WO2007077875A1 - 露光装置及び露光方法、並びにデバイス製造方法 - Google Patents
露光装置及び露光方法、並びにデバイス製造方法 Download PDFInfo
- Publication number
- WO2007077875A1 WO2007077875A1 PCT/JP2006/326063 JP2006326063W WO2007077875A1 WO 2007077875 A1 WO2007077875 A1 WO 2007077875A1 JP 2006326063 W JP2006326063 W JP 2006326063W WO 2007077875 A1 WO2007077875 A1 WO 2007077875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exposure
- pattern
- exposure light
- light
- mask
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/36—Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/70—Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70191—Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70208—Multiple illumination paths, e.g. radiation distribution devices, microlens illumination systems, multiplexers or demultiplexers for single or multiple projection systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70275—Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70283—Mask effects on the imaging process
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70425—Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
- G03F7/70466—Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70566—Polarisation control
Definitions
- Exposure apparatus Exposure apparatus, exposure method, and device manufacturing method
- the present invention relates to an exposure apparatus and exposure method for exposing a substrate, and a device manufacturing method.
- Patent Document 1 Japanese Patent Laid-Open No. 2001-297976
- the present invention has been made in view of such circumstances, and an exposure apparatus, an exposure method, and a device manufacturing method capable of efficiently performing multiple exposure of a substrate while suppressing an increase in apparatus cost and an increase in the size of the apparatus.
- the purpose is to provide.
- the present invention employs the following configurations corresponding to the respective drawings shown in the embodiments.
- the reference numerals in parentheses attached to each element are merely examples of the element and do not limit each element.
- an exposure apparatus that performs multiple exposure of the substrate (P), the light source apparatus (1) that emits exposure light (EL), and the light source apparatus (1) that emits light.
- Separation optical system (13) that separates the exposed exposure light (EL) into first exposure light (EL1) and second exposure light (EL2), and the first pattern (PA1) with the first exposure light (EL 1)
- an illumination system (IL) that illuminates the second pattern (PA2) with the second exposure light (EL2), and the first exposure light (EL1) from the first pattern (PA1) and the second pattern ( Irradiate a predetermined area (SH) on the substrate (P) with the second exposure light (EL2) from (PA2)
- an exposure apparatus (EX) that performs multiple exposure of a predetermined area (SH) on the substrate (P).
- the first aspect of the present invention it is possible to efficiently perform multiple exposure of a substrate while suppressing an increase in apparatus cost and an increase in the size of the apparatus.
- an exposure apparatus for exposing the substrate (P), the light source (1) for generating exposure light (EL), and the first exposure light (EL1).
- an exposure apparatus that performs multiple exposure on a predetermined region (SH) on the substrate.
- a single movable blind is used to satisfactorily control two exposure areas formed at isolated positions on the substrate, thereby eliminating the need for the substrate. Exposure can be prevented.
- the substrate is subjected to multiple exposure using the exposure apparatus (EX) of the first or second aspect (S2-S4, 204), and the multiple-exposed substrate is developed.
- a device manufacturing method comprising: (204) and processing (205) the developed substrate.
- a device can be manufactured using an exposure apparatus capable of efficiently performing multiple exposure of a substrate.
- an exposure method in which a predetermined region (SH) on a substrate (P) is subjected to multiple exposure while moving the substrate (P) in the scanning direction, the light source device ( The exposure light (EL) emitted from 1) is separated into the first exposure light (EL1) and the second exposure light (EL2) (S2), and the first exposure light (EL
- I) is applied to the first exposure area (AR1) and the second exposure light (EL2) is applied to the second exposure area (AR2) set at a position different from the first exposure area (AR 1) in the scanning direction.
- S4 An exposure method is provided.
- a device manufacturing method includes processing (205) a processed substrate.
- a device can be manufactured using an exposure method capable of efficiently performing multiple exposure of a substrate.
- FIG. 1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment.
- FIG. 2 is a diagram for explaining an example of the polarization conversion element of the illumination system according to the first embodiment.
- FIG. 3 is a diagram for explaining an example of a secondary light source of the illumination system according to the first embodiment.
- FIG. 4 is a diagram for explaining an example of an aperture stop of the illumination system according to the first embodiment.
- FIG. 5 is a diagram showing a main part of the illumination system according to the first embodiment.
- FIG. 6 is a diagram showing first and second masks according to the first embodiment.
- FIGS. 7A and 7B are schematic views showing a state in which exposure light enters the first and second masks.
- FIG. 8 is a diagram for explaining another example of the aperture stop of the illumination system.
- FIG. 9 is a perspective view showing an example of a mask stage.
- FIG. 10 is a view for explaining the exposure method according to the first embodiment, and is a schematic view showing the relationship between the first and second masks and the first and second illumination regions.
- FIG. 11 is a view for explaining the exposure method according to the first embodiment, and is a schematic view showing the relationship between the substrate and the first and second exposure regions.
- FIG. 12 is a diagram for explaining an example of a movable blind according to the first embodiment.
- FIG. 13 is a schematic diagram for explaining the action of the movable blind.
- FIG. 14 is a view showing a main part of an illumination system according to a second embodiment.
- FIG. 15 is a view for explaining an example of an aperture stop of the illumination system according to the second embodiment.
- FIG. 16 is a view showing a main part of an illumination system according to a third embodiment.
- FIG. 17 is a schematic block diagram that shows an exposure apparatus according to a fourth embodiment.
- FIG. 18 is a schematic block diagram that shows an exposure apparatus according to a fifth embodiment.
- FIG. 19 is a schematic block diagram that shows an exposure apparatus according to a sixth embodiment.
- FIG. 20 is a schematic block diagram that shows an exposure apparatus according to a seventh embodiment.
- FIG. 21 is a schematic block diagram that shows an exposure apparatus according to an eighth embodiment.
- FIG. 22 is a flowchart showing a method for exposing a substrate using the exposure apparatus of the first embodiment.
- FIG. 23 is a flowchart showing an example of a microdevice manufacturing process.
- an XYZ Cartesian coordinate system is set and its X
- the positional relationship of each member will be described with reference to the YZ orthogonal coordinate system.
- the predetermined direction in the horizontal plane is the X axis direction, in the horizontal plane!
- the direction orthogonal to the X-axis direction is the vertical axis direction
- the direction orthogonal to the X-axis direction and the vertical axis direction (that is, the vertical direction) is the vertical axis direction.
- the rotation (tilt) directions around the X axis, ⁇ axis, and ⁇ axis are the ⁇ X, 0 ⁇ , and 0 ⁇ directions, respectively.
- FIG. 1 is a schematic block diagram that shows an exposure apparatus 1 according to the first embodiment.
- an exposure apparatus ⁇ holds a mask stage 60 that is movable while holding a first mask Ml having a first pattern PA1 and a second mask M2 having a second pattern PA2, and a substrate P.
- the movable substrate stage 80, the measurement system 70 that can measure the position information of each stage, the light source device 1 that emits the exposure light EL, and the exposure light EL that is emitted from the light source device 1 are used as its first component.
- the first exposure light EL1 and the second exposure light EL2 as the second component are separated, and the first exposure light EL1 illuminates the first pattern PA1 of the first mask Ml with the first exposure light EL1.
- the illumination system IL that illuminates the second pattern PA2 of the second mask M2 with the second exposure light EL2, the image of the first pattern PA1 illuminated with the first exposure light EL1, and the second illumination light EL2 illuminated with the second exposure light EL2.
- a control unit 30 for controlling connected to the control device 3 0, and a storage device 31 that stores various kinds of information about the exposure.
- the substrate here includes a substrate in which various films such as a photosensitive material (photoresist) and a protective film (topcoat film) are coated on a base material such as a semiconductor wafer such as a silicon wafer, and a mask. Includes a reticle on which a device pattern to be reduced and projected on a substrate is formed.
- the mask is a mask in which a predetermined pattern is formed on a transparent plate member such as a glass plate using a light shielding film such as chromium.
- a force reflection type mask using a transmission type mask as a mask may be used.
- the first pattern PA1 and the second pattern PA2 are different patterns.
- an optical system that is disposed between the light source device 1 and the substrate P and includes the optical elements and optical members of the illumination system IL and the projection optical system PL is appropriately used as the optical unit U. .
- the exposure apparatus EX of the present embodiment irradiates the shot area on the substrate P with the first exposure light ELI from the first pattern PA1 and the second exposure light EL2 from the second pattern PA2.
- the shot area on the substrate P is subjected to multiple exposure (double exposure).
- the exposure apparatus EX is a first pattern formed by the first exposure light EL1 emitted from the illumination system IL and irradiated to the first exposure area AR1 via the first pattern PA1 and the projection optical system PL.
- the exposure apparatus EX of the present embodiment moves the first mask Ml, the second mask M2, and the substrate P in a predetermined scanning direction while moving the image of the first pattern PA1 of the first mask Ml and
- This is a scanning exposure apparatus (so-called scanning steno) that projects an image of the second pattern PA2 of the second mask M2 onto the substrate P.
- the scanning direction (synchronous movement direction) of the first mask Ml and second mask M2 and the substrate P is the Y-axis direction.
- the exposure apparatus EX of the present embodiment moves the substrate P to the Y-axis with respect to the first exposure light EL1 and the second exposure light EL2 irradiated to the first exposure area AR1 and the second exposure area AR2, respectively.
- the shot area on the substrate P is subjected to multiple exposure by moving in the direction.
- the substrate stage 80 can move the shot area on the substrate P in the Y-axis direction with respect to the first exposure area AR1 and the second exposure area AR2, and the controller 30 controls the first exposure area AR1 and the second exposure area.
- the first exposure light EL1 and the first exposure light EL1 and the second exposure area AR2, respectively, are moved.
- the shot area on the substrate P is subjected to multiple exposure (double exposure) by irradiating the exposure light EL2.
- Exposure light EL emitted from the light source device 1 includes, for example, far ultraviolet light (DUV light) such as bright lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248 nm) that are also emitted by the mercury lamp force ArF excimer laser light (wavelength 193nm) and F
- DUV light far ultraviolet light
- KrF excimer laser light wavelength 248 nm
- Vacuum ultraviolet light such as the light (wavelength 157 nm) is used.
- an ArF excimer laser device is used for the light source device 1, and ArF is used for the exposure light EL.
- Excimer laser light is used.
- the exposure apparatus EX includes one light source apparatus 1. That is, a single light source is used to illuminate the first exposure area AR1 and the second exposure area AR2.
- the illumination system IL is the exposure light emitted from the light source device 1.
- the illumination system IL of the present embodiment includes, for example, a beam expander, a polarization state switching optical system 3, a diffractive optical element 4, a afocal optical system (non-focal optical system) as disclosed in International Publication No. 2005 Z076045.
- Optical system zoom optical system, polarization conversion element 5, optical integrator 6, and condenser optical system, etc., the first optical system 2, and the first illumination area IA1, with the first exposure light EL1 on the first mask Ml, And the second blind light 9 on the second mask M2 by the second exposure light EL2 and the fixed blind 9 that defines the second illumination area IA2, and the first and second exposure lights EL1 and EL2 to prevent unnecessary exposure of the substrate P. Separation that separates the exposure light EL emitted from the light source device 1 and passed through the first optical system 2 and the blind device 11 into the first exposure light EL 1 and the second exposure light EL2 from the blind device 11 including the movable blind 10. With optical system 13 .
- the illumination system IL of the exposure apparatus of the present embodiment includes the separation optical system 13 to illuminate the first pattern PA1 of the first mask Ml and the second pattern PA2 of the second mask M2. , Used as a (common) single illumination system.
- the separation optical system may be provided separately from the illumination system that does not need to be incorporated in the illumination system IL.
- the polarization state switching optical system 3 can switch the exposure light EL incident on the diffractive optical element 4 between a polarization state and a non-polarization state. Further, the polarization state switching optical system 3 can switch between the linear polarization state and the circular polarization state in the polarization state. Further, in the linear polarization state, the polarization state switching optical system 3 can switch between polarization states orthogonal to each other (between S-polarized light and P-polarized light).
- the diffractive optical element 4 has a function of diffracting the incident exposure light EL to a desired angle.
- the diffractive optical element 4 generates diffracted light by the exposure light EL from the light source device 1, and the diffracted light.
- the predetermined surface can be illuminated with a predetermined illumination area.
- the diffractive optical element 4 has a level difference (concave / convex structure) having a pitch of about the wavelength of the exposure light EL formed on a predetermined substrate, and the pitch and the depth of the concave / convex structure (the height of the convex part).
- the size and shape of the illumination region by the diffractive optical element 4 can be set by appropriately adjusting the structural conditions including the direction in which the inner surface of the concave portion (the outer surface of the convex portion) faces.
- the diffractive optical element 4 generates diffracted light by the exposure light EL from the light source device 1, and the generated diffracted light passes through the before power optical system, the zoom optical system, the polarization conversion element 5 and the like.
- the light incident surface of the optical integrator 6 including a micro fly-eye lens can be illuminated with an illumination area having a predetermined size and shape.
- a ring-shaped illumination area centered on the optical axis of the illumination system IL is formed on the light entrance surface of the optical integrator 6, and the light exit surface (rear focal plane) of the optical integrator 6 is formed.
- An annular secondary light source 7 is formed with the optical axis of the illumination system IL as the center.
- the control device 30 can adjust the size and shape of the illumination area on the light incident surface of the optical integrator 6 and thus the size and shape of the secondary light source 7 by adjusting the focal length of the zoom optical system. is there.
- the polarization conversion element 5 converts the polarization state of the exposure light EL.
- the polarization conversion element 5 is disposed immediately before the optical integrator 6 (near the light incident surface).
- the polarization conversion element 5 can adjust the polarization state of the exposure light EL incident on the light incident surface of the optical integrator 6 (and thus the polarization state of the exposure light EL irradiated on the mask M and the substrate P).
- FIG. 2 is a diagram illustrating an example of the polarization conversion element 5.
- the polarization conversion element 5 has a ring-shaped effective area centered on the optical axis AX of the illumination system IL.
- the zone-shaped effective region is formed of an optical material having optical activity, such as quartz.
- the optical material in the effective region formed in an annular shape has a thickness distribution that changes in the circumferential direction.
- the thickness of the optical material is a length in the light transmission direction (Y-axis direction) of the optical material.
- the polarization conversion element 5 includes a plurality of basic elements 5A to 5D that are disposed in an effective area of the annular zone and have an optical material power having optical activity.
- the polarization conversion element 5 includes first to fourth basic elements 5A to 5A having different characteristics. Two 5Ds are provided, and a total of eight basic elements 5A to 5D are provided. Each of the first to fourth basic elements 5A to 5D is formed in a fan shape with respect to the XZ direction in FIG. 2, and is arranged so as to divide the ring-shaped effective region substantially equally.
- two basic elements 5A, 5B, 5C, and 5D having the same characteristics are arranged so as to face each other across the optical axis AX.
- the first to fourth basic elements 5A to 5D are arranged so that the crystal optical axis and the optical axis AX are substantially parallel, that is, the crystal optical axis and the traveling direction of incident light are substantially coincident. ing.
- an annular illumination area is formed on the light incident surface of the optical integrator 6 by the exposure light EL with the optical axis AX as the center.
- the exposure light EL having a substantially ring-shaped cross section with the optical axis AX as the center is incident on the light incident surface of the optical integrator 6. Therefore, the exposure light EL having a substantially ring-shaped cross section with the optical axis AX as the center is incident on the effective zone-shaped area of the polarization conversion element 5 disposed immediately before the optical integrator 6.
- the exposure light EL incident on the first to fourth basic elements 5A to 5D arranged in the annular zone effective area of the polarization conversion element 5 changes its polarization state due to the optical rotation of each basic element 5A to 5D. It is converted and emitted from each basic element 5A to 5D.
- each basic element 5A to 5D of the polarization conversion element 5 is polarized in the polarization direction of the incident exposure light EL.
- the polarization state of the exposure light EL is converted so as to rotate around the optical axis AX (in the ⁇ Y direction in the figure) by a predetermined rotation angle, and the exposure light EL whose polarization state has been converted is emitted.
- the rotation angle in the polarization direction is determined according to the optical rotation power and thickness of each basic element 5A to 5D.
- the polarization conversion element 5 rotates the polarization direction of the incident linearly polarized exposure light EL by a predetermined rotation angle. Exposes the exposure light EL in the polarization state converted from.
- the thicknesses of the first to fourth basic elements 5A to 5D in the light transmission direction are different from each other, and each of the basic elements 5A to 5D is incident.
- the polarization direction of the exposure light EL is rotated at different rotation angles.
- the exposure light EL whose polarization state (polarization direction) has been converted by each basic element 5A to 5D is the optical integrator 6
- the light is incident on the optical integrator 6 from the light incident surface, and an annular secondary light source 7 having the optical axis AX as the center is formed on the light emitting surface of the optical integrator 6.
- FIG. 3 is a diagram schematically showing the secondary light source 7 formed on the light exit surface of the optical integrator 6 by the exposure light EL that has passed through the polarization conversion element 5 and the optical integrator 6.
- the exposure light EL mainly composed of linearly polarized light in the Z-axis direction in FIGS. 2 and 3 is incident on each of the first to fourth basic elements 5A to 5D.
- the first basic element 5A is provided so as to rotate the polarization direction of the incident exposure light EL by +90 degrees in the ⁇ Y direction with respect to the Z axis. Accordingly, the first basic element 5A emits the exposure light EL in a linear polarization state having a polarization direction that is a direction rotated +90 degrees in the ⁇ Y direction with respect to the Z axis. In addition, from the first arcuate region 7A formed by the exposure light EL that has been subjected to the optical rotation of the first basic element 5A in the secondary light source 7, it is rotated +90 degrees in the ⁇ Y direction with respect to the Z axis. Exposure light EL in a linear polarization state with the direction of polarization as the polarization direction is emitted.
- the second basic element 5B is provided so that the polarization direction of the incident exposure light EL is rotated by +135 degrees in the ⁇ Y direction with respect to the Z axis. Accordingly, the second basic element 5B emits the exposure light EL in a linear polarization state in which the polarization direction is a direction rotated by +135 degrees in the ⁇ Y direction with respect to the Z axis. In addition, from the second arcuate region 7B formed by the exposure light EL that has been subjected to the optical rotation of the second basic element 5B in the secondary light source 7, it is rotated by +135 degrees in the ⁇ Y direction with respect to the Z axis. Exposure light EL in a linearly polarized state with the selected direction as the polarization direction is emitted.
- the third basic element 5C is provided so as to rotate the polarization direction of the incident exposure light EL by +180 degrees in the ⁇ Y direction with respect to the Z axis. Therefore, the third basic element 5C emits the exposure light EL in a linearly polarized state having a direction parallel to the Z axis as the polarization direction.
- the third arcuate region 7C formed by the exposure light EL that has undergone the optical rotation of the third basic element 5C in the secondary light source 7 linearly polarized light whose polarization direction is parallel to the Z axis is used. State exposure light EL is emitted.
- the fourth basic element 5D is provided so as to rotate the polarization direction of the incident exposure light EL by +45 degrees in the ⁇ Y direction with respect to the Z axis. Therefore, from the fourth basic element 5D, the exposure light E in the linear polarization state with the polarization direction being the direction rotated by +45 degrees in the ⁇ Y direction with respect to the Z axis. L is injected. In the secondary light source 7, in the fourth arcuate region 7D formed by the exposure light EL subjected to the optical rotation of the fourth basic element 5D, the direction rotated +45 degrees with respect to the Z axis is polarized. Exposure light EL in the direction of linear polarization is emitted.
- the polarization conversion element 5 uses the exposure light EL in a linear polarization state having a polarization direction of almost a single direction as the polarization direction and the circumferential direction of the polarization conversion element 5 as the polarization direction. It is converted to exposure light EL in a linearly polarized state.
- the linear polarization state in which the circumferential direction of the polarization conversion element 5 is the polarization direction is appropriately referred to as a circumferential polarization state.
- the exposure light EL emitted from the annular secondary light source 7 formed on the light emission surface of the optical integrator 6 is in the circumferential polarization state.
- an aperture stop 8 having a predetermined opening is disposed in the vicinity of the light exit surface of the optical integrator 6, that is, immediately after the secondary light source 7.
- FIG. 4 is a diagram showing an example of the aperture stop 8.
- the aperture stop 8 has apertures 8A and 8C through which the exposure light EL can pass.
- the aperture stop 8 includes two secondary light sources 7 for passing the exposure light EL emitted from the first arcuate region 7A formed by the exposure light EL subjected to the optical rotation of the first basic element 5A.
- the first openings 8A and 8A are provided at positions facing each other across the optical axis AX, and the second openings 8C and 8C are also provided at positions facing each other across the optical axis AX.
- the first openings 8A and 8A are provided on the + Z side and the Z side, respectively, with respect to the optical axis AX in FIG. 4, and the second openings 8C and 8C are provided on the optical axis AX. In contrast, it is provided on each of the + X side and the -X side.
- the aperture stop 8 passes through the first openings 8A and 8A the exposure light EL in a linear polarization state having a polarization direction in a direction rotated by +90 degrees in the 0 Y direction with respect to the Z axis, Through the second openings 8C and 8C, the exposure light EL in a linear polarization state with the direction parallel to the Z axis as the polarization direction is passed. That is, the first opening 8A passes the exposure light EL mainly composed of linearly polarized light in the X-axis direction in FIG. 4, and the second opening 8C mainly uses linearly polarized light in the Z-axis direction orthogonal to the X-axis direction. Passes exposure light EL as a component.
- the first opening 8A passes the exposure light EL in the S-polarized state that is linearly polarized light
- the second opening 8C passes the exposure light EL in the P-polarized state. Let it go. Therefore, the exposure light EL emitted from the light source device 1 and passing through the aperture stop 8 mainly includes an S-polarized component and a P-polarized component.
- S-polarized light is linearly polarized light having a polarization direction in a direction perpendicular to the incident surface (polarized light whose electric vector vibrates in a direction perpendicular to the incident surface). is there.
- P-polarized light is linearly polarized light having a polarization direction in a direction parallel to the incident plane defined as described above (polarized light whose electric vector vibrates in a direction parallel to the incident plane). is there.
- the exposure light EL from the secondary light source 7 formed on the light exit surface of the optical integrator 6 passes through the openings 8A and 8C of the aperture stop 8 and then enters the condenser optical system.
- the secondary light source 7 illuminates the blind device 11 in a superimposed manner via a condenser optical system or the like.
- the blind device 11 defines the first illumination area IA1 by the first exposure light EL1 on the first mask Ml and the second illumination area IA2 by the second exposure light EL2 on the second mask M2.
- Fixed blind 9 having an aperture (light passage region) and portions of the first and second masks Ml and M2 other than the first and second pattern formation regions where the first and second patterns PA1 and PA2 are formed.
- the movable blind 10 functions as a light blocking member for blocking unnecessary irradiation of the first and second exposure light beams EL1 and EL2.
- the movable blind 10 has a light passage region through which the exposure light EL can pass, and the first mask Ml having the first pattern PA1 and the second pattern PA2 are provided between the light source device 1 and the separation optical system 13.
- the second mask M2 and the substrate P are provided so as to be able to move in synchronization with at least one movement of the substrate P.
- the movable blind 10 further restricts the exposure light EL restricted by passing through the fixed blind 9 at a predetermined timing when the first mask Ml, the second mask M2 or the substrate P is moved. This blocks unnecessary irradiation of the first and second exposure light beams EL1 and EL2 to portions other than the first and second pattern formation regions of the first and second masks Ml and M2, and as a result, the first exposure light beam EL1 In addition, unnecessary exposure of the substrate P by the second exposure light EL2 can be prevented.
- S-polarized and P-polarized light components that have passed through the light passage region of blind device 11 including fixed blind 9 and movable blind 10
- the exposure light EL mainly including the minute component enters the separation optical system 13 via the second optical system 12.
- FIG. 5 is a view showing the vicinity of the separation optical system 13.
- the separation optical system 13 includes a polarization separation optical system (polarization beam splitter) that separates the exposure light EL into the first exposure light EL1 in the S-polarized state and the second exposure light EL2 in the P-polarized state.
- polarization separation optical system polarization beam splitter
- the exposure light EL that is emitted from the light source device 1 and passes through the aperture stop 8 mainly includes an S-polarized component and a P-polarized component, passes through the openings 8A and 8C of the aperture stop 8,
- the exposure light EL that has passed through the light passage region of the blind device 11 is separated by the separation optical system 13 into the first exposure light EL1 in the S polarization state and the second exposure light EL2 in the P polarization state. That is, the separation optical system 13 of the present embodiment converts the exposure light EL emitted from the light source device 1 and passed through the first optical system 2, the blind device 11 and the like into the first exposure light EL1 in the S polarization state and the P polarization. Separated into the second exposure light EL2 in the state.
- the separation optical system 13 reflects the first exposure light EL1 in the S polarization state and allows the second exposure light EL2 in the P polarization state to pass through.
- the first exposure light EL1 in the S-polarized state separated by the separation optical system 13 is supplied to the third optical system 14 and irradiated onto the first mask Ml through the third optical system 14.
- the P-polarized second exposure light EL2 separated by the separation optical system 13 is supplied to the fourth optical system 15, supplied to the reflection mirror 16 through the fourth optical system 15, and the reflection mirror After being reflected by 16, it is irradiated onto the second mask M 2 via the fifth optical system 17.
- the illumination system IL illuminates the first pattern PA1 of the first mask Ml with the first exposure light EL1 in the S polarization state separated by the separation optical system 13, and the second exposure light EL2 in the P polarization state. Illuminate the second pattern PA2 of the second mask M2.
- FIG. 6 is a plan view showing the first mask Ml and the second mask M2 held on the mask stage 60.
- the mask stage is not shown.
- the first pattern PA1 of the first mask Ml is mainly composed of a plurality of line 'and' space patterns whose longitudinal direction is the X-axis direction
- the second mask M2 is mainly composed of a plurality of line “and” space patterns whose longitudinal direction is the Y-axis direction.
- the first pattern PA1 includes many patterns in which line patterns having the X axis direction as the longitudinal direction are periodically arranged in the Y axis direction, and the second pattern PA2 is a line pattern having the Y axis direction as the longitudinal direction. Many patterns are arranged periodically in the X-axis direction.
- the first exposure light ELI irradiated onto the first mask Ml has linearly polarized light (S-polarized light) in a predetermined direction as a main component.
- the polarization direction of the first exposure light EL1 on the first mask Ml and the X axis are set to be substantially parallel.
- the second exposure light EL2 irradiated on the second mask M2 has a linearly polarized light (P-polarized light) in a direction orthogonal to a predetermined direction as a main component.
- P-polarized light linearly polarized light
- the polarization direction of the second exposure light EL2 on the second mask M2 and the Y axis are set to be substantially parallel to each other!
- the longitudinal direction of the line pattern of the line 'and' space pattern included in the first pattern PA1 and the polarization direction of the first exposure light EL 1 whose main component is S-polarized light Is almost parallel
- the longitudinal direction of the line pattern of the line 'and' space pattern included in the second pattern PA2 is almost parallel to the polarization direction of the second exposure light EL2 mainly composed of P-polarized light .
- the illumination system IL performs linearly polarized illumination according to the longitudinal direction of the line pattern of the line “and” space pattern of the first and second masks Ml and M2. From the first pattern PA1 of the first mask Ml, a lot of diffracted light of the S polarization component, that is, the polarization direction component along the longitudinal direction of the line pattern of the first pattern PA1, is emitted, and the second pattern PA2 of the second mask M2 , A large amount of diffracted light of the P polarization component, that is, the polarization direction component along the longitudinal direction of the line pattern of the second pattern PA2 is emitted.
- the first exposure light ELI that has passed through each of the first openings 8A and 8A of the aperture stop 8 disposed at positions facing each other with respect to the optical axis AX.
- the first pattern PA1 of the first mask Ml is dipole-illuminated (bipolar illumination) by the first exposure light EL1 in the S-polarized state.
- the second exposure light EL2 that has passed through each of the second apertures 8C and 8C arranged at positions facing each other with respect to the optical axis AX of the aperture stop 8 is provided. Irradiated, the second pattern PA2 of the second mask M2 is dipole-illuminated (bipolar illumination) by the P-polarized second exposure light EL2.
- the illumination system IL uses two light beams (first exposure light EL1) in a linearly polarized state (S-polarized state).
- first mask M 1 line 'and' space pattern line pattern is obliquely incident (dipole illumination) along the longitudinal direction.
- Diagonal illumination (dipole illumination) that matches the longitudinal direction of the line pattern of the line-and-space pattern of the second mask M2 using two light beams (second exposure light EL2) in the P-polarized state.
- the first pattern PA1 of the first mask Ml includes a direction along the longitudinal direction of the line pattern from two directions inclined in the ⁇ X direction with respect to the surface of the first mask Ml.
- the first exposure light EL1 having the polarization direction (X-axis direction) enters.
- the second pattern PA2 of the second mask M2 includes two directions inclined in the ⁇ Y direction with respect to the surface of the second mask M2, and the longitudinal direction of the line pattern.
- the second exposure light EL2 with the polarization direction in the direction along Y (Y-axis direction) is incident.
- the illumination system IL uses a diffractive optical element 4 and a polarization conversion element 5 to emit a circumferentially polarized exposure light EL onto the light exit surface of the optical integrator 6.
- the next light source 7 is formed.
- the illumination system IL converts the exposure light EL emitted from the secondary light source 7 into the exposure light EL mainly containing an S-polarized component and a P-polarized component by the aperture stop 8, and then enters the separation optical system 13.
- the first mask Ml is dipole illuminated (bipolar illumination) with the first exposure light E L1 in the S polarization state, and the dipole illumination (bipolar illumination) is applied to the second mask M2 with the second exposure light EL2 in the P polarization state. is doing.
- the diffractive optical element is a diffractive optical element for cross-pole illumination (quadrupole illumination), and the diffractive optical element for cross-pole illumination is arranged on the optical path of the exposure light EL to thereby form an aperture stop.
- the first mask Ml that is not provided can be dipole illuminated by the first exposure light EL1 in the S-polarized state and the second mask M2 can be dipole illuminated by the second exposure light EL2 in the P-polarized state.
- a diffractive optical element for cross-pole illumination on the optical path of the exposure light EL, a quadrupole illumination region is formed on the light incident surface of the optical integrator 6, and the light exit surface of the optical integrator 6 is formed on the light exit surface.
- a quadrupolar secondary light source is formed.
- the basic elements 5 A and 5 C as described with reference to FIG. 2 are provided as polarization conversion elements at positions corresponding to the quadrupole illumination area in the vicinity of the light incident surface of the optical integrator 6.
- a quadrupolar secondary light source 7 is formed on the light exit surface side of the optical integrator 6.
- the exposure light EL emitted from the first arcuate region 7A force is the S-polarized exposure light EL
- the exposure light EL emitted from the third arcuate region 7C is the P-polarized exposure light. EL.
- the exposure light EL mainly including the S-polarized component and the P-polarized component reaches the separation optical system 13
- the first pattern PA1 of the first mask Ml is the S-polarized light.
- Dipole illumination is performed by the first exposure light EL1 in the state
- the second pattern PA2 of the second mask M2 is dipole illumination by the second exposure light EL2 in the P polarization state.
- the mask stage 60 can move the first mask M1 having the first pattern PA1 in the Y-axis direction with respect to the first exposure light EL1, and the second mask M2 having the second pattern PA2 can be moved to the second exposure light. It can move in the Y-axis direction with respect to EL2.
- the position information of the mask stage 60 is measured by the measurement system 70.
- FIG. 9 is a perspective view showing the mask stage 60 and the measurement system 70 according to the present embodiment.
- the mask stage 60 moves with the main stage 61, the first substage 62 movable on the main stage 61 while holding the first mask Ml, and the second mask M2 on the main stage 61. And a possible second sub-stage 63.
- the main stage 61 is for moving the first mask Ml and the second mask M2 in the Y-axis direction.
- the main stage 61 holds the first mask Ml via the first substage 62, and holds the second mask M2 via the second substage 63.
- the main stage 61 is movable in the same scanning direction (Y-axis direction) while holding the first mask Ml and the second mask M2 via the first substage 62 and the second substage 63.
- the mask stage 60 includes a main stage driving device 64 for moving the main stage 61 in the Y-axis direction.
- the main stage driving device 64 includes an actuator such as a linear motor, for example.
- the main stage driving device 64 includes a mover 64A provided on both sides of the main stage 61 in the X-axis direction, and a stator 64B provided corresponding to the mover 64A. .
- the control device 30 can move the main stage 61 in the Y-axis direction by driving the main stage driving device 64.
- the first and second substages 62 and 63 on the main stage 61 also move together with the main stage 61. Therefore, Mei As the first stage 61 moves in the Y-axis direction, the first and second masks Ml and 2 held by the first and second substages 62 and 63 also move together with the main stage 61.
- the first sub-stage 62 is provided on the main stage 61 so as to be movable in the X-axis, ⁇ -axis, and ⁇ - ⁇ directions with respect to the main stage 61, and is provided by a first sub-stage driving device (not shown).
- the first mask Ml can be moved minutely with respect to the main stage 61.
- the second substage 63 is provided on the main stage 61 so as to be movable with respect to the main stage 61 in the X-axis, Y-axis, and ⁇ Z directions.
- the second mask M2 can be moved minutely with respect to the main stage 61.
- the first and second substages 62 and 63 may adopt the structure disclosed in, for example, Japanese Patent Laid-Open No. 8-130179 (corresponding US Pat. No. 6,721,034).
- the measurement system 70 can measure position information of the main stage 61, the first substage 62, and the second substage 63, respectively.
- the measurement system 70 includes a reflecting member 71 provided on the main stage 61, a reflecting member 72 provided on the first substage 62, a reflecting member 73 provided on the second substage 63, and reflecting members 71, 72, And a laser interferometer 74 for projecting a measurement beam onto the reflecting surface of 73 and receiving the reflected light to obtain position information of the main stage 61, the first sub-stage 62, and the second sub-stage 63.
- the laser interferometer 74 is disposed on the + Y side of the mask stage 60.
- the reflection member 71 includes, for example, a corner cube mirror (retro reflector), and is provided at two predetermined positions on the main stage 61 where the measurement beam from the laser interferometer 74 can be irradiated.
- the reflection member 72 also includes, for example, a corner cube mirror (retro reflector), and two reflection members 72 are provided at predetermined positions on the first substage 62 where the measurement beam from the laser interferometer 74 can be irradiated.
- the reflection member 73 also includes, for example, a corner cube cube (retro reflector), and is provided at two predetermined positions on the second substage 63 where the measurement beam from the laser interferometer 74 can be irradiated.
- the measurement system 70 uses the laser interferometer 74 and the reflecting members 71, 72, 73 to obtain the position information of the main stage 61, the first substage 62, and the second substage 63 in the Y-axis direction and ⁇ Z direction. It can be measured. Although not shown, the measurement system 70 measures position information of the main stage 61, the first substage 62, and the second substage 63 in the X-axis direction.
- a reflection member (reflection surface) and a laser interferometer are also provided.
- the measurement system 70 uses the laser interferometer 74 and the reflecting member 71 provided on the main stage 61 to measure position information of the main stage 61 in the X axis, Y axis, and ⁇ Z directions. .
- the measurement system 70 uses the laser interferometer 74 and the reflecting members 72 and 73 provided in the first and second substages 62 and 63, so that the X-axis of the first and second substages 62 and 63, Measure position information about Y axis and ⁇ Z direction.
- the control device 30 appropriately drives the main stage 61, the first substage 62, and the second substage 63 based on the measurement result of the measurement system 70, and is held by the first and second substages 62, 63.
- the position control of the first and second masks Ml and M2 is performed.
- the control device 30 moves the relative position between the first mask Ml and the second mask M2 by moving at least one of the first substage 62 and the second substage 63 with respect to the main stage 61. Can adjust the relationship
- the projection optical system PL includes an image of the first pattern PA1 of the first mask M1 illuminated with the first exposure light EL1, and an image of the second pattern PA2 of the second mask M2 illuminated with the second exposure light EL2. Project onto the substrate P at the specified projection magnification.
- the projection optical system PL of the present embodiment is a reduction system whose projection magnification is 1Z4, 1/5, 1Z8, or the like. Further, the projection optical system PL of the present embodiment forms an inverted image.
- the projection optical system PL of the present embodiment has one terminal optical element FL in which the surface of the substrate P is disposed so as to be opposed to the image plane of the projection optical system PL.
- the first exposure area EL1 and the second exposure area AR2 are irradiated with the first exposure light beam EL1 and the second exposure light beam EL2 through one terminal optical element FL.
- Projection optical system PL is disposed in the vicinity of a position optically conjugate with first exposure area AR1 and second exposure area AR2, and includes first exposure light EL1 from first pattern PA1 of first mask Ml.
- the intermediate optical member 40 for guiding the second exposure light EL2 from the second pattern PA2 of the second mask M2 to the terminal optical element FL is provided.
- the projection optical system PL includes a first guide optical system 41 that guides the first exposure light EL1 from the first pattern PA1 of the first mask Ml to the intermediate optical member 40, and a second guide PA2 of the second mask M2 from the second pattern PA2. 2Exposure light EL2 that guides EL2 to the intermediate optical member 40 System 42.
- Each of the first and second guiding optical systems 41 and 42 has a plurality of lenses and a reflecting surface that reflects the first and second exposure light beams EL1 and EL2 that have passed through the plurality of lenses toward the intermediate optical member 40.
- a reflective member having the same.
- the intermediate optical member 40 includes a first reflection surface 40A that reflects the first exposure light EL1 from the first guide optical system 41, and a second reflection light EL2 that reflects the second exposure light EL2 from the second guide optical system 42. And 2 reflective surfaces 40B.
- the intermediate optical member 40 includes a prism.
- the first exposure light EL1 from the first pattern PA1 of the first mask Ml and the second exposure light EL2 from the second pattern PA2 of the second mask M2 are the first guide optical system 41 and the second The light is guided to the intermediate optical member 40 by the guide optical system 42.
- the first exposure light EL1 from the first pattern PA1 of the first mask Ml and the second exposure light EL2 from the second pattern PA2 of the second mask M2 are reflected by the intermediate optical member 40 and then projected to the projection optics.
- Each of the first exposure area AR1 and the second exposure area AR2 is irradiated through the third guiding optical system 43 including the terminal optical element FL disposed on the image plane side of the system PL.
- the substrate stage 80 is movable while holding the substrate P within a predetermined area including the first exposure area AR1 and the second exposure area AR2 irradiated with the first exposure light EL1 and the second exposure light EL2.
- the substrate stage 80 has a substrate holder that holds the substrate P.
- the substrate stage BP is held in a state in which the substrate P is held by the substrate holder by driving the substrate stage driving device 80D including an actuator such as a linear motor. Above, it can move in the direction of 6 degrees of freedom in X axis, Y axis, Z axis, 0 X, ⁇ Y, and ⁇ Z directions
- the position information of the substrate stage 80 (and hence the substrate P) is measured by the laser interferometer 75 of the measurement system 70.
- the laser interferometer 75 uses the reflecting surface 76 provided on the substrate stage 80 to measure position information of the substrate stage 80 in the X axis, Y axis, and ⁇ Z directions. Further, surface position information (position information regarding the Z-axis, ⁇ X, and ⁇ Y directions) of the surface of the substrate P held on the substrate stage 80 is detected by a focus / leveling detection system (not shown).
- the control device 30 drives the substrate stage driving device 80D based on the measurement result of the laser interferometer 75 and the detection result of the focus / leveling detection system, and controls the position of the substrate P held on the substrate stage 80. I do.
- Focus leveling detection The system measures the position information in the z-axis direction of the substrate P at each of the measurement points and detects the surface position information.
- at least a part of the plurality of measurement points is set in the first and second exposure areas AR1 and AR2.
- all the measurement points may be set outside the first and second exposure areas AR1 and AR2 (or the liquid immersion area LR,;).
- the laser interferometer 75 is also capable of measuring positional information of the substrate stage 4 in the Z-axis, ⁇ X and ⁇ Y directions.
- JP 2001-510577 corresponding to International Publication No. 1999Z28790 pamphlet).
- a focus / leveling detection system may not be provided.
- FIG. 10 is a schematic diagram showing the relationship between the first illumination area IA1 and the second illumination area IA2 and the first mask Ml and the second mask M2, and FIG. 11 shows the first exposure area AR1 and the second exposure.
- 4 is a schematic diagram showing a relationship between an area AR2 and a shot area SH that is an exposed area on the substrate P.
- the first exposure area AR1 irradiated with the first exposure light EL1 and the second exposure area AR2 irradiated with the second exposure light EL2 are projection areas of the projection optical system PL.
- the optical unit U including the illumination system IL and the projection optical system PL irradiates the first exposure area AR1 with the first exposure light EL1 from the first pattern PA1, and the second exposure light from the second pattern PA2. Irradiate the second exposure area AR2 with EL2.
- the illumination system IL irradiates the first exposure area AR1 with the first exposure light EL1 from the first pattern PA1 and the second exposure light EL2 from the second pattern PA2 through the projection optical system PL. Irradiate area AR2.
- the projection optical system PL forms an image of the first pattern PA1 with the first exposure light EL1 irradiated to the first exposure area AR1, and the second pattern PA2 with the second exposure light EL2 irradiated to the second exposure area AR2.
- the controller 30 synchronizes with the movement of the first mask Ml and the second mask M2 in the Y-axis direction by the mask stage 60 with respect to the first illumination area IA1 and the second illumination area IA2.
- the optical unit including the illumination system IL and the projection optical system PL while moving the shot area SH on the substrate P in the Y-axis direction with respect to the first exposure area AR1 and the second exposure area AR2 using 80.
- the first exposure area EL1 is irradiated to the first exposure area AR1.
- the shot area SH on the substrate P is subjected to multiple exposure (double exposure) with the image of the second pattern PA2 formed by the exposure light EL2.
- the control device 30 moves the substrate P in the Y-axis direction with respect to the first and second exposure areas AR1 and AR2, and the first mask M 1 with respect to the first illumination area IA1.
- the first exposure light EL1 and the second exposure light EL patterned by synchronizing the movement of the second mask M2 in the Y-axis direction and the movement of the second mask M2 in the Y-axis direction with respect to the second illumination area IA2. 2 is irradiated to each of the first exposure area AR1 and the second exposure area AR2, and the shot area SH on the substrate P is subjected to multiple exposure.
- the first mask Ml and the second mask M2 are arranged side by side in the Y-axis direction, and the first mask Ml is on the Y side with respect to the second mask M2. Placed in.
- the first illumination area IA1 by the first exposure light EL1 on the first mask Ml is set in a rectangular shape (slit shape) with the X-axis direction as the longitudinal direction, and the second exposure on the second mask M2
- the second illumination area IA2 by the light EL 2 is also set in a rectangular shape (slit shape) with the X-axis direction as the longitudinal direction.
- the first illumination area IA1 and the second illumination area IA2 are set by the fixed blind 9 of the blind device 11.
- the fixed blind 9 has rectangular (slit-like) openings (light passage areas) that define the first and second illumination areas IA1 and IA2 on the first and second masks Ml and M2. 1. Arranged at a position (a slightly defocused position) away from a plane conjugate with the pattern forming surface on which the first and second patterns PA1 and PA2 of the second mask Ml and M2 are formed. Yes. As will be described later, the first illumination area IA1 and the second illumination area IA2 are limited at a predetermined timing by the movable blind 10 of the blind device 11.
- the first exposure area AR1 and the second exposure area AR2 are set at different positions in the Y-axis direction.
- the substrate stage 80 can move the shot area SH on the held substrate P in the Y-axis direction with respect to the first exposure area AR1 and the second exposure area AR2.
- Each of the first exposure area AR1 and the second exposure area AR2 has a rectangular shape (slit shape) with the X-axis direction as the longitudinal direction. Further, the first exposure area AR1 and the second exposure area AR2 can be simultaneously arranged in one shot area SH.
- the distance in the Y-axis direction between the first exposure area AR1 (center of the first exposure area AR1) and the second exposure area AR2 (center of the second exposure area AR2) is the substrate One on P It is smaller than the width of the shot area SH in the Y-axis direction.
- the first exposure area AR1 and the second exposure area AR2 are separated from each other in the radial direction. Further, the first exposure area AR1 is set on the + + side with respect to the second exposure area AR2.
- the control device 30 applies the first mask Ml having the first pattern PA1 and the second mask ⁇ 2 having the second pattern ⁇ 2 to each scanning direction. While moving in the (axis direction), the substrate is moved in the scanning direction (axis direction).
- the control device 30 has the first mask Ml having the first pattern PA1 and the second pattern ⁇ 2 using the mask stage 60 during the exposure of the shot region SH on the substrate ⁇ .
- the first exposure light EL1 and the second exposure light EL2 move the second mask M2 in the same scanning direction (Y-axis direction), and the first pattern PA1 and the second mask M2 of the first mask Ml. Illuminate each of the two patterns PA2.
- the first mask Ml and the second mask M2 are placed on the main stage 61, and the control device 30 drives the main stage 61 by using the main stage driving device 64, whereby the first mask Ml.
- the second mask M2 is moved in the same scanning direction (Y-axis direction). For example, if the first mask Ml is moved in the + Y direction by the main stage 61 of the mask stage 60 during the exposure of the shot area SH on the substrate P, the second mask M2 is also moved in the + Y direction together. When the first mask Ml is moved in the -Y direction, the second mask M2 is also moved in the Y direction.
- the projection optical system PL of this embodiment forms an inverted image
- the control device 30 reverses the first and second masks Ml and M2 and the substrate P to each other during the exposure of the shot region SH of the substrate P.
- Move in the scanning direction Y-axis direction
- the control device 30 uses the substrate stage 80 to move the substrate P in the Y direction.
- move the substrate P in the + Y direction move the substrate P in the + Y direction.
- FIGS. 10 and 11 show that the substrate P is moved by one Y direction in synchronization with the movement of the first and second masks Ml and M2 in the + Y direction during the exposure of the shot region SH on the substrate P. The state of moving to is shown.
- the relative positional relationship between the first exposure area AR1 and the second exposure area AR2 is, for example, the projection magnification of the projection optical system PL and the arrangement of the optical elements constituting the projection optical system PL such as the intermediate optical member 40. It is determined according to the position.
- the relative positional relationship between the first mask Ml and the second mask M2 with reference to the exposure light EL1, EL2 is the positional information of the first exposure area AR1 and the second exposure area AR2 with respect to the shot area SH on the substrate P, that is, It is determined according to the positional information of the first exposure area AR1 and the second exposure area AR2 in the XY coordinate system defined by the laser interferometer 75.
- the first exposure area AR1 and the second exposure area AR2 on the substrate P are set at different positions in the scanning direction (Y-axis direction) of the substrate P.
- the one exposure area AR1 is set on the + Y side with respect to the second exposure area AR2.
- the first mask Ml and the second mask M2 move in the same scanning direction (Y-axis direction).
- the projection optical system PL of the present embodiment forms an inverted image, and the first and second masks Ml and M2 and the substrate P move in the scanning directions (Y-axis direction) opposite to each other. Therefore, in the present embodiment, as shown in FIG.
- the first mask Ml is arranged on the ⁇ Y side with respect to the second mask M2, and the first illumination area IA1 and the first illumination area EL1 by the first exposure light EL1
- the second illumination area IA2 by the two exposure light beam EL2 is set at different positions with respect to the centers of the first and second masks Ml and M2.
- the first and second masks Ml and M2 for the first and second illumination areas IA1 and IA2, respectively.
- the control device 30 when exposing the shot region SH on the substrate P, the control device 30 illuminates the first pattern PA1 with the first exposure light EL1, and the second pattern PA2. After one of the illuminations with the second exposure light EL2 is started, the other is started, and after the other is finished, the other is finished.
- the control device 30 also irradiates the shot area SH with the first exposure light EL1 (projection of the image of the first pattern PA1 by the first exposure light EL1) and irradiates the shot area SH with the second exposure light EL2.
- the other is started after starting one of the (projection of the image of the second pattern PA2 by the second exposure light EL2), and the other is ended after finishing one.
- the control device 30 uses the movable blind 10 of the blind device 11 to form the first and second patterns PA1 and PA2 out of the first and second masks Ml and M2.
- the first exposure light beam EL1 and the second exposure light beam EL2 Prevent unnecessary exposure of substrate P.
- a first light shielding band SB1 is provided on the outer periphery of the first pattern formation region SA1 of the first mask Ml
- a second light shielding band SB2 is provided on the outer periphery of the second pattern formation region SA2 of the second mask M2. Yes.
- the movable blind 10 is provided on the first and second light shielding bands SB1 and SB2 of the first and second masks Ml and M2. Blocks irradiation of the first and second exposure lights EL1 and EL2 to the outside.
- the movable blind 10 is arranged on a plane substantially conjugate with the pattern forming surfaces of the first and second masks Ml and M2, and the first blind having the first pattern PA1 is provided between the light source device 1 and the separation optical system 13.
- the mask Ml, the second mask M2 having the second pattern PA2, and the substrate P are provided so as to be movable in synchronization with at least one movement.
- FIG. 12 is a diagram illustrating an example of the movable blind 10.
- the movable blind 10 includes a first passing region 10A that can pass the first exposure light EL1 in the S polarization state, a second passage region 10B that can pass the second exposure light EL2 in the P polarization state, A third passage region 10C that can pass the first exposure light EL1 and the second exposure light EL2 is provided.
- the first, second, and third passing regions 10A, 10B, and 10C are arranged in a direction corresponding to the scanning direction of the first mask Ml having the first pattern PA1 and the second mask M2 having the second pattern PA2. Arranged.
- the first, second, and third passage regions 10A, 10B, and 10C are arranged side by side in the Z-axis direction in FIG.
- the third passage region 10C is provided between the first passage region 10A and the second passage region 10B.
- the first, second, and third passage regions 10A, 10B, and 10C are formed of an optical member that can transmit predetermined light.
- the first passing region 10A is formed by an optical member that includes a polarizer that can pass the first exposure light EL1 in the S-polarized state and does not substantially pass light in other polarization states (exposure light) including the P-polarized state.
- the second passing region 10B can pass the second exposure light EL2 in the P-polarized state, and does not pass light (exposure light) in other polarization states including the S-polarized state. Formed by.
- Third passage area 10C Is formed by an optical member that can pass through the first exposure light ELI in the S polarization state and the second exposure light EL2 in the P polarization state. These optical members are supported by, for example, a metal support member 10D.
- the support member 10D does not pass light (exposure light).
- the blind device 11 is equipped with a drive device such as a linear motor that can move the movable blind 10, and the control device 30 uses the drive device to move the movable blind 10 approximately in the Z-axis direction in FIG. It is possible to move in the direction corresponding to the scanning direction (Y-axis direction) of the first and second masks Ml and M2. Further, the blind device 11 includes a position detection device such as an encoder that can detect the position of the movable blind 10, and the control device 30 can monitor the detection result of the position detection device.
- the control device 30 performs, as necessary, based on the measurement result of the laser interferometer 74 of the measurement system 70 before the start of the scanning exposure of the shot area SH on the substrate P, during the scanning exposure, and after the end of the scanning exposure. While monitoring the detection result of the position detection device described above, the movable blind 10 is moved in synchronization with the movement of the first and second masks Ml and M2, and the first and second masks Ml and M2 are moved in the first and second directions. 2 Unnecessary exposure of the substrate P by the first exposure light EL1 and the second exposure light EL2 by blocking unnecessary irradiation of the first and second exposure light EL1, EL2 to the parts other than the pattern formation areas SA1, SA2. To prevent.
- the edge on the + Z side of the first passage region 10A that is, the boundary between the first passage region 10A and the support member 10D is appropriately set to the first edge El.
- the edge on the Z side of the first passing area 1 OA that is, the boundary between the first passing area 1 OA and the third passing area 1 OC is appropriately referred to as a second edge E2.
- the Z-side edge of the third passing region 10C that is, the boundary between the third passing region 10C and the second passing region 10B is appropriately referred to as a third edge E3, and is located on the ⁇ Z side of the second passing region 10B.
- the edge that is, the boundary between the second passage region 10B and the support member 10D is appropriately referred to as a fourth edge E4.
- the + X side edge of the first, second, and third passage areas 10A, 10B, and 10C is appropriately referred to as a fifth edge E5, and the first, second, and third passage areas 10A, 10B, and 10C.
- the X-side edge is referred to as the sixth edge E6 as appropriate.
- FIG. 13 is a schematic diagram showing the relationship between the movable blind 10 and the first and second pattern formation areas SA1 and SA2 of the first and second masks Ml and M2.
- the movable blind 10 is provided with first and second masks Ml to prevent unnecessary exposure of the substrate P by the first exposure light EL1 and the second exposure light EL2. , Blocking the irradiation of the first and second exposure light beams EL1 and EL2 to the outside of the first and second light shielding bands SB1 and SB2 of M2.
- the first passage region 10A and the third passage region 10C are light passage regions that pass through the first exposure light beam EL1 in the S-polarized state, and the light passage region is a first light shielding band on the first mask Ml. It has a size corresponding to the first pattern formation area SA1 surrounded by SB1.
- the second passing region 10B and the third passing region 10C are light passing regions that pass the second exposure light EL2 in the P-polarized state, and the light passing region is the second light shielding band SB2 on the second mask M2. It has a size corresponding to the second pattern formation region SA2 surrounded by. That is, the movable blind 10 overlaps the light passing area corresponding to the first pattern forming area SA1 and the light passing area corresponding to the second pattern forming area SA2 within a predetermined range (third passing area 10C). Be prepared.
- the control device 30 performs the first edge of the movable blind 10. Assuming that the image of E1 and the third edge E3 is projected onto the first mask Ml, the image power of the first edge E1 and the third edge E3 + Y side and Y of the first pattern formation area SA1 The positional relationship between the first mask Ml and the movable blind 10 is adjusted so that it is within the first shading band SB1 provided on the side.
- the image power of the fifth edge E5 and the sixth edge E6 of the movable blind 10 falls within the first light shielding band SB1 provided on the + X side and the ⁇ X side of the first pattern formation area SA1.
- the first mask Ml and the movable blind 10 are moved synchronously, so that the exposure light EL that has passed through the fixed blind 9 before the start of scanning exposure can be obtained.
- Part of the light is blocked by the first edge E1, and unnecessary exposure of the first exposure light EL1 to the portion other than the first pattern formation area SA1, and consequently unnecessary exposure of the substrate P by the first exposure light EL1. Is prevented.
- the movable blind 10 moves in synchronization with the movement of the first mask M1, so that a part of the exposure light EL that has passed through the fixed blind 9 is notably the fifth edge E5 and the sixth edge E5.
- the edge E6 unnecessary irradiation of the first exposure light beam EL1 to portions other than the first pattern formation region SA1 can be prevented.
- a part of the exposure light EL that has passed through the fixed blind 9 is blocked by the movable blind 10 that moves in synchronization with the first mask Ml, particularly the third edge E3. 1 Irradiation of unnecessary first exposure light ELI to portions other than the no-turn formation region SA1 and thus unnecessary exposure of the substrate P by the first exposure light EL1 are prevented.
- the force that starts moving the second mask M2 in the Y-axis direction scans the second pattern PA2 of the second mask M2.
- the images of the second edge E2 and the fourth edge E4 of the movable blind 10 are projected onto the second mask M2 when placed at the start position, the second edge E2 and the fourth edge E4
- the image is set so as to fit in the second light shielding band SB2 provided on the + Y side and the ⁇ Y side of the second pattern formation area SA2.
- the image power of the fifth edge E5 and the sixth edge E6 of the movable blind 10 is within the second light shielding band SB2 provided on the + X side and the ⁇ X side of the second pattern formation area SA2.
- the second mask M2 and the movable blind 10 are moved synchronously, so that the exposure light EL that has passed through the fixed blind 9 before the start of scanning exposure can be obtained.
- Part of the movable blind 10 is shielded by the second edge E2, in particular, so that unnecessary exposure of the second exposure light EL2 to the portion other than the second pattern formation area SA2 and eventually by the second exposure light EL2.
- Unnecessary exposure of the substrate P is prevented.
- the movable blind 10 moves in synchronization with the movement of the second mask M2, so that a part of the exposure light EL that has passed through the fixed blind 9 becomes the fifth edge E5 and the movable blind 10. Since it is blocked by the sixth edge E6, it is possible to prevent unnecessary irradiation of the second exposure light EL2 to the portion other than the second pattern formation region SA2.
- the partial force of the exposure light EL that has passed through the fixed blind 9 is blocked by the movable blind 10 that moves in synchronization with the second mask M2, in particular by being blocked by the third edge E3. Irradiation of unnecessary portions of the second exposure light EL2 to portions other than the pattern formation area SA2 and unnecessary exposure of the substrate P by the second exposure light EL2 are prevented.
- the exposure light E1 that has passed through the fixed blind 9 is limited, so that the first and second Irradiation of the first and second exposure lights EL1 and EL2 on the masks Ml and M2 can be restricted to prevent unnecessary exposure of the substrate P by the first exposure light EL1 and the second exposure light EL2.
- the polarization states of the first exposure light EL1 and the second exposure light EL2 are changed.
- the first blind area 10A and the second passage area 10B that allow one exposure light to pass through the movable blind 10 and substantially shield the other exposure light are provided.
- the single movable blind 10 is not required for the substrate P. Exposure can be reliably prevented. Thereby, the illumination system of the exposure apparatus that can perform multiplexing can be made compact, and the apparatus cost can be reduced.
- the first exposure light EL1 that has passed through the first passage area 10A and the first exposure light EL1 that has passed through the third passage area 10C are irradiated onto the substrate P with the same intensity.
- the third passage region 10C has: You may form with the optical member which can adjust the intensity
- the optical member of the third passage region 10C includes an optical member (filter member) whose transmittance can be adjusted, such as an ND filter (neutral density filter).
- the first exposure light EL1 in the S-polarized state passes through the first passage region 10A and the third passage region 10C of the movable blind 10.
- the second exposure light EL2 which is irradiated onto the first mask Ml through the separation optical system 13 and passes through the second passing area 10B and the third passing area 10C of the movable blind 10, passes through the second passing area 10B and the third passing area 10C of the movable blind 10. Irradiated onto the second mask M2 through the system 13.
- the transmittance of the third passage area 10C when the first passage area 10A has the first transmittance, it is necessary to set the transmittance of the third passage area 10C with respect to the first exposure light EL1 to a value corresponding to the first transmittance. .
- the second passage region 10B when the second passage region 10B has the second transmittance, it is necessary to set the transmittance of the third passage region 10C with respect to the second exposure light EL2 to a value corresponding to the second transmittance.
- the transmittance of the first passage region 10A and the transmittance of the third passage region 10C by using an optical member having a function capable of adjusting the transmittance as the optical member of the third passage region 10C, the transmittance of the first passage region 10A and the transmittance of the third passage region 10C.
- the transmittance of the second passing region 10B and the transmittance of the third passing region 10C can be matched.
- the first exposure light EL1 that has passed through the first passage area 10A and the first exposure light EL1 that has passed through the third passage area 10C can have the same intensity on the substrate P
- Second exposure light EL2 that has passed through second pass region 10B and second exposure light E that has passed through third pass region 10C The strength of L2 on the substrate P can be made the same value.
- the optical member that forms the first passage region 10A and the optical member that forms the second passage region 10B are fixed, and the optical member that forms the third passage region 10C is fixed.
- the support member 10D force may also be separated so that the optical member forming the first passage region 10A and the optical member forming the second passage region 10B can move independently. By doing this, the positions of the second edge E2 and the third edge E3 in the Z-axis direction can be changed, so that the size of the region through which the first exposure light EL1 passes and the second exposure light EL2 pass. It becomes possible to change the size of the area.
- the size of the first and second pattern formation areas PA1 and PA2 on the first and second masks Ml and M2 is changed, and the first mask Ml and the second mask M2 are used when the shot area SH is scanned and exposed. Even if the relative positional relationship changes, the irradiation of the first and second exposure light beams EL 1 and EL2 to the first and second masks Ml and M2 can be restricted in accordance with the change. Unnecessary exposure can be reliably prevented.
- the movable blind 10 may be provided with a movable light shielding member for adjusting the positions of the fifth and sixth edges E5 and E6.
- an optical member is provided in the third passage area 10C. It does not have to be.
- the control device 30 when exposing the shot region SH of the substrate P, uses the mask stage 60 to set the first mask Ml and the second mask M2 to the same. While moving in the scanning direction (for example, + Y direction), each of the first pattern PA1 and the second pattern PA2 is illuminated with the first exposure light EL1 and the second exposure light EL2. Further, the control device 30 uses the substrate stage 80 to synchronize the shot area SH on the substrate P with the first and second masks Ml and M2 in synchronization with the movement of the mask stage 60 in a predetermined scanning direction. Move in the scanning direction (eg Y direction).
- the scanning direction eg Y direction
- the substrate stage with respect to the first exposure area AR1 and the second exposure area AR2 in synchronization with the movement of the first mask Ml and the second mask M2 in the + Y direction by the mask stage 60.
- the control device 30 moves the substrate stage 80 when exposing the shot region SH of the substrate P based on the sensitivity of the photosensitive material of the substrate P and the like.
- the speed (scanning speed) is determined, and the moving speed (scanning speed) of the mask stage 60 (main stage 61) is determined based on the projection magnification of the projection optical system PL and the scanning speed of the substrate P.
- the storage device 31 stores in advance the position information of each of the first exposure area AR1 and the second exposure area AR2 in the XY coordinate system defined by the laser interferometer 75.
- the control device 30 projects the image of the first pattern PA1 of the first mask Ml onto the first exposure area AR1 and the second pattern of the second mask M2 by moving the main stage 61 in the Y-axis direction.
- Each force of projection of the image of PA2 onto the second exposure area AR2 The positions of the first mask Ml and the second mask M2 on the main stage 61 so as to start at the desired timing (first mask) Adjust the relative position of Ml and the second mask M2 (Sl in Fig. 22).
- the relative positional relationship between the first mask Ml and the second mask M2 with respect to the first and second exposure lights EL1 and EL2 on the main stage 61 (the first relative to the first illumination area IA1). 1)
- the position of the mask Ml and the position of the second mask M2 with respect to the second illumination area IA2) are the positional information of the first exposure area AR1 and the second exposure area AR2 with respect to the shutter area SH on the substrate P, and thus This is determined according to the positional information of the first exposure area AR1 and the second exposure area AR2 in the XY coordinate system defined by the laser interferometer 75.
- the position information of each of the first exposure area AR1 and the second exposure area AR2 in the XY coordinate system defined by the laser interferometer 75 is stored in advance in the storage device 31, and is defined by the laser interferometer 75.
- the position information of the shot area SH in the XY coordinate system is also obtained in advance.
- the control device 30 stores the position information of the first exposure area AR1 and the second exposure area AR2 (for example, the distance between the first exposure area AR1 and the second exposure area AR2) stored in the storage device 31. Based on this, the first and second substages 62 and 63 are used to adjust the positions of the first mask Ml and the second mask M2 on the main stage 61 (relative positional relationship between the first mask Ml and the second mask M2). To do.
- the control device 30 performs the first exposure area AR1 and the second exposure. Based on the relative positional relationship with the area AR2, the positions of the first mask Ml and the second mask M2 on the main stage 61 (relative positional relationship between the first mask Ml and the second mask M2) are adjusted in advance.
- control device 30 starts exposure of shot region SH on substrate P.
- the control device 30 emits exposure light EL from the light source device 1.
- the exposure light EL emitted from the light source device 1 enters the first optical system 2.
- the first optical system 2 includes the polarization conversion element 5, and forms the annular secondary light source 7 that emits the circumferentially polarized exposure light EL on the light exit surface of the optical integrator 6.
- the exposure light EL emitted from the secondary light source 7 is limited by the aperture stop 8 and is converted into exposure light EL mainly including an S-polarized component and a P-polarized component.
- the exposure light EL mainly including the S-polarized component and the P-polarized component emitted from the first optical system 2 passes through the blending device 11 and then enters the separation optical system 13.
- Separation optical system 13 emits exposure light EL that is emitted from light source device 1 and passes through first optical system 2 and blind device 11, and first exposure light EL1 in the S-polarization state and P-polarization state in different polarization states.
- the first exposure light ELI separated by the separation optical system 13 illuminates the first mask M1 held by the first substage 62 with the first illumination area IA1, and the second exposure light EL2 2
- the second mask M2 held in the substage 63 is illuminated with the second illumination area IA2 (S3 in FIG. 22).
- the first exposure light EL 1 from the first pattern PA 1 patterned by passing through the first mask Ml passes through the first guide optical system 41 and the first reflecting surface 40 of the intermediate optical member 40. Incident on A.
- the first exposure light EL1 reflected by the first reflecting surface 40A of the intermediate optical member 40 is incident on the third guiding optical system 43, and passes through the terminal optical element FL of the third guiding optical system 43, and then enters the projection optical system PL. Irradiates the first exposure area AR1 defined on the image plane side.
- the second exposure light EL2 from the second pattern PA2 patterned by passing through the second mask M2 passes through the second guided optical system 42 to the second reflecting surface 40B of the intermediate optical member 40. Incident.
- the second exposure light EL2 reflected by the second reflecting surface 40B of the intermediate optical member 40 is incident on the third guiding optical system 43, and passes through the terminal optical element FL of the third guiding optical system 43, and then the projection optical system PL. It is defined at a position different from the first exposure area AR1 on the image plane side (position away from the first exposure area AR1 in the Y-axis direction).
- the second exposure area AR2 is irradiated.
- the control device 30 monitors the position information of the mask stage 60 using the laser interferometer 74 of the measurement system 70, and uses the mask stage 60 to control the first mask Ml and the second mask M2. While moving in the + Y direction, the first exposure light EL1 and the second exposure light EL2 illuminate the first pattern PA1 of the first mask Ml and the second pattern PA2 of the second mask M2, respectively. Further, the control device 30 synchronizes with the movement of the first mask Ml and the second mask M2 in the + Y direction by the mask stage 60 using the laser interferometer 75 of the measurement system 70 to obtain the position information of the substrate stage 80.
- the substrate stage 80 is used to move the substrate P in the Y direction, and the first exposure area EL1 and the second exposure area EL2 are irradiated to the first exposure area AR1 and the second exposure area AR2, respectively. To do.
- the process of the substrate P is performed through a process described in detail later.
- a predetermined area (shot area) is double-exposed (S4 in FIG. 22).
- the control device 30 when exposing the shot area SH on the substrate P, the control device 30 starts illumination with the first exposure light EL1 on the first pattern PA1, and then the second pattern PA2. Illumination with the second exposure light EL2 is started, and after the illumination with the first exposure light EL1 for the first pattern PA1 is finished, the illumination with the second exposure light EL2 for the second pattern PA2 is finished. Further, after starting projection of the pattern PA1 with the first exposure light EL1 onto the shot area SH, the control device 30 starts projecting the second pattern PA2 with the second exposure light EL2 onto the shot area SH. After the projection of the first pattern PA1 with the first exposure light beam EL1 is finished, the projection of the second pattern PA2 with the second exposure light beam EL2 on the shot region SH is finished.
- the control device 30 performs the first operation when the + Y side edge of the first pattern formation area SA1 where the first pattern PA1 of the first mask Ml is formed reaches the first illumination area IA1. Start illumination with 1st exposure light EL1 for 1 pattern PA1.
- the + Y side edge of the first pattern formation area SA1 of the first mask Ml has reached the first illumination area IA1.
- the ⁇ Y side edge Gl of the shot area SH on the substrate P is set to reach the first exposure area AR1, and the first exposure light EL1 with respect to the first exposure area AR1 Irradiation is started.
- the width of the first exposure area AR1 in the scanning direction on the substrate P is zero by the movable blind 10, but the first pattern PA1
- the width is gradually widened.
- the width is kept constant. This prevents unnecessary exposure of the shot area in the ⁇ Y direction with respect to the shot area SH on the substrate P before and after the start of the first scanning exposure.
- the movable blind 10 makes the width of the second exposure area AR2 in the scanning direction zero.
- the control device 30 By continuously moving the mask stage 60 (main stage 61) in the + Y direction, the control device 30 continuously illuminates the first pattern PA1 of the first mask Ml with the first exposure light EL1. To do. By continuing the movement of the mask stage 60 in the + Y direction, the first pattern PA1 of the first mask Ml passes through the first illumination area IA1.
- control device 30 continues to move the substrate stage 80 in the -Y direction in synchronization with the movement of the mask stage 60 in the + Y direction, so that the shot region SH on the substrate P is moved to the shot region SH.
- the image of the first pattern PA1 is continuously projected by the first exposure light EL1.
- the shot region SH on the substrate P passes through the first exposure region AR1.
- the irradiation of the first exposure light EL1 to the first exposure area AR1 is stopped.
- the first exposure area AR1 is irradiated.
- the exposure of the shot area SH with the first exposure light ELI that is, the projection of the image of the first pattern PA1 with the first exposure light EL1 on the shot area SH is completed.
- the Y side edge of the first pattern formation area SA1 of the first mask Ml is the first illumination area IA1.
- the first illumination area IA1 starts to be limited by the edge E3 of the movable blind when the edge on the Y side is reached, and the width of the first illumination area IA1 is zero when it reaches the + Y side edge of the first illumination area IA1 It becomes.
- the edge G2 of the shot area SH reaches the + Y side edge of the first exposure area AR1
- the width of the first exposure area AR1 is gradually reduced, and the edge G2 becomes the first edge.
- its width becomes zero. This prevents unnecessary exposure of the shot area in the + Y direction with respect to the shot area SH on the substrate P before the end of the first scanning exposure.
- the second pattern PA2 of the second mask M2 is formed at a predetermined timing while a part of the first pattern formation area SA1 of the first mask Ml passes through the first illumination area IA1.
- the + Y side edge of the pattern formation area SA2 reaches the second illumination area IA2, and illumination with the second exposure light EL2 on the second pattern PA2 is started.
- the + Y side edge of the second pattern formation area SA2 of the second mask M2 reaches the second illumination area IA2, the ⁇ Y side edge G1 of the shot area SH on the substrate P in FIG. It is set to reach the second exposure area AR2, and irradiation of the second exposure light EL2 to the second exposure area AR2 is started.
- the width in the scanning direction of the second exposure area AR2 on the substrate P is zero by the movable blind 10, but the second pattern PA2 From the start of scanning exposure (second scanning exposure), that is, when the edge G1 of the shot area SH on the substrate P reaches the edge on the + Y side of the second exposure area AR2, the width is gradually widened, When the set value is reached, the width is kept constant. This prevents unnecessary exposure of the shot area in the Y direction with respect to the shot area SH on the substrate P before and after the start of the second scanning exposure. wear.
- Position that is, the relative positional relationship between the first mask Ml and the second mask M2 on the main stage 61 is adjusted in advance, and the main stage 61 and the substrate stage 80 are moved synchronously, so that the shot on the substrate P
- the edge G1 on the Y side of the area SH reaches the second exposure area AR2, the projection of the second pattern PA2 of the second mask M2 can be started.
- the controller 30 continuously illuminates the second pattern PA2 of the second mask M2 with the second exposure light EL2 by continuing to move the mask stage 60 (main stage 61) in the + Y direction. To do. By continuing the movement of the mask stage 60 in the + Y direction, the second pattern PA2 of the second mask M2 passes through the second illumination area IA2.
- control device 30 continues to move the substrate stage 80 in the -Y direction in synchronization with the movement of the mask stage 60 in the + Y direction.
- image of the second pattern PA2 is continuously projected by the second exposure light EL2.
- the shot region SH on the substrate P passes through the second exposure region AR2.
- the irradiation of the second exposure light EL2 to the second exposure area AR2 is stopped. Thereby, the exposure of the shot area SH by the second exposure light EL2 irradiated to the second exposure area AR2, that is, the projection of the image of the second pattern PA2 by the second exposure light EL2 onto the shot area SH is completed.
- the second pattern of the second mask M2 is moved.
- the second illumination area IA2 begins to be restricted by the edge E4 of the movable blind when the —Y side edge of the second formation area SA2 reaches the Y side edge of the second illumination area IA2.
- the width of the second illumination area IA2 becomes zero.
- the width of the second exposure area AR2 is gradually reduced and the edge G2 becomes the second edge.
- it reaches the Y side edge of the exposure area AR2 its width becomes zero. This prevents unnecessary exposure of the shot area in the + Y direction with respect to the shot area SH on the substrate P before the end of the second scanning exposure.
- the photosensitive material layer in the shot area SH on the substrate P exposed to the first exposure light EL1 irradiated to the first exposure area AR1 enters the second exposure area AR2 without going through a development process or the like. Re-exposed (double exposure) with the irradiated second exposure light EL2.
- the first exposure light E L1 for the first pattern PA1 of the first mask Ml at a predetermined timing in the middle of a part of the second pattern formation region SA2 passing through the second illumination region IA2
- the lighting by is finished.
- irradiation of the first exposure light EL1 to the shot region SH is completed at a predetermined timing while a part of the shot region SH on the substrate P passes through the second exposure region AR2.
- one shot area SH on the substrate P is subjected to multiple exposure with an image of the first pattern PA1 and an image of the second pattern PA2 ( Double exposure).
- a plurality of shot areas SH are provided on the substrate P, and the control device 30 sequentially exposes each of the shot areas SH.
- the control device 30 sequentially performs multiple exposure on the plurality of shot areas SH on the substrate P by repeating the scanning operation in the ⁇ Y direction and the scanning operation in the + Y direction of the substrate P.
- the control device 30 moves the movable blind 10 in synchronization with the movement of the first and second masks Ml and M2. Therefore, the first and second masks Ml and M2 are shielded from unnecessary irradiation of the first and second exposure lights EL1 and EL2 to the portions other than the first and second pattern formation areas SA1 and SA2. Can do. Therefore, unnecessary exposure of the substrate P by the first exposure light EL1 and the second exposure light EL2 is prevented. Especially single Therefore, unnecessary exposure of the exposure light to the areas other than the first and second pattern formation areas SA1 and SA2 is prevented, thereby increasing the cost of the exposure apparatus that performs multiple exposure. And increase in size of the apparatus can be suppressed.
- the substrate P can be efficiently subjected to multiple exposure while suppressing the increase in device cost and the size of the device.
- the first exposure light EL1 and the second exposure light EL2 are the exposure light EL generated from a single light source device, the polarization directions of the first exposure light EL1 and the second exposure light EL2 are the same. Except for differences, they have a common beam quality (for example, wavelength characteristics). Therefore, compared with the case where the two different light source powers, the first exposure light and the second exposure light, are generated, it is easier to adjust the exposure light without having to adjust the exposure light. Can be maintained.
- each of the first exposure area AR1 and the second exposure area AR2 defined at different positions in the Y-axis direction is irradiated with the exposure light EL, and the shot area SH on the substrate P becomes the first exposure area.
- the shot area SH of the substrate P can be efficiently subjected to multiple exposure.
- one shot area SH and an image of the first pattern PA1 are compared with the first pattern PA1 in one scan operation. Two patterns of PA2 images can be exposed to improve throughput.
- a plurality of shot areas SH on the substrate P can be efficiently subjected to multiple exposure.
- the image of the first pattern PA1 and the image of the second pattern PA2 are formed in the desired positional relationship in each shot area SH. can do
- the separation optical system 13 separates the exposure light EL into the first exposure light EL1 in the S-polarized state and the second exposure light EL2 in the P-polarized state, and the line pattern
- the first and second patterns PA1 and PA2 including are linearly polarized. Exposure light having a polarization direction almost parallel to the longitudinal direction of the line pattern contributes to improving the contrast of the image of the line pattern, so that the optical performance (depth of focus, etc.) of the projection optical system PL can be improved. Thus, images of the first and second patterns PA1 and PA2 having high contrast on the substrate P can be obtained.
- the numerical aperture NA of the projection optical system PL is as large as, for example, about 0.9, the imaging characteristics may deteriorate due to the polarization effect with randomly polarized light.
- polarized illumination since polarized illumination is used, an image with a good pattern can be obtained.
- the first exposure light EL1 irradiated to the first exposure area AR1 and the second exposure light EL2 irradiated to the second exposure area AR2 pass through one terminal optical element FL. Then, since the substrate P is irradiated, the configuration of the projection optical system PL can be simplified. In addition, since the first exposure area AR1 and the second exposure area AR2 are defined at different positions, the reflecting surfaces 40A and 40B are arranged in the vicinity of optically conjugate positions with the first and second exposure areas AR1 and AR2.
- the first exposure light EL1 from the first mask Ml and the second exposure light EL2 from the second mask M2 can be guided to the third guiding optical system 43, and the first and second exposure areas AR1 Each of AR2 can be irradiated.
- the optical performance of the projection optical system PL can be maintained in a desired state by moving or tilting some of the lenses in 43.
- the control device 30 performs the first mask Ml and the second mask on the main stage 61 based on the relative positional relationship between the first exposure area AR1 and the second exposure area AR2. While adjusting the position of the mask M2 (relative positional relationship between the first mask Ml and the second mask M2) in advance and using the measurement system 70 to monitor the position information of the mask stage 60 and the substrate stage 80, the first Since the exposure is performed while moving the second mask Ml, M2 and the substrate P, the projection of the image of the first pattern PA1 of the first mask Ml and the projection of the image of the second pattern PA2 of the second mask M2 Each of them can be executed at a desired timing, and the image of the first pattern PA1 of the first mask Ml and the second pattern PA2 of the second mask M2 are included in each shot area SH. An image can be formed in a desired positional relationship.
- the relative position between the main stage 61 and the substrate stage 80 may be shifted by the target relative position. Since the relative position shift between the main stage 61 and the substrate stage 80 can be detected based on the measurement results of the laser interferometers 74 and 75, the control device 30 can detect the first stage 61 and the substrate stage 80. Is detected, the at least one of the first substage 62 and the second substage 63 is moved based on the measurement results of the laser interferometers 74 and 75, and the first mask Ml and Adjust the position of at least one of the second mask M2.
- the positional relationship between the first and second masks Ml and M2 and the shot area SH is always adjusted to a desired state, and the image of the first pattern PA1 and the image of the second pattern PA2 are desired in the shot area SH. It can be formed by the positional relationship of
- the measurement system 70 acquires the position information of the main stage 61 using the reflecting member 71 provided on the main stage 61, and the control device 30 acquires the acquired position information. Based on the position information, the force reflecting member 71 that controls the position of the main stage 61 is omitted, and the position information of the first substage 62 obtained by using the reflecting member 72 and the reflecting member 73 are used. The movement of the main stage 61 may be controlled using at least one of the obtained position information of the second substage 63. Further, the measurement system 70 uses a sensor other than the laser interferometer, such as an encoder, to provide information on the relative positional relationship between the first and second masks Ml and M2, such as the positions of the first and second masks Ml and M2. You may detect information (position or displacement).
- a sensor other than the laser interferometer such as an encoder
- first and second sub-stages 62 and 63 are provided as mechanisms for moving the first and second masks Ml and M2, and the first and second sub-stages thereof are provided.
- reflecting members 72 and 73 used for position measurement by the laser interferometer 74 are provided, but the relative positions of the first exposure area AR1 and the second exposure area AR2 are provided. In the case where the change in phase and the synchronization error (position error) between the main stage 61 and the substrate stage 80 are acceptable, these may be omitted.
- the first mask Ml and the second mask M2 are fixed at predetermined positions on the main stage 61, and the position information of the main stage 61 obtained by the laser interferometer 74 using the reflecting member 71 and the laser are obtained. Substrate acquired with interferometer 75 Based on the position information of the stage 80, the main stage 61 and the substrate stage 80 may be moved synchronously.
- the projection optical system PL is irradiated with the first and second exposure light beams EL1 and EL2 and the surrounding environment of the projection optical system PL (including temperature change, pressure change, etc.).
- the optical characteristics of the PL may change, and the relative positional relationship between the first exposure area AR1 and the second exposure area AR2 may change.
- the first pattern PA1 image of the first mask Ml and the second pattern PA2 image of the second mask M2 are each formed at a desired position in the shot region SH.
- At least one of the substage 62 and the second substage 63 may be moved to adjust the position of at least one of the first mask Ml and the second mask M2.
- the control device 30 monitors the amount of exposure of the first and second exposure light beams EL1 and EL2 to the projection optical system PL, the environmental change around the projection optical system PL, and the like, and the first mask Ml of the first mask Ml. Based on the monitoring results, the first sub-stage 62 and the second sub-stage 62 are arranged so that the image of the pattern PA1 and the image of the second pattern PA2 of the second mask M2 are formed at desired positions in the shot area SH. 2 At least one of the substages 63 can be moved.
- the relative positional relationship between the first exposure area AR1 and the second exposure area AR2 may be corrected.
- the imaging characteristics of the projection optical system PL also fluctuate due to the above-mentioned irradiation amount and environmental changes. Therefore, based on the above monitoring results, for example, adjustment of the projection optical system PL (including movement of the optical element), adjustment of wavelength characteristics of exposure light (center wavelength, spectral width, etc.), and movement of the substrate P (Z It is preferable to perform at least one of (axis, ⁇ X and ⁇ Y position adjustment). As a result, it is possible to suppress (correct) the fluctuation of the imaging characteristics and prevent the exposure accuracy from being lowered due to Z or the fluctuation.
- the control device 30 moves the first exposure light EL1 and the second exposure while moving the first mask Ml and the second mask M2 in the same scanning direction.
- Light EL2 is used to illuminate the first pattern PA1 of the first mask Ml and the second pattern PA2 of the second mask M2, as will be described later, depending on the configuration of the optical unit U, the scanning of the shot area SH During the exposure, the first mask Ml and the second mask M2 may move in opposite directions. In such a case, a movable block is used for scanning exposure of one shot area SH.
- FIG. 14 is a diagram showing a main part of the illumination system IL according to the second embodiment.
- a characteristic part of the second embodiment, which is different from the first embodiment described above, is that the illumination system IL has the first exposure light EL1 and the second exposure light generated by the separation optical system (polarization separation optical system) 13. It has a conversion element 18 that changes the polarization state of at least one of EL2.
- the illumination system IL of the present embodiment includes the light source device 1 that emits the exposure light EL, the exposure light EL from the light source device 1, and an S-polarized component and a P-polarized component.
- the first optical system 2 that emits light that is converted into exposure light EL, the blind device 11, and the exposure light EL in the S-polarized state first exposure light EL1 and the P-polarization state second exposure light EL2
- a separation optical system (polarized light separation optical system) 13 for separating the light into the light.
- the light source device 1 and the first optical system 2 are not shown.
- the conversion element 18 that changes the polarization state of the second exposure light EL2 is disposed on the optical path between the separation optical system 13 and the second mask M2.
- the conversion element 18 includes a phase difference plate.
- the conversion element 18 is a ⁇ 4 plate.
- the first exposure light EL1 in the S-polarized state separated by the separation optical system 13 is irradiated to the first mask Ml through the third optical system 14.
- the P-polarized second exposure light EL 2 separated by the separation optical system 13 is incident on the conversion element 18 via the fourth optical system 15.
- the conversion element 18 having a ⁇ 4 plate force converts the second exposure light EL2 mainly composed of incident ⁇ polarized light into the second exposure light EL2 mainly composed of circularly polarized light.
- the polarization state converted by the conversion element 18 is second.
- the exposure light EL2 is applied to the second mask M2 via the reflection mirror 16 and the fifth optical system 17.
- the first optical system 2 includes the diffractive optical element 4 that diffracts the exposure light EL from the light source device 1 to a desired angle.
- the diffractive optical element 4 has a light incident surface of the optical integrator 6 on the circular illumination area including the optical axis AX of the illumination system IL and an annular illumination area centered on the optical axis AX. And can be illuminated.
- a desired illumination region can be formed by adjusting the structural conditions of the diffractive optical element 4.
- a circular secondary light source including the optical axis AX and an annular secondary light source centered on the optical axis AX are formed on the light exit surface of the optical integrator 6.
- the polarization conversion element 5 is disposed immediately before the optical integrator 6 (near the light incident surface).
- the polarization conversion element 5 of the present embodiment converts the exposure light EL emitted from the circular secondary light source force into the P-polarized exposure light EL and the exposure light EL emitted from the annular secondary light source. Is converted into exposure light EL in the circumferentially polarized state.
- exposure light having a desired polarization state can be generated by adjusting the optical rotation power and thickness of the polarization conversion element 5.
- FIG. 15 is a diagram showing the aperture stop 8 according to the present embodiment.
- the aperture stop 8 is disposed in the vicinity of the light exit surface of the optical integrator 6, that is, immediately after the secondary light source 7.
- the aperture stop 8 has two first openings 8A and third openings 8G that can pass the exposure light EL. Similar to the first embodiment described above, the two first openings 8A are provided at positions facing each other across the optical axis AX, and the S-polarized exposure light EL is emitted from the two first openings 8A. It is injected.
- the third opening 8G has a circular shape and is provided on the optical axis AX.
- the third aperture 3G is formed to correspond to a circular secondary light source, and the third aperture 8G force emits the exposure light EL in the P-polarized state.
- the exposure light EL emitted from the light source device 1 and passing through the aperture stop 8 mainly includes the S-polarized component and the P-polarized component.
- the exposure light EL that has passed through the apertures 8A and 8G of the aperture stop 8 enters the blind device 11 via a condenser optical system or the like.
- the exposure light EL that mainly contains the S-polarized component and the P-polarized component that have passed through the light passage region of the blind device 11 passes through the second optical system 12 and is separated into the separating optical system 13. Is incident on.
- Separation optical system 13 separates exposure light EL into first exposure light EL1 in the S-polarized state and second exposure light EL2 in the P-polarized state.
- the first exposure light EL 1 in the S-polarized state separated by the separation optical system 13 is supplied to the third optical system 14 and irradiated onto the first mask Ml through the third optical system 14.
- the P-polarized second exposure light EL2 separated by the separation optical system 13 is supplied to the fourth optical system 15, converted into the circularly polarized second exposure light EL2 by the conversion element 18, and then reflected.
- the light is irradiated onto the second mask M2 via the reflecting mirror 16 and the fifth optical system 17.
- the first exposure light EL1 that has passed through each of the two first openings 8A arranged at positions facing each other with respect to the optical axis AX is irradiated, and the first mask Ml
- the first non-turned PA1 is dipole illuminated (bipolar illumination) by the first exposure light EL1 mainly composed of S-polarized light.
- the first pattern PA1 of the first mask Ml is mainly composed of a plurality of line 'and' space patterns whose longitudinal direction is the X-axis direction, and the lines included in the first pattern ⁇ PA1
- the longitudinal direction of the “and” spaceno ⁇ turn rhino ⁇ turn and the polarization direction of the first exposure light EL1 mainly composed of S-polarized light are almost parallel.
- the illumination system IL uses two light beams (first exposure light EL1) in a linear polarization state (S polarization state) aligned with the longitudinal direction of the line pattern of the line 'and' space pattern of the first mask Ml. Then, oblique incidence illumination (dipole illumination) is performed according to the longitudinal direction of the line pattern of the line 'and' space pattern of the first mask Ml.
- the second exposure light EL2 that has passed through the third opening 8G disposed at the position including the optical axis AX is irradiated onto the second mask M2, and the second pattern PA2 of the second mask M2 is Illuminated by the second exposure light EL2, whose main component is circularly polarized light.
- the second pattern PA2 of the second mask M2 is a pattern in which, for example, a plurality of line patterns extending in different directions are mixed.
- the illumination system IL vertically illuminates the pattern of the second mask M2.
- illumination of the second pattern PA2 of the second mask M2 by the second exposure light EL2 is referred to as normal illumination.
- an illumination condition with a small illumination ⁇ value (coherence factor) can be set, so the second mask ⁇ 2 is, for example, In the case of a phase shift mask on which a contact hole pattern is formed This is effective.
- the illumination system IL illuminates the first mask Ml with dipole illumination and normally illuminates the second mask M2, for example, a fine pattern as the first pattern PA1 of the first mask Ml.
- a rough pattern rougher than the first pattern PA1 is formed as the second pattern PA2 of the second mask M2, it is possible to illuminate under illumination conditions corresponding to each pattern.
- the illumination system IL converts the exposure light EL emitted from the secondary light source 7 into exposure light EL mainly containing an S-polarized component and a P-polarized component by the aperture stop 8.
- the first mask Ml is irradiated with dipole illumination (bipolar illumination) by the first exposure light EL1 in the S-polarized state
- the second mask M2 is usually irradiated by the second exposure light EL2 in the circular polarization state.
- the structure of the diffractive optical element is adjusted so that one diffractive optical element has a function as a diffractive optical element for dipole illumination and a diffractive optical element for normal illumination.
- the first mask Ml without an aperture stop is dipole illuminated with the first exposure light EL1 in the S polarization state, and the second mask M2 is placed in the circular polarization state. 2 Normal exposure can be achieved with exposure light EL2.
- the controller 30 performs the first control on the main stage 61 based on the positional information of the first exposure area AR1 and the second exposure area AR2 before the substrate P is exposed.
- the relative positional relationship between the first mask Ml and the second mask M2 is adjusted using the first and second substages 62 and 63.
- the control device 30 emits the exposure light EL from the light source device 1.
- the exposure light EL emitted from the light source device 1 is converted into a predetermined polarization state by the first optical system 2, passes through the blind device 11, and enters the separation optical system 13.
- the separation optical system 13 separates the incident exposure light EL into the first exposure light EL1 in the S polarization state and the second exposure light EL2 in the P polarization state.
- the first exposure light EL1 in the S polarization state illuminates the first pattern PA1 of the first mask Ml.
- the second exposure light EL2 in the P polarization state is converted into the second exposure light EL2 in the circular polarization state by the conversion element 18, and then the second exposure light EL2 is converted into the second exposure light EL2 in the circular polarization state.
- the control device 30 uses the mask stage 60 having the main stage 61 to move the first mask Ml and the second mask M2 in the same scanning direction (for example, the + Y direction). Meanwhile, each of the first pattern PA1 and the second pattern PA2 is illuminated with the first exposure light EL1 and the second exposure light EL2.
- the control device 30 synchronizes with the movement of the first mask Ml and the second mask M2, and moves the substrate stage 80 holding the substrate P to the first mask Ml. And it moves in the scanning direction opposite to the second mask M2 (eg, Y direction). Further, the control device 30 moves the movable blind 10 in synchronization with the movement of the first and second masks Ml and M2. Thereby, unnecessary exposure of the substrate P by the first exposure light EL1 and the second exposure light EL2 is prevented.
- the shot area SH on the substrate P includes an image of the first pattern PA1 formed by the first exposure light EL1 irradiated to the first exposure area AR1 via the first pattern PA1 and the projection optical system PL, and Multiple exposure is performed with the second pattern PA2 and the image of the second pattern PA2 formed by the second exposure light EL2 irradiated to the second exposure area AR2 via the projection optical system PL.
- the photosensitive material layer on the substrate P exposed to the first exposure light EL1 irradiated to the first exposure area AR1 is irradiated to the second exposure area AR2 without going through a development process or the like. Re-exposed (double exposure) with second exposure light EL2, one shot area SH is subjected to multiple exposure (double exposure) with first pattern PA1 image and second pattern PA2 image in one scan operation )
- FIG. 16 is a diagram showing a main part of the illumination system IL according to the third embodiment.
- the same or equivalent components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is simplified or omitted.
- the illumination system IL of the present embodiment is similar to the first embodiment described above in that the light source device 1 that emits the exposure light EL, and the exposure light EL from the light source device 1 is divided into an S-polarized component and a P-polarized component.
- the first optical system 2 that emits light that is converted into exposure light EL, the blind device 11, and the exposure light EL in the S-polarized state first exposure light EL1 and the P-polarization state second exposure light EL2 And a polarization splitting optical system 13 that separates into two.
- the light source device 1 and the first optical system 2 are not shown.
- imaging optical systems (relay optical systems) 19A and 19B are arranged.
- Each of the imaging optical systems 19A and 19B has a function of inverting the object image once. Therefore, by the two imaging optical systems 19A and 19B, the image of the blind device 11, that is, the image of the light passing area of the movable blind 10 (images of the edges E1 to E6) is separated from the separation optical system 13 and the second mask M. Invert 2 times with 2. That is, in the present embodiment, the number of times of image formation (the number of inversions) of the light passing area image (images of the edges E1 to E6) of the movable blind 10 between the separation optical system 13 and the second mask M2 is 2 times (even times).
- the number of times of imaging (the number of inversions) of the image of the light passing area of the movable blind 10 (images of the edges E1 to E6) between the separation optical system 13 and the first mask Ml. Is 0 (even).
- the first exposure light EL1 in the S-polarized state separated by the separation optical system 13 is irradiated to the first mask Ml through the third optical system 14.
- the P-polarized second exposure light EL2 separated by the separation optical system 13 is incident on the reflection mirror 16 via the two imaging optical systems 19A and 19B, and is reflected by the reflection mirror 16.
- the second mask M2 is irradiated through the fifth optical system 17.
- the control device 30 uses the main stage 61 of the mask stage 60 to place the first mask Ml and the second mask M2 in the same scanning direction (for example, Y).
- the first exposure light beam EL1 and the second exposure light beam EL2 illuminate the first pattern PA1 of the first mask M1 and the second pattern PA2 of the second mask M2, respectively.
- the control device 30 moves the substrate stage 80 holding the substrate P in the scanning direction opposite to the first mask Ml and the second mask M2 (for example, the Y direction).
- the control device 30 moves the movable blind 10 in synchronization with the movement of the first and second masks Ml and M2.
- the shot area SH on the substrate P is the first pattern PA1 And an image of the first pattern PA1 formed by the first exposure light ELI irradiated to the first exposure area ARl through the projection optical system PL, and a second exposure area through the second pattern PA2 and the projection optical system PL. Multiple exposure is performed with the image of the second pattern PA2 formed by the second exposure light EL2 irradiated to the AR2.
- the first exposure light beam EL1 and the second exposure light beam 2 are moved by moving the movable blind 10 in one direction (+ Z direction or ⁇ Z direction) during the exposure operation for one shot region SH. Since the exposure light EL2 prevents unnecessary exposure of the substrate P, the number of times of image formation by the optical system arranged between the separation optical system 13 and the first pattern PA1 and the second pattern PA2 is set. Even when each of the first pattern PA1 and the second pattern PA2 is illuminated by the first exposure light EL1 and the second exposure light EL2 while moving the first mask Ml and the second mask M2 in the same scanning direction.
- One movable blind 10 blocks unnecessary first and second exposure light beams EL1 and EL2 from portions of the first and second masks Ml and M2 other than the first and second pattern formation areas SA1 and SA2. be able to. Thereby, unnecessary exposure of the substrate P by the first exposure light EL1 and the second exposure light EL2 can be prevented.
- the imaging optical systems 19A and 19B are arranged as relay optical systems on the optical path of the second exposure light EL2 between the separation optical system 13 and the second mask M2. . Therefore, even when the distance between the first mask Ml (first substage 62) and the second mask M2 (second substage 63) is long, the first and second masks Ml and M2 are respectively connected to the first and second masks M1 and M2. 2 Good illumination with exposure light EL1, EL2.
- FIG. 17 is a schematic configuration diagram showing the fourth embodiment.
- a characteristic part of this embodiment that is different from the first embodiment described above is that the first guiding optical system 41 and the second guiding optical system 42 have concave mirrors 44.
- the difference will be mainly described, and the same or equivalent components as those in the first embodiment described above will be denoted by the same reference numerals, and description thereof will be simplified or omitted.
- the projection optical system PL of the present embodiment has one terminal optical element FL on which the surface of the substrate P is opposed so as to be the same as the above-described embodiment.
- the first exposure area AR1 and the second exposure area AR2 are each subjected to the first exposure via the last optical element FL. Irradiate light ELI and second exposure light EL2.
- the projection optical system PL is arranged in the vicinity of a position optically conjugate with the first exposure area AR 1 and the second exposure area AR2, and the first exposure light EL1 and the second mask M2 from the first mask Ml.
- an intermediate optical member 40 that guides the second exposure light EL2 from the second guiding light system 43 to the third guiding optical system 43.
- the first guiding optical system 41 that guides the first exposure light EL1 from the first mask Ml to the intermediate optical member 40 has a concave mirror 44.
- the second guiding optical system 42 that guides the second exposure light EL2 from the second mask M2 to the intermediate optical member 40 also has a concave mirror 44.
- the first and second exposure lights EL1 and EL2 patterned by the first and second masks Ml and M2, respectively, are intermediate optical members 40 by the first and second guide optical systems 41 and 42, respectively. Led to. Next, the first exposure light EL1 and the second exposure light EL2 are reflected by the first and second reflection surfaces 4OA and 40B of the intermediate optical member 40, and then passed through the third guide optical system 43 including the terminal optical element FL. Thus, each of the first exposure area AR1 and the second exposure area AR2 is irradiated.
- the control device 30 uses the main stage 61 of the mask stage 60 to move the first mask Ml and the second mask M2 in the same scanning direction (for example, the Y direction)
- the first exposure light EL1 and the second exposure light EL2 illuminate the first pattern PA1 of the first mask Ml and the second pattern PA2 of the second mask M2, respectively.
- the control device 30 moves the substrate stage 80 holding the substrate P during the exposure of the shot region SH on the substrate P in the scanning direction (for example, Y direction) opposite to the first mask Ml and the second mask M2. Move to.
- the control device 30 moves the movable blind 10 in synchronization with the movement of the first and second masks Ml and M2.
- the shot area SH on the substrate P includes an image of the first pattern PA 1 formed by the first exposure light EL1 irradiated to the first exposure area AR1 via the first pattern PA1 and the projection optical system PL, and the second pattern PA1. Multiple exposure is performed with the image of the second pattern PA2 formed by the second exposure light EL2 irradiated to the second exposure area AR2 via the pattern PA2 and the projection optical system PL.
- each shot region SH on the substrate P can be subjected to multiple exposure by a single scanning operation without causing a decrease in throughput.
- the second exposure light E L2 can pass through some optical elements of the second guiding optical system 42 (and Z or tilt)
- the image of the first pattern PA1 projected onto the first exposure area AR1 and the image of the second pattern PA2 projected onto the second exposure area AR2 may be adjusted independently.
- FIG. 18 is a schematic configuration diagram showing the fifth embodiment.
- the characteristic part of the present embodiment which is different from the above-described embodiments, is that the optical unit u has a predetermined imaging optical system (on the optical path of the second exposure light EL2 between the second mask M2 and the substrate P).
- Relay optical system 20A, 20B.
- the difference will be mainly described, and the same or equivalent components as those of the above-described embodiment will be denoted by the same reference numerals, and the description thereof will be simplified or omitted.
- the illumination system IL of the present embodiment is similar to the above-described embodiment in the light source device 1 that emits the exposure light EL and the first light that is emitted after converting the polarization state of the exposure light EL from the light source device 1.
- Optical system 2 Blind device 11, Separation optical system (polarization separation optical system) 13 for separating exposure light EL into first exposure light EL1 in the first polarization state and second exposure light EL2 in the second polarization state It has.
- the first mask Ml is illuminated with the first exposure light EL1 in the first polarization state (for example, the S polarization state), and the second mask M2 is the second exposure in the second polarization state (for example, the P polarization state). Illuminated by light EL2.
- the control device 30 uses the mask stage 60 having the main stage 61 to move the first mask Ml and the second mask M2 in the same scanning direction (for example, the + Y direction). Meanwhile, each of the first pattern PA1 and the second pattern PA2 is illuminated with the first exposure light EL1 and the second exposure light EL2. In the present embodiment, the first exposure area AR1 and the second exposure area AR2 are set to overlap at the same position. In addition, during the exposure of the shot area SH on the substrate P, the control device 30 synchronizes with the movement of the first mask Ml and the second mask M2, and moves the substrate stage 80 holding the substrate P to the first mask. Ml and the second mask M2 move in the opposite scanning direction (for example, the -Y direction).
- control device 30 moves the movable blind 10 ′ in synchronization with the movement of the first and second masks Ml and M2.
- first and second exposure areas AR1 and AR2 are set at the same position, the positional relationship between the first pattern formation area SA1 and the first illumination area IA1 and the second pattern formation Territory Since the positional relationship between the area SA2 and the second illumination area IA2 is almost the same, the movable blind 10 ′ should have a light passage area of a size corresponding to the first and second pattern formation areas SA1 and SA2. Good.
- the shot area SH on the substrate P includes an image of the first pattern PA1 formed by the first exposure light E L1 irradiated to the first exposure area AR1, and the second exposure light EL2 irradiated to the second exposure area AR2. Multiple exposure is performed with the image of the second pattern PA2 formed in (1).
- the first and second patterns of the first and second masks Ml and M2 are formed by moving the movable blind 10 in one direction during the exposure operation for one shot region SH.
- the first and second exposure light beams EL1 and EL2 are formed by moving the movable blind 10 in one direction during the exposure operation for one shot region SH.
- the number of times of image formation by the optical systems 14, 15, and 17 arranged between the separation optical system 13 and the first pattern PA1 and the second pattern PA2 is set.
- the optical unit U is provided on the object plane side of the projection optical system PL (between the projection optical system PL and the mask stage 60), and includes the first exposure light EL1 from the first mask Ml and the second mask M2. A beam splitter 24 on which the second exposure light EL2 is incident.
- the optical unit U has two imaging optical systems 20A and 20B provided on the optical path of the second exposure light EL2 between the second mask M2 and the substrate P (second exposure area AR2). Yes.
- the imaging optical systems 20A and 20B include the second mask M2 and the projection optical system PL in the optical path of the second exposure light EL2 between the second mask M2 and the second exposure area AR2.
- the imaging optical systems 20A and 20B of the present embodiment are equal magnification imaging optical systems.
- Each of the imaging optical systems 20A and 20B has a function of inverting the object image once.
- a first reflecting mirror 21 is provided between the first mask Ml and the beam splitter 24.
- the first exposure light EL1 from the first mask Ml is reflected by the first reflecting mirror 21, Incident on beam splitter 24.
- a second reflection mirror 22, an imaging optical system 20A, 20B, and a third reflection mirror 23 are provided between the second mask M2 and the beam splitter 24.
- the second reflection mirror 22 from the second mask M2 is provided.
- the two exposure light beam EL2 is reflected by the second reflection mirror 22, passes through the imaging optical systems 20A and 20B, is reflected by the third reflection mirror 23, and then enters the beam splitter 24.
- the first exposure light EL1 and the second exposure light EL2 incident on the beam splitter 24 are incident on the projection optical system PL via the beam splitter 24.
- the optical unit U of the present embodiment inverts the image of the first pattern PA1 between the first mask Ml and the first exposure area AR1, either the even number or the odd number, and the second mask M2.
- the image of the second pattern PA2 is inverted one time between the second exposure area AR2 and the second exposure area AR2.
- the optical unit U inverts the image of the first pattern PA1 an even number of times between the first mask Ml and the first exposure area AR1, the optical unit U establishes a contact between the second mask M2 and the second exposure area AR2. Invert the second Noturn PA2 image evenly.
- the second pattern PA2 is between the second mask M2 and the second exposure area AR2. Invert the statue of the odd number of times.
- imaging optical systems 20A and 20B having a function of inverting an object image are provided on the optical path of the second exposure light EL2 between the second mask M2 and the projection optical system PL. It has been. Accordingly, the image of the second pattern PA2 is inverted twice between the second mask M2 and the projection optical system PL by the two imaging optical systems 20A and 20B. In the present embodiment, the projection optical system PL inverts the object image once. Therefore, the image of the second pattern PA2 is inverted three times (odd times) between the second mask M2 and the second exposure area AR2. Further, the image of the first pattern PA1 is inverted once (odd times) by the projection optical system PL between the first mask Ml and the first exposure area AR1.
- the optical unit U of the present embodiment inverts the image of the first pattern PA1 an odd number of times between the first mask Ml and the first exposure area AR1, and the second mask M2 and the second exposure.
- the image of the second pattern PA2 is inverted an odd number of times between the area AR2.
- the first pattern PA1 and the second pattern M2 are moved by the first exposure light EL1 and the second exposure light EL2 while moving the first mask Ml and the second mask M2 in the same scanning direction (for example, + Y direction).
- the movable blind 10 ′ moves in synchronization with the movement of the first and second masks Ml and M2, thereby preventing unnecessary exposure of the substrate P by the first exposure light EL1 and the second exposure light EL2. be able to.
- FIG. 19 is a schematic configuration diagram showing the sixth embodiment.
- a characteristic part of this embodiment, which is different from the fifth embodiment described above, is that the first mask Ml and the first exposure
- the image of the first pattern PA1 is inverted even times between the light area AR1 and the image of the second pattern PA2 is inverted even times between the second mask M2 and the second exposure area AR2.
- the difference will be mainly described, and the same or equivalent components as those of the above-described embodiment will be denoted by the same reference numerals, and the description thereof will be simplified or omitted.
- the illumination system IL of the present embodiment is equivalent to the above-described embodiment.
- the illumination system IL illuminates the first mask Ml with the first exposure light EL1 in the first polarization state (for example, the S polarization state), and the second mask M2 in the second polarization state (for example, the P polarization state). Illuminate with exposure light EL2.
- the control device 30 uses the mask stage 60 having the main stage 61 to move the first mask Ml and the second mask M2 in the same scanning direction.
- Each of the first pattern PA1 and the second pattern PA2 is illuminated with the first exposure light EL1 and the second exposure light EL2 while moving in the (eg, + Y direction).
- the control device 30 synchronizes with the movement of the first mask Ml and the second mask M2, and moves the substrate stage 80 holding the substrate P to the first mask Ml and It moves in the scanning direction opposite to the second mask M2 (eg -Y direction).
- control device 30 moves the movable blind 10 ′ in synchronization with the movement of the first and second masks M1 and M2.
- the shot area SH on the substrate P is an image of the first pattern PA1 formed by the first exposure light EL1 irradiated to the first exposure area AR1, and the second exposure irradiated to the second exposure area AR2. Multiple exposure is performed with the image of the second pattern PA2 formed by the light EL2.
- the optical unit U is provided on the object plane side of the projection optical system PL (between the projection optical system PL and the mask stage 60), and includes the first exposure light EL1 from the first mask Ml and the second mask M2.
- the optical unit U includes a first imaging optical system 20A provided on the optical path of the first exposure light EL1 between the first mask Ml and the substrate P (first exposure area AR1), and a second mask M2.
- a second imaging optical system 20B provided on the optical path of the second exposure light EL2 between the substrate P (second exposure area AR2).
- the first imaging optical system 20A is provided between the first mask Ml and the projection optical system PL in the optical path of the first exposure light EL1 between the first mask M1 and the first exposure area AR1. It has been.
- the second imaging optical system 20B is provided between the second mask M2 and the projection optical system PL in the optical path of the second exposure light EL2 between the second mask M2 and the second exposure area AR2. Yes.
- the first and second of this embodiment are equal magnification imaging optical systems.
- Each of the first and second imaging optical systems 20A and 20B has a function of inverting an object image once.
- a first imaging optical system 20A and a first reflecting mirror 21 are provided between the first mask Ml and the beam splitter 24, and the first exposure light EL1 from the first mask Ml After passing through one imaging optical system 20A, the light enters the beam splitter 24 via the first reflecting mirror 21.
- a second reflecting mirror 22, a second imaging optical system 20B, and a third reflecting mirror 23 are provided between the second mask M2 and the beam splitter 24, and the second exposure light from the second mask M2 is provided.
- EL2 is reflected by the second reflecting mirror 22, passes through the second imaging optical system 20B, is reflected by the third reflecting mirror 23, and then enters the beam splitter 24.
- the first exposure light EL1 and the second exposure light EL2 incident on the beam splitter 24 enter the projection optical system PL via the beam splitter 24.
- the image of the first pattern PA1 is inverted once by the first imaging optical system 20A between the first mask Ml and the projection optical system PL.
- the projection optical system PL inverts the object image once. Therefore, the image of the first pattern PA1 is inverted twice (even times) between the first mask Ml and the first exposure area AR1.
- the image of the second pattern PA2 is inverted once by the second imaging optical system 20B between the second mask M2 and the projection optical system PL. Therefore, the image of the second pattern PA2 is inverted twice (even times) between the second mask M2 and the second exposure area AR2.
- the optical unit U of the present embodiment inverts the image of the first pattern PA1 an even number of times between the first mask Ml and the first exposure area AR1, and the second mask M2 and the second exposure.
- the image of the second pattern PA2 is inverted an even number of times between the area AR2.
- the first pattern PA1 and the second pattern M2 are moved by the first exposure light EL1 and the second exposure light EL2 while moving the first mask Ml and the second mask M2 in the same scanning direction (for example, + Y direction).
- the movable blind 10 ′ moves in synchronization with the movement of the first and second masks Ml and M2, thereby preventing unnecessary exposure of the substrate P by the first exposure light EL1 and the second exposure light EL2. be able to.
- the first pattern PA1 is formed on the first mask Ml.
- the second pattern PA2 is formed on the second mask M2 formed and different from the first mask Ml.
- the first pattern PA1 and the second pattern PA2 may be formed on one mask.
- the substrate P can be subjected to multiple exposure with the image of the first pattern PA1 and the image of the second pattern PA2 provided on the one mask.
- FIG. 20 is a schematic configuration diagram showing the seventh embodiment.
- a characteristic part of the present embodiment is that the first pattern PA1 and the second exposure light EL2 are moved by the first exposure light EL1 and the second exposure light EL2 while moving the first mask Ml and the second mask M2 in the opposite scanning directions. It is in the point which illuminates each 2nd pattern PA2.
- the difference will be mainly described, and the same or equivalent components as those in the above-described embodiment will be denoted by the same reference numerals, and the description thereof will be simplified or omitted.
- the illumination system IL of the present embodiment is similar to the above-described embodiment in the light source device 1 that emits the exposure light EL and the first light that is emitted after converting the polarization state of the exposure light EL from the light source device 1.
- Optical system 2, blind device 11, and exposure light EL into first exposure light E L1 in the first polarization state (for example, S polarization state) and second exposure light EL2 in the second polarization state (for example, P polarization state)
- a polarization separation optical system 13 for separation.
- the light source device 1 and the first optical system 2 are not shown.
- an imaging optical system (relay optical system) 19 is disposed on the optical path between the separation optical system 13 and the second mask M2.
- the mask stage 60 holds the base member 65, the first stage 62 that can move while holding the first mask Ml on the base member 65, and the second mask M2. And a movable second stage 63 ′.
- the first stage 62 ′ and the second stage 63 ′ can move independently on the base member 65.
- the control device 30 uses the first stage 62 ′ and the second stage 63 to move the first mask Ml and the second mask M2 in the scanning directions (Y-axis directions) opposite to each other, Each of the first pattern PA1 and the second pattern PA2 is illuminated with the exposure light EL1 and the second exposure light EL2.
- the second mask M2 2 Moved in the Y direction by 63 '.
- the first mask Ml is moved in the Y direction.
- the second mask M2 is moved in the + Y direction.
- the control device 30 moves the substrate stage 80 holding the substrate P in a predetermined scanning direction in synchronization with the movement of the first mask Ml and the second mask ⁇ 2 during the exposure of the shot area SH on the substrate ⁇ . Move in the Y-axis direction.
- the image of the blind device 11 that is, the image of the light passing region of the movable blind 10 ′ (images of the respective edges E 1 to E 6) is obtained by the single imaging optical system 19 and the second optical separation system 13 and the second optical system. Invert with the mask M2 once. That is, in the present embodiment, the number of times of image formation (the number of inversions) of the light passing region image (images of the edges E1 to E6) of the movable blind 10 ′ between the separation optical system 13 and the second mask M2 is , Once (odd number).
- the number of times of image formation (the number of inversions) of the light passing area image of the movable blind 10 ′ (images of the edges E1 to E6) between the separation optical system 13 and the first mask Ml is 0 times (even times).
- the first exposure light EL1 in the first polarization state separated by the separation optical system 13 is irradiated to the first mask Ml via the third optical system 14.
- the second exposure light EL2 in the second polarization state separated by the separation optical system 13 is incident on the reflection mirror 16 via the imaging optical system 19, reflected by the reflection mirror 16, and then the fifth exposure light EL2.
- the second mask M2 is irradiated through the optical system 17.
- the optical unit U of the present embodiment is provided on the object plane side of the projection optical system PL (between the projection optical system PL and the mask stage 60), and the first exposure light EL1 from the first mask Ml. And the second exposure light EL2 from the second mask M2, and the second exposure light EL2 between the second mask M2 and the substrate P (second exposure area AR2). It has one imaging optical system 20 provided.
- the imaging optical system 20 is provided between the second mask M2 and the projection optical system PL in the optical path of the second exposure light EL2 between the second mask M2 and the second exposure area AR2. ing.
- the imaging optical system 20 is an equal magnification imaging optical system.
- the imaging optical system 20 has a function of inverting an object image once.
- the first exposure light EL1 from the first mask Ml is reflected by the first reflection mirror 21, and then enters the beam splitter 24.
- the second exposure light EL2 from the second mask M2 is reflected by the second reflecting mirror 22, passes through the imaging optical system 20, is reflected by the third reflecting mirror 23, and then enters the beam splitter 24.
- the first exposure light EL1 and the second exposure light E L2 incident on the beam splitter 24 enter the projection optical system PL via the beam splitter 24.
- the optical unit U of the present embodiment inverts the image of the first pattern PA1 between the first mask Ml and the first exposure area AR1, either the even number or the odd number, and the second mask M2. And the second exposure area AR2, the image of the second pattern PA2 is inverted the other number of times.
- the optical unit U inverts the image of the first pattern PA1 an even number of times between the first mask Ml and the first exposure area AR1
- the optical unit U establishes a contact between the second mask M2 and the second exposure area AR2.
- the second pattern PA2 is between the second mask M2 and the second exposure area AR2. Invert the statue of even number of times.
- one imaging optical system 20 having a function of inverting an object image is provided on the optical path of the second exposure light EL2 between the second mask M2 and the projection optical system PL. It is. Therefore, the image of the second pattern PA2 is inverted once by the imaging optical system 20 between the second mask M2 and the projection optical system PL.
- the projection optical system PL inverts the object image once. Accordingly, the image of the second pattern PA2 is inverted twice (even times) between the second mask M2 and the second exposure area AR2.
- the image of the first pattern PA1 is inverted once (odd times) by the projection optical system PL between the first mask Ml and the first exposure area AR1.
- the control device 30 uses the first stage 62 and the second stage 63 of the mask stage 60 to move the first mask Ml and the second mask M2 in the scanning directions opposite to each other while moving the first mask Ml and the second mask M2.
- the control device 30 also moves the substrate stage 80 holding the substrate P in the scanning direction (Y) in synchronization with the movement of the first mask Ml and the second mask M2 during the exposure of the shot area SH on the substrate P. Move in the axial direction).
- control device 30 moves the movable blind 10 ′ in synchronization with the movement of the first and second masks Ml and M2.
- the separation optical system 13 and the first pattern PA1 are prevented so as to prevent unnecessary exposure of the substrate P by the first exposure light EL1 and the second exposure light EL2 by moving the movable blind 10 ′.
- the number of times of image formation by the optical system arranged between the second pattern PA2 is set. Therefore, the first pattern PA1 and the second pattern PA2 are moved by the first exposure light EL1 and the second exposure light EL2 while moving the first mask Ml and the second mask M2 in the scanning directions opposite to each other.
- one movable blind 10 can be used to eliminate unnecessary first and second portions of the first and second masks Ml and M2 other than the first and second pattern formation areas SA1 and SA2.
- the exposure light EL1 and EL2 can be blocked. Thereby, unnecessary exposure of the substrate P by the first exposure light EL1 and the second exposure light EL2 can be prevented.
- the image of the first pattern PA1 is inverted once by the projection optical system PL between the first mask Ml and the first exposure area AR1, and projected onto the shot area SH on the substrate P.
- the image of the second pattern PA2 is inverted twice and projected onto the shot area SH on the substrate P between the second mask M2 and the second exposure area AR2.
- the shot area SH on the substrate P is composed of an image of the first pattern PA1 formed by the first exposure light EL1 irradiated to the first exposure area AR1 and the second exposure light EL2 irradiated to the second exposure area AR2. Multiple exposure is performed with the image of the second pattern PA2 to be formed.
- the optical unit U of the present embodiment inverts the image of the first pattern PA1 an odd number of times between the first mask Ml and the first exposure area AR1, and performs the second mask M2 and the second exposure.
- the image of the second pattern PA2 is inverted an even number of times between the area AR2. Therefore, while moving the first mask Ml and the second mask M2 in the scanning directions opposite to each other, the first exposure light EL1 and the second exposure light EL2 respectively change the first pattern PA1 and the second pattern PA2. Even when illuminated, images of desired first and second patterns PA1 and PA2 can be projected onto the shot region SH on the substrate P.
- the movable blind 10 As a result of the movement, unnecessary exposure of the substrate P by the first exposure light ELI and the second exposure light EL2 can be prevented.
- a characteristic part of this embodiment is that a liquid immersion area is formed on the substrate P, and the first exposure light EL1 and the second exposure light EL2 are transmitted on the substrate P through the liquid in the immersion area. This is the point where the shot area SH is irradiated.
- the difference will be mainly described, and the same or equivalent components as those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be simplified or omitted.
- FIG. 21 is a schematic configuration diagram showing the eighth embodiment.
- the illumination system IL of this embodiment any one of the above-described first to seventh embodiments can be used.
- the projection optical system PL optical unit U
- any of the above-described embodiments can be used.
- the first mask Ml and the second mask M2 may be moved in the same scanning direction, or may be moved in opposite scanning directions. ,.
- the exposure apparatus EX of the present embodiment has substantially the same exposure wavelength as disclosed in, for example, WO99Z49504 pamphlet, JP2004-289126 (corresponding US Patent Publication No. 2004Z0165159).
- liquid L liquid L
- the substrate P can be provided with a top coat film for protecting the photosensitive material or the base material from the liquid LQ.
- the immersion system 100 includes first and second exposure lights EL1 between the terminal optical element FL and the substrate P, which are closest to the image plane of the projection optical system PL, among the plurality of optical elements of the projection optical system PL.
- a recovery member 1 23 provided near the optical path of EL2 and having a supply port 112 for supplying liquid LQ to the optical path and a recovery port 122 for recovering liquid LQ
- the supply member 113 is connected to a liquid supply device (not shown) capable of delivering liquid LQ, and the liquid supply device can supply clean and temperature-adjusted liquid LQ to the optical path via the supply port 112. .
- the recovery member 123 is connected to a liquid recovery device (not shown) including a vacuum system, and the liquid recovery device recovers the liquid LQ that fills the optical path. It can be recovered through port 122.
- the operation of the liquid supply device and the liquid recovery device is controlled by the control device 30.
- the control device 30 controls the immersion system 100 to perform the liquid supply operation by the liquid supply device and the liquid recovery operation by the liquid recovery device in parallel, so that the bottom surface of the terminal optical element FL of the projection optical system PL Liquid LQ immersion area in a part of the substrate P so that the optical path of the first and second exposure lights EL1 and EL2 between the substrate P and the surface of the substrate P on the substrate stage 80 is filled with the liquid LQ.
- LR is formed locally.
- the immersion area LR is formed larger than the first exposure area AR1 and the second exposure area AR2 on the substrate P. That is, the liquid immersion area LR is formed so as to cover all of the first exposure area AR1 and the second exposure area AR2.
- the exposure apparatus EX forms the liquid LQ immersion region LR on the substrate P held on the substrate stage 80, and the first and second liquid crystal substrates on the substrate P through the liquid LQ in the liquid immersion region LR.
- the substrate P is exposed by irradiating the exposure areas AR1 and AR2 with the first and second exposure lights EL1 and EL2, respectively.
- the exposure apparatus EX moves the shot area SH on the substrate P in the Y-axis direction relative to the first and second exposure areas AR1 and AR2 in a state where the immersion area LR is formed.
- the first exposure area EL1 is formed with the first exposure light EL1 irradiated through the liquid LQ.
- the shot area SH on the substrate P is multiplexed with the image of the first pattern PA1 and the image of the second pattern PA2 formed by the second exposure light EL2 irradiated to the second exposure area AR2 via the liquid LQ. Exposure (double exposure).
- liquid LQ water (pure water) is used as the liquid LQ !, but other liquids may be used as the liquid LQ.
- the exposure light EL is F laser light, this
- the liquid LQ is, for example, perfluorinated polyether.
- Fluorine fluid such as PFPE or fluorine oil may be used.
- the liquid LQ is a projection optical system that is transmissive to the exposure light EL and has a refractive index as high as possible, and is stable to the photoresist coated on the surface of the substrate P (for example, seda Oil) can also be used.
- Liquid LQ a liquid having a higher refractive index than the water with respect to the exposure light EL, for example, a refractive index of about 1.6 to 1.8 may be used.
- the terminal optical element FL may be formed of a material having a refractive index higher than that of quartz or fluorite (for example, 1.6 or more).
- Liquid LQ with a high refractive index includes, for example, CH bond or O such as isopropyl alcohol with a refractive index of about 1.50 and glycerol (glycerin) with a refractive index of about 1.61.
- predetermined liquid with H bond predetermined liquid (organic solvent) such as hexane, heptane, decane, or decalin with a refractive index of about 1.60
- predetermined liquid organic solvent
- the liquid LQ may be a mixture of any two or more of these liquids, or a liquid obtained by adding (mixing) at least one of these liquids to pure water.
- the liquid LQ is pure water H +, Cs +, K + , Cl _, SO 2
- the liquid LQ includes a projection optical system PL with a small light absorption coefficient and a small temperature dependency, and a photosensitive material (or a topcoat film) that is applied to the surface of Z or the substrate P and is reflective. It is preferable that the material is stable with respect to a protective film. Liquid LQ having a refractive index of about 1.6 to 1.8 may be used. A supercritical fluid can be used as the liquid LQ.
- the terminal optical element FL is made of, for example, a fluoride compound such as quartz (silica) or calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, and sodium fluoride. It may be formed of a single crystal material, or may be formed of a material having a refractive index higher than that of quartz or fluorite! (Eg, 1.6 or more). Examples of the material having a refractive index of 1.6 or more include sapphire, diacid germanium, etc. disclosed in International Publication No. 2005/059617, or disclosed in International Publication No. 2005Z059618. Salted calcium (having a refractive index of about 1.75) can be used.
- a fluoride compound such as quartz (silica) or calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, and sodium fluoride. It may be formed of a single crystal material, or may be formed of a material having a refr
- the immersion system 100 is not necessarily provided with a part of the exposure system (for example, a liquid supply device and Z or a member constituting the liquid recovery device) in the exposure apparatus, such as a factory where the exposure apparatus is installed. Equipment may be substituted. Further, the structure of the immersion system 100 is not limited to the above-described structure. For example, European Patent Publication No. 1420298, International Publication No. 2004Z05 5803 Pamphlet, International Publication No. It is described in pamphlets (corresponding US Patent Publication No. 2006Z0231206), international publication No. 2004Z086468 Pamphlet (corresponding US Patent Publication No. 2005Z0280791), patent publication 2004-289126 (corresponding US Patent No. 6,952,253), etc. Things can be used. Regarding the immersion mechanism of the immersion exposure apparatus and its accessories, the disclosure of the above-mentioned US patents or US patent publications is incorporated as part of the description to the extent permitted by the laws of the designated or selected country.
- the optical path on the image plane side of the terminal optical element is used.
- the optical path on the object plane side of the last optical element may be filled with liquid.
- a thin film having lyophilicity and Z or a dissolution preventing function may be formed on a part of the surface of the terminal optical element (including at least the contact surface with the liquid LQ) or all. Quartz has a high affinity with liquid LQ and does not require a dissolution preventing film, but fluorite preferably forms at least a dissolution preventing film.
- the first exposure area AR1 and the second exposure area AR2 are covered with one immersion area LR.
- the first exposure area AR1 and the second exposure area AR2 are separately provided. It may be covered with a liquid immersion area (first and second liquid immersion areas).
- the first and second immersion regions may be formed of different types of liquids (at least the refractive index with respect to the exposure light EL).
- one of the first and second immersion regions is formed of water (pure water), and the other is a liquid having a higher refractive index with respect to the exposure light EL than water (refractive index is about 1.44). It may be formed.
- at least one of the viscosity of the liquid LQ, the transmittance of the exposure light EL, and the temperature is different between the first immersion area and the second immersion area! /
- the illumination system IL uses the separation optical system (polarization separation optical system) 13 to convert the exposure light EL emitted from the light source device 1 into the first polarization state.
- the first exposure light EL1 and the second polarization light EL2 in the second polarization state are separated, but the separation optical system is formed by, for example, a half mirror, and is emitted from the light source device 1 using the separation optical system.
- the exposed exposure light EL may be separated into first exposure light having a first intensity (light quantity) and second exposure light having a second intensity (light quantity).
- the illumination system may illuminate each of the first and second patterns with the first and second exposure lights having the first and second intensities (light quantities).
- the separation optical system is formed by, for example, a dichroic mirror and the light is emitted using the separation optical system.
- the exposure light EL emitted from the source device 1 may be separated into first exposure light having a first wavelength and second exposure light having a second wavelength. That is, the exposure light may be separated according to its polarization state, light intensity (or light intensity), wavelength, or a combination thereof (or exposure light power also includes a first component and a second component having different physical characteristics. May be taken out).
- the projection optical system PL is not limited to that described above, and may be any one of a reduction system, a unity magnification system, and an enlargement system, for example.
- the projection optical system PL has been described as an example of a catadioptric system (catadioptric system) including a reflective optical element and a refractive optical element.
- a refractive system that does not include a reflective optical element or a reflective system that does not include a refractive optical element may be used as the projection optical system PL.
- an optical system having a plurality of reflecting surfaces and forming an intermediate image at least once As a catadioptric system, as disclosed in, for example, WO 2004Z107011 pamphlet (corresponding US Patent Publication No. 2006Z0121364), an optical system having a plurality of reflecting surfaces and forming an intermediate image at least once.
- a so-called in-line catadioptric system having a single optical axis may be used.
- the exposure area irradiated with the exposure light via the projection optical system may be an on-axis area including the optical axis in the field of view of the projection optical system, or is the same as the inline type catadioptric system described above. In the ophaxis system, including the optical axis.
- the force by which the first mask Ml and the second mask M2 are moved synchronously with respect to the substrate P by the main stage 61 mounted on the mask stage 60 is not limited to this, and the first mask Ml and The second mask M2 can be moved independently of the substrate P independently.
- the main stage 61 can be omitted and the first substage 62 and the second substage 63 can be moved synchronously with respect to the substrate P independently or in conjunction with each other.
- the first and second mask stages must be moved in synchronization with the substrate stage, respectively. That is, the positional relationship between the first mask placed on the first mask stage and the shot area of the substrate P, and the positional relationship between the second mask placed on the second mask stage and the shot area of the substrate P are aligned. Each need to be adjusted. By doing so, the image of the first mask pattern PA1 formed in the first exposure area AR1 and the image of the second mask pattern PA2 formed in the second exposure area AR2 are accurately captured. In the overlapped state, multiple shots (double exposure) can be performed on the shot area of the substrate P.
- the image of the first pattern PA1 of the first mask Ml and the image of the second pattern PA2 of the second mask M2 are projected onto the substrate P using one projection optical system PL.
- a plurality of projection optical systems for example, two
- the first pattern PA1 image of the first mask Ml and the second pattern PA2 image of the second mask M2 are used separately. Then, it may be projected onto the substrate P.
- a plurality of projection optical systems are arranged so that adjacent projection areas are displaced by a predetermined amount in the running direction, and ends of adjacent projection areas are overlapped in a direction perpendicular to the scanning direction.
- the present invention can also be applied to a lens-type scanning exposure apparatus. Even in this case, if the single light source device 1 and the separation optical system 13 are used, it is possible to avoid an increase in the size of the exposure apparatus.
- the first exposure area AR1 and the second exposure area AR2 can be simultaneously arranged in one shot area SH.
- the first exposure area AR1 and the second exposure area AR2 can be arbitrarily set.
- the first exposure area AR1 and the second exposure area AR2 are separated in the Y-axis direction, but the first exposure area AR1 and the second exposure area AR2 are one of them.
- the portions may overlap in the Y-axis direction (scanning direction).
- At least one of the size and shape of the first exposure area AR1 and the second exposure area AR2 may be different.
- the width in the X axis direction and the width in the Z or Y axis direction may be different between the first exposure area AR1 and the second exposure area AR2.
- the widths in the X-axis direction are different, only a part of the shot area SH is subjected to multiple (double) exposure.
- each of the first exposure area AR1 and the second exposure area AR2 is exposed.
- Light Force that can continue to be irradiated with EL In at least one exposure area, shot The exposure light may be irradiated only during a part of the period during which the region SH passes. That is, only a part of the shot area SH may be subjected to multiple (double) exposure.
- the force using the first mask Ml and the second mask M2 to form the first pattern and the second pattern instead, an electronic mask (variable molding) that generates a variable pattern.
- an electronic mask for example, a 3D DMD (Deformable Micro-mirror) which is a kind of non-light emitting image display element (also called Spatial Light Modulator (SLM)).
- SLM Spatial Light Modulator
- Micro—mirror device can be used.
- the DMD has a plurality of reflective elements (micromirrors) that are driven based on predetermined electronic data.
- the plurality of reflective elements are arranged in a two-dimensional matrix on the surface of the DMD, and are driven by element units for exposure. Light Reflects and deflects EL.
- the angle of the reflecting surface of each reflecting element is adjusted.
- the operation of the DMD can be controlled by the controller 30.
- the control device 30 drives each DMD reflecting element based on the electronic data (pattern information) corresponding to the first pattern and the second pattern to be formed on the substrate P, and irradiates the illumination system IL.
- the exposure light EL is patterned with a reflective element.
- An exposure apparatus using DMD is disclosed in, for example, Japanese Patent Application Laid-Open No. 8-313842, Japanese Patent Application Laid-Open No. 2004-304135, and US Pat. No. 6,778,257. To the extent permitted by the laws of the designated or selected country, the disclosure of US Pat. No. 6,778,257 is incorporated into the text.
- the position information of the mask stage and the substrate stage is measured using the interferometer system.
- the present invention is not limited to this.
- a scale diffiffraction grating
- the hybrid system includes both the interferometer system and the encoder system, and the measurement result of the encoder system is calibrated (calibrated) using the measurement result of the interferometer system.
- the position of the substrate stage may be controlled by switching between the interferometer system and the encoder system or using both. Yes.
- an ArF excimer laser may be used as a light source device that generates ArF excimer laser light as exposure light EL.
- a solid-state laser light source such as a DFB semiconductor laser or a fiber laser, an optical amplifying unit having a fiber amplifier, etc., and a wavelength converting unit, and the like that output pulsed light having a wavelength of 193 nm.
- a harmonic generator may be used.
- each of the illumination areas described above and the first and second exposure areas are rectangular, but other shapes such as an arc, trapezoid, parallelogram, or rhombus Etc.
- the substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or a mask used in an exposure apparatus. Reticle masters (synthetic quartz, silicon wafers) or film members are used. Further, the shape of the substrate P is not limited to a circle but may be other shapes such as a rectangle.
- the present invention is disclosed in, for example, JP-A-10-163099 and JP-A-10-214783 (corresponding US Patents 6,341,007, 6,400,441, 6,549,269, and 6.590,634), As disclosed in JP 2000-505958 A (corresponding US Pat. No. 5,969.441) and the like, it can be applied to a multi-stage type (for example, a twin stage type) exposure apparatus having a plurality of substrate stages. As far as the national laws of the designated and selected countries allow for multi-stage type exposure equipment, the disclosure of the above US patent is incorporated into the text.
- the substrate is held.
- the present invention can also be applied to an exposure apparatus including a substrate stage and a measurement stage on which a measurement member (for example, a reference member on which a reference mark is formed and Z or various photoelectric sensors) is mounted.
- an exposure apparatus that locally fills the liquid between the projection optical system and the substrate P is adopted.
- the entire surface of a substrate to be exposed as disclosed in JP-A-6-124873, JP-A-10-303114, US Pat. No. 5,825,043, etc.
- the present invention is also applicable to an immersion exposure apparatus that performs exposure in a state immersed in a liquid.
- the exposure apparatus EX includes the projection optical system.
- an optical system that does not form a pattern image for example, a diffractive optical element
- at least one of the first and second exposure areas AR1 and AR2 is formed on the substrate P by forming interference fringes as disclosed in, for example, International Publication No. 2001Z035168. An 'and' space pattern may be exposed.
- the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, It can also be widely applied to exposure equipment for manufacturing micromachines, MEMS, DNA chips, image sensors (CCD), reticles or masks.
- the exposure apparatus EX provides various subsystems including the respective constituent elements recited in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. In order to ensure these various accuracies, before and after this assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, various electrical systems Adjustments are made to achieve electrical accuracy.
- Various subsystem powers The assembly process to the exposure equipment includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
- the exposure apparatus is manufactured at a temperature and It is desirable to perform in a clean room where the degree of cleanliness is controlled.
- a microdevice such as a semiconductor device includes a step 201 for performing a function / performance design of the microdevice, a step 202 for manufacturing a mask (reticle) based on the design step, Step 203 for manufacturing a substrate which is a base material of the device, substrate processing step 204 including an exposure process for multiple exposure of the mask pattern on the substrate by the exposure apparatus EX of the above-described embodiment, and a development process for the exposed substrate, device assembly Manufactured through steps (including processing processes such as dicing process, bonding process, knocking process) 205, inspection step 206, etc.
- the present invention According to the present invention, multiple exposure of a substrate can be realized accurately, highly and efficiently. For this reason, a device having a high-density and complicated circuit pattern used for a liquid crystal display element or a micromachine can be produced with a high throughput. Therefore, the present invention will contribute significantly to the development of the precision equipment industry, including Japan's semiconductor industry.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
露光装置EXは、露光光ELを射出する光源装置1と、光源装置1から射出された露光光ELを第1露光光EL1と第2露光光EL2とに分離する分離光学系13を有し、第1露光光EL1で第1パターンPA1を照明するとともに第2露光光EL2で第2パターンPA2を照明する照明系ILとを備え、第1パターンPA1からの第1露光光EL1と第2パターンPA2からの第2露光光EL2とを基板P上の所定領域に照射することによって、基板P上の所定領域を多重露光する。
Description
明 細 書
露光装置及び露光方法、並びにデバイス製造方法
技術分野
[0001] 本発明は、基板を露光する露光装置及び露光方法、並びにデバイス製造方法に 関する。
背景技術
[0002] フォトリソグラフイエ程で用いられる露光装置において、例えば下記特許文献に開 示されて!/、るような、基板を多重露光する露光装置が知られて 、る。
特許文献 1:特開 2001— 297976号公報
発明の開示
発明が解決しょうとする課題
[0003] 多重露光にぉ 、て、複数のマスクのそれぞれを露光光で照明するために、複数の 光源装置を設けたり、複数の照明系を設ける場合、装置コストが増大したり、露光装 置が大型化する可能性がある。
[0004] 本発明はこのような事情に鑑みてなされたものであって、装置コストの増大や装置 の大型化を抑え、基板を効率良く多重露光できる露光装置及び露光方法、並びに デバイス製造方法を提供することを目的とする。
課題を解決するための手段
[0005] 上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以 下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に 過ぎず、各要素を限定するものではない。
[0006] 本発明の第 1の態様に従えば、基板 (P)を多重露光する露光装置であって、露光 光 (EL)を射出する光源装置(1)と、光源装置(1)から射出された露光光 (EL)を第 1 露光光 (EL1)と第 2露光光 (EL2)とに分離する分離光学系(13)と、第 1露光光 (EL 1)で第 1パターン (PA1)を照明するとともに第 2露光光 (EL2)で第 2パターン (PA2 )を照明する照明系 (IL)とを備え、第 1パターン (PA1)からの第 1露光光 (EL1)と第 2パターン (PA2)からの第 2露光光 (EL2)とを基板 (P)上の所定領域 (SH)に照射
することによって、基板 (P)上の所定領域 (SH)を多重露光する露光装置 (EX)が提 供される。
[0007] 本発明の第 1の態様によれば、装置コストの増大や装置の大型化を抑え、基板を効 率良く多重露光できる。
[0008] 本発明の第 2の態様に従えば、基板 (P)を露光する露光装置 (EX)であって、露光 光 (EL)を発生する光源(1)と、第 1露光光 (EL1)で第 1パターン (PA1)を照明する とともに第 2露光光 (EL2)で第 2パターン (PA2)を照明する照明系 (IL)と、前記基 板 (P)に相対して第 1パターン (PA1)及び第 2パターン (PA2)を移動する移動装置 (61)と、第 1パターン (PA1)、第 2パターン (PA2)及び前記基板の少なくとも一つの 移動と同期して移動可能であり、且つ第 1露光光だけを通過させる第 1領域(10A)と 、第 2露光光だけを通過させる第 2領域(10B)と、第 1露光光と第 2露光光の両方を 通過させる第 3領域(10C)とを有する可動ブラインド(10)と、第 1パターンからの第 1 露光光 (EL1)と第 2パターンからの第 2露光光 (EL2)とを前記基板上の所定領域 (S
H)に照射することによって、前記基板上の所定領域 (SH)を多重露光する露光装置 (EX)が提供される。
[0009] 本発明の第 2の態様の露光装置によれば、単一の可動ブラインドを使用して基板 上の隔離された位置に形成される二つの露光領域を良好に制御して基板の不要な 露光を防止することができる。
[0010] 本発明の第 3の態様に従えば、第 1または第 2態様の露光装置 (EX)を用いて基板 を多重露光すること(S2— S4、 204)と、多重露光した基板を現像すること(204)と、 現像した基板を加工すること (205)を含むデバイス製造方法が提供される。本発明 のデバイス製造方法によれば、基板を効率良く多重露光できる露光装置を用いてデ バイスを製造することができる。
[0011] 本発明の第 4の態様に従えば、基板 (P)を走査方向に移動しつつ基板 (P)上の所 定領域 (SH)を多重露光する露光方法であって、光源装置(1)から射出された露光 光 (EL)を、第 1露光光 (EL1)と第 2露光光 (EL2)とに分離し (S2)、第 1露光光 (EL
I)を第 1露光領域 (AR1)に照射するとともに、走査方向に関して第 1露光領域 (AR 1)とは異なる位置に設定された第 2露光領域 (AR2)に第 2露光光 (EL2)を照射し(
S3)、第 1露光領域 (AR1)及び第 2露光領域 (AR2)に対して基板 (P)上の所定領 域 (SH)を移動することによって、基板 (P)上の所定領域 (SH)を多重露光する(S4) 露光方法が提供される。
[0012] 本発明の第 4の態様によれば、装置コストの増大や装置の大型化を抑え、基板を効 率良く多重露光できる。
[0013] 本発明の第 5の態様に従えば、上記露光方法を用いて基板を多重露光すること (S 2— S4、 204)と、多重露光した基板を現像すること(204)と、現像した基板を加工す ること (205)を含むデバイス製造方法が提供される。
[0014] 本発明の第 5の態様によれば、基板を効率良く多重露光できる露光方法を用いて デバイスを製造することができる。
発明の効果
[0015] 本発明によれば、装置コストの増大や装置の大型化を抑え、基板を効率良く多重 露光することができ、デバイスを良好に製造することができる。
図面の簡単な説明
[0016] [図 1]第 1実施形態に係る露光装置を示す概略構成図である。
[図 2]第 1実施形態に係る照明系の偏光変換素子の一例を説明するための図である
[図 3]第 1実施形態に係る照明系の二次光源の一例を説明するための図である。
[図 4]第 1実施形態に係る照明系の開口絞りの一例を説明するための図である。
[図 5]第 1実施形態に係る照明系の要部を示す図である。
[図 6]第 1実施形態に係る第 1、第 2マスクを示す図である。
[図 7] (A)及び (B)は第 1、第 2マスクに露光光が入射する様子を示す模式図である。
[図 8]照明系の開口絞りの別の例を説明するための図である。
[図 9]マスクステージの一例を示す斜視図である。
[図 10]第 1実施形態に係る露光方法を説明するための図であって、第 1、第 2マスクと 第 1、第 2照明領域との関係を示す模式図である。
[図 11]第 1実施形態に係る露光方法を説明するための図であって、基板と第 1、第 2 露光領域との関係を示す模式図である。
[図 12]第 1実施形態に係る可動ブラインドの一例を説明するための図である。
[図 13]可動ブラインドの作用を説明するための模式図である。
[図 14]第 2実施形態に係る照明系の要部を示す図である。
[図 15]第 2実施形態に係る照明系の開口絞りの一例を説明するための図である。
[図 16]第 3実施形態に係る照明系の要部を示す図である。
[図 17]第 4実施形態に係る露光装置を示す概略構成図である。
[図 18]第 5実施形態に係る露光装置を示す概略構成図である。
[図 19]第 6実施形態に係る露光装置を示す概略構成図である。
[図 20]第 7実施形態に係る露光装置を示す概略構成図である。
[図 21]第 8実施形態に係る露光装置を示す概略構成図である。
[図 22]第 1実施形態の露光装置を用いて基板を露光する方法を示すフローチャート である。
[図 23]マイクロデバイスの製造工程の一例を示すフローチャートである。
符号の説明
[0017] 1…光源装置、 10、 10'…可動ブラインド、 10A…第 1通過領域、 10B…第 2通過 領域、 10C…第 3通過領域、 11· ··ブラインド装置、 13· ··分離光学系、 18· ··変換素 子、 19、 19A、 19B…結像光学系、 20、 20A、 20B…結像光学系、 30· · '制御装置 、 40…中間光学部材、 40A…第 1反射面、 40Β· ··第 2反射面、 41· ··第 1誘導光学 系、 42· ··第 2誘導光学系、 43· ··第 3誘導光学系、 44…凹面ミラー、 60…マスクステ ージ、 61· ··メインステージ、 62· ··第 1サブステージ、 63· ··第 2サブステージ、 70· ··計 測システム、 80…基板ステージ、 100…液浸システム、 AR1…第 1露光領域、 AR2 …第 2露光領域、 EL1…第 1露光光、 EL2…第 2露光光、 EX…露光装置、 FL…終 端光学素子、 IL…照明系、 LQ…液体、 LR…液浸領域、 Μ1· ··第 1マスク、 Μ2· ··第 2マスク、 P…基板、 ΡΑ1· ··第 1パターン、 PA2…第 2パターン、 PL…投影光学系、 S H…ショット領域、 U…光学ユニット
発明を実施するための最良の形態
[0018] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。なお、以下の説明においては、 XYZ直交座標系を設定し、その X
YZ直交座標系を参照しつつ各部材の位置関係について説明する。そして、水平面 内における所定方向を X軸方向、水平面内にお!ヽて X軸方向と直交する方向を Υ軸 方向、 X軸方向及び Υ軸方向のそれぞれに直交する方向(すなわち鉛直方向)を Ζ 軸方向とする。また、 X軸、 Υ軸、及び Ζ軸まわりの回転 (傾斜)方向をそれぞれ、 Θ X 、 0 Υ、及び 0 Ζ方向とする。
[0019] <第 1実施形態 >
第 1実施形態について説明する。図 1は、第 1実施形態に係る露光装置 ΕΧを示す 概略構成図である。図 1において、露光装置 ΕΧは、第 1パターン PA1を有する第 1 マスク Ml、及び第 2パターン PA2を有する第 2マスク M2を保持して移動可能なマス クステージ 60と、基板 Pを保持して移動可能な基板ステージ 80と、各ステージの位置 情報を計測可能な計測システム 70と、露光光 ELを射出する光源装置 1と、光源装置 1から射出された露光光 ELを、その第 1成分としての第 1露光光 EL1と第 2成分とし ての第 2露光光 EL2とに分離する分離光学系 13を有し、第 1露光光 EL1で第 1マス ク Mlの第 1パターン PA1を照明するとともに第 2露光光 EL2で第 2マスク M2の第 2 ノターン PA2を照明する照明系 ILと、第 1露光光 EL1で照明された第 1パターン PA 1の像及び第 2露光光 EL2で照明された第 2パターン PA2の像を基板 P上に投影す る投影光学系 PLと、露光装置 EX全体の動作を制御する制御装置 30と、制御装置 3 0に接続され、露光に関する各種情報を記憶した記憶装置 31とを備えている。
[0020] なお、ここでいう基板はシリコンウェハのような半導体ウェハ等の基材上に感光材 (フ オトレジスト)、保護膜 (トップコート膜)などの各種の膜を塗布したものを含み、マスク は基板上に縮小投影されるデバイスパターンが形成されたレチクルを含む。マスクは 、ガラス板等の透明板部材上にクロム等の遮光膜を用いて所定のパターンが形成さ れたものである。また、本実施形態においては、マスクとして透過型のマスクを用いる 力 反射型のマスクを用いてもよい。また、本実施形態においては、第 1パターン PA 1と第 2パターン PA2とは異なるパターンである。
[0021] また、本実施形態においては、光源装置 1と基板 Pとの間に配置され、照明系 IL及 び投影光学系 PLの光学素子及び光学部材等を含む光学系を適宜、光学ユニット U 、と称する。
[0022] 本実施形態の露光装置 EXは、第 1パターン PA1からの第 1露光光 ELIと第 2バタ ーン PA2からの第 2露光光 EL2とを基板 P上のショット領域に照射することによって、 基板 P上のショット領域を多重露光(二重露光)する。具体的には、露光装置 EXは、 照明系 ILより射出され、第 1パターン PA1及び投影光学系 PLを介して第 1露光領域 AR1に照射される第 1露光光 EL1で形成される第 1パターン PA1の像と、照明系 IL より射出され、第 2パターン PA2及び投影光学系 PLを介して第 2露光領域 AR2に照 射される第 2露光光 EL2で形成される第 2パターン PA2の像とで、基板 P上のショット 領域を多重露光する。
[0023] また、本実施形態の露光装置 EXは、第 1マスク Ml及び第 2マスク M2と基板 Pとを 所定の走査方向に同期移動しつつ、第 1マスク Mlの第 1パターン PA1の像及び第 2 マスク M2の第 2パターン PA2の像を基板 P上に投影する走査型露光装置 (所謂スキ ヤニングステツノ )である。本実施形態においては、第 1マスク Ml及び第 2マスク M2 と基板 Pとの走査方向(同期移動方向)を Y軸方向とする。
[0024] そして、本実施形態の露光装置 EXは、第 1露光領域 AR1及び第 2露光領域 AR2 のそれぞれに照射される第 1露光光 EL1及び第 2露光光 EL2に対して基板 Pを Y軸 方向に移動することにより、基板 P上のショット領域を多重露光する。基板ステージ 80 は、基板 P上のショット領域を、第 1露光領域 AR1及び第 2露光領域 AR2に対して Y 軸方向に移動可能であり、制御装置 30は、第 1露光領域 AR1及び第 2露光領域 AR 2に対して、基板ステージ 80を用いて基板 P上のショット領域を Y軸方向に移動しつ つ、第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれに第 1露光光 EL1及び第 2露光光 EL2を照射することにより、基板 P上のショット領域を多重露光(二重露光) する。
[0025] まず、光源装置 1について説明する。光源装置 1は、基板 Pを露光するための露光 光 ELを射出するものである。光源装置 1から射出される露光光 ELとしては、例えば 水銀ランプ力も射出される輝線 (g線、 h線、 i線)及び KrFエキシマレーザ光 (波長 24 8nm)等の遠紫外光(DUV光)、 ArFエキシマレーザ光(波長 193nm)及び Fレー
2 ザ光 (波長 157nm)等の真空紫外光 (VUV光)などが用いられる。本実施形態にお いては、光源装置 1には、 ArFエキシマレーザ装置が用いられ、露光光 ELには ArF
エキシマレーザ光が用いられる。また、本実施形態においては、露光装置 EXは、光 源装置 1を 1つ備えている。すなわち、第 1露光領域 AR1及び第 2露光領域 AR2を 照明するために単一の光源を用いて 、る。
[0026] 次に、照明系 ILについて説明する。照明系 ILは、光源装置 1より射出された露光光
(レーザビーム) ELを、分離光学系 13を用いて第 1露光光 EL1と第 2露光光 EL2と に分離し、マスクステージ 60に保持されて!、る第 1マスク Mlの第 1パターン PA1を 第 1露光光 EL1で照明するとともに、第 2マスク M2の第 2パターン PA2を第 2露光光 EL2で照明するものである。本実施形態の照明系 ILは、例えば、国際公開第 2005 Z076045号パンフレットに開示されているような、ビームエキスパンダ、偏光状態切 換光学系 3、回折光学素子 4、ァフォーカル光学系(無焦点光学系)、ズーム光学系 、偏光変換素子 5、オプティカルインテグレータ 6、及びコンデンサー光学系等を含む 第 1光学系 2と、第 1マスク Ml上での第 1露光光 EL1による第 1照明領域 IA1、及び 第 2マスク M2上での第 2露光光 EL2による第 2照明領域 IA2を規定する固定ブライ ンド 9、及び第 1、第 2露光光 EL1、 EL2による基板 Pの不要な露光を防止するため の可動ブラインド 10を含むブラインド装置 11と、光源装置 1から射出され、第 1光学 系 2及びブラインド装置 11を通過した露光光 ELを第 1露光光 EL 1と第 2露光光 EL2 とに分離する分離光学系 13とを備えている。すなわち、本実施形態の露光装置の照 明系 ILは、分離光学系 13を備えることにより、第 1マスク Mlの第 1パターン PA1と、 第 2マスク M2の第 2パターン PA2とを照明するための、(共通の)単一の照明系とし て用いられる。なお、分離光学系は照明系 IL中に組み込む必要はなぐ照明系とは 別に設けてもよい。
[0027] 偏光状態切換光学系 3は、回折光学素子 4へ入射する露光光 ELを、偏光状態と非 偏光状態とに切り換えることができる。また、偏光状態切換光学系 3は、偏光状態の 場合には、直線偏光状態と円偏光状態とに切り換えることができる。また、偏光状態 切換光学系 3は、直線偏光状態の場合には、互いに直交する偏光状態間(S偏光と P偏光との間)で切り換えることができる。
[0028] 回折光学素子 4は、入射された露光光 ELを所望の角度に回折する機能を有する。
回折光学素子 4は、光源装置 1からの露光光 ELにより回折光を生成し、その回折光
で所定面を所定の照明領域で照明可能である。回折光学素子 4は、所定の基材上 に形成された露光光 ELの波長程度のピッチを有する段差(凹凸構造)を有しており、 ピッチ、凹凸構造の凹部の深さ(凸部の高さ)、及び凹部の内側面(凸部の外側面) が向く方向等を含む構造条件を適宜調整することにより、この回折光学素子 4による 照明領域の大きさ及び形状を設定することができる。例えば、回折光学素子 4は、光 源装置 1からの露光光 ELにより回折光を生成し、その生成した回折光で、ァフォー力 ル光学系、ズーム光学系、及び偏光変換素子 5等を介して、マイクロフライアイレンズ 等を含むオプティカルインテグレータ 6の光入射面を、所定の大きさ及び形状を有す る照明領域で照明可能である。本実施形態においては、オプティカルインテグレータ 6の光入射面上には、照明系 ILの光軸を中心とした輪帯状の照明領域が形成され、 オプティカルインテグレータ 6の光射出面 (後側焦点面)には、照明系 ILの光軸を中 心とした輪帯状の二次光源 7が形成される。また、制御装置 30は、ズーム光学系の 焦点距離を調整することにより、オプティカルインテグレータ 6の光入射面上における 照明領域の大きさ及び形状、ひいては二次光源 7の大きさ及び形状を調整可能であ る。
[0029] 偏光変換素子 5は、露光光 ELの偏光状態を変換するものである。本実施形態にお いては、偏光変換素子 5は、オプティカルインテグレータ 6の直前 (光入射面近傍)に 配置されている。偏光変換素子 5は、オプティカルインテグレータ 6の光入射面に入 射する露光光 ELの偏光状態(ひ 、てはマスク M及び基板 Pに照射される露光光 EL の偏光状態)を調整可能である。
[0030] 図 2は、偏光変換素子 5の一例を示す図である。偏光変換素子 5は、照明系 ILの光 軸 AXを中心とした輪帯状の有効領域を有している。輪帯状の有効領域は、例えば 水晶等、旋光性を有する光学材料によって形成されている。輪帯状に形成された有 効領域の光学材料は、その周方向に関して変化する厚みの分布を有している。ここ で、光学材料の厚みとは、光学材料の光透過方向(Y軸方向)に関する長さである。
[0031] 本実施形態においては、偏光変換素子 5は、輪帯状の有効領域に配置され、旋光 性を有する光学材料力 なる複数の基本素子 5A〜5Dを有して 、る。本実施形態に おいては、偏光変換素子 5は、互いに異なる特性を有する第 1〜第 4基本素子 5A〜
5Dを 2つずつ備えており、全部で 8つの基本素子 5A〜5Dを備えている。第 1〜第 4 基本素子 5A〜5Dのそれぞれは、図 2中、 XZ方向に関して扇状に形成され、輪帯状 の有効領域をほぼ等分割するように配置されている。また、同じ特性を有する 2つの 基本素子 5A、 5B、 5C、 5Dどうしが、光軸 AXを挟んで対向するように配置されてい る。また、第 1〜第 4基本素子 5A〜5Dは、その結晶光学軸と光軸 AXとがほぼ平行 となるように、すなわち結晶光学軸と入射光の進行方向とがほぼ一致するように配置 されている。
[0032] 上述のように、本実施形態においては、オプティカルインテグレータ 6の光入射面に は、光軸 AXを中心とした露光光 ELによる輪帯状の照明領域が形成される。すなわ ち、オプティカルインテグレータ 6の光入射面には、光軸 AXを中心としたほぼ輪帯状 の断面を有する露光光 ELが入射するように設定されている。したがって、ォプティカ ルインテグレータ 6の直前に配置された偏光変換素子 5の輪帯状の有効領域には、 光軸 AXを中心としたほぼ輪帯状の断面を有する露光光 ELが入射する。
[0033] 偏光変換素子 5の輪帯状の有効領域に配置された第 1〜第 4基本素子 5A〜5Dに 入射した露光光 ELは、各基本素子 5A〜5Dの旋光性により、その偏光状態を変換 され、各基本素子 5A〜5Dより射出する。例えば、所定方向の直線偏光を主成分と する露光光 ELが各基本素子 5A〜5Dに入射した場合、偏光変換素子 5の各基本素 子 5A〜5Dは、入射された露光光 ELの偏光方向を、光軸 AX周り(図中、 θ Y方向) に所定の回転角度だけ回転するように露光光 ELの偏光状態を変換し、その偏光状 態が変換された露光光 ELを射出する。偏光方向の回転角度は、各基本素子 5A〜5 Dの旋光能及び厚み等に応じて定められる。各基本素子 5A〜5Dの旋光能及び厚 み等を設定することにより、偏光変換素子 5は、入射される直線偏光状態の露光光 E Lの偏光方向を所定の回転角度だけ回転し、その偏光方向が変換された偏光状態 の露光光 ELを射出する。
[0034] 本実施形態においては、第 1〜第 4基本素子 5A〜5Dの光透過方向(Y軸方向)に 関するそれぞれの厚みは互いに異なっており、各基本素子 5A〜5Dは、入射された 露光光 ELの偏光方向を互いに異なる回転角度で回転させる。各基本素子 5A〜5D により偏光状態 (偏光方向)を変換された露光光 ELは、オプティカルインテグレータ 6
の光入射面よりオプティカルインテグレータ 6に入射し、オプティカルインテグレータ 6 の光射出面に、光軸 AXを中心とした輪帯状の二次光源 7を形成する。
[0035] 図 3は、偏光変換素子 5及びオプティカルインテグレータ 6を通過した露光光 EL よってオプティカルインテグレータ 6の光射出面に形成された二次光源 7を模式的に 示す図である。本実施形態においては、第 1〜第 4基本素子 5A〜5Dのそれぞれに 、図 2及び図 3中、 Z軸方向の直線偏光を主成分とする露光光 ELが入射する。
[0036] 図 2及び図 3において、第 1基本素子 5Aは、入射した露光光 ELの偏光方向を Z軸 に対して θ Y方向に + 90度回転させるように設けられている。したがって、第 1基本 素子 5Aからは、 Z軸に対して θ Y方向に + 90度回転させた方向を偏光方向とする 直線偏光状態の露光光 ELが射出される。また、二次光源 7のうち、第 1基本素子 5A の旋光作用を受けた露光光 ELによって形成される第 1円弧状領域 7Aからは、 Z軸 に対して θ Y方向に + 90度回転させた方向を偏光方向とする直線偏光状態の露光 光 ELが射出される。
[0037] 第 2基本素子 5Bは、入射した露光光 ELの偏光方向を Z軸に対して θ Y方向に + 1 35度回転させるように設けられている。したがって、第 2基本素子 5Bからは、 Z軸に 対して θ Y方向に + 135度回転させた方向を偏光方向とする直線偏光状態の露光 光 ELが射出される。また、二次光源 7のうち、第 2基本素子 5Bの旋光作用を受けた 露光光 ELによって形成される第 2円弧状領域 7Bからは、 Z軸に対して θ Y方向に + 135度回転させた方向を偏光方向とする直線偏光状態の露光光 ELが射出される。
[0038] 第 3基本素子 5Cは、入射した露光光 ELの偏光方向を Z軸に対して θ Y方向に + 1 80度回転させるように設けられている。したがって、第 3基本素子 5Cからは、 Z軸と平 行な方向を偏光方向とする直線偏光状態の露光光 ELが射出される。また、二次光 源 7のうち、第 3基本素子 5Cの旋光作用を受けた露光光 ELによって形成される第 3 円弧状領域 7Cからは、 Z軸と平行な方向を偏光方向とする直線偏光状態の露光光 ELが射出される。
[0039] 第 4基本素子 5Dは、入射した露光光 ELの偏光方向を Z軸に対して θ Y方向に +4 5度回転させるように設けられている。したがって、第 4基本素子 5Dからは、 Z軸に対 して θ Y方向に +45度回転させた方向を偏光方向とする直線偏光状態の露光光 E
Lが射出される。また、二次光源 7のうち、第 4基本素子 5Dの旋光作用を受けた露光 光 ELによって形成される第 4円弧状領域 7Dにおいては、 Z軸に対して +45度回転 させた方向を偏光方向とする直線偏光状態の露光光 ELが射出される。
[0040] このように、本実施形態においては、偏光変換素子 5は、ほぼ単一方向を偏光方向 とする直線偏光状態の露光光 ELを、その偏光変換素子 5の周方向を偏光方向とす る直線偏光状態の露光光 ELに変換する。以下の説明においては、偏光変換素子 5 の周方向を偏光方向とする直線偏光状態を適宜、周方向偏光状態と称する。
[0041] これにより、オプティカルインテグレータ 6の光射出面に形成された輪帯状の二次光 源 7から射出される露光光 ELは、周方向偏光状態となる。
[0042] 本実施形態にぉ 、ては、オプティカルインテグレータ 6の光射出面近傍、すなわち 二次光源 7の直後には、所定の開口を有する開口絞り 8が配置される。
[0043] 図 4は、開口絞り 8の一例を示す図である。図 4において、開口絞り 8は、露光光 EL を通過可能な開口 8A、 8Cを有している。開口絞り 8は、二次光源 7のうち、第 1基本 素子 5Aの旋光作用を受けた露光光 ELによって形成される第 1円弧状領域 7Aから 射出される露光光 ELを通過させるための 2つの第 1開口 8A、 8Aと、第 3基本素子 5 Cの旋光作用を受けた露光光 ELによって形成される第 3円弧状領域 7Cから射出さ れる露光光 ELを通過させるための 2つの第 2開口 8C、 8Cと、を有している。第 1開口 8A、 8Aは、光軸 AXを挟んで対向する位置に設けられ、第 2開口 8C、 8Cも、光軸 A Xを挟んで対向する位置に設けられている。本実施形態においては、第 1開口 8A、 8 Aは、図 4中、光軸 AXに対して +Z側及び Z側のそれぞれに設けられ、第 2開口 8 C、 8Cは、光軸 AXに対して +X側及び— X側のそれぞれに設けられている。
[0044] 開口絞り 8は、第 1開口 8A、 8Aを介して、 Z軸に対して 0 Y方向に + 90度回転させ た方向を偏光方向とする直線偏光状態の露光光 ELを通過させ、第 2開口 8C、 8Cを 介して、 Z軸と平行な方向を偏光方向とする直線偏光状態の露光光 ELを通過させる 。すなわち、第 1開口 8Aは、図 4中、 X軸方向の直線偏光を主成分とする露光光 EL を通過させ、第 2開口 8Cは、 X軸方向と直交する Z軸方向の直線偏光を主成分とす る露光光 ELを通過させる。本実施形態においては、第 1開口 8Aは、直線偏光であ る S偏光状態の露光光 ELを通過させ、第 2開口 8Cは、 P偏光状態の露光光 ELを通
過させる。したがって、光源装置 1から射出され、開口絞り 8を通過する露光光 ELは、 S偏光成分と P偏光成分とを主に含む。
[0045] ここで、 S偏光 (TE偏光)とは、入射面に対して垂直な方向に偏光方向を有する直 線偏光 (入射面に垂直な方向に電気ベクトルが振動して ヽる偏光)である。ただし、 入射面とは、光が媒質の境界面 (被照射面:マスクの表面及び基板の表面の少なくと も一方)に達したときに、その点での境界面の法線と光の入射方向とを含む面として 定義される。 P偏光 (TM偏光)とは、上述のように定義される入射面に対して平行な 方向に偏光方向を有する直線偏光 (入射面に平行な方向に電気べクトルが振動して いる偏光)である。
[0046] オプティカルインテグレータ 6の光射出面に形成された二次光源 7からの露光光 EL は、開口絞り 8の開口 8A、 8Cを通過した後、コンデンサー光学系に入射される。二 次光源 7は、コンデンサー光学系等を介して、ブラインド装置 11を重畳的に照明する
[0047] ブラインド装置 11は、第 1マスク Ml上での第 1露光光 EL1による第 1照明領域 IA1 、及び第 2マスク M2上での第 2露光光 EL2による第 2照明領域 IA2を規定するため の開口(光通過領域)を有する固定ブラインド 9と、第 1、第 2マスク Ml、 M2のうち第 1、第 2パターン PA1、 PA2が形成された第 1、第 2パターン形成領域以外の部分に 対する不要な第 1、第 2露光光 EL1、 EL2の照射を遮るための遮光部材として機能 する可動ブラインド 10とを備えている。可動ブラインド 10は、露光光 ELを通過可能な 光通過領域を有しており、光源装置 1と分離光学系 13との間において、第 1パターン PA1を有する第 1マスク Ml、第 2パターン PA2を有する第 2マスク M2、及び基板 P の少なくとも一つの移動と同期して移動可能に設けられている。可動ブラインド 10は 、固定ブラインド 9を通過することによって制限された露光光 ELを、第 1マスク Ml、第 2マスク M2または基板 Pの移動時の所定タイミングでさらに制限する。これにより、第 1、第 2マスク Ml、 M2の第 1、第 2パターン形成領域以外の部分に対する不要な第 1、第 2露光光 EL1、 EL2の照射を遮り、その結果、第 1露光光 EL1及び第 2露光光 EL2による基板 Pの不要な露光を防止することができる。固定ブラインド 9及び可動ブ ラインド 10を含むブラインド装置 11の光通過領域を通過した S偏光成分と P偏光成
分とを主に含む露光光 ELは、第 2光学系 12を介して、分離光学系 13に入射する。
[0048] 図 5は、分離光学系 13近傍を示す図である。分離光学系 13は、露光光 ELを S偏 光状態の第 1露光光 EL1と P偏光状態の第 2露光光 EL2とに分離する偏光分離光 学系(偏光ビームスプリッタ)を含む。上述のように、光源装置 1から射出され、開口絞 り 8を通過する露光光 ELは、 S偏光成分と P偏光成分とを主に含み、開口絞り 8の開 口 8A、 8Cを通過し、ブラインド装置 11の光通過領域を通過した露光光 ELは、分離 光学系 13によって、 S偏光状態の第 1露光光 EL1と P偏光状態の第 2露光光 EL2と に分離される。すなわち、本実施形態の分離光学系 13は、光源装置 1から射出され 、第 1光学系 2、及びブラインド装置 11等を通過した露光光 ELを、 S偏光状態の第 1 露光光 EL1と P偏光状態の第 2露光光 EL2とに分離する。
[0049] 本実施形態においては、分離光学系 13は、 S偏光状態の第 1露光光 EL1を反射し 、 P偏光状態の第 2露光光 EL2を通過させる。分離光学系 13で分離された S偏光状 態の第 1露光光 EL1は、第 3光学系 14に供給され、その第 3光学系 14を介して第 1 マスク Ml上に照射される。また、分離光学系 13で分離された P偏光状態の第 2露光 光 EL2は、第 4光学系 15に供給され、その第 4光学系 15を介して反射ミラー 16に供 給され、その反射ミラー 16で反射した後、第 5光学系 17を介して第 2マスク M2上に 照射される。このように、照明系 ILは、分離光学系 13で分離した S偏光状態の第 1露 光光 EL1で第 1マスク Mlの第 1パターン PA1を照明するとともに、 P偏光状態の第 2 露光光 EL2で第 2マスク M2の第 2パターン PA2を照明する。
[0050] 図 6は、マスクステージ 60に保持された第 1マスク Ml及び第 2マスク M2を示す平 面図である。なお、図 6においては、マスクステージの図示は省略してある。図 6に示 すように、本実施形態においては、第 1マスク Mlの第 1パターン PA1は、 X軸方向を 長手方向とする複数のライン 'アンド'スペースパターンを主成分とし、第 2マスク M2 の第 2パターン PA2は、 Y軸方向を長手方向とする複数のライン 'アンド'スペースパ ターンを主成分とする。すなわち、第 1パターン PA1は、 X軸方向を長手方向とするラ インパターンを Y軸方向に周期的に並べたパターンを多く含み、第 2パターン PA2は 、Y軸方向を長手方向とするラインパターンを X軸方向に周期的に並べたパターンを 多く含む。
[0051] 第 1マスク Ml上に照射される第 1露光光 ELIは、所定方向の直線偏光(S偏光)を 主成分とする。本実施形態では、第 1マスク Ml上における第 1露光光 EL1の偏光方 向と X軸とがほぼ平行となるように設定されている。また、第 2マスク M2上に照射され る第 2露光光 EL2は、所定方向に直交する方向の直線偏光 (P偏光)を主成分とする 。本実施形態では、第 2マスク M2上における第 2露光光 EL2の偏光方向と Y軸とが ほぼ平行となるように設定されて!、る。
[0052] すなわち、本実施形態においては、第 1パターン PA1に含まれるライン 'アンド'ス ペースパターンのラインパターンの長手方向と、 S偏光を主成分とする第 1露光光 EL 1の偏光方向とはほぼ平行であり、第 2パターン PA2に含まれるライン 'アンド'スぺー スパターンのラインパターンの長手方向と、 P偏光を主成分とする第 2露光光 EL2の 偏光方向とはほぼ平行である。
[0053] このように、本実施形態においては、照明系 ILは、第 1、第 2マスク Ml、 M2のライ ン'アンド'スペースパターンのラインパターンの長手方向に合わせた直線偏光照明 を行う。第 1マスク Mlの第 1パターン PA1からは、 S偏光成分、すなわち第 1パターン PA1のラインパターンの長手方向に沿った偏光方向成分の回折光が多く射出され、 第 2マスク M2の第 2パターン PA2からは、 P偏光成分、すなわち第 2パターン PA2の ラインパターンの長手方向に沿った偏光方向成分の回折光が多く射出される。
[0054] また、第 1マスク Ml上には、開口絞り 8のうち、光軸 AXに対して互いに対向する位 置に配置された第 1開口 8A、 8Aのそれぞれを通過した第 1露光光 ELIが照射され 、第 1マスク Mlの第 1パターン PA1は、 S偏光状態の第 1露光光 EL1によってダイポ ール照明(二極照明)された状態となる。同様に、第 2マスク M2上には、開口絞り 8の うち、光軸 AXに対して互いに対向する位置に配置された第 2開口 8C、 8Cのそれぞ れを通過した第 2露光光 EL2が照射され、第 2マスク M2の第 2パターン PA2は、 P偏 光状態の第 2露光光 EL2によってダイポール照明(二極照明)された状態となる。
[0055] すなわち、本実施形態においては、図 7 (A)の模式図に示すように、照明系 ILは、 直線偏光状態(S偏光状態)の二つの光束 (第 1露光光 EL1)を用いて、第 1マスク M 1のライン 'アンド'スペースパターンのラインパターンの長手方向に合わせた斜入射 照明(ダイポール照明)を行うとともに、図 7 (B)の模式図に示すように、直線偏光状
態 (P偏光状態)の二つの光束 (第 2露光光 EL2)を用いて、第 2マスク M2のライン · アンド'スペースパターンのラインパターンの長手方向に合わせた斜入射照明(ダイ ポール照明)を行う。図 7 (A)に示すように、第 1マスク Mlの第 1パターン PA1には、 第 1マスク Mlの表面に対して θ X方向に傾斜する二つの方向から、ラインパターン の長手方向に沿う方向 (X軸方向)を偏光方向とする第 1露光光 EL1が入射する。ま た、図 7 (B)に示すように、第 2マスク M2の第 2パターン PA2には、第 2マスク M2の 表面に対して Θ Y方向に傾斜する二つの方向から、ラインパターンの長手方向に沿 う方向 (Y軸方向)を偏光方向とする第 2露光光 EL2が入射する。
なお、ここでは、照明系 ILは、回折光学素子 4及び偏光変換素子 5等を用いて、ォ プティカルインテグレータ 6の光射出面に、周方向偏光状態の露光光 ELを射出する 輪帯状の二次光源 7を形成している。そして、照明系 ILは、二次光源 7から射出され る露光光 ELを、開口絞り 8により S偏光成分と P偏光成分とを主に含む露光光 ELに 変換した後、分離光学系 13に入射させ、第 1マスク Mlを S偏光状態の第 1露光光 E L1によりダイポール照明(二極照明)するとともに、第 2マスク M2を P偏光状態の第 2 露光光 EL2によりダイポール照明(二極照明)している。ここで、回折光学素子を、例 えば、クロスポール照明(四極照明)用の回折光学素子とし、そのクロスポール照明 用の回折光学素子を露光光 ELの光路上に配置することによって、開口絞りを設ける ことなぐ第 1マスク Mlを S偏光状態の第 1露光光 EL1によりダイポール照明するとと もに、第 2マスク M2を P偏光状態の第 2露光光 EL2によりダイポール照明することが できる。露光光 ELの光路上にクロスポール照明用の回折光学素子を設けることによ り、オプティカルインテグレータ 6の光入射面上には四極状の照明領域が形成され、 オプティカルインテグレータ 6の光射出面には四極状の二次光源が形成される。そし て、例えばオプティカルインテグレータ 6の光入射面近傍のうち、四極状の照明領域 に対応する位置に、偏光変換素子として、図 2を参照して説明したような基本素子 5 A、 5Cを設けることにより、図 8の模式図に示すように、オプティカルインテグレータ 6 の光射出面側には、四極状の二次光源 7が形成される。この場合、第 1円弧状領域 7 A力 射出される露光光 ELは、 S偏光状態の露光光 ELであり、第 3円弧状領域 7C から射出される露光光 ELは、 P偏光状態の露光光 ELである。このような構成とするこ
とにより、開口絞りを省略しても、分離光学系 13には、 S偏光成分と P偏光成分とを主 に含む露光光 ELが到達し、第 1マスク Mlの第 1パターン PA1は、 S偏光状態の第 1 露光光 EL1によりダイポール照明されるとともに、第 2マスク M2の第 2パターン PA2 は、 P偏光状態の第 2露光光 EL2によりダイポール照明される。
[0057] 次に、マスクステージ 60について説明する。マスクステージ 60は、第 1パターン PA 1を有する第 1マスク M 1を第 1露光光 EL1に対して Y軸方向に移動可能であり、第 2 パターン PA2を有する第 2マスク M2を第 2露光光 EL2に対して Y軸方向に移動可能 である。マスクステージ 60の位置情報は、計測システム 70により計測される。
[0058] 図 9は、本実施形態に係るマスクステージ 60及び計測システム 70を示す斜視図で ある。マスクステージ 60は、メインステージ 61と、メインステージ 61上で第 1マスク Ml を保持した状態で移動可能な第 1サブステージ 62と、メインステージ 61上で第 2マス ク M2を保持した状態で移動可能な第 2サブステージ 63とを備えている。
[0059] メインステージ 61は、第 1マスク Ml及び第 2マスク M2を Y軸方向に移動するため のものである。メインステージ 61は、第 1サブステージ 62を介して第 1マスク Mlを保 持し、第 2サブステージ 63を介して第 2マスク M2を保持する。メインステージ 61は、 第 1サブステージ 62及び第 2サブステージ 63を介して第 1マスク Ml及び第 2マスク M2を保持して同一の走査方向(Y軸方向)に移動可能である。
[0060] メインステージ 61は、基板 P上の 1つのショット領域の走査露光中に、第 1マスク Ml の第 1パターン PA1全体が第 1照明領域 IA1を通過するとともに、第 2マスク M2の第 2パターン PA2全体が第 2照明領域 IA2を通過するように、 Y軸方向に比較的大きな ストロークを有している。マスクステージ 60は、メインステージ 61を Y軸方向に移動す るためのメインステージ駆動装置 64を備えている。メインステージ駆動装置 64は、例 えばリニアモータ等のァクチユエータを含む。本実施形態においては、メインステー ジ駆動装置 64は、メインステージ 61の X軸方向両側に設けられた可動子 64Aと、可 動子 64Aに対応して設けられた固定子 64Bとを備えている。制御装置 30は、メイン ステージ駆動装置 64を駆動することにより、メインステージ 61を Y軸方向に移動可能 である。メインステージ 61が Y軸方向に移動することにより、メインステージ 61上の第 1、第 2サブステージ 62、 63も、メインステージ 61と一緒に移動する。したがって、メイ
ンステージ 61が Y軸方向に移動することにより、第 1、第 2サブステージ 62、 63に保 持された第 1、第 2マスク Ml、 Μ2も、メインステージ 61と一緒に移動する。
[0061] 第 1サブステージ 62は、メインステージ 61上で、メインステージ 61に対して X軸、 Υ 軸、及び θ Ζ方向に移動可能に設けられ、不図示の第 1サブステージ駆動装置によ り、メインステージ 61に対して第 1マスク Mlを微小移動可能である。同様に、第 2サ ブステージ 63は、メインステージ 61上で、メインステージ 61に対して X軸、 Y軸、及び θ Z方向に移動可能に設けられ、不図示の第 2サブステージ駆動装置により、メイン ステージ 61に対して第 2マスク M2を微小移動可能である。なお、第 1、第 2サブステ ージ 62、 63は、例えば特開平 8— 130179号公報(対応米国特許第 6,721,034号) に開示される構造を採用し得る。
[0062] 計測システム 70は、メインステージ 61、第 1サブステージ 62、及び第 2サブステー ジ 63の位置情報をそれぞれ計測可能である。計測システム 70は、メインステージ 61 に設けられた反射部材 71、第 1サブステージ 62に設けられた反射部材 72、及び第 2 サブステージ 63に設けられた反射部材 73と、反射部材 71、 72、 73の反射面に計測 ビームを投射するとともに、その反射光を受光してメインステージ 61、第 1サブステー ジ 62、及び第 2サブステージ 63のそれぞれの位置情報を取得するレーザ干渉計 74 とを含む。本実施形態においては、レーザ干渉計 74は、マスクステージ 60の +Y側 に配置されている。反射部材 71は、例えばコーナーキューブミラー(レトロリフレクタ) を含み、メインステージ 61上におけるレーザ干渉計 74からの計測ビームが照射可能 な所定位置に 2つ設けられている。反射部材 72も、例えばコーナーキューブミラー( レトロリフレクタ)を含み、第 1サブステージ 62上におけるレーザ干渉計 74からの計測 ビームが照射可能な所定位置に 2つ設けられている。反射部材 73も、例えばコーナ 一キューブミラー(レトロリフレクタ)を含み、第 2サブステージ 63上におけるレーザ干 渉計 74からの計測ビームが照射可能な所定位置に 2つ設けられて 、る。計測システ ム 70は、レーザ干渉計 74、反射部材 71、 72、 73を用いて、メインステージ 61、第 1 サブステージ 62、及び第 2サブステージ 63の Y軸方向及び θ Z方向の位置情報を 計測可能である。また、不図示ではあるが、計測システム 70は、メインステージ 61、 第 1サブステージ 62、及び第 2サブステージ 63の X軸方向の位置情報を計測するた
めの反射部材 (反射面)及びレーザ干渉計も備えて 、る。
[0063] 計測システム 70は、レーザ干渉計 74、及びメインステージ 61に設けられた反射部 材 71などを用いて、メインステージ 61の X軸、 Y軸、及び θ Z方向に関する位置情報 を計測する。また、計測システム 70は、レーザ干渉計 74、及び第 1、第 2サブステー ジ 62、 63に設けられた反射部材 72、 73を用いて、第 1、第 2サブステージ 62、 63の X軸、 Y軸、及び θ Z方向に関する位置情報を計測する。制御装置 30は、計測シス テム 70の計測結果に基づいて、メインステージ 61、第 1サブステージ 62、及び第 2サ ブステージ 63を適宜駆動し、第 1、第 2サブステージ 62、 63に保持されている第 1、 第 2マスク Ml、 M2の位置制御を行う。また、制御装置 30は、メインステージ 61に対 して第 1サブステージ 62及び第 2サブステージ 63の少なくとも一方を移動することに よって、第 1マスク Mlと第 2マスク M2との相対的な位置関係を調整することができる
[0064] 次に、図 1を参照しながら投影光学系 PLについて説明する。投影光学系 PLは、第 1露光光 EL1で照明された第 1マスク Mlの第 1パターン PA1の像、及び第 2露光光 EL2で照明された第 2マスク M2の第 2パターン PA2の像を、所定の投影倍率で基 板 P上に投影する。本実施形態の投影光学系 PLは、その投影倍率が例えば 1Z4、 1/5, 1Z8等の縮小系である。また、本実施形態の投影光学系 PLは、倒立像を形 成する。
[0065] 図 1に示すように、本実施形態の投影光学系 PLは、基板 Pの表面が対向して配置 され且つ投影光学系 PLの像面に最も近く配置された 1つの終端光学素子 FLを含む 複数の光学素子を有し、その 1つの終端光学素子 FLを介して、第 1露光領域 AR1 及び第 2露光領域 AR2に第 1露光光 EL1及び第 2露光光 EL2を照射する。
[0066] 投影光学系 PLは、第 1露光領域 AR1及び第 2露光領域 AR2と光学的に共役な位 置近傍に配置され、第 1マスク Mlの第 1パターン PA1からの第 1露光光 EL1と、第 2 マスク M2の第 2パターン PA2からの第 2露光光 EL2とを終端光学素子 FLへ導く中 間光学部材 40を有している。投影光学系 PLは、第 1マスク Mlの第 1パターン PA1 からの第 1露光光 EL1を中間光学部材 40へ導く第 1誘導光学系 41と、第 2マスク M 2の第 2パターン PA2からの第 2露光光 EL2を中間光学部材 40へ導く第 2誘導光学
系 42とを有している。第 1、第 2誘導光学系 41、 42のそれぞれは、複数のレンズ、及 び複数のレンズを通過した第 1、第 2露光光 EL1、 EL2を中間光学部材 40に向けて 反射する反射面を有する反射部材を含む。
[0067] 中間光学部材 40は、第 1誘導光学系 41からの第 1露光光 EL1を反射する第 1反 射面 40Aと、第 2誘導光学系 42からの第 2露光光 EL2を反射する第 2反射面 40Bと を有している。本実施形態においては、中間光学部材 40はプリズムを含む。
[0068] 第 1マスク Mlの第 1パターン PA1からの第 1露光光 EL1と、第 2マスク M2の第 2パ ターン PA2からの第 2露光光 EL2とは、第 1誘導光学系 41及び第 2誘導光学系 42 により中間光学部材 40に導かれる。第 1マスク Mlの第 1パターン PA1からの第 1露 光光 EL1と、第 2マスク M2の第 2パターン PA2からの第 2露光光 EL2とは、中間光 学部材 40で反射した後、投影光学系 PLの像面側に配置された、終端光学素子 FL を含む第 3誘導光学系 43を介して、第 1露光領域 AR1及び第 2露光領域 AR2のそ れぞれに照射される。
[0069] 次に、基板ステージ 80について説明する。基板ステージ 80は、第 1露光光 EL1及 び第 2露光光 EL2が照射される第 1露光領域 AR1及び第 2露光領域 AR2を含む所 定領域内で基板 Pを保持して移動可能である。基板ステージ 80は、基板 Pを保持す る基板ホルダを有しており、リニアモータ等のァクチユエータを含む基板ステージ駆 動装置 80Dの駆動により、基板ホルダに基板 Pを保持した状態で、ベース部材 BP上 で、 X軸、 Y軸、 Z軸、 0 X、 θ Y,及び θ Z方向の 6自由度の方向に移動可能である
[0070] 基板ステージ 80 (ひ 、ては基板 P)の位置情報は、計測システム 70のレーザ干渉 計 75によって計測される。レーザ干渉計 75は、基板ステージ 80に設けられた反射 面 76を用いて基板ステージ 80の X軸、 Y軸、及び θ Z方向に関する位置情報を計測 する。また、基板ステージ 80に保持されている基板 Pの表面の面位置情報 (Z軸、 Θ X、及び Θ Y方向に関する位置情報)は、不図示のフォーカス'レベリング検出系によ つて検出される。制御装置 30は、レーザ干渉計 75の計測結果及びフォーカス'レべ リング検出系の検出結果に基づいて基板ステージ駆動装置 80Dを駆動し、基板ステ ージ 80に保持されている基板 Pの位置制御を行う。なお、フォーカス'レベリング検出
系はその複数の計測点でそれぞれ基板 Pの z軸方向の位置情報を計測してその面 位置情報を検出する。本実施形態では、この複数の計測点はその少なくとも一部が 第 1、第 2露光領域 AR1、 AR2内に設定されるが、例えば後述の第 8実施形態(図 2 1)の液浸露光装置では、全ての計測点が第 1、第 2露光領域 AR1、 AR2 (又は液浸 領域 LR、;)の外側に設定されてもよい。また、レーザ干渉計 75は基板ステージ 4の Z 軸、 Θ X及び Θ Y方向の位置情報をも計測可能としてよぐその詳細は、例えば特表 2001— 510577号公報(対応国際公開第 1999Z28790号パンフレット)に開示さ れている。この場合、フォーカス'レべリング検出系は設けなくてもよい。
[0071] 図 10は、第 1照明領域 IA1及び第 2照明領域 IA2と第 1マスク Ml及び第 2マスク M 2との関係を示す模式図、図 11は、第 1露光領域 AR1及び第 2露光領域 AR2と基板 P上の被露光領域であるショット領域 SHとの関係を示す模式図である。本実施形態 においては、第 1露光光 EL1が照射される第 1露光領域 AR1、及び第 2露光光 EL2 が照射される第 2露光領域 AR2は、投影光学系 PLの投影領域である。
[0072] 照明系 IL及び投影光学系 PLを含む光学ユニット Uは、第 1パターン PA1からの第 1露光光 EL1を第 1露光領域 AR1に照射するとともに、第 2パターン PA2からの第 2 露光光 EL2を第 2露光領域 AR2に照射する。照明系 ILは、投影光学系 PLを介して 、第 1パターン PA1からの第 1露光光 EL1を第 1露光領域 AR1に照射するとともに、 第 2パターン PA2からの第 2露光光 EL2を第 2露光領域 AR2に照射する。投影光学 系 PLは、第 1露光領域 AR1に照射される第 1露光光 EL1で第 1パターン PA1の像 を形成し、第 2露光領域 AR2に照射される第 2露光光 EL2で第 2パターン PA2の像 を形成する。
[0073] 制御装置 30は、第 1照明領域 IA1及び第 2照明領域 IA2に対するマスクステージ 6 0による第 1マスク Ml及び第 2マスク M2の Y軸方向への移動に同期して、基板ステ ージ 80を用いて、第 1露光領域 AR1及び第 2露光領域 AR2に対して基板 P上のショ ット領域 SHを Y軸方向へ移動しつつ、照明系 IL及び投影光学系 PLを含む光学ュ ニット Uにより、第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれに第 1露光光 E L1及び第 2露光光 EL2を照射することにより、第 1露光領域 AR1に照射される第 1露 光光 EL1で形成される第 1パターン PA1の像と、第 2露光領域 AR2に照射される第
2露光光 EL2で形成される第 2パターン PA2の像とで、基板 P上のショット領域 SHを 多重露光(二重露光)する。
[0074] すなわち、本実施形態においては、制御装置 30は、第 1、第 2露光領域 AR1、 AR 2に対する基板 Pの Y軸方向への移動と、第 1照明領域 IA1に対する第 1マスク M 1の Y軸方向への移動と、第 2照明領域 IA2に対する第 2マスク M2の Y軸方向への移動 とを同期して行うことによって、パターン化された第 1露光光 EL1及び第 2露光光 EL 2を第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれに照射して、基板 P上のシ ヨット領域 SHを多重露光する。
[0075] 図 10に示すように、本実施形態においては、第 1マスク Mlと第 2マスク M2とは Y軸 方向に並んで配置され、第 1マスク Mlは第 2マスク M2に対して Y側に配置される 。第 1マスク Ml上での第 1露光光 EL1による第 1照明領域 IA1は、 X軸方向を長手 方向とする矩形状 (スリット状)に設定されており、第 2マスク M2上での第 2露光光 EL 2による第 2照明領域 IA2も、 X軸方向を長手方向とする矩形状 (スリット状)に設定さ れている。第 1照明領域 IA1及び第 2照明領域 IA2は、ブラインド装置 11の固定ブラ インド 9によって設定される。固定ブラインド 9は、第 1、第 2マスク Ml、 M2上での第 1 、第 2照明領域 IA1、 IA2を規定する矩形状 (スリット状)の開口(光通過領域)を有し ており、第 1、第 2マスク Ml、 M2の第 1、第 2パターン PA1、 PA2が形成されたパタ ーン形成面と共役な面から所定距離離れた位置 (僅かにデフォーカスした位置)に配 置されている。なお、後述するように、第 1照明領域 IA1及び第 2照明領域 IA2は、ブ ラインド装置 11の可動ブラインド 10により所定のタイミングで制限される。
[0076] 図 11に示すように、本実施形態においては、第 1露光領域 AR1と第 2露光領域 AR 2とは、 Y軸方向の異なる位置に設定されている。基板ステージ 80は、保持した基板 P上のショット領域 SHを、第 1露光領域 AR1及び第 2露光領域 AR2に対して Y軸方 向に移動可能である。また、第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれは 、 X軸方向を長手方向とする矩形状 (スリット状)である。また、第 1露光領域 AR1と第 2露光領域 AR2とは、 1つのショット領域 SHに同時に配置可能となっている。すなわ ち、本実施形態においては、第 1露光領域 AR1 (第 1露光領域 AR1の中心)と第 2露 光領域 AR2 (第 2露光領域 AR2の中心)との Y軸方向の距離は、基板 P上の 1つの
ショット領域 SHの Y軸方向の幅よりも小さい。また、本実施形態においては、第 1露 光領域 AR1と第 2露光領域 AR2とは Υ軸方向に離れている。また、第 1露光領域 AR 1は第 2露光領域 AR2に対して + Υ側に設定される。
[0077] 制御装置 30は、基板 Ρ上のショット領域 SHの露光中に、第 1パターン PA1を有す る第 1マスク Ml、及び第 2パターン ΡΑ2を有する第 2マスク Μ2を、各々の走査方向( Υ軸方向)に移動するとともに、基板 Ρを走査方向(Υ軸方向)に移動する。本実施形 態においては、制御装置 30は、基板 Ρ上のショット領域 SHの露光中に、マスクステ ージ 60を用いて、第 1パターン PA1を有する第 1マスク Mlと第 2パターン ΡΑ2を有 する第 2マスク M2とを同一の走査方向(Y軸方向)に移動しつつ、第 1露光光 EL1及 び第 2露光光 EL2で、第 1マスク Mlの第 1パターン PA1及び第 2マスク M2の第 2パ ターン PA2のそれぞれを照明する。第 1マスク Ml及び第 2マスク M2は、メインステ ージ 61上に載置されており、制御装置 30は、メインステージ駆動装置 64を用いてメ インステージ 61を駆動することにより、第 1マスク Ml及び第 2マスク M2を同一の走査 方向(Y軸方向)に移動する。例えば、基板 P上のショット領域 SHの露光中に、マスク ステージ 60のメインステージ 61によって、第 1マスク Mlが +Y方向に移動される場 合、第 2マスク M2も一緒に +Y方向に移動され、第 1マスク Mlがー Y方向に移動さ れる場合、第 2マスク M2も一緒に Y方向に移動される。また、本実施形態の投影 光学系 PLは、倒立像を形成し、制御装置 30は、基板 Pのショット領域 SHの露光中 に、第 1、第 2マスク Ml、 M2と基板 Pとを互いに逆向きの走査方向(Y軸方向)に移 動する。例えば、制御装置 30は、マスクステージ 60を用いて第 1、第 2マスク Ml、 M 2を + Y方向に移動する場合、基板ステージ 80を用 ヽて基板 Pを Y方向に移動し、 第 1、第 2マスク Ml、 M2を Y方向に移動する場合、基板 Pを +Y方向に移動する
[0078] 図 10及び図 11には、基板 P上のショット領域 SHの露光中に、第 1、第 2マスク Ml 、 M2の +Y方向への移動と同期して、基板 Pを一 Y方向に移動している状態が示さ れている。
[0079] 第 1露光領域 AR1と第 2露光領域 AR2との相対位置関係は、例えば投影光学系 P Lの投影倍率及び中間光学部材 40等の投影光学系 PLを構成する各光学素子の配
置等に応じて決定される。また、第 1露光光 EL1による第 1照明領域 IA1に対する第 1マスク Mlの位置、及び第 2露光光 EL2による第 2照明領域 IA2に対する第 2マスク M2上の位置、換言すれば、第 1、第 2露光光 EL1、 EL2を基準とした第 1マスク Ml と第 2マスク M2との相対位置関係は、基板 P上のショット領域 SHに対する第 1露光 領域 AR1及び第 2露光領域 AR2の位置情報、すなわち、レーザ干渉計 75によって 規定される XY座標系内における第 1露光領域 AR1及び第 2露光領域 AR2の位置 情報に応じて定められる。
[0080] 上述のように、本実施形態においては、基板 P上での第 1露光領域 AR1と第 2露光 領域 AR2とは基板 Pの走査方向 (Y軸方向)の異なる位置に設定され、第 1露光領域 AR1は、第 2露光領域 AR2に対して +Y側に設定される。また、第 1マスク Mlと第 2 マスク M2とは同一の走査方向(Y軸方向)に移動する。また、本実施形態の投影光 学系 PLは倒立像を形成し、第 1、第 2マスク Ml、 M2と基板 Pとは互いに逆向きの走 查方向(Y軸方向)に移動する。したがって、本実施形態においては、図 10に示すよ うに、第 1マスク Mlは第 2マスク M2に対して—Y側に配置され、第 1露光光 EL1によ る第 1照明領域 IA1、及び第 2露光光 EL2による第 2照明領域 IA2は、第 1、第 2マス ク Ml、 M2それぞれの中心に対して互いに異なる位置に設定される。換言すれば、 第 1、第 2露光領域 AR1、 AR2の位置関係に応じて、例えば、図 10に示すように、第 1、第 2照明領域 IA1、 IA2に対する第 1、第 2マスク Ml、 M2上の位置を設定するこ とにより、基板 P上のショット領域 SHを所望の位置関係で第 1パターン PA1の像と第 2パターン PA2の像とで多重露光することができる。
[0081] そして、本実施形態においては、制御装置 30は、基板 P上のショット領域 SHを露 光するに際し、第 1パターン PA1に対する第 1露光光 EL1による照明、及び第 2バタ ーン PA2に対する第 2露光光 EL2による照明の一方を開始した後に他方を開始し、 一方を終了した後に他方を終了する。また、制御装置 30は、ショット領域 SHに対す る第 1露光光 EL1の照射 (第 1露光光 EL1による第 1パターン PA1の像の投影)、及 びショット領域 SHに対する第 2露光光 EL2の照射 (第 2露光光 EL2による第 2パター ン PA2の像の投影)の一方を開始した後に他方を開始し、一方を終了した後に他方 を終了する。
[0082] また、本実施形態においては、制御装置 30は、ブラインド装置 11の可動ブラインド 10を用いて、第 1、第 2マスク Ml、 M2のうち第 1、第 2パターン PA1、 PA2が形成さ れた第 1、第 2パターン形成領域 SA1、 SA2以外の部分に対する不要な第 1、第 2露 光光 EL1、 EL2の照射を遮ることによって、第 1露光光 EL1及び第 2露光光 EL2によ る基板 Pの不要な露光を防止する。第 1マスク Mlの第 1パターン形成領域 SA1の外 周には第 1遮光帯 SB1が設けられ、第 2マスク M2の第 2パターン形成領域 SA2の外 周には第 2遮光帯 SB2が設けられている。可動ブラインド 10は、第 1露光光 EL1及 び第 2露光光 EL2による基板 Pの不要な露光を防止するため、第 1、第 2マスク Ml、 M2の第 1、第 2遮光帯 SB1、 SB2の外側への第 1、第 2露光光 EL1、 EL2の照射を 遮る。可動ブラインド 10は、第 1、第 2マスク Ml、 M2のパターン形成面とほぼ共役な 面に配置されており、光源装置 1と分離光学系 13との間において、第 1パターン PA1 を有する第 1マスク Ml、第 2パターン PA2を有する第 2マスク M2、及び基板 Pの少 なくとも一つの移動と同期して移動可能に設けられている。
[0083] 図 12は、可動ブラインド 10の一例を示す図である。図 12において、可動ブラインド 10は、 S偏光状態の第 1露光光 EL1を通過可能な第 1通過領域 10Aと、 P偏光状態 の第 2露光光 EL2を通過可能な第 2通過領域 10Bと、第 1露光光 EL1と第 2露光光 EL2とを通過可能な第 3通過領域 10Cとを備えている。第 1、第 2、第 3通過領域 10 A、 10B、 10Cは、第 1パターン PA1を有する第 1マスク Ml、及び第 2パターン PA2 を有する第 2マスク M2の走査方向に対応する方向に並んで配置されて 、る。本実施 形態においては、第 1、第 2、第 3通過領域 10A、 10B、 10Cは、図 12中、 Z軸方向 に並んで配置されている。第 3通過領域 10Cは、第 1通過領域 10Aと第 2通過領域 1 0Bとの間に設けられて!/、る。
[0084] 第 1、第 2、第 3通過領域 10A、 10B、 10Cは、所定の光を透過可能な光学部材に よって形成されている。第 1通過領域 10Aは、 S偏光状態の第 1露光光 EL1を通過 可能であり、 P偏光状態を含む他の偏光状態の光 (露光光)をほぼ通過させない偏光 子を含む光学部材によって形成されている。第 2通過領域 10Bは、 P偏光状態の第 2 露光光 EL2を通過可能であり、 S偏光状態を含む他の偏光状態の光 (露光光)をほ ぼ通過させな 、偏光子を含む光学部材によって形成されて 、る。第 3通過領域 10C
は、 S偏光状態の第 1露光光 ELI及び P偏光状態の第 2露光光 EL2のそれぞれを通 過可能な光学部材によって形成されている。これら光学部材は、例えば金属製の支 持部材 10Dに支持されている。支持部材 10Dは、光 (露光光)を通過させない。ブラ インド装置 11は、可動ブラインド 10を移動可能なリニアモータ等の駆動装置を備え ており、制御装置 30は、その駆動装置を用いて、可動ブラインド 10を、図 12中、ほ ぼ Z軸方向(第 1、第 2マスク Ml、 M2の走査方向(Y軸方向)に対応する方向)に移 動可能である。また、ブラインド装置 11は、可動ブラインド 10の位置を検出可能なェ ンコーダ等の位置検出装置を備えており、制御装置 30は、その位置検出装置の検 出結果をモニタ可能である。
[0085] 制御装置 30は、基板 P上のショット領域 SHの走査露光開始前、走査露光中、走査 露光終了後において、計測システム 70のレーザ干渉計 74の計測結果に基づいて、 必要に応じて上述の位置検出装置の検出結果をモニタしつつ、第 1、第 2マスク Ml 、 M2の移動と同期して、可動ブラインド 10を移動し、第 1、第 2マスク Ml、 M2の第 1 、第 2パターン形成領域 SA1、 SA2以外の部分に対する不要な第 1、第 2露光光 EL 1、 EL2の照射を遮ることによって、第 1露光光 EL1及び第 2露光光 EL2による基板 Pの不要な露光を防止する。
[0086] ここで、以下の説明においては、図 12中、第 1通過領域 10Aの +Z側のエッジ、す なわち第 1通過領域 10Aと支持部材 10Dとの境界を適宜、第 1エッジ El、と称し、第 1通過領域 1 OAの Z側のエッジ、すなわち第 1通過領域 1 OAと第 3通過領域 1 OCと の境界を適宜、第 2エッジ E2、と称する。また、第 3通過領域 10Cの Z側のエッジ、 すなわち第 3通過領域 10Cと第 2通過領域 10Bとの境界を適宜、第 3エッジ E3、と称 し、第 2通過領域 10Bの—Z側のエッジ、すなわち第 2通過領域 10Bと支持部材 10D との境界を適宜、第 4エッジ E4、と称する。また、第 1、第 2、第 3通過領域 10A、 10B 、 10Cの +X側のエッジを適宜、第 5エッジ E5、と称し、第 1、第 2、第 3通過領域 10 A、 10B、 10Cの— X側のエッジを適宜、第 6エッジ E6、と称する。
[0087] 図 13は、可動ブラインド 10と第 1、第 2マスク Ml、 M2の第 1、第 2パターン形成領 域 SA1、 SA2との関係を示す模式図である。可動ブラインド 10は、第 1露光光 EL1 及び第 2露光光 EL2による基板 Pの不要な露光を防止するため、第 1、第 2マスク Ml
、 M2の第 1、第 2遮光帯 SB1、 SB2の外側への第 1、第 2露光光 EL1、 EL2の照射 を遮る。
[0088] 第 1通過領域 10A及び第 3通過領域 10Cは、 S偏光状態の第 1露光光 EL1を通過 する光通過領域であり、その光通過領域は、第 1マスク Ml上の第 1遮光帯 SB1で囲 まれた第 1パターン形成領域 SA1に応じた大きさを有する。また、第 2通過領域 10B 及び第 3通過領域 10Cは、 P偏光状態の第 2露光光 EL2を通過する光通過領域で あり、その光通過領域は、第 2マスク M2上の第 2遮光帯 SB2で囲まれた第 2パターン 形成領域 SA2に応じた大きさを有する。すなわち、可動ブラインド 10は、第 1パター ン形成領域 SA1に対応する光通過領域と、第 2パターン形成領域 SA2に対応する 光通過領域とを、所定の範囲(第 3通過領域 10C)で重複して備えて 、る。
[0089] 第 1マスク Mlの第 1パターン PA1を第 1露光光 EL1で照明するために第 1パター ン PA1を走査開始位置に配置した際、制御装置 30は、可動ブラインド 10の第 1エツ ジ E1及び第 3エッジ E3の像が第 1マスク Ml上に投影された場合を仮定したときに、 第 1エッジ E 1及び第 3エッジ E3の像力 第 1パターン形成領域 SA1の + Y側及び Y側に設けられた第 1遮光帯 SB1に収まるように、第 1マスク Mlと可動ブラインド 10と の位置関係を調整する。また同様に仮定したときに、可動ブラインド 10の第 5エッジ E 5及び第 6エッジ E6の像力 第 1パターン形成領域 SA1の +X側及び—X側に設け られた第 1遮光帯 SB1に収まるように調整される。この第 1マスク Mlと可動ブラインド 10との位置関係を維持しつつ、第 1マスク Mlと可動ブラインド 10とを同期移動する ことにより、走査露光開始前において、固定ブラインド 9を通過した露光光 ELの一部 が特に第 1エッジ E1で遮られることで、第 1パターン形成領域 SA1以外の部分に対 する不要な第 1露光光 EL1の照射、ひいては第 1露光光 EL1による基板 Pの不要な 露光が防止される。また、走査露光中においても、可動ブラインド 10は、第 1マスク M 1の移動と同期して移動するので、固定ブラインド 9を通過した露光光 ELの一部が特 に第 5エッジ E5及び第 6エッジ E6により遮られることで、第 1パターン形成領域 SA1 以外の部分に対する不要な第 1露光光 EL1の照射を防止することができる。また、走 查露光終了後においても、固定ブラインド 9を通過した露光光 ELの一部が、第 1マス ク Mlと同期して移動する可動ブラインド 10、特に第 3エッジ E3で遮られるので、第 1
ノターン形成領域 SA1以外の部分に対する不要な第 1露光光 ELIの照射、ひいて は第 1露光光 EL1による基板 Pの不要な露光が防止される。
[0090] また、第 1マスク Mlの Y軸方向への移動が開始された後、第 2マスク M2の Y軸方 向への移動が開始される力 第 2マスク M2の第 2パターン PA2が走査開始位置に 配置された際、可動ブラインド 10の第 2エッジ E2及び第 4エッジ E4の像が第 2マスク M2上に投影された場合を仮定したときに、第 2エッジ E2及び第 4エッジ E4の像が、 第 2パターン形成領域 SA2の +Y側及び—Y側に設けられた第 2遮光帯 SB2に収ま るように設定されている。また同様に仮定したときに、可動ブラインド 10の第 5エッジ E 5及び第 6エッジ E6の像力 第 2パターン形成領域 SA2の +X側及び—X側に設け られた第 2遮光帯 SB2に収まるように調整される。この第 2マスク M2と可動ブラインド 10との位置関係を維持しつつ、第 2マスク M2と可動ブラインド 10とを同期移動する ことにより、走査露光開始前において、固定ブラインド 9を通過した露光光 ELの一部 が可動ブラインド 10の特に第 2エッジ E2で遮られるので、第 2パターン形成領域 SA 2以外の部分に対する不要な第 2露光光 EL2の照射、ひ 、ては第 2露光光 EL2によ る基板 Pの不要な露光が防止される。また、走査露光中においても、可動ブラインド 1 0は、第 2マスク M2の移動と同期して移動するので、固定ブラインド 9を通過した露光 光 ELの一部が可動ブラインド 10の第 5エッジ E5及び第 6エッジ E6により遮られるの で、第 2パターン形成領域 SA2以外の部分に対する不要な第 2露光光 EL2の照射 を防止することができる。また、走査露光終了後においても、固定ブラインド 9を通過 した露光光 ELの一部力 第 2マスク M2と同期して移動する可動ブラインド 10により、 特に第 3エッジ E3により遮られることにより、第 2パターン形成領域 SA2以外の部分 に対する不要な第 2露光光 EL2の照射、ひ 、ては第 2露光光 EL2による基板 Pの不 要な露光が防止される。
[0091] このように、本実施形態においては、特に走査露光の開始時及び終了時に、可動 ブラインド 10を用いて、固定ブラインド 9を通過した露光光 E1を制限することで、第 1、 第 2マスク Ml、 M2上での第 1、第 2露光光 EL1、 EL2の照射を制限して第 1露光光 EL1及び第 2露光光 EL2による基板 Pの不要な露光を防止することができる。
[0092] 特に、本実施形態においては、第 1露光光 EL1と第 2露光光 EL2との偏光状態の
違いを利用して、可動ブラインド 10に一方の露光光を通過可能で、他方の露光光を ほぼ遮光できる第 1通過領域 10Aと第 2通過領域 10Bとを設けているので、第 1バタ ーン形成領域 PA1と第 1照明領域 IA1との位置関係と、第 2パターン形成領域 PA2 と第 2照明領域 IA2との位置関係とが異なる場合にも、単一の可動ブラインド 10で基 板 Pに対する不要な露光を確実に防止することができる。これにより、多重を行うこと ができる露光装置の照明系をコンパクトにし、装置コストを低減することができる。 なお、本実施形態においては、第 1通過領域 10Aを通過した第 1露光光 EL1と第 3 通過領域 10Cを通過した第 1露光光 EL1とを同一の強度で基板 P上に照射するとと もに、第 2通過領域 10Bを通過した第 2露光光 EL2と第 3通過領域 10Cを通過した 第 2露光光 EL2とを同一の強度で基板 P上に照射するために、第 3通過領域 10Cは 、通過する光の強度を調整可能な光学部材によって形成してもよい。この場合、第 3 通過領域 10Cの光学部材は、例えば NDフィルタ(neutral density filter)等、透過率 を調整可能な光学部材 (フィルタ部材)を含む。光源装置 1から射出され、第 1光学系 2を通過した露光光 ELのうち、 S偏光状態の第 1露光光 EL1は、可動ブラインド 10の 第 1通過領域 10A及び第 3通過領域 10Cを通過し、分離光学系 13を介して第 1マス ク Ml上に照射され、 P偏光状態の第 2露光光 EL2は、可動ブラインド 10の第 2通過 領域 10B及び第 3通過領域 10Cを通過し、分離光学系 13を介して第 2マスク M2上 に照射される。この場合において、第 1通過領域 10Aが第 1の透過率を有する場合、 第 3通過領域 10Cの第 1露光光 EL1に対する透過率を、第 1の透過率に応じた値に 設定する必要がある。同様に、第 2通過領域 10Bが第 2の透過率を有する場合、第 3 通過領域 10Cの第 2露光光 EL2に対する透過率を、第 2の透過率に応じた値に設 定する必要がある。本実施形態においては、第 3通過領域 10Cの光学部材として、 透過率を調整可能な機能を有する光学部材を用いることによって、第 1通過領域 10 Aの透過率と第 3通過領域 10Cの透過率とを一致させることができるとともに、第 2通 過領域 10Bの透過率と第 3通過領域 10Cの透過率とを一致させることができる。した 力 て、第 1通過領域 10Aを通過した第 1露光光 EL1と第 3通過領域 10Cを通過し た第 1露光光 EL1との基板 P上での強度を同じ値にすることができるとともに、第 2通 過領域 10Bを通過した第 2露光光 EL2と第 3通過領域 10Cを通過した第 2露光光 E
L2との基板 P上での強度を同じ値にすることができる。
[0094] なお、可動ブラインド 10において、第 1通過領域 10Aを形成する光学部材と第 2通 過領域 10Bを形成する光学部材とを、第 3通過領域 10Cを形成する光学部材が固 定された支持部材 10D力も分離して、第 1通過領域 10Aを形成する光学部材と第 2 通過領域 10Bを形成する光学部材とのそれぞれが独立に移動できるようにしてもよ い。こうすることにより、第 2エッジ E2及び第 3エッジ E3の Z軸方向の位置を変更する ことができるので、第 1露光光 EL1が通過する領域の大きさ及び第 2露光光 EL2が通 過する領域の大きさを変更することが可能となる。したがって、第 1、第 2マスク Ml、 M2上の第 1、第 2パターン形成領域 PA1、 PA2の大きさが変わったり、ショット領域 S Hを走査露光するときの第 1マスク Mlと第 2マスク M2との相対位置関係が変化した りしても、その変化に合わせて第 1、第 2マスク Ml、 M2に対する第 1、第 2露光光 EL 1、 EL2の照射を制限することができ、基板 Pの不要な露光を確実に防止することが できる。もちろん、可動ブラインド 10が、第 5、第 6エッジ E5、 E6の位置を調整するた めの可動な遮光部材を備えていてもよい。また、第 1通過領域 10A及び第 2通過領 域 10B力 第 1露光光 EL1及び第 2露光光 EL2のそれぞれをほぼ 100%通過可能 な場合には、第 3通過領域 10Cには光学部材を設けなくてもよい。
[0095] 次に、上述の構成を有する露光装置 EXを用いて基板 Pを露光する方法について 図 22のフローチャートを参照しながら説明する。
[0096] 上述のように、本実施形態においては、制御装置 30は、基板 Pのショット領域 SHを 露光するとき、マスクステージ 60を用いて、第 1マスク Mlと第 2マスク M2とを同一の 走査方向(例えば +Y方向)に移動しつつ、第 1露光光 EL1及び第 2露光光 EL2で 第 1パターン PA1及び第 2パターン PA2のそれぞれを照明する。また、制御装置 30 は、マスクステージ 60の所定の走査方向への移動と同期して、基板ステージ 80を用 いて、基板 P上のショット領域 SHを第 1、第 2マスク Ml、 M2とは逆向きの走査方向( 例えば Y方向)に移動する。
[0097] 以下の説明においては、マスクステージ 60による第 1マスク Ml及び第 2マスク M2 の +Y方向への移動に同期して、第 1露光領域 AR1及び第 2露光領域 AR2に対し て基板ステージ 80を用いて基板 P上のショット領域 SHを Y方向に移動しつつ、基
板 P上のショット領域 SHを露光する場合を例にして説明する。
[0098] まず、制御装置 30は、基板 Pの露光を開始する前に、基板 Pの感光材の感度等に 基づ 、て、基板 Pのショット領域 SHを露光するときの基板ステージ 80の移動速度(走 查速度)を決定するとともに、投影光学系 PLの投影倍率と基板 Pの走査速度とに基 づ 、て、マスクステージ 60 (メインステージ 61)の移動速度(走査速度)を決定する。 また、記憶装置 31には、レーザ干渉計 75によって規定される XY座標系内における 第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれの位置情報が予め記憶されて いる。
[0099] 制御装置 30は、メインステージ 61の Y軸方向への移動によって、第 1マスク Mlの 第 1パターン PA1の像の第 1露光領域 AR1への投影、及び第 2マスク M2の第 2パタ ーン PA2の像の第 2露光領域 AR2への投影のそれぞれ力 所望のタイミングで開始 されるように、メインステージ 61上での第 1マスク Ml及び第 2マスク M2のそれぞれの 位置 (第 1マスク Mlと第 2マスク M2の相対位置関係)を調整する(図 22の Sl)。
[0100] 上述のように、メインステージ 61上での第 1、第 2露光光 EL1、 EL2を基準とした第 1マスク Mlと第 2マスク M2との相対位置関係(第 1照明領域 IA1に対する第 1マスク Mlの位置、及び第 2照明領域 IA2に対する第 2マスク M2の位置)は、基板 P上のシ ヨット領域 SHに対する第 1露光領域 AR1及び第 2露光領域 AR2の位置情報、ひ 、 ては、レーザ干渉計 75によって規定される XY座標系内における第 1露光領域 AR1 及び第 2露光領域 AR2の位置情報に応じて定められる。レーザ干渉計 75によって 規定される XY座標系内における第 1露光領域 AR1及び第 2露光領域 AR2のそれ ぞれの位置情報は記憶装置 31に予め記憶されており、レーザ干渉計 75によって規 定される XY座標系内におけるショット領域 SHの位置情報も予め求められている。
[0101] 制御装置 30は、記憶装置 31に記憶されている、第 1露光領域 AR1及び第 2露光 領域 AR2の位置情報 (例えば、第 1露光領域 AR1と第 2露光領域 AR2との距離)に 基づいて、第 1、第 2サブステージ 62、 63を用いて、メインステージ 61上における第 1 マスク Ml及び第 2マスク M2の位置(第 1マスク Mlと第 2マスク M2の相対位置関係) を調整する。
[0102] このように、本実施形態においては、制御装置 30は、第 1露光領域 AR1と第 2露光
領域 AR2との相対位置関係に基づいて、メインステージ 61上での第 1マスク Ml及 び第 2マスク M2の位置(第 1マスク Mlと第 2マスク M2の相対位置関係)を予め調整 する。
[0103] 上述の調整が完了した後、制御装置 30は、基板 P上のショット領域 SHの露光を開 始する。基板 Pの露光を開始するために、制御装置 30は、光源装置 1より露光光 EL を射出する。光源装置 1から射出された露光光 ELは、第 1光学系 2に入射する。上述 のように、第 1光学系 2は、偏光変換素子 5を含み、オプティカルインテグレータ 6の光 射出面に、周方向偏光状態の露光光 ELを射出する輪帯状の二次光源 7を形成する 。二次光源 7から射出された露光光 ELは、開口絞り 8で制限され、 S偏光成分と P偏 光成分とを主に含む露光光 ELに変換される。
[0104] 第 1光学系 2より射出された S偏光成分と P偏光成分とを主に含む露光光 ELは、ブ ラインド装置 11を通過した後、分離光学系 13に入射する。分離光学系 13は、光源 装置 1から射出され、第 1光学系 2及びブラインド装置 11を通過した露光光 ELを、互 いに偏光状態の異なる S偏光状態の第 1露光光 EL1と P偏光状態の第 2露光光 EL2 とに分離する(図 22の S2)。分離光学系 13で分離された第 1露光光 ELIは、第 1サ ブステージ 62に保持されて ヽる第 1マスク M 1を第 1照明領域 IA1で照明し、第 2露 光光 EL2は、第 2サブステージ 63に保持されている第 2マスク M2を第 2照明領域 IA 2で照明する(図 22の S3)。
[0105] 第 1マスク Mlを通過することによりパターンィ匕された第 1パターン PA1からの第 1露 光光 EL 1は、第 1誘導光学系 41を介して中間光学部材 40の第 1反射面 40 Aに入射 する。中間光学部材 40の第 1反射面 40Aで反射した第 1露光光 EL1は、第 3誘導光 学系 43に入射し、第 3誘導光学系 43の終端光学素子 FLを介して投影光学系 PLの 像面側に規定された第 1露光領域 AR1に照射される。また、第 2マスク M2を通過す ることによりパターンィ匕された第 2パターン PA2からの第 2露光光 EL2は、第 2誘導光 学系 42を介して中間光学部材 40の第 2反射面 40Bに入射する。中間光学部材 40 の第 2反射面 40Bで反射した第 2露光光 EL2は、第 3誘導光学系 43に入射し、第 3 誘導光学系 43の終端光学素子 FLを介して、投影光学系 PLの像面側に第 1露光領 域 AR1とは異なる位置 (第 1露光領域 AR1から Y軸方向に離れた位置)に規定され
た第 2露光領域 AR2に照射される。
[0106] 制御装置 30は、計測システム 70のレーザ干渉計 74を用いてマスクステージ 60の 位置情報をモニタしながら、そのマスクステージ 60を用いて、第 1マスク Mlと第 2マ スク M2とを +Y方向に移動しつつ、第 1露光光 EL1及び第 2露光光 EL2で、第 1マ スク Mlの第 1パターン PA1及び第 2マスク M2の第 2パターン PA2のそれぞれを照 明する。また、制御装置 30は、マスクステージ 60による第 1マスク Ml及び第 2マスク M2の +Y方向への移動に同期して、計測システム 70のレーザ干渉計 75を用いて 基板ステージ 80の位置情報をモニタしながら、その基板ステージ 80を用いて、基板 Pを Y方向に移動しつつ、第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれ に、第 1露光光 EL1及び第 2露光光 EL2を照射する。このように第 1及び第 2マスク Ml, M2と基板 Pを移動しつつ第 1露光領域 AR1及び第 2露光領域 AR2を別個に 照射することで、後に詳述するような過程を経て基板 Pの所定領域 (ショット領域)が 二重露光される(図 22の S4)。
[0107] 本実施形態においては、制御装置 30は、基板 P上のショット領域 SHを露光するに 際し、第 1パターン PA1に対する第 1露光光 EL1による照明を開始した後に、第 2パ ターン PA2に対する第 2露光光 EL2による照明を開始し、第 1パターン PA1に対す る第 1露光光 EL1による照明を終了した後に、第 2パターン PA2に対する第 2露光光 EL2による照明を終了する。また、制御装置 30は、ショット領域 SHに対する第 1露光 光 EL1によるパターン PA1の投影を開始した後に、ショット領域 SHに対する第 2露 光光 EL2による第 2パターン PA2の投影を開始し、ショット領域 SHに対する第 1露光 光 EL1による第 1パターン PA1の投影を終了した後に、ショット領域 SHに対する第 2 露光光 EL2による第 2パターン PA2の投影を終了する。
[0108] 次に、図 10及び図 11を参照して、基板 P上のショット領域 SHに第 1、第 2露光光 E L1、EL2が照射される場合のシーケンスの一例について説明する。
[0109] 図 10において、制御装置 30は、第 1マスク Mlの第 1パターン PA1が形成された第 1パターン形成領域 SA1の + Y側のエッジが第 1照明領域 IA1に到達した時点で、 第 1パターン PA1に対する第 1露光光 EL1による照明を開始する。また、第 1マスク Mlの第 1パターン形成領域 SA1の +Y側のエッジが第 1照明領域 IA1に到達した
時点で、図 11中、基板 P上のショット領域 SHの—Y側のエッジ Glが第 1露光領域 A R1に到達するように設定されており、第 1露光領域 AR1に対する第 1露光光 EL1の 照射が開始される。なお、第 1パターン PA1に対する第 1露光光 EL1による照明を開 始前は、可動ブラインド 10によって、基板 P上での第 1露光領域 AR1の走査方向の 幅が零であるが、第 1パターン PA1による走査露光 (第 1走査露光)の開始時点、す なわち基板 P上のショット領域 SHのエッジ G1が第 1露光領域 AR1の +Y側のエッジ に到達した時点力もその幅が徐々に広げられていき、所定の設定値に達した時点で その幅は一定に維持される。これにより、第 1走査露光の開始前後に、基板 P上でシ ヨット領域 SHに対して—Y方向のショット領域の不要な露光を防止できる。なお、第 1 走査露光の開始直後は、可動ブラインド 10によって第 2露光領域 AR2の走査方向 の幅が零となっている。
[0110] 制御装置 30は、マスクステージ 60 (メインステージ 61)の +Y方向への移動を続け ることによって、第 1マスク Mlの第 1パターン PA1に対する第 1露光光 EL1による照 明を連続的に行う。マスクステージ 60の +Y方向への移動を続けることによって、第 1 マスク Mlの第 1パターン PA1は第 1照明領域 IA1を通過する。
[0111] また、制御装置 30は、マスクステージ 60の +Y方向への移動と同期して、基板ステ ージ 80の— Y方向への移動を続けることによって、基板 P上のショット領域 SHに対す る、第 1露光光 EL1による第 1パターン PA1の像の投影を連続的に行う。基板ステー ジ 80の— Y方向への移動を続けることによって、基板 P上のショット領域 SHは第 1露 光領域 AR1を通過する。
[0112] そして、第 1マスク Mlの第 1パターン形成領域 SA1の— Y側のエッジが第 1照明領 域 IA1の +Y側のエッジに到達した時点で、第 1マスク Mlの第 1パターン PA1に対 する第 1露光光 EL1による照明が終了する。また、第 1マスク Mlの第 1パターン形成 領域 S A1の Y側のエッジが第 1照明領域 IA1の +Y側のエッジに到達した時点で 、図 11中、基板 P上のショット領域 SHの +Y側のエッジ G2が第 1露光領域 AR1の— γ側のエッジに到達するように設定されており、ショット領域 SHの + Y側のエッジ G2 が第 1露光領域 AR1の Y側のエッジに到達した時点で、第 1露光領域 AR1に対す る第 1露光光 EL1の照射が停止される。これにより、第 1露光領域 AR1に照射される
第 1露光光 ELIによるショット領域 SHの露光、すなわちショット領域 SHに対する第 1 露光光 EL1による第 1パターン PA1の像の投影が終了する。なお、前述のように、可 動ブラインド 10が第 1マスク Mlと同期して移動するので、第 1マスク Mlの第 1パター ン形成領域 SA1の— Y側のエッジが第 1照明領域 IA1の— Y側のエッジに到達した 時点で第 1照明領域 IA1が可動ブラインドのエッジ E3により制限され始め、第 1照明 領域 IA1の +Y側のエッジに到達した時点で第 1照明領域 IA1の幅は零となる。これ に対応して、ショット領域 SHのエッジ G2が第 1露光領域 AR1の + Y側のエッジに到 達した時点力も第 1露光領域 AR1の幅が徐々に狭められていき、エッジ G2が第 1露 光領域 AR1の Y側のエッジに到達した時点でその幅が零となる。これにより、第 1 走査露光の終了前に、基板 P上でショット領域 SHに対して +Y方向のショット領域の 不要な露光を防止できる。
第 1マスク Mlの第 1パターン形成領域 SA1の一部の領域が第 1照明領域 IA1を通 過している間の所定のタイミングで、第 2マスク M2の第 2パターン PA2が形成された 第 2パターン形成領域 SA2の +Y側のエッジが第 2照明領域 IA2に到達し、第 2バタ ーン PA2に対する第 2露光光 EL2による照明が開始される。また、第 2マスク M2の 第 2パターン形成領域 SA2の +Y側のエッジが第 2照明領域 IA2に到達した時点で 、図 11中、基板 P上のショット領域 SHの—Y側のエッジ G1が第 2露光領域 AR2に到 達するように設定されており、第 2露光領域 AR2に対する第 2露光光 EL2の照射が 開始される。すなわち、基板 P上のショット領域 SHの一部の領域が第 1露光領域 AR 1を通過して 、る間の所定のタイミングで、ショット領域 SHの Y側のエッジ G1が第 2 露光領域 AR2に到達し、ショット領域 SHに対する第 2露光光 EL2による第 2パター ン PA2の像の投影が開始される。なお、第 2パターン PA2に対する第 2露光光 EL2 による照明の開始前は、可動ブラインド 10によって、基板 P上での第 2露光領域 AR2 の走査方向の幅が零であるが、第 2パターン PA2による走査露光 (第 2走査露光)の 開始時点、すなわち基板 P上のショット領域 SHのエッジ G1が第 2露光領域 AR2の +Y側のエッジに到達した時点からその幅が徐々に広げられていき、所定の設定値 に達した時点でその幅は一定に維持される。これにより、第 2走査露光の開始前後に 、基板 P上でショット領域 SHに対して Y方向のショット領域の不要な露光を防止で
きる。
[0114] 上述のように、第 1露光領域 AR1と第 2露光領域 AR2との相対位置関係 (Y軸方向 の距離)に基づいて、メインステージ 61に対する第 1マスク Mlの位置及び第 2マスク M2の位置、すなわちメインステージ 61上における第 1マスク Mlと第 2マスク M2との 相対位置関係が予め調整されており、メインステージ 61と基板ステージ 80とを同期 移動することによって、基板 P上のショット領域 SHの Y側のエッジ G1が第 2露光領 域 AR2に到達したときに、第 2マスク M2の第 2パターン PA2の投影を開始することが できる。
[0115] 制御装置 30は、マスクステージ 60 (メインステージ 61)の +Y方向への移動を続け ることによって、第 2マスク M2の第 2パターン PA2に対する第 2露光光 EL2による照 明を連続的に行う。マスクステージ 60の +Y方向への移動を続けることによって、第 2 マスク M2の第 2パターン PA2は第 2照明領域 IA2を通過する。
[0116] また、制御装置 30は、マスクステージ 60の +Y方向への移動と同期して、基板ステ ージ 80の— Y方向への移動を続けることによって、基板 P上のショット領域 SHに対す る、第 2露光光 EL2による第 2パターン PA2の像の投影を連続的に行う。基板ステー ジ 80の— Y方向への移動を続けることによって、基板 P上のショット領域 SHは第 2露 光領域 AR2を通過する。
[0117] そして、第 2マスク M2の第 2パターン形成領域 SA2の Y側のエッジが第 2照明領 域 IA2の +Y側のエッジに到達した時点で、第 2マスク M2の第 2パターン PA2に対 する第 2露光光 EL2による照明が終了する。また、第 2マスク M2の第 2パターン形成 領域 SA2の Y側のエッジが第 2照明領域 IA2の +Y側のエッジに到達した時点で 、図 11中、基板 P上のショット領域 SHの +Y側のエッジ G2が第 2露光領域 AR2の— γ側のエッジに到達するように設定されており、ショット領域 SHの + Y側のエッジ G2 が第 2露光領域 AR2の Y側のエッジに到達した時点で、第 2露光領域 AR2に対す る第 2露光光 EL2の照射が停止される。これにより、第 2露光領域 AR2に照射される 第 2露光光 EL2によるショット領域 SHの露光、すなわちショット領域 SHに対する第 2 露光光 EL2による第 2パターン PA2の像の投影が終了する。なお、前述のように、可 動ブラインド 10が第 2マスク M2と同期して移動するので、第 2マスク M2の第 2パター
ン形成領域 SA2の—Y側のエッジが第 2照明領域 IA2の— Y側のエッジに到達した 時点で第 2照明領域 IA2が可動ブラインドのエッジ E4により制限され始め、第 2照明 領域 IA2の +Y側のエッジに到達した時点で第 2照明領域 IA2の幅は零となる。これ に対応して、ショット領域 SHのエッジ G2が第 2露光領域 AR2の +Y側のエッジに到 達した時点力も第 2露光領域 AR2の幅が徐々に狭められていき、エッジ G2が第 2露 光領域 AR2の Y側のエッジに到達した時点でその幅が零となる。これにより、第 2 走査露光の終了前に、基板 P上でショット領域 SHに対して +Y方向のショット領域の 不要な露光を防止できる。
[0118] こうして、第 1露光領域 AR1に照射された第 1露光光 EL1で露光された基板 P上の ショット領域 SHの感光材層は、現像工程等を介さずに、第 2露光領域 AR2に照射さ れた第 2露光光 EL2で再度露光(二重露光)される。
[0119] また、第 2パターン形成領域 SA2の一部の領域が第 2照明領域 IA2を通過している 途中の所定のタイミングで、第 1マスク Mlの第 1パターン PA1に対する第 1露光光 E L1による照明が終了する。また、基板 P上のショット領域 SHの一部の領域が第 2露 光領域 AR2を通過している途中の所定のタイミングで、ショット領域 SHに対する第 1 露光光 EL1の照射が終了する。
[0120] 以上のように、本実施形態においては、 1回のスキャン動作で、基板 P上の 1つのシ ヨット領域 SHを第 1パターン PA1の像と第 2パターン PA2の像とで多重露光(二重露 光)することができる。
[0121] 基板 P上にはショット領域 SHが複数設けられており、制御装置 30は、これらショット 領域 SHのそれぞれを順次露光する。制御装置 30は、基板 Pの— Y方向へのスキヤ ン動作と +Y方向へのスキャン動作とを繰り返すことによって、基板 P上の複数のショ ット領域 SHを順次多重露光する。
[0122] また、第 1、第 2マスク Ml、 M2、及び基板 Pの移動中には、制御装置 30は、第 1、 第 2マスク Ml、 M2の移動と同期して、可動ブラインド 10を移動しているので、第 1、 第 2マスク Ml、 M2のうち第 1、第 2パターン形成領域 SA1、 SA2以外の部分に対す る不要な第 1、第 2露光光 EL1、 EL2の照射を遮ることができる。したがって、第 1露 光光 EL1及び第 2露光光 EL2による基板 Pの不要な露光が防止される。特に、単一
の可動ブラインドを用いて、第 1、第 2パターン形成領域 SA1、 SA2以外の部分に対 する露光光の不要な照射を防止して 、るので、多重露光を行う露光装置の装置コス トの増大や装置の大型化を抑えることができる。
[0123] また、光源装置 1から射出される露光光 ELを分離する分離光学系 13を設けたので 、装置コストの増大や装置の大型化を抑え、基板 Pを効率良く多重露光できる。特に 、第 1露光光 EL1と第 2露光光 EL2は、単一の光源装置から発生される露光光 ELを したものであるので、第 1露光光 EL1と第 2露光光 EL2は、偏光方向が異なる以外は 、共通のビーム品質 (例えば、波長特性)を備えている。それゆえ、異なる二つの光 源力 第 1露光光と第 2露光光を発生させる場合に比べて、それらの露光光間の調 整を行う必要がなぐ一層容易に多重露光における良好な露光品質を維持すること ができる。
[0124] また、 Y軸方向の異なる位置に規定された第 1露光領域 AR1と第 2露光領域 AR2 とのそれぞれに露光光 ELを照射するとともに、基板 P上のショット領域 SHが第 1露光 領域 AR1と第 2露光領域 AR2とを通過するように基板 Pを Y軸方向に移動することで 、基板 Pのショット領域 SHを効率良く多重露光することができる。本実施形態におい ては、基板 P上の複数のショット領域 SHを多重露光(二重露光)するときに、 1回のス キャン動作で、 1つのショット領域 SHを第 1パターン PA1の像と第 2パターン PA2の 像とで露光することができ、スループットを向上できる。また、基板 Pの— Y方向へのス キャン動作と +Y方向へのスキャン動作とを繰り返すことによって、基板 P上の複数の ショット領域 SHを効率良く多重露光することができる。また、 1回のスキャン動作で 1 つのショット領域 SHを多重露光することができるので、各ショット領域 SH内に第 1パ ターン PA1の像と第 2パターン PA2の像とを所望の位置関係で形成することができる
[0125] また、本実施形態においては、分離光学系 13は、露光光 ELを S偏光状態の第 1露 光光 EL1と P偏光状態の第 2露光光 EL2とに分離しており、ラインパターンを含む第 1、第 2パターン PA1、 PA2を直線偏光照明している。ラインパターンの長手方向と ほぼ平行な偏光方向を有する露光光は、そのラインパターンの像のコントラストの向 上に寄与するので、投影光学系 PLの光学性能 (焦点深度など)の向上を図ることが
でき、基板 P上において高いコントラストの第 1、第 2パターン PA1、 PA2の像を得るこ とができる。投影光学系 PLの開口数 NAが、例えば 0. 9程度と大きい場合、ランダム 偏光光では偏光効果によって結像特性が劣化する可能性がある。本実施形態にお いては、偏光照明を用いているので、良好なパターンの像を得ることができる。
[0126] また、本実施形態においては、第 1露光領域 AR1へ照射される第 1露光光 EL1、 及び第 2露光領域 AR2へ照射される第 2露光光 EL2が 1つの終端光学素子 FLを介 して基板 Pに照射されるので、投影光学系 PLの構成を簡素化することができる。また 、第 1露光領域 AR1と第 2露光領域 AR2とを異なる位置に規定しているので、第 1、 第 2露光領域 AR1、 AR2と光学的な共役な位置近傍に反射面 40A、 40Bを配置す ることによって、第 1マスク Mlからの第 1露光光 EL1と第 2マスク M2からの第 2露光 光 EL2とを第 3誘導光学系 43に導くことができ、第 1、第 2露光領域 AR1、 AR2のそ れぞれに照射することができる。
[0127] また、本実施形態の投影光学系 PLにおいては、中間光学部材 40で反射した第 1 マスク Mlからの第 1露光光 EL1と第 2マスク M2からの第 2露光光 EL2と力 第 3誘 導光学系 43の光軸に対して対称に第 3誘導光学系 43に入射するので、第 3誘導光 学系 43内の各素子内の温度分布も光軸に対して対称にすることができる。したがつ て、第 3誘導光学系 43内の各素子に温度変化 (温度分布変化を含む)が生じても、 例えば投影光学系 PL内の一部の光学素子 (例えば、第 3誘導光学系 43内の一部 のレンズ)を移動したり、傾斜させたりすることによって、投影光学系 PLの光学性能を 所望状態に維持することができる。
[0128] また、本実施形態においては、制御装置 30は、第 1露光領域 AR1と第 2露光領域 AR2との相対位置関係等に基づいて、メインステージ 61上での第 1マスク Ml及び 第 2マスク M2の位置 (第 1マスク Mlと第 2マスク M2の相対位置関係)を予め調整す るとともに、計測システム 70を用いて、マスクステージ 60及び基板ステージ 80の位置 情報をモニタしつつ、第 1、第 2マスク Ml、 M2と基板 Pとを移動しながら露光するの で、第 1マスク Mlの第 1パターン PA1の像の投影と第 2マスク M2の第 2パターン PA 2の像の投影とのそれぞれを所望のタイミングで実行することができ、各ショット領域 S H内に第 1マスク Mlの第 1パターン PA1の像と第 2マスク M2の第 2パターン PA2の
像とを所望の位置関係で形成することができる。
[0129] なお、基板 P上の 1つのショット領域 SHを多重露光しているときに、メインステージ 6 1と基板ステージ 80との相対位置が目標相対位置カゝらずれる可能性がある。メインス テージ 61と基板ステージ 80との相対位置のずれは、レーザ干渉計 74、 75の計測結 果に基づいて検知することができるので、制御装置 30は、第 1ステージ 61と基板ステ ージ 80との相対位置のずれを検知した場合には、レーザ干渉計 74、 75の計測結果 に基づいて、第 1サブステージ 62及び第 2サブステージ 63の少なくとも一方を移動し て、第 1マスク Ml及び第 2マスク M2の少なくとも一方の位置を調整する。これにより 、第 1、第 2マスク Ml、 M2とショット領域 SHとの各位置関係が常に所望状態に調整 され、第 1パターン PA1の像と第 2パターン PA2の像とをショット領域 SH内に所望の 位置関係で形成することができる。
[0130] なお、本実施形態にぉ 、ては、計測システム 70は、メインステージ 61に設けられた 反射部材 71を用いてメインステージ 61の位置情報を取得し、制御装置 30は、その 取得した位置情報に基づいて、メインステージ 61の位置を制御している力 反射部 材 71を省いて、反射部材 72を用いて得られる第 1サブステージ 62の位置情報と、反 射部材 73を用いて得られる第 2サブステージ 63の位置情報との少なくとも一方を用 いて、メインステージ 61の移動を制御するようにしてもよい。また、計測システム 70は レーザ干渉計以外のセンサ、例えばエンコーダなどを用いて、第 1、第 2マスク Ml、 M2の相対的な位置関係に関する情報、例えば第 1、第 2マスク Ml、 M2の位置情 報 (位置又は変位)などを検出してもよ 、。
[0131] なお、本実施形態においては、第 1、第 2マスク Ml、 M2を移動するための機構とし て、第 1、第 2サブステージ 62、 63を設け、その第 1、第 2サブステージ 62、 63の位 置情報を取得するために、レーザ干渉計 74による位置計測で用いられる反射部材 7 2、 73を設けているが、第 1露光領域 AR1と第 2露光領域 AR2との相対位置の変化 、及びメインステージ 61と基板ステージ 80との同期誤差 (位置誤差)が許容できる場 合には、これらを省いてもよい。この場合、第 1マスク Ml及び第 2マスク M2をメインス テージ 61上の所定位置のそれぞれに固定し、反射部材 71を用いてレーザ干渉計 7 4で取得されたメインステージ 61の位置情報と、レーザ干渉計 75で取得された基板
ステージ 80の位置情報とに基づいて、メインステージ 61と基板ステージ 80とを同期 移動するようにしてもよ ヽ。
[0132] なお、投影光学系 PLへの第 1、第 2露光光 EL1、 EL2の照射、及び投影光学系 P Lの周囲の環境変化 (温度変化、圧力変化などを含む)等により、投影光学系 PLの 光学特性が変化して、第 1露光領域 AR1と第 2露光領域 AR2との相対位置関係に 変化が生じる可能性がある。この場合には、第 1マスク Mlの第 1パターン PA1の像と 第 2マスク M2の第 2パターン PA2の像とのそれぞれがショット領域 SH内の所望の位 置に形成されるように、第 1サブステージ 62及び第 2サブステージ 63の少なくとも一 方を動かして、第 1マスク Ml及び第 2マスク M2の少なくとも一方の位置を調整しても よい。例えば、制御装置 30は、投影光学系 PLへの第 1、第 2露光光 EL1、 EL2の照 射量、及び投影光学系 PLの周囲の環境変化等をモニタし、第 1マスク Mlの第 1バタ ーン PA1の像と第 2マスク M2の第 2パターン PA2の像とのそれぞれがショット領域 S H内の所望の位置に形成されるように、モニタ結果に基づいて、第 1サブステージ 62 及び第 2サブステージ 63の少なくとも一方を動かすことができる。また、第 1誘導光学 系 41、第 2誘導光学系 42、及び第 3誘導光学系 43の少なくとも 1つを調整して、第 1 露光領域 AR1と第 2露光領域 AR2との相対位置関係 (Y軸方向の距離など)を補正 してもよい。さらに、上記の照射量や環境変化に起因して投影光学系 PLの結像特性 も変動する。そこで、上記のモニタ結果に基づいて、例えば、投影光学系 PLの調整( 光学素子の移動を含む)、露光光の波長特性(中心波長、スペクトル幅など)の調整 、及び基板 Pの移動 (Z軸、 Θ X及び Θ Y方向の位置調整)の少なくとも 1つを行うこと が好ましい。これにより、結像特性の変動の抑制 (補正)、及び Z又はその変動に起 因する露光精度の低下の防止を図ることが可能となる。
[0133] また、上述のように、本実施形態においては、制御装置 30は、第 1マスク Mlと第 2 マスク M2とを同一の走査方向に移動しつつ、第 1露光光 EL1及び第 2露光光 EL2 で第 1マスク Mlの第 1パターン PA1及び第 2マスク M2の第 2パターン PA2のそれぞ れを照明している力 後述するように、光学ユニット Uの構成によっては、ショット領域 SHの走査露光中に、第 1マスク Mlと第 2マスク M2とが互いに逆向きに移動する場 合もある。そのような場合には、一つのショット領域 SHの走査露光に対して、可動ブ
ラインド 10の一方向(+Z方向又は— Z方向)への移動により、第 1、第 2マスク Ml、 M2の第 1、第 2パターン形成領域 SA1、 SA2以外の部分に対する不要な第 1、第 2 露光光 EL1、 EL2の照射、ひいては第 1露光光 EL1及び第 2露光光 EL2による基板 Pの不要な露光が防止されるように、分離光学系 13と第 1パターン PA1及び第 2バタ ーン PA2との間に配置される第 3、第 4、第 5光学系 14、 15、 17の結像回数等の光 学特性を設定すればよい。
[0134] <第 2実施形態 >
第 2実施形態について説明する。以下の説明において、上述の実施形態と同一又 は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する
[0135] 図 14は、第 2実施形態に係る照明系 ILの要部を示す図である。上述の第 1実施形 態と異なる第 2実施形態の特徴的な部分は、照明系 ILが、分離光学系 (偏光分離光 学系) 13で生成された第 1露光光 EL1及び第 2露光光 EL2の少なくとも一方の偏光 状態を変える変換素子 18を有している点にある。
[0136] 本実施形態の照明系 ILは、上述の第 1実施形態と同様、露光光 ELを射出する光 源装置 1と、光源装置 1からの露光光 ELを S偏光成分と P偏光成分とを主に含む露 光光 ELに変換して射出する第 1光学系 2と、ブラインド装置 11と、露光光 ELを S偏 光状態の第 1露光光 EL1と P偏光状態の第 2露光光 EL2とに分離する分離光学系( 偏光分離光学系) 13とを備えている。なお、図 14には、光源装置 1及び第 1光学系 2 は図示されていない。また、本実施形態においては、分離光学系 13と第 2マスク M2 との間の光路上に、第 2露光光 EL2の偏光状態を変える変換素子 18が配置されて いる。変換素子 18は、位相差板を含む。本実施形態においては、変換素子 18は、 λ Ζ4板である。
[0137] 分離光学系 13で分離された S偏光状態の第 1露光光 EL1は、第 3光学系 14を介し て第 1マスク Mlに照射される。一方、分離光学系 13で分離された P偏光状態の第 2 露光光 EL2は、第 4光学系 15を介して、変換素子 18に入射する。 λ Ζ4板力 なる 変換素子 18は、入射された Ρ偏光を主成分とする第 2露光光 EL2を、円偏光を主成 分とする第 2露光光 EL2に変換する。変換素子 18でその偏光状態を変換された第 2
露光光 EL2は、反射ミラー 16及び第 5光学系 17を介して、第 2マスク M2に照射され る。
[0138] 上述の実施形態同様、第 1光学系 2は、光源装置 1からの露光光 ELを所望の角度 に回折する回折光学素子 4を含む。本実施形態においては、回折光学素子 4は、ォ プティカルインテグレータ 6の光入射面を、照明系 ILの光軸 AXを含む円形状の照明 領域と光軸 AXを中心とした輪帯状の照明領域とで照明可能である。上述したように 、回折光学素子 4の構造条件を調整することによって、所望の照明領域を形成可能 である。これにより、オプティカルインテグレータ 6の光射出面には、光軸 AXを含む円 形状の二次光源と光軸 AXを中心とした輪帯状の二次光源とが形成される。
[0139] また、上述の第 1実施形態同様、オプティカルインテグレータ 6の直前 (光入射面近 傍)には偏光変換素子 5が配置されている。本実施形態の偏光変換素子 5は、円形 状の二次光源力 射出される露光光 ELを P偏光状態の露光光 ELに変換するととも に、輪帯状の二次光源から射出される露光光 ELを周方向偏光状態の露光光 EL 変換する。なお、上述したように、偏光変換素子 5の旋光能及び厚み等を調整するこ とによって、所望の偏光状態を有する露光光を生成可能である。
[0140] 図 15は、本実施形態に係る開口絞り 8を示す図である。開口絞り 8は、オプティカル インテグレータ 6の光射出面近傍、すなわち二次光源 7の直後に配置される。図 15に おいて、開口絞り 8は、露光光 ELを通過可能な 2つの第 1開口 8A及び第 3開口 8G を有している。上述の第 1実施形態同様、 2つの第 1開口 8Aは、光軸 AXを挟んで対 向する位置に設けられており、その 2つの第 1開口 8Aからは、 S偏光状態の露光光 E Lが射出される。第 3開口 8Gは、円形状であり、光軸 AX上に 1つ設けられている。第 3開口 3Gは、円形状の二次光源に対応するように形成されており、その第 3開口 8G 力 は、 P偏光状態の露光光 ELが射出される。このように、本実施形態においても、 光源装置 1から射出され、開口絞り 8を通過する露光光 ELは、 S偏光成分と P偏光成 分とを主に含む。
[0141] 開口絞り 8の開口 8A、 8Gを通過した露光光 ELは、コンデンサー光学系等を介して ブラインド装置 11に入射する。ブラインド装置 11の光通過領域を通過した S偏光成 分と P偏光成分とを主に含む露光光 ELは、第 2光学系 12を介して、分離光学系 13
に入射する。
[0142] 分離光学系 13は、露光光 ELを S偏光状態の第 1露光光 EL1と P偏光状態の第 2 露光光 EL2とに分離する。分離光学系 13で分離された S偏光状態の第 1露光光 EL 1は、第 3光学系 14に供給され、その第 3光学系 14を介して第 1マスク Ml上に照射 される。また、分離光学系 13で分離された P偏光状態の第 2露光光 EL2は、第 4光学 系 15に供給され、変換素子 18で円偏光状態の第 2露光光 EL2に変換された後、反 射ミラー 16及び第 5光学系 17を介して第 2マスク M2上に照射される。
[0143] 第 1マスク Ml上には、光軸 AXに対して互いに対向する位置に配置された 2つの 第 1開口 8Aのそれぞれを通過した第 1露光光 EL1が照射され、第 1マスク Mlの第 1 ノターン PA1は、 S偏光を主成分とする第 1露光光 EL1によってダイポール照明(二 極照明)される。上述の第 1実施形態同様、第 1マスク Mlの第 1パターン PA1は、 X 軸方向を長手方向とする複数のライン 'アンド'スペースパターンを主成分とし、第 1 ノ《ターン PA1に含まれるライン 'アンド'スペースノ《ターンのラインノ《ターンの長手方 向と、 S偏光を主成分とする第 1露光光 EL1の偏光方向とはほぼ平行である。このよ うに、照明系 ILは、第 1マスク Mlのライン 'アンド'スペースパターンのラインパターン の長手方向に合わせた直線偏光状態 (S偏光状態)の二つの光束 (第 1露光光 EL1 )を用いて、第 1マスク Mlのライン 'アンド'スペースパターンのラインパターンの長手 方向に合わせた斜入射照明(ダイポール照明)を行う。
[0144] 一方、第 2マスク M2上には、光軸 AXを含む位置に配置された第 3開口 8Gを通過 した第 2露光光 EL2が照射され、第 2マスク M2の第 2パターン PA2は、円偏光を主 成分とする第 2露光光 EL2によって照明される。本実施形態においては、第 2マスク M2の第 2パターン PA2は、例えば複数の異なる方向に延びるラインパターンが混在 するパターンである。照明系 ILは、第 2マスク M2のパターンを、垂直照明する。以下 では、第 2露光光 EL2による第 2マスク M2の第 2パターン PA2の照明を通常照明と 呼ぶ。
[0145] なお、本実施形態においては、開口絞り 8の開口 8Gを小さくすることによって、照明 σ値 (コヒーレンスファクター)の小さい照明条件を設定することができるので、第 2マ スク Μ2が、例えばコンタクトホールパターンが形成される位相シフトマスクである場合
などに有効である。
[0146] また、本実施形態においては、照明系 ILは、第 1マスク Mlをダイポール照明し、第 2マスク M2を通常照明しており、例えば第 1マスク Mlの第 1パターン PA1としてファ インパターンが形成され、第 2マスク M2の第 2パターン PA2として第 1パターン PA1 よりもラフなラフパターンが形成されている場合、それぞれのパターンに応じた照明 条件で照明することができる。
[0147] なお、ここでは、照明系 ILは、二次光源 7から射出される露光光 ELを、開口絞り 8に より S偏光成分と P偏光成分とを主に含む露光光 ELに変換した後、分離光学系 13に 入射させ、第 1マスク Mlを S偏光状態の第 1露光光 EL1によりダイポール照明(二極 照明)するとともに、第 2マスク M2を円偏光状態の第 2露光光 EL2により通常照明し ている。ここで、回折光学素子の構造を調整し、 1つの回折光学素子に、ダイポール 照明用の回折光学素子としての機能と通常照明用の回折光学素子としての機能とを 持たせ、その露光光 ELの光路上に所定の偏光変換素子を配置することにより、開口 絞りを設けることなぐ第 1マスク Mlを S偏光状態の第 1露光光 EL1によりダイポール 照明するとともに、第 2マスク M2を円偏光状態の第 2露光光 EL2により通常照明する ことができる。
[0148] 次に、本実施形態に係る露光装置 EXを用いて基板 Pを露光する方法について説 明する。上述の第 1実施形態同様、制御装置 30は、基板 Pを露光する前に、第 1露 光領域 AR1及び第 2露光領域 AR2の位置情報等に基づ 、て、メインステージ 61上 での第 1マスク Mlと第 2マスク M2との相対位置関係を、第 1、第 2サブステージ 62、 63を用いて調整する。
[0149] 第 1マスク Mlと第 2マスク M2との相対位置関係の調整が終了した後、制御装置 30 は、光源装置 1より露光光 ELを射出する。光源装置 1から射出された露光光 ELは、 第 1光学系 2によって、所定の偏光状態に変換され、ブラインド装置 11を通過して、 分離光学系 13に入射する。分離光学系 13は、入射した露光光 ELを S偏光状態の 第 1露光光 EL1と P偏光状態の第 2露光光 EL2とに分離する。 S偏光状態の第 1露 光光 EL1は、第 1マスク Mlの第 1パターン PA1を照明する。 P偏光状態の第 2露光 光 EL2は、変換素子 18によって円偏光状態の第 2露光光 EL2に変換された後、第 2
マスク M2を照明する。
[0150] 本実施形態においても、制御装置 30は、メインステージ 61を有するマスクステージ 60を用いて、第 1マスク Mlと第 2マスク M2とを同一の走査方向(例えば +Y方向)に 移動しつつ、第 1露光光 EL1及び第 2露光光 EL2で、第 1パターン PA1及び第 2パ ターン PA2のそれぞれを照明する。また、制御装置 30は、基板 P上のショット領域 S Hを露光中に、第 1マスク Ml及び第 2マスク M2の移動と同期して、基板 Pを保持し た基板ステージ 80を、第 1マスク Ml及び第 2マスク M2とは逆向きの走査方向(例え ば— Y方向)に移動する。また、制御装置 30は、第 1、第 2マスク Ml、 M2の移動と同 期して、可動ブラインド 10を移動する。これにより、第 1露光光 EL1及び第 2露光光 E L2による基板 Pの不要な露光が防止される。
[0151] 基板 P上のショット領域 SHは、第 1パターン PA1及び投影光学系 PLを介して第 1 露光領域 AR1に照射される第 1露光光 EL1で形成される第 1パターン PA1の像と、 第 2パターン PA2及び投影光学系 PLを介して第 2露光領域 AR2に照射される第 2 露光光 EL2で形成される第 2パターン PA2の像とで、多重露光される。本実施形態 においても、第 1露光領域 AR1に照射された第 1露光光 EL1で露光された基板 P上 の感光材層は、現像工程等を介さずに、第 2露光領域 AR2に照射された第 2露光光 EL2で再度露光(二重露光)され、 1つのショット領域 SHは、 1回のスキャン動作で、 第 1パターン PA1の像と第 2パターン PA2の像とで多重露光(二重露光)される。
[0152] <第 3実施形態 >
第 3実施形態について説明する。図 16は、第 3実施形態に係る照明系 ILの要部を 示す図である。以下では、上述の第 1実施形態と同一または同等の構成部分につい ては同一符号を付し、その説明を簡略若しくは省略する。
[0153] 本実施形態の照明系 ILは、上述の第 1実施形態と同様、露光光 ELを射出する光 源装置 1と、光源装置 1からの露光光 ELを S偏光成分と P偏光成分とを主に含む露 光光 ELに変換して射出する第 1光学系 2と、ブラインド装置 11と、露光光 ELを S偏 光状態の第 1露光光 EL1と P偏光状態の第 2露光光 EL2とに分離する偏光分離光 学系 13とを備えている。なお、図 16には、光源装置 1及び第 1光学系 2は図示されて いない。また、本実施形態においては、分離光学系 13と第 2マスク M2との間の光路
上に、結像光学系(リレー光学系) 19A、 19Bが配置されている。
[0154] 本実施形態においては、可動ブラインド 10を移動することによって、第 1、第 2マス ク Ml、 M2の第 1、第 2パターン形成領域 SA1、 SA2以外の部分に対する不要な第 1、第 2露光光 EL1、 EL2の照射、ひいては第 1露光光 EL1及び第 2露光光 EL2に よる基板 Pの不要な露光が防止されるように、分離光学系 13と第 1パターン PA1及び 第 2パターン PA2との間に配置される光学系 14、 17、 19A、 19Bによる結像回数が 設定されている。本実施形態においては、分離光学系 13と第 2マスク M2との間の光 路上に、 2つの結像光学系(リレー光学系) 19A、 19Bが配置されている。結像光学 系 19A、 19Bのそれぞれは、物体の像を 1回倒立させる機能を有する。したがって、 2つの結像光学系 19A、 19Bによって、ブラインド装置 11の像、すなわち可動ブライ ンド 10の光通過領域の像 (各エッジ E1〜E6の像)は、分離光学系 13と第 2マスク M 2との間において、 2回倒立する。すなわち、本実施形態においては、分離光学系 13 と第 2マスク M2との間における、可動ブラインド 10の光通過領域の像 (各エッジ E1 〜E6の像)の結像回数 (倒立回数)は、 2回 (偶数回)である。一方、本実施形態にお いては、分離光学系 13と第 1マスク Mlとの間における、可動ブラインド 10の光通過 領域の像 (各エッジ E1〜E6の像)の結像回数 (倒立回数)は、 0回(偶数回)である。
[0155] 分離光学系 13で分離された S偏光状態の第 1露光光 EL1は、第 3光学系 14を介し て第 1マスク Mlに照射される。一方、分離光学系 13で分離された P偏光状態の第 2 露光光 EL2は、 2つの結像光学系 19A、 19Bを介して、反射ミラー 16に入射し、その 反射ミラー 16で反射した後、第 5光学系 17を介して、第 2マスク M2に照射される。
[0156] 上述の実施形態同様、本実施形態においても、制御装置 30は、マスクステージ 60 のメインステージ 61を用いて、第 1マスク Mlと第 2マスク M2とを同一の走査方向(例 えば Y方向)に移動しつつ、第 1露光光 EL1及び第 2露光光 EL2で、第 1マスク M 1の第 1パターン PA1及び第 2マスク M2の第 2パターン PA2のそれぞれを照明する 。また、制御装置 30は、基板 P上のショット領域 SHの露光中に、基板 Pを保持した基 板ステージ 80を、第 1マスク Ml及び第 2マスク M2とは逆向きの走査方向(例えば Y方向)に移動する。また、制御装置 30は、第 1、第 2マスク Ml、 M2の移動と同期し て、可動ブラインド 10を移動する。基板 P上のショット領域 SHは、第 1パターン PA1
及び投影光学系 PLを介して第 1露光領域 ARlに照射される第 1露光光 ELIで形成 される第 1パターン PA1の像と、第 2パターン PA2及び投影光学系 PLを介して第 2 露光領域 AR2に照射される第 2露光光 EL2で形成される第 2パターン PA2の像とで 、多重露光される。
[0157] 本実施形態においても、一つのショット領域 SHに対する露光動作中に、可動ブラ インド 10を一方向(+ Z方向又は— Z方向)移動することによって、第 1露光光 EL1及 び第 2露光光 EL2による基板 Pの不要な露光が防止されるように、分離光学系 13と 第 1パターン PA1及び第 2パターン PA2との間に配置される光学系による結像回数 が設定されているので、第 1マスク Mlと第 2マスク M2とを同一の走査方向に移動し つつ、第 1露光光 EL1及び第 2露光光 EL2で第 1パターン PA1及び第 2パターン PA 2のそれぞれを照明した場合でも、 1つの可動ブラインド 10によって、第 1、第 2マスク Ml、 M2のうち第 1、第 2パターン形成領域 SA1、 SA2以外の部分に対する不要な 第 1、第 2露光光 EL1、 EL2の照射を遮ることができる。これにより、第 1露光光 EL1 及び第 2露光光 EL2による基板 Pの不要な露光を防止することができる。
[0158] また、本実施形態においては、分離光学系 13と第 2マスク M2との間の第 2露光光 EL2の光路上に、リレー光学系として結像光学系 19A、 19Bが配置されている。この ため、第 1マスク Ml (第 1サブステージ 62)と第 2マスク M2 (第 2サブステージ 63)と の距離が長い場合も、第 1、第 2マスク Ml、 M2のそれぞれを第 1、第 2露光光 EL1、 EL2で良好に照明することができる。
[0159] <第 4実施形態 >
第 4実施形態について説明する。図 17は第 4実施形態を示す概略構成図である。 上述の第 1実施形態と異なる本実施形態の特徴的な部分は、第 1誘導光学系 41及 び第 2誘導光学系 42が凹面ミラー 44を有している点にある。以下では、その差異を 中心に説明し、上述の第 1実施形態と同一または同等の構成部分については同一 符号を付し、その説明を簡略若しくは省略する。
[0160] 図 17に示すように、本実施形態の投影光学系 PLは、上述の実施形態同様、基板 Pの表面が対向して配置される 1つの終端光学素子 FLを有し、その 1つの終端光学 素子 FLを介して、第 1露光領域 AR1及び第 2露光領域 AR2のそれぞれに第 1露光
光 ELI及び第 2露光光 EL2を照射する。また、投影光学系 PLは、第 1露光領域 AR 1及び第 2露光領域 AR2と光学的に共役な位置の近傍に配置され、第 1マスク Mlか らの第 1露光光 EL1と第 2マスク M2からの第 2露光光 EL2とを第 3誘導光学系 43へ 導く中間光学部材 40を有して 、る。
[0161] 第 1マスク Mlからの第 1露光光 EL1を中間光学部材 40に導く第 1誘導光学系 41 は、凹面ミラー 44を有している。同様に、第 2マスク M2からの第 2露光光 EL2を中間 光学部材 40に導く第 2誘導光学系 42も、凹面ミラー 44を有している。
[0162] 第 1、第 2マスク Ml、 M2のそれぞれでパターンィ匕された第 1、第 2露光光 EL1、 EL 2のそれぞれは、第 1、第 2誘導光学系 41、 42により中間光学部材 40に導かれる。 ついで、第 1露光光 EL1と第 2露光光 EL2は、中間光学部材 40の第 1、第 2反射面 4 OA、 40Bで反射した後、終端光学素子 FLを含む第 3誘導光学系 43を介して、第 1 露光領域 AR1及び第 2露光領域 AR2のそれぞれに照射される。
[0163] 本実施形態においても、制御装置 30は、マスクステージ 60のメインステージ 61を 用いて、第 1マスク Mlと第 2マスク M2とを同一の走査方向(例えば Y方向)に移動 しつつ、第 1露光光 EL1及び第 2露光光 EL2で、第 1マスク Mlの第 1パターン PA1 及び第 2マスク M2の第 2パターン PA2のそれぞれを照明する。また、制御装置 30は 、基板 P上のショット領域 SHの露光中に、基板 Pを保持した基板ステージ 80を、第 1 マスク Ml及び第 2マスク M2とは逆向きの走査方向(例えば Y方向)に移動する。 また、制御装置 30は、第 1、第 2マスク Ml、 M2の移動と同期して、可動ブラインド 10 を移動する。基板 P上のショット領域 SHは、第 1パターン PA1及び投影光学系 PLを 介して第 1露光領域 AR1に照射される第 1露光光 EL1で形成される第 1パターン PA 1の像と、第 2パターン PA2及び投影光学系 PLを介して第 2露光領域 AR2に照射さ れる第 2露光光 EL2で形成される第 2パターン PA2の像とで、多重露光される。
[0164] 本実施形態においても、スループットの低下を招くことなぐ 1回のスキャン動作で基 板 P上の各ショット領域 SHを多重露光することができる。
[0165] なお、上述の第 1〜第 4実施形態において、第 1マスク Mlからの第 1露光光 EL1が 通過する第 1誘導光学系 41の一部の光学素子と、第 2マスク M2からの第 2露光光 E L2が通過する第 2誘導光学系 42の一部の光学素子とを移動可能 (及び Z又は傾斜
可能)にして、第 1露光領域 AR1に投影される第 1パターン PA1の像と第 2露光領域 AR2に投影される第 2パターン PA2の像とをそれぞれ独立に調整するようにしてもよ い。
[0166] <第 5実施形態 >
第 5実施形態について説明する。図 18は第 5実施形態を示す概略構成図である。 上述の各実施形態と異なる本実施形態の特徴的な部分は、光学ユニット uが、第 2 マスク M2と基板 Pとの間の第 2露光光 EL2の光路上に、所定の結像光学系(リレー 光学系) 20A、 20Bを有している点にある。以下では、その差異を中心に説明し、上 述の実施形態と同一または同等の構成部分については同一符号を付し、その説明 を簡略若しくは省略する。
[0167] 本実施形態の照明系 ILは、上述の実施形態と同様、露光光 ELを射出する光源装 置 1と、光源装置 1からの露光光 ELの偏光状態を変換して射出する第 1光学系 2と、 ブラインド装置 11と、露光光 ELを第 1偏光状態の第 1露光光 EL1と第 2偏光状態の 第 2露光光 EL2とに分離する分離光学系 (偏光分離光学系) 13とを備えている。そし て、第 1マスク Mlは、第 1偏光状態 (例えば S偏光状態)の第 1露光光 EL1で照明さ れ、第 2マスク M2は、第 2偏光状態 (例えば P偏光状態)の第 2露光光 EL2で照明さ れる。
[0168] 本実施形態においても、制御装置 30は、メインステージ 61を有するマスクステージ 60を用いて、第 1マスク Mlと第 2マスク M2とを同一の走査方向(例えば +Y方向)に 移動しつつ、第 1露光光 EL1及び第 2露光光 EL2で、第 1パターン PA1及び第 2パ ターン PA2のそれぞれを照明する。また、本実施形態においては、第 1露光領域 AR 1と第 2露光領域 AR2とは同じ位置に重なるように設定されている。また、制御装置 3 0は、基板 P上のショット領域 SHの露光中に、第 1マスク Ml及び第 2マスク M2の移 動と同期して、基板 Pを保持した基板ステージ 80を、第 1マスク Ml及び第 2マスク M 2とは逆向きの走査方向(例えば— Y方向)に移動する。また、制御装置 30は、第 1、 第 2マスク Ml、 M2の移動と同期して、可動ブラインド 10'を移動する。但し、本実施 形態においては、第 1、第 2露光領域 AR1、 AR2が同じ位置に設定されているので、 第 1パターン形成領域 SA1と第 1照明領域 IA1との位置関係と、第 2パターン形成領
域 SA2と第 2照明領域 IA2との位置関係とはほぼ同じなので、可動ブラインド 10'は 、第 1、第 2パターン形成領域 SA1、 SA2に応じた大きさの光通過領域を有していれ ばよい。基板 P上のショット領域 SHは、第 1露光領域 AR1に照射される第 1露光光 E L1で形成される第 1パターン PA1の像と、第 2露光領域 AR2に照射される第 2露光 光 EL2で形成される第 2パターン PA2の像とで、多重露光される。
[0169] 本実施形態においても、一つのショット領域 SHに対する露光動作中に、可動ブラ インド 10,の一方向への移動によって、第 1、第 2マスク Ml、 M2の第 1、第 2パターン 形成領域 SA1、 SA2以外の部分に対する不要な第 1、第 2露光光 EL1、 EL2の照 射、ひいては第 1露光光 EL1及び第 2露光光 EL2による基板 Pの不要な露光が防止 されるように、分離光学系 13と第 1パターン PA1及び第 2パターン PA2との間に配置 される光学系 14、 15、 17による結像回数が設定されている。
[0170] 光学ユニット Uは、投影光学系 PLの物体面側(投影光学系 PLとマスクステージ 60 との間)に設けられ、第 1マスク Mlからの第 1露光光 EL1と第 2マスク M2からの第 2 露光光 EL2とが入射するビームスプリッタ 24を備えている。また、光学ユニット Uは、 第 2マスク M2と基板 P (第 2露光領域 AR2)との間の第 2露光光 EL2の光路上に設け られた 2つの結像光学系 20A、 20Bを有している。本実施形態においては、結像光 学系 20A、 20Bは、第 2マスク M2と第 2露光領域 AR2との間の第 2露光光 EL2の光 路のうち、第 2マスク M2と投影光学系 PLとの間に設けられている。また、本実施形態 の結像光学系 20A、 20Bは等倍結像光学系である。また、結像光学系 20A、 20Bの それぞれは、物体の像を 1回倒立させる機能を有する。
[0171] 第 1マスク Mlとビームスプリッタ 24との間には第 1反射ミラー 21が設けられており、 第 1マスク Mlからの第 1露光光 EL1は、第 1反射ミラー 21で反射した後、ビームスプ リツタ 24に入射する。また、第 2マスク M2とビームスプリッタ 24との間には第 2反射ミ ラー 22、結像光学系 20A、 20B、及び第 3反射ミラー 23が設けられており、第 2マス ク M2からの第 2露光光 EL2は、第 2反射ミラー 22で反射した後、結像光学系 20A、 20Bを通過し、第 3反射ミラー 23で反射した後、ビームスプリッタ 24に入射する。ビー ムスプリッタ 24に入射した第 1露光光 EL1及び第 2露光光 EL2は、そのビームスプリ ッタ 24を介して投影光学系 PLに入射する。
[0172] 本実施形態の光学ユニット Uは、第 1マスク Mlと第 1露光領域 AR1との間で第 1パ ターン PA1の像を偶数又は奇数のいずれか一方の回数倒立させ、第 2マスク M2と 第 2露光領域 AR2との間で第 2パターン PA2の像を一方の回数倒立させる。すなわ ち、光学ユニット Uは、第 1マスク Mlと第 1露光領域 AR1との間で第 1パターン PA1 の像を偶数回倒立させる場合には、第 2マスク M2と第 2露光領域 AR2との間で第 2 ノターン PA2の像を偶数回倒立させる。一方、第 1マスク Mlと第 1露光領域 AR1と の間で第 1パターン PA1の像を奇数回倒立させる場合には、第 2マスク M2と第 2露 光領域 AR2との間で第 2パターン PA2の像を奇数回倒立させる。
[0173] 本実施形態においては、第 2マスク M2と投影光学系 PLとの間の第 2露光光 EL2 の光路上に、物体の像を倒立させる機能を有する結像光学系 20A、 20Bが設けられ ている。したがって、 2つの結像光学系 20A、 20Bによって、第 2パターン PA2の像 は、第 2マスク M2と投影光学系 PLとの間において、 2回倒立する。また、本実施形 態においては、投影光学系 PLは、物体の像を 1回倒立させる。したがって、第 2バタ ーン PA2の像は、第 2マスク M2と第 2露光領域 AR2との間において、 3回(奇数回) 倒立する。また、第 1パターン PA1の像は、第 1マスク Mlと第 1露光領域 AR1との間 において、投影光学系 PLにより、 1回 (奇数回)倒立する。
[0174] このように、本実施形態の光学ユニット Uは、第 1マスク Mlと第 1露光領域 AR1との 間で第 1パターン PA1の像を奇数回倒立させ、第 2マスク M2と第 2露光領域 AR2と の間で第 2パターン PA2の像を奇数回倒立させている。このため、第 1マスク Mlと第 2マスク M2とを同一の走査方向(例えば +Y方向)に移動しつつ、第 1露光光 EL1及 び第 2露光光 EL2で第 1パターン PA1及び第 2パターン PA2のそれぞれを照明した 場合でも、基板 P上のショット領域 SHに所望の第 1、第 2パターン PA1、 PA2の像を 投影することができる。また、第 1、第 2マスク Ml、 M2の移動と同期して、可動ブライ ンド 10'が移動することによって、第 1露光光 EL1及び第 2露光光 EL2による基板 P の不要な露光を防止することができる。
[0175] <第 6実施形態 >
第 6実施形態について説明する。図 19は第 6実施形態を示す概略構成図である。 上述の第 5実施形態と異なる本実施形態の特徴的な部分は、第 1マスク Mlと第 1露
光領域 ARlとの間で第 1パターン PA1の像が偶数回倒立し、第 2マスク M2と第 2露 光領域 AR2との間で第 2パターン PA2の像が偶数回倒立する点にある。以下では、 その差異を中心に説明し、上述の実施形態と同一または同等の構成部分について は同一符号を付し、その説明を簡略若しくは省略する。
[0176] 本実施形態の照明系 ILは、上述の実施形態と同等である。照明系 ILは、第 1マス ク Mlを第 1偏光状態 (例えば S偏光状態)の第 1露光光 EL1で照明し、第 2マスク M 2を第 2偏光状態 (例えば P偏光状態)の第 2露光光 EL2で照明する。
[0177] また、上述の実施形態同様、本実施形態においても、制御装置 30は、メインステー ジ 61を有するマスクステージ 60を用いて、第 1マスク Mlと第 2マスク M2とを同一の 走査方向(例えば +Y方向)に移動しつつ、第 1露光光 EL1及び第 2露光光 EL2で、 第 1パターン PA1及び第 2パターン PA2のそれぞれを照明する。また、制御装置 30 は、基板 P上のショット領域 SHの露光中に、第 1マスク Ml及び第 2マスク M2の移動 と同期して、基板 Pを保持した基板ステージ 80を、第 1マスク Ml及び第 2マスク M2と は逆向きの走査方向(例えば— Y方向)に移動する。また、制御装置 30は、第 1、第 2マスク Ml、 M2の移動と同期して、可動ブラインド 10'を移動する。基板 P上のショ ット領域 SHは、第 1露光領域 AR1に照射される第 1露光光 EL1で形成される第 1パ ターン PA1の像と、第 2露光領域 AR2に照射される第 2露光光 EL2で形成される第 2パターン PA2の像とで、多重露光される。
[0178] 光学ユニット Uは、投影光学系 PLの物体面側(投影光学系 PLとマスクステージ 60 との間)に設けられ、第 1マスク Mlからの第 1露光光 EL1と第 2マスク M2からの第 2 露光光 EL2とが入射するビームスプリッタ 24を備えている。また、光学ユニット Uは、 第 1マスク Mlと基板 P (第 1露光領域 AR1)との間の第 1露光光 EL1の光路上に設け られた第 1結像光学系 20Aと、第 2マスク M2と基板 P (第 2露光領域 AR2)との間の 第 2露光光 EL2の光路上に設けられた第 2結像光学系 20Bとを有している。第 1結像 光学系 20 Aは、第 1マスク M 1と第 1露光領域 AR1との間の第 1露光光 EL 1の光路 のうち、第 1マスク Mlと投影光学系 PLとの間に設けられている。第 2結像光学系 20 Bは、第 2マスク M2と第 2露光領域 AR2との間の第 2露光光 EL2の光路のうち、第 2 マスク M2と投影光学系 PLとの間に設けられている。また、本実施形態の第 1、第 2
結像光学系 20A、 20Bは等倍結像光学系である。また、第 1、第 2結像光学系 20A、 20Bのそれぞれは、物体の像を 1回倒立させる機能を有する。
[0179] 第 1マスク Mlとビームスプリッタ 24との間には、第 1結像光学系 20A及び第 1反射 ミラー 21が設けられており、第 1マスク Mlからの第 1露光光 EL1は、第 1結像光学系 20Aを通過した後、第 1反射ミラー 21を介して、ビームスプリッタ 24に入射する。第 2 マスク M2とビームスプリッタ 24との間には、第 2反射ミラー 22、第 2結像光学系 20B 、及び第 3反射ミラー 23が設けられており、第 2マスク M2からの第 2露光光 EL2は、 第 2反射ミラー 22で反射した後、第 2結像光学系 20Bを通過し、第 3反射ミラー 23で 反射した後、ビームスプリッタ 24に入射する。ビームスプリッタ 24に入射した第 1露光 光 EL1及び第 2露光光 EL2は、そのビームスプリッタ 24を介して投影光学系 PLに入 射する。
[0180] 本実施形態においては、第 1パターン PA1の像は、第 1結像光学系 20Aによって、 第 1マスク Mlと投影光学系 PLとの間において、 1回倒立する。また、本実施形態に おいては、投影光学系 PLは、物体の像を 1回倒立させる。したがって、第 1パターン PA1の像は、第 1マスク Mlと第 1露光領域 AR1との間において、 2回(偶数回)倒立 する。また、第 2パターン PA2の像は、第 2結像光学系 20Bによって、第 2マスク M2と 投影光学系 PLとの間において、 1回倒立する。したがって、第 2パターン PA2の像は 、第 2マスク M2と第 2露光領域 AR2との間において、 2回 (偶数回)倒立する。
[0181] このように、本実施形態の光学ユニット Uは、第 1マスク Mlと第 1露光領域 AR1との 間で第 1パターン PA1の像を偶数回倒立させ、第 2マスク M2と第 2露光領域 AR2と の間で第 2パターン PA2の像を偶数回倒立させている。このため、第 1マスク Mlと第 2マスク M2とを同一の走査方向(例えば +Y方向)に移動しつつ、第 1露光光 EL1及 び第 2露光光 EL2で第 1パターン PA1及び第 2パターン PA2のそれぞれを照明した 場合でも、基板 P上のショット領域 SHに所望の第 1、第 2パターン PA1、 PA2の像を 投影することができる。また、第 1、第 2マスク Ml、 M2の移動と同期して、可動ブライ ンド 10'が移動することによって、第 1露光光 EL1及び第 2露光光 EL2による基板 P の不要な露光を防止することができる。
[0182] なお、上述の第 1〜第 6実施形態においては、第 1マスク Mlに第 1パターン PA1が
形成され、第 1マスク Mlとは別の第 2マスク M2に第 2パターン PA2が形成されてい るが、 1つのマスク上に第 1パターン PA1及び第 2パターン PA2を形成してもよい。そ の 1つのマスク上に設けられている第 1パターン PA1の像と第 2パターン PA2の像と で基板 Pを多重露光することができる。
[0183] <第 7実施形態 >
第 7実施形態について説明する。図 20は第 7実施形態を示す概略構成図である。 本実施形態の特徴的な部分は、第 1マスク Mlと第 2マスク M2とを互いに逆向きの走 查方向に移動しつつ、第 1露光光 EL1及び第 2露光光 EL2で第 1パターン PA1及び 第 2パターン PA2のそれぞれを照明する点にある。以下では、その差異を中心に説 明し、上述の実施形態と同一または同等の構成部分については同一符号を付し、そ の説明を簡略若しくは省略する。
[0184] 本実施形態の照明系 ILは、上述の実施形態と同様、露光光 ELを射出する光源装 置 1と、光源装置 1からの露光光 ELの偏光状態を変換して射出する第 1光学系 2と、 ブラインド装置 11と、露光光 ELを第 1偏光状態 (例えば S偏光状態)の第 1露光光 E L1と第 2偏光状態 (例えば P偏光状態)の第 2露光光 EL2とに分離する偏光分離光 学系 13とを備えている。なお、図 20には、光源装置 1及び第 1光学系 2は図示されて いない。また、本実施形態においては、分離光学系 13と第 2マスク M2との間の光路 上に、結像光学系(リレー光学系) 19が配置されている。
[0185] 本実施形態においては、マスクステージ 60は、ベース部材 65と、ベース部材 65上 で第 1マスク Mlを保持して移動可能な第 1ステージ 62,と、第 2マスク M2を保持して 移動可能な第 2ステージ 63'とを備えている。第 1ステージ 62'と第 2ステージ 63'と はベース部材 65上で独立して移動可能である。制御装置 30は、第 1ステージ 62'及 び第 2ステージ 63,を用いて、第 1マスク Mlと第 2マスク M2とを互いに逆向きの走査 方向(Y軸方向)に移動しつつ、第 1露光光 EL1及び第 2露光光 EL2で第 1パターン PA1及び第 2パターン PA2のそれぞれを照明する。
[0186] 例えば、基板 P上のショット領域 SHの露光中に、マスクステージ 60の第 1ステージ 6 2'によって、第 1マスク Mlが +Y方向に移動される場合、第 2マスク M2は、第 2ステ ージ 63'によって、 Y方向に移動される。また、第 1マスク Mlがー Y方向に移動さ
れる場合、第 2マスク M2は +Y方向に移動される。また、制御装置 30は、基板 Ρ上の ショット領域 SHの露光中に、第 1マスク Ml及び第 2マスク Μ2の移動に同期して、基 板 Pを保持した基板ステージ 80を、所定の走査方向(Y軸方向)に移動する。
[0187] そして、本実施形態においては、可動ブラインド 10'を移動することによって、第 1、 第 2マスク Ml、 M2の第 1、第 2パターン形成領域 SA1、 SA2以外の部分に対する 不要な第 1、第 2露光光 EL1、 EL2の照射、ひいては第 1露光光 EL1及び第 2露光 光 EL2による基板 Pの不要な露光が防止されるように、分離光学系 13と第 1パターン PA1及び第 2パターン PA2との間に配置される光学系 14、 17、 19による結像回数 が設定されている。本実施形態においては、分離光学系 13と第 2マスク M2との間の 光路上に、 1つの結像光学系(リレー光学系) 19が配置されている。結像光学系 19 は、物体の像を 1回倒立させる機能を有する。したがって、 1つの結像光学系 19によ つて、ブラインド装置 11の像、すなわち可動ブラインド 10'の光通過領域の像 (各ェ ッジ E1〜E6の像)は、分離光学系 13と第 2マスク M2との間において、 1回倒立する 。すなわち、本実施形態においては、分離光学系 13と第 2マスク M2との間における 、可動ブラインド 10'の光通過領域の像 (各エッジ E1〜E6の像)の結像回数 (倒立 回数)は、 1回 (奇数回)である。一方、本実施形態においては、分離光学系 13と第 1 マスク Mlとの間における、可動ブラインド 10'の光通過領域の像(各エッジ E1〜E6 の像)の結像回数 (倒立回数)は、 0回 (偶数回)である。
[0188] 分離光学系 13で分離された第 1偏光状態の第 1露光光 EL1は、第 3光学系 14を 介して第 1マスク Mlに照射される。一方、分離光学系 13で分離された第 2偏光状態 の第 2露光光 EL2は、結像光学系 19を介して、反射ミラー 16に入射し、その反射ミラ 一 16で反射した後、第 5光学系 17を介して、第 2マスク M2に照射される。
[0189] また、本実施形態の光学ユニット Uは、投影光学系 PLの物体面側(投影光学系 PL とマスクステージ 60との間)に設けられ、第 1マスク Mlからの第 1露光光 EL1と第 2マ スク M2からの第 2露光光 EL2とが入射するビームスプリッタ 24と、第 2マスク M2と基 板 P (第 2露光領域 AR2)との間の第 2露光光 EL2の光路上に設けられた 1つの結像 光学系 20とを有している。結像光学系 20は、第 2マスク M2と第 2露光領域 AR2との 間の第 2露光光 EL2の光路のうち、第 2マスク M2と投影光学系 PLとの間に設けられ
ている。また、結像光学系 20は等倍結像光学系である。結像光学系 20は、物体の 像を 1回倒立させる機能を有する。
[0190] 第 1マスク Mlからの第 1露光光 EL1は、第 1反射ミラー 21で反射した後、ビームス プリッタ 24に入射する。第 2マスク M2からの第 2露光光 EL2は、第 2反射ミラー 22で 反射した後、結像光学系 20を通過し、第 3反射ミラー 23で反射した後、ビームスプリ ッタ 24に入射する。ビームスプリッタ 24に入射した第 1露光光 EL1及び第 2露光光 E L2は、そのビームスプリッタ 24を介して投影光学系 PLに入射する。
[0191] 本実施形態の光学ユニット Uは、第 1マスク Mlと第 1露光領域 AR1との間で第 1パ ターン PA1の像を偶数又は奇数のいずれか一方の回数倒立させ、第 2マスク M2と 第 2露光領域 AR2との間で第 2パターン PA2の像を他方の回数倒立させる。すなわ ち、光学ユニット Uは、第 1マスク Mlと第 1露光領域 AR1との間で第 1パターン PA1 の像を偶数回倒立させる場合には、第 2マスク M2と第 2露光領域 AR2との間で第 2 ノターン PA2の像を奇数回倒立させる。一方、第 1マスク Mlと第 1露光領域 AR1と の間で第 1パターン PA1の像を奇数回倒立させる場合には、第 2マスク M2と第 2露 光領域 AR2との間で第 2パターン PA2の像を偶数回倒立させる。
[0192] 本実施形態においては、第 2マスク M2と投影光学系 PLとの間の第 2露光光 EL2 の光路上に、物体の像を倒立させる機能を有する結像光学系 20が 1つ設けられてい る。したがって、第 2パターン PA2の像は、その結像光学系 20によって、第 2マスク M 2と投影光学系 PLとの間において、 1回倒立する。また、本実施形態においては、投 影光学系 PLは、物体の像を 1回倒立させる。したがって、第 2パターン PA2の像は、 第 2マスク M2と第 2露光領域 AR2との間において、 2回 (偶数回)倒立する。また、第 1パターン PA1の像は、第 1マスク Mlと第 1露光領域 AR1との間において、投影光 学系 PLにより、 1回 (奇数回)倒立する。
[0193] 次に、本実施形態に係る露光装置 EXを用いて基板 Pを露光する方法について説 明する。
[0194] 制御装置 30は、マスクステージ 60の第 1ステージ 62,及び第 2ステージ 63,を用い て、第 1マスク Mlと第 2マスク M2とを互いに逆向きの走査方向に移動しつつ、第 1露 光光 EL1及び第 2露光光 EL2で、第 1パターン PA1及び第 2パターン PA2のそれぞ
れを照明する。また、制御装置 30は、基板 P上のショット領域 SHの露光中に、第 1マ スク Ml及び第 2マスク M2の移動と同期して、基板 Pを保持した基板ステージ 80を、 走査方向(Y軸方向)に移動する。
[0195] また、制御装置 30は、第 1、第 2マスク Ml、 M2の移動と同期して、可動ブラインド 1 0'を移動する。本実施形態においては、可動ブラインド 10'を移動することによって、 第 1露光光 EL1及び第 2露光光 EL2による基板 Pの不要な露光が防止されるように、 分離光学系 13と第 1パターン PA1及び第 2パターン PA2との間に配置される光学系 による結像回数が設定されている。このため、第 1マスク Mlと第 2マスク M2とを互い に逆向きの走査方向に移動しつつ、第 1露光光 EL1及び第 2露光光 EL2で第 1バタ ーン PA1及び第 2パターン PA2のそれぞれを照明した場合でも、 1つの可動ブライン ド 10,によって、第 1、第 2マスク Ml、 M2のうち第 1、第 2パターン形成領域 SA1、 S A2以外の部分に対する不要な第 1、第 2露光光 EL1、 EL2の照射を遮ることができ る。これにより、第 1露光光 EL1及び第 2露光光 EL2による基板 Pの不要な露光を防 止することができる。
[0196] 第 1パターン PA1の像は、第 1マスク Mlと第 1露光領域 AR1との間において、投影 光学系 PLにより、 1回倒立して、基板 P上のショット領域 SHに投影される。第 2パター ン PA2の像は、第 2マスク M2と第 2露光領域 AR2との間において、 2回倒立して、基 板 P上のショット領域 SHに投影される。基板 P上のショット領域 SHは、第 1露光領域 AR1に照射される第 1露光光 EL1で形成される第 1パターン PA1の像と、第 2露光 領域 AR2に照射される第 2露光光 EL2で形成される第 2パターン PA2の像とで、多 重露光される。
[0197] このように、本実施形態の光学ユニット Uは、第 1マスク Mlと第 1露光領域 AR1との 間で第 1パターン PA1の像を奇数回倒立させ、第 2マスク M2と第 2露光領域 AR2と の間で第 2パターン PA2の像を偶数回倒立させている。このため、第 1マスク Mlと第 2マスク M2とを互いに逆向きの走査方向に移動しつつ、第 1露光光 EL1及び第 2露 光光 EL2で第 1パターン PA1及び第 2パターン PA2のそれぞれを照明した場合でも 、基板 P上のショット領域 SHに所望の第 1、第 2パターン PA1、 PA2の像を投影する ことができる。また、第 1、第 2マスク Ml、 M2の移動と同期して、可動ブラインド 10,
が移動することによって、第 1露光光 ELI及び第 2露光光 EL2による基板 Pの不要な 露光を防止することができる。
[0198] <第 8実施形態 >
第 8実施形態について説明する。本実施形態の特徴的な部分は、基板 P上に液体 の液浸領域を形成し、その液浸領域の液体を介して第 1露光光 EL1と第 2露光光 EL 2とを基板 P上のショット領域 SHに照射する点にある。以下では、その差異を中心に 説明し、上述の実施形態と同一または同等の構成部分については同一符号を付し、 その説明を簡略若しくは省略する。
[0199] 図 21は第 8実施形態を示す概略構成図である。本実施形態の照明系 ILとしては、 上述の第 1〜第 7実施形態の任意のものを用いることができる。投影光学系 PL (光学 ユニット U)も、上述の各実施形態の任意のものを用いることができる。また、基板 P上 のショット領域 SHを露光する際、第 1マスク Mlと第 2マスク M2とは同一の走査方向 に移動されてもょ 、し、互いに逆向きの走査方向に移動されてもょ 、。
[0200] 本実施形態の露光装置 EXは、例えば国際公開第 99Z49504号パンフレット、特 開 2004— 289126号 (対応米国特許公開第 2004Z0165159号公報)等に開示さ れているような、露光波長を実質的に短くして解像度を向上するとともに焦点深度を 実質的に広くするために液浸法を適用した露光装置であって、基板 P上に液体 LQ の液浸領域 LRを形成する液浸システム 100を備えている。本実施形態では、液体 L
Qとして、水 (純水)を用いる。また、基板 Pには、液体 LQから感光材ゃ基材を保護す るトップコート膜などを設けることができる。
[0201] 液浸システム 100は、投影光学系 PLの複数の光学素子のうち、投影光学系 PLの 像面に最も近い終端光学素子 FLと基板 Pとの間の第 1、第 2露光光 EL1、 EL2の光 路の近傍に設けられ、その光路に対して液体 LQを供給するための供給口 112を有 する供給部材 113、及び液体 LQを回収するための回収口 122を有する回収部材 1 23を有して 、る。供給部材 113には液体 LQを送出可能な液体供給装置 (不図示) が接続されており、液体供給装置は、清浄で温度調整された液体 LQを供給口 112 を介して光路に供給可能である。また、回収部材 123には、真空系等を含む液体回 収装置 (不図示)が接続されており、液体回収装置は、光路を満たす液体 LQを回収
口 122を介して回収可能である。液体供給装置及び液体回収装置の動作は制御装 置 30で制御される。制御装置 30は、液浸システム 100を制御して、液体供給装置に よる液体供給動作と液体回収装置による液体回収動作とを並行して行うことで、投影 光学系 PLの終端光学素子 FLの下面と、基板ステージ 80上の基板 Pの表面との間 の第 1、第 2露光光 EL1、 EL2の光路を液体 LQで満たすように、基板 P上の一部の 領域に液体 LQの液浸領域 LRを局所的に形成する。液浸領域 LRは、基板 P上の第 1露光領域 AR1及び第 2露光領域 AR2よりも大きく形成される。すなわち、液浸領域 LRは、第 1露光領域 AR1及び第 2露光領域 AR2の全てを覆うように形成される。
[0202] 露光装置 EXは、基板ステージ 80に保持された基板 P上に液体 LQの液浸領域 LR を形成し、その液浸領域 LRの液体 LQを介して基板 P上の第 1、第 2露光領域 AR1、 AR2のそれぞれに第 1、第 2露光光 EL1、 EL2を照射して、基板 Pを露光する。
[0203] 露光装置 EXは、液浸領域 LRを形成した状態で、第 1、第 2露光領域 AR1、 AR2 に対して基板 P上のショット領域 SHを Y軸方向に移動しつつ、第 1、第 2露光領域 A Rl、 AR2のそれぞれに第 1、第 2露光光 EL1、 EL2を照射することにより、第 1露光 領域 AR1に液体 LQを介して照射される第 1露光光 EL1で形成される第 1パターン P A1の像と、第 2露光領域 AR2に液体 LQを介して照射される第 2露光光 EL2で形成 される第 2パターン PA2の像とで、基板 P上のショット領域 SHを多重露光(二重露光 )する。
[0204] なお、本実施形態にぉ 、て、液体 LQとして水(純水)を用いて!/、るが、液体 LQとし ては、水以外のものを用いてもよい。例えば、露光光 ELが Fレーザ光である場合、こ
2
の Fレーザ光は水を透過しないので、液体 LQとしては例えば、過フッ化ポリエーテ
2
ル(PFPE)やフッ素系オイル等のフッ素系流体であってもよい。また、液体 LQとして は、その他にも、露光光 ELに対する透過性があってできるだけ屈折率が高ぐ投影 光学系、基板 P表面に塗布されているフォトレジストに対して安定なもの(例えばセダ 一油)を用いることも可能である。
[0205] また、液体 LQとしては、水よりも露光光 ELに対する屈折率が高い液体、例えば屈 折率が 1. 6〜1. 8程度のものを使用してもよい。更に、石英や蛍石よりも屈折率が高 い(例えば 1. 6以上)材料で終端光学素子 FLを形成してもよい。ここで、純水よりも
屈折率が高い(例えば 1. 5以上)の液体 LQとしては、例えば、屈折率が約 1. 50のィ ソプロパノール、屈折率が約 1. 61のグリセロール(グリセリン)といった C H結合あ るいは O—H結合を持つ所定液体、へキサン、ヘプタン、デカン等の所定液体 (有機 溶剤)、あるいは屈折率が約 1. 60のデカリン (Decalin:
Decahydronaphthalene)などが挙げられる。また、液体 LQは、これら液体のうち任意 の 2種類以上の液体を混合したものでもよいし、純水にこれら液体の少なくとも 1つを 添加(混合)したものでもよい。さらに、液体 LQは、純水に H+、 Cs+、 K+、 Cl_、 SO 2
4
―、 PO 2_等の塩基又は酸を添加(混合)したものでもよいし、純水に A1酸ィ匕物等の
4
微粒子を添加(混合)したものでもよい。なお、液体 LQとしては、光の吸収係数が小 さぐ温度依存性が少なぐ投影光学系 PL、及び Z又は基板 Pの表面に塗布されて V、る感光材 (又はトップコート膜ある 、は反射防止膜など)に対して安定なものである ことが好ましい。また、液体 LQとしては、屈折率が 1. 6〜1. 8程度のものを使用して もよい。液体 LQとして、超臨界流体を用いることも可能である。
[0206] また、終端光学素子 FLを、例えば石英 (シリカ)、あるいは、フッ化カルシウム (蛍石 )、フッ化バリウム、フッ化ストロンチウム、フッ化リチウム、及びフッ化ナトリウム等のフ ッ化化合物の単結晶材料で形成してもよ!、し、石英や蛍石よりも屈折率が高!、 (例え ば 1. 6以上)材料で形成してもよい。屈折率が 1. 6以上の材料としては、例えば、国 際公開第 2005/059617号パンフレットに開示される、サファイア、二酸ィ匕ゲルマ- ゥム等、あるいは、国際公開第 2005Z059618号パンフレットに開示される、塩ィ匕カ リウム (屈折率は約 1. 75)等を用いることができる。
[0207] 液浸システム 100は、その一部(例えば、液体供給装置及び Z又は液体回収装置 を構成する部材)が露光装置に設けられている必要はなぐ例えば露光装置が設置 される工場等の設備を代用してもよい。また、液浸システム 100の構造は、上述の構 造に限られず、例えば、欧州特許公開第 1420298号公報、国際公開第 2004Z05 5803号パンフレツ卜、国際公開第 2004Z057590号パンフレツ K国際公開第 200 5Z029559号パンフレット(対応米国特許公開第 2006Z0231206号)、国際公開 第 2004Z086468号パンフレツ卜(対応米国特許公開第 2005Z0280791号)、特 開 2004— 289126号公報(対応米国特許第 6,952,253号)などに記載されている
ものを用いることができる。液浸露光装置の液浸機構及びその付属機器について、 指定国または選択国の法令が許す範囲において上記の米国特許又は米国特許公 開などの開示を援用して本文の記載の一部とする。
[0208] また、本実施形態の投影光学系において、例えば、国際公開第 2004Z019128 号パンフレット(対応米国特許公開第 2005Z0248856号)に開示されて 、るように 、終端光学素子の像面側の光路に加えて、終端光学素子の物体面側の光路も液体 で満たすようにしてもよい。さらに、終端光学素子の表面の一部 (少なくとも液体 LQと の接触面を含む)又は全部に、親液性及び Z又は溶解防止機能を有する薄膜を形 成してもよい。なお、石英は液体 LQとの親和性が高ぐかつ溶解防止膜も不要であ るが、蛍石は少なくとも溶解防止膜を形成することが好ましい。
[0209] また、本実施形態においては、第 1露光領域 AR1と第 2露光領域 AR2とを 1つの液 浸領域 LRで覆っているが、第 1露光領域 AR1と第 2露光領域 AR2とを別々の液浸 領域 (第 1、第 2液浸領域)で覆うようにしてもよい。この場合、第 1、第 2液浸領域を、 種類 (少なくとも露光光 ELに対する屈折率)が異なる液体でそれぞれ形成してもよい 。一例としては、第 1、第 2液浸領域の一方を、水 (純水)で形成し、他方を、水 (屈折 率は 1. 44程度)よりも露光光 ELに対する屈折率が高い液体で形成してもよい。また 、第 1液浸領域と第 2液浸領域とで、液体 LQの粘度、露光光 ELの透過率及び温度 の少なくとも 1つが互いに異なって!/、てもよ 、。
[0210] 上述の第 1〜第 8各実施形態において、照明系 ILは、光源装置 1から射出された 露光光 ELを、分離光学系 (偏光分離光学系) 13を用いて、第 1偏光状態の第 1露光 光 EL1と第 2偏光状態の第 2露光光 EL2とに分離しているが、分離光学系を例えば ハーフミラー等で形成し、その分離光学系を用いて、光源装置 1から射出された露光 光 ELを、第 1の強度 (光量)を有する第 1露光光と、第 2の強度 (光量)を有する第 2露 光光とに分離するようにしてもよい。そして、照明系は、それら第 1、第 2の強度 (光量 )を有する第 1、第 2露光光で、第 1、第 2パターンのそれぞれを照明するようにしても よい。
[0211] あるいは、光源装置 1が所定の波長帯域を有する露光光 ELを射出する場合には、 分離光学系を例えばダイクロイツクミラー等で形成し、その分離光学系を用いて、光
源装置 1から射出された露光光 ELを、第 1の波長を有する第 1露光光と、第 2の波長 を有する第 2露光光とに分離するようにしてもよい。すなわち、露光光をその偏光状 態、光強度 (または光量)、または波長あるいはそれらの組み合わせにより分離しても よい (または露光光力もそれらの物理的な特性が異なる第 1成分および第 2成分を取 り出してもよい)。
[0212] 上述の第 1〜第 8実施形態において、投影光学系 PLとしては、上述のものに限ら れず、例えば縮小系、等倍系、及び拡大系のいずれであってもよい。また、上述の実 施形態においては、投影光学系 PLとして、反射光学素子と屈折光学素子とを含む 反射屈折系(カタディ *ォプトリック系)を例にして説明したが、投影光学系 PLとしては 、反射光学素子を含まない屈折系、あるいは屈折光学素子を含まない反射系等であ つてもよい。さらに、反射屈折系として、例えば国際公開第 2004Z107011号パンフ レット (対応米国特許公開第 2006Z0121364号)に開示されているように、複数の 反射面を有しかつ中間像を少なくとも 1回形成する光学系 (反射系または反屈系)が その一部に設けられ、単一の光軸を有する、いわゆるインライン型の反射屈折系を使 用してもよい。また、投影光学系を介して露光光が照射される露光領域は、投影光学 系の視野内で光軸を含むオンァクシス領域でもよ 、し、ある 、は上記のインライン型 の反射屈折系と同様に、光軸を含まな 、オファクシス領域でもよ 、。
[0213] 上記各実施形態ではマスクステージ 60に搭載されたメインステージ 61により第 1マ スク Ml及び第 2マスク M2を基板 Pに対して同期移動した力 これに限らず、第 1マス ク Ml及び第 2マスク M2をそれぞれ独立して基板 Pに対して同期移動させることもで きる。この場合、第 1マスク Ml及び第 2マスク M2をそれぞれ載置して独立に駆動す る第 1マスクステージ及び第 2マスクステージを設けることができる。例えば、メインス テージ 61を省略し、第 1サブステージ 62及び第 2サブステージ 63を独立してあるい は連動して基板 Pに対して同期移動させることができる。このように独立に可動な第 1 マスクステージ及び第 2マスクステージを設ける場合には、第 1及び第 2マスクステー ジが基板ステージとそれぞれ同期移動されるようにしなければならな 、。すなわち、 第 1マスクステージに載置された第 1マスクと基板 Pのショット領域の位置関係、並び に第 2マスクステージに載置された第 2マスクと基板 Pのショット領域の位置関係をそ
れぞれ調整する必要がある。そうすることにより、第 1露光領域 AR1に形成される第 1 マスクのパターン PA1の像と、第 2露光領域 AR2に形成される第 2マスクのパターン PA2の像とで、それらの像が正確に重なった状態で、基板 Pのショット領域を多重露 光(二重露光)することができる。
[0214] 上述の各実施形態においては、第 1マスク Mlの第 1パターン PA1の像と第 2マスク M2の第 2パターン PA2の像とを 1つの投影光学系 PLを用いて基板 P上に投影して いるが、投影光学系を複数 (例えば 2つ)設け、第 1マスク Mlの第 1パターン PA1の 像と、第 2マスク M2の第 2パターン PA2の像とを別々の投影光学系を用いて基板 P 上に投影するようにしてもよい。また、複数の投影光学系を、隣り合う投影領域が走 查方向で所定量変位するように、且つ隣り合う投影領域の端どうしが走査方向と直交 する方向に重複するように配置した、所謂マルチレンズ方式の走査型露光装置に、 本発明を適用することも可能である。この場合であっても、単一の光源装置 1と分離 光学系 13を用いれば、露光装置の大型化を回避できる。
[0215] なお、上述の各実施形態においては、第 1露光領域 AR1と第 2露光領域 AR2とは 、 1つのショット領域 SHに同時に配置可能である力 必ずしも 1つのショット領域 SH に同時に配置可能でなくてもよぐ第 1露光領域 AR1及び第 2露光領域 AR2は任意 に設定可能である。
[0216] なお、上述の各実施形態においては、第 1露光領域 AR1と第 2露光領域 AR2とが Y軸方向に離れているが、第 1露光領域 AR1と第 2露光領域 AR2とはその一部が Y 軸方向(走査方向)において重複していてもよい。
[0217] また、上述の各実施形態において、第 1露光領域 AR1及び第 2露光領域 AR2の 大きさ及び形状の少なくとも一方が異なっていてもよい。例えば、第 1露光領域 AR1 と第 2露光領域 AR2とで X軸方向の幅及び Z又は Y軸方向の幅が異なっていてもよ い。なお、 X軸方向の幅が異なる場合には、ショット領域 SH内の一部だけが多重(二 重)露光される。
[0218] また、上述の各実施形態においては、ショット領域 SHが第 1露光領域 AR1及び第 2露光領域 AR2を通過する間、第 1露光領域 AR1及び第 2露光領域 AR2のそれぞ れに露光光 ELの照射が続けられる力 少なくとも一方の露光領域において、ショット
領域 SHが通過する間の一部の期間だけで露光光が照射されるようにしてもよい。す なわち、ショット領域 SH内の一部だけ多重(二重)露光するようにしてもよい。
[0219] 上記各実施形態では、第 1パターン及び第 2パターンを形成するために第 1マスク Ml及び第 2マスク M2を用いた力 これらに代えて、可変のパターンを生成する電子 マスク(可変成形マスク)を用いることができる。このような電子マスクとして、例えば非 発光型画像表示素子(空間光変調器: Spatial Light Modulator (SLM)とも呼ばれる )の一種で 3Dる DMD (Deformable Micro-mirror
Micro— mirror De vice)を用い得る。 DMDは、所定の電子データに基づいて駆動する複数の反射素子 (微小ミラー)を有し、複数の反射素子は、 DMDの表面に 2次元マトリックス状に配列 され、かつ素子単位で駆動されて露光光 ELを反射、偏向する。各反射素子はその 反射面の角度が調整される。 DMDの動作は、制御装置 30により制御され得る。制 御装置 30は、基板 P上に形成すべき第 1パターン及び第 2パターンに応じた電子デ ータ (パターン情報)に基づいてそれぞれの DMDの反射素子を駆動し、照明系 ILに より照射される露光光 ELを反射素子でパターン化する。 DMDを使用することにより 、 ノターンが形成されたマスク(レチクル)を用いて露光する場合に比べて、パターン が変更されたときに、マスクの交換作業及びマスクステージにおけるマスクの位置合 わせ操作が不要になるため、多重露光を一層効率よく行うことができる。なお、 DMD を用いた露光装置は、例えば特開平 8— 313842号公報、特開 2004— 304135号 公報、米国特許第 6, 778, 257号公報に開示されている。指定国または選択国の 法令が許す範囲において米国特許第 6, 778, 257号公報の開示を援用して本文の 記載の一部とする。
[0220] 上記各実施形態では干渉計システムを用いてマスクステージ及び基板ステージの 位置情報を計測するものとしたが、これに限らず、例えば基板ステージの上面に設け られるスケール(回折格子)を検出するエンコーダシステムを用いてもよ!、。この場合 、干渉計システムとエンコーダシステムの両方を備えるハイブリッドシステムとし、干渉 計システムの計測結果を用いてエンコーダシステムの計測結果の較正 (キヤリブレー シヨン)を行うことが好ましい。また、干渉計システムとエンコーダシステムとを切り替え て用いる、あるいはその両方を用いて、基板ステージの位置制御を行うようにしてもよ
い。
[0221] 上記各実施形態では、露光光 ELとして ArFエキシマレーザ光を発生する光源装 置として、 ArFエキシマレーザを用いてもよいが、例えば、国際公開第 1999Z4683 5号パンフレット(対応米国特許第 7,023,610号)に開示されているように、 DFB半 導体レーザ又はファイバーレーザなどの固体レーザ光源、ファイバーアンプなどを有 する光増幅部、及び波長変換部などを含み、波長 193nmのパルス光を出力する高 調波発生装置を用いてもよい。さらに、上記実施形態では、前述の各照明領域と、第 1、第 2露光領域がそれぞれ矩形状であるものとしたが、他の形状、例えば円弧状、 台形状、平行四辺形状、あるいは菱形状などでもよい。
[0222] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミック ウェハ、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリ コンウェハ)、またはフィルム部材等が適用される。また、基板 Pの形状は円形のみな らず、矩形など他の形状でもよい。
[0223] また、本発明は、例えば、特開平 10— 163099号公報、特開平 10— 214783号公 報(対応米国特許第 6,341,007号、第 6,400,441号、第 6,549,269号、及び第 6.5 90,634号)、特表 2000— 505958号公報(対応米国特許第 5,969.441号)などに 開示されて 、るような複数の基板ステージを備えたマルチステージ型 (例えば、ツイ ンステージ型)の露光装置にも適用できる。マルチステージ型の露光装置に関して、 指定国及び選択国の国内法令が許す限りにおいて、上記米国特許の開示を援用し て本文の記載の一部とする。
[0224] 更に、特開平 11— 135400号公報 (対応国際公開第 1999Z23692号パンフレツ ト)ゃ特開 2000— 164504号公報(対応米国特許第 6,897,963号)に開示されてい るように、基板を保持する基板ステージと、計測部材 (例えば、基準マークが形成され た基準部材、及び Z又は各種の光電センサ)を搭載した計測ステージとを備えた露 光装置にも本発明を適用することができる。
[0225] また、上述の各実施形態のうち、露光光の光路を液体で満たす実施形態にぉ 、て は、投影光学系と基板 Pとの間に局所的に液体を満たす露光装置を採用して ヽるが
、本発明は、例えば、特開平 6— 124873号公報、特開平 10— 303114号公報、米 国特許第 5, 825, 043号などに開示されているような、露光対象の基板の表面全体 が液体中に浸かって 、る状態で露光を行う液浸露光装置にも適用可能である。
[0226] なお、上記各実施形態では露光装置 EXが投影光学系を備えるものとしたが、投影 光学系の代わりに、パターンの像を形成しない光学系(例えば、回折光学素子など) を用いてもよい。また、上記各実施形態では第 1、第 2露光領域 AR1、 AR2の少なく とも一方において、例えば国際公開第 2001Z035168号パンフレットに開示されて いるように干渉縞を形成することによって、基板 P上にライン 'アンド'スペースパター ンを露光してもよい。
[0227] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置や、薄膜磁気ヘッド、マイクロマシン、 MEMS, DNAチップ、撮像素子 (C CD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用で きる。
[0228] 本願明細書に掲げた種々の米国特許及び米国特許出願公開については、特に援 用表示をしたもの以外についても、指定国または選択国の法令が許す範囲において それらの開示を援用して本文の一部とする。
[0229] 以上のように、本願実施形態の露光装置 EXは、本願特許請求の範囲に挙げられ た各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的 精度を保つように、組み立てることで製造される。これら各種精度を確保するために、 この組み立ての前後には、各種光学系については光学的精度を達成するための調 整、各種機械系については機械的精度を達成するための調整、各種電気系につい ては電気的精度を達成するための調整が行われる。各種サブシステム力 露光装置 への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接 続、気圧回路の配管接続等が含まれる。この各種サブシステム力 露光装置への組 み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない 。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ 、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度及び
クリーン度等が管理されたクリーンルームで行うことが望ましい。
[0230] 半導体デバイス等のマイクロデバイスは、図 23〖こ示すよう〖こ、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に多重露光する露光工程及 び露光した基板の現像工程を含む基板処理ステップ 204、デバイス組み立てステツ プ (ダイシング工程、ボンディング工程、ノ ッケージ工程などの加工プロセスを含む) 2 05、検査ステップ 206等を経て製造される。
産業上の利用可能性
[0231] 本発明によれば、基板の多重露光を正確に且つ高!、効率で実現することができる 。このため、液晶表示素子やマイクロマシンなどに使用される高密度で複雑な回路パ ターンを有するデバイスを高いスループットで生産することができる。それゆえ、本発 明は、我国の半導体産業を含む精密機器産業の発展に著しく貢献するであろう。
Claims
[1] 基板を露光する露光装置であって、
露光光を射出する光源装置と、
前記光源装置から射出された前記露光光を第 1露光光と第 2露光光とに分離する 分離光学系と、
前記第 1露光光で第 1パターンを照明するとともに前記第 2露光光で第 2パターンを 照明する照明系とを備え、
前記第 1パターンからの前記第 1露光光と前記第 2パターンからの前記第 2露光光 とを前記基板上の所定領域に照射することによって、前記基板上の所定領域を多重 露光する露光装置。
[2] 前記分離光学系は、前記露光光を第 1偏光状態の第 1露光光と第 2偏光状態の第 2露光光とに分離する偏光分離光学系を含み、
前記照明系は、前記第 1露光光で前記第 1パターンを照明するとともに前記第 2露 光光で前記第 2パターンを照明する請求項 1記載の露光装置。
[3] 前記第 1露光光は、所定方向の直線偏光を主成分とし、
前記第 2露光光は、前記所定方向に直交する方向の直線偏光を主成分とする請求 項 2記載の露光装置。
[4] 前記第 1パターンが第 1ラインパターンを含み、第 1ラインパターンの長手方向と前 記第 1露光光の偏光方向とはほぼ平行であり、
前記第 2パターンが第 2ラインパターンを含み、第 2ラインパターンの長手方向と前 記第 2露光光の偏光方向とはほぼ平行である請求項 3記載の露光装置。
[5] 前記第 1パターン及び前記第 2パターンの少なくとも一方がダイポール照明される 請求項 3記載の露光装置。
[6] 前記偏光分離光学系で生成された前記第 1露光光及び前記第 2露光光の少なくと も一方の偏光状態を変える変換素子を有する請求項 2記載の露光装置。
[7] 前記変換素子は、直線偏光を主成分とする露光光を、円偏光を主成分とする露光 光に変換する請求項 6記載の露光装置。
[8] 前記偏光分離光学系は、光軸の周囲に旋光性を有する複数の素子を備え、該複
数の素子はそれぞれ偏光分離光学系への入射光の偏光方向を光軸の周りに回転さ せる請求項 7記載の露光装置。
さらに、特定の前記素子を通過した直線偏光のみを通過させる開口絞りを備える請 求項 8記載の露光装置。
さらに、直線偏光を円偏光に返還する波長板を有する請求項 9記載の露光装置。 前記第 1パターンからの前記第 1露光光を第 1露光領域に照射するとともに、前記 第 2パターンからの前記第 2露光光を第 2露光領域に照射する光学ユニットを備え、 前記第 1露光領域に照射される前記第 1露光光で形成される第 1パターン像と前記 第 2露光領域に照射される前記第 2露光光で形成される前記第 2パターン像とで前 記基板上の所定領域を多重露光する請求項 1記載の露光装置。
前記第 1パターンを有する第 1マスクを前記第 1露光光に対して所定の走査方向に 移動可能であり、前記第 2パターンを有する第 2マスクを前記第 2露光光に対して所 定の走査方向に移動可能なマスク移動システムと、
前記基板上の所定領域を前記第 1露光領域及び前記第 2露光領域に対して所定 の走査方向に移動可能な基板移動システムとを備え、
前記マスク移動システムによる前記第 1マスク及び前記第 2マスクの各走査方向へ の移動に同期して、前記基板移動システムを用いて前記基板上の所定領域を走査 方向へ移動しつつ、前記第 1パターン像と前記第 2パターン像とで前記基板上の所 定領域を多重露光する請求項 11記載の露光装置。
前記第 1マスクと前記第 2マスクとを同一の走査方向に移動しつつ、前記第 1露光 光及び前記第 2露光光で前記第 1パターン及び前記第 2パターンのそれぞれを照明 する請求項 12記載の露光装置。
前記マスク移動システムは、前記第 1マスク及び前記第 2マスクを保持してほぼ同 一の走査方向に移動可能なメインステージを有する請求項 13記載の露光装置。 前記マスク移動システムは、前記メインステージに対して前記第 1マスクを移動可能 な第 1サブステージと、前記メインステージに対して前記第 2マスクを移動可能な第 2 サブステージとを有する請求項 14記載の露光装置。
前記メインステージに対して前記第 1サブステージ及び前記第 2サブステージの少
なくとも一方を移動することによって、前記第 1マスクと前記第 2マスクとの相対的な位 置関係が調整される請求項 15記載の露光装置。
[17] 前記第 1サブステージ及び前記第 2サブステージの位置情報をそれぞれ計測可能 な計測システムを更に備える請求項 15記載の露光装置。
[18] 第 1マスク及び第 2マスクは、前記メインステージ上で前記走査方向に配列されて!ヽ る請求項 15記載の露光装置。
[19] 前記光学ユニットは、前記第 1マスクと前記第 1露光領域との間で前記第 1パターン 像を偶数又は奇数のいずれか一方の回数倒立させ、
前記第 2マスクと前記第 2露光領域との間で前記第 2パターン像を前記一方の回数 倒立させる請求項 13記載の露光装置。
[20] 前記第 1マスクと前記第 2マスクとを互いに逆向きの走査方向に移動しつつ、前記 第 1露光光及び前記第 2露光光で前記第 1パターン及び前記第 2パターンのそれぞ れを照明する請求項 12記載の露光装置。
[21] 前記光学ユニットは、前記第 1マスクと前記第 1露光領域との間で前記第 1パターン 像を偶数又は奇数のいずれか一方の回数倒立させ、
前記第 2マスクと前記第 2露光領域との間で前記第 2パターン像を他方の回数倒立 させる請求項 20記載の露光装置。
[22] 前記光学ユニットは、前記基板の表面と対向するように配置された 1つの終端光学 素子を有し、前記 1つの終端光学素子を介して、前記第 1露光領域及び前記第 2露 光領域に前記第 1露光光及び前記第 2露光光を照射する請求項 11記載の露光装 置。
[23] 前記基板上の所定領域の露光中に、前記第 1パターン及び前記第 2パターンは各 々の走査方向に移動されるとともに、前記基板が走査方向に移動され、
前記第 1露光領域と前記第 2露光領域とは前記基板の走査方向の異なる位置に設 定される請求項 22記載の露光装置。
[24] 前記光学ユニットは、前記第 1露光領域及び前記第 2露光領域と光学的に共役な 位置近傍に配置され、前記第 1露光光と前記第 2露光光とを前記終端光学素子へ導 く中間光学部材を有し、
前記第 1パターンからの前記第 1露光光と前記第 2パターンからの前記第 2露光光 とが前記中間光学部材と前記終端光学素子とを介して前記第 1露光領域及び前記 第 2露光領域のそれぞれに照射される請求項 22記載の露光装置。
[25] 前記光学ユニットは、前記第 1パターンからの前記第 1露光光を前記中間光学部材 へ導く第 1誘導光学系と、前記第 2パターンからの前記第 2露光光を前記中間光学 部材へ導く第 2誘導光学系とを含む請求項 24記載の露光装置。
[26] 前記中間光学部材は、前記第 1誘導光学系からの前記第 1露光光を反射する第 1 反射面と前記第 2誘導光学系からの前記第 2露光光を反射する第 2反射面とを有す る請求項 25記載の露光装置。
[27] 前記第 1誘導光学系及び前記第 2誘導光学系の少なくとも一方は凹面ミラーを含 む請求項 25記載の露光装置。
[28] 前記光源装置と前記分離光学系との間において、前記第 1パターン、前記第 2バタ ーン、及び前記基板の少なくとも一つの移動と同期して移動可能に設けられ、前記 第 1露光光及び前記第 2露光光による前記基板の不要な露光を防止する可動光学 部材を備える請求項 23記載の露光装置。
[29] 前記可動光学部材は、前記第 1露光光を通過可能な第 1領域と、前記第 2露光光 を通過可能な第 2領域と、前記第 1露光光と前記第 2露光光とを通過可能な第 3領域 とを有する請求項 28記載の露光装置。
[30] 前記第 1、第 2、及び前記第 3領域は、前記第 1パターン及び前記第 2パターンの走 查方向に対応する方向に並んで配置され、前記第 3領域は前記第 1領域と前記第 2 領域との間に設けられている請求項 29記載の露光装置。
[31] 前記第 1領域を通過した第 1露光光と前記第 3領域を通過した第 1露光光とを同一 の強度で前記基板に照射するとともに、前記第 2領域を通過した第 2露光光と前記第
3領域を通過した第 2露光光とを同一の強度で前記基板に照射する調整装置を備え た請求項 29記載の露光装置。
[32] 前記可動光学部材を移動することによって、前記第 1露光光及び前記第 2露光光 による前記基板の不要な露光が防止されるように、前記分離光学系と前記第 1パター ン及び前記第 2パターンとの間に配置される光学系による結像回数が設定されて ヽ
る請求項 28記載の露光装置。
[33] 前記基板上に液浸領域を形成し、前記液浸領域の液体を介して前記第 1露光光と 前記第 2露光光とを前記基板上の所定領域に照射する請求項 1〜32のいずれか一 項記載の露光装置。
[34] 請求項 1記載の露光装置を用いて基板を多重露光することと、
多重露光した基板を現像することと、
現像した基板を加工することを含むデバイス製造方法。
[35] 基板を露光する露光装置であって、
露光光を発生する光源と、
第 1露光光で第 1パターンを照明するとともに第 2露光光で第 2パターンを照明する 照明系と、
前記基板に相対して第 1パターン及び第 2パターンを移動する移動装置と、 第 1パターン、第 2パターン及び前記基板の少なくとも一つの移動と同期して移動 可能であり、且つ第 1露光光だけを通過させる第 1領域と、第 2露光光だけを通過さ せる第 2領域と、第 1露光光と第 2露光光の両方を通過させる第 3領域とを有する可 動ブラインドと、
第 1パターンからの第 1露光光と第 2パターンからの第 2露光光とを前記基板上の所 定領域に照射することによって、前記基板上の所定領域を多重露光する露光装置。
[36] 第 1パターン及び第 2パターンが前記基板と同期して移動されつつ、可動ブラインド が第 1パターン及び第 2パターンと同期して移動される請求項 35記載の露光装置。
[37] 第 1、第 2及び第 3領域は、第 1パターン及び第 2パターンの配列方向に並んで配置 され、第 3領域は第 1領域と前記第 2領域との間に設けられている請求項 36記載の 露光装置。
[38] 第 1パターンが第 1領域と第 3領域に対応し、第 2パターンが第 2領域と第 3領域に 対応する請求項 36記載の露光装置。
[39] 第 1露光光と第 2露光光が互いに直交する直線偏光であり、可動ブラインドが偏光 板を備える請求項 36記載の露光装置。
[40] 第 1領域を通過した第 1露光光と第 3領域を通過した第 1露光光とを同一の強度で
前記基板に照射するとともに、第 2領域を通過した第 2露光光と第 3領域を通過した 第 2露光光とを同一の強度で前記基板に照射する調整装置を備えた請求項 35記載 の露光装置。
[41] 前記可動光学部材を移動することによって、第 1露光光及び第 2露光光による前記 基板の不要な露光が防止されるように、前記光源と第 1パターン及び第 2パターンと の間に配置される光学系による結像回数が設定されている請求項 35記載の露光装 置。
[42] 前記基板上に液浸領域を形成し、前記液浸領域の液体を介して第 1露光光と第 2 露光光とを前記基板上の所定領域に照射する請求項 35〜41のいずれか一項記載 の露光装置。
[43] 請求項 35記載の露光装置を用いて基板を多重露光することと、
多重露光した基板を現像することと、
現像した基板を加工することとを含むデバイス製造方法。
[44] 基板を走査方向に移動しつつ前記基板上の所定領域を露光する露光方法であつ て、
光源装置から射出された露光光を、第 1露光光と第 2露光光とに分離し、 前記第 1露光光を第 1露光領域に照射するとともに、前記走査方向に関して前記第 1露光領域とは異なる位置に設定された第 2露光領域に前記第 2露光光を照射し、 前記第 1露光領域及び前記第 2露光領域に対して前記基板上の所定領域を移動 することによって、前記基板上の所定領域を多重露光する露光方法。
[45] 第 1露光光と第 2露光光は、偏光状態、強度及び波長のうちの一つが異なる請求 項 44記載の露光方法。
[46] 第 1露光光と第 2露光光の偏光状態が異なる請求項 44記載の露光方法。
[47] 第 1露光光と第 2露光光が互いに直交する直線偏光である請求項 46記載の露光 方法。
[48] 第 1露光光が直線偏光であり、第 2露光光が円偏光である請求項 46記載の露光方 法。
[49] 前記第 1露光領域及び前記第 2露光領域の前記走査方向の距離は、前記基板上
の所定領域の前記走査方向の幅よりも小さい請求項 44記載の露光方法。
[50] 前記第 1露光光を第 1パターンでパターン化して第 1露光領域に照射し、前記第 2露 光光を第 2パターンでパターンィ匕して第 2露光領域に照射する請求項 44記載の露光 方法。
[51] 前記第 1露光光を第 1マスクによりパターンィ匕し、前記第 2露光光を第 2マスクにより パターン化する請求項 50記載の露光方法。
[52] 前記基板を移動することに同期して、第 1マスク及び第 2マスクを第 1及び第 2露光光 に対して移動することを含む請求項 51記載の露光方法。
[53] 第 1、第 2マスクを同一のステージで保持し、前記多重露光時に前記ステージを移動 して、第 1、第 2マスクと前記基板との同期移動を行うことを含む請求項 52記載の露 光方法。
[54] 前記基板上に液浸領域を形成し、前記液浸領域の液体を介して前記第 1露光光と 前記第 2露光光とを前記基板上の所定領域に照射する請求項 44〜53のいずれか 一項記載の露光方法。
[55] 請求項 44記載の露光方法を用いて基板を多重露光することと、
多重露光した基板を現像することと、
現像した基板を加工することを含むデバイス製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06843445A EP1978546A4 (en) | 2005-12-28 | 2006-12-27 | EXPOSURE DEVICE, EXPOSURE METHOD AND COMPONENT MANUFACTURING METHOD |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-378633 | 2005-12-28 | ||
JP2005378633 | 2005-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007077875A1 true WO2007077875A1 (ja) | 2007-07-12 |
Family
ID=38228229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/326063 WO2007077875A1 (ja) | 2005-12-28 | 2006-12-27 | 露光装置及び露光方法、並びにデバイス製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7932994B2 (ja) |
EP (1) | EP1978546A4 (ja) |
KR (1) | KR20080088579A (ja) |
TW (1) | TW200731025A (ja) |
WO (1) | WO2007077875A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011501446A (ja) * | 2007-10-26 | 2011-01-06 | カール・ツァイス・エスエムティー・ゲーエムベーハー | 結像光学系、この種の結像光学系を含むマイクロリソグラフィのための投影露光装置、及びこの種の投影露光装置を用いて微細構造構成要素を生成する方法 |
JP2014207414A (ja) * | 2013-04-16 | 2014-10-30 | 株式会社オーク製作所 | 露光装置 |
CN105643107A (zh) * | 2013-03-12 | 2016-06-08 | 应用材料公司 | 在激光退火系统中用于控制边缘轮廓的定制光瞳光阑形状 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2009678A4 (en) * | 2006-04-17 | 2011-04-06 | Nikon Corp | OPTICAL LIGHTING DEVICE, EXPOSURE DEVICE AND COMPONENT MANUFACTURING METHOD |
US8665418B2 (en) * | 2007-04-18 | 2014-03-04 | Nikon Corporation | Projection optical system, exposure apparatus, and device manufacturing method |
KR100896875B1 (ko) * | 2007-07-23 | 2009-05-12 | 주식회사 동부하이텍 | 노광장치 및 노광방법 |
US8355113B2 (en) * | 2007-12-17 | 2013-01-15 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
US8305559B2 (en) * | 2008-06-10 | 2012-11-06 | Nikon Corporation | Exposure apparatus that utilizes multiple masks |
US8736813B2 (en) * | 2008-08-26 | 2014-05-27 | Nikon Corporation | Exposure apparatus with an illumination system generating multiple illumination beams |
US8705170B2 (en) * | 2008-08-29 | 2014-04-22 | Nikon Corporation | High NA catadioptric imaging optics for imaging A reticle to a pair of imaging locations |
US8384875B2 (en) * | 2008-09-29 | 2013-02-26 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US20100091257A1 (en) * | 2008-10-10 | 2010-04-15 | Nikon Corporation | Optical Imaging System and Method for Imaging Up to Four Reticles to a Single Imaging Location |
US20100123883A1 (en) * | 2008-11-17 | 2010-05-20 | Nikon Corporation | Projection optical system, exposure apparatus, and device manufacturing method |
US8610878B2 (en) * | 2010-03-04 | 2013-12-17 | Asml Netherlands B.V. | Lithographic apparatus and method |
CN103034063B (zh) * | 2011-09-29 | 2015-03-04 | 中芯国际集成电路制造(北京)有限公司 | 光刻设备 |
WO2013088551A1 (ja) * | 2011-12-15 | 2013-06-20 | キヤノン株式会社 | 露光装置およびデバイス製造方法 |
DE102012208521A1 (de) * | 2012-05-22 | 2013-06-27 | Carl Zeiss Smt Gmbh | Beleuchtungssystem für eine Projektionsbelichtungsanlage für die Projektionslithographie |
KR102033171B1 (ko) * | 2012-06-22 | 2019-10-16 | 엘지이노텍 주식회사 | 카메라 모듈 |
CN103969956B (zh) * | 2013-01-25 | 2017-02-08 | 上海微电子装备有限公司 | 曝光装置 |
Citations (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06124873A (ja) | 1992-10-09 | 1994-05-06 | Canon Inc | 液浸式投影露光装置 |
JPH08130179A (ja) | 1994-11-01 | 1996-05-21 | Nikon Corp | ステージ装置 |
JPH08313842A (ja) | 1995-05-15 | 1996-11-29 | Nikon Corp | 照明光学系および該光学系を備えた露光装置 |
JPH10163099A (ja) | 1996-11-28 | 1998-06-19 | Nikon Corp | 露光方法及び露光装置 |
JPH10214783A (ja) | 1996-11-28 | 1998-08-11 | Nikon Corp | 投影露光装置及び投影露光方法 |
US5825043A (en) | 1996-10-07 | 1998-10-20 | Nikon Precision Inc. | Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus |
JPH10303114A (ja) | 1997-04-23 | 1998-11-13 | Nikon Corp | 液浸型露光装置 |
JPH1123692A (ja) | 1997-06-30 | 1999-01-29 | Sekisui Chem Co Ltd | 地中探査用アンテナ |
JPH1128790A (ja) | 1997-07-09 | 1999-02-02 | Asahi Chem Ind Co Ltd | 紫外線遮蔽用熱可塑性樹脂板 |
JPH11135400A (ja) | 1997-10-31 | 1999-05-21 | Nikon Corp | 露光装置 |
WO1999049504A1 (fr) | 1998-03-26 | 1999-09-30 | Nikon Corporation | Procede et systeme d'exposition par projection |
US5969441A (en) | 1996-12-24 | 1999-10-19 | Asm Lithography Bv | Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device |
JP2000021742A (ja) * | 1998-06-30 | 2000-01-21 | Canon Inc | 露光方法および露光装置 |
JP2000021748A (ja) * | 1998-06-30 | 2000-01-21 | Canon Inc | 露光方法および露光装置 |
JP2000164504A (ja) | 1998-11-30 | 2000-06-16 | Nikon Corp | ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法 |
JP2001510577A (ja) | 1997-12-02 | 2001-07-31 | エイエスエム リトグラフィー ベスローテン フエンノートシャップ | 干渉計システムおよびそのようなシステムを含むリソグラフィー装置 |
JP2001291654A (ja) * | 2000-04-07 | 2001-10-19 | Canon Inc | 投影露光装置および方法 |
JP2001297976A (ja) | 2000-04-17 | 2001-10-26 | Canon Inc | 露光方法及び露光装置 |
US20010035168A1 (en) | 2000-03-10 | 2001-11-01 | Knut Meyer | Ventilation device for a fuel tank |
US6341007B1 (en) | 1996-11-28 | 2002-01-22 | Nikon Corporation | Exposure apparatus and method |
US20040019128A1 (en) | 2002-07-25 | 2004-01-29 | Ai Kondo | Curable white ink |
US6721034B1 (en) | 1994-06-16 | 2004-04-13 | Nikon Corporation | Stage unit, drive table, and scanning exposure apparatus using the same |
US20040086468A1 (en) | 2002-10-30 | 2004-05-06 | Isp Investments Inc. | Delivery system for a tooth whitener |
EP1420298A2 (en) | 2002-11-12 | 2004-05-19 | ASML Netherlands B.V. | Immersion lithographic apparatus and device manufacturing method |
US20040107011A1 (en) | 2002-10-09 | 2004-06-03 | Giovanni Moselli | Arrangement for controlling operation of fuel cells in electric vehicles |
WO2004055803A1 (en) | 2002-12-13 | 2004-07-01 | Koninklijke Philips Electronics N.V. | Liquid removal in a method and device for irradiating spots on a layer |
JP2004519850A (ja) * | 2001-02-27 | 2004-07-02 | エイエスエムエル ユーエス, インコーポレイテッド | デュアルレチクルイメージを露光する方法および装置 |
WO2004057590A1 (en) | 2002-12-19 | 2004-07-08 | Koninklijke Philips Electronics N.V. | Method and device for irradiating spots on a layer |
US6778257B2 (en) | 2001-07-24 | 2004-08-17 | Asml Netherlands B.V. | Imaging apparatus |
US20040165159A1 (en) | 2002-11-12 | 2004-08-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2004289126A (ja) | 2002-11-12 | 2004-10-14 | Asml Netherlands Bv | リソグラフィ装置およびデバイス製造方法 |
JP2004304135A (ja) | 2003-04-01 | 2004-10-28 | Nikon Corp | 露光装置、露光方法及びマイクロデバイスの製造方法 |
WO2005029559A1 (ja) | 2003-09-19 | 2005-03-31 | Nikon Corporation | 露光装置及びデバイス製造方法 |
US6897963B1 (en) | 1997-12-18 | 2005-05-24 | Nikon Corporation | Stage device and exposure apparatus |
WO2005059618A2 (en) | 2003-12-19 | 2005-06-30 | Carl Zeiss Smt Ag | Microlithography projection objective with crystal lens |
WO2005059617A2 (en) | 2003-12-15 | 2005-06-30 | Carl Zeiss Smt Ag | Projection objective having a high aperture and a planar end surface |
WO2005076045A1 (ja) | 2004-02-06 | 2005-08-18 | Nikon Corporation | 偏光変換素子、照明光学装置、露光装置、および露光方法 |
US20050248856A1 (en) | 2002-08-23 | 2005-11-10 | Nikon Corporation | Projection optical system and method for photolithography and exposure apparatus and method using same |
US20050280791A1 (en) | 2003-02-26 | 2005-12-22 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US7023610B2 (en) | 1998-03-11 | 2006-04-04 | Nikon Corporation | Ultraviolet laser apparatus and exposure apparatus using same |
US20060121364A1 (en) | 2003-05-06 | 2006-06-08 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5473410A (en) * | 1990-11-28 | 1995-12-05 | Nikon Corporation | Projection exposure apparatus |
US5815247A (en) | 1995-09-21 | 1998-09-29 | Siemens Aktiengesellschaft | Avoidance of pattern shortening by using off axis illumination with dipole and polarizing apertures |
JPH10209039A (ja) * | 1997-01-27 | 1998-08-07 | Nikon Corp | 投影露光方法及び投影露光装置 |
JP2000021708A (ja) | 1998-06-29 | 2000-01-21 | Canon Inc | 露光方法及びデバイス製造方法 |
KR20010085493A (ko) * | 2000-02-25 | 2001-09-07 | 시마무라 기로 | 노광장치, 그 조정방법, 및 상기 노광장치를 이용한디바이스 제조방법 |
EP1255162A1 (en) * | 2001-05-04 | 2002-11-06 | ASML Netherlands B.V. | Lithographic apparatus |
US6795168B2 (en) * | 2002-04-08 | 2004-09-21 | Numerical Technologies, Inc. | Method and apparatus for exposing a wafer using multiple masks during an integrated circuit manufacturing process |
JP3958163B2 (ja) * | 2002-09-19 | 2007-08-15 | キヤノン株式会社 | 露光方法 |
TW200412617A (en) * | 2002-12-03 | 2004-07-16 | Nikon Corp | Optical illumination device, method for adjusting optical illumination device, exposure device and exposure method |
EP2950148B1 (en) | 2003-04-10 | 2016-09-21 | Nikon Corporation | Environmental system including vaccum scavenge for an immersion lithography apparatus |
US7094506B2 (en) * | 2004-03-09 | 2006-08-22 | Asml Netherlands B.V | Lithographic apparatus and device manufacturing method |
JP5159027B2 (ja) * | 2004-06-04 | 2013-03-06 | キヤノン株式会社 | 照明光学系及び露光装置 |
US7924406B2 (en) * | 2005-07-13 | 2011-04-12 | Asml Netherlands B.V. | Stage apparatus, lithographic apparatus and device manufacturing method having switch device for two illumination channels |
-
2006
- 2006-12-27 KR KR1020087011540A patent/KR20080088579A/ko not_active Application Discontinuation
- 2006-12-27 US US11/645,643 patent/US7932994B2/en active Active
- 2006-12-27 WO PCT/JP2006/326063 patent/WO2007077875A1/ja active Application Filing
- 2006-12-27 EP EP06843445A patent/EP1978546A4/en not_active Withdrawn
- 2006-12-28 TW TW095149384A patent/TW200731025A/zh unknown
Patent Citations (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06124873A (ja) | 1992-10-09 | 1994-05-06 | Canon Inc | 液浸式投影露光装置 |
US6721034B1 (en) | 1994-06-16 | 2004-04-13 | Nikon Corporation | Stage unit, drive table, and scanning exposure apparatus using the same |
JPH08130179A (ja) | 1994-11-01 | 1996-05-21 | Nikon Corp | ステージ装置 |
JPH08313842A (ja) | 1995-05-15 | 1996-11-29 | Nikon Corp | 照明光学系および該光学系を備えた露光装置 |
US5825043A (en) | 1996-10-07 | 1998-10-20 | Nikon Precision Inc. | Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus |
JPH10163099A (ja) | 1996-11-28 | 1998-06-19 | Nikon Corp | 露光方法及び露光装置 |
JPH10214783A (ja) | 1996-11-28 | 1998-08-11 | Nikon Corp | 投影露光装置及び投影露光方法 |
US6590634B1 (en) | 1996-11-28 | 2003-07-08 | Nikon Corporation | Exposure apparatus and method |
US6549269B1 (en) | 1996-11-28 | 2003-04-15 | Nikon Corporation | Exposure apparatus and an exposure method |
US6400441B1 (en) | 1996-11-28 | 2002-06-04 | Nikon Corporation | Projection exposure apparatus and method |
US6341007B1 (en) | 1996-11-28 | 2002-01-22 | Nikon Corporation | Exposure apparatus and method |
US5969441A (en) | 1996-12-24 | 1999-10-19 | Asm Lithography Bv | Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device |
JP2000505958A (ja) | 1996-12-24 | 2000-05-16 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 2個の物品ホルダを有する二次元バランス位置決め装置及びこの位置決め装置を有するリソグラフ装置 |
JPH10303114A (ja) | 1997-04-23 | 1998-11-13 | Nikon Corp | 液浸型露光装置 |
JPH1123692A (ja) | 1997-06-30 | 1999-01-29 | Sekisui Chem Co Ltd | 地中探査用アンテナ |
JPH1128790A (ja) | 1997-07-09 | 1999-02-02 | Asahi Chem Ind Co Ltd | 紫外線遮蔽用熱可塑性樹脂板 |
JPH11135400A (ja) | 1997-10-31 | 1999-05-21 | Nikon Corp | 露光装置 |
JP2001510577A (ja) | 1997-12-02 | 2001-07-31 | エイエスエム リトグラフィー ベスローテン フエンノートシャップ | 干渉計システムおよびそのようなシステムを含むリソグラフィー装置 |
US6897963B1 (en) | 1997-12-18 | 2005-05-24 | Nikon Corporation | Stage device and exposure apparatus |
US7023610B2 (en) | 1998-03-11 | 2006-04-04 | Nikon Corporation | Ultraviolet laser apparatus and exposure apparatus using same |
WO1999049504A1 (fr) | 1998-03-26 | 1999-09-30 | Nikon Corporation | Procede et systeme d'exposition par projection |
JP2000021742A (ja) * | 1998-06-30 | 2000-01-21 | Canon Inc | 露光方法および露光装置 |
JP2000021748A (ja) * | 1998-06-30 | 2000-01-21 | Canon Inc | 露光方法および露光装置 |
JP2000164504A (ja) | 1998-11-30 | 2000-06-16 | Nikon Corp | ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法 |
US20010035168A1 (en) | 2000-03-10 | 2001-11-01 | Knut Meyer | Ventilation device for a fuel tank |
JP2001291654A (ja) * | 2000-04-07 | 2001-10-19 | Canon Inc | 投影露光装置および方法 |
JP2001297976A (ja) | 2000-04-17 | 2001-10-26 | Canon Inc | 露光方法及び露光装置 |
JP2004519850A (ja) * | 2001-02-27 | 2004-07-02 | エイエスエムエル ユーエス, インコーポレイテッド | デュアルレチクルイメージを露光する方法および装置 |
US6778257B2 (en) | 2001-07-24 | 2004-08-17 | Asml Netherlands B.V. | Imaging apparatus |
US20040019128A1 (en) | 2002-07-25 | 2004-01-29 | Ai Kondo | Curable white ink |
US20050248856A1 (en) | 2002-08-23 | 2005-11-10 | Nikon Corporation | Projection optical system and method for photolithography and exposure apparatus and method using same |
US20040107011A1 (en) | 2002-10-09 | 2004-06-03 | Giovanni Moselli | Arrangement for controlling operation of fuel cells in electric vehicles |
US20040086468A1 (en) | 2002-10-30 | 2004-05-06 | Isp Investments Inc. | Delivery system for a tooth whitener |
US6952253B2 (en) | 2002-11-12 | 2005-10-04 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US20040165159A1 (en) | 2002-11-12 | 2004-08-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2004289126A (ja) | 2002-11-12 | 2004-10-14 | Asml Netherlands Bv | リソグラフィ装置およびデバイス製造方法 |
EP1420298A2 (en) | 2002-11-12 | 2004-05-19 | ASML Netherlands B.V. | Immersion lithographic apparatus and device manufacturing method |
WO2004055803A1 (en) | 2002-12-13 | 2004-07-01 | Koninklijke Philips Electronics N.V. | Liquid removal in a method and device for irradiating spots on a layer |
WO2004057590A1 (en) | 2002-12-19 | 2004-07-08 | Koninklijke Philips Electronics N.V. | Method and device for irradiating spots on a layer |
US20050280791A1 (en) | 2003-02-26 | 2005-12-22 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
JP2004304135A (ja) | 2003-04-01 | 2004-10-28 | Nikon Corp | 露光装置、露光方法及びマイクロデバイスの製造方法 |
US20060121364A1 (en) | 2003-05-06 | 2006-06-08 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
WO2005029559A1 (ja) | 2003-09-19 | 2005-03-31 | Nikon Corporation | 露光装置及びデバイス製造方法 |
US20060231206A1 (en) | 2003-09-19 | 2006-10-19 | Nikon Corporation | Exposure apparatus and device manufacturing method |
WO2005059617A2 (en) | 2003-12-15 | 2005-06-30 | Carl Zeiss Smt Ag | Projection objective having a high aperture and a planar end surface |
WO2005059618A2 (en) | 2003-12-19 | 2005-06-30 | Carl Zeiss Smt Ag | Microlithography projection objective with crystal lens |
WO2005076045A1 (ja) | 2004-02-06 | 2005-08-18 | Nikon Corporation | 偏光変換素子、照明光学装置、露光装置、および露光方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011501446A (ja) * | 2007-10-26 | 2011-01-06 | カール・ツァイス・エスエムティー・ゲーエムベーハー | 結像光学系、この種の結像光学系を含むマイクロリソグラフィのための投影露光装置、及びこの種の投影露光装置を用いて微細構造構成要素を生成する方法 |
US8558991B2 (en) | 2007-10-26 | 2013-10-15 | Carl Zeiss Smt Gmbh | Imaging optical system and related installation and method |
KR101542268B1 (ko) | 2007-10-26 | 2015-08-06 | 칼 짜이스 에스엠티 게엠베하 | 결상 광학 시스템, 이러한 유형의 결상 광학 시스템을 구비하는 마이크로리소그래피용 투영 노광 장치 및 이러한 유형의 투영 노광 장치로 미세구조 요소를 제조하는 방법 |
CN105643107A (zh) * | 2013-03-12 | 2016-06-08 | 应用材料公司 | 在激光退火系统中用于控制边缘轮廓的定制光瞳光阑形状 |
US10444522B2 (en) | 2013-03-12 | 2019-10-15 | Applied Materials, Inc. | Customized pupil stop shape for control of edge profile in laser annealing systems |
JP2014207414A (ja) * | 2013-04-16 | 2014-10-30 | 株式会社オーク製作所 | 露光装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20080088579A (ko) | 2008-10-02 |
US7932994B2 (en) | 2011-04-26 |
US20070242255A1 (en) | 2007-10-18 |
EP1978546A4 (en) | 2010-08-04 |
TW200731025A (en) | 2007-08-16 |
EP1978546A1 (en) | 2008-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007077875A1 (ja) | 露光装置及び露光方法、並びにデバイス製造方法 | |
JP2007251153A (ja) | 露光装置、露光方法及びデバイス製造方法 | |
JP4572896B2 (ja) | 露光装置及びデバイスの製造方法 | |
WO2007094414A1 (ja) | 露光装置、露光方法及びデバイス製造方法 | |
US20070242254A1 (en) | Exposure apparatus and device manufacturing method | |
JP2007201457A (ja) | 露光装置及び露光方法、並びにデバイス製造方法 | |
WO2007094470A1 (ja) | 露光装置、露光方法及びデバイス製造方法 | |
US20080013062A1 (en) | Exposure apparatus, exposure method, and device manufacturing method | |
US8982322B2 (en) | Exposure apparatus and device manufacturing method | |
JP5505685B2 (ja) | 投影光学系、並びに露光方法及び装置 | |
WO2007066679A1 (ja) | 露光装置、露光方法、投影光学系及びデバイス製造方法 | |
JPWO2005106930A1 (ja) | 露光方法、露光装置及びデバイス製造方法 | |
JP2007281169A (ja) | 投影光学系、露光装置及び露光方法、並びにデバイス製造方法 | |
WO2007094431A1 (ja) | 露光装置、露光方法及びデバイス製造方法 | |
JP5370106B2 (ja) | 干渉計システム、ステージ装置及び露光装置 | |
JP2011117737A (ja) | 計測装置、ステージ装置及び露光装置 | |
JP4957281B2 (ja) | 露光装置、露光方法及びデバイス製造方法 | |
JP2012174883A (ja) | 露光装置、露光方法、及びデバイスの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020087011540 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006843445 Country of ref document: EP |