この選択は、更に、干渉計ユニットが測定信号S(X)、S(φ2)およびS(Z)に影響する程度によって決る。干渉計誤差は、検出器信号S213、S215およびS227で干渉計それ自体によって生ずる誤差である。そのような誤差が各検出器信号に起るとき、測定信号の誤差は、3本の独立した測定軸の場合:
Figure 0004216348
3本の結合した測定軸の場合:
Figure 0004216348
EP−A0498499に記載されているように、干渉計ユニット100は、特別なX測定軸を備えてもよい。Y軸周りの基板の倒れφijを表す信号を、MAX,1測定軸が提供する情報と組合わせて、この測定軸、MAX,3の情報から得てもよい。図14で、標点Px,9およびPX,10は、MAX,3測定軸に関連する測定ビームを再帰反射器を介してX測定ミラーR1の方へ2度通せば、この測定ビームが相次いでミラーR1に当る点を示す。
MAX,3測定軸用測定ビームは、別の放射線源によって供給してもよい。しかし、この測定ビームを、その代りに、Z測定ビームを得るために図10、図12および図13を参照して説明した方法に類似する方法で得てもよい。そうすると、測定ミラーR1およびプリズムシステム208が通す測定ビームb’20,mの経路は、システム220に類似する反射器システムを取入れる。このシステムは、測定ビームおよび関連する基準ビームを測定ミラーR1へ反射し、これらのビームが図10のXY平面とは異なる平面に拡がることを保証する。このXY平面で、これらのビームは、Z測定ビームおよび関連する基準ビームに付いて図12に示したものと類似する経路を辿る。しかし、測定軸MAX,3の測定ビームが伸びるXY平面は、今度は図面の前ではなくて後ろに位置する。この干渉計ユニットは、MAX,3測定軸用に別の検出器を含む。
MAX,3測定軸によって信号を得る方法については、3本のX測定軸を備える干渉計ユニットを記載しているEP−A0498499を参照する。そのようなユニットでこの発明を実施するためには、中性ビームスプリッタをプリズムシステム208と反射器システム220の間に配置し、図13に示すような反射器システムをこのビームスプリッタが作る各測定ビームの経路に置いてもよい。
基板ホルダのY方向の変位およびこのホルダのX軸周りの有り得る倒れを測定するためには、この複合干渉計システムが図4に150で示す、第2干渉計ユニットを含む。原理上、この干渉計ユニットは、2本の測定軸MAX,4およびMAX,5を有する。干渉計ユニット100と同じ原理に従って構成した、この干渉計ユニットの構成と作用の説明は、EP−A0498499に詳述されている。干渉計ユニット100に代って、またはそれと類似して、この干渉計ユニットも、図10、図11、図12、図13および図15を参照して説明したのと同じ方法で、Z測定軸および関連する検出器で拡張してもよい。
干渉計ユニット100および150では、ユニット100の検出器213、215および227をユニット100の検光子212、214および226の直後に配置する必要はないが、もし望むなら、これらの検出器を離しておよび事によると近接して配置してもよい。そこで光ファイバを使ってビームを検出器へ導くことができる。ビームをファイバの入口平面上に集束するためのレンズを検光子とファイバの間に設けてもよい。
図10、図12および図15に示す、プリズム再帰反射器、または3次元“コーナキューブ”もキャッツアイ再帰反射器で置換えてもよい。そのような再帰反射器は、その焦点面にミラーを配置したレンズによって構成し、反射したビームの主軸が入来ビームのそれと平行であることを保証するだけでなく、これらの主軸が一致することも保証する。
この複合干渉計システムの必要精度を考慮すると、温度、気圧、湿度のような周囲パラメータの変化がある影響を与えるかも知れない。これらの変化は、この干渉計ビームが伝播する媒体の屈折率の変動を生ずる。そのような変動は、媒体の乱流によっても生ずるかも知れない。これらの変動を補正できるように、それらを測定できるためには、EP−A0498499は、それに記載した干渉計システムに特別な、例えば第6の、測定軸を設け、それを固定基準反射器と協同するビームが伸びる基準軸として使うことを提案している。図4に、この反射器を参照番号170で示し、この基準測定軸の測定ビームをb50,mで示す。このビームは、測定軸数の少ない干渉計ユニット、即ち、説明した実施例のユニット150によって供給し、このユニットから来るビームを反射器171によって反射器170へ送るのが好ましい。そこでこの干渉計ユニットは、この基準反射器が反射したビームb50,mおよび関連する基準ビームを受けるためのおよびそれらを電気信号に変換するための特別な検出器を含む。
測定ビームb50,mは、一定の幾何学的経路長を辿る。しかし、この幾何学的経路長と横断する媒体の屈折率の積である、光路長は、この屈折率の変動に影響される。それでこの変動は、測定ビームb50,mと関連する基準ビームの間の経路差にも影響する。この経路差の変動を上記特別な検出器によって測定し、その出力信号を、乱流または周囲パラメータの変動による屈折率変動に対して他の測定軸を介して得た情報を補正するために使うことができる。
図4に示すように、基準反射器170は、好ましくは“ゼロデューレ”または“アンバー”のような非常に安定な材料の板190を介して干渉計ユニット150に結合する。
この基準測定軸の情報は、焦点合せ誤差検出システムおよび/または焦点合せおよび水平検出システムのビームがこの干渉計ビームと同じスペースを通るのであれば、それらの測定システムのような、他の光学測定システムからの測定情報を補正するためにも使ってよい。
屈折率変動を測定するためには、1本の測定ビームを使えば十分である。しかし、もし望むなら、他の測定軸に対して上記に説明したように、基準測定軸に対して、複式測定ビームおよび複式基準ビームも実現してよい。
屈折率変動は、かなり、例えば、2倍異なる波長を有し、干渉計ビームが通る媒体内の同じ経路を辿る二つの測定ビームによっても測定できる。ビームに対する屈折率はこのビームの波長に依るので、ビームに対する幾何学的経路長が等しくてもこれらのビームに対する光路長が異なり、これらのビームが検出器に達すると位相差を有する。屈折率変動の場合、この位相差の変動もあり、それで位相差変動を表す信号が得られる。それ自体知られ、例えばUS−A5,404,222に記載されている、この屈折率変動測定は、図4にb50,mで示す基準測定軸に沿って行うことができるが、Z測定軸を含む、前記の測定軸のどれに沿ってもできる。
もし、干渉計ビームが伝播する全スペースに同じ環境が行きわたることを保証すれば、更に精度のよい複合干渉計システムさえ得られる。これは、このスペースに一定の、好ましくは層流の調和空気を送ることによって実現できる。こゝで称する空気シャワの実施例は、EP−A0498499に記載されていて、構成データについてはそれを参照する。
この発明は、5軸または6軸の干渉計システムの上記の実施例に使うだけでなく、そのような干渉計システムの他の実施例に使ってもよく、その幾つかの構成がEP−A0498499に詳述されている。5軸または6軸の干渉計システムに加えて、この発明は、測定軸数の少ない、例えば二つの干渉計ユニットを備える、3軸干渉計システムにも使ってよく、その実施例を図2に示す。
ステップアンドスキャン・フォトリソグラフィー装置では、マスクホルダも高精度に動かすべきである。この運動をチェックするために、多軸干渉計システムを使ってもよい。また、この干渉計システムは、本発明によるシステム、従って非常に精確且つ確実な測定結果が得られるように、少なくとも一つのZ測定軸を備える干渉計システムでもよい。
IC領域の照明中、マスクおよび基板を互いに関して非常に精確な方法で配置するために、基板の高スループット・フィードスルー速度を有するリソグラフィー装置では、基板ホルダおよびマスクホルダのアクチュエータの力がこの基板ホルダ用干渉計システムの部品に、および、ステップアンドスキャナの場合は、マスクホルダ用干渉計システムに伝えられるのを防ぐべきである。このため、測定ミラーを除いて、干渉計システムの部品を剛性フレームに配置し、それに投影系もしっかりと固定し、そのフレームをこの装置の他の部品から動的に絶縁して懸架してもよい。今度は、干渉計部品を投影系への外乱なくしっかりと結合する。計測フレームとも称する、上記フレームを動的に絶縁してまたは振動なく、この装置に懸架するので、その中に存在する干渉計部品の位置がもう、基板テーブルおよびマスクテーブルの駆動力のような外力に影響されない。
図16は、計測フレームを備えるステップアンドスキャンニング光学リソグラフィー装置を線図的に示す。その装置は、基板のための干渉計システムISWだけでなく、マスクのXおよびY変位を測定するための干渉計システムISMも含む。これらの干渉計システムおよび投影系PLを計測フレームMFに配置するので、これらのシステムが互いに関してしっかりと固定され、投影系が作るマスクパターンの像がこれらの干渉計システムに結合される。
もし、この装置が、序章に記したように、焦点合せ誤差検出システムを備え、マスクの高さを測定するための容量式またはその他のセンサを備えるならば、これらの検出システムもこの計測フレームに組込む。基板干渉計システムの測定ミラーR1,WおよびR3,W並びにマスク干渉計システムの測定ミラーR1,rが、それぞれ、基板およびマスクがしっかりと固定されている基板ホルダWHおよびマスクホルダMHの一部であるので、基板およびマスクの運動をこれらのシステムで直接測定する。従って、これらの運動および出来たマスクパターン像は、基板およびマスクのZ軸に沿う相互位置を調節するためのアクチュエータのような、この装置の他の部品の運動に影響されない。
マスクおよび基板をXおよびY方向に変位するためのアクチュエータは、それらの内のXアクチュエータXAWおよびXArだけを図16に棒によって示し、アクチュエータフレームAFの一部を形成する。
この計測フレームを、図式的に示す動的絶縁装置SU1、SU2、SU3およびSU4によってアクチュエータフレームに懸架し、このフレームがこの装置の残部から動的に隔離されるようにする。マスクテーブルMTおよび基板テーブルWTをこのアクチュエータフレームに配置する。基板テーブルは、三つのZアクチュエータを有し、その二つZAW,1およびZAW,2を示し、それらで三つのアクチュエータを同等に付勢することによって基板のZ位置を調整でき、またはそれらで三つのアクチュエータを不均等に付勢することによって基板の傾斜を実現できる。これらの運動は、もしマスクテーブルも三つのZアクチュエータを備えるならば、類似の方法でマスクに対しても実現でき、そのアクチュエータの二つZAr,1およびZAr,2を示す。
基板の投影レンズ系に関する垂直位置は、この発明に従ってZ測定軸を備える複合基板干渉計システムISWで測定できる。その上、この装置は、図1に素子40〜46で示すような焦点合せ誤差検出システムを備えてもよい。このシステムISWのZ測定軸および焦点合せ誤差検出システムが提供する情報で、基板テーブルのZアクアチュエータを、基板が正しい高さ、またはZ位置に調整されるような方法で、制御できる。
更に、投影レンズホルダの下部にしっかりと固定された板163を備える。既に記したように、この板の反射性の下側が干渉計システムISWのZ測定軸用のZ反射器を構成する。焦点合せ誤差検出システムのまたは焦点合せおよび水平検出システムの素子をこの板の中または上に配置してもよい。
計測フレームおよびアクチュエータフレームを備える、図16に示す構成は、この発明に従ってZ測定を行う、ステッピング型のリソグラフィー装置にも使ってよい。そのような装置は、マスク干渉計システムを含まない。
剛性および安定性に関する厳密な要件を計測フレームに課さねば成らず、それでこのフレームの材料は、熱膨張係数が非常に小さくなければならない。しかし、これらの要件は、もし、基板干渉計システムおよび場合によるマスク干渉計システムのXおよびY測定軸用の基準ミラーを投影レンズ系PLのホルダまたは計測板163に固定すれば、緩和されるかも知れない。すると、干渉計システムおよび投影レンズ系が光学的に結合され、相互運動がもう測定値に影響しなくなる。この設備を図16に板163の下の二つの基準ミラー180および181で図式的に示す。基準ビームを基板干渉計システムから反射器を介してこれらの基準ミラーへ導いてもよい。マスク干渉計システムに対しても、基準ミラーを投影レンズ系のホルダに固定してもよい。
計測フレームのないリソグラフィー投影装置でも、基板干渉計システムの、および恐らくはマスク干渉計システムのXおよびY基準ミラーを、同じ利点を得るために、投影レンズ系のホルダに固定してもよいことに明確に注目すべきである。基準ミラーを投影レンズ系のホルダに固定した多軸干渉計システムを備えるフォトリソグラフィー投影装置は、それ自体知られ、PCTWO97/33205に記載されている。
序章に既に記したように、この発明は、特に、図1および図16に示すように、マスクおよび投影系が存在する照明システムの間を動く二つ以上の基板テーブル、並びに基板を基板テーブルに関して整列する一つ以上の整列ステーションを備えるリソグラフィー投影装置に使うと非常に有利である。そのような装置では基板ホルダを比較的大きい距離に亘って動かすので、焦点合せ誤差検出システムまたは焦点合せおよび水平検出システムを使うことではもう十分でなく、基板の別のZ位置の測定が必要である。
図17は、二つの基板ホルダを備える装置の機械的要素を図式的に示す。この装置は、垂直Z方向に見て、連続的に位置決め装置303、マスクホルダ307、および放射線源309を備える照明ユニット308を含むフレーム301を含む。この位置決め装置303は、第1基板ホルダ311および第2の同じ基板ホルダ313を含む。投影レンズホルダ305がマスクホルダと基板ホルダの間にある。基板ホルダ311および313は、Z方向に垂直に拡がり、それぞれ、上に第1基板320および第2基板321を配置できる第1および第2支持面317および319を含む。第1および第2基板ホルダ311および313は、それぞれ、位置決め装置303の第1変位ユニット323および第2変位ユニット325によって、フレーム301に関して、Z方向に垂直なX方向に平行な第1方向、並びにZ方向およびX方向に垂直なY方向に平行な第2方向に可動である。マスクホルダ307は、Z方向に垂直に拡がり且つその上にマスク329を配置できる指示面327を有する。
照明しなければならない基板をこの装置に入れるマガジンに配置する。このマガジンから、基板を搬送機構によって整列ステーションへ連続して導入する。上記マガジンおよび搬送機構は、図17には示さないが、それ自体知られている。この整列ステーションは、図17に測定ユニット333によって図式的に表し、それもフレーム301に固定されている。図17に示す装置の状態では、第1基板ホルダ311が照明ステーションにあり、第1基板320が照明ユニット308が出す放射線でマスク329を介して照明され、ホルダ305の中にある投影系によって結像される。この投影系の光軸331だけを示す。第2基板ホルダ313が整列ステーションにある。このステーションで、この基板ホルダ上に設けた第2基板321用の一つ以上の整列マークの位置をユニット333によってこの基板ホルダ上の一つ以上の対応する整列マークに関して決め、この位置を機械的手段(図示せず)を使って補正する。基板320の照明が終ってから、第1基板ホルダ311を位置決め装置によってこの照明ステーションから整列ステーションへ変位する。このステーションから、第1基板320を上記搬送機構によって上記マガジンへ動かす。同時に、第2基板ホルダを位置決め装置303によって整列ステーションから照明ステーションへ動かす。第2基板321を整列ステーションで第2基板ホルダに関して既に正しく位置決めしているので、この基板ホルダの一つ以上の整列マークの位置だけを照明ステーションでマスクの対応するマークに関して測定し、補正すべきである。この測定および補正は、迅速にできる、比較的簡単なプロセスである。第2基板の基板ホルダに関するより困難且つより時間の掛る整列を整列ステーションで第1基板の照明と時間並列で行っているので、照明ステーションは、単位時間当りに多数の基板を照明できるように、最大期間照明それ自体のために使うことができる。
二つの基板テーブルを備えるフォトリソグラフィー装置の原理および利点は、とりわけEP−A0687957におよびJP−A57−183031の英文要約書に記載されていて、それにはそのような装置の実施例も図示されている。
先に記したように、整列マークの位置は、基板の整列中に干渉計システムが形成する座標系に固定する。照明ステーションの他に整列ステーションを含むリソグラフィー装置では、両ステーションが干渉計システムを備えるべきである。図18は、この装置の与えられた実施例で照明ステーションおよび整列ステーションで基板について行う干渉計測定の概要である。この図は、X測定ミラーR1、R’1、Y測定ミラーR2およびR’2並びにZ測定ミラーR3,1、R3,2、R’3,1、R’3,2を備える二つの基板ホルダ311および313を示す。図18の中央部はXY平面による断面であり、上部はXZ平面による断面であり、および左手部はYZ平面による断面である。参照番号350および360は、照明ステーションの測定領域および整列ステーションのそれを表す。各測定軸を文字二つと数字一つで示す。最初の文字は関連する測定軸で行う測定の方向(X、YまたはZ)を示し、数字はこの方向の測定軸の番号を示し、および第2の文字は測定を整列ステーション(M)で行うか、照明ステーション(E)で行うかを示す。図18の実施例では、測定をX方向およびY方向の両方で3測定軸に沿って行い、並びに二つのZ測定を行う。同じ測定を両ステーションで行う。しかし、その代りに、異なる数および異なる型式の測定を二つのステーションで行うことが可能である。各ステーションで行う測定の数および型式は、所望する精度および所望する位置情報に依る。
マスクを基板と同期して動かすステップアンドスキャンニング・リソグラフィー装置の場合は、マスクを結像する倍率を考慮して、マスクの変位も基板の変位と比較するように正確に測定すべきである。完全性のために、図19は、照明ステーションでマスクについて行う干渉計測定の概要である。図19は、図18に類似して、三つの異なる断面を示す。マスクを再びMAで示し、マスクホルダをMHで、およびマスクテーブルをMTで示す。参照文字PBは、このマスクの領域での照明ビームの矩形断面を示す。このビームをIC領域の照明中マスクおよび基板に関してY方向に動かす。干渉計ユニット370は、マスクのX位置だけでなくZ軸周りの回転も測定できるように、2本のX測定軸X1、X2を含む。この干渉計システムは、2本のY測定軸Y1、Y2を含み、それらは、図19に示すように、二つの別々の干渉計ユニット381、382と関連してもよく、または一つの干渉計ユニットと関連してもよい。Y位置だけでなくZ軸周りの回転もこれらの2本の測定軸で測定できる。マスクはX方向に少し動くだけでよいので、マスクホルダの側面390全体に反射器を配置する必要はなく、測定軸の領域に二つの小さな反射器391、392を使えば十分である。この図に示すように、これらの反射器はコーナキューブ反射器であるのが好ましい。
二つの基板テーブルおよび関連する基板ホルダを、本発明を使うと非常に有利であるリソグラフィー装置で、整列ステーションから照明ステーションへ、およびその逆に動かすためには、二つの基板テーブルをこの運動中共通の回転アームに固定して、これらの基板を第1ステーションへまたは第2ステーションへ共通の回転でもたらせるようにしてもよい。しかし、これらの運動を行うためには、基板テーブルを別々に、それらがXY平面で直線運動をするように駆動するのが好ましい。図20は、その場合に基板ホルダ311および313並びに関連するテーブル(図示せず)が照明ステーション350および整列ステーション360に関して如何に動くかを示す。この図に、四つの異なる状況を左から右へSIT1〜SIT4で示す。SIT1では、基板ホルダ311が照明ステーションにあり、このホルダの上にある基板が照明され、一方、基板ホルダ313は、整列ステーションにあって、このホルダの基板は、この基板ホルダに関して整列されている。SIT2では、照明プロセスおよび整列プロセスが完了し、二つの基板ホルダが関連するステーションを離れている。SIT3では、二つの基板ホルダが互いに通過し、基板ホルダ311は整列ステーション360へ行く途中であり、基板ホルダ313は照明ステーション350へ行く途中である。SIT4では、基板ホルダ313が照明ステーションに位置してその上の基板を照明でき、一方、基板ホルダ311は、その基板を取外し、新しい基板を設けてから、整列ステーションに位置し、それでこの新しい基板をこのホルダに関して整列できる。
新規な干渉計システムを上にIC構造体を製造するためのフォトリソグラフィー縮小装置への使用法を参照して説明した。しかし、この発明は、集積光学システムのための構造体、並びに磁区メモリの案内および検出パターン、または液晶表示パネルの構造体のような、他の構造体を製造するためのフォトリソグラフィー装置にも使ってよい。この発明が解決する問題は、縮小のあるなしに拘らず、マスクパターンを結像するためにイオン放射、電子放射またはX線放射のような、光放射以外の放射線を使う、他のリソグラフィー装置にも起るかも知れず、それでこの発明をこれらのリソグラフィー装置にも使うことができる。像は、投影像でも近接像でもよい。この発明は、例えば、マスクを検査するために使う、非常に正確なX、YおよびZ測定のための装置のような、リソグラフィー装置以外の装置にも使うことができる。

Claims (13)

  1. XYZ座標系のXY平面に平行な平面での物体の位置および変位を、その物体のホルダに配置したXおよびY測定ミラーによって測定するための干渉計システムであって、
    複数の測定ビームを発生し、測定ビームを前記XY平面に対し平行な測定軸であり、且つ、これらの測定ミラーへおよびそれらから伸びる複数の測定軸に沿って向けるための手段と、
    これらの測定ミラーが反射した測定ビームを電気測定信号に変換するための放射線感応性検出器と、を備え干渉計システムにおいて、
    さらに、該物体のZ位置を測定するために、この物体のホルダ上にXY平面に鋭角に配置したZ測定ミラーを備え、
    該Z測定ミラーによって測定するために該干渉計システムは、Z測定軸を有し、且つ、
    Z測定ビームを発生し且つ前記測定ビームを該Z測定ミラー上に向けるための手段と、
    該Z測定ミラーからのZ測定ビームをこの物体のZ方向の位置情報を含む信号に変換するためのZ検出器と、を備え、
    該Z測定ミラーは、該物体ホルダの側面に設けられていることを特徴とする干渉計システム。
  2. 請求項1に記載の干渉計システムにおいて、
    前記Z測定ミラーを前記物体のホルダ上に前記XY平面に実質的に45°の角度で配置することを特徴とする干渉計システム。
  3. 請求項1または請求項2に記載の干渉計システムにおいて、
    前記Z測定ミラーを前記XおよびY測定ミラーをなす前記物体ホルダの側面の一部傾斜した面によって構成することを特徴とする干渉計システム。
  4. 請求項1または請求項2に記載の干渉計システムにおいて、
    前記Z測定ミラーを、前記XおよびY測定ミラーをなす前記物体ホルダの側面から垂直に突出したバーの先端によって構成することを特徴とする干渉計システム。
  5. 請求項4に記載の干渉計システムにおいて、
    前記Z測定ミラーを前記物体ホルダの前記物体から遠い部分に配置することを特徴とする干渉計システム。
  6. 請求項3、請求項4または請求項5のいずれかに記載の干渉計システムにおいて、
    前記Z測定ビームに関連する基準ビーム用基準ミラーを、前記Z測定ミラーも配置した前記物体ホルダの前記側面上に配置したXまたはY測定ミラーによって構成することを特徴とする干渉計システム。
  7. 請求項1ないし請求項6の何れか一つに記載の干渉計システムにおいて、
    前記Z測定ビームの経路が再帰反射器を含み、
    前記Z測定ミラーによって反射された前記Z測定ビームは、前記再帰反射器により更に反射されて再び前記Z測定ミラーの方向へ反射されることを特徴とする干渉計システム。
  8. 請求項1ないし請求項7の何れか一つに記載の干渉計システムにおいて、
    前記Z測定軸に加えて、少なくとも5本の更なる測定軸を含むことを特徴とする干渉計システム。
  9. 請求項1ないし請求項8の何れか一つに記載の干渉計システムにおいて、
    異なる波長の二つの測定ビームが沿って伝播する測定軸を有することを特徴とする干渉計システム。
  10. 請求項1ないし請求項9の何れか一つに記載の干渉計システムを含む投影装置において、
    該投影装置は、マスクパターンを基板上に繰返し投影するための投影装置であって、投影ビームを供給するための照明ユニット、マスクホルダを備えるマスクテーブル、基板ホルダを備える基板テーブル、この投影ビームの経路に配置した投影系、およびこの基板の位置および方向を測定するための該光学測定システムを含み、
    前記物体および前記物体ホルダが、それぞれ、この基板およびこの基板ホルダであることを特徴とする投影装置。
  11. 請求項10に記載の投影装置において、
    前記測定ミラーを除いて、前記Z反射器と同様に、前記干渉計システムの部品が剛性フレームに配置され、さらに前記投影系もしっかりと固定され、該フレームを該装置の他の部品から動的に隔離して懸架することを特徴とする投影装置。
  12. 請求項10または請求項11に記載の投影装置において、
    XおよびY測定ビームに関連する基準ビーム用基準ミラーを前記投影系のホルダ上に配置することを特徴とする投影装置。
  13. 請求項10、請求項11または請求項12のいずれかに記載の投影装置であって、前記基板の位置および方向を測定するための光学測定システムを含む投影装置において、
    前記光学測定システムが請求項1ないし請求項9の何れか一つに記載の干渉計システムであり、
    前記物体および前記物体ホルダが、それぞれ、前記基板および前記基板ホルダであることを特徴とする投影装置。
JP52990399A 1997-12-02 1998-11-27 干渉計システムおよびそのようなシステムを含むリソグラフィー装置 Expired - Fee Related JP4216348B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP97203771 1997-12-02
EP97203771.7 1997-12-02
PCT/EP1998/007670 WO1999028790A1 (en) 1997-12-02 1998-11-27 Interferometer system and lithographic apparatus comprising such a system

Publications (2)

Publication Number Publication Date
JP2001510577A JP2001510577A (ja) 2001-07-31
JP4216348B2 true JP4216348B2 (ja) 2009-01-28

Family

ID=8229001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52990399A Expired - Fee Related JP4216348B2 (ja) 1997-12-02 1998-11-27 干渉計システムおよびそのようなシステムを含むリソグラフィー装置

Country Status (7)

Country Link
US (1) US6020964A (ja)
EP (2) EP0956518B1 (ja)
JP (1) JP4216348B2 (ja)
KR (1) KR100542832B1 (ja)
DE (1) DE69820856T2 (ja)
TW (1) TW380202B (ja)
WO (1) WO1999028790A1 (ja)

Families Citing this family (248)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030145353A1 (en) * 1997-05-07 2003-07-31 Lightner Jonathan E. Starch biosynthetic enzymes
EP1089327A4 (en) 1998-03-06 2003-01-02 Nikon Corp EXPOSURE DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP3413122B2 (ja) 1998-05-21 2003-06-03 キヤノン株式会社 位置決め装置及びこれを用いた露光装置並びにデバイス製造方法
US6885444B2 (en) * 1998-06-10 2005-04-26 Boxer Cross Inc Evaluating a multi-layered structure for voids
JP2000049066A (ja) * 1998-07-27 2000-02-18 Canon Inc 露光装置およびデバイス製造方法
US7116401B2 (en) 1999-03-08 2006-10-03 Asml Netherlands B.V. Lithographic projection apparatus using catoptrics in an optical sensor system, optical arrangement, method of measuring, and device manufacturing method
US6924884B2 (en) 1999-03-08 2005-08-02 Asml Netherlands B.V. Off-axis leveling in lithographic projection apparatus
TW490596B (en) 1999-03-08 2002-06-11 Asm Lithography Bv Lithographic projection apparatus, method of manufacturing a device using the lithographic projection apparatus, device manufactured according to the method and method of calibrating the lithographic projection apparatus
US6888638B1 (en) 1999-05-05 2005-05-03 Zygo Corporation Interferometry system having a dynamic beam steering assembly for measuring angle and distance
JP2001060544A (ja) * 1999-08-20 2001-03-06 Oki Electric Ind Co Ltd 被処理体の位置合わせ方法及び被処理体の位置合わせシステム
JP2001160535A (ja) * 1999-09-20 2001-06-12 Nikon Corp 露光装置、及び該装置を用いるデバイス製造方法
JP2001160530A (ja) * 1999-12-01 2001-06-12 Nikon Corp ステージ装置及び露光装置
TWI231405B (en) * 1999-12-22 2005-04-21 Asml Netherlands Bv Lithographic projection apparatus, position detection device, and method of manufacturing a device using a lithographic projection apparatus
TWI282909B (en) * 1999-12-23 2007-06-21 Asml Netherlands Bv Lithographic apparatus and a method for manufacturing a device
US6812047B1 (en) * 2000-03-08 2004-11-02 Boxer Cross, Inc. Evaluating a geometric or material property of a multilayered structure
WO2001088469A1 (en) * 2000-05-17 2001-11-22 Zygo Corporation Interferometric apparatus and method
EP1285222A4 (en) * 2000-05-17 2006-11-15 Zygo Corp INTERFEROMETRIC DEVICE AND INTERFEROMETRIC PROCEDURE
JP4824248B2 (ja) * 2000-05-19 2011-11-30 ザイゴ コーポレイション インサイチュミラー特徴付け
JP2002141393A (ja) * 2000-07-18 2002-05-17 Nikon Corp 干渉計ボックス
US6876451B1 (en) 2000-08-25 2005-04-05 Zygo Corporation Monolithic multiaxis interferometer
JP3762307B2 (ja) * 2001-02-15 2006-04-05 キヤノン株式会社 レーザ干渉干渉計システムを含む露光装置
US6911349B2 (en) * 2001-02-16 2005-06-28 Boxer Cross Inc. Evaluating sidewall coverage in a semiconductor wafer
US6812717B2 (en) * 2001-03-05 2004-11-02 Boxer Cross, Inc Use of a coefficient of a power curve to evaluate a semiconductor wafer
AU2002257034A1 (en) * 2001-03-13 2002-09-24 Zygo Corporation Cyclic error reduction in average interferometric position measurements
US6700665B2 (en) * 2001-08-20 2004-03-02 Zygo Corporation Interferometric apparatus for measuring the topography of mirrors in situ and providing error correction signals therefor
US7019843B2 (en) 2001-05-10 2006-03-28 Zygo Corporation Method and apparatus for stage mirror mapping
JP4262087B2 (ja) * 2001-07-06 2009-05-13 ザイゴ コーポレーション 多軸干渉計
US6947148B2 (en) * 2001-07-24 2005-09-20 Zygo Corporation Interferometric apparatus and method with phase shift compensation
US6847452B2 (en) * 2001-08-02 2005-01-25 Zygo Corporation Passive zero shear interferometers
US6678038B2 (en) 2001-08-03 2004-01-13 Nikon Corporation Apparatus and methods for detecting tool-induced shift in microlithography apparatus
US6674512B2 (en) 2001-08-07 2004-01-06 Nikon Corporation Interferometer system for a semiconductor exposure system
JP4030960B2 (ja) * 2001-08-23 2008-01-09 ザイゴ コーポレーション 入力ビームの方向の動的干渉分光制御
US6762845B2 (en) * 2001-08-23 2004-07-13 Zygo Corporation Multiple-pass interferometry
US7193726B2 (en) * 2001-08-23 2007-03-20 Zygo Corporation Optical interferometry
US6912054B2 (en) * 2001-08-28 2005-06-28 Zygo Corporation Interferometric stage system
US6785005B2 (en) 2001-09-21 2004-08-31 Nikon Corporation Switching type dual wafer stage
US6940592B2 (en) * 2001-10-09 2005-09-06 Applied Materials, Inc. Calibration as well as measurement on the same workpiece during fabrication
US6665054B2 (en) 2001-10-22 2003-12-16 Nikon Corporation Two stage method
US7042574B2 (en) * 2001-12-03 2006-05-09 Zygo Corporation Compensating for effects of non-isotropic gas mixtures in interferometers
TWI278599B (en) * 2002-01-28 2007-04-11 Zygo Corp Multi-axis interferometer
US6819434B2 (en) * 2002-01-28 2004-11-16 Zygo Corporation Multi-axis interferometer
US6757066B2 (en) 2002-01-28 2004-06-29 Zygo Corporation Multiple degree of freedom interferometer
WO2003069286A2 (en) * 2002-02-12 2003-08-21 Zygo Corporation Method and apparatus to measure fiber optic pickup errors in interferometry systems
US7057739B2 (en) * 2002-02-12 2006-06-06 Zygo Corporation Separated beam multiple degree of freedom interferometer
US6906784B2 (en) * 2002-03-04 2005-06-14 Zygo Corporation Spatial filtering in interferometry
US6897962B2 (en) * 2002-04-18 2005-05-24 Agilent Technologies, Inc. Interferometer using beam re-tracing to eliminate beam walk-off
DE10317387B4 (de) * 2002-04-18 2007-05-24 Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto Kompakte Strahlzurückverfolgungsoptikeinrichtung zum Eliminieren eines Strahlauseinanderlaufens
US7030993B2 (en) * 2002-04-24 2006-04-18 Zygo Corporation Athermal zero-shear interferometer
AU2003234413A1 (en) * 2002-05-13 2003-11-11 Zygo Corporation Compensation for geometric effects of beam misalignments in plane mirror interferometers
US6757110B2 (en) 2002-05-29 2004-06-29 Asml Holding N.V. Catadioptric lithography system and method with reticle stage orthogonal to wafer stage
US7616322B2 (en) * 2002-07-08 2009-11-10 Zygo Corporation Cyclic error compensation in interferometry systems
AU2003247779A1 (en) 2002-07-08 2004-01-23 Zygo Corporation Cyclic error compensation in interferometry systems
US7428685B2 (en) * 2002-07-08 2008-09-23 Zygo Corporation Cyclic error compensation in interferometry systems
US7262860B2 (en) * 2002-07-29 2007-08-28 Zygo Corporation Compensation for errors in off-axis interferometric measurements
AU2003256081A1 (en) * 2002-08-23 2004-03-11 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
DE10393243T5 (de) * 2002-09-09 2005-09-01 Zygo Corp., Middlefield Messung und Fehlerausgleichung bei Interferometern
US7274462B2 (en) * 2002-09-09 2007-09-25 Zygo Corporation In SITU measurement and compensation of errors due to imperfections in interferometer optics in displacement measuring interferometry systems
JP2006505778A (ja) * 2002-11-04 2006-02-16 ザイゴ コーポレーション 干渉計経路内の屈折度の摂動の補正
TWI304157B (en) * 2002-11-27 2008-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1583934A1 (en) * 2002-12-12 2005-10-12 Zygo Corporation In-process correction of stage mirror deformations during a photolithography exposure cycle
KR101481935B1 (ko) 2003-05-06 2015-01-14 가부시키가이샤 니콘 투영 광학계, 노광 장치 및 노광 방법
US7348575B2 (en) 2003-05-06 2008-03-25 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7025498B2 (en) * 2003-05-30 2006-04-11 Asml Holding N.V. System and method of measuring thermal expansion
JP2007526450A (ja) * 2003-06-19 2007-09-13 ザイゴ コーポレーション 平面ミラー干渉計測定システムにおけるビーム・ミスアライメントの幾何学的な影響に対する補償
US7327465B2 (en) * 2003-06-19 2008-02-05 Zygo Corporation Compensation for effects of beam misalignments in interferometer metrology systems
US7180603B2 (en) * 2003-06-26 2007-02-20 Zygo Corporation Reduction of thermal non-cyclic error effects in interferometers
JP4335084B2 (ja) * 2003-07-02 2009-09-30 エーエスエムエル ネザーランズ ビー.ブイ. 測定装置を有するリトグラフ投影装置
KR101343720B1 (ko) 2003-07-28 2013-12-20 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법, 그리고 노광 장치의제어 방법
CN101303536B (zh) * 2003-08-29 2011-02-09 株式会社尼康 曝光装置和器件加工方法
KR101203028B1 (ko) * 2003-10-08 2012-11-21 가부시키가이샤 자오 니콘 기판 반송 장치 및 기판 반송 방법, 노광 장치 및 노광 방법, 디바이스 제조 방법
US7289226B2 (en) * 2003-11-04 2007-10-30 Zygo Corporation Characterization and compensation of errors in multi-axis interferometry systems
US7443511B2 (en) * 2003-11-25 2008-10-28 Asml Netherlands B.V. Integrated plane mirror and differential plane mirror interferometer system
US7379190B2 (en) * 2004-01-05 2008-05-27 Zygo Corporation Stage alignment in lithography tools
WO2005067579A2 (en) * 2004-01-06 2005-07-28 Zygo Corporation Multi-axis interferometers and methods and systems using multi-axis interferometers
DE602005019689D1 (de) 2004-01-20 2010-04-15 Zeiss Carl Smt Ag Belichtungsvorrichtung und messeinrichtung für eine projektionslinse
US6980279B2 (en) * 2004-01-22 2005-12-27 Nikon Corporation Interferometer system for measuring a height of wafer stage
KR101377815B1 (ko) 2004-02-03 2014-03-26 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
KR101945638B1 (ko) 2004-02-04 2019-02-07 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
US7352472B2 (en) * 2004-02-18 2008-04-01 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and method for determining z-displacement
US7362447B2 (en) * 2004-02-20 2008-04-22 Agilent Technologies, Inc. Low walk-off interferometer
US7130056B2 (en) * 2004-02-20 2006-10-31 Agilent Technologies, Inc. System and method of using a side-mounted interferometer to acquire position information
EP1725910A2 (en) * 2004-02-25 2006-11-29 Carl Zeiss SMT AG Device consisting of at least one optical element
DE102004013886A1 (de) 2004-03-16 2005-10-06 Carl Zeiss Smt Ag Verfahren zur Mehrfachbelichtung, Mikrolithografie-Projektionsbelichtungsanlage und Projektionssystem
JP2005317916A (ja) * 2004-03-30 2005-11-10 Canon Inc 露光装置及びデバイス製造方法
US7280223B2 (en) * 2004-04-22 2007-10-09 Zygo Corporation Interferometry systems and methods of using interferometry systems
US7375823B2 (en) * 2004-04-22 2008-05-20 Zygo Corporation Interferometry systems and methods of using interferometry systems
JP4647288B2 (ja) * 2004-04-26 2011-03-09 株式会社リコー 回転駆動装置及び電子線描画装置
JP4262153B2 (ja) * 2004-07-02 2009-05-13 キヤノン株式会社 位置決め装置およびそれを用いた露光装置
WO2006006565A1 (ja) 2004-07-12 2006-01-19 Nikon Corporation 露光装置及びデバイス製造方法
TW200615716A (en) * 2004-08-05 2006-05-16 Nikon Corp Stage device and exposure device
US20060038972A1 (en) * 2004-08-17 2006-02-23 Nikon Corporation Lithographic system with separated isolation structures
US7489407B2 (en) * 2004-10-06 2009-02-10 Zygo Corporation Error correction in interferometry systems
KR100578140B1 (ko) * 2004-10-07 2006-05-10 삼성전자주식회사 변위 측정을 위한 간섭계 시스템 및 이를 이용한 노광 장치
KR100678469B1 (ko) * 2005-01-17 2007-02-02 삼성전자주식회사 노광장치용 웨이퍼 스테이지 및 이를 이용한 웨이퍼평행조절방법
CN100541337C (zh) * 2005-01-17 2009-09-16 皇家飞利浦电子股份有限公司 移动装置
JP4738829B2 (ja) * 2005-02-09 2011-08-03 キヤノン株式会社 位置決め装置
US7342641B2 (en) * 2005-02-22 2008-03-11 Nikon Corporation Autofocus methods and devices for lithography
US7224431B2 (en) * 2005-02-22 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7433049B2 (en) * 2005-03-18 2008-10-07 Zygo Corporation Multi-axis interferometer with procedure and data processing for mirror mapping
JP4946109B2 (ja) 2005-03-18 2012-06-06 株式会社ニコン 露光方法、露光装置、及びデバイス製造方法
WO2006106832A1 (ja) 2005-03-30 2006-10-12 Nikon Corporation 露光条件の決定方法、露光方法及び露光装置、並びにデバイス製造方法
US7283249B2 (en) * 2005-04-08 2007-10-16 Asml Netherlands B.V. Lithographic apparatus and a method of calibrating such an apparatus
US8089608B2 (en) * 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP5239337B2 (ja) 2005-04-28 2013-07-17 株式会社ニコン 露光方法及び露光装置、並びにデバイス製造方法
KR20080018158A (ko) 2005-06-21 2008-02-27 가부시키가이샤 니콘 노광 장치 및 노광 방법, 메인터넌스 방법과 디바이스 제조방법
US7924416B2 (en) 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
US8693006B2 (en) * 2005-06-28 2014-04-08 Nikon Corporation Reflector, optical element, interferometer system, stage device, exposure apparatus, and device fabricating method
JP5340730B2 (ja) * 2005-06-29 2013-11-13 ザイゴ コーポレーション 干渉分光法における非周期性の非線形誤差を軽減するための装置および方法
WO2007004552A1 (ja) 2005-06-30 2007-01-11 Nikon Corporation 露光装置及び方法、露光装置のメンテナンス方法、並びにデバイス製造方法
US7355719B2 (en) * 2005-08-16 2008-04-08 Agilent Technologies, Inc. Interferometer for measuring perpendicular translations
KR101449055B1 (ko) 2005-08-23 2014-10-08 가부시키가이샤 니콘 노광 장치, 노광 방법, 및 디바이스 제조 방법
US8111374B2 (en) * 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
SG170060A1 (en) 2005-09-09 2011-04-29 Nikon Corp Exposure apparatus, exposure method, and device production method
KR20080053497A (ko) 2005-09-21 2008-06-13 가부시키가이샤 니콘 노광 장치 및 노광 방법, 그리고 디바이스 제조 방법
US7728951B2 (en) * 2005-09-29 2010-06-01 Asml Netherlands B.V. Lithographic apparatus and method for conditioning an interior space of a device manufacturing apparatus
US8681314B2 (en) 2005-10-24 2014-03-25 Nikon Corporation Stage device and coordinate correction method for the same, exposure apparatus, and device manufacturing method
JPWO2007052659A1 (ja) 2005-11-01 2009-04-30 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法
EP1950612A1 (en) 2005-11-09 2008-07-30 Nikon Corporation Exposure apparatus and method, and method for manufacturing device
US7803516B2 (en) 2005-11-21 2010-09-28 Nikon Corporation Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
JP2007165869A (ja) 2005-11-21 2007-06-28 Nikon Corp 露光方法及びそれを用いたデバイス製造方法、露光装置、並びに基板処理方法及び装置
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
WO2007077875A1 (ja) 2005-12-28 2007-07-12 Nikon Corporation 露光装置及び露光方法、並びにデバイス製造方法
EP1986224A4 (en) 2006-02-16 2012-01-25 Nikon Corp EXPOSURE APPARATUS, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD
KR20080102390A (ko) 2006-02-16 2008-11-25 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
KR20080114691A (ko) 2006-03-13 2008-12-31 가부시키가이샤 니콘 노광 장치, 메인터넌스 방법, 노광 방법 및 디바이스 제조 방법
US8982322B2 (en) 2006-03-17 2015-03-17 Nikon Corporation Exposure apparatus and device manufacturing method
US20070242254A1 (en) 2006-03-17 2007-10-18 Nikon Corporation Exposure apparatus and device manufacturing method
US20080013062A1 (en) 2006-03-23 2008-01-17 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US7936443B2 (en) * 2006-05-09 2011-05-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102006021797A1 (de) 2006-05-09 2007-11-15 Carl Zeiss Smt Ag Optische Abbildungseinrichtung mit thermischer Dämpfung
US8477283B2 (en) 2006-05-10 2013-07-02 Nikon Corporation Exposure apparatus and device manufacturing method
EP2037486A4 (en) 2006-05-18 2012-01-11 Nikon Corp EXPOSURE METHOD AND DEVICE, MAINTENANCE METHOD AND COMPONENT MANUFACTURING METHOD
CN102156389A (zh) 2006-05-23 2011-08-17 株式会社尼康 维修方法、曝光方法及装置、以及组件制造方法
JP5218049B2 (ja) 2006-05-31 2013-06-26 株式会社ニコン 露光装置及び露光方法
CN101390194B (zh) 2006-06-30 2011-04-20 株式会社尼康 维修方法、曝光方法及装置、以及元件制造方法
TWI602032B (zh) 2006-08-31 2017-10-11 Nippon Kogaku Kk Exposure apparatus, exposure method, and device manufacturing method
KR101423017B1 (ko) 2006-08-31 2014-07-28 가부시키가이샤 니콘 이동체 구동 방법 및 이동체 구동 시스템, 패턴 형성 방법 및 장치, 노광 방법 및 장치, 그리고 디바이스 제조 방법
TWI547771B (zh) * 2006-08-31 2016-09-01 尼康股份有限公司 Mobile body drive system and moving body driving method, pattern forming apparatus and method, exposure apparatus and method, component manufacturing method, and method of determining
TW201809913A (zh) 2006-09-01 2018-03-16 日商尼康股份有限公司 曝光裝置、曝光方法、以及元件製造方法
TWI622084B (zh) 2006-09-01 2018-04-21 Nikon Corp Mobile body driving method, moving body driving system, pattern forming method and device, exposure method and device, component manufacturing method, and correction method
US8908144B2 (en) * 2006-09-27 2014-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2008098311A (ja) * 2006-10-10 2008-04-24 Canon Inc 露光装置及びデバイス製造方法
US7683300B2 (en) * 2006-10-17 2010-03-23 Asml Netherlands B.V. Using an interferometer as a high speed variable attenuator
JP5151989B2 (ja) 2006-11-09 2013-02-27 株式会社ニコン 保持装置、位置検出装置及び露光装置、並びにデバイス製造方法
DE102006059432B4 (de) * 2006-12-15 2022-08-25 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zur Vermessung von Lithographiemasken
US7576868B2 (en) * 2007-06-08 2009-08-18 Zygo Corporation Cyclic error compensation in interferometry systems
JP5489068B2 (ja) 2007-07-24 2014-05-14 株式会社ニコン 位置計測システム、露光装置、位置計測方法、露光方法及びデバイス製造方法、並びに工具及び計測方法
JP4636449B2 (ja) * 2008-06-10 2011-02-23 横河電機株式会社 遅延干渉計
JP4893969B2 (ja) * 2008-06-10 2012-03-07 横河電機株式会社 遅延干渉計
US8902402B2 (en) 2008-12-19 2014-12-02 Nikon Corporation Movable body apparatus, exposure apparatus, exposure method, and device manufacturing method
NL2003845A (en) 2008-12-19 2010-06-22 Asml Netherlands Bv Lithographic apparatus, and patterning device for use in a lithographic process.
US20100245829A1 (en) * 2009-03-31 2010-09-30 Nikon Corporation System and method for compensating instability in an autofocus system
NL2005309A (en) * 2009-10-13 2011-04-14 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
CN102230825A (zh) * 2011-03-07 2011-11-02 中国航空工业集团公司北京长城计量测试技术研究所 一种应用相位偏移干涉技术的姿态修正系统
KR101804610B1 (ko) 2011-03-30 2017-12-04 마퍼 리쏘그라피 아이피 비.브이. 차분 간섭계 모듈을 구비한 리소그래피 시스템
WO2014051431A1 (en) 2012-09-27 2014-04-03 Mapper Lithography Ip B.V. Multi-axis differential interferometer
DE102013224381A1 (de) * 2012-12-20 2014-06-26 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
DE102013201611A1 (de) 2012-12-20 2014-07-10 Dr. Johannes Heidenhain Gmbh Interferometer
CN103197510B (zh) * 2013-03-18 2014-10-22 哈尔滨工业大学 一种掩模台垂直运动分量的测量装置
CN103777308B (zh) * 2014-02-14 2016-08-24 哈尔滨工业大学 光刻机双频激光干涉仪垂向测量光路反射镜调整装置
EP3259553A4 (en) * 2015-02-18 2018-10-17 Abbott Laboratories Methods, systems and devices for automatically focusing a microscope on a substrate
CN105045042B (zh) 2015-04-23 2017-06-16 清华大学 一种硅片台曝光区域六自由度位移测量方法
US10162087B2 (en) * 2016-04-11 2018-12-25 Nikon Research Corporation Of America Optical system with a frustrated isotropic block
US10488228B2 (en) * 2016-04-11 2019-11-26 Nikon Corporation Transparent-block encoder head with isotropic wedged elements
JP7172596B2 (ja) * 2016-05-31 2022-11-16 株式会社ニコン マーク検出装置及びマーク検出方法、計測装置、露光装置及び露光方法、並びに、デバイス製造方法
JP7200234B2 (ja) * 2017-10-04 2023-01-06 エーエスエムエル ネザーランズ ビー.ブイ. 干渉計ステージ位置決めデバイス
US11619886B2 (en) 2018-03-29 2023-04-04 Asml Netherlands B.V. Position measurement system, interferometer system and lithographic apparatus
CN112041748A (zh) 2018-04-25 2020-12-04 Asml荷兰有限公司 管状线性致动器、图案形成装置掩蔽装置和光刻设备
WO2019206517A1 (en) 2018-04-25 2019-10-31 Asml Netherlands B.V. Pneumatic support device and lithographic apparatus with pneumatic support device
CN112041747A (zh) 2018-04-25 2020-12-04 Asml荷兰有限公司 框架组件、光刻设备和器件制造方法
EP3385792A3 (en) 2018-04-26 2018-12-26 ASML Netherlands B.V. Stage apparatus for use in a lithographic apparatus
US11243476B2 (en) 2018-04-26 2022-02-08 Asml Netherlands B.V. Stage apparatus, lithographic apparatus, control unit and method
US11422477B2 (en) 2018-05-08 2022-08-23 Asml Netherlands B.V. Vibration isolation system and lithographic apparatus
WO2019233698A1 (en) 2018-06-05 2019-12-12 Asml Netherlands B.V. Assembly comprising a cryostat and layer of superconducting coils and motor system provided with such an assembly
CN108627099B (zh) * 2018-07-02 2020-03-20 清华大学 五自由度外差光栅干涉测量系统
CN108627100B (zh) * 2018-07-02 2020-03-20 清华大学 二自由度外差光栅干涉测量系统
EP3611770A1 (en) 2018-08-16 2020-02-19 ASML Netherlands B.V. Piezoelectric actuator, actuator system, substrate support and lithographic apparatus including the actuator
WO2020035203A1 (en) 2018-08-16 2020-02-20 Asml Netherlands B.V. Apparatus and method for clearing and detecting marks
NL2023546A (en) 2018-08-23 2020-02-27 Asml Netherlands Bv Stage apparatus and method for calibrating an object loading process
US11156924B2 (en) 2018-08-23 2021-10-26 Asml Netherlands B.V. Substrate support, lithographic apparatus, substrate inspection apparatus, device manufacturing method
NL2023571A (en) 2018-08-28 2020-06-05 Asml Netherlands Bv Electromagnetic actuator, position control system and lithographic apparatus
CN111380509B (zh) * 2018-12-28 2022-04-01 上海微电子装备(集团)股份有限公司 一种掩模版姿态监测方法、装置及掩模版颗粒度检测设备
US10804167B2 (en) * 2019-01-24 2020-10-13 Kla-Tencor Corporation Methods and systems for co-located metrology
JP7430194B2 (ja) 2019-02-26 2024-02-09 エーエスエムエル ネザーランズ ビー.ブイ. 検査装置、リソグラフィ装置及び測定方法
WO2020173652A1 (en) 2019-02-28 2020-09-03 Asml Netherlands B.V. Stage system and lithographic apparatus
WO2020177949A1 (en) 2019-03-01 2020-09-10 Asml Netherlands B.V. Object positioner device and device manufacturing method
EP3715945A1 (en) 2019-03-25 2020-09-30 ASML Netherlands B.V. Frequency broadening apparatus and method
EP3715944A1 (en) 2019-03-25 2020-09-30 ASML Netherlands B.V. Frequency broadening apparatus and method
NL2024986A (en) 2019-03-27 2020-09-30 Asml Netherlands Bv Method of measuring an alignment mark or an alignment mark assembly, Alignment system, and Lithographic tool
EP3948373A1 (en) 2019-04-03 2022-02-09 ASML Netherlands B.V. Optical fiber
EP3719551A1 (en) 2019-04-03 2020-10-07 ASML Netherlands B.V. Optical fiber
CN113826046A (zh) 2019-04-23 2021-12-21 Asml荷兰有限公司 载物台、工作台设备、光刻设备以及将物体装载到载物台或工作台设备上的方法
US11860554B2 (en) 2019-05-01 2024-01-02 Asml Netherlands B.V. Object positioner, method for correcting the shape of an object, lithographic apparatus, object inspection apparatus, device manufacturing method
WO2020234045A1 (en) 2019-05-20 2020-11-26 Asml Netherlands B.V. Actuator assemblies comprising piezo actuators or electrostrictive actuators
EP3751229A1 (en) 2019-06-11 2020-12-16 ASML Netherlands B.V. Interferometer system, method of determining a mode hop of a laser source of an interferometer system, method of determining a position of a movable object, and lithographic apparatus
US11719529B2 (en) 2019-06-11 2023-08-08 Asml Netherlands B.V. Interferometer system, method of determining a mode hop of a laser source of an interferometer system, method of determining a position of a movable object, and lithographic apparatus
CN114026707A (zh) 2019-06-27 2022-02-08 Asml荷兰有限公司 多层超导制品、超导线圈、致动器、马达、平台设备和光刻设备
EP3761116A1 (en) 2019-07-05 2021-01-06 ASML Netherlands B.V. A mirror calibrating method, a position measuring method, a lithographic apparatus and a device manufacturing method
EP3764165A1 (en) 2019-07-12 2021-01-13 ASML Netherlands B.V. Substrate shape measuring device
KR20220024908A (ko) 2019-07-24 2022-03-03 에이에스엠엘 네델란즈 비.브이. 방사선 소스
EP3796080A1 (en) 2019-09-18 2021-03-24 ASML Netherlands B.V. Radiation source
WO2021018499A1 (en) 2019-07-29 2021-02-04 Asml Netherlands B.V. Thermo-mechanical actuator
KR20220025889A (ko) 2019-07-30 2022-03-03 에이에스엠엘 네델란즈 비.브이. 마크 측정 시퀀스, 스테이지 장치 및 리소그래피 장치를 결정하는 방법
US11828344B2 (en) 2019-08-05 2023-11-28 Asml Netherlands B.V. Support, vibration isolation system, lithographic apparatus, object measurement apparatus, device manufacturing method
EP3783439A1 (en) 2019-08-22 2021-02-24 ASML Netherlands B.V. Metrology device and detection apparatus therefor
US11774865B2 (en) 2019-08-23 2023-10-03 Asml Netherlands B.V. Method of controlling a position of a first object relative to a second object, control unit, lithographic apparatus and apparatus
CN114731027A (zh) 2019-11-12 2022-07-08 Asml荷兰有限公司 可调谐激光设备、调谐激光束的方法、干涉仪系统和光刻装置
EP3851916A1 (en) 2020-01-17 2021-07-21 ASML Netherlands B.V. Suction clamp, object handler, stage apparatus and lithographic apparatus
EP3859448A1 (en) 2020-01-28 2021-08-04 ASML Netherlands B.V. Positioning device and method to use a positioning device
WO2021155991A1 (en) 2020-02-06 2021-08-12 Asml Netherlands B.V. Method of using a dual stage lithographic apparatus and lithographic apparatus
EP3872444A1 (en) 2020-02-25 2021-09-01 ASML Netherlands B.V. Interferometer system and lithographic apparatus
JP7375226B2 (ja) 2020-04-23 2023-11-07 エーエスエムエル ネザーランズ ビー.ブイ. 光学測定システムおよび光学測定システムのキャリブレーションのための方法
JP7482258B2 (ja) 2020-05-20 2024-05-13 エーエスエムエル ネザーランズ ビー.ブイ. 磁石アセンブリ、コイルアセンブリ、平面モータ、位置決めデバイス及びリソグラフィ装置
EP3923075A1 (en) 2020-06-08 2021-12-15 ASML Netherlands B.V. Apparatus for use in a metrology process or lithographic process
EP4172555B1 (en) 2020-06-29 2024-04-10 ASML Netherlands B.V. A signal parameter determination method, a heterodyne interferometer system, a lithographic apparatus and a device manufacturing method
EP3971647A1 (en) 2020-09-16 2022-03-23 ASML Netherlands B.V. Base plate and substrate assembly
CN116075779A (zh) 2020-09-16 2023-05-05 Asml荷兰有限公司 基板和衬底组件
EP3971648A1 (en) 2020-09-17 2022-03-23 ASML Netherlands B.V. Mark to be projected on an object durign a lithograhpic process and method for designing a mark
KR20230065342A (ko) 2020-10-12 2023-05-11 에이에스엠엘 네델란즈 비.브이. 간섭측정계 시스템 및 리소그래피 장치
WO2022078743A1 (en) 2020-10-16 2022-04-21 Asml Netherlands B.V. Object table, stage apparatus, holding method and lithographic apparatus
CN112484647B (zh) * 2020-11-18 2022-06-10 北京华卓精科科技股份有限公司 干涉仪位移测量系统及方法
CN116601453A (zh) 2020-11-24 2023-08-15 Asml荷兰有限公司 定位系统、光刻设备、绝对位置确定方法和器件制造方法
WO2022111940A1 (en) 2020-11-26 2022-06-02 Asml Netherlands B.V. A mirror spot position calibrating method, a lithographic apparatus and a device manufacturing method
JP2024503057A (ja) 2021-01-14 2024-01-24 エーエスエムエル ネザーランズ ビー.ブイ. 干渉計システム、ポジショニングシステム、リソグラフィ装置、ジッタ判定方法、デバイス製造方法
EP4036619A1 (en) 2021-01-27 2022-08-03 ASML Netherlands B.V. Hollow-core photonic crystal fiber
US20240053532A1 (en) 2021-01-27 2024-02-15 Asml Netherlands B.V. Hollow-core photonic crystal fiber
EP4105696A1 (en) 2021-06-15 2022-12-21 ASML Netherlands B.V. Optical element for generation of broadband radiation
US20240201561A1 (en) 2021-05-03 2024-06-20 Asml Netherlands B.V. Optical element for generation of broadband radiation
US20240175479A1 (en) 2021-05-06 2024-05-30 Asml Netherlands B.V. A positioning system, a lithographic apparatus, a driving force attenuation method, and a device manufacturing method
WO2023280692A1 (en) 2021-07-07 2023-01-12 Asml Netherlands B.V. A position measurement system, a positioning system, a lithographic apparatus, and a device manufacturing method
EP4116888A1 (en) 2021-07-07 2023-01-11 ASML Netherlands B.V. Computer implemented method for diagnosing a system comprising a plurality of modules
EP4116772A1 (en) 2021-07-09 2023-01-11 ASML Netherlands B.V. Electromagnetic motor system, postion control system, stage apparatus, lithographic apparatus, method of determining a motor-dependent commutation model for an electromagnetic motor
EP4134744A1 (en) 2021-08-09 2023-02-15 ASML Netherlands B.V. A sensor positioning method, a positioning system, a lithographic apparatus, a metrology apparatus, and a device manufacturing method
WO2023025468A1 (en) 2021-08-24 2023-03-02 Asml Netherlands B.V. An object gripper, a method of holding an object and a lithographic apparatus
CN118020027A (zh) 2021-09-16 2024-05-10 Asml荷兰有限公司 热调节单元、衬底搬运装置和光刻设备
WO2023078788A1 (en) 2021-11-03 2023-05-11 Asml Netherlands B.V. Lithographic apparatus stage coupling
WO2023148326A1 (en) 2022-02-04 2023-08-10 Asml Netherlands B.V. Lithographic apparatus controller system
WO2023186569A1 (en) 2022-03-31 2023-10-05 Asml Netherlands B.V. Substrate warpage determination system
WO2023217460A1 (en) 2022-05-09 2023-11-16 Asml Netherlands B.V. Mechatronic system control method, lithographic apparatus control method and lithographic apparatus
EP4300183A1 (en) 2022-06-30 2024-01-03 ASML Netherlands B.V. Apparatus for broadband radiation generation
NL2035465A (en) 2022-08-18 2024-02-27 Asml Netherlands Bv Superconductive magnet assembly, planar motor and lithographic apparatus
WO2024094365A1 (en) 2022-11-04 2024-05-10 Asml Netherlands B.V. Positioning system and method for positioning a moveable object using a positioning system
WO2024099660A1 (en) 2022-11-10 2024-05-16 Asml Netherlands B.V. Position measurement system and lithographic apparatus
WO2024099823A1 (en) 2022-11-11 2024-05-16 Asml Netherlands B.V. Linear motor motion system and method
EP4372463A1 (en) 2022-11-21 2024-05-22 ASML Netherlands B.V. Method and source modul for generating broadband radiation
EP4375744A1 (en) 2022-11-24 2024-05-29 ASML Netherlands B.V. Photonic integrated circuit for generating broadband radiation
WO2024115254A1 (en) 2022-12-01 2024-06-06 Asml Netherlands B.V. Actuator array, particularly for substrate table and lithographic apparatus, and piezoelectric actuator control circuit arrangement
WO2024120734A1 (en) 2022-12-06 2024-06-13 Asml Netherlands B.V. Phase generated carrier interrogator and associated phase generated carrier interrogation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229250A (ja) * 1987-03-13 1988-09-26 Kitamura Mach Co Ltd マニシングセンタ
JPH04179115A (ja) * 1990-11-08 1992-06-25 Nec Kyushu Ltd 縮小投影露光装置
NL9100215A (nl) * 1991-02-07 1992-09-01 Asm Lithography Bv Inrichting voor het repeterend afbeelden van een maskerpatroon op een substraat.
EP0824722B1 (en) * 1996-03-06 2001-07-25 Asm Lithography B.V. Differential interferometer system and lithographic step-and-scan apparatus provided with such a system

Also Published As

Publication number Publication date
EP0956518B1 (en) 2004-01-02
WO1999028790A1 (en) 1999-06-10
EP1347336A1 (en) 2003-09-24
TW380202B (en) 2000-01-21
JP2001510577A (ja) 2001-07-31
US6020964A (en) 2000-02-01
KR20000070669A (ko) 2000-11-25
EP0956518A1 (en) 1999-11-17
DE69820856T2 (de) 2004-12-30
KR100542832B1 (ko) 2006-01-11
DE69820856D1 (de) 2004-02-05

Similar Documents

Publication Publication Date Title
JP4216348B2 (ja) 干渉計システムおよびそのようなシステムを含むリソグラフィー装置
JP3631766B2 (ja) 時間を節約する高さ測定を用いた、基板にマスク・パターンを繰り返し投影する方法および装置
JP3774476B2 (ja) 2種類の波長を使う干渉計システム、およびそのようなシステムを備えるリソグラフィー装置
US6084673A (en) Lithographic apparatus for step-and-scan imaging of mask pattern with interferometer mirrors on the mask and wafer holders
KR100262992B1 (ko) 마스크 패턴을 반복적으로 영상화하는 방법 및 그 장치
KR100699570B1 (ko) 리소그래피 장치, 디바이스 제조방법 및 각도 인코더
KR20000065214A (ko) 오프축 얼라인먼트 유니트를 갖는 리소그래픽 투영 장치
JPH1038757A (ja) エキシマレーザ光用レンズの波面収差測定装置及び方法
JP3387081B2 (ja) 露光装置及び該装置を用いるデバイス製造方法
JPH07249567A (ja) 露光装置
JPH1038758A (ja) i線用レンズの波面収差測定装置及び方法
EP1473597A2 (en) Lithographic apparatus, device manufacturing method and angular encoder
JPH11354438A (ja) 露光装置及び該装置を用いるデバイス製造方法
JPH0982632A (ja) 投影露光装置
TW200305004A (en) Multiple-pass interferometry

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061030

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20061030

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061030

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080404

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees