WO2007004552A1 - 露光装置及び方法、露光装置のメンテナンス方法、並びにデバイス製造方法 - Google Patents

露光装置及び方法、露光装置のメンテナンス方法、並びにデバイス製造方法 Download PDF

Info

Publication number
WO2007004552A1
WO2007004552A1 PCT/JP2006/313086 JP2006313086W WO2007004552A1 WO 2007004552 A1 WO2007004552 A1 WO 2007004552A1 JP 2006313086 W JP2006313086 W JP 2006313086W WO 2007004552 A1 WO2007004552 A1 WO 2007004552A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
exposure
region
exposure light
liquid
Prior art date
Application number
PCT/JP2006/313086
Other languages
English (en)
French (fr)
Inventor
Tomoharu Fujiwara
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to US11/915,886 priority Critical patent/US8179517B2/en
Priority to EP06767694A priority patent/EP1901338A4/en
Priority to JP2007524022A priority patent/JP5194792B2/ja
Publication of WO2007004552A1 publication Critical patent/WO2007004552A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning

Definitions

  • Exposure apparatus and method Exposure apparatus and method, exposure apparatus maintenance method, and device manufacturing method
  • the present invention relates to an exposure apparatus and method for exposing a substrate through a liquid, a maintenance method for the exposure apparatus, and a device manufacturing method.
  • an exposure apparatus that exposes a mask pattern image onto a photosensitive substrate is used.
  • This exposure apparatus has a mask stage for holding a mask and a substrate stage for holding a substrate, and exposes a pattern image of the mask onto the substrate via a projection optical system.
  • a projection optical system as disclosed in the following patent document is used.
  • An immersion exposure apparatus has been devised that fills the optical path space of the exposure light between the substrate and the substrate with a liquid and exposes the substrate through the projection optical system and the liquid.
  • Patent Document 1 International Publication No. 99/49504 Pamphlet
  • the present invention has been made in view of such circumstances, and in the case of applying an immersion method. Another object of the present invention is to provide an exposure apparatus and method capable of preventing the deterioration of the performance, and a device manufacturing method using the exposure apparatus and method. It is another object of the present invention to provide a maintenance method that can prevent deterioration of the performance of an exposure apparatus that uses an immersion method. Means for solving the problem
  • the present invention employs the following configurations corresponding to the respective drawings shown in the embodiments.
  • the reference numerals in parentheses attached to each element are merely examples of the element and do not limit each element.
  • an exposure apparatus that exposes the substrate (P) by irradiating the substrate (P) with the exposure light (EL) through the liquid (LQ), Then, the optical member (FL) having the first surface (T1) that comes into contact with the liquid (LQ) and the first state in which the exposure light (EL) is irradiated onto the substrate (P) are exposed to the exposure light.
  • Exposure system (EX) for photo-cleaning 2 areas (C2) is provided
  • an exposure apparatus that exposes the substrate (P) through the liquid (LQ), and has the first surface (T1) in contact with the liquid (LQ).
  • An exposure apparatus (EX) comprising a member (FU and a setting device (45) for setting an irradiation area (IA, AR) of exposure light (EL) is provided.
  • the setting device (45) is an optical member (FL). ) On the first surface (T1) of the first surface (T1) of the first surface (T1) of the optical member (FL) and the first surface (T1) of the optical member (FL). It has a photo-cleaning mode in which exposure light (EL) is irradiated to two regions (C2).
  • the second region of the first surface in contact with the liquid of the optical member can be optically cleaned, so that deterioration of the performance of the exposure apparatus can be prevented.
  • a device can be manufactured by using an exposure apparatus in which deterioration of performance is prevented.
  • the fourth aspect of the present invention on the substrate (P) via the optical member (FL) and the liquid (LQ).
  • the maintenance method of the exposure apparatus (EX) that exposes the substrate (P) by irradiating the substrate with exposure light (EL).
  • a maintenance method for photo-cleaning the second region (C2) is provided.
  • the substrate (P) is exposed via the liquid (LQ) and the optical member (FL) having the first surface (T1) in contact with the liquid (LQ).
  • a step of irradiating light (EL) the step in which the exposure light (EL) passes through the first region (C1) of the optical member (first surface (T1) of the FU; and the optical member (first of the FU); Irradiating the second region (C2) of the surface (T1) with exposure light (EL) to photoclean the second region (C2).
  • the second region of the first surface in contact with the liquid of the optical member can be optically cleaned, so that deterioration of the performance of the exposure apparatus can be prevented.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment.
  • FIG. 2 is a side sectional view showing a main part of the liquid immersion mechanism.
  • FIG. 3 is a perspective view showing a main part of the liquid immersion mechanism.
  • FIG. 4A is a schematic diagram showing the relationship between the setting device and the exposure light irradiation region in the first state.
  • FIG. 4B is a schematic diagram showing the relationship between the setting device and the exposure light irradiation region in the first state.
  • FIG. 5 is a diagram for explaining a maintenance method according to the first embodiment.
  • FIG. 6A is a schematic diagram showing the relationship between the setting device and the exposure light irradiation region in the second state.
  • FIG. 6B is a schematic diagram showing the relationship between the setting device and the exposure light irradiation area in the second state.
  • FIG. 7A is a schematic diagram showing a setting device according to a second embodiment.
  • FIG. 7B is a schematic diagram showing a setting device according to a second embodiment.
  • FIG. 8A is a schematic diagram showing a setting device according to a third embodiment.
  • FIG. 8B is a schematic diagram showing a setting device according to a third embodiment.
  • FIG. 9 is a diagram for explaining a maintenance method according to a fourth embodiment.
  • FIG. 10 is a diagram for explaining a maintenance method according to a fifth embodiment.
  • FIG. 11 is a flowchart for explaining an example of a microdevice manufacturing process.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus EX according to the first embodiment.
  • the exposure apparatus EX exposes a mask stage 3 that can move while holding the mask M, a substrate stage 4 that can move while holding the substrate P, and the mask M held by the mask stage 3.
  • Illumination system IL that illuminates with light EL
  • projection optical system PL that projects the pattern image of mask M illuminated with exposure light EL onto substrate P
  • controller 7 that controls the overall operation of exposure apparatus EX I'm going.
  • the substrate here is a photosensitive material (photoresist), a protective film on a base material such as a semiconductor wafer.
  • the mask includes a reticle on which a device pattern to be projected on a substrate is reduced.
  • a force reflection type mask using a transmission type mask may be used as a mask.
  • the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and substantially increase the depth of focus.
  • the exposure apparatus EX includes an immersion mechanism 1 that fills the optical path space K of the exposure light EL on the image plane side of the projection optical system PL with the liquid LQ and forms an immersion area LR of the liquid LQ on the substrate P. Yes.
  • the exposure apparatus EX uses the liquid immersion mechanism 1 to fill the optical path space K of the exposure light EL with the liquid LQ while exposing at least the pattern image of the mask M onto the substrate P.
  • the exposure apparatus EX irradiates the substrate P with the exposure light EL that has passed through the mask M via the projection optical system PL and the liquid LQ filled in the optical path space K.
  • the liquid LQ filled in the optical path space K is larger than the projection area AR in a part of the area on the substrate P including the projection area AR of the projection optical system PL and the substrate.
  • a liquid immersion method that locally forms an immersion area LR of liquid LQ smaller than P is adopted. In the present embodiment, pure water is used as the liquid LQ.
  • a scanning exposure apparatus that exposes a pattern formed on mask M onto substrate P while synchronously moving mask M and substrate P in the scanning direction.
  • the synchronous movement direction (scanning direction) of the mask M and the substrate P in the horizontal plane is the Y-axis direction
  • the direction orthogonal to the Y-axis direction in the horizontal plane is the X-axis direction (non-scanning direction).
  • the direction perpendicular to the Y-axis direction (in this example, the direction parallel to the optical axis of the projection optical system PL) is the Z-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes be the ⁇ X, ⁇ Y, and ⁇ ⁇ directions, respectively.
  • the illumination system IL includes a light source 30 and an illumination optical system 40, and illuminates a predetermined illumination region ⁇ on the mask ⁇ with exposure light EL having a uniform illuminance distribution.
  • Exposure light EL emitted from illumination system IL includes, for example, bright lines (g-line, h-line, i-line) emitted from mercury lamps and far-ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm) , Vacuum ultraviolet light (VUV) such as ArF excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm)
  • an ArF excimer laser device is used as the light source 30, and an ArF excimer laser beam is used as the exposure light EL.
  • the illumination optical system 40 includes an optical interface such as a collimator lens and a fly-eye lens.
  • Illumination uniformity optical system 41 including a glator and the like, relay optical systems 42 and 46, a blind device 45 including a first blind 43 and a second blind 44, a mirror 47, a condenser lens 48, and the like.
  • the blind device 45 is provided on the optical path of the exposure light EL, and the irradiation area (illumination area) IA of the exposure light EL on the mask M and the irradiation area (projection area) of the exposure light EL on the substrate P ) AR can be adjusted.
  • the blind device 45 of this embodiment is, for example, Japanese Patent Laid-Open No. 4-196513 (corresponding US Pat. No. 5,473,410) or International Publication No. 99Z63585 pamphlet (corresponding US Pat. No. 6,597,002).
  • a first blind 43 that is provided on the optical path of the exposure light EL as disclosed in the above and forms an opening 43K for setting the irradiation area (illumination area) IA of the exposure light EL on the mask M; and And a second blind 44 that further restricts the illumination area IA to prevent unnecessary exposure at the start and end of the strike exposure.
  • the blind device 45 of this embodiment includes a first drive device 43D that drives the first blind 43 and a second drive device 44D that drives the second blind 44.
  • the first blind 43 has an opening 43K for setting the illumination area IA on the mask M, and is arranged on a surface slightly defocused from the conjugate plane with respect to the pattern surface of the mask M.
  • the opening 43K of the first blind 43 is formed in a rectangular shape (slit shape).
  • the exposure area EL (illumination area) IA on the mask M is set by the first blind 43 of the blind device 45, so that the irradiation area (projection area) AR of the exposure light EL on the substrate P is also set.
  • the opening 43K of the first blind 43 the irradiation area (illumination area) IA of the exposure light EL on the mask M and the projection area (irradiation area) AR of the exposure light EL on the substrate P are changed. Can be adjusted.
  • the second blind 44 is arranged in the vicinity of the first blind 43, and the strike direction of the mask M
  • the second blind 44 has an opening 44K with variable position and width in the direction corresponding to the (Y-axis direction) and non-running direction (X-axis direction).
  • the second blind 44 is configured by combining a plurality of plate-like members, and the control device 7 uses the second drive device 44D to drive each of the plate-like members, thereby increasing the size of the opening 44K. It is possible to block at least part of the exposure light EL by adjusting the height.
  • Blind device 45 further limits the illumination area IA through the second blind 44 at the start and end of the strike exposure, thereby exposing unnecessary parts. To prevent.
  • the second blind 44 may be used.
  • an internal reflection type integrator rod, etc.
  • only the second blind 44 used for adjusting the illumination area IA (projection area AR) is used on the exit surface. It is good also as providing.
  • first and second blinds 43, 44 are not limited to the force that is placed in the illumination system, and are not limited to the conjugate surface with the pattern surface of the mask M, or in the vicinity of the pattern surface and one of the conjugate surfaces. What is necessary is just to arrange. Further, either of the first and second blinds 43 and 44 may be arranged on the upstream side, or may not be arranged close to each other.
  • the blind (edge) used to adjust at least the width of the illumination area IA (projection area AR) is preferably arranged in a conjugate manner with the pattern surface of the mask M.
  • the exposure light EL emitted from the light source 30 is adjusted to a uniform illuminance distribution by the illuminance uniformizing optical system 41.
  • the exposure light EL emitted from the illumination uniformizing optical system 41 passes through the first relay lens 42 and then passes through the opening 43K of the first blind 43 and the second blind 44 of the blind device 45.
  • the exposure light EL that has passed through the blind device 45 passes through the second relay lens 46 and is then bent by the mirror 47.
  • the exposure light EL whose optical path is bent by the mirror 47 passes through the condenser lens 48 and then illuminates the illumination area IA on the mask M held on the mask stage 3 with a uniform illuminance distribution.
  • the mask stage 3 is movable in the X axis, Y axis, and ⁇ Z directions while holding the mask M by driving a mask stage driving apparatus 3D including an actuator such as a linear motor.
  • the position information of mask stage 3 (and hence mask M) is measured by laser interferometer 3L.
  • the laser interferometer 3L measures the position information of the mask stage 3 using a moving mirror 3K provided on the mask stage 3.
  • the control device 7 drives the mask stage driving device 3D based on the measurement result of the laser interferometer 3L, and controls the position of the mask M held on the mask stage 3.
  • the moving mirror 3K includes not only a plane mirror but also a corner cube (retro reflector).
  • a reflecting surface formed by mirror-finishing the end surface (side surface) of the mask stage 3 may be used.
  • the projection optical system PL projects a pattern image of the mask M onto the substrate P at a predetermined projection magnification, and has a plurality of optical elements, and these optical elements are held by a lens barrel PK. ing.
  • the projection optical system PL of the present embodiment is a reduction system whose projection magnification is, for example, 1/4, 1/5, 1/8, etc., and the mask pattern is reduced to the projection area AR conjugate with the illumination area IA described above. Form an image.
  • the projection optical system PL may be any of a reduction system, a unity magnification system, and an enlargement system.
  • the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, or a catadioptric system that includes a reflective optical element and a refractive optical element. Further, the projection optical system PL may form either an inverted image or an erect image. In the present embodiment, among the plurality of optical elements of the projection optical system PL, only the final optical element FL closest to the image plane of the projection optical system PL is in contact with the liquid LQ in the optical path space K.
  • the substrate stage 4 includes a substrate holder 4H that holds the substrate P, and is movable on the base member 5 while holding the substrate P on the substrate holder 4H.
  • the substrate holder 4H is disposed in a recess 4R provided on the substrate stage 4, and the upper surface 4F of the substrate stage 4 other than the recess 4R is substantially the same as the surface of the substrate P held by the substrate holder 4H.
  • the surface is flat (level). There may be a step between the surface of the substrate P held by the substrate holder 4H and the upper surface 4F of the substrate stage 4.
  • the upper surface 4F of the substrate stage 4 may have a height substantially the same as the surface of the substrate P only in a part thereof, for example, a predetermined region surrounding the substrate P (recess 4R).
  • the substrate holder 4H may be formed integrally with a part of the substrate stage 4, but in this embodiment, the substrate holder 4H and a part of the substrate stage 4 are configured separately, for example, by vacuum suction or the like. The substrate holder 4H is fixed to the recess 4R.
  • the substrate stage 4 is driven by a substrate stage driving device 4D including an actuator such as a linear motor, and the substrate P is held in the X-axis, Y-axis, Z-axis, ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ It can move in the direction of 6 degrees of freedom in Zjj direction.
  • the position information of the substrate stage 4 (and consequently the substrate P) is measured by the laser interferometer 4L.
  • the laser interferometer 4L uses the moving mirror 4K provided on the substrate stage 4 to measure the positional information of the substrate stage 4 in the X axis, Y axis, and ⁇ Z directions.
  • the surface position information of the surface of the substrate P held by the substrate stage 4 is detected by a focus leveling detection system (not shown).
  • the control device 7 drives the substrate stage driving device 4D based on the measurement result of the laser interferometer 4L and the detection result of the force leveling detection system, and the position of the substrate ⁇ held on the substrate stage 4 Take control.
  • the laser interferometer 4L is capable of measuring the position of the substrate stage 4 in the negative axis direction and the rotation information in the ⁇ X and ⁇ ⁇ ⁇ directions. For example, see JP-A-2001-510577. Corresponding International Publication No. 1999/28790 pamphlet). Furthermore, instead of fixing the movable mirror 4 ⁇ to the substrate stage 4, for example, a reflective surface formed by mirror-processing a part (side surface, etc.) of the substrate stage 4 can be used.
  • the focus leveling detection system measures the position information in the ⁇ -axis direction of the substrate ⁇ at each of the plurality of measurement points.
  • the plurality of measurement points may be set at least partially within the immersion area LR (or projection area AR), or all of the measurement points may be in the immersion area LR. It may be set outside.
  • the laser interferometer 4L can measure position information in the ⁇ axis, ⁇ X and ⁇ ⁇ directions of the substrate ⁇
  • the position information in the ⁇ axis direction can be measured during the exposure operation of the substrate ⁇ .
  • the measurement results of the laser interferometer 4L are used to control the position of the substrate ⁇ in the X axis, ⁇ X and ⁇ ⁇ directions. Let ’s do it.
  • FIG. 2 is a side sectional view showing the main part of the liquid immersion mechanism 1
  • FIG. 3 is a perspective view.
  • the immersion mechanism 1 is an optical path space between the substrate ⁇ held on the substrate stage 4 and the final optical element FL of the projection optical system PL that is provided at a position facing the substrate ⁇ and through which the exposure light EL passes. Is filled with liquid LQ.
  • the liquid immersion mechanism 1 is provided in the vicinity of the optical path space K, and includes a nozzle member 6 having a supply port 12 for supplying the liquid LQ to the optical path space K and a recovery port 22 for recovering the liquid LQ, a supply pipe 13, And a liquid supply device 11 for supplying the liquid LQ via the supply port 12 of the nozzle member 6, and a liquid recovery device 21 for recovering the liquid LQ via the recovery port 22 and the recovery pipe 23 of the nozzle member 6.
  • the nozzle member 6 is an annular member provided so as to surround the final optical element FL of the projection optical system PL.
  • a supply port 12 and a supply pipe 13 are connected.
  • a supply flow path 14 and a recovery flow path 24 connecting the recovery port 22 and the recovery pipe 23 are formed.
  • the operations of the liquid supply device 11 and the liquid recovery device 21 are controlled by the control device 7.
  • the liquid supply device 11 can deliver clean and temperature-adjusted liquid LQ, and the liquid recovery device 21 including a vacuum system can recover the liquid LQ.
  • the nose member 6 includes a bottom plate 18 having an upper surface 19 that faces the lower surface T1 of the final optical element FL.
  • a part of the bottom plate 18 is disposed between the lower surface T1 of the final optical element FL of the projection optical system PL and the substrate P (substrate stage 4) in the Z-axis direction.
  • an opening 18K through which the exposure light EL passes is formed at the center of the bottom plate 18.
  • the opening 18K is formed larger than the projection area AR irradiated with the exposure light EL. Accordingly, the exposure light EL that has passed through the projection optical system PL (final optical element FU can reach the substrate without being blocked by the bottom plate 18.
  • the opening 18K has a cross-sectional shape of the exposure light EL ( That is, it is formed in a substantially rectangular shape in plan view according to the projection area AR), and the shape of the opening 18 K of the bottom plate 18 can be appropriately changed as long as the exposure light EL can pass through.
  • the lower surface facing the surface of the substrate P held by the substrate stage 4 is a flat surface parallel to the XY plane.
  • the lower surface of the nozzle member 6 includes the lower surface 17 of the bottom plate 18. Since the surface of the substrate P held by the substrate stage 4 is substantially parallel to the XY plane, the lower surface 17 of the nose member 6 faces the surface of the substrate P held by the substrate stage 4 and the substrate P It is provided so as to be substantially parallel to the surface.
  • the lower surface 17 of the nozzle member 6 (bottom plate 18) is referred to as a land surface 17 as appropriate.
  • the land surface 17 is a flat surface provided in the nozzle member 6 at a position closest to the substrate P held by the substrate stage 4, and is formed between the lower surface T1 of the final optical element FL of the projection optical system PL and the substrate P. It is provided so as to surround the optical path (projection area AR) of the exposure light EL between the surface and the surface.
  • the distance between the surface of the substrate P and the lower surface T1 of the final optical element FL is longer than the distance between the surface of the substrate P and the land surface 17. That is, the lower surface T1 of the final optical element FL is provided at a position higher than the land surface 17.
  • the distance between the surface of the substrate P and the lower surface T1 of the final optical element FL is set to about 3 mm.
  • the distance between the surface of the substrate P and the land surface 17 is set to about lmm.
  • the land surface 17 is in contact with the liquid LQ filled in the optical path space K, and is below the final optical element FL.
  • the liquid LQ filled in the optical path space K also comes into contact with the surface Tl. That is, the land surface 17 of the nozzle member 6 and the lower surface T1 of the last optical element FL are liquid contact surfaces that come into contact with the liquid LQ filled in the optical path space K.
  • the bottom plate 18 is provided so as not to contact the lower surface T1 of the final optical element FL and the substrate P (substrate stage 4), and the lower surface T1 of the final optical element FL and the upper surface 19 of the bottom plate 18 A space having a predetermined gap is provided between them.
  • the inner space of the nozzle member 6 including the space between the lower surface T1 of the final optical element FL and the upper surface 19 of the bottom plate 18 is appropriately referred to as an internal space SP.
  • a supply passage 14 connected to the supply port 12 is formed inside the nozzle member 6.
  • the supply flow path 14 is formed by a slit-like through hole that penetrates a part of the nozzle member 6.
  • the supply flow paths 14 are provided on both sides in the Y-axis direction with respect to the optical path space K (projection area AR).
  • the upper end portion of the supply flow path 14 and the liquid supply device 11 are connected via the supply pipe 13.
  • the lower end portion of the supply channel 14 is connected to the internal space SP between the final optical element FL and the bottom plate 18, and the lower end portion of the supply channel 14 serves as the supply port 12. Therefore, the supply port 12 and the liquid supply device 11 are connected via the supply pipe 13 and the supply flow path 14.
  • the supply ports 12 are provided at predetermined positions on both sides in the Y-axis direction across the optical path space K outside the optical path space K of the exposure light EL.
  • a plurality of supply pipes 13 and supply flow paths 14 are provided so as to correspond to a plurality of (two in this embodiment) supply ports 12.
  • the nozzle member 6 includes a discharge port 16 for discharging (exhausting) the gas in the internal space SP to the external space (atmospheric space) ST, and a discharge flow path 15 connected to the discharge port 16. It has.
  • the discharge channel 15 is formed by a slit-shaped through hole that penetrates a part of the nozzle member 6.
  • the discharge flow paths 15 are provided on both sides in the X-axis direction with respect to the optical path space K (projection area AR).
  • the upper end portion of the discharge channel 15 is connected to the external space (atmospheric space) ST, and is in an open state.
  • the lower end portion of the discharge flow channel 15 is connected to the internal space SP between the final optical element FL and the bottom plate 18, and the lower end portion of the discharge flow channel 15 serves as the discharge port 16.
  • the outlet 16 is located outside of the optical path space K of the exposure light EL, on each side of the X-axis direction across the optical path space K. It is provided at a fixed position.
  • the discharge port 16 is connected to the internal space SP, and the gas in the internal space SP, that is, the gas around the image plane of the projection optical system PL passes through the discharge port 16 from the upper end of the discharge channel 15 to the outside. It can be discharged (exhaust) into the space ST.
  • the gas in the internal space SP may be forcibly discharged by connecting the upper end portion of the discharge channel 15 and a suction device including a vacuum system and driving the suction device.
  • a recovery flow path 24 connected to the recovery port 22 is formed inside the nozzle member 6.
  • a space that opens downward is formed in the nozzle member 6, and the recovery flow path 24 is constituted by the space.
  • the recovery port 22 is configured by an opening in a space that opens downward.
  • the recovery channel 24 is provided outside the supply channel 14 and the discharge channel 15 with respect to the optical path space K.
  • the recovery port 22 is provided above the substrate P held by the substrate stage 4 and at a position facing the surface of the substrate.
  • the surface of the substrate P held on the substrate stage 4 is separated from the recovery port 22 provided in the nozzle member 6 by a predetermined distance.
  • the recovery port 22 is provided outside the supply port 12 and the discharge port 16 with respect to the optical path space K on the image plane side of the projection optical system PL, and the optical path space K (projection area AR), land surface 17,
  • An annular shape is formed so as to surround the supply port 12 and the discharge port 16.
  • the recovery port 22 is formed in an annular shape in plan view.
  • the recovery flow path 24 and the liquid recovery apparatus 21 are connected via a recovery pipe 23. Therefore, the recovery port 22 and the liquid recovery device 21 are connected via the recovery pipe 23 and the recovery flow path 24.
  • the collection port 22 may be a single collection port formed continuously, or may be a plurality of collection ports formed intermittently.
  • the nodular member 6 is disposed so as to cover the recovery port 22, and includes a porous member 25 having a plurality of holes.
  • the porous member 25 can be constituted by, for example, a titanium mesh member or a ceramic porous body.
  • the porous member 25 has a lower surface 25B facing the substrate P held by the substrate stage 4.
  • the lower surface 25B of the porous member 25 facing the substrate P is substantially flat.
  • the porous member 25 is provided in the recovery port 22 such that the lower surface 25B thereof is substantially parallel to the surface of the substrate P held on the substrate stage 4 (ie, the XY plane).
  • the liquid LQ is recovered through the porous member 25 disposed in the recovery port 22.
  • the recovery port 22 is formed in an annular shape so as to surround the optical path space K, it is disposed in the recovery port 22.
  • the porous member 25 is formed in an annular shape so as to surround the optical path space K so as to correspond to the recovery port 22.
  • the porous member 25 has a recovery port 22 so that the lower surface 25B and the land surface 17 are substantially at the same position (height) in the Z-axis direction, and the lower surface 25B and the land surface 17 are continuous. Is provided. That is, the land surface 17 and the lower surface 25B of the porous member 25 are substantially flush with each other.
  • the liquid immersion mechanism 1 includes the diameter of each hole of the porous member 25, the porous member
  • the recovery port 22 is optimized by optimizing the difference between the pressure in the recovery channel 24 and the pressure in the external space (atmospheric space) ST according to the contact angle between the liquid LQ and the surface tension of the liquid LQ. It is provided to collect only liquid LQ via Specifically, the liquid immersion mechanism 1 recovers only the liquid LQ by controlling the suction force with respect to the recovery flow path 24 by the liquid recovery device 21 and optimizing the pressure of the recovery flow path 24.
  • the number, position, and shape of the supply port, the recovery port, and the discharge port of the nozzle member 6 are not limited to those shown in FIG. 3, and may be any as long as the liquid immersion region LR can be satisfactorily maintained.
  • the supply port 12 may be provided on both sides in the X-axis direction
  • the discharge port 16 may be provided on both sides in the Y-axis direction.
  • control device 7 includes a liquid supply device.
  • the liquid LQ delivered from the liquid supply device 11 under the control of the control device 7 flows through the supply pipe 13 and then through the supply flow path 14 of the nozzle member 6 from the supply port 12 to the projection optical system PL. Is supplied to the internal space SP between the final optical element FL and the bottom plate 18. By supplying the liquid LQ to the internal space SP, the gas portion existing in the internal space SP is discharged to the outside through the discharge port 16 and / or the opening 18K.
  • the liquid LQ supplied to the internal space SP flows into the space between the land surface 17 and the substrate P (substrate stage 4) through the opening 18K and fills the optical path space K.
  • the control device 7 uses the liquid recovery device 21 to recover a predetermined amount of the liquid LQ per unit time.
  • the liquid LQ in the space between the land surface 17 and the substrate P is recovered through the recovery port 22 of the nozzle member 6. After flowing into the channel 24 and flowing through the recovery pipe 23, it is recovered by the liquid recovery device 21.
  • the control device 7 controls the liquid immersion mechanism 1 to perform the liquid supply operation by the liquid supply device 11 and the liquid recovery operation by the liquid recovery device 21 in parallel, so that the optical path space K is liquid LQ.
  • the liquid LQ immersion region LR is locally formed in a partial region on the substrate P. Then, the control device 7 moves the projection optical system PL and the substrate P relative to each other while moving the projection optical system PL and the substrate P in a state where the optical path space K of the exposure light EL is filled with the liquid LQ. Exposure is performed on the substrate P through the liquid LQ in the optical path space K.
  • the control device 7 controls the substrate stage 4 to move the substrate P at a predetermined speed in the Y-axis direction. Exposure while moving to.
  • the control device 7 uses the blind device 45 to set an irradiation area (projection area) AR of the exposure light EL on the substrate P.
  • an irradiation area (projection area) AR irradiated with the exposure light EL is set in a slit shape by the blind device 45. That is, as shown in the schematic diagram of FIG. 4A, in the first state in which the exposure light EL is irradiated onto the substrate P, the control device 7 uses the blind device 45 to irradiate the exposure light EL on the mask M.
  • the irradiation area (projection area) AR of the exposure light EL on the substrate P is set.
  • EL passes through the first region C1 corresponding to the irradiation region (projection region) AR among the lower surface (liquid contact surface) T1 in contact with the liquid LQ of the final optical element FL of the projection optical system PL.
  • the exposure light EL that has passed through the first region C1 of the bottom surface T1 of the final optical element FL is irradiated onto the substrate P after passing through the liquid LQ.
  • the exposure light EL is irradiated onto the substrate P via the final optical element FL and the liquid LQ in the optical path space K.
  • the nozzle member 6 has a bottom plate 18 having a land surface 17 facing the substrate P, and the substrate P and the land surface 17 are surrounded by the optical path of the exposure light EL. Since a small gap is formed between the surfaces of the substrate P and the land surface 17, the liquid S can be held well. Therefore, even when the substrate P is moved relative to the optical path space K filled with the liquid LQ, the liquid LQ can be prevented from flowing out.
  • the substrate P includes a base material W made of a semiconductor wafer or the like, and a first film Rg made of a photosensitive material (photoresist) that covers the surface of the base material W. Yes.
  • impurities (foreign matter) generated from the first film Rg may be mixed.
  • the impurities generated from the photosensitive material include fragments of the photosensitive material, electrolyte deposits contained in the photosensitive material, and the like.
  • a photo acid generator (PAGE) contained in the base resin and an amine-based material called Quenchia Etc. Since the photosensitive material contains organic matter, impurities containing organic matter may enter the liquid LQ that fills the optical path space K.
  • the liquid LQ that fills the optical path space K also contacts the lower surface (liquid contact surface) T1 of the final optical element FL, impurities (organic substances) may adhere to the lower surface T1 of the final optical element FL.
  • impurities organic substances
  • the substrate P is formed with the base material W, the first film Rg, and a protective film called a top coat film covering the first film Rg, impurities are generated in the liquid LQ of the top coat film.
  • impurities from the photosensitive material (first film Rg) may enter the liquid LQ via the topcoat film, and impurities (organic matter) may adhere to the bottom surface T1 of the final optical element FL.
  • ArF excimer laser light which is ultraviolet light having a light cleaning effect
  • the exposure light EL passes through the lower surface T1 of the final optical element FL. 1 Area C1 is light cleaned.
  • impurities (organic substances) adhering to the first region C1 of the lower surface T1 of the final optical element FL are oxidized and removed. That is, the first region C1 on the lower surface T1 of the final optical element FL is light-washed with the exposure light EL in the first state where the exposure light EL is irradiated onto the substrate P.
  • the first region C1 on the lower surface T1 of the final optical element FL can be optically cleaned by irradiation with the exposure light EL, and the impurities adhered to the first region C1 on the lower surface T1 of the final optical element FL. (Organic matter) can be removed.
  • the lyophilicity of the first region C1 of the lower surface T1 of the final optical element FL can be maintained (or enhanced) by irradiation with the exposure light EL.
  • the control device 7 supplies the liquid LQ using the liquid supply device 11 and the liquid recovery device 21 of the liquid immersion mechanism 1. And recovery In parallel. In this way, while supplying and recovering the liquid LQ using the liquid supply device 11 and the liquid recovery device 21, the first region C1 on the lower surface T1 of the final optical element FL is obtained by light cleaning by irradiation with the exposure light EL. Foreign matter (impurities) removed from the liquid can be recovered along with the liquid LQ.
  • the first region C1 of the lower surface T1 of the final optical element FL in the second state is not irradiated with the exposure light EL on the substrate P, for example, during maintenance of the exposure apparatus EX.
  • the second region C2, which is different from the first region C2, is irradiated with the exposure light EL, and the second region C2 is subjected to light cleaning.
  • FIG. 5 is a diagram showing a state in which the second region C2 of the lower surface T1 of the final optical element FL is optically cleaned.
  • the second region C2 on the lower surface T1 of the final optical element FL is a region including the first region C1 and the region around the first region C1.
  • description will be made assuming that almost the entire region of the lower surface T1 of the final optical element FL is the second region C2.
  • the liquid LQ is placed between the final optical element FL and a predetermined member other than the substrate P by the immersion mechanism 1. Is satisfied.
  • a dummy substrate DP that is held on the substrate stage 4 and different from the substrate P for manufacturing the device is used as the predetermined member.
  • the dummy substrate DP has substantially the same outer shape as the substrate P for manufacturing a device, and can be held by the substrate holder 4H of the substrate stage 4.
  • the dummy substrate DP has a liquid-repellent surface that does not generate impurities in the liquid LQ.
  • the exposure apparatus EX is a dummy substrate held by the final optical element FL of the projection optical system PL and the substrate stage 4. Oppose DP. In this state, the exposure apparatus EX uses the liquid immersion mechanism 1 to fill the space between the projection optical system PL and the dummy substrate DP with the liquid LQ, and forms an immersion area LR for the liquid LQ on the dummy substrate DP.
  • the control device 7 drives the blind device 45 in order to optically wash the second region C2 in a state where the space between the projection optical system PL and the dummy substrate DP is filled with the liquid LQ.
  • Figure 6 As shown in the schematic diagram of A, the control device 7 uses the first driving device 43D to irradiate the second region C2 with the exposure light EL, and the first drive device 43D is provided on the optical path of the exposure light EL. Drive the blind 4 3 away from the optical path of the exposure light EL. Further, the control device 7 uses the second drive device 44D to drive the second blind 44 and adjust the opening 44K.
  • the control device 7 makes the size of the opening 44K larger than when the exposure light EL is radiated onto the substrate P.
  • the exposure light EL incident on the upper surface T2 of the final optical element FL is projected. Irradiated to the second region C2 of the lower surface (liquid contact surface) T1 of the last optical element FL of the optical system PL in contact with the liquid LQ.
  • the second region C2 of the bottom surface T1 of the final optical element FL is irradiated with the exposure light EL, which is ultraviolet light having a light cleaning effect, on the second region C2 of the bottom surface T1 of the final optical element FL.
  • the exposure light EL which is ultraviolet light having a light cleaning effect
  • Impurities (organic matter) adhering to C2 can be removed by oxidative decomposition.
  • the lyophilicity of the second region C2 of the lower surface T1 of the final optical element FL can be maintained (or enhanced) by irradiation with the exposure light EL.
  • the exposure light EL that has passed through the second region C2 of the lower surface T1 of the final optical element FL is also applied to the upper surface 19 of the bottom plate 18 of the nozzle member 6. Therefore, impurities (organic matter) adhering to the upper surface 19 of the bottom plate 18 of the nozzle member 6 can be removed by oxidative decomposition. In addition, the lyophilicity of the upper surface 19 of the bottom plate 18 of the nozzle member 6 can be maintained (or increased) by irradiation with the exposure light EL.
  • control device 7 uses the liquid supply device 11 and the liquid recovery device 21 of the liquid immersion mechanism 1 to perform the supply and recovery of the liquid LQ in parallel, while exposing the exposure light EL to the second region C2. Irradiate. Thereby, the foreign matter (impurities) removed from the second region C2 of the lower surface T1 of the final optical element FL by the optical cleaning can be collected together with the liquid LQ.
  • the exposure light EL is irradiated on the second region C2 of the lower surface T1 of the final optical element FL where the exposure light EL does not pass during the exposure of the substrate P.
  • Impurities (organic matter) adhering to region C2 can be removed by the photo-cleaning effect. Therefore, it is possible to prevent a decrease in transmittance on the lower surface T1 of the final optical element FL, a change in imaging characteristics of the projection optical system PL, and other inconveniences, and a deterioration in performance of the exposure apparatus EX.
  • Power to stop S As described above, in this embodiment, it is possible to prevent the deterioration of the performance of the exposure apparatus EX due to the contamination of the optical member in contact with the liquid LQ for filling the optical path space K of the exposure light EL.
  • the exposure light EL that has passed through the second region C2 of the bottom surface T1 of the final optical element FL is irradiated onto the top surface 19 of the bottom plate 18 of the nodular member 6, thereby impure impurities adhering to the top surface 19 of the bottom plate 18.
  • the object can be removed and the lyophilicity of the upper surface 19 of the bottom plate 18 can be maintained.
  • the nozzle member 6 in order to satisfactorily form the liquid immersion region LR, the nozzle member 6 is provided with a bottom plate 18 having a land surface 17, and the bottom surface T1 and the bottom plate 18 of the final optical element FL The force in which the internal space SP having a predetermined gap is formed between.
  • the impurities in the liquid LQ in the internal space SP depend on the flow of the liquid LQ. As a result, there is a possibility that impurities are likely to adhere to the lower surface T1 of the final optical element FL and the upper surface 19 of the bottom plate 18.
  • the second region C2 of the lower surface T1 of the final optical element FL that is not irradiated with the exposure light EL during the exposure of the substrate P and the upper surface 19 of the bottom plate 18 have a light cleaning effect.
  • impurities (organic matter) adhering to the lower surface T1 of the final optical element FL and the upper surface 19 of the bottom plate 18 are removed.
  • the lyophilicity of the lower surface T1 of the final optical element FL and the upper surface 19 of the bottom plate 18 can be maintained.
  • the adhesion between the lower surface T1 of the final optical element FL and the liquid LQ can be maintained, and it is possible to prevent inconveniences such as bubbles being generated in the liquid LQ and bubbles adhering to the lower surface T1. it can. Similarly, the occurrence of inconvenience such as bubbles adhering to the upper surface 19 of the bottom plate 18 can be prevented.
  • the second exposure light EL that has entered the upper surface T2 of the final optical element FL and passed through the final optical element FL is second. Since the region C 2 is irradiated, the second region C 2 can be smoothly washed with light. Then, the exposure light EL can be smoothly irradiated onto the upper surface 19 of the bottom plate 18 facing the lower surface T1 of the final optical element FL.
  • the exposure apparatus EX is provided on the optical path of the exposure light EL, and drives the blind apparatus 45 that can adjust the irradiation area (projection area) AR of the exposure light EL on the substrate P, so
  • the second region C2 on the lower surface T1 of the final optical element FL can be smoothly irradiated with the exposure light EL, and the second region C2 can be smoothly washed with light using existing equipment and members.
  • the operation of irradiating the second region C2 of the lower surface T1 of the final optical element FL with the exposure light EL and optically cleaning the second region C2 can be performed at predetermined intervals, such as during maintenance. Or, depending on the type of contamination (physical properties) of the photosensitive material and / or the contact time between the substrate P and the liquid LQ, etc. If it can be obtained in advance using Z or simulation, an operation of irradiating the exposure light EL to the second region C2 may be performed according to the obtained contamination state.
  • the contamination state of the second region C2 is measured by a measuring device capable of measuring the contamination state of the second region C2, and when the contamination state exceeds the allowable state based on the measurement result, the second region C2 Even if you irradiate it with exposure light EL.
  • FIGS. 7A and 7B a second embodiment will be described with reference to FIGS. 7A and 7B.
  • the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
  • the blind device 45 for setting the irradiation area (IA, AR) of the exposure light EL may have only the first blind 43.
  • the blind device 45 is provided on the optical path of the exposure light EL, and includes a first blind 43 that forms an opening 43K for setting an irradiation region, and a drive device 43D that drives the first blind 43.
  • the control device 7 drives the first blind 43 to drive the first blind 43 on the optical path of the exposure light EL, as shown in FIG. 7B, in order to irradiate the second region C2 with the exposure light EL.
  • the exposure light EL is irradiated onto the second region C2 of the lower surface T1 of the final optical element FL.
  • the blind device 45 is provided on the optical path of the exposure light EL, and the second blind 44 ′ for forming the opening 44K for setting the irradiation area (IA, AR) and the size of the opening 44K are adjusted.
  • the second blind 44 ' is configured by combining a plurality of plate-like members, and the aperture 44K and thus the irradiation area of the exposure light EL can be adjusted by driving each of the plate-like members. .
  • the control device 7 drives the plate-like member of the second blind 44 ′ using the driving device 44D to irradiate the second region C2 with the exposure light EL, and enlarges the opening 44K. To do. As a result, the exposure light EL is irradiated onto the second region C2 of the lower surface T1 of the final optical element FL.
  • FIG. 9 when the second region C 2 on the lower surface T1 of the final optical element FL is irradiated with the exposure light EL, the final optical element FL and the upper surface 4F of the substrate stage 4 are paired.
  • the second region C2 can be irradiated with the exposure light EL in a state where the space between the final optical element FL and the upper surface 4F of the substrate stage 4 is filled with the liquid LQ.
  • the upper surface 4F of the substrate stage 4 is provided with a predetermined region in which impurities are not mixed in the liquid LQ and the surface state of the liquid LQ is not changed by irradiation with the exposure light EL. It is filled between the optical element FL and its predetermined region.
  • the predetermined area where the surface state does not change by exposure to the exposure light EL includes an area where the liquid repellency of the upper surface 4F does not deteriorate.
  • FIG. 10 An exposure apparatus EX shown in FIG. 10 is disclosed in, for example, JP-A-11-135400 (corresponding international publication 1999/23692) and JP-A-2000-164504 (corresponding US Pat. No. 6,897,693).
  • the substrate stage 4 that can move while holding the substrate P, the reference member on which the reference mark is formed, various photoelectric sensors, and other measuring instruments that perform measurements related to the exposure process can be mounted. And an appropriate measurement stage 8.
  • the second region C2 of the final optical element FL when the second region C2 of the final optical element FL is irradiated with the exposure light EL, the final optical element FL and the upper surface 8F of the measurement stage 8 are opposed to each other, and the final optical element FL
  • the second region C2 can be irradiated with the exposure light EL in a state where the space between the surface and the upper surface 8F of the measurement stage 8 is filled with the liquid LQ.
  • the upper surface 8F of the measurement stage 8 is a region other than the region where the measuring instrument is provided, and impurities are not mixed in the liquid LQ, and the surface state does not change by irradiation with the exposure light EL.
  • a region is provided, and the liquid LQ is filled between the final optical element FL and the region.
  • the exposure light EL is applied to the second region C2 of the lower surface T1 of the final optical element FL while the liquid LQ is supplied and recovered in parallel using the liquid immersion mechanism 1.
  • the liquid LQ supply operation is stopped and the recovery operation is stopped. You can do it.
  • the exposure light EL is irradiated onto the second region C2
  • the exposure light EL is irradiated onto the substrate P.
  • the intensity (illuminance) of the exposure light EL on the lower surface T1 of the final optical element FL may be changed. For example, by making the illuminance when irradiating the exposure light EL to the second region C2 larger than the illuminance when irradiating the exposure light EL on the substrate P, impurities attached to the lower surface T1 can be better removed. can do.
  • the intensity (illuminance) of the exposure light EL to be irradiated is adjusted appropriately. be able to.
  • the nozzle member 6 of the above-described embodiment has the force S including the bottom plate 18 having the upper surface 19 facing the lower surface T1 of the final optical element FL, and the exposure apparatus in which the bottom plate 18 has the non-resizing member 6.
  • the liquid immersion mechanism 1 including the nozzle member 6 is not limited to the above-described configuration.
  • European Patent Publication No. 1,420,298, International Publication No. 2004/055803, International Publication No. 2004/057590 , International Publication No. 2005/029559, International Publication No. 2004Z086468 pamphlet corresponding US Publication No. 2005 / 0280791A: 0, Japanese Patent Application Laid-Open No.
  • An immersion mechanism (nozzle member) may be used, and at least a part of the immersion mechanism 1 (for example, a member constituting the liquid supply device 11 and / or the liquid recovery device 21) may be used as the exposure apparatus EX.
  • the immersion mechanism 1 for example, a member constituting the liquid supply device 11 and / or the liquid recovery device 21
  • facilities such as a factory where the exposure apparatus EX is installed may be used instead.
  • the liquid LQ used when the substrate P is subjected to immersion exposure is supplied to the image plane side of the projection optical system PL for the purpose of preventing the generation of bubbles in the immersion region LR.
  • the liquid supply device 11 includes a deaeration device for reducing dissolved oxygen (dissolved gas) in the liquid LQ, and the liquid supply device 11 is provided with respect to the liquid LQ before being supplied to the image plane side of the projection optical system PL. After degassing, the degassed liquid LQ is supplied to the image plane side of the projection optical system PL.
  • light cleaning is a structure in which impurities (organic substances) are oxidized and decomposed by irradiating light having a light cleaning effect. Therefore, when light cleaning is performed, a predetermined concentration of oxygen exists in the liquid LQ (dissolved). ) Is desirable. Accordingly, the second region C2 of the final optical element FL and the second region C2 of the final optical element FL are irradiated by irradiating the second region C2 of the final optical element FL with the exposure light EL in a state where the space between the final optical element FL and the predetermined member is filled with the liquid LQ. When optically cleaning the top surface 19 etc.
  • the control device 7 In this case, the oxygen concentration of the liquid LQ supplied to the image plane side of the projection optical system PL may be higher than the oxygen concentration of the liquid LQ when the substrate P is exposed. That is, when performing optical cleaning, the control device 7 may supply the liquid LQ to the image plane side of the projection optical system PL, for example, without performing a deaeration process. Alternatively, when the liquid LQ is filled between the final optical element FL and the predetermined member and the second region C2 is irradiated with the exposure light EL to perform optical cleaning, the control device 7 is used for exposure of the substrate P. A liquid other than the liquid (pure water), for example, hydrogen peroxide water, may be supplied to the image plane side of the projection optical system PL.
  • pure water for example, hydrogen peroxide water
  • the blind (45) of the blind device 45 is irradiated so that the second region C2 on the lower surface T1 of the final optical element FL and / or the upper surface 19 of the bottom plate 18 is irradiated with the exposure light EL.
  • 43, Z, or 44 Adjusting the position of the exposure light EL Using an optical element placed on the optical path of the exposure light EL, the irradiation area of the exposure light EL is adjusted (enlarged and / or reduced). Also good. In this case, an optical element already disposed on the optical path of the exposure light EL may be used, or the optical element may be disposed on the optical path of the exposure light EL immediately before performing the above-described light cleaning process.
  • the blind device 45 and its optical element may be used in combination for optical cleaning.
  • a zoom lens system or a beam expander may be used as the optical element.
  • the second region C2 irradiated with the exposure light EL during the light cleaning is not limited to the force including the first region C1 irradiated with the exposure light EL during the exposure.
  • the two regions C2 do not have to include at least a part of the first region C1.
  • the two regions C2 may include at least a part of the remaining region of the lower surface T1 excluding the first region C1.
  • the light cleaning is performed using the exposure light EL, but light other than the exposure light may be used as the cleaning light.
  • the liquid LQ in each of the above embodiments is pure water.
  • Pure water has the advantage that it can be easily obtained in large quantities at a semiconductor manufacturing plant or the like, and has less adverse effects on the photoresist, optical elements (lenses), etc. on the substrate P.
  • pure water has no adverse effects on the environment and has an extremely low impurity content, so that it cleans the surface of the substrate P and the surface of the optical element provided on the front end surface of the projection optical system PL. Can also be expected.
  • the refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is said to be approximately 1.
  • the wavelength is reduced to 1 / n, that is, about 134 nm, and a high resolution can be obtained.
  • the projection optical system PL can be used if it is sufficient to ensure the same depth of focus as in the air.
  • the numerical aperture can be further increased, and the resolution is improved in this respect as well.
  • the optical element FL is attached to the tip of the projection optical system PL, and the optical characteristics of the projection optical system PL such as aberration (spherical aberration, coma aberration, etc.) are adjusted by this optical element. It can be carried out.
  • the optical element attached to the tip of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL. Alternatively, it may be a plane parallel plate that can transmit the exposure light EL.
  • the pressure between the optical element at the tip of the projection optical system PL and the substrate P generated by the flow of the liquid LQ is large, the optical element cannot be replaced, and the optical force is not increased.
  • the element may be firmly fixed so as not to move.
  • a force that is a configuration filled with liquid LQ between the projection optical system PL and the surface of the substrate P, for example, a cover glass made of a plane parallel plate is attached to the surface of the substrate P.
  • the liquid LQ may be filled in the state.
  • the optical path space on the image surface (exit surface) side of the optical element FL at the tip is filled with liquid, but this is disclosed in International Publication No. 2004/019128.
  • the liquid LQ in each of the above embodiments is water (pure water), but may be a liquid other than water.
  • the light source of the exposure light EL is an F laser
  • this F Laser light passes through water
  • liquid LQ fluorinated fluids such as fluorinated oils.
  • the portion that comes into contact with the liquid LQ is made lyophilic by, for example, forming a thin film with a substance having a small molecular structure including fluorine.
  • liquid LQ is applied to the projection optical system PL and the substrate P surface, which are transparent to the exposure light EL and have a refractive index as high as possible. It is also possible to use a material that is stable (for example, cedar oil) with respect to the existing photoresist.
  • the liquid LQ may have a refractive index of about 1.6 to about 1.8.
  • the optical element FL may be formed of a material having a higher refractive index than quartz and fluorite (eg, 1.6 or more).
  • Various liquids, for example, supercritical fluids can be used as the liquid LQ.
  • the irradiation area (IA, AR) of the exposure light EL is rectangular, but the present invention is not limited to this, and may be, for example, an arc.
  • the irradiation areas (IA, AR) are set including the optical axis within the field of the projection optical system PL.
  • the present invention is not limited thereto, and may be set eccentrically without including the optical axis, for example.
  • the position information of the mask stage 3 and the substrate stage 4 is measured using the interferometer system (3L, 4U.
  • the present invention is not limited to this.
  • the scale In this case, a hybrid system including both an interferometer system and an encoder system is used, and the measurement result of the encoder system is calibrated using the measurement result of the interferometer system. It is also preferable to switch the interferometer system and encoder system, or use both to control the position of the stage.
  • the substrate P in each of the above embodiments includes not only a semiconductor wafer for manufacturing a semiconductor device but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or a mask used in an exposure apparatus. Or reticle reticles (synthetic quartz, silicon wafers) are used.
  • the exposure apparatus EX in addition to the step 'and' scan type scanning exposure apparatus (scanning stepper) that performs the mask exposure of the pattern of the mask M by moving the mask M and the substrate P synchronously,
  • the present invention can also be applied to a step-and-repeat projection exposure apparatus (stepper) in which the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
  • a reduced image of the first pattern is projected in a state where the first pattern and the substrate P are substantially stationary (for example, a refraction that does not include a reflective element at a 1/8 reduction magnification).
  • Mold casting The present invention can also be applied to an exposure apparatus that performs batch exposure on the substrate P using a shadow optical system. In this case, after that, with the second pattern and the substrate P almost stationary, a reduced image of the second pattern is collectively exposed on the substrate P by partially overlapping the first pattern using the projection optical system. It can also be applied to a stitch type batch exposure apparatus.
  • the stitch type exposure apparatus can also be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially transferred onto the substrate P, and the substrate P is sequentially moved.
  • the present invention is disclosed in, for example, Japanese Patent Laid-Open Nos. 10-163099 and 10-214783 (corresponding US Pat. No. 6,590,634), and Japanese Translation of PCT International Publication No. 2000-505958 (corresponding US Pat. 5, 969, 441), US Pat. No. 6,208,407, etc., and can be applied to a twin-stage type exposure apparatus having a plurality of substrate stages.
  • the present invention can be applied to an exposure apparatus provided with a plurality of substrate stages and a plurality of measurement stages with a force S.
  • a force that employs an exposure apparatus that locally fills a liquid between the projection optical system PL and the substrate P is disclosed in, for example, Japanese Patent Application Laid-Open No. 6-124873, A liquid immersion optical apparatus for performing exposure in a state where the entire surface of a substrate to be exposed is immersed in a liquid as disclosed in JP-A-10-303114 and US Pat. No. 5,825,043. Is also applicable.
  • the exposure apparatus provided with the projection optical system PL has been described as an example.
  • the present invention can be applied to an exposure apparatus and an exposure method that do not use the projection optical system PL. it can. Even when the projection optical system is not used, the exposure light is irradiated to the substrate through an optical member such as a mask or a diffractive optical element, and an immersion region is formed in a predetermined space between the optical member and the substrate. It is formed.
  • the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate P.
  • a predetermined light shielding pattern (or a Is a force using a light-transmitting mask on which a phase pattern (dimming pattern) is formed.
  • the pattern to be exposed An electronic mask (also called a variable shaping mask) that forms a transmission pattern, reflection pattern, or light emission pattern based on electronic data (for example, DMD (Digital Micro-), a type of non-light-emitting image display device (spatial light modulator). mirror Device) etc. may be used.
  • an exposure apparatus that exposes line and space patterns on the substrate P by forming interference fringes on the substrate P.
  • the present invention can also be applied to (lithography system).
  • JP-T-2004-519850 corresponding US Pat. No. 6,611,316
  • two mask patterns are combined on the substrate via the projection optical system.
  • the present invention can also be applied to an exposure apparatus that performs double exposure of one shot area on the substrate almost simultaneously by one time of exposure.
  • the exposure apparatus EX of the present embodiment has various mechanical subsystems including the constituent elements recited in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. In order to ensure these various accuracies, before and after the assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, various electrical systems Is adjusted to achieve electrical accuracy.
  • the assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from these various subsystems to the exposure system.
  • a microdevice such as a semiconductor device includes a step 201 for performing a function design of the microdevice and a step 202 for manufacturing a mask (reticle) based on the design step.
  • Step 203 of manufacturing a substrate as a base material a step of exposing the mask pattern onto the substrate by the exposure apparatus EX of the above-described embodiment, a step of developing the exposed substrate, a heating (curing) of the developed substrate, and an etching step It is manufactured through a step 204 including a substrate processing process such as a device assembly step (including processing processes such as a dicing process, a bonding process, and a packaging process) 205, and an inspection step 206.
  • a substrate processing process such as a device assembly step (including processing processes such as a dicing process, a bonding process, and a packaging process) 205, and an inspection step 206.
  • the performance of the exposure apparatus can be prevented from being deteriorated, the substrate can be exposed satisfactorily, and a device having desired performance can be manufactured. Therefore, the present invention will contribute to the development of high-tech industry and IT technology including Japan's semiconductor industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 露光装置(EX)は、基板(P)上に露光光(EL)を照射する第1状態において、露光光(EL)の照射領域(AR)を設定する設定装置(45)を備えており、基板(P)上に露光光(EL)を照射しない第2状態において、光学部材(FL)の液体(LQ)と接触する第1面のうち、第1状態で露光光(EL)が通過する第1領域とは異なる第2領域に露光光(EL)を照射して第2領域を光洗浄する。

Description

明 細 書
露光装置及び方法、露光装置のメンテナンス方法、並びにデバイス製造 方法
技術分野
[0001] 本発明は、液体を介して基板を露光する露光装置及び方法、露光装置のメンテナ ンス方法、並びにデバイス製造方法に関するものである。
本願は、 2005年 6月 30日に出願された特願 2005— 191561号に基づき優先権 を主張し、その内容をここに援用する。
背景技術
[0002] 半導体デバイス等のマイクロデバイスの製造工程の一つであるフォトリソグラフイエ 程では、マスクのパターン像を感光性の基板上に露光する露光装置が用いられる。 この露光装置は、マスクを保持するマスクステージと基板を保持する基板ステージと を有し、マスクのパターン像を投影光学系を介して基板に露光するものである。マイク 口デバイスの製造においては、デバイスの高密度化のために、基板上に形成される パターンの微細化が要求されている。この要求に応えるために露光装置の更なる高 解像度化が望まれており、その高解像度化を実現するための手段の一つとして、下 記特許文献に開示されているような、投影光学系と基板との間の露光光の光路空間 を液体で満たし、投影光学系及び液体を介して基板を露光する液浸露光装置が案 出されている。
特許文献 1:国際公開第 99/49504号パンフレット
発明の開示
発明が解決しょうとする課題
[0003] ところで、投影光学系と基板との間の光路空間を液体で満たしたとき、その液体中 に、例えば基板上から発生した不純物が混入する可能性がある。不純物を含んだ液 体が投影光学系の光学部材に接触すると、その光学部材が汚染される可能性があ る。光学部材の汚染は、露光装置の性能の劣化をもたらす。
[0004] 本発明はこのような事情に鑑みてなされたものであって、液浸法を適用する場合に も、その性能の劣化を防止できる露光装置及び方法、並びにその露光装置及び方 法を用いるデバイス製造方法を提供することを目的とする。また、液浸法を用いる露 光装置の性能の劣化を防止できるメンテナンス方法を提供することを目的とする。 課題を解決するための手段
[0005] 上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以 下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に 過ぎず、各要素を限定するものではない。
[0006] 本発明の第 1の態様に従えば、液体 (LQ)を介して基板 (P)上に露光光 (EL)を照 射して基板(P)を露光する露光装置にぉレ、て、液体 (LQ)に接触する第 1面 (T1)を 有する光学部材 (FL)と、基板 (P)上に露光光 (EL)が照射される第 1状態にぉレ、て 、露光光 (EL)の照射領域 (IA、 AR)を設定する設定装置 (45)とを備え、基板 ) 上に露光光 (EL)が照射されなレ、第 2状態にぉレ、て、光学部材 (FL)の第 1面 (T1) のうち、第 1状態で露光光 (EL)が通過する第 1領域 (C1)とは異なる第 2領域 (C2) に露光光 (EL)を照射して第 2領域 (C2)を光洗浄する露光装置 (EX)が提供される
[0007] 本発明の第 2の態様に従えば、液体 (LQ)を介して基板(P)を露光する露光装置 であって、液体 (LQ)に接触する第 1面 (T1)を有する光学部材 (FUと、露光光 (EL )の照射領域 (IA、 AR)を設定する設定装置 (45)とを備える露光装置 (EX)が提供 される。設定装置 (45)は、光学部材 (FL)の第 1面 (T1)の第 1領域 (C1)を介して基 板 (P)に露光光 (EUが照射される露光モードと、光学部材 (FL)の第 1面 (T1)の第 2領域 (C2)に露光光 (EL)が照射される光洗浄モードとを有する。
[0008] 本発明の第 1及び第 2の態様によれば、光学部材の液体と接触する第 1面の第 2領 域を光洗浄することができるので、露光装置の性能の劣化を防止できる。
[0009] 本発明の第 3の態様に従えば、上記態様の露光装置 (EX)を用いるデバイス製造 方法が提供される。
[0010] 本発明の第 3の態様によれば、性能の劣化が防止された露光装置を用いてデバイ スを製造することができる。
[0011] 本発明の第 4の態様に従えば、光学部材 (FL)及び液体 (LQ)を介して基板 (P)上 に露光光 (EL)を照射して基板(P)を露光する露光装置 (EX)のメンテナンス方法に おいて、光学部材 (FL)の液体 (LQ)と接触する第 1面 (T1)のうち、基板(P)上に露 光光 (EL)を照射するときに露光光 (EL)が通過する第 1領域 (C1)とは異なる第 2領 域 (C2)に露光光 (EL)を照射して、第 2領域 (C2)を光洗浄するメンテナンス方法が 提供される。
[0012] 本発明の第 5の態様に従えば、液体 (LQ)と、液体 (LQ)と接触する第 1面 (T1)を 有する光学部材 (FL)とを介して基板(P)に露光光(EL)を照射する工程であり、光 学部材 (FUの第 1面 (T1)の第 1領域 (C1)を露光光 (EL)が通過する前記工程と; 光学部材 (FUの第 1面 (T1)の第 2領域 (C2)に露光光 (EL)を照射して第 2領域( C2)を光洗浄する工程と、を備える露光方法が提供される。
[0013] 本発明の第 4及び第 5の態様によれば、光学部材の液体と接触する第 1面の第 2領 域を光洗浄することができるので、露光装置の性能の劣化を防止できる。
図面の簡単な説明
[0014] [図 1]第 1実施形態に係る露光装置を示す概略構成図である。
[図 2]液浸機構の要部を示す側断面図である。
[図 3]液浸機構の要部を示す斜視図である。
[図 4A]第 1状態における設定装置と露光光の照射領域との関係を示す模式図である
[図 4B]第 1状態における設定装置と露光光の照射領域との関係を示す模式図である
[図 5]第 1実施形態に係るメンテナンス方法を説明するための図である。
[図 6A]第 2状態における設定装置と露光光の照射領域との関係を示す模式図である
[図 6B]第 2状態における設定装置と露光光の照射領域との関係を示す模式図である
[図 7A]第 2実施形態に係る設定装置を示す模式図である。
[図 7B]第 2実施形態に係る設定装置を示す模式図である。
[図 8A]第 3実施形態に係る設定装置を示す模式図である。 [図 8B]第 3実施形態に係る設定装置を示す模式図である。
[図 9]第 4実施形態に係るメンテナンス方法を説明するための図である。
[図 10]第 5実施形態に係るメンテナンス方法を説明するための図である。
[図 11]マイクロデバイスの製造工程の一例を説明するためのフローチャート図である 符号の説明
[0015] 1…液浸機構、 4…基板ステージ、 6…ノズル部材、 8…計測ステージ、 11…液体供 給装置、 21…液体回収装置、 43…第 1ブラインド (設定部材)、 43D…駆動装置、 4 3K…開口、 44、 44,…第 2ブラインド (設定部材)、 44D…駆動装置、 44K…開口、 45…ブラインド装置 (設定装置、調整機構)、 AR…投影領域 (照射領域)、 C1…第 1 領域、 C2…第 2領域、 DP…ダミー基板、 EL…露光光、 EX…露光装置、 FL…最終 光学素子 (光学部材)、 IA…照明領域 (照射領域)、 K…光路空間、 LQ…液体、 LR …液浸領域、 Ρ· · ·基板、 T1…下面 (第 1面)、 T2…上面 (第 2面)
発明を実施するための最良の形態
[0016] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。
[0017] ぐ第 1実施形態 >
第 1実施形態について説明する。図 1は第 1実施形態に係る露光装置 EXを示す概 略構成図である。図 1において、露光装置 EXは、マスク Mを保持して移動可能なマ スクステージ 3と、基板 Pを保持して移動可能な基板ステージ 4と、マスクステージ 3に 保持されているマスク Mを露光光 ELで照明する照明系 ILと、露光光 ELで照明され たマスク Mのパターン像を基板 P上に投影する投影光学系 PLと、露光装置 EX全体 の動作を制御する制御装置 7とを備えてレ、る。
[0018] なお、ここでいう基板は半導体ウェハ等の基材上に感光材 (フォトレジスト)、保護膜
(トップコート膜)、反射防止膜などの各種の膜を少なくとも 1層塗布したものを含み、 マスクは基板上に縮小投影されるデバイスパターンを形成されたレチクルを含む。ま た、本実施形態においては、マスクとして透過型のマスクを用いる力 反射型のマス クを用いてもよい。 [0019] 本実施形態の露光装置 EXは、露光波長を実質的に短くして解像度を向上するとと もに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置である。露 光装置 EXは、投影光学系 PLの像面側の露光光 ELの光路空間 Kを液体 LQで満た し、基板 P上に液体 LQの液浸領域 LRを形成する液浸機構 1を備えている。露光装 置 EXは、少なくともマスク Mのパターン像を基板 Pに露光している間、液浸機構 1を 用いて、露光光 ELの光路空間 Kを液体 LQで満たす。露光装置 EXは、投影光学系 PLと光路空間 Kに満たされた液体 LQとを介してマスク Mを通過した露光光 ELを基 板 P上に照射することによって、マスク Mのパターン像を基板 Pに露光する。また、本 実施形態の露光装置 EXは、光路空間 Kに満たされた液体 LQが、投影光学系 PLの 投影領域 ARを含む基板 P上の一部の領域に、投影領域 ARよりも大きく且つ基板 P よりも小さい液体 LQの液浸領域 LRを局所的に形成する局所液浸方式を採用してい る。本実施形態においては、液体 LQとして純水を用いる。
[0020] 本実施形態では、露光装置 EXとしてマスク Mと基板 Pとを走査方向に同期移動し つつマスク Mに形成されたパターンを基板 Pに露光する走査型露光装置 (所謂スキ ヤニングステツパ)を使用する場合を例にして説明する。以下の説明において、水平 面内においてマスク Mと基板 Pとの同期移動方向(走査方向)を Y軸方向、水平面内 において Y軸方向と直交する方向を X軸方向(非走査方向)、 X軸及び Y軸方向に直 交する方向(本例では投影光学系 PLの光軸と平行な方向)を Z軸方向とする。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 Θ X、 Θ Y、及び θ Ζ方向 とする。
[0021] 照明系 ILは、光源 30及び照明光学系 40を含んで構成されており、マスク Μ上の所 定の照明領域 ΙΑを均一な照度分布の露光光 ELで照明するものである。照明系 ILか ら射出される露光光 ELとしては、例えば水銀ランプから射出される輝線 (g線、 h線、 i 線)及び KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DUV光)、 ArFエキシ マレーザ光(波長 193nm)及び Fレーザ光(波長 157nm)等の真空紫外光 (VUV
2
光)などが用いられる。本実施形態においては、光源 30として ArFエキシマレーザ装 置が用いられ、露光光 ELとして ArFエキシマレーザ光が用いられる。
[0022] 照明光学系 40は、コリメータレンズ、及びフライアイレンズ等のオプティカルインテ グレータ等を含む照度均一化光学系 41、リレー光学系 42、 46、第 1ブラインド 43及 び第 2ブラインド 44を含むブラインド装置 45、ミラー 47、及びコンデンサレンズ 48等 を備えている。
[0023] ブラインド装置 45は、露光光 ELの光路上に設けられ、マスク M上での露光光 ELの 照射領域 (照明領域) IA、及び基板 P上での露光光 ELの照射領域 (投影領域) AR を調整可能である。本実施形態のブラインド装置 45は、例えば特開平 4— 196513 号公報 (対応米国特許第 5, 473, 410号)、あるいは国際公開第 99Z63585号パ ンフレット(対応米国特許第 6, 597, 002号)に開示されているような、露光光 ELの 光路上に設けられ、マスク M上の露光光 ELの照射領域 (照明領域) IAを設定するた めの開口 43Kを形成する第 1ブラインド 43と、走查露光の開始時及び終了時におい て不要な部分の露光を防止するために照明領域 IAを更に制限する第 2ブラインド 44 とを備えている。また、本実施形態のブラインド装置 45は、第 1ブラインド 43を駆動す る第 1駆動装置 43Dと、第 2ブラインド 44を駆動する第 2駆動装置 44Dとを備えてい る。第 1ブラインド 43は、マスク M上の照明領域 IAを設定するための開口 43Kを備え ており、マスク Mのパターン面に対する共役面から僅かにデフォーカスした面に配置 されている。本実施形態においては、第 1ブラインド 43の開口 43Kは矩形状 (スリット 状)に形成されている。ブラインド装置 45の第 1ブラインド 43によってマスク M上の露 光光 ELの照射領域(照明領域) IAが設定されることにより、基板 P上の露光光 ELの 照射領域 (投影領域) ARも設定される。第 1ブラインド 43の開口 43Kを適宜調整す ることにより、マスク M上での露光光 ELの照射領域(照明領域) IA、及び基板 P上で の露光光 ELの投影領域 (照射領域) ARを調整することができる。
[0024] 第 2ブラインド 44は第 1ブラインド 43の近傍に配置されており、マスク Mの走查方向
(Y軸方向)及び非走查方向(X軸方向)のそれぞれに対応する方向の位置及び幅を 可変とする開口 44Kを有している。第 2ブラインド 44は、複数の板状部材を組み合わ せて構成されており、制御装置 7は、第 2駆動装置 44Dを用いて板状部材のそれぞ れを駆動することによって、開口 44Kの大きさを調整して露光光 ELの少なくとも一部 を遮ることが可能である。ブラインド装置 45は、走查露光の開始時及び終了時に第 2 ブラインド 44を介して照明領域 IAを更に制限することによって、不要な部分の露光を 防止する。
[0025] なお、走査方向(Y軸方向)及び非走査方向(X軸方向)の少なくとも一方に関する 照明領域 IA (投影領域 AR)の幅の調整では、第 1ブラインド 43の代わりに、あるいは それと組み合わせて、第 2ブラインド 44を用いることとしてもよい。また、例えばォプテ イカルインテグレータとして内面反射型インテグレータ(ロッドなど)を用いる場合、そ の射出面で第 1ブラインド 43を兼用し、照明領域 IA (投影領域 AR)の調整に用いる 第 2ブラインド 44のみを設けることとしてもよい。さらに、第 1及び第 2ブラインド 43、 4 4は照明系内に配置するものとした力 これに限らず、マスク Mのパターン面との共役 面、あるいはパターン面及びその共役面の一方の近傍に配置すればよい。また、第 1及び第 2ブラインド 43、 44はどちらが上流側に配置されてもよいし、互いに近接し て配置しなくてもよい。なお、照明領域 IA (投影領域 AR)の少なくとも幅の調整に用 いるブラインド(エッジ)はマスク Mのパターン面と共役に配置することが好ましい。
[0026] このようにして構成された照明系 ILの作用を簡単に説明すると、光源 30から射出さ れた露光光 ELは、照度均一化光学系 41によって均一な照度分布に調整される。照 度均一化光学系 41から射出された露光光 ELは、第 1リレーレンズ 42を通過した後、 ブラインド装置 45の第 1ブラインド 43の開口 43K及び第 2ブラインド 44を通過する。 ブラインド装置 45を通過した露光光 ELは、第 2リレーレンズ 46を通過した後、ミラー 4 7によって光路を折り曲げられる。ミラー 47によって光路を折り曲げられた露光光 EL は、コンデンサレンズ 48を通過した後、マスクステージ 3に保持されたマスク M上の照 明領域 IAを均一な照度分布で照明する。
[0027] マスクステージ 3は、リニアモータ等のァクチユエータを含むマスクステージ駆動装 置 3Dの駆動により、マスク Mを保持した状態で、 X軸、 Y軸、及び θ Z方向に移動可 能である。マスクステージ 3 (ひいてはマスク M)の位置情報はレーザ干渉計 3Lによつ て計測される。レーザ干渉計 3Lはマスクステージ 3上に設けられた移動鏡 3Kを用い てマスクステージ 3の位置情報を計測する。制御装置 7は、レーザ干渉計 3Lの計測 結果に基づいてマスクステージ駆動装置 3Dを駆動し、マスクステージ 3に保持され てレ、るマスク Mの位置制御を行う。
[0028] なお、移動鏡 3Kは平面鏡のみでなくコーナーキューブ(レトロリフレクタ)を含むも のとしてもよいし、移動鏡 3Kをマスクステージ 3に固設する代わりに、例えばマスクス テージ 3の端面 (側面)を鏡面加工して形成される反射面を用いてもよい。
[0029] 投影光学系 PLは、マスク Mのパターン像を所定の投影倍率で基板 Pに投影するも のであって、複数の光学素子を有しており、それら光学素子は鏡筒 PKで保持されて いる。本実施形態の投影光学系 PLは、その投影倍率が例えば 1/4、 1/5、 1/8 等の縮小系であり、前述の照明領域 IAと共役な投影領域 ARにマスクパターンの縮 小像を形成する。なお、投影光学系 PLは縮小系、等倍系及び拡大系のいずれでも よい。また、投影光学系 PLは、反射光学素子を含まない屈折系、屈折光学素子を含 まない反射系、反射光学素子と屈折光学素子とを含む反射屈折系のいずれであつ てもよレ、。また、投影光学系 PLは、倒立像と正立像とのいずれを形成してもよい。本 実施形態においては、投影光学系 PLの複数の光学素子のうち、投影光学系 PLの 像面に最も近い最終光学素子 FLのみが光路空間 Kの液体 LQと接触する。
[0030] 基板ステージ 4は、基板 Pを保持する基板ホルダ 4Hを有しており、ベース部材 5上 で、基板ホルダ 4Hに基板 Pを保持して移動可能である。基板ホルダ 4Hは、基板ステ ージ 4上に設けられた凹部 4Rに配置されており、基板ステージ 4のうち凹部 4R以外 の上面 4Fは、基板ホルダ 4Hに保持された基板 Pの表面とほぼ同じ高さ(面一)にな るような平坦面となっている。なお、基板ホルダ 4Hに保持された基板 Pの表面と基板 ステージ 4の上面 4Fとの間に段差があってもよい。また、基板ステージ 4の上面 4Fは その一部、例えば基板 P (凹部 4R)を囲む所定領域のみ、基板 Pの表面とほぼ同じ高 さとしてもよい。さらに、基板ホルダ 4Hを基板ステージ 4の一部と一体に形成してもよ いが、本実施形態では基板ホルダ 4Hと基板ステージ 4の一部とを別々に構成し、例 えば真空吸着などによって基板ホルダ 4Hを凹部 4Rに固定している。
[0031] 基板ステージ 4は、リニアモータ等のァクチユエータを含む基板ステージ駆動装置 4 Dの駆動により、基板 Pを保持した状態で、 X軸、 Y軸、 Z軸、 Θ Χ、 θ Υ, ΆΧ Θ Zjj 向の 6自由度の方向に移動可能である。基板ステージ 4 (ひいては基板 P)の位置情 報はレーザ干渉計 4Lによって計測される。レーザ干渉計 4Lは基板ステージ 4に設け られた移動鏡 4Kを用いて基板ステージ 4の X軸、 Y軸、及び θ Z方向に関する位置 情報を計測する。また、基板ステージ 4に保持されている基板 Pの表面の面位置情報 (Z軸、 Θ X、及び θ Υ方向に関する位置情報)は、不図示のフォーカス'レベリング検 出系によって検出される。制御装置 7は、レーザ干渉計 4Lの計測結果及びフォー力 ス'レべリング検出系の検出結果に基づいて基板ステージ駆動装置 4Dを駆動し、基 板ステージ 4に保持されている基板 Ρの位置制御を行う。
[0032] なお、レーザ干渉計 4Lは基板ステージ 4の Ζ軸方向の位置、及び Θ X、 θ Υ方向の 回転情報をも計測可能としてよぐその詳細は、例えば特表 2001— 510577号公報 (対応国際公開第 1999/28790号パンフレット)に開示されている。さらに、移動鏡 4Κを基板ステージ 4に固設する代わりに、例えば基板ステージ 4の一部(側面など) を鏡面加工して形成される反射面を用いてもょレ、。
[0033] また、フォーカス'レべリング検出系はその複数の計測点でそれぞれ基板 Ρの Ζ軸方 向の位置情報を計測することで、基板 Ρの Θ X及び θ Υ方向の傾斜情報(回転角)を 検出するものであるが、この複数の計測点はその少なくとも一部が液浸領域 LR (又 は投影領域 AR)内に設定されてもよいし、あるいはその全てが液浸領域 LRの外側 に設定されてもよい。さらに、例えばレーザ干渉計 4Lが基板 Ρの Ζ軸、 θ X及び θ Υ 方向の位置情報を計測可能であるときは、基板 Ρの露光動作中にその Ζ軸方向の位 置情報が計測可能となるようにフォーカス'レべリング検出系を設けなくてもよぐ少な くとも露光動作中はレーザ干渉計 4Lの計測結果を用いて Ζ軸、 θ X及び θ Υ方向に 関する基板 Ρの位置制御を行うようにしてもょレ、。
[0034] 次に、図 2及び図 3を参照しながら液浸機構 1について説明する。図 2は液浸機構 1 の要部を示す側断面図、図 3は斜視図である。液浸機構 1は、基板ステージ 4に保持 された基板 Ρと、その基板 Ρと対向する位置に設けられ、露光光 ELが通過する投影 光学系 PLの最終光学素子 FLとの間の光路空間 Κを液体 LQで満たす。液浸機構 1 は、光路空間 Kの近傍に設けられ、光路空間 Kに対して液体 LQを供給する供給口 1 2及び液体 LQを回収する回収口 22を有するノズノレ部材 6と、供給管 13、及びノズノレ 部材 6の供給口 12を介して液体 LQを供給する液体供給装置 11と、ノズル部材 6の 回収口 22、及び回収管 23を介して液体 LQを回収する液体回収装置 21とを備えて いる。ノズル部材 6は、投影光学系 PLの最終光学素子 FLを囲むように設けられた環 状部材である。また、ノズル部材 6の内部には、供給口 12と供給管 13とを接続する供 給流路 14、及び回収口 22と回収管 23とを接続する回収流路 24が形成されてレ、る。 液体供給装置 11及び液体回収装置 21の動作は制御装置 7に制御される。液体供 給装置 11は清浄で温度調整された液体 LQを送出可能であり、真空系等を含む液 体回収装置 21は液体 LQを回収可能である。
[0035] ノズノレ部材 6は、最終光学素子 FLの下面 T1と対向する上面 19を有する底板 18を 有している。底板 18の一部は、 Z軸方向に関して、投影光学系 PLの最終光学素子 F Lの下面 T1と基板 P (基板ステージ 4)との間に配置されている。また、底板 18の中央 部には、露光光 ELが通過する開口 18Kが形成されている。開口 18Kは、露光光 EL が照射される投影領域 ARよりも大きく形成されている。これにより、投影光学系 PL ( 最終光学素子 FUを通過した露光光 ELは、底板 18に遮られることなぐ基板 上に 到達できる。本実施形態においては、開口 18Kは、露光光 ELの断面形状(すなわち 投影領域 AR)に応じた平面視略矩形状に形成されている。なお、底板 18の開口 18 Kの形状は、露光光 ELを通過可能であれば、適宜変更可能である。
[0036] ノズノレ部材 6のうち、基板ステージ 4に保持された基板 Pの表面と対向する下面は、 XY平面と平行な平坦面となっている。ノズル部材 6の下面とは、底板 18の下面 17を 含むものである。基板ステージ 4に保持された基板 Pの表面は XY平面とほぼ平行で あるため、ノズノレ部材 6の下面 17は、基板ステージ 4に保持された基板 Pの表面と対 向するように、且つ基板 Pの表面と略平行となるように設けられている。以下の説明に おいては、ノズル部材 6 (底板 18)の下面 17を適宜、ランド面 17と称する。ランド面 17 は、ノズル部材 6のうち、基板ステージ 4に保持された基板 Pに最も近い位置に設けら れた平坦面であり、投影光学系 PLの最終光学素子 FLの下面 T1と基板 Pの表面との 間におレ、て、露光光 ELの光路 (投影領域 AR)を囲むように設けられてレ、る。
[0037] 基板 Pの表面と最終光学素子 FLの下面 T1との距離は、基板 Pの表面とランド面 17 との距離よりも長くなつている。すなわち、最終光学素子 FLの下面 T1は、ランド面 17 より高い位置に設けられている。本実施形態においては、基板 Pの表面と最終光学 素子 FLの下面 T1との距離は、約 3mm程度に設定されている。また、基板 Pの表面 とランド面 17との距離は、約 lmm程度に設定されている。そして、ランド面 17には光 路空間 Kに満たされた液体 LQが接触するようになっており、最終光学素子 FLの下 面 Tlにも光路空間 Kに満たされた液体 LQが接触するようになっている。すなわち、 ノズノレ部材 6のランド面 17及び最終光学素子 FLの下面 T1は、光路空間 Kに満たさ れた液体 LQと接触する液体接触面となっている。
[0038] また、底板 18は、最終光学素子 FLの下面 T1及び基板 P (基板ステージ 4)とは接 触しないように設けられており、最終光学素子 FLの下面 T1と底板 18の上面 19との 間には所定のギャップを有する空間が設けられている。以下の説明においては、最 終光学素子 FLの下面 T1と底板 18の上面 19との間の空間を含むノズル部材 6の内 側の空間を適宜、内部空間 SPと称する。
[0039] ノズノレ部材 6の内部には、供給口 12に接続する供給流路 14が形成されている。供 給流路 14は、ノズル部材 6の一部を貫通するスリット状の貫通孔によって形成されて いる。本実施形態においては、供給流路 14は、光路空間 K (投影領域 AR)に対して Y軸方向両側のそれぞれに設けられている。そして、供給流路 14の上端部と液体供 給装置 11とが供給管 13を介して接続されている。一方、供給流路 14の下端部は、 最終光学素子 FLと底板 18との間の内部空間 SPに接続されており、この供給流路 1 4の下端部が供給口 12となっている。したがって、供給口 12と液体供給装置 11とは 、供給管 13及び供給流路 14を介して接続されている。本実施形態においては、供 給口 12は、露光光 ELの光路空間 Kの外側において、光路空間 Kを挟んだ Y軸方向 両側のそれぞれの所定位置に設けられている。供給管 13及び供給流路 14は、複数 (本実施形態では 2つ)の供給口 12に対応するように複数設けられている。
[0040] 図 3に示すように、ノズル部材 6は、内部空間 SPの気体を外部空間(大気空間) ST に排出(排気)する排出口 16と、排出口 16に接続する排出流路 15とを備えている。 排出流路 15は、ノズル部材 6の一部を貫通するスリット状の貫通孔によって形成され ている。本実施形態においては、排出流路 15は、光路空間 K (投影領域 AR)に対し て X軸方向両側のそれぞれに設けられている。そして、排出流路 15の上端部は外部 空間(大気空間) STに接続されており、大気開放された状態となっている。一方、排 出流路 15の下端部は、最終光学素子 FLと底板 18との間の内部空間 SPに接続され ており、この排出流路 15の下端部が排出口 16となっている。排出口 16は、露光光 E Lの光路空間 Kの外側において、光路空間 Kを挟んだ X軸方向両側のそれぞれの所 定位置に設けられている。排出口 16は、内部空間 SPに接続され、内部空間 SPの気 体、すなわち投影光学系 PLの像面周囲の気体は、排出口 16を介して、排出流路 1 5の上端部より、外部空間 STに排出(排気)可能となっている。なお、排出流路 15の 上端部と真空系を含む吸引装置とを接続し、吸引装置を駆動することによって、内部 空間 SPの気体を強制的に排出するようにしてもよい。
[0041] ノズノレ部材 6の内部には、回収口 22に接続する回収流路 24が形成されている。ノ ズノレ部材 6には、下向きに開口する空間が形成されており、回収流路 24はその空間 によって構成されている。そして、回収口 22は、下向きに開口する空間の開口によつ て構成されている。回収流路 24は、光路空間 Kに対して供給流路 14及び排出流路 15の外側に設けられている。
[0042] 回収口 22は、基板ステージ 4に保持された基板 Pの上方にぉレ、て、その基板 の 表面と対向する位置に設けられてレ、る。基板ステージ 4に保持された基板 Pの表面と ノズノレ部材 6に設けられた回収口 22とは所定距離だけ離れている。回収口 22は、投 影光学系 PLの像面側の光路空間 Kに対して供給口 12及び排出口 16の外側に設 けられており、光路空間 K (投影領域 AR)、ランド面 17、供給口 12、及び排出口 16 を囲むように環状に形成されている。本実施形態においては、回収口 22は平面視円 環状に形成されている。そして、回収流路 24と液体回収装置 21とが回収管 23を介 して接続されている。したがって、回収口 22と液体回収装置 21とは、回収管 23及び 回収流路 24を介して接続されている。なお、回収口 22は連続的に形成される単一 の回収口でもよレ、し、あるいは断続的に形成される複数の回収口でもよレ、。
[0043] ノズノレ部材 6は、回収口 22を覆うように配置され、複数の孔を有する多孔部材 25を 備えている。多孔部材 25は、例えばチタン製のメッシュ部材、あるいはセラミックス製 の多孔体によって構成可能である。多孔部材 25は、基板ステージ 4に保持された基 板 Pと対向する下面 25Bを有している。多孔部材 25の基板 Pと対向する下面 25Bは ほぼ平坦である。多孔部材 25は、その下面 25Bが基板ステージ 4に保持された基板 Pの表面(すなわち XY平面)とほぼ平行になるように回収口 22に設けられている。液 体 LQは、回収口 22に配置された多孔部材 25を介して回収される。また、回収口 22 は、光路空間 Kを囲むように環状に形成されているため、その回収口 22に配置され る多孔部材 25は、回収口 22に対応するように、光路空間 Kを囲むように環状に形成 されている。
また、多孔部材 25は、その下面 25Bとランド面 17とが Z軸方向においてほぼ同じ位 置(高さ)になるように、且つ下面 25Bとランド面 17とが連続するように、回収口 22に 設けられている。すなわち、ランド面 17と多孔部材 25の下面 25Bとはほぼ面一に設 けられている。
[0044] また、本実施形態においては、液浸機構 1は、多孔部材 25の各孔の径、多孔部材
25と液体 LQとの接触角、及び液体 LQの表面張力などに応じて、回収流路 24の圧 力と外部空間(大気空間) STの圧力との差を最適化することによって、回収口 22を 介して液体 LQのみを回収するように設けられている。具体的には、液浸機構 1は、液 体回収装置 21による回収流路 24に対する吸引力を制御して、回収流路 24の圧力 を最適化することによって、液体 LQのみを回収する。
[0045] なお、ノズル部材 6の供給口、回収口、排出口の数、位置、形状は、図 3で示したも のに限られず、液浸領域 LRを良好に維持できるものであればよい。例えば、供給口 12を X軸方向の両側に設け、排出口 16を Y軸方向の両側に設けてもよい。
[0046] 次に、上述した構成を有する露光装置 EXを用いてマスク Mのパターン像を基板 P に露光する方法にっレ、て説明する。
[0047] 露光光 ELの光路空間 Kを液体 LQで満たすために、制御装置 7は、液体供給装置
11及び液体回収装置 21のそれぞれを駆動する。制御装置 7の制御のもとで液体供 給装置 11から送出された液体 LQは、供給管 13を流れた後、ノズル部材 6の供給流 路 14を介して、供給口 12より投影光学系 PLの最終光学素子 FLと底板 18との間の 内部空間 SPに供給される。内部空間 SPに液体 LQが供給されることにより、内部空 間 SPに存在していた気体部分は排出口 16及び/又は開口 18Kを介して外部に排 出される。
[0048] 内部空間 SPに供給された液体 LQは、開口 18Kを介してランド面 17と基板 P (基板 ステージ 4)との間の空間に流入し、光路空間 Kを満たす。このとき、制御装置 7は、 液体回収装置 21を用いて、単位時間当たり所定量の液体 LQを回収している。ランド 面 17と基板 Pとの間の空間の液体 LQは、ノズル部材 6の回収口 22を介して回収流 路 24に流入し、回収管 23を流れた後、液体回収装置 21に回収される。
[0049] 制御装置 7は、液浸機構 1を制御して、液体供給装置 11による液体供給動作と液 体回収装置 21による液体回収動作とを並行して行うことで、光路空間 Kを液体 LQで 満たし、基板 P上の一部の領域に液体 LQの液浸領域 LRを局所的に形成する。そし て、制御装置 7は、露光光 ELの光路空間 Kを液体 LQで満たした状態で、投影光学 系 PLと基板 Pとを相対的に移動しながらマスク Mのパターン像を投影光学系 PL及び 光路空間 Kの液体 LQを介して基板 P上に露光する。本実施形態の露光装置 EXは、 Y軸方向を走查方向とする走查型露光装置であるため、制御装置 7は、基板ステー ジ 4を制御して、基板 Pを所定速度で Y軸方向に移動しながら露光する。
[0050] 制御装置 7は、基板 Pに露光光 ELを照射するとき、ブラインド装置 45を用いて、基 板 P上における露光光 ELの照射領域 (投影領域) ARを設定する。基板 Pの表面に は、露光光 ELが照射される照射領域 (投影領域) ARがブラインド装置 45によってス リット状に設定される。すなわち、図 4Aの模式図に示すように、基板 P上に露光光 EL を照射する第 1状態においては、制御装置 7は、ブラインド装置 45を用いて、マスク M上における露光光 ELの照射領域(照明領域) IA、ひいては基板 P上における露 光光 ELの照射領域 (投影領域) ARを設定する。そして、図 4Bの模式図に示すよう に、基板 P上に露光光 ELを照射している第 1状態においては、最終光学素子 FLの 上面 T2に入射し、最終光学素子 FLを通過した露光光 ELは、投影光学系 PLの最終 光学素子 FLの液体 LQと接触する下面 (液体接触面) T1のうち、照射領域 (投影領 域) ARに応じた第 1領域 C1を通過する。最終光学素子 FLの下面 T1の第 1領域 C1 を通過した露光光 ELは、液体 LQを通過した後、基板 P上に照射される。このように、 露光光 ELは、最終光学素子 FL及び光路空間 Kの液体 LQを介して基板 P上に照射 される。
[0051] 本実施形態においては、ノズノレ部材 6は、基板 Pと対向するランド面 17を有する底 板 18を有しており、露光光 ELの光路を囲むように、基板 Pとランド面 17との間に小さ いギャップが形成されるので、液体 LQを基板 Pの表面とランド面 17との間で良好に 保持すること力 Sできる。したがって、液体 LQが満たされた光路空間 Kに対して基板 P を移動する場合でも、液体 LQの流出を防止することができる。 [0052] ところで、図 2に示すように、基板 Pは、半導体ウェハなどからなる基材 Wと、その基 材 Wの表面を覆う感光材 (フォトレジスト)からなる第 1膜 Rgとを備えている。そして、 光路空間 Kを満たす液体 LQ中には、第 1膜 Rgから発生した不純物(異物)が混入す る可能性がある。なお、感光材から発生する不純物とは、感光材の破片、感光材に 含まれる電解質の析出物等を含む。また、感光材が化学増幅型レジストである場合 には、感光材から発生する不純物として、ベース樹脂中に含まれる光酸発生剤(PA G : Photo Acid Generator)、及びクェンチヤ一と呼ばれるアミン系物質等が挙げられ る。感光材は有機物を含んでいるため、光路空間 Kを満たす液体 LQ中に有機物を 含む不純物が混入する可能性がある。光路空間 Kを満たす液体 LQは、最終光学素 子 FLの下面 (液体接触面) T1にも接触するため、最終光学素子 FLの下面 T1に不 純物(有機物)が付着する可能性がある。また、基板 Pとして、基材 Wと、第 1膜 Rgと、 その第 1膜 Rgを覆うトップコート膜と呼ばれる保護膜を形成した場合でも、そのトップ コート膜力 液体 LQ中に不純物が発生したり、あるいはトップコート膜を介して感光 材 (第 1膜 Rg)から不純物が液体 LQ中に混入する可能性があり、最終光学素子 FL の下面 T1に不純物(有機物)が付着する可能性がある。
[0053] 本実施形態においては、露光光 ELとして、光洗浄効果を有する紫外光である ArF エキシマレーザ光を用いているため、最終光学素子 FLの下面 T1のうち、露光光 EL が通過する第 1領域 C1は光洗浄される。紫外光である露光光 ELが照射されることに より、最終光学素子 FLの下面 T1の第 1領域 C1に付着した不純物(有機物)は、酸化 分解されて除去される。すなわち、最終光学素子 FLの下面 T1の第 1領域 C1は、基 板 Pに露光光 ELを照射している第 1状態において、露光光 ELによって光洗浄されて いる。このように、露光光 ELの照射により、最終光学素子 FLの下面 T1の第 1領域 C 1を光洗浄することができ、最終光学素子 FLの下面 T1の第 1領域 C1に付着した不 純物(有機物)を除去することができる。また、露光光 ELが照射されることにより、最 終光学素子 FLの下面 T1の第 1領域 C1の親液性を維持する(あるいは高める)ことが できる。
[0054] また、基板 P上に露光光 ELを照射している第 1状態においては、制御装置 7は、液 浸機構 1の液体供給装置 11及び液体回収装置 21を用いて、液体 LQの供給と回収 とを並行して行っている。このように、液体供給装置 11及び液体回収装置 21を用い て液体 LQの供給及び回収を行レ、ながら、露光光 ELの照射による光洗浄によって最 終光学素子 FLの下面 T1の第 1領域 C1から除去された異物(不純物)を、液体 LQと ともに回収することができる。
[0055] ところが、最終光学素子 FLの下面 T1のうち、露光光 ELが通過する第 1領域 C1と は異なる第 2領域 (第 1領域 C1を除く下面 T1の残りの領域の少なくとも一部を含む) C2にも不純物(有機物)が付着する可能性がある。そこで、本実施形態においては、 例えば露光装置 EXのメンテナンス時など、基板 P上に露光光 ELを照射しなレ、第 2状 態において、最終光学素子 FLの下面 T1のうち、第 1領域 C1とは異なる第 2領域 C2 に露光光 ELを照射して、その第 2領域 C2を光洗浄する処理が行われる。
[0056] 図 5は最終光学素子 FLの下面 T1の第 2領域 C2を光洗浄している状態を示す図で ある。ここで、最終光学素子 FLの下面 T1の第 2領域 C2とは、第 1領域 C1及び第 1 領域 C1の周囲の領域を含む領域である。本実施形態では、最終光学素子 FLの下 面 T1のほぼ全部の領域が第 2領域 C2であるものとして説明する。
[0057] 図 5に示すように、露光光 ELを用いて第 2領域 C2を光洗浄するときには、液浸機 構 1によって、最終光学素子 FLと基板 P以外の所定部材との間に液体 LQで満たさ れる。本実施形態においては、所定部材として、基板ステージ 4に保持され、デバイ スを製造するための基板 Pとは異なるダミー基板 DPが用いられる。ダミー基板 DPは 、デバイスを製造するための基板 Pとほぼ同じ外形を有しており、基板ステージ 4の基 板ホルダ 4Hによって保持可能である。ダミー基板 DPは、液体 LQ中に不純物を発 生させなレ、撥液性の表面を有してレ、る。
[0058] 第 2領域 C2に露光光 ELを照射して第 2領域 C2を光洗浄するときに、露光装置 EX は、投影光学系 PLの最終光学素子 FLと基板ステージ 4に保持されたダミー基板 DP とを対向させる。その状態で、露光装置 EXは、液浸機構 1を用いて、投影光学系 PL とダミー基板 DPとの間を液体 LQで満たし、ダミー基板 DP上に液体 LQの液浸領域 LRを形成する。
[0059] 制御装置 7は、投影光学系 PLとダミー基板 DPとの間を液体 LQで満たした状態で 、第 2領域 C2を光洗浄するために、ブラインド装置 45を駆動する。具体的には、図 6 Aの模式図に示すように、制御装置 7は、第 2領域 C2に露光光 ELを照射するために 、第 1駆動装置 43Dを用いて、露光光 ELの光路上に設けられている第 1ブラインド 4 3を駆動して露光光 ELの光路上から退かす。また、制御装置 7は、第 2駆動装置 44 Dを用いて、第 2ブラインド 44を駆動して、開口 44Kを調整する。具体的には、第 2領 域 C2に露光光 ELを照射するために、制御装置 7は、開口 44Kの大きさを、基板 P上 に露光光 ELを照射しているときよりも大きくする。こうすることにより、図 6Bの模式図 に示すように、基板 P上に露光光 ELを照射していない第 2状態においては、最終光 学素子 FLの上面 T2に入射した露光光 ELは、投影光学系 PLの最終光学素子 FLの 液体 LQと接触する下面 (液体接触面) T1の第 2領域 C2に照射される。
[0060] このように、最終光学素子 FLの下面 T1の第 2領域 C2に光洗浄効果を有する紫外 光である露光光 ELが照射されることにより、最終光学素子 FLの下面 T1の第 2領域 C2に付着した不純物 (有機物)を酸化分解して除去することができる。また、露光光 ELが照射されることにより、最終光学素子 FLの下面 T1の第 2領域 C2の親液性を維 持する(あるいは高める)ことができる。
[0061] また、最終光学素子 FLの下面 T1の第 2領域 C2を通過した露光光 ELは、ノズル部 材 6の底板 18の上面 19にも照射される。したがって、ノズル部材 6の底板 18の上面 1 9に付着した不純物 (有機物)を酸化分解して除去することができる。また、露光光 EL が照射されることにより、ノズル部材 6の底板 18の上面 19の親液性を維持する(ある いは高める)ことができる。
[0062] また、制御装置 7は、液浸機構 1の液体供給装置 11及び液体回収装置 21を用い て、液体 LQの供給と回収とを並行して行いつつ、第 2領域 C2に露光光 ELを照射す る。これにより、光洗浄によって最終光学素子 FLの下面 T1の第 2領域 C2から除去さ れた異物(不純物)を、液体 LQとともに回収することができる。
[0063] 以上説明したように、最終光学素子 FLの下面 T1のうち基板 Pの露光時には露光 光 ELが通過しない第 2領域 C2に露光光 ELを照射することで、第 1領域 C1以外の 第 2領域 C2に付着した不純物 (有機物)を光洗浄効果によって除去することができる 。したがって、最終光学素子 FLの下面 T1における透過率の低下、投影光学系 PLの 結像特性の変動等とレ、つた不都合の発生を防止し、露光装置 EXの性能の劣化を防 止すること力 Sできる。このように、本実施形態においては、露光光 ELの光路空間 Kを 満たすための液体 LQに接触する光学部材の汚染に起因する露光装置 EXの性能 の劣化を防止することができる。
[0064] また、露光光 ELを照射することによって、最終光学素子 FLの下面 T1の親液性を 維持すること力 Sできる。したがって、最終光学素子 FLの下面 T1に液体 LQを良好に 密着させることができ、泡などの混入を抑えて、所望状態の液浸領域 LRを形成する こと力 Sできる。
[0065] また、最終光学素子 FLの下面 T1の第 2領域 C2を通過した露光光 ELがノズノレ部 材 6の底板 18の上面 19に照射されることにより、底板 18の上面 19に付着した不純 物を除去することができるとともに、底板 18の上面 19の親液性を維持することができ る。
[0066] 本実施形態においては、液浸領域 LRを良好に形成するために、ノズル部材 6には ランド面 17を有する底板 18が設けられており、最終光学素子 FLの下面 T1と底板 18 との間に所定のギャップを有する内部空間 SPが形成されている力 内部空間 SPに 不純物を含んだ液体 LQが入り込んだ場合、その液体 LQの流れによっては、内部空 間 SPにおける液体 LQ中の不純物の濃度が高まり、最終光学素子 FLの下面 T1及 び底板 18の上面 19に不純物が付着し易くなる可能性がある。
[0067] 不純物の付着等によって最終光学素子 FLの下面 T1の親液性が劣化した場合(下 面 T1が撥液化した場合)、最終光学素子 FLの下面 T1と液体 LQとの密着性が低下 し、光路空間 Kを満たす液体 LQ中に気泡 (気体部分)が生成されやすくなつたり、最 終光学素子 FLの下面 T1に気泡が付着しやすくなる可能性がある。また、最終光学 素子 FLの下面 T1のうち第 1領域 C1以外の領域に付着していた気泡が基板 Pの露 光中に最終光学素子 FLから離れて露光光 ELの光路上に配置されてしまう不都合 が生じる可能性もある。
[0068] 同様に、底板 18の上面 19の親液性が劣化した場合、光路空間 Kを満たす液体 L Q中に気泡(気体部分)が生成されやすくなつたり、底板 18の上面 19に気泡が付着 しゃすくなつたり、底板 18の上面 19に付着していた気泡が基板 Pの露光中に底板 1 8の上面 19から離れて露光光 ELの光路上に配置されてしまう不都合が生じる可能 十生もある。
[0069] 本実施形態では、メンテナンス時などにおいて、基板 Pの露光中には露光光 ELが 照射されない最終光学素子 FLの下面 T1の第 2領域 C2及び底板 18の上面 19に光 洗浄効果を有する光(露光光)を照射して、その第 2領域 C2及び底板 18の上面 19 を光洗浄することで、最終光学素子 FLの下面 T1及び底板 18の上面 19に付着した 不純物(有機物)を除去することができるとともに、最終光学素子 FLの下面 T1及び 底板 18の上面 19の親液性を維持することができる。したがって、最終光学素子 FL の下面 T1と液体 LQとの密着性を維持することができ、液体 LQ中に気泡が生成され たり、下面 T1に気泡が付着する等の不都合の発生を防止することができる。同様に 、底板 18の上面 19に気泡が付着する等の不都合の発生を防止することができる。
[0070] また、最終光学素子 FLの下面 T1の第 2領域 C2を光洗浄するために、最終光学素 子 FLの上面 T2に入射し、その最終光学素子 FLを通過した露光光 ELを第 2領域 C 2に照射するようにしたので、第 2領域 C2を円滑に光洗浄することができる。そして、 その最終光学素子 FLの下面 T1に対向する底板 18の上面 19にも露光光 ELを円滑 に照射することができる。
[0071] また、露光装置 EXは、露光光 ELの光路上に設けられ、基板 P上での露光光 ELの 照射領域 (投影領域) ARを調整可能なブラインド装置 45を駆動することによって、最 終光学素子 FLの下面 T1の第 2領域 C2に露光光 ELを円滑に照射することができ、 既存の機器 ·部材を用いて、第 2領域 C2を円滑に光洗浄することができる。
[0072] 最終光学素子 FLの下面 T1の第 2領域 C2に露光光 ELを照射してその第 2領域 C 2を光洗浄する動作は、メンテナンス時など、所定期間間隔で行うことができる。ある いは、第 2領域 C2の汚染状態(下面 T1での透過率低下量)を、感光材の種類 (物性 )及び/又は、基板 Pと液体 LQとの接触時間などに応じて、実験及び Z又はシミュレ ーシヨンを用いて予め求めることができるのであれば、その求めた汚染状態に応じて 、第 2領域 C2に露光光 ELを照射する動作を行うようにしてもよい。あるいは、第 2領 域 C2の汚染状態を計測可能な計測装置によって、第 2領域 C2の汚染状態を計測し 、その計測結果に基づいて、汚染状態が許容状態を越えたとき、第 2領域 C2に露光 光 ELを照射するようにしてもょレ、。 [0073] <第 2実施形態 >
次に、第 2実施形態について図 7A及び 7Bを参照して説明する。以下の説明にお いて、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、 その説明を簡略若しくは省略する。
[0074] 図 7Aに示すように、露光光 ELの照射領域 (IA、 AR)を設定するためのブラインド 装置 45は、第 1ブラインド 43のみを有した構成であってもよレ、。ブラインド装置 45は、 露光光 ELの光路上に設けられ、照射領域を設定するための開口 43Kを形成する第 1ブラインド 43と、第 1ブラインド 43を駆動する駆動装置 43Dとを有している。制御装 置 7は、第 2領域 C2に露光光 ELを照射するために、図 7Bに示すように、駆動装置 4 3Dを用いて、第 1ブラインド 43を駆動して、露光光 ELの光路上から退かす。これに より、最終光学素子 FLの下面 T1の第 2領域 C2に露光光 ELが照射される。
[0075] ぐ第 3実施形態 >
次に、第 3実施形態について図 8A及び 8Bを参照して説明する。以下の説明にお いて、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、 その説明を簡略若しくは省略する。図 8Aにおいて、ブラインド装置 45は、露光光 EL の光路上に設けられ、照射領域 (IA、 AR)を設定するための開口 44Kを形成する第 2ブラインド 44'と、開口 44Kの大きさを調整可能な駆動装置 44Dとを備えている。第 2ブラインド 44'は、複数の板状部材を組み合わせて構成されており、板状部材のそ れぞれを駆動することによって、開口 44K、ひいては露光光 ELの照射領域を調整可 能である。制御装置 7は、第 2領域 C2に露光光 ELを照射するために、図 8Bに示す ように、駆動装置 44Dを用いて、第 2ブラインド 44'の板状部材を駆動し、開口 44K を大きくする。これにより、最終光学素子 FLの下面 T1の第 2領域 C2に露光光 ELが 照射される。
[0076] ぐ第 4実施形態 >
次に、第 4実施形態について図 9を参照して説明する。以下の説明において、上述 の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を 簡略若しくは省略する。図 9に示すように、最終光学素子 FLの下面 T1の第 2領域 C 2に露光光 ELを照射するときに、最終光学素子 FLと基板ステージ 4の上面 4Fとを対 向させ、その最終光学素子 FLと基板ステージ 4の上面 4Fとの間を液体 LQで満たし た状態で、第 2領域 C2に露光光 ELを照射することができる。この場合、基板ステー ジ 4の上面 4Fには、液体 LQ中に不純物を混入させず、且つ露光光 ELの照射により 、その表面状態が変化しない所定領域が設けられており、液体 LQは、最終光学素 子 FLとその所定領域との間に満たされる。なお、露光光 ELの照射によりその表面状 態が変化しない所定領域とは、上面 4Fの撥液性が劣化しない領域を含む。
[0077] ぐ第 5実施形態 >
次に、第 5実施形態について図 10を参照して説明する。以下の説明において、上 述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明 を簡略若しくは省略する。図 10に示す露光装置 EXは、例えば、特開平 11— 13540 0号公報(対応国際公開 1999/23692)及び特開 2000— 164504号公報(対応米 国特許第 6, 897, 693号)などに開示されているような、基板 Pを保持して移動可能 な基板ステージ 4と、基準マークが形成された基準部材、各種の光電センサ等、露光 処理に関する計測を行う計測器を搭載して移動可能な計測ステージ 8とを備えてい る。
[0078] 図 10に示すように、最終光学素子 FLの第 2領域 C2に露光光 ELを照射するときに 、最終光学素子 FLと計測ステージ 8の上面 8Fとを対向させ、その最終光学素子 FL と計測ステージ 8の上面 8Fとの間を液体 LQで満たした状態で、第 2領域 C2に露光 光 ELを照射することができる。この場合、計測ステージ 8の上面 8Fには、計測器が 設けられた領域以外の領域であって、液体 LQ中に不純物を混入させず、且つ露光 光 ELの照射により、その表面状態が変化しない領域が設けられており、液体 LQは、 最終光学素子 FLとその領域との間に満たされる。
[0079] なお、上述の各実施形態においては、液浸機構 1を用いて液体 LQの供給と回収と を並行して行いつつ、最終光学素子 FLの下面 T1の第 2領域 C2に露光光 ELを照射 しているが、最終光学素子 FLと所定部材との間を液体 LQで満たした後、液体 LQの 供給動作を回収動作とを停止した状態で、第 2領域 C2に露光光 ELを照射してもよ レ、。
[0080] なお、第 2領域 C2に露光光 ELを照射するときには、基板 P上に露光光 ELを照射 するときに対して、最終光学素子 FLの下面 T1における露光光 ELの強度(照度)を 変えるようにしてもよい。例えば、第 2領域 C2に露光光 ELを照射するときの照度を、 基板 P上に露光光 ELを照射するときの照度よりも大きくすることにより、下面 T1に付 着した不純物をより良好に除去することができる。なお、露光光 ELの照射により最終 光学素子 FL、あるいは露光光 ELの光路上に設けられている各種光学部材の劣化 が生じる場合には、照射する露光光 ELの強度(照度)を適宜調整することができる。
[0081] なお、上述の実施形態のノズル部材 6は、最終光学素子 FLの下面 T1と対向する 上面 19を有する底板 18を備えている力 S、底板 18が無レゾズル部材 6を有した露光 装置 EXにももちろん適用可能である。すなわち、ノズノレ部材 6を含む液浸機構 1は、 上述の構成に限られず、例えば欧州特許公開第 1, 420, 298号公報、国際公開第 2004/055803号公報、国際公開第 2004/057590号公報、国際公開第 2005 /029559号公報、国際公開第 2004Z086468号パンフレット(対応米国公開 200 5/0280791A:0、特開 2004— 289126号公報(対応米国特許第 6 , 952, 253号 )などに開示される液浸機構(ノズノレ部材)を用いてもよい。また、液浸機構 1の少なく とも一部(例えば、液体供給装置 1 1及び/又は液体回収装置 21を構成する部材) は、露光装置 EXが備えている必要はなぐ例えば露光装置 EXが設置される工場等 の設備を代用してもよい。
[0082] なお、上述の実施形態において、基板 Pを液浸露光するときに用いる液体 LQは、 液浸領域 LRにおける気泡発生の防止等を目的として、投影光学系 PLの像面側に 供給される前に脱気処理されている。すなわち、液体供給装置 1 1は、液体 LQ中の 溶存酸素 (溶存気体)を低減するための脱気装置を備えており、投影光学系 PLの像 面側に供給する前の液体 LQに対して脱気処理を行った後に、その脱気処理した液 体 LQを投影光学系 PLの像面側に供給している。一方で、光洗浄は、光洗浄効果を 有する光を照射することによって不純物(有機物)を酸化分解する構成であるため、 光洗浄するときにおいては、液体 LQ中に所定濃度の酸素が存在 (溶存)していること が望ましい。したがって、最終光学素子 FLと所定部材との間を液体 LQで満たした状 態で、最終光学素子 FLの第 2領域 C2に露光光 ELを照射することによって最終光学 素子 FLの第 2領域 C2及び底板 18の上面 19等を光洗浄するときには、制御装置 7 は、投影光学系 PLの像面側に供給する液体 LQの酸素濃度を、基板 Pを露光すると きの液体 LQの酸素濃度よりも多くするようにしてもよい。すなわち、光洗浄するときに は、制御装置 7は、例えば脱気処理を施さなレ、液体 LQを投影光学系 PLの像面側に 供給するようにしてもよレ、。あるいは、最終光学素子 FLと所定部材との間に液体 LQ を満たした状態で、第 2領域 C2に露光光 ELを照射して光洗浄するときには、制御装 置 7は、基板 Pの露光に用いる液体 (純水)とは別の液体、例えば過酸化水素水を、 投影光学系 PLの像面側に供給するようにしてもよい。
[0083] なお、上述の各実施形態においては、最終光学素子 FLの下面 T1の第 2領域 C2 及び/又は底板 18の上面 19に露光光 ELが照射されるようにブラインド装置 45のブ ラインド (43及び Z又は 44)の位置を調整してレ、る力 露光光 ELの光路上に配置さ れた光学素子を用いて、露光光 ELの照射領域を調整 (拡大及び/又は縮小)しても よい。この場合、すでに露光光 ELの光路上に配置されている光学素子を用いてもよ いし、上述の光洗浄処理を行う直前に露光光 ELの光路上にその光学素子を配置し てもよい。
[0084] また、ブラインド装置 45とその光学素子とを併用して光洗浄を行ってもよい。さらに 、この光学素子として、例えばズームレンズ系あるいはビームエキスパンダなどを用い ることとしてもよい。また、上述の実施形態では、光洗浄時に露光光 ELが照射される 第 2領域 C2は、露光時に露光光 ELが照射される第 1領域 C1を含むものとした力 こ れに限らず、第 2領域 C2は第 1領域 C1の少なくとも一部を含まなくてもよぐ要は第 1 領域 C1を除く下面 T1の残りの領域の少なくとも一部を含んでいればよい。さらに、上 述の実施形態では露光光 ELを用いて光洗浄を行うものとしたが、露光光以外の光を 洗浄光として用いてもよい。
[0085] 上述したように、上記各実施形態における液体 LQは純水であるものとした。純水は 、半導体製造工場等で容易に大量に入手できるとともに、基板 P上のフォトレジスト、 光学素子(レンズ)等に対する悪影響が少ない利点がある。また、純水は環境に対す る悪影響がないとともに、不純物の含有量が極めて低いため、基板 Pの表面、及び投 影光学系 PLの先端面に設けられている光学素子の表面を洗浄する作用も期待でき る。 [0086] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 4 4と言われており、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm)を用 レ、た場合、基板 P上では l/n、すなわち約 134nmに短波長化されて高い解像度が 得られる。更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍に拡大され るため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、 投影光学系 PLの開口数をより増加させることができ、この点でも解像度が向上する。
[0087] 上記各実施形態では、投影光学系 PLの先端に光学素子 FLが取り付けられており 、この光学素子により投影光学系 PLの光学特性、例えば収差 (球面収差、コマ収差 等)の調整を行うことができる。なお、投影光学系 PLの先端に取り付ける光学素子と しては、投影光学系 PLの光学特性の調整に用いる光学プレートであってもよい。あ るいは露光光 ELを透過可能な平行平面板であってもよい。
[0088] なお、液体 LQの流れによって生じる投影光学系 PLの先端の光学素子と基板 Pと の間の圧力が大きい場合には、その光学素子を交換可能とするのではなぐその圧 力によって光学素子が動かないように堅固に固定してもよい。
[0089] なお、上記各実施形態では、投影光学系 PLと基板 P表面との間は液体 LQで満た されている構成である力 例えば基板 Pの表面に平行平面板からなるカバーガラスを 取り付けた状態で液体 LQを満たす構成であってもよい。
[0090] また、上述の実施形態の投影光学系は、先端の光学素子 FLの像面 (射出面)側の 光路空間を液体で満たしているが、国際公開第 2004/019128号パンフレットに開 示されているように、先端の光学素子の物体面 (入射面)側の光路空間も液体で満た す投影光学系を採用することもできる。
[0091] なお、上記各実施形態の液体 LQは水(純水)であるが、水以外の液体であってもよ レ、、例えば、露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透過し
2 2
ないので、液体 LQとしては Fレーザ光を透過可能な例えば、過フッ化ポリエーテル(
2
PFPE)、フッ素系オイル等のフッ素系流体であってもよレ、。この場合、液体 LQと接 触する部分には、例えばフッ素を含む極性の小さい分子構造の物質で薄膜を形成 することで親液化処理する。また、液体 LQとしては、その他にも、露光光 ELに対する 透過性があってできるだけ屈折率が高ぐ投影光学系 PL及び基板 P表面に塗布され ているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である
[0092] また、液体 LQとしては、屈折率が 1. 6〜: 1. 8程度のものを使用してもよい。更に、 石英及び蛍石よりも屈折率が高い(例えば 1. 6以上)材料で光学素子 FLを形成して もよレ、。液体 LQとして、種々の液体、例えば、超臨界流体を用いることも可能である
[0093] なお、上記各実施形態では露光光 ELの照射領域 (IA、 AR)が矩形状であるものと したが、これに限らず、例えば円弧状などでもよい。また、照射領域 (IA、 AR)は投影 光学系 PLの視野内で光軸を含んで設定されるものとしたが、これに限らず、例えば 光軸を含まず偏心して設定されてもよい。さらに、上記各実施形態では干渉計システ ム(3L、 4Uを用いてマスクステージ 3及び基板ステージ 4の各位置情報を計測する ものとしたが、これに限らず、例えば各ステージに設けられるスケール(回折格子)を 検出するエンコーダシステムを用いてもよい。この場合、干渉計システムとエンコーダ システムの両方を備えるハイブリッドシステムとし、干渉計システムの計測結果を用い てエンコーダシステムの計測結果の較正(キャリブレーション)を行うことが好ましい。 また、干渉計システムとエンコーダシステムとを切り替えて用いる、あるいはその両方 を用いて、ステージの位置制御を行うようにしてもょレ、。
[0094] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックゥェ ハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコン ウェハ)等が適用される。
[0095] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ 'アンド'スキャン方式の走查型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ'アンド'リピート方式の投影露光装置 (ステツ パ)にも適用することができる。
[0096] また、露光装置 EXとしては、第 1パターンと基板 Pとをほぼ静止した状態で第 1パタ ーンの縮小像を投影光学系(例えば 1/8縮小倍率で反射素子を含まない屈折型投 影光学系)を用いて基板 P上に一括露光する方式の露光装置にも適用できる。この 場合、更にその後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パターンの 縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P上に一括 露光するスティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露 光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転写し、基 板 Pを順次移動させるステップ ·アンド'スティツチ方式の露光装置にも適用できる。
[0097] また、本発明は、例えば特開平 10— 163099号公報及び特開平 10— 214783号 公報(対応米国特許第 6, 590, 634号)、特表 2000— 505958号公報(対応米国 特許第 5, 969, 441号)、米国特許第 6, 208, 407号などに開示されているような複 数の基板ステージを備えたツインステージ型の露光装置にも適用できる。
[0098] また、本発明は、複数の基板ステージと複数の計測ステージとを備えた露光装置に あ適用すること力 Sでさる。
[0099] また、上述の実施形態においては、投影光学系 PLと基板 Pとの間に局所的に液体 を満たす露光装置を採用している力 本発明は、例えば特開平 6— 124873号公報 、特開平 10— 303114号公報、米国特許第 5, 825, 043号などに開示されているよ うな露光対象の基板の表面全体が液体中に浸かっている状態で露光を行う液浸露 光装置にも適用可能である。
[0100] さらに、上記各実施形態では投影光学系 PLを備えた露光装置を例に挙げて説明 してきたが、投影光学系 PLを用いない露光装置及び露光方法に本発明を適用する こと力 Sできる。投影光学系を用いない場合であっても、露光光はマスク又は回折光学 素子などの光学部材を介して基板に照射され、そのような光学部材と基板との間の 所定空間に液浸領域が形成される。
[0101] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、 MEMS, DNAチッ プ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用で きる。
[0102] なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン (又 は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマスクに 代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光すベ きパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光 パターンを形成する電子マスク(可変成形マスクとも呼ばれ、例えば非発光型画像表 示装置(空間光変調器)の一種である DMD (Digital Micro-mirror Device)などを含 む)を用いてもよい。
[0103] また、例えば国際公開第 2001/035168号パンフレットに開示されているように、 干渉縞を基板 P上に形成することによって、基板 P上にライン'アンド 'スペースパター ンを露光する露光装置(リソグラフィシステム)にも本発明を適用することができる。
[0104] さらに、例えば特表 2004— 519850号公報(対応米国特許第 6, 611, 316号)に 開示されているように、 2つのマスクのパターンを、投影光学系を介して基板上で合 成し、 1回の走查露光によって基板上の 1つのショット領域をほぼ同時に二重露光す る露光装置にも本発明を適用することができる。
[0105] なお、本国際出願で指定又は選択された国の法令で許容される限りにおいて、上 記各実施形態及び変形例で引用した露光装置などに関する全ての公開公報及び 米国特許の開示を援用して本文の記載の一部とする。
[0106] 以上のように、本願実施形態の露光装置 EXは、本願請求の範囲に挙げられた各 構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精 度を保つように、組み立てることで製造される。これら各種精度を確保するために、こ の組み立ての前後には、各種光学系については光学的精度を達成するための調整 、各種機械系については機械的精度を達成するための調整、各種電気系について は電気的精度を達成するための調整が行われる。各種サブシステムから露光装置へ の組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、 気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立 て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもなレ、。各 種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露 光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびク リーン度等が管理されたクリーンノレームで行うことが望ましい。 [0107] 半導体デバイス等のマイクロデバイスは、図 11に示すように、マイクロデバイスの機 能'性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する工程、露光した基 板を現像する工程、現像した基板の加熱 (キュア)及びエッチング工程などの基板処 理プロセスを含むステップ 204、デバイス組み立てステップ (ダイシング工程、ボンデ イング工程、パッケージ工程などの加工プロセスを含む) 205、検查ステップ 206等を 経て製造される。
産業上の利用可能性
[0108] 本発明によれば、露光装置の性能劣化を防止して、基板を良好に露光することが でき、所望の性能を有するデバイスを製造することができる。このため、本発明は、我 国の半導体産業を含むハイテク産業及び IT技術の発展に貢献するであろう。

Claims

請求の範囲
[1] 液体を介して基板上に露光光を照射して前記基板を露光する露光装置にぉレ、て、 前記液体に接触する第 1面を有する光学部材と、
前記基板上に前記露光光が照射される第 1状態において、前記露光光の照射領 域を設定する設定装置と、を備え、
前記基板上に前記露光光が照射されない第 2状態において、前記光学部材の前 記第 1面のうち、前記第 1状態で前記露光光が通過する第 1領域とは異なる第 2領域 に前記露光光を照射して前記第 2領域を光洗浄する露光装置。
[2] 液体を介して基板を露光する露光装置であって、
前記液体に接触する第 1面を有する光学部材と、
露光光の照射領域を設定する設定装置であり、前記光学部材の前記第 1面の第 1 領域を介して前記基板に前記露光光が照射される露光モードと、前記光学部材の前 記第 1面の第 2領域に前記露光光が照射される光洗浄モードとを有する前記設定装 置と、を備える露光装置。
[3] 前記第 2領域は、前記第 1面のうち前記第 1領域と異なる領域を含む請求項 2記載 の露光装置。
[4] 前記設定装置を駆動する駆動装置をさらに備えた請求項:!〜 3のいずれか一項記 載の露光装置。
[5] 前記露光光は、光洗浄効果を有する紫外光を含む請求項:!〜 4のいずれか一項記 載の露光装置。
[6] 前記第 2領域は、前記光学部材の前記第 1面における、前記第 1領域及び該第 1 領域の周囲の領域を含む請求項 1〜5のいずれか一項記載の露光装置。
[7] 前記第 2領域に照射される露光光は、前記第 1面とは異なる前記光学部材の第 2面 力 前記第 1面に向けて、前記光学部材を通過する請求項:!〜 6のいずれか一項記 載の露光装置。
[8] 前記設定装置は、前記露光光の光路上に設けられ、前記露光光が通過する開口 を形成する設定部材と、前記開口の大きさを調整する調整機構と有し、
前記駆動装置は、前記調整機構を駆動する請求項 4〜7のいずれか一項記載の 露光装置。
[9] 前記設定装置は、前記露光光の光路上に設けられ、前記露光光が通過する開口 を形成する設定部材を有し、
前記駆動装置は、前記設定部材を駆動して前記露光光の光路上から退かす請求 項 4〜7のいずれか一項記載の露光装置。
[10] 前記光学部材と前記基板以外の所定部材との間を前記液体で満たす液浸機構を さらに備えた請求項 1〜9のいずれか一項記載の露光装置。
[11] 前記液浸機構は、前記液体を供給する液体供給装置と前記液体を回収する液体 回収装置とを有し、
前記液浸機構における前記液体の供給と回収とを並行して行いつつ、前記第 2領 域に前記露光光を照射する請求項 10記載の露光装置。
[12] 前記基板を保持して移動可能な基板ステージをさらに備え、
前記所定部材は、前記基板ステージの一部を含む請求項 10又は 11記載の露光 装置。
[13] 前記基板を保持して移動可能な基板ステージをさらに備え、
前記所定部材は、前記基板ステージに保持され、前記基板とは異なるダミー基板 を含む請求項 10〜: 12のいずれか一項記載の露光装置。
[14] 前記基板を保持して移動可能な基板ステージと、
露光処理に関する計測を行う計測器を搭載して移動可能な計測ステージとをさら に備え、
前記所定部材は、前記計測ステージの一部を含む請求項 10〜: 13のいずれか一 項記載の露光装置。
[15] 前記基板上に前記露光光を照射するときに、前記光学部材と前記基板との間を前 記液体で満たす請求項:!〜 14のいずれか一項記載の露光装置。
[16] 請求項 1〜請求項 15のいずれか一項記載の露光装置を用いるデバイス製造方法
[17] 光学部材及び液体を介して基板上に露光光を照射して前記基板を露光する露光 装置のメンテナンス方法にぉレ、て、 前記光学部材の前記液体と接触する第 1面のうち、前記基板上に前記露光光を照 射するときに前記露光光が通過する第 1領域とは異なる第 2領域に前記露光光を照 射して、前記第 2領域を光洗浄するメンテナンス方法。
[18] 前記露光光の光路上に設けられ、前記基板上での前記露光光の照射領域を調整 可能な調整機構を駆動することによって、前記第 2領域に前記露光光を照射する請 求項 17記載のメンテナンス方法。
[19] 前記光学部材のうち前記第 1面とは異なる第 2面に入射し、該光学部材を通過した 前記露光光を前記第 2領域に照射する請求項 17又は 18記載のメンテナンス方法。
[20] 前記第 2領域に前記露光光を照射するときに、前記光学部材と前記基板以外の所 定部材とを対向させる請求項 17〜: 19のいずれか一項記載のメンテナンス方法。
[21] 前記第 2領域に前記露光光を照射するときに、前記光学部材と前記所定部材との 間を前記液体で満たす請求項 20記載のメンテナンス方法。
[22] 前記露光光の照射により前記第 1面の親液性を維持する請求項 17〜21のいずれ か一項記載のメンテナンス方法。
[23] 前記露光光の照射により前記光学部材に付着した有機物を除去する請求項 17〜
22のレ、ずれか一項記載のメンテナンス方法。
[24] 液体と、前記液体と接触する第 1面を有する光学部材とを介して基板に露光光を照 射する工程であり、前記光学部材の前記第 1面の第 1領域を前記露光光が通過する 前記工程と、
前記光学部材の前記第 1面の第 2領域に前記露光光を照射して前記第 2領域を光 洗浄する工程と、を備える露光方法。
[25] 前記露光光は、光洗浄効果を有する紫外光を含む請求項 24記載の露光方法。
[26] 前記第 2領域は、前記光学部材の前記第 1面における、前記第 1領域及び前記第
1領域の周囲の領域を含む請求項 24又は 25記載の露光方法。
[27] 前記第 2領域を光洗浄する工程は、前記露光光が通過する開口の大きさを、前記 基板への前記露光光の照射時から変える工程を有する請求項 24〜26のいずれか 一項記載の露光方法。
[28] 前記第 2領域を光洗浄する工程は、前記露光光の照射領域を設定する部材を、前 記露光光の光路から外す工程を有する請求項 24〜26のいずれか一項記載の露光 方法。
[29] 前記第 2領域を光洗浄する工程は、前記光学部材と前記基板以外の所定部材との 間を前記液体で満たす工程を有する請求項 24〜28のいずれか一項記載の露光方 法。
[30] 前記所定部材は、前記基板を保持する基板ステージの一部と、前記基板ステージ に保持されたダミー基板と、露光処理に関する計測を行う計測器が搭載された計測 ステージの一部との少なくとも 1つを含む請求項 29記載の露光方法。
[31] 前記基板に前記露光光を照射する工程は、前記光学部材と前記基板との間を前 記液体で満たす工程を有する請求項 24〜30のいずれか一項記載の露光方法。
[32] 請求項 24〜請求項 31のいずれか一項記載の露光方法を用いるデバイス製造方 法。
PCT/JP2006/313086 2005-06-30 2006-06-30 露光装置及び方法、露光装置のメンテナンス方法、並びにデバイス製造方法 WO2007004552A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/915,886 US8179517B2 (en) 2005-06-30 2006-06-30 Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method
EP06767694A EP1901338A4 (en) 2005-06-30 2006-06-30 EXPOSURE APPARATUS AND METHOD, METHOD OF SERVICING THE EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
JP2007524022A JP5194792B2 (ja) 2005-06-30 2006-06-30 露光装置及び方法、露光装置のメンテナンス方法、並びにデバイス製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-191561 2005-06-30
JP2005191561 2005-06-30

Publications (1)

Publication Number Publication Date
WO2007004552A1 true WO2007004552A1 (ja) 2007-01-11

Family

ID=37604417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313086 WO2007004552A1 (ja) 2005-06-30 2006-06-30 露光装置及び方法、露光装置のメンテナンス方法、並びにデバイス製造方法

Country Status (5)

Country Link
US (1) US8179517B2 (ja)
EP (1) EP1901338A4 (ja)
JP (1) JP5194792B2 (ja)
KR (1) KR20080026082A (ja)
WO (1) WO2007004552A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263091A (ja) * 2007-04-12 2008-10-30 Nikon Corp 光洗浄部材、メンテナンス方法、洗浄方法、露光方法及び露光装置、並びにデバイス製造方法
JP2009218587A (ja) * 2008-03-07 2009-09-24 Asml Netherlands Bv リソグラフィ装置及び方法
JP2010069762A (ja) * 2008-09-19 2010-04-02 Toshiba Corp パターン形成方法
JP2010147471A (ja) * 2008-12-18 2010-07-01 Asml Netherlands Bv リソグラフィ装置及び少なくとも2つのターゲット部分を照射する方法
JP2011199304A (ja) * 2007-07-24 2011-10-06 Asml Netherlands Bv 液浸タイプのリソグラフィ装置、その汚染を防止又は減少させる方法、及びデバイス製造方法
JP2012009596A (ja) * 2010-06-24 2012-01-12 Nikon Corp 液体供給装置、露光装置、液体供給方法、メンテナンス方法、及びデバイス製造方法
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
JP2015222432A (ja) * 2015-07-14 2015-12-10 株式会社ニコン 液体供給装置、露光装置、液体供給方法、メンテナンス方法、及びデバイス製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2131241B1 (en) * 2008-05-08 2019-07-31 ASML Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
JP2009295933A (ja) 2008-06-09 2009-12-17 Canon Inc ダミー露光基板及びその製造方法、液浸露光装置、並びに、デバイス製造方法
WO2015189875A1 (ja) * 2014-06-12 2015-12-17 富士電機株式会社 不純物添加装置、不純物添加方法及び半導体素子の製造方法
KR20150145837A (ko) * 2014-06-19 2015-12-31 삼성전자주식회사 2차원 물질 식각장치 및 이를 이용하여 2차원 물질층을 패터닝하는 방법
JP6468041B2 (ja) * 2015-04-13 2019-02-13 富士電機株式会社 不純物導入装置、不純物導入方法及び半導体素子の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023692A1 (fr) 1997-10-31 1999-05-14 Nikon Corporation Aligneur et procede d'exposition
JP2000091207A (ja) * 1998-09-14 2000-03-31 Nikon Corp 投影露光装置及び投影光学系の洗浄方法
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
JP2005101488A (ja) * 2002-12-10 2005-04-14 Nikon Corp 露光装置及び露光方法、デバイス製造方法
JP2005109426A (ja) * 2003-02-26 2005-04-21 Nikon Corp 露光装置、露光方法及びデバイス製造方法
JP2005116571A (ja) * 2003-10-02 2005-04-28 Nikon Corp 露光装置及びデバイス製造方法
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS58202448A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
JPS5919912A (ja) 1982-07-26 1984-02-01 Hitachi Ltd 液浸距離保持装置
DD221563A1 (de) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
DD224448A1 (de) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Einrichtung zur fotolithografischen strukturuebertragung
JPS6265326A (ja) 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
JPS63157419A (ja) 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
US5473410A (en) * 1990-11-28 1995-12-05 Nikon Corporation Projection exposure apparatus
JP2691319B2 (ja) 1990-11-28 1997-12-17 株式会社ニコン 投影露光装置および走査露光方法
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH0562877A (ja) 1991-09-02 1993-03-12 Yasuko Shinohara 光によるlsi製造縮小投影露光装置の光学系
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JPH07220990A (ja) 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH08316125A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JP4029182B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 露光方法
JP4029183B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
EP0951054B1 (en) * 1996-11-28 2008-08-13 Nikon Corporation Aligner and method for exposure
JP2000505958A (ja) 1996-12-24 2000-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2個の物品ホルダを有する二次元バランス位置決め装置及びこの位置決め装置を有するリソグラフ装置
JP3747566B2 (ja) 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
DE69817663T2 (de) 1997-04-23 2004-06-24 Nikon Corp. Optischer Belichtungsapparat und optisches Reinigungsverfahren
JP3817836B2 (ja) 1997-06-10 2006-09-06 株式会社ニコン 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
US6020964A (en) 1997-12-02 2000-02-01 Asm Lithography B.V. Interferometer system and lithograph apparatus including an interferometer system
JPH11176727A (ja) 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
US6208407B1 (en) * 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
AU4057999A (en) 1998-06-02 1999-12-20 Nikon Corporation Scanning aligner, method of manufacture thereof, and method of manufacturing device
JP2000058436A (ja) 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
US6850313B2 (en) * 1999-10-01 2005-02-01 Nikon Corporation Exposure method, exposure apparatus and its making method, device manufacturing method, and device
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
US6704090B2 (en) * 2000-05-11 2004-03-09 Nikon Corporation Exposure method and exposure apparatus
JP4714403B2 (ja) 2001-02-27 2011-06-29 エーエスエムエル ユーエス,インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
TW529172B (en) * 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
EP1532489A2 (en) 2002-08-23 2005-05-25 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
EP1420298B1 (en) 2002-11-12 2013-02-20 ASML Netherlands B.V. Lithographic apparatus
CN101424881B (zh) * 2002-11-12 2011-11-30 Asml荷兰有限公司 光刻投射装置
SG2010050110A (en) 2002-11-12 2014-06-27 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
SG150388A1 (en) 2002-12-10 2009-03-30 Nikon Corp Exposure apparatus and method for producing device
ATE424026T1 (de) 2002-12-13 2009-03-15 Koninkl Philips Electronics Nv Flüssigkeitsentfernung in einem verfahren und einer einrichtung zum bestrahlen von flecken auf einer schicht
AU2003283717A1 (en) 2002-12-19 2004-07-14 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
KR101562447B1 (ko) 2003-02-26 2015-10-21 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
EP2161620A1 (en) 2003-04-11 2010-03-10 Nikon Corporation Cleanup method for optics in immersion lithography
TWI295414B (en) * 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP3940378B2 (ja) * 2003-05-26 2007-07-04 沖電気工業株式会社 半導体露光装置の自己洗浄方法と自己洗浄用透過板
JP4444920B2 (ja) 2003-09-19 2010-03-31 株式会社ニコン 露光装置及びデバイス製造方法
KR101245070B1 (ko) * 2004-06-21 2013-03-18 가부시키가이샤 니콘 노광 장치 및 그 부재의 세정 방법, 노광 장치의 메인터넌스 방법, 메인터넌스 기기, 그리고 디바이스 제조 방법
US7230675B2 (en) * 2004-12-02 2007-06-12 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured therewith

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023692A1 (fr) 1997-10-31 1999-05-14 Nikon Corporation Aligneur et procede d'exposition
JPH11135400A (ja) 1997-10-31 1999-05-21 Nikon Corp 露光装置
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
JP2000091207A (ja) * 1998-09-14 2000-03-31 Nikon Corp 投影露光装置及び投影光学系の洗浄方法
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
JP2005101488A (ja) * 2002-12-10 2005-04-14 Nikon Corp 露光装置及び露光方法、デバイス製造方法
JP2005109426A (ja) * 2003-02-26 2005-04-21 Nikon Corp 露光装置、露光方法及びデバイス製造方法
JP2005116571A (ja) * 2003-10-02 2005-04-28 Nikon Corp 露光装置及びデバイス製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263091A (ja) * 2007-04-12 2008-10-30 Nikon Corp 光洗浄部材、メンテナンス方法、洗浄方法、露光方法及び露光装置、並びにデバイス製造方法
US9599908B2 (en) 2007-07-24 2017-03-21 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9158206B2 (en) 2007-07-24 2015-10-13 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
JP2011199304A (ja) * 2007-07-24 2011-10-06 Asml Netherlands Bv 液浸タイプのリソグラフィ装置、その汚染を防止又は減少させる方法、及びデバイス製造方法
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
TWI420250B (zh) * 2008-03-07 2013-12-21 Asml Netherlands Bv 微影裝置和方法
JP2009218587A (ja) * 2008-03-07 2009-09-24 Asml Netherlands Bv リソグラフィ装置及び方法
US8427627B2 (en) 2008-03-07 2013-04-23 Asml Netherlands B.V. Lithographic apparatus and methods
US8221827B2 (en) 2008-09-19 2012-07-17 Kabushiki Kaisha Toshiba Patterning method
JP2010069762A (ja) * 2008-09-19 2010-04-02 Toshiba Corp パターン形成方法
JP2010147471A (ja) * 2008-12-18 2010-07-01 Asml Netherlands Bv リソグラフィ装置及び少なくとも2つのターゲット部分を照射する方法
JP2012009596A (ja) * 2010-06-24 2012-01-12 Nikon Corp 液体供給装置、露光装置、液体供給方法、メンテナンス方法、及びデバイス製造方法
JP2015222432A (ja) * 2015-07-14 2015-12-10 株式会社ニコン 液体供給装置、露光装置、液体供給方法、メンテナンス方法、及びデバイス製造方法

Also Published As

Publication number Publication date
EP1901338A4 (en) 2011-06-29
JPWO2007004552A1 (ja) 2009-01-29
KR20080026082A (ko) 2008-03-24
EP1901338A1 (en) 2008-03-19
US20090323035A1 (en) 2009-12-31
JP5194792B2 (ja) 2013-05-08
US8179517B2 (en) 2012-05-15

Similar Documents

Publication Publication Date Title
JP5194792B2 (ja) 露光装置及び方法、露光装置のメンテナンス方法、並びにデバイス製造方法
JP5264504B2 (ja) 洗浄用液体、洗浄方法、液体発生装置、露光装置、及びデバイス製造方法
JP4802604B2 (ja) 露光装置、露光方法、及びデバイス製造方法
KR101555707B1 (ko) 노광 장치 및 노광 방법, 그리고 디바이스 제조 방법
JP5239337B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2010118714A (ja) 露光装置、露光方法及びデバイス製造方法
WO2007132862A1 (ja) 投影光学系、露光方法、露光装置、及びデバイス製造方法
JP2006019720A (ja) 露光装置、露光方法及びデバイス製造方法
WO2005122220A1 (ja) 露光装置及び露光方法、並びにデバイス製造方法
WO2008072647A1 (en) Exposure apparatus and device fabrication method
WO2006106832A1 (ja) 露光条件の決定方法、露光方法及び露光装置、並びにデバイス製造方法
JP4923480B2 (ja) 露光装置及びデバイス製造方法、計測部材
JP4752320B2 (ja) 基板保持装置及び露光装置、基板保持方法、露光方法、並びにデバイス製造方法
JP2011086804A (ja) 液浸部材、露光装置、露光方法、及びデバイス製造方法
JP4715505B2 (ja) 露光装置及びデバイス製造方法
JP2010040702A (ja) ステージ装置、露光装置、及びデバイス製造方法
JP5229264B2 (ja) 露光装置、露光方法及びデバイス製造方法
US20130050666A1 (en) Exposure apparatus, liquid holding method, and device manufacturing method
JP2012138511A (ja) 露光装置の制御方法、露光装置、デバイス製造方法、プログラム、及び記録媒体
JP5375843B2 (ja) 露光装置、露光方法、及びデバイス製造方法
WO2008075742A1 (ja) メンテナンス方法、露光方法及び露光装置、並びにデバイス製造方法
JP2008021718A (ja) 露光装置及びデバイス製造方法
JP4992558B2 (ja) 液浸露光装置、デバイス製造方法、及び評価方法
JP2011029325A (ja) 露光装置、露光方法、及びデバイス製造方法
WO2007046415A1 (ja) 露光装置及び露光方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077021758

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006767694

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11915886

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007524022

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE