JP4738829B2 - 位置決め装置 - Google Patents

位置決め装置 Download PDF

Info

Publication number
JP4738829B2
JP4738829B2 JP2005033017A JP2005033017A JP4738829B2 JP 4738829 B2 JP4738829 B2 JP 4738829B2 JP 2005033017 A JP2005033017 A JP 2005033017A JP 2005033017 A JP2005033017 A JP 2005033017A JP 4738829 B2 JP4738829 B2 JP 4738829B2
Authority
JP
Japan
Prior art keywords
moving body
force
stage
actuator
positioning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005033017A
Other languages
English (en)
Other versions
JP2006222206A (ja
Inventor
俊哉 浅野
雄吾 柴田
篤史 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005033017A priority Critical patent/JP4738829B2/ja
Priority to US11/339,896 priority patent/US8031328B2/en
Publication of JP2006222206A publication Critical patent/JP2006222206A/ja
Priority to US13/166,573 priority patent/US8786831B2/en
Application granted granted Critical
Publication of JP4738829B2 publication Critical patent/JP4738829B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70783Handling stress or warp of chucks, masks or workpieces, e.g. to compensate for imaging errors or considerations related to warpage of masks or workpieces due to their own weight
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は位置決め装置に関するものであり、好ましくは露光装置において基板を位置決めするために用いられる位置決め装置に関するものである。
半導体露光装置とはレチクルに描かれている原型パターンに露光光を入射し、その投影光または反射光を露光光学系により適宜縮小して半導体原版のウエハ上に投影して露光動作を行うものである。転写されるパターンが描かれたレチクルはレチクルステージに搭載されて所定の位置に位置決めされる。レチクルの上方から照明系より露光光が照射され、縮小投影光学系に入る。この光学系により所定の位置に像が結ばれる。ウエハステージはウエハを搭載して前記結像点にウエハの所定の位置がくるように位置決め制御を行う。ウエハステージに対するウエハの位置情報は、前もってアライメント光学系によりウエハ上のアライメントマークを測定することにより得られている。露光時にはこのアライメント情報を基にウエハを所定の位置に制御する。
露光装置の性能を表す指標の一つに単位時間あたりに処理できるウエハ枚数で表されるスループットがある。スループットを上げるにはウエハステージの移動を短時間で行う必要がある。このためにはステージ移動時の加速及び減速とともに移動速度を大きくしなければならない。高加減速、高速移動、かつ高精度の位置決め性能を得るため、従来のウエハステージではウエハを搭載して高精度に位置決めする微動ステージと、この微動ステージを平面方向に高加減速かつ高速で移動させる粗動ステージの粗微動多段構成が一般的であった。この構成では粗動アクチュエータは粗動ステージ自身と微動ステージをあわせた質量を加減速する必要があり、加速度を大きくするほど必要な推力は大きくなる。この結果粗動アクチュエータが大型化し、ステージ装置全体も大型化する傾向にある。装置の大型化は製造コストの増大、装置設置面積の増大などを招き好ましくない。
さらに近年では一枚のウエハの露光動作中に、次に露光するウエハを別のステージに搭載して同時にアライメント動作を行うツインステージの構成が提案されている。ツインステージでは二台のステージが個々にウエハを搬送し、各々のステージが、ウエハ搭載、アライメント動作、露光動作、ウエハ取り出し、というサイクルを繰り返し行う。よって、二台のステージは、一箇所ずつ設けられたアライメント光学系位置、露光光学系位置、ウエハ交換位置、を互いに交換して用いることになる。従来の粗微動型ステージでステージの位置交換を行うのは構成的に困難である。
そこで、従来に代わるステージ構成として平面モータ型ステージが考案されている。図16はローレンツ力で6軸方向に位置決め制御することができる平面モータ型ステージ装置である(特許文献1参照)。
ステージ装置は、下面に磁石ユニットを有するステージ110(可動子)と、磁石ユニット114と対面して設けられたコイルユニット100(固定子)とを有する。磁石ユニットは複数の永久磁石を備え、複数の永久磁石はいわゆるハルバッハ配列でXY方向に並べられている。コイルユニット100は複数のコイルを備え、X方向に並べられたコイル層116aと、Y方向に並べられたコイル層116bとを有する。また、図16(a)では不図示であるが、さらにX方向に並べられたコイル層とY方向に並べられたコイル層を有する。これらのコイル層に選択的に電流を流すことにより、磁石ユニット114とコイルユニット100との間でローレンツ力が発生し、結果としてステージ110を移動させることができる。
コイル層116aを用いてステージ110にX方向における推力を与え、コイル層116bを用いてステージ110にY方向における推力を与え、そのほかのコイル層を用いてステージ110にZ方向(鉛直方向)、θx(X軸周りの回転方向)、θy(Y軸周りの回転方向)、θz(Z軸周りの回転方向)における推力を与える。ここで、ステージ110にZ方向で推力を与えるコイル層によって自重を支持する。
各コイル層を構成するコイルは、隣合う2つのコイル(A相とB相とする)を一組として所望の力を発生する。磁石ユニットはX方向およびY方向に周期的な磁束密度分布(ここでは正弦波とする)をもつため、一方のコイル(A相)に一定電流を流した場合には、発生する推力はコイルユニットと磁石ユニットとの相対位置を引数とする正弦波となる。また、他方のコイル(B相)に一定電流を流した場合にはA相とは90度位相が異なる正弦波となるように磁石ユニットとコイルユニットは配置されている。そこで、A相およびB相のコイルにコイルユニットと磁石ユニットとの相対位置から求めた整流値を乗じた電流をそれぞれ流すことによって、所望の力を発生することができる。
特開2004−254489号公報
X方向(またはY方向)に並べたコイルを用いてステージの自重を支持した場合、ステージがX方向(またはY方向)に移動するとともに、自重を支持するためにステージに加わる力の作用点が変動してしまう。つまり、ステージがある位置においてはA相のコイルのみから力を受け、別の位置においてはB相のみから力を受け、さらに別の位置においてはA相とB相の両コイルから力を受ける。このような力の作用点の変動は、ステージにとって好ましくない変形をもたらすおそれがある。
露光装置において、一般にステージの位置計測にはレーザ干渉計が用いられる。レーザ干渉計は、ステージに設けられたミラー反射面にレーザ光を照射させることによって、ミラー反射面の位置を計測するものである。つまり、ミラー反射面とウエハ上の露光位置が変動しないことを前提としている。しかしながら、上述のような変形が生じると、ミラー反射面とウエハ上の露光位置が変動してしまうため、露光精度が悪くなってしまう。
このように、本発明はステージが移動した際に力の作用点が変動することにより生じるステージの変形を課題とするものである。
上述の課題に鑑みて、本発明は、移動体の移動によって力の作用点が変化するアクチュエータを用いて、前記移動体の自重を支持する位置決め装置であって、前記力の作用点の変化によって前記移動体にかかる曲げ力を低減するように前記アクチュエータまたは前記移動体への指令を制御する制御部を有することを特徴とする。
本発明によれば、ステージが移動した際に力の作用点が変動することにより生じるステージの変形の影響を低減することができる。
尚、以下に説明する実施の形態は、本発明の実現手段としての一例であり、本発明が適用される装置の構成や各種条件によって適宜修正又は変更されるべきものである。
また、本発明は、以下に説明するデバイス製造の他に、各種精密加工装置や各種精密測定装置や、このようなデバイス製造装置を使って半導体デバイスなどを製造する方法にも適用可能である。
[実施例1]
図1は半導体露光装置の概念図である。鏡筒定盤1は除振マウント2により床からの振動を絶縁して架台3上に搭載されている。投影光学系4は鏡筒定盤1によって支持され、投影光学系の上方にはレチクルステージ(不図示)が設けられ、投影光学系の下方にはウエハステージが設けられている。
ウエハステージ5(可動子)上にはウエハチャック6を介してウエハ7が搭載される。ウエハステージ5はいわゆる平面モータによって移動することができる。平面モータは、ウエハステージ5の下面に設けられた磁石ユニット8と、架台3上に設けられたコイルユニット9(固定子)とを有する。平面モータについての詳細な説明は後述する。
コイルユニット9は、架台上をXY方向で移動可能である。これは、ウエハステージを駆動した際にコイルユニット9に生じる反力を架台に伝えないようにするためである。このような構成は特開平11−190786号公報に記載されている。
コイルユニット9の架台に対する位置を計測するために、X方向およびY方向を計測するリニアエンコーダ(不図示)が設けられている。コイルユニット9はリニアモータ10によって架台3に対してX方向およびY方向に駆動される。ここで、コイルユニット9はリニアモータ以外の駆動手段によって駆動してもよい。
ウエハステージ5の位置はレーザ干渉計によって計測される。レーザ干渉計は、ウエハステージ5に設けられたミラーの反射面にレーザ光を反射させることによって位置を計測する。
図2は平面モータを説明するための図である。図2は図1におけるウエハステージを上方から見た図であり、磁石ユニット8の配置を説明するためにウエハステージ本体を透過して示している。また、コイルユニット9はX方向に並べられたコイル層のみを図に示しており、コイルの本数も省略し、コイルの長さも短く示している。図2において省略されている部分については図16を参酌するものとする。
磁石21(薄い灰色で示す)および磁石22(濃い灰色で示す)は、鉛直方向(Z方向)に着磁された主極磁石である。磁石21はZ−側(コイルユニットと対面する側)にS極を有し、磁石22はZ−側にN極を有する。磁石23(白色で示す)は、水平方向に着磁された補極磁石であり、その端部は主極磁石と接している。補極磁石の端部の極は、接する主極磁石のZ−側の極と一致している。このような磁石配列はハルバッハ配列と呼ばれ、磁石ユニット8はZ−側に周期的な磁束密度分布を有することになる。磁石ユニット8は複数の磁石をXY方向にハルバッハ配列で並べて構成され、複数の磁石はXY方向で対称にほぼ正方上に配置される。
コイルユニット9は複数のコイルを備え、X方向に並べられたコイル層と、Y方向に並べられたコイル層とを有する。コイルユニット9はコイル層がX方向とY方向に格子状に並んでいる。これらのコイルに選択的に電流を流すことにより、磁石ユニット8とコイルユニット9との間でローレンツ力が発生し、結果としてウエハステージ5を移動させることができる。
以下、コイルに流す電流について説明をする。
隣り合うコイルの間隔であるコイルピッチCPと、同じ極の磁石(Z−側に同一極を有する主極磁石)の間隔である磁極ピッチMPとは
MP=4/3*CP (1)
なる関係がある。
図2の状態で、ステージのX方向における位置座標をx=0とし、位置座標を0≦x<CPの範囲で考える。X方向駆動に用いるコイルはC6〜C11であり、これらのコイルは磁石の切欠き部24にかかっていない。コイルの巻き方向を図2において時計回り方向とする。
磁石ユニット8は、上述のようにコイル位置において磁束密度分布を形成している。Z方向の磁束密度分布の平均値はX軸に対してほぼ正弦波として近似できるものとすると、各コイルCi(I=6〜11)に電流I[A]を流した時に発生するX方向への力fi(i=6〜11)は位置座標xに対して次の関数となる。ただし、前述のようにコイルユニットは移動するので、下記数式の三角関数内の変数xに対してコイルユニットの位置計測値を用いて補正する必要がある。ここではわかりやすくする為、この補正については省略して説明する。
f6,f10=−I*Kx*cos(2*π/MP*x) (2)
f8=I*Kx*cos(2*π/MP*x) (3)
f7,f11=I*Kx*sin(2*π/MP*x) (4)
f9=−I*Kx*sin(2*π/MP*x) (5)
ここでKxは定数である。
各コイルCi(I=6〜22)に流す電流Ii(i=6〜11)を上記関数と同じ位相として
I6,I10=−I*cos(2*π/MP*x) (6)
I8=I*cos(2*π/MP*x) (7)
I7,I11=I*sin(2*π/MP*x) (8)
I9=−I*sin(2*π/MP*x) (9)
とすると、力の和(f6+f7)、(f8+f9)、(f10+f11)のそれぞれは
I*Kx*cos^2(2*π/MP*x)+I*Kx*sin^2(2*π/MP*x)=I*Kx (10)
となり、全ての推力の総和は3*I*Kxとなる。すなわち力Fを発生させたい場合には
I=F/Kx/3 (11)
とすればよい。位置座標xが−CP≦x<0の場合は、コイルc5〜c10を用いる。このとき、コイルc6〜c10には数式(6)〜(9)の電流I6〜I10を流し、コイルc5には数式(9)の電流I9をを流すことによって、力の和(f5+f6)、(f7+f8)、(f9+f10)はそれぞれ数式(10)で表されるようになる。
コイルはピッチCPで並んでいるので、ステージがCPだけ動いた場合はコイル番号が一つずれた相似形状となり、以上に示した議論と全く同様にして(11)式により力Fを発生させる電流Iを得る。すなわち、ステージがコイルユニット9上の如何なる位置においてもX方向に所望の駆動力Fを発生させるには(11)式の電流を基に、(6)〜(9)式で表される整流値を乗じて該当するコイルに電流を流してやればよい。
ここで、コイルに流す電流には(6)、(9)式のように整流値に−符号がついているが、コイルの向きを反転して接続すれば−の符号をつけなくてもよい。したがって、偶数番のコイルは(7)式のコサイン関数、奇数番コイルは(8)式のサイン関数による整流値をかければよいことになる。
このようにして、ステージ110をX方向に移動させることができる。また、図2では省略されているが、Y方向に並べられたコイル層を用いて同様にステージ110をY方向に移動させることができる。
θz方向にモーメント力を発生させるには、切欠き部24に位置するコイルを用いる。位置座標xが0≦x<CPのときは(f2,f3)および(f14,f15)で力を発生させ、−CP≦x<0のときは(f1,f2)および(f13,f14)の各組で力を発生させる。このとき、磁石ユニット8には図2のような切欠き部があるので、推力位置がY方向に対してずれているので、上記各組で異なる向きの力を発生させることによりθz方向のモーメント力を発生させることができる。
Z方向に駆動力を発生させる場合、0≦x<CPのときに(f5,f6)、(f7,f8)、(f9,f10)、(f11,f12)の各組を用いて、−CP≦x<0のときに(f4,f5)、(f6,f7)、(f8,f9)、(f10,f11)の各組を用いる。磁石ユニットはコイル位置においてX方向の磁束密度分布を形成し、磁束密度分布の平均値はX軸に対してほぼ正弦波として近似できる。偶数番のコイルc2,c6,c10,・・・と、奇数番のコイルc1,c5,c9,・・・はコイルの向きを反転していることを考慮すると、各コイルにI[A]流した時にZ方向に発生する力fは
fn=I*Kz*cos(2*π/MP*x) n:奇数 (12)
fm=−I*Kz*sin(2*π/MP*x) m:偶数 (13)
となる。ここで各コイルの電流を上記関数と同じ位相として
In=I*cos(2*π/MP*x) n:奇数 (14)
Im=−I*sin(2*π/MP*x) m:偶数 (15)
を用いると、先の4組での力の和は
Fz=4*I*Kz (16)
となるので、
I=Fz/Kz/4 (17)
により、所望のZ方向への力Fzを発生させることができる。
θy方向のモーメント力は、Z方向への力に用いた4組のコイルにより、X+側に位置する2組とX−側に位置する2組とで偶力を出すことで発生させることができる。同様にθx方向モーメントを発生させることができる。
よって、X,Y,Z,θx,θy,θzの6自由度に対して任意の力を発生させることができる。X方向とZ及びθy方向は同じ層のコイルで出しても良いし、個別にコイル層を用いても良い。Y方向とZ及びθx方向も同様に同じ層でも個別のコイル層を用いても良い。少なくともX方向に並んだコイル層とY方向に並んだコイル層の計2層以上のコイル層があれば良い。
前述のようにステージの位置計測にはレーザ干渉計を用いる。この計測値はステージの位置制御のためのフィードバック信号として用いるほか、前記電流の位相計算にも用いるZ方向も同様に不図示のレーザ干渉計をもちいて位置計測を行っている。
計測されたステージの位置情報は不図示の位置制御器に入力され、位置制御器では位置指令とステージ位置計測情報とからステージへの駆動指令が生成される。駆動指令に基づき、先に説明した電流指令方法により不図示の電流ドライバを用いて各コイルに所定の電流を流す。このようにしてステージの位置決め制御が行われる。
上述のような位置決め装置において、ウエハステージ5の自重を支持するための力の作用点について説明する。ウエハステージ5はX方向に並べられたコイルに電流を流すことによってZ方向に推力を受けてその自重を支持される。このとき、ウエハステージ5がX方向に移動すると、磁石ユニット8とコイルユニット9との位置関係によって力の作用点が変動してしまう。
図3は自重を支持する力を発生するコイル群(c4〜c12)と磁石ユニット8をY軸方向から見た図である。コイル群(c4〜c12)が発生するZ方向への力の位置(作用点)と大きさを矢印で表す。また、図3(a)〜(g)はウエハステージが移動した際の経過を表す。
磁石ユニット8は、Z方向への力を発生する主極磁石21(灰色で示す)、22(白色で示す)のみを、X方向の並びが明確になるように示している。コイル群(c4〜c12)は紙面垂直方向(Y方向)に長辺方向が伸びており、X方向にコイルが並んでいることを示している。偶数番のコイルを灰色、奇数番のコイルを白色で示している。前述の(12)〜(15)式によりステージの位置xに対して奇数番のコイルはコサイン二乗、偶数番のコイルはサイン二乗に比した力を出す。
図4にステージの位置に対する、奇数番のコイルと偶数番のコイルで発生する力の比を示す。横軸はステージ位置を磁極ピッチに換算して表しており、ステージ位置x=0は磁極ピッチ0に対応し、x=MPは磁極ピッチ1に対応する。
ステージの位置がx=0(図3(1)における状態)のとき、奇数番のコイル(c5,c7,c9,c11)のみでZ方向に力を出す。ステージの重心位置Gを図3の磁石の中央部とすると、この場合は重心位置に対してZ方向の力点が左右対称になっていることがわかる。
ステージの位置がx=1/8*MP(図3(2)における状態)のとき、奇数番のコイル(c5,c7,c9,c11)と偶数番のコイル(c6,c8,c10,c12)での力の比は1:1である。ただし、この状態では重心位置に対して力点が対称ではなく、−θy方向にモーメントを出してしまう。そこで、図3(2)の力に加えてθyモーメントを相殺するための補正モーメントをコイルc5〜c12により発生している。
ステージの位置がx=2/8*MP(図3(3)における状態)のとき、偶数番のコイル(c6,c8,c10,c12)のみでZ方向に力を発生する。図3(2)における状態よりもさらに大きな−θyモーメントを発生している。
ステージの位置がx=3/8*MP(図3(4)における状態)のとき、奇数番のコイル(c5,c7,c9,c11)と偶数番のコイル(c6,c8,c10,c12)での力の比は1:1で、θyモーメントは0である。
ステージの位置がx=4/8*MP(図3(5)における状態)のとき、奇数番のコイルのみで力を出すが、θyモーメントは正方向となる。
ステージの位置がx=5/8*MP(図3(6)における状態)のとき、奇数番のコイルと偶数番のコイルの力の比は1:1である。ただし、この状態では重心位置に対して力点が対称ではなく、+θyモーメントを発生する。そこで、図3(6)の力に加えてθyモーメントを相殺するための補正モーメントをコイルc5〜c12により発生している。
ステージの位置がx=6/8*MP(図3(7)における状態)のとき、偶数番のコイルのみで力を出し、θyモーメントは発生しない。
(1)式の磁極ピッチMPとコイルピッチCPの関係から6/8*MPとはCPである。すなわち(7)における状態は(1)における状態において奇数番コイルが偶数番コイルに置き換わったものと考えることができる。したがって、ステージがx=6/8*MP以上の位置に移動していく場合は、図3の(1)〜(7)における状態を周期的に繰り返していくことになる。
このようにステージの移動により重心位置が移動してしまい、さらに自重を支持するZ方向への力の力点位置も変化してしまうと、力のバランスが崩れてθy方向のモーメントが発生してしまう。図3では説明のために離散的に示したが、もちろん実際はこれらのモーメントは連続的に変化する。いいかえると、ステージが移動することにより、ステージにはZ方向への力が、位置とバランスを変化させながらかかることになる。Z方向への力の変化は、ステージを変形させる力として作用する。
図5を用いてステージの位置計測について説明する。ステージ5のX方向における位置はレーザ干渉計(図1における12)から照射されるレーザ光13をステージに設けた反射鏡14に反射させることによって計測される。また、同様にステージ5のY方向における位置はレーザ干渉計(不図示)から照射されるレーザ光をステージに設けた反射鏡に反射させることによって計測される。
θz方向はX方向又はY方向のレーザ干渉計において水平方向にある間隔を持つ二本の計測軸により、その計測値の差分と計測軸の間隔とから算出される。
ステージ5のZ方向における位置はステージに設けた反射鏡15によって、レーザ干渉計からY方向に向かって照射されるレーザ光16をZ方向に反射することによって計測される。反射鏡15は、ステージの端部を45度に切り欠いた形状となっており、切り欠いた面には鏡面処理が施されている。また、反射鏡15はX方向に長い構成となっており、これによりZ計測用のレーザ光が反射面に当たる位置が露光光軸19とX軸方向で同一にすることができる。
反射鏡15によって、反射されたレーザ光は、鏡筒定盤に設けられたZ計測用反射鏡(不図示)によって反射される。Z計測用反射鏡はZ方向に垂直な反射面を有し、Y方向に長い構成となっている。ステージのZ方向位置が変動すると、干渉計とZ計測用反射鏡との光路の長さが変動するが、Y軸方向に移動しても前記光路長は変化する。よって、Z方向の計測値を求めるには、Z計測用干渉計の測定値からY方向の測定値を差し引く。
θx、θy方向はそれぞれY方向、X方向のレーザ干渉計において鉛直方向にある間隔をもつ二本の計測軸によりθz軸と同様に算出される。
ここでは、ステージ5に傾斜した反射鏡を設けた例を説明したが、ステージ5にZ方向に垂直な反射面を設けてもよい。この場合、レーザ干渉計からステージ5に対してZ方向からレーザ光が照射されるようにすればよい。例えば、鏡筒定盤に設けたZ計測用反射鏡の反射面を傾斜させる。ステージにZ方向に垂直な反射面を設けた構成については、特開2002−319541に記載がある。
つぎに、ステージ5の変形について説明する。ウエハを搭載するステージの湾曲変形の度合いをαとして示している。ステージの位置は前述のようにレーザ干渉計で計測されるので、ステージの側面に設けられた反射鏡の変位を計測していることになる。不図示のウエハチャックおよびウエハは、それらの剛性がステージの剛性より小さく、かつステージに真空吸着されるため、ウエハの面形状はステージの面形状に倣うと考えられる。ここで、湾曲変形の度合いαが変化すると、反射鏡の位置と露光位置との距離Lが変化してしまうことになる。この距離Lの変化は計測精度の低下を招くため、結果として露光精度を低減させることとなる。
本実施例では、Z計測用のレーザ光の位置は露光光軸18とX軸方向位置と同じとなっている。よって湾曲変形が生じてもZ方向のステージ計測値に影響が出ないようになっている。
図6は、図1におけるウエハステージ5のリブ構成を示したものである。ステージは軽量且つ高剛性であることが要求される。ステージ質量が大きくなるとステージ加減速時に大きな力を必要とし、平面モータへの投入エネルギが大きくなるばかりでなく、固定子コイル部の発熱が大きくなってしまう。この発熱がステージに伝わると熱膨張によりレーザ干渉計反射鏡と露光位置との相対位置が変化し、露光精度を悪化させてしまう。
また、高帯域の位置決め制御を実現するためには、ステージ構造体の弾性モードの固有振動数を高くする必要がある。ステージ構造体の弾性モード振動はレーザ干渉計用反射鏡を介して位置計測信号に伝わり、高いフィードバックゲインを用いると発振する恐れがあるからである。弾性モードの固有振動数が高ければ、位置計測信号にその周波数成分が現れていてもローパスフィルタやノッチフィルタなどで対処し、フィードバック制御系への影響を少なくすることが出来る。ステージ構造体は軽量かつ高剛性の要求を満たすため、セラミクス材を用いた中空リブ構造が用いられている。固有振動数を高めるために、図6のように四角形のステージ構造体に対して菱形形状のリブ31を設けられている。
本発明ではさらに、図5の形状の湾曲変形を生じる方向の剛性を高めるため、X方向に平行なリブ32を設けている。X方向に平行なリブとは、即ちステージを移動した時に自重を支持する力の作用点が変化する方向と平行なリブということを示している。このようなリブ32を設けることにより、ステージがX方向に移動した時にZ方向の力が、その位置とバランスが変化した場合でも図5の湾曲変形の度合いαの変化を小さくすることが出来る。
図7は実施例1における変形例を示したものである。近年ではステージ構造体のさらなる軽量化を目指し、FRP(強化プラスチック)材などを用いた構成も考えられている。FRP材では繊維の方向などにより剛性が曲げ方向により異なることがある。図7において、矢印の方向に剛性が強化されている。図7はこのような異方性剛性を用いた材料を用いた場合に、X方向の曲げ剛性を高くすることにより湾曲変形の度合いαの変化を小さくすることを示したものである。さらにZ計測用のレーザ光の位置は露光光軸とX軸方向位置と同じとなっているため、形状のステージ構造体の変形が生じてもZ方向のステージ計測値に影響が出ないようになっている。
露光精度の更なる高性能化の要求により、ステージ構造体の曲げ方向の剛性を強化しただけでは露光装置の仕様を満たせないことがある。その場合には、図8のようにステージ構造体の上面には圧電素子を用いたアクチュエータ33が設けられる。ステージ構造体の中央はウエハチャックの搭載位置であるので、圧電素子アクチュエータはウエハチャック搭載位置を避けて配置する。圧電素子アクチュエータはX方向の両端部がステージ構造体に取り付けられている。圧電素子アクチュエータに印加する電圧を調整するとX方向に伸縮するので、図5に示した湾曲変形方向に対する曲げの力を発生することができる。ステージ位置に応じて圧電素子アクチュエータに印加する電圧を調整することにより、湾曲変形の度合いαの変化を露光精度に問題の無い次元にまで小さくすることができる。
図9は図3の(3)における状態の曲げ補性力を説明するための図である。このとき水平方向の力は全て奇数番コイルが発生している。位置決め用に発生している制御力に加えて曲げ補正力であるf1とf2をそれぞれc5、c11で発生している。このモータでの力の発生位置はコイルの中心と考えることが出来、コイルc5、c11で図9のような力を発生すると、ステージ構造体には可動磁石を介して図5に示した湾曲変形方向に対する曲げの力を発生することができる。f1とf2は同じ大きさで方向が逆であるので、X方向に対しては合力は零となる。補正力はステージ位置に応じて適宜調整する。補正力を発生させるコイルはここに示したものに限らず、図5に示した湾曲変形方向に対する曲げの力を発生するものであればよい。
以下、上述の圧電素子アクチュエータへの電圧指令値および補正力の指令値を求める方法について説明する。指令値を求める方法として、露光装置とは別の装置を用いる方法と、露光装置を用いる方法とがある。まず、露光装置とは別の装置を用いる方法について説明する。
図10は圧電素子アクチュエータへの指令値を求めるための装置を示す図である。装置200は、ステージ構造体、ステージ構造体上に設けられた変形測定用ミラー18、コイルユニット9(固定子)、ステージ5の6軸方向における位置を計測するレーザ干渉計212、レーザ干渉計を設置する計測定盤201を有する。計測定盤201は除振マウント202を介して架台203の上に設けられており、床からの振動が絶縁されている。ステージの位置決め機構は、図1とほぼ同様であるため、異なる点について説明する。
コイルユニット9は架台203に設けられたガイド211に沿ってX方向に移動可能である。コイルユニット9を移動させるボールねじ215と、ボールねじの力をコイルユニットに伝達する駆動棒214(駆動機構とする)を有する。なお、駆動機構についてはこれにかぎるものではない。
コイルユニット9のX方向における位置は、例えばリニアエンコーダのような計測器(不図示)によって計測される。ステージ5の位置サーボには、ステージ5とコイルユニット9との相対位置情報が用いられる。この相対位置情報は、レーザ干渉計216による計測値と前述の計測器の計測値から得られる。
計測定盤201には位置サーボに用いるレーザ干渉計216とは別に、ステージの変形を測定するためのレーザ干渉計217が設けられている。レーザ干渉計から照射される計測光213はステージ上に設けられた変形測定用ミラー18に反射される。レーザ干渉計217はXY方向に移動可能である。変形測定用ミラー18の位置もこれに合わせて移動する。
上述の装置を用いた圧電アクチュエータ33への指令値の求め方について説明する。まず、サーボ機構を用いてステージ5を所定の目標位置に位置決めする。このとき、図8の圧電素子アクチュエータ33への電圧指令または図9の補正指令は零である。つぎに、位置決めした状態(位置サーボをかけた状態)でコイルユニット9を駆動機構により移動させつつ、レーザ干渉計217の出力を記録する。
ここで、コイルユニット9は1コイルピッチ分だけ移動させれば十分である。これはステージの移動に伴うZ方向への力の変化はコイルピッチを周期としているためである。また、ステージ5でなくコイルユニット9を移動させることによって、レーザ干渉計217の計測光が反射面に照射する位置を常に同じ位置にすることができる。つまり、ステージを移動させた場合、計測光が照射する位置が変わるため、反射鏡の面精度や取付け誤差の影響を受けてしまう。
つぎに、記録した干渉計の出力の平均値を算出する。そして、コイルユニット9を移動前の位置に戻して、再度コイルユニット9を移動させる。この移動の際には、レーザ干渉計の出力が、算出した平均値に近づくように、圧電素子アクチュエータ33の電圧指令値またはコイルユニット9への補正指令値を与える。これらの電圧指令値、補正指令値は適宜調整しうる。
これらの調整を、コイルユニット9の位置をわずかにずらしながら繰り返すことで、コイルユニット9とステージ5の相対位置に対する指令値のテーブルを得ることができる。より信頼度の高いテーブルを作成するために、変形測定ミラーの位置を変えて同様の計測を行い、テーブルの値を適宜修正しうる。
つぎに、露光装置を用いて圧電素子アクチュエータの指令値を求める方法を説明する。図1の投影光学系の周辺には不図示のアライメント光学系及びフォーカス検出系がある。アライメント光学系ではウエハ上に設けられたアライメントマークを測定することにより、投影光学系に対するアライメントマークの位置ずれを検出することができる。
まず、ステージ5はサーボ機構を用いてアライメントマークを測定できる位置に位置決めされて、アライメント光学系によりアライメントマークを測定する。つぎに、位置決めした状態(位置サーボをかけた状態)でコイルユニット9を駆動機構により移動させて、アライメントマークを測定する。アライメントマークの位置ずれが小さくなるように、圧電素子アクチュエータ33の電圧指令値またはコイルユニット9への補正指令値を与える。これらの電圧指令値、補正指令値は適宜調整しうる。
これらの調整を、コイルユニット9の位置をわずかにずらしながら繰り返すことで、コイルユニット9とステージ5の相対位置に対する指令値のテーブルを得ることができる。
フォーカス検出系ではウエハ面のZ方向における高さを検出できるので、この値も同時に参照して行えばより高い精度で補正指令値を得ることができる。このようにして露光装置においてもコイルユニット9とステージ5の相対位置に対する補正指令値のテーブルを作成することができる。
上述の補正指令値のテーブルを用いて、圧電素子アクチュエータ33、コイルユニット9を制御することで、力の作用点の変化によってステージにかかる曲げ力を低減するよう補正することができる。
図12は上述の圧電素子アクチュエータ33を用いた補正系のブロック線図である。制御部41には、ステージ5およびコイルユニット9の位置情報が入力されて、補正指令値が出力される。制御部41は、メモリ等に前述の補正指令値テーブルをもっている。ステージ5とコイルユニット9との相対位置は連続的な値であるので、補正指令値テーブルが離散的な値である場合には、補正指令値テーブルから補正指令値を得るために補間する必要がある。補間する方法は、一般に用いられている近似等の方法でよい。
補正指令値は圧電素子アクチュエータ33またはコイルユニット9に送られる。補正に用いるアクチュエータの種類によって補正指令値は異なるので、補正指令値テーブルも用いるアクチュエータごとに作成することになる。
また、上述の補正指令値のテーブルを用いて、ステージの指令値を制御することで、ステージにかかる曲げ力を低減するよう補正することができる。
図13はステージ位置指令による補正系のブロック線図である。この補正指令値は前述した露光装置上における補正指令値テーブルの作成方法により求めることができる。露光時にはステージ位置指令に対して補正指令値テーブルより得られた補正指令により補正された補正位置指令をステージ制御系に送る。すなわち、固定子と可動子の相対位置変化によるステージの変形に起因するウエハの位置ずれ量を見込んでおき、そのずれ量を考慮してステージを位置決めすることにより結果的に正規の位置に露光を行えるようにしたものである。
次に、この露光装置を利用した半導体デバイスの製造プロセスを説明する。図14は半導体デバイスの全体的な製造プロセスのフローを示す図である。ステップ1(回路設計)では半導体デバイスの回路設計を行う。ステップ2(マスク作製)では設計した回路パターンに基づいてマスクを作製する。
一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記のマスクとウエハを用いて、上記の露光装置によりリソグラフィ技術を利用してウエハ上に実際の回路を形成する。次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組み立て工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、ステップ7でこれを出荷する。
上記ステップ4のウエハプロセスは以下のステップを有する(図15)。ウエハの表面を酸化させる酸化ステップ、ウエハ表面に絶縁膜を成膜するCVDステップ、ウエハ上に電極を蒸着によって形成する電極形成ステップ、ウエハにイオンを打ち込むイオン打ち込みステップ、ウエハに感光剤を塗布するレジスト処理ステップ、上記の露光装置によって回路パターンをレジスト処理ステップ後のウエハに転写する露光ステップ、露光ステップで露光したウエハを現像する現像ステップ、現像ステップで現像したレジスト像以外の部分を削り取るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト剥離ステップ。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。
露光装置の概念図を示す図 平面モータステージの可動磁石の配置を示す図 コイルが発生するZ方向力の位置と大きさを示す図 奇数番コイルと偶数番コイルで発生する力の比を示す図 ステージの変形の様子を示す図 ステージのリブを示す図 ステージの剛性を示す図 圧電素子アクチュエータを示す図 曲げ補性力を説明するための図 圧電素子アクチュエータへの指令値を求めるための装置を示す図 変形測定用ミラーを示す図 圧電素子アクチュエータを用いた補正系のブロック線図 ステージ位置指令による補正系のブロック線図 デバイス製造方法を示す図 ウエハプロセスを示す図 平面モータの全体を示す図
符号の説明
1 鏡筒定盤
2 除振マウント
3 架台
4 投影光学系
5 ウエハステージ
6 ウエハチャック
7 ウエハ
8 磁石ユニット
9 コイルユニット
10 リニアモータ
11 ガイド
12 干渉計
13 Xレーザ光
14 X反射鏡
15 Z反射鏡
16 Zレーザ光
18 変形測定用ミラー
19 露光光軸
21,22 主極磁石
24 切り欠き部
23 補極磁石
31,32 リブ
33 圧電素子
200 指令値算出装置
201 計測定盤
202 除振マウント
203 架台
212 干渉計
213 レーザ光
214 駆動棒
215 ボールねじ
216 Z干渉計
217 変形測定用レーザ干渉計

Claims (16)

  1. 移動体の移動によって力の作用点が変化するアクチュエータを用いて、前記移動体の自重を支持する位置決め装置であって、
    前記力の作用点の変化によって前記移動体にかかる曲げ力を低減するように前記アクチュエータへの指令を制御する制御部を有することを特徴とする位置決め装置。
  2. 移動体の移動によって力の作用点が変化するアクチュエータを用いて、前記移動体の自重を支持する位置決め装置であって、
    予め求められた、前記力の作用点の変化によって生じる前記移動体の変形量にもとづいて前記移動体への指令を制御する制御部を有することを特徴とする位置決め装置。
  3. 前記制御部は、前記力の作用点の変化による前記移動体の変形を補正するように指令を制御することを特徴とする請求項1に記載の位置決め装置。
  4. 前記アクチュエータは、前記移動体を前記移動方向に駆動するために用いられることを特徴とする請求項1〜3のいずれかに記載の位置決め装置。
  5. 前記制御部は、前記移動体の位置情報または駆動情報に基づいて指令を制御することを特徴とする請求項1〜4のいずれかに記載の位置決め装置。
  6. 前記アクチュエータは平面モータであることを特徴とする請求項1〜5のいずれかに記載の位置決め装置。
  7. 補正用アクチュエータを有し、前記力の作用点の変化によって前記移動体にかかる曲げ力を低減するように前記補正用アクチュエータへの指令を制御する第2制御部を有することを特徴とする請求項1〜6のいずれかに記載の位置決め装置。
  8. 複数のコイルを有する固定子と、
    周期的な磁束密度分布を有する可動子とを有し、
    前記複数のコイルのうち第1方向に並べられたコイルに通電することによって前記可動子の自重を支持する位置決め装置であって、
    前記可動子は、前記第1方向と垂直な第2方向における曲げ剛性よりも前記第1方向における曲げ剛性の方が大きいことを特徴とする位置決め装置。
  9. 複数のコイルを有する固定子と、
    周期的な磁束密度分布を有する可動子とを有し、
    前記複数のコイルのうち第1方向に並べられたコイルに通電することによって前記可動子の自重を支持する位置決め装置であって、
    前記第1方向において前記可動子にかかる曲げ力を低減するように前記複数のコイルに通電する電流を制御する制御部を有することを特徴とする位置決め装置。
  10. 前記可動子は、平面モータによって前記固定子の上面に沿って移動することを特徴とする請求項8または9に記載の位置決め装置。
  11. 移動体の移動によって力の作用点が変化するアクチュエータを用いて、前記移動体の自重を支持する位置決め装置の駆動制御方法であって、
    前記アクチュエータは、前記力の作用点が変化する移動方向における曲げ力を前記移動体に発生させるように制御されることを特徴とする駆動制御方法。
  12. 原版のパターンを基板に露光する露光装置であって、
    請求項1乃至10のいずれか1項に記載の位置決め装置を備え、
    前記移動体により原版と前記基板とを相対的に位置決めして露光することを特徴とする露光装置。
  13. 移動体の移動により力の作用点が変わるアクチュエータを用いて自重が支持される移動体の変形量を計測する計測装置であって、
    前記アクチュエータの固定子を移動させる駆動手段と、
    前記固定子を移動させた際の前記移動体の変形量を計測する計測手段とを有することを特徴とする計測装置。
  14. 移動体の移動によって力の作用点が変化するアクチュエータを用いて、前記移動体の自重を支持する位置決め装置であって、
    補正用アクチュエータを有し、請求項13に記載の計測装置によって計測された結果にもとづいて前記補正用アクチュエータを制御することを特徴とする位置決め装置。
  15. 移動体の移動によって力の作用点が変化するアクチュエータを用いて、前記移動体の自重を支持する位置決め装置であって、
    請求項13に記載の計測装置によって計測された結果にもとづいて前記アクチュエータへの指令を制御することを特徴とする位置決め装置。
  16. 移動体の移動によって力の作用点が変化するアクチュエータを用いて、前記移動体の自重を支持する位置決め装置であって、
    請求項13に記載の計測装置によって計測された結果にもとづいて前記移動体への指令を制御することを特徴とする位置決め装置。
JP2005033017A 2005-02-09 2005-02-09 位置決め装置 Expired - Fee Related JP4738829B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005033017A JP4738829B2 (ja) 2005-02-09 2005-02-09 位置決め装置
US11/339,896 US8031328B2 (en) 2005-02-09 2006-01-26 Positioning apparatus
US13/166,573 US8786831B2 (en) 2005-02-09 2011-06-22 Positioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033017A JP4738829B2 (ja) 2005-02-09 2005-02-09 位置決め装置

Publications (2)

Publication Number Publication Date
JP2006222206A JP2006222206A (ja) 2006-08-24
JP4738829B2 true JP4738829B2 (ja) 2011-08-03

Family

ID=36779238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033017A Expired - Fee Related JP4738829B2 (ja) 2005-02-09 2005-02-09 位置決め装置

Country Status (2)

Country Link
US (2) US8031328B2 (ja)
JP (1) JP4738829B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738829B2 (ja) * 2005-02-09 2011-08-03 キヤノン株式会社 位置決め装置
JP2007335476A (ja) * 2006-06-12 2007-12-27 Canon Inc 露光装置及びデバイス製造方法
JP2008172137A (ja) * 2007-01-15 2008-07-24 Canon Inc 位置決め装置および露光装置
US8384881B2 (en) * 2007-09-28 2013-02-26 Asml Netherlands B.V. Lithographic apparatus, stage apparatus and device manufacturing method
NL2006714A (en) 2010-06-07 2011-12-08 Asml Netherlands Bv Displacement device, lithographic apparatus and positioning method.
US8593016B2 (en) 2010-12-03 2013-11-26 Sri International Levitated micro-manipulator system
US9647523B2 (en) 2010-12-03 2017-05-09 Sri International Levitated-micro manipulator system
NL2009357A (en) * 2011-09-27 2013-03-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
US9202719B2 (en) 2011-10-27 2015-12-01 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
WO2013164145A1 (en) * 2012-05-04 2013-11-07 Asml Holding N.V. Active torsion mode control for stage
JP6099347B2 (ja) * 2012-10-03 2017-03-22 東京エレクトロン株式会社 ウエハ取り付け方法及びウエハ検査装置
EP3014219B1 (en) 2013-08-06 2017-10-11 The University Of British Columbia Displacement devices and methods and apparatus for detecting and estimating motion associated with same
WO2015179962A1 (en) 2014-05-30 2015-12-03 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
EP3584913B1 (en) * 2014-06-07 2023-08-02 The University of British Columbia Systems for controllably moving multiple moveable stages in a displacement device
EP3155712A4 (en) 2014-06-14 2018-02-21 The University Of British Columbia Displacement devices, moveable stages for displacement devices and methods for fabrication, use and control of same
WO2016172217A1 (en) 2015-04-20 2016-10-27 Sri International Microrobot and microrobotic train self-assembly with end-effectors
CN107852082B (zh) 2015-07-06 2020-05-26 不列颠哥伦比亚大学 用于在位移装置上可控制地移动一个或多个可移动台的方法和系统
DE102016202934A1 (de) * 2016-02-25 2017-08-31 Robert Bosch Gmbh Vorrichtung und Verfahren zur Bestimmung einer Position und/oder Orientierung wenigstens eines levitierten Transportkörpers relativ zu einer Levitationsbeförderungseinheit
EP3602759B1 (en) 2017-03-27 2023-06-07 Planar Motor Incorporated Robotic devices and methods for fabrication, use and control of same
WO2020073118A1 (en) 2018-10-13 2020-04-16 Planar Motor Incorporated Systems and methods for identifying a magnetic mover

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679186B2 (ja) 1988-12-05 1997-11-19 株式会社ニコン 露光装置
US5196745A (en) * 1991-08-16 1993-03-23 Massachusetts Institute Of Technology Magnetic positioning device
JP2902225B2 (ja) * 1992-09-30 1999-06-07 キヤノン株式会社 位置決め装置
US5925956A (en) * 1995-06-30 1999-07-20 Nikon Corporation Stage construction incorporating magnetically levitated movable stage
US5886432A (en) * 1997-04-28 1999-03-23 Ultratech Stepper, Inc. Magnetically-positioned X-Y stage having six-degrees of freedom
JPH10335234A (ja) * 1997-05-29 1998-12-18 Nikon Corp 投影露光装置
WO1999010970A1 (fr) * 1997-08-21 1999-03-04 Nikon Corporation Dispositif de positionnement, unite d'entrainement et aligneur equipe d'un tel dispositif
JPH1197513A (ja) * 1997-09-18 1999-04-09 Canon Inc ステージ装置
US6020964A (en) * 1997-12-02 2000-02-01 Asm Lithography B.V. Interferometer system and lithograph apparatus including an interferometer system
US6208407B1 (en) * 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
JP3630964B2 (ja) 1997-12-26 2005-03-23 キヤノン株式会社 ステージ装置、およびこれを用いた露光装置ならびにデバイス製造方法
JP3413122B2 (ja) 1998-05-21 2003-06-03 キヤノン株式会社 位置決め装置及びこれを用いた露光装置並びにデバイス製造方法
JPH11340125A (ja) * 1998-05-28 1999-12-10 Nikon Corp 露光方法及び装置
US6252234B1 (en) * 1998-08-14 2001-06-26 Nikon Corporation Reaction force isolation system for a planar motor
US6208045B1 (en) * 1998-11-16 2001-03-27 Nikon Corporation Electric motors and positioning devices having moving magnet arrays and six degrees of freedom
US6285438B1 (en) * 1999-05-19 2001-09-04 Nikon Corporation Scanning exposure method with reduced time between scans
US6188150B1 (en) * 1999-06-16 2001-02-13 Euv, Llc Light weight high-stiffness stage platen
JP2001061269A (ja) * 1999-08-20 2001-03-06 Nikon Corp モータ装置、ステージ装置、及び露光装置
US6353271B1 (en) * 1999-10-29 2002-03-05 Euv, Llc Extreme-UV scanning wafer and reticle stages
JP2001143997A (ja) * 1999-11-15 2001-05-25 Canon Inc 位置決め装置、露光装置、及びデバイスの製造方法
JP2001217183A (ja) * 2000-02-04 2001-08-10 Nikon Corp モータ装置、ステージ装置、露光装置及びデバイス製造方法
JP2002112526A (ja) * 2000-06-26 2002-04-12 Nikon Corp 平面モータ、ステージ位置決めシステム、露光装置
US6452292B1 (en) * 2000-06-26 2002-09-17 Nikon Corporation Planar motor with linear coil arrays
US6445093B1 (en) 2000-06-26 2002-09-03 Nikon Corporation Planar motor with linear coil arrays
JP2002231622A (ja) * 2000-11-29 2002-08-16 Nikon Corp ステージ装置及び露光装置
JP3762307B2 (ja) * 2001-02-15 2006-04-05 キヤノン株式会社 レーザ干渉干渉計システムを含む露光装置
JP4136363B2 (ja) * 2001-11-29 2008-08-20 キヤノン株式会社 位置決め装置及びそれを用いた露光装置
JP4227452B2 (ja) * 2002-12-27 2009-02-18 キヤノン株式会社 位置決め装置、及びその位置決め装置を利用した露光装置
SG115678A1 (en) * 2003-04-22 2005-10-28 Asml Netherlands Bv Substrate carrier and method for making a substrate carrier
JP4738829B2 (ja) * 2005-02-09 2011-08-03 キヤノン株式会社 位置決め装置
JP2007201177A (ja) * 2006-01-26 2007-08-09 Canon Inc 天板、位置決め装置、露光装置及びデバイス製造方法

Also Published As

Publication number Publication date
US8786831B2 (en) 2014-07-22
JP2006222206A (ja) 2006-08-24
US8031328B2 (en) 2011-10-04
US20110248578A1 (en) 2011-10-13
US20060175910A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4738829B2 (ja) 位置決め装置
KR102033840B1 (ko) 노광 장치 및 디바이스 제조 방법
US20020145721A1 (en) Stage system and stage driving method for use in exposure apparatus
JP2007103657A (ja) 光学素子保持装置、露光装置およびデバイス製造方法
JPH11191585A (ja) ステージ装置、およびこれを用いた露光装置、ならびにデバイス製造方法
US7880864B2 (en) Stage apparatus, exposure apparatus, and device manufacturing method
KR20110059651A (ko) 이동체 장치 및 이동체 구동 방법
US7586218B2 (en) Moving apparatus, exposure apparatus, and device manufacturing method
JP2007258695A (ja) リソグラフィ装置、リソグラフィ装置のコンポーネントを制御する方法およびデバイス製造方法
JP2013509692A (ja) 露光装置及びデバイス製造方法
KR20120091160A (ko) 노광 장치, 노광 방법, 및 디바이스 제조 방법
US7133115B2 (en) Positioning device, exposure apparatus using the positioning device, and device production method
CN105493237B (zh) 移动体装置和曝光装置以及器件制造方法
JP2006246570A (ja) リニアモータ及びリニアモータを利用した露光装置
JP2015073083A (ja) ステージ装置、およびその駆動方法
KR20120031075A (ko) 노광 장치 및 디바이스 제조 방법
JP5943557B2 (ja) 位置決め装置、露光装置およびデバイス製造方法
JP2004152902A (ja) 位置決め装置
JP2004111653A (ja) 位置決め装置及びそれを適用した露光装置並びに半導体デバイスの製造方法
JP4011919B2 (ja) 移動装置及び露光装置並びに半導体デバイスの製造方法
EP4116772A1 (en) Electromagnetic motor system, postion control system, stage apparatus, lithographic apparatus, method of determining a motor-dependent commutation model for an electromagnetic motor
JP4174289B2 (ja) 位置決め装置、その位置決め装置を適用した露光装置、デバイスの製造方法
JP2004228149A (ja) 露光装置
KR20220014293A (ko) 노광 장치, 및 물품의 제조 방법
JP4685084B2 (ja) 位置決め装置、露光装置およびデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Ref document number: 4738829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees