JP3898729B2 - 分割式4ストロークサイクル内燃機関 - Google Patents

分割式4ストロークサイクル内燃機関 Download PDF

Info

Publication number
JP3898729B2
JP3898729B2 JP2005315036A JP2005315036A JP3898729B2 JP 3898729 B2 JP3898729 B2 JP 3898729B2 JP 2005315036 A JP2005315036 A JP 2005315036A JP 2005315036 A JP2005315036 A JP 2005315036A JP 3898729 B2 JP3898729 B2 JP 3898729B2
Authority
JP
Japan
Prior art keywords
piston
engine
stroke
crankshaft
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005315036A
Other languages
English (en)
Other versions
JP2006097692A (ja
JP2006097692A5 (ja
Inventor
ジェイ. スクデリ カーメロ
Original Assignee
スクデリ グループ リミテッド ライアビリティ カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スクデリ グループ リミテッド ライアビリティ カンパニー filed Critical スクデリ グループ リミテッド ライアビリティ カンパニー
Publication of JP2006097692A publication Critical patent/JP2006097692A/ja
Publication of JP2006097692A5 publication Critical patent/JP2006097692A5/ja
Application granted granted Critical
Publication of JP3898729B2 publication Critical patent/JP3898729B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • F02B33/22Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with pumping cylinder situated at side of working cylinder, e.g. the cylinders being parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/04Engines with prolonged expansion in main cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • F02B75/228Multi-cylinder engines with cylinders in V, fan, or star arrangement with cylinders arranged in parallel banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0002Cylinder arrangements
    • F02F7/0019Cylinders and crankshaft not in one plane (deaxation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/0535Seals or sealing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Transmission Devices (AREA)
  • Valve Device For Special Equipments (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関に関する。より詳しくは、本発明は、一対のオフセットされたピストンを有し、この対の一方のピストンが吸気と圧縮行程に用いられ、対の他方のピストンが動力と排気行程に用いられ、4ストロークサイクルの各々がクランクシャフトの1回転で完結される4ストロークサイクル内燃機関に関する。
内燃機関は、燃焼の反応物、例えば酸化剤と燃料、及び燃焼の生成物がエンジンの作動流体として作用する装置群のいずれかである。内燃機関の構成部品は、この分野でよく知られ、エンジンブロック、シリンダヘッド、シリンダ、ピストン、バルブ、クランクシャフト、及びカムシャフトを含んでいる。シリンダヘッド、シリンダ及びピストンの頂面は、通常、燃料と酸化剤(例えば空気)が導入され、燃焼が起こる燃焼室を形成している。このようなエンジンは、非反応作動流体、例えば酸化剤・燃料混合物の燃焼中に放出される熱からエネルギーを得る。このプロセスは、エンジンの中で生じ、装置の熱力学的サイクルの一部である。すべての内燃機関において、有用な仕事はピストンの頂部、即ち冠面のようなエンジンの移動表面に直接に作用する熱い、気体状の燃焼生成物から発生される。一般的に、ピストンの往復運動は、コネクティングロッドを介してクランクシャフトの回転運動に変換される。
内燃機関は、火花点火と圧縮着火に分類され得る。火花点火、即ち典型的なガソリンエンジンでは火花を用いて空気と燃料の混合気を点火させ、一方、圧縮着火エンジン、即ち典型的にはディーゼルエンジンでは圧縮熱が空気と燃料の混合気を着火させる。
最も普通の内燃機関は4ストロークサイクルエンジンであり、その基本設計のコンセプトは100年を超える間変化していない。これは、地上輸送産業における原動機としての優れた性能のためである。4ストロークサイクルエンジンにおいて、動力は、1つのピストンの4つの異なる運動(行程)のうちの燃焼プロセスから回収される。この目的のため、1つの行程は上死点位置から下死点位置までまたその逆のピストンの完全な移動として定義される。従って、4ストロークサイクルエンジンとは、動力行程、すなわち動力をクランクシャフトに伝達する行程のために、1つ以上のピストンの4つの完全な行程を必要とするエンジンとして、ここでは定義される。
図1から図4を参照するに、先行技術の4ストロークサイクルエンジンの例が、10として示されている。比較の目的のために、以下の4つの図1から図4は先行技術の「標準エンジン」10と名付けられるものを記載している。以下により詳細に説明されるように、この標準エンジン10は、4インチの直径のピストン、4インチの行程、そして8対1の圧縮比を有する火花点火エンジンである。ここに、圧縮比は、点火時点における空気・燃料混合気のひと塊の容積で除された、圧縮行程前の空気・燃料混合気の所定のひと塊の最大容積として定義される。この標準エンジンでは、圧縮比は、ピストン16が上死点にあるときのシリンダ14の容積とピストン16が下死点にあるときのシリンダ14の容積との比である。
エンジン10は、エンジンブロックを貫通して延びるシリンダ14を有するエンジンブロック12を含む。シリンダ14は、その中に往復ピストン16を収容する大きさである。シリンダ14の上部には、インレットバルブ20とアウトレットバルブ22を含むシリンダヘッド18が取り付けられている。シリンダヘッド18、シリンダ14そしてピストン16の頂部(即ち、冠面24)が燃焼室26を形成する。吸気行程において(図1)、燃料・空気混合気が、吸気通路28とインレットバルブ20を介して燃焼室26に吸入され、そこで混合気が点火栓30によって点火される。燃焼の生成物は、その後、排気行程(図4)においてアウトレットバルブ22と排気通路32を介して排気される。コネクティングロッド34は、その上部末端部36でピストン16に旋回可能に取り付けられている。クランクシャフト38はクランクシャフトスロー40と称される機械的オフセット部を有し、このクランクシャフトスロー40はコネクティングロッド34の下部末端部42に旋回可能に取り付けられている。ピストン16とクランクシャフトスロー40に対するコネクティングロッド34の機械的結合が、ピストン16の(矢印44によって示されるような)往復運動をクランクシャフト38の(矢印46によって示されるような)回転運動に変換するように作用する。クランクシャフト38はインレットカムシャフト48とアウトレットカムシャフト50に機械的に連結され(図示なし)、これらはインレットバルブ20とアウトレットバルブ22の開閉を夫々正確に制御する。
シリンダ14は中心線(ピストン・シリンダ軸)52を有し、これがまたピストン16の往復動作の中心線にもなる。クランクシャフト38は回転中心(クランクシャフト軸)を有している。本明細書の目的のためには、クランクシャフト38の回転方向46は、読者により用紙の平面が見られたとき時計方向になる。シリンダ14の中心線52はクランクシャフト38の回転中心54をまっすぐに通過している。
図1を参照するに、インレットバルブ20が開口した状態で、ピストン16は吸気行程において(矢印44の方向で示されるように)先ず下降する。燃料(ガソリン蒸気)と空気との爆発性混合気の所定のひと塊が、発生された部分的負圧によって燃焼室26に吸入される。ピストンは下死点(BDC)に達するまで引き続き下降する。この下死点はピストンがシリンダヘッド18からもっとも遠い位置になる点である。
図2を参照すると、インレットバルブ20とアウトレットバルブ22の両方とも閉じた状態で、圧縮行程において(矢印44の方向で示されるように)ピストン16が上昇するにつれて混合気が圧縮される。圧縮行程の終わりが上死点(TDC)、即ちピストン16がシリンダヘッド18にもっとも近接する点に近づくと、混合気の容積は初期の容積の8分の1(8対1の圧縮比の故)にまで圧縮される。このときに混合気は点火栓30からの電気火花によって点火される。
図3を参照するに、バルブ20とバルブ22の両方ともまだ閉じた状態で動力行程が続く。ピストン16は、ピストン16の冠面を押圧する燃焼ガスの膨張によって、下死点(BDC)に向かって(矢印44に示されるように)下方に駆動される。点火栓30は、ピストン16がTDCまたはその近く、即ち点火位置にあるとき点火されるので、点火されたガスによりピストン16に及ぼされる燃焼圧力(矢印56によって示される)はその点で最大になる。この圧力56はコネクティングロッド34によって伝達され、クランクシャフト38上で(矢印58で示されるように)接線力、即ちトルクになる。
ピストン16が点火位置にあるとき、シリンダ14の頂部とピストン16の冠面24との間にはかなり大きなすきま距離60が存在する。通常、すきま距離は0.5と0.6インチの間である。例示された標準エンジン10では、そのすきま距離はほぼ0.571インチである。ピストン16が点火位置にあるとき、点火にとっては最適の条件、即ち最適点火条件である。比較の目的のために、このエンジン10の模範的実施形態の点火条件は次の通りである。1)直径4インチのピストン、2)すきま容積7.181立方インチ、3)点火前圧力約270ポンド/平方インチ(psia)、4)点火後最大燃焼圧力約1200psia、5)運転回転数1400RPM.
このすきま距離60は、典型的には8対1の圧縮比に対応する。典型的には、火花点火エンジンは、約6.0から8.5の範囲の固定圧縮比で作動するのが最適であり、一方、圧縮着火エンジンの圧縮比は典型的には、約10から16の範囲である。ピストン16の点火位置は一般にはTDCまたはTDCの近傍であり、燃料・空気混合気が点火するのに最適な容積と圧力を示す。もし、すきま距離60がもっと小さくされると、その圧力は急激に増加することになる。
図4を参照すると、排気行程においてピストン16の上昇によって、開口しているアウトレット(即ち排気)バルブ22を介して消費された燃焼生成物を押し出す。それからそのサイクルを繰返す。この先行技術の4ストロークサイクルエンジン10については、各ピストン16の4つの行程、即ち吸気、圧縮、動力、そして排気とクランクシャフト38の2回転が、1サイクルを完結するために、即ち1つの動力行程をもたらすために必要とされる。
問題としては、標準4ストロークサイクルエンジン10の全体の熱力学効率は約3分の1(1/3)に過ぎないことである。即ち仕事の3分の1がクランクシャフトに分配され、3分の1は廃熱で失われ、3分の1は排気として失われる。
図3と図5に示されるように、この低効率の主たる理由の1つは、ピークトルクとピーク燃焼圧の位相が、もともと外れて組み合わされている事実である。図3は動力行程の初期におけるピストン16の位置を示し、そのときのピストン16は、TDCまたはTDC近傍で点火位置にある。点火栓30が点火すると、点火された燃料はピストン16に最大燃焼圧56を及ぼし、その圧力はコネクティングロッド34を介してクランクシャフト38のクランクシャフトスロー40に伝達される。しかしながら、この位置では、コネクティングロッド34とクランクシャフトスロー40は両方ともシリンダ14の中心線52とほぼ整列している。従って、トルク58は力56の方向にほとんど直交し、最小値にある。クランクシャフト38は、この位置を過ぎて回転させるためには取り付けられたフライホィール(図示せず)から生じる運動量に依存する必要がある。
図5を参照するに、点火されたガスが燃焼室26で膨張するに連れてピストン16は、下降し燃焼圧56は低下する。しかしながら、クランクシャフトスロー40が中心線52とTDCを通過して回転すると、その結果である接線力、即ちトルク58が大きくなり始める。クランクシャフトスロー40が中心線52を通過してほぼ30度回転するとトルク58は最大値になる。この点を過ぎて回転すると圧力56が著しく低下するので、トルク58は圧力56とトルク58がBDCで最小値に達するまで再び低下し始める。従って、最大トルク58の点と最大燃焼圧力56の点は、もともとほぼ30度その位相が外れて組み合わされている。
図6を参照するに、この概念は更に図解され得る。ここで、TDCからBDCの回転角度に対する接線力、即ちトルクのグラフが先行技術の標準エンジン10に関して62で示されている。加えて、TDCからBDCの回転角度に対する燃焼圧のグラフが、エンジン10に関して64で示されている。グラフ62とグラフ64についての計算は、4インチの行程、4インチ直径のピストン、点火時最大燃焼圧力約1200PSIAを有する標準の先行技術エンジン10に基づいている。グラフからわかるように、最大燃焼圧66の点はTDCからほぼ0度で生じ、最大トルク68の点は圧力64がかなり低下するほぼ30度後に生じる。グラフ62とグラフ64は両方とも、BDC、即ちTDC後ほぼ180度の回転角度でそれらの最小値に近づく。
4ストロークサイクルエンジンの熱力学効率を増加させる別の方法はエンジンの圧縮比を増加させることである。しかしながら、火花点火エンジンが典型的には約6.0から8.5の範囲内の圧縮比で作動し、一方、圧縮着火エンジンは典型的には圧縮比約10から16の範囲で作動するのが最適であることは自動車製造業者にはわかっていることである。これは、火花点火エンジンまたは圧縮着火エンジンの圧縮比が実質的に上記の圧縮比範囲を超えて増加すると、他にいくつかの問題が生じ、得られる利点を凌駕してしまうからである。例えば、より大きな圧力を取扱うためには、エンジンがより重く、より大きく作られることが必要となる。また早期着火の問題が、特に火花点火エンジンにおいて起こり始める。
多くの変わった、初期のエンジンの設計が特許された。しかしながら、どれもより良い効率や更なる大きな利点を提供できなかったし、それらは上に例示した標準エンジンを置換えるものではなかった。これら初期の特許のいくつかは、特許文献1〜特許文献17を含む。
特に、ケーニグの特許文献3は先行技術の分割式ピストン/シリンダのデザインを開示しており、そこでは吸気行程と圧縮行程が圧縮ピストン12/シリンダ11の組み合わせで、動力行程/排気行程がエンジンピストン7/シリンダ8の組み合わせで行なわれている。ピストン7と12の各々は、単一のクランクシャフト5(それの図3を参照方)と交差するピストン・シリンダ軸に沿って往復動する。熱室24は圧縮シリンダとエンジンシリンダのヘッドを接続し、その一端はエンジンシリンダに開口し、他端は圧縮シリンダに連通するバルブ付き排出ポート19を有している。水冷熱交換器15が圧縮シリンダ11の頂部に配置され、圧縮されるとき空気または空気/燃料混合気を冷却する。一組の離間された熱板25が熱室24に配置され、これらは前に冷却された圧縮ガスが通過するときそれを再加熱する。
エンジンはガスを冷却してガスの圧縮を容易にすることで効率を上げると考えられていた。その後、効率の良い着火が生じる点まで圧力を増加させるためにガスは熱室で再び加熱された。排気行程において、熱い排気が熱室を再加熱するために熱室を介しておよび排気ポート26の外に戻された。
残念なことに、分割式ピストン設計のすべての先行技術のエンジンにおけるガスの移送は効率を下げる仕事を常に必要としている。加えて、ケーニグの熱室からエンジンシリンダへの付加的膨張はまた圧縮比を低下させた。 標準エンジン10はそのような移送プロセスやそれに関連する追加の仕事を必要としない。加えて、熱室を通じてのガスの冷却及び再加熱や行き来させることは、ガス移送プロセスの過程で生じる損失を打ち消すほどの利点をもたらさなかった。従って、ケーニグ特許は標準エンジン10に比べ効率及び圧縮比で負けている。
ここでの目的のために、クランクシャフト軸とピストン・シリンダ軸が交差しないとき、クランクシャフト軸はピストン・シリンダ軸からオフセットされているとして定義される。ピストン・シリンダ軸に直交して引かれた線に沿って取られた、延長されたクランクシャフト軸と延長されたピストン・シリンダ軸との間の距離がオフセット量として定義される。典型的には、オフセットされたピストンは良く知られたコネクティングロッドとクランクシャフトスローによってクランクシャフトに連結される。しかしながら、オフセットピストンは他のいくつかの機械的リンケージによってクランクシャフトに作用的に連結し得ることを当業者なら理解し得よう。例えば、第1ピストンは第1クランクシャフトに連結され、第2ピストンは第2クランクシャフトに連結され、そして2つのクランクシャフトは歯車機構によって一緒に作用的に連結されてもよい。代わりに、旋回レバーアームまたは他の機械的リンケージが、オフセットピストンをクランクシャフトに作用的に連結するために、コネクティングロッドとクランクシャフトスローとに関連して、あるいはそれらに代えて使用されてもよい。
クランクシャフト軸がピストン・シリンダ軸からオフセットされ、即ちそれと交差しない往復ピストン内燃機関に関するある技術が、特許文献18から特許文献25及び非特許文献1に記載されている。これらの刊行物の記載によれば、種々のエンジンの形が出力とトルクの改善あるいは摩擦と振動の低減を始めとした種々の考察によって動機づけられている。加えて、クランクシャフト軸がピストン軸からオフセットされた一直線、即ち直列式エンジンは20世紀初期のレース用エンジンに使用されていた。
しかしながら、得られた改善のすべては、動力行程のみにおけるトルク角を増加させることによっていた。残念ながら、これ以降で詳細に説明するように、動力行程におけるオフセットの利点が大きくなれば、それに伴い圧縮行程における不利な点を増加させていた。そのため、オフセットの度合いはすぐに自らの制限を招き、オフセットによって生じる動力行程におけるトルク、出力、摩擦、振動の利点はそれに伴い圧縮行程において生じる不利な点を凌ぐことはない。加えて、圧縮行程を最適化するオフセットに関しては何らの利点も教示されず、また論議されてもいなかった。
例として、オフセットの使用によって標準エンジン10形式の設計の効率を高めるようとする最近の先行技術の試みがリーへの特許文献26に開示されている。リーは、効率の改善が、4ストロークサイクルの2回転の期間全体に亘って側壁に対するピストンリングの摩擦力を減少させることによって行なわれる(リーの第4コラム、10〜16行参照方)と信じている。リーは、オフセットシリンダを用いることでこのことを実現しようとし、そこでは各シリンダ内の燃焼タイミングは各ピストンに対する各コネクティングロッドの各連結軸とクランクシャフトの各スローに対するコネクティングロッドの各連結軸を含む想像上の平面が、ピストンがそれに沿って往復する各シリンダ軸とほぼ一致するときに最大燃焼圧が生じるように制御される。
しかしながら、このオフセットは動力行程中利点となるが、圧縮行程中においては不利な点となる。即ち、圧縮行程中ピストンが下死点から上死点に移動するとき、このオフセットされたピストン・シリンダ軸はクランクシャフトスローとコネクティングロッドとの間にある角度を形成し、この角度がピストンに掛かるトルクを減少させるのである。加えて、圧縮行程中の減少トルク角度から生じる横方向力は実際にピストンリングの摩耗を増加させる。従って、オフセットが増加するにつれてガスを圧縮して圧縮行程を果たすためにはより大きな動力が消費されねばならない。それ故に、オフセット量は圧縮側の欠点によって著しく制限されることになる。従って、先行技術の大きなオフセット、即ちピストンが点火位置に達する前にクランクシャフトがピストンの上死点位置後少なくとも20度の回転を必要とするオフセットは、使用されることも、開示されることも、教示されることもなかった。結果として、実質的にピークトルクをピーク燃焼圧に合わせるのに必要とされ比較的大きなオフセットはリーの発明では達成できない。
可変圧縮比(VCR)エンジンは効率を上げるため、エンジンの圧縮比を変化させる利点を利用するべく設計された先行技術の圧縮着火エンジンの一種である。この典型的な例は、ソボトウイスキーへの特許文献27に開示されている。ソボトウイスキーは、ガスを両方向に流れさせる移送ポートによって相互に連結されているシリンダ内で作動する2つのピストン間の位相関係を変更することによって圧縮比が変化されるエンジンを記述している。
しかしながら、圧縮比を変えるために位相関係を変更することは著しく複雑性を増加させ、利便性を減少させることになるエンジンの設計要求を生じせしめる。例えば、一対のピストンの各ピストンは、完全な4ストロークサイクルの全4ストロークに亘って往復動作する必要があり、また4ストロークサイクル毎2つの回転に亘って回転する一対のクランクシャフトによって駆動される必要がある。加えて、この一対のクランクシャフト間のリンケージは大変複雑で、重くなる。またエンジンはより大きな圧縮比をもたらす圧縮着火エンジンへの設計によって制限を受ける。
種々の他の比較的最近開発された先行技術のエンジンもエンジン効率を高めるための試みにおいて設計されている。このようなエンジンの1つが、「行程特殊シリンダを有する内燃機関」と題するブラケットへの特許文献28に記載されている。このブラケット特許では、エンジンは作動部と圧縮機部とに分割されている。圧縮機部は空気を作動部へ供給し、効率を高めるためスコッチヨークまたは共役駆動動作変換構造を利用している。この特殊エンジンは、1つのシリンダブロック内で一対の対向するピストンが互いに反対方向に往復動作する水平対向エンジンとして記載され得る。
しかしながら、圧縮機は基本的には過給ガスを作動部に供給する過給器として設計されたものである。作動部にある各ピストンは、各クランクシャフトが4ストロークサイクル毎に2回転を完結するため、吸気、圧縮、動力および排気の全4ストロークに亘って往復動作する必要がある。加えて、この設計は複雑で高価であり、まさに特殊な圧縮着火エンジンに限定される。
別の特殊な先行技術の設計が「2重圧縮と2重膨張エンジン」と題するクラークへの特許文献29に記載されている。クラークは、単一のシリンダ内に互いに対向するピストンが動力行程と圧縮行程を行うべく配置されている特殊な2ストロークエンジンを基本的に開示している。この単一のシリンダと対向するピストンの冠面で燃焼室を画成し、これは往復する内側ハウジング内に配置されている。燃焼室に対するガスの吸入と排出は、特殊な円錐状ピストンと往復する内側ハウジングとによって行われる。
しかしながら、このエンジンは、同じシリンダ内で対向するピストンがそれぞれ圧縮行程と動力行程を行う相当特殊な2ストロークシステムである。加えて、この設計は、1回転2ストロークサイクルを完結するために2つのクランクシャフト、4つのピストンおよび往復する内側ハウジングを必要とする相当複雑なものである。又、このエンジンは大型の圧縮着火エンジンへの適用に限定される。
米国特許第848,029号明細書 米国特許第939,376号明細書 米国特許第1,111,841号明細書 米国特許第1,248,250号明細書 米国特許第1,301,141号明細書 米国特許第1,392,359号明細書 米国特許第1,856,048号明細書 米国特許第1,969,815号明細書 米国特許第2,091,410号明細書 米国特許第2,091,411号明細書 米国特許第2,091,412号明細書 米国特許第2,091,413号明細書 米国特許第2,269,948号明細書 米国特許第3,895,614号明細書 英国特許第299,602号明細書 英国特許第721,025号明細書 イタリア特許第505,576号明細書 米国特許第810,347号明細書 米国特許第2,957,455号明細書 米国特許第2,974,541号明細書 米国特許第4,628,876号明細書 米国特許第4,945,866号明細書 米国特許第5,146,884号明細書 日本国特開昭60−256,642号公報 ソビエト連邦特許第1551−880−A号明細書 米国特許第6,058,901号明細書 米国特許第4,955,328号明細書 米国特許第5,546,897号明細書 米国特許第5,623,894号明細書 日本自動車技術会(JSAE)学会1996年966版129−132頁
従って、通常許容できる設計限界を実質上超えるような圧縮比の増加なしに、動力行程中に生じるトルクカーブと出力カーブをもっと近接して一致させることにより、効率を高めることのできる改善された4ストローク内燃機関への要求がある。
本発明は一対のピストンを有する4ストロークサイクルエンジンを提供することにより、先行技術に対する利点と代替エンジンをもたらすものである。このエンジンにおいて、対の一方のピストンは、吸気と圧縮行程に対して用いられ、対の他方のピストンは、動力と排気行程に用いられる。各4ストロークサイクルは、クランクシャフト1回転で完結する。このエンジンは圧縮比を増加することなく、動力行程中に生じるトルクと出力カーブを更に近接して一致させることで、効率を向上させている。
これらと他の利点は、4ストロークサイクル内燃機関をもたらすことにより、本発明の例示の実施形態で達成されている。このエンジンは、エンジンのクランクシャフト軸を中心として回転するクランクシャフトを含む。パワーピストンは、クランクシャフトの1回転中に4ストロークサイクルの動力行程と排気行程に亘って往復するように、第1シリンダ内に摺動可能に設けられ、クランクシャフトに作用的に連結されている。圧縮ピストンは、クランクシャフトの同一回転中に同一の4ストロークサイクルの吸気行程と圧縮行程に亘って往復するように、第2シリンダ内に摺動可能に収容され、クランクシャフトに作用的に連結されている。このパワーピストンは、第1シリンダ内で、第1ピストン・シリンダ軸に沿って往復し、第1ピストン・シリンダ軸は、クランクシャフト軸と交差しないように、クランクシャフト軸とのオフセットを有している。この第1ピストン・シリンダ軸のオフセットにより、動力行程中にパワーピストンに及ぼす最大燃焼圧の点をクランクシャフトに及ぼす最大トルク点とほぼ一致させることが出来る。
本発明の他の実施形態において、エンジンは、第1と第2のシリンダを相互に連通するガス通路を含んでいる。このガス通路は、インレットバルブとアウトレットバルブを含み、バルブ間に圧力室を画成する。このガス通路のインレットバルブとアウトレットバルブは、全4ストロークサイクルの間、圧力室に少なくとも所定の点火条件ガス圧を実質的に維持する。
エンジンの更に他の実施形態において、パワーピストンは、実質的にゼロより大きい位相シフト角度だけ圧縮ピストンを先導する。好ましくは、この位相シフト角度は約30度と60度の間である。
本発明の更に他の実施形態において、第1ピストン・シリンダ軸のオフセットは、パワーピストンが点火位置に到達する前であって、パワーピストンが上死点に達する点を過ぎて、少なくとも20度クランクシャフトが回転するようにされている。
図7を参照するに、本発明による4ストロークサイクル内燃焼機関の例示的実施形態が全体として100で示されている。エンジン100は、エンジンブロック102を含み、このエンジンブロック102はそれを貫通して延在する第1シリンダ104と第2シリンダ106を有している。クランクシャフト108はクランクシャフト軸110(この用紙平面に直交して延びる)を中心として回転するように支承されている。
エンジンブロック102は、エンジン100の主たる構造部材であり、クランクシャフト108からシリンダヘッド112との接合部へ向かって上方に延びている。エンジンブロック102は、エンジン110の構造上の枠組として機能し、且つ通常取付けパッドを有しており、このパッドによってエンジンは、シャシー(図示せず)に支持される。エンジンブロック102は、一般には機械加工された、適切な表面とシリンダヘッド112やエンジン100の他のユニットを装着するためのねじ穴を有する鋳造品である。
シリンダ104と106は、通常全体として円形断面の開口であり、シリンダブロック102の上部を貫通して延びている。ここではシリンダは、エンジンのピストンが往復動する室として定義され、一般には断面は円形である必要はない。例えば全体として楕円または、半月形でも良い。
シリンダ104と106の内壁は、くりぬかれ、且つ磨かれて、第1パワーピストン114と第2圧縮ピストン116をそれぞれ収容する大きさの、滑らかで、正確な支持面を形成する。パワーピストン114は、第1ピストン・シリンダ軸113に沿って往復動作し、圧縮ピストン116は、第2ピストン・シリンダ軸115に沿って往復動作を行なう。第1と第2シリンダ104、106は、第1と第2ピストン・シリンダ軸113、115がクランクシャフト軸110と交差することなくクランクシャフト軸110の両側を通るようにエンジン100に配置されている。
ピストン114と116は通常、鋼又はアルミニウム合金からなるカップ型円筒鋳造品である。パワーピストン114と圧縮ピストン116の上方の閉端、即ち頂部は、夫々第1、第2冠面118と120である。ピストン114とピストン116の外表面は、シリンダ孔にきちんと嵌まるように全体として機械加され、ピストンとシリンダ壁の間隙をシールするピストンリング(図示せず)を受容れるために、通常溝が形成されている。
第1と第2コネクティングロッド122、124の各々は夫々折り曲げ部121と123を有する。このコネクティングロッド122、124はパワーピストン114と圧縮ピストン116にその頂部末端部126、128において旋回可能に取り付けられている。クランクシャフト108は第1と第2スロー130、132と称される一対の機械的オフセット部を含み、これらのスロー130、132は、第1、第2コネクティングロッド122、124の反対の底部末端部134、136に旋回可能に取り付けられている。ピストン114と116及びクランクシャフトスロー130、132に対するコネクティングロッド122、124の機械的リンケージが、(パワーピストン114に対しては矢印138の方向と圧縮ピストン116に対しては矢印140の方向によって、示されるように)ピストンの往復運動をクランクシャフト108の回転運動に変換するように機能する。
第1ピストン・シリンダ軸113は、第1クランクシャフトスロー130が平面を通りその上死点位置から下死点位置まで回転する想像上の半平面に配されるようにオフセットされている。第2ピストン・シリンダ軸115は、反対側の想像上の半平面にオフセットされている。
この実施形態は、コネクティングロッド122と124を介して、クランクシャフト108に直接に夫々連結されている第1と第2ピストン114と116を示すが、ピストン114と116をクランクシャフト108に作用的に連結させるのに他の手段が用いられてもよく、本発明の範囲内に入るものである。例えば、第2クランクシャフトは、ピストン114と116を第1クランクシャフト108に機械的に連結させるために用いられてもよい。
シリンダヘッド112は、第1と第2シリンダ104、106を相互に連通するガス通路144を含んでいる。このガス通路は第2シリンダ106の近くでガス通路144の末端に配置されたインレットチェックバルブ146を含んでいる。アウトレットポペットバルブ150もまた、第1シリンダ104の頂部近くでガス通路144の反対側の末端に配置されている。このインレットチェックバルブ146とアウトレットポペットバルブ150は、それらの間に圧力室148を形成する。このインレットバルブ146は、第2シリンダ106から圧力室148への圧縮ガスの一方向流れを可能としている。アウトレットバルブ150は、圧力室148から第1シリンダ104への圧縮ガスの一方向流れを可能としている。ここでは、チェックおよびポペット式バルブがそれぞれインレットおよびアウトレットバルブ146と150として記載されているが、ここでの用途に適するいずれの形式のバルブが代わりに使用されても良く、例えばインレットバルブ146も、ポペット式とすることができる。
シリンダヘッド112はまた、第2シリンダ106の頂部上に配置されたポペット式吸気バルブ152と第1シリンダ104の頂部上に配置されたポペット式排気バルブ154を含んでいる。これらのポペットバルブ150、152及び154は通常、バルブ開口部を塞ぐように一端に設けられたディスク158を有する金属シャフト156を有している。ポペットバルブ150、152及び154の金属シャフト156の他端は、カムシャフト160、162及び164にそれぞれ機械的に連係されている。カムシャフト160、162及び164は、通常、エンジンブロック102又はシリンダヘッド112の内側に配される全体として卵形突出部を有す丸棒である。
これらのカムシャフト160、162及び164は通常、歯車、ベルト、チェーンリンク(図示せず)を介して、機械的にクランクシャフト108に連結されている。クランクシャフト108がこれらのカムシャフト160、162及び164を回転させると、カムシャフト160、162及び164上の突出部がバルブ150、152及び154のエンジンのサイクルにおける精確なタイミングでの開閉を生じさせる。
圧縮ピストン116の冠面120、第2シリンダ106の壁部及びシリンダヘッド112は、第2シリンダ106の圧縮室166を形成している。パワーピストン114の冠面118、第1シリンダ104の壁部及びシリンダヘッド112は、第1シリンダ104の分離燃焼室168を形成している。点火栓170は第1シリンダ104上でシリンダヘッド112に配置され、制御装置(図示せず)によって燃焼室168の圧縮空気ガスが正確なタイミングで点火するように制御される。この実施形態では火花点火エンジンが記述されているが、当業者は、圧縮着火エンジンが本発明の範囲内にあることを理解できるのは勿論である。
運転中、パワーピストン114は、圧縮ピストン116が上死点位置に達するために、パワーピストン114が上死点への到達後クランクシャフト108が回転しなければならない回転角度として定義される位相シフト角172だけ、圧縮ピストン116を先導する。好ましくはこの位相シフトは30度から60度である。このとくに好ましい実施形態については、位相シフトは、ほぼ50度に固定されている。
図7は、パワーピストンが下死点(BDC)に到達し、丁度排気行程に(矢印138によって示されるように)上昇し始めたときのパワーピストン114の様子を示す。圧縮ピストン116は、パワーピストン114に対して50度遅れており、吸気行程中で下降している(矢印140)。インレットバルブ156は開いており、燃料と空気の爆発性混合気が圧縮室166に吸い込まれるのを許容する。排気バルブ154も開いていて、ピストン114が燃焼の生成物を燃焼室168から排出するのを許容する。
ガス通路144のチェックバルブ146とポペットバルブ150は閉じられ、圧縮室166と燃焼室168間で点火性燃料と燃焼生成物が移動するのを防いでいる。加えて、排気と吸気行程中、インレットチェックバルブ146とアウトレットポペットバルブ150は、圧力室148を密閉して、前回の圧縮行程と動力行程から捕捉されているガスの圧力をほぼ維持している。
図8を参照するに、パワーピストン114がその上死点(TDC)位置に到達し、(矢印138によって示される)動力行程へ下降するところである一方、圧縮ピストン116は、(矢印140で示される)圧縮行程で上昇中である。この時点では、インレットチェックバルブ146、アウトレットバルブ150、吸気バルブ152および排気バルブ154はすべて閉じている。
上死点において、ピストン114はピストン114の冠面118とシリンダ104の頂部との間にすきま距離178を有している。このすきま距離178は標準エンジン10のすきま距離60と比べて(図3から良くわかるように)非常に小さい。これは、エンジン100の動力行程が低圧の排気行程のあとに続く一方、エンジン10の動力行程は高圧の圧縮行程のあとに続くからである。それ故に、標準エンジン10とは極めて対照的に、冠面118とシリンダ104の頂部との間に何らの高圧ガスも捕捉されないので、すきま距離178を減じるのにエンジン100にはほとんど不利はない。その上、すきま距離178を減じることによって、ほとんどすべての排気生成物のより充分な掃気が達成される。
最大トルク点を最大燃焼圧にほぼ一致させるためには、クランクシャフト108が、パワーピストン114が最適な点火位置にあるときの上死点位置後約40度回転されねばならない。加えて、圧縮行程中にクランクシャフト108によって消費されるトルクと動力の量を減じるためには、圧縮ピストン116に関して同様な考察が当てはまる。これらの考察は両方とも、ピストン・シリンダ軸のオフセットが従来のいかなる先行技術のオフセットよりはるかに大きくなることを必要としている。すなわち、この先行技術のオフセットにおいては、ピストンが点火位置に到達する前にクランクシャフトはピストンが上死点を過ぎて少なくとも20度回転する必要がある。実際にはこれらのオフセットは非常に大きいので、ピストン114および116を連結する真直ぐなコネクティングロッドは、行程中においてシリンダ104と106の下側末端部と干渉するであろう。
従って、コネクティングロッド122の曲げ部121は、コネクティングロッドの末端部の中間に配置され、パワーピストン114の全往復行程中、コネクティングロッド122がシリンダ104の底部末端部174と衝突しないような大きさを有する必要がある。加えて、コネクティングロッド124の曲げ部123は、コネクティングロッドの末端部の中間に配置され、圧縮ピストン116の全往復行程中、コネクティングロッド124がシリンダ106の底部末端部176と衝突しないような大きさを有する必要がある。
図9を参照すると、クランクシャフト108はパワーピストン114の上死点位置を過ぎた(矢印180で示されるように)付加的な40度回転し、点火位置に到達しており、圧縮ピストン116は丁度圧縮行程を完結しつつある。この40度の回転中に、第2シリンダ116内の圧縮ガスはチェックバルブ146を開けるしきい圧に達し、一方、カム162はそのタイミングでアウトレットバルブ150を開く。それ故に、パワーピストン114が下降し、圧縮ピストン116が上昇するにつれ、ほぼ等量の圧縮ガスのひと塊が第2シリンダ106の圧縮室166から第1シリンダ104の燃焼室168に移送される。パワーピストン114が点火位置に到達すると、チェックバルブ146とアウトレットバルブ150が閉じて、圧力室148を介しての更なるガスの移動を防止する。従って、圧力室148内のガスのひと塊と圧力はガスの移動の前後ではほぼ一定に保たれる。換言すると、圧力室148内のガス圧は、全4ストロークサイクルに亘って、少なくとも所定の点火条件圧(またはそれ以上)、例えば約270psiaに維持される。
パワーピストン114が上死点から点火位置に下降するまでに、すきま距離178は(図3に最もよく見える)標準エンジン10のすきま距離60とほぼ等しくなるまで、即ち0.571まで大きくなっている。加えて、点火条件は標準エンジン10の点火条件とほぼ同一であり、一般的に次の通りである。1)直径4インチのピストン、2)すきま容積7.181立方インチ、3)点火前絶対圧力平方インチ当たり約270ポンド(psia)及び4)点火後最大燃焼圧約1200psia。更に、クランクシャフト108の第1スロー130の角度は、最大トルク位置、即ちTDC後約40度の位置にある。それ故に、パワーピストン114がほぼ最大トルク位置に到達するときに最大燃焼圧力が生じるように、点火栓170はタイミングを取って点火される。
クランクシャフト108の次の10度の回転142中に、圧縮ピストン116はTDCを通過し、その後再びサイクルを開始するために次の吸気行程を開始する。圧縮ピストン116はまた、標準エンジン10と比較して非常に小さなすきま距離182を有する。これは、第2シリンダ106の圧縮室166のガス圧が圧力室148の圧力に達すると、チェックバルブ146が強制的に開口しガスが流れるのを許容するので可能になる。それ故に、圧縮ピストン116がTDC位置に到達するときには圧縮ピストン116の頂部には高圧ガスはほとんど捕捉されていない。
エンジン100の圧縮比は、火花点火または圧縮着火エンジンの領域内であれば、いくつでも良いが、ここでの実施形態ではほぼ6から8.5の範囲にある。前に定義したように、圧縮比は圧縮行程前の空気・燃料混合気の所定のひと塊の最大容積を点火時の空気・燃料混合気のひと塊の容積で除したものである。エンジン100については、その圧縮比は、圧縮ピストンがBDCからTDCに移動したときの第2シリンダ106の行程容積に対する、パワーピストン114が点火位置にあるときの第1シリンダ104の容積の比にほぼ等しい。
圧縮行程と動力行程とが同一のピストンによって連続的に行われる標準エンジン10とは極めて対照的に、動力行程が、パワーピストン114のみによって行われ、圧縮行程は圧縮ピストン116のみによって行われる。それ故に、パワーピストン116はオフセットされ得、圧縮行程における不一致による不利を招くことなく、最大燃焼圧をクランクシャフト108に加わる最大トルクに一致させることができる。またそれと反対に、圧縮ピストン114はオフセットされ得、動力行程における不一致による不利を招くことなく、最大圧縮圧をクランクシャフト108から加えられる最大トルクに一致させることができる。
図10を参照するに、この概念がさらに例証される。パワーピストン114のTDCからの回転角度に対する接線力即ちトルクのグラフが、エンジン100において184によって示されている。加えて、パワーピストン114のTDCからの回転角度に対する燃焼圧力のグラフが、エンジン100において186によって示されている。グラフ184と186についての計算は、標準エンジンとほぼ等しい点火条件を有するエンジン100に基づき行われた。即ち、1)直径4インチのピストン、2)すきま容積7.181立方インチ、3)点火前の絶対圧力平方インチ当たり約270ポンド(psia)、4)点火後最大燃焼圧力約1200psia、及び5)クランクシャフト108と38とのほぼ等しい毎分回転数(RPM)。先行技術の標準エンジン10の図6とは明らかに異なり、最大燃焼圧188の点が最大トルク190の点とほぼ一致している。この燃焼圧186とトルク184の一致は著しい効率の増加をもたらす。
さらに、圧縮ピストン116のオフセットは、クランクシャフト108から圧縮ピストン116に配分される最大トルクをガスの最大圧縮圧にほぼ一致させるように、最適化する事ができる。この圧縮ピストン116のオフセットは、圧縮行程を完結するのに必要な動力を減少させ、標準エンジン10と比べてエンジン100の全体の効率をさらに向上させる。このパワーピストン114と圧縮ピストン116のオフセットの組み合わせにより、エンジン100の全理論効率は、標準エンジンと比較して約20から40%増加される。
図11を参照するに、長さの異なるスローと直径の異なるピストンを有する分割式4ストロークエンジンの他の実施形態が全体として200として示されている。圧縮及び動力行程は別々のピストン114、116で行われるので、種々の改善がなされ、これらの行程が1つのピストンで行われるときに生じる関連する不利もなしに、各行程の効率を最適化できる。例えば、圧縮ピストンの直径204をパワーピストンの直径202より大きくして、圧縮の効率をさらに向上させることができる。加えて、パワーピストン114についての第1スロー130の半径206を圧縮ピストン116についての第2スロー132の半径208より大きくして、クランクシャフト108に掛かる総トルクをさらに高めることができる。
好ましい実施形態が示され説明されたが、種々の変形や代替が本発明の趣旨及び範囲を逸脱することなく成され得る。従って、本発明は例示によって説明されたものでそれに限定されないことは勿論のことである。
吸気行程中における代表的な先行技術4ストロークサイクルエンジンの概略図である。 圧縮行程中における図1の先行技術エンジンの概略図である。 動力行程中における図1の先行技術エンジンの概略図である。 排気行程中における図1の先行技術エンジンの概略図である。 ピストンが最大トルク位置にあるときの、図1の先行技術エンジンの概略図である。 図1の先行技術エンジンのトルクと燃焼圧のグラフ表示である。 排気と吸気行程中の本発明によるエンジンの概略図である。 第1ピストンが動力行程の初めに丁度上死点に達したときの、図7のエンジンの概略図である。 第1ピストンが点火位置に達したときの、図7のエンジンの概略図である。 図7のエンジンのトルクと燃焼圧のグラフ表示である。 異なるスローと異なるピストン径を有する本発明による他の実施形態の概略図である。

Claims (4)

  1. エンジンのクランクシャフト軸を中心として回転するクランクシャフトと、
    該クランクシャフトの1回転中に4ストロークサイクルの動力行程と排気行程を通じて往復するように、第1シリンダ内に摺動可能に収容されると共にクランクシャフトに作用的に連結されたパワーピストンと、
    クランクシャフトの同じ回転中に同じ4ストロークサイクルの吸気行程と圧縮行程を通じて往復するように、第2シリンダ内に摺動可能に収容されると共にクランクシャフトに作用的に連結された圧縮ピストンと、
    第1と第2のシリンダを連通するガス通路であって、圧力室を画成するインレットバルブとアウトレットバルブを有し、アウトレットバルブが圧力室から第1シリンダへの圧縮ガスの実質的な一方向流れを許すガス通路とを備えるエンジンであって、
    パワーピストンはその上死点位置から点火位置にまで下降することを特徴とするエンジン。
  2. ガス通路のインレットバルブとアウトレットバルブは、全4ストロークサイクル中、圧力室を少なくとも所定の点火条件ガス圧に実質的に維持することを特徴とする請求項1に記載のエンジン。
  3. インレットバルブは、第2シリンダから圧力室への圧縮ガスの実質的な一方向流れを許すことを特徴とする請求項1に記載のエンジン。
  4. パワーピストンは、0度よりも実質的に大きい位相シフト角だけ圧縮ピストンを先導することを特徴とする請求項1に記載のエンジン。
JP2005315036A 2001-07-20 2005-10-28 分割式4ストロークサイクル内燃機関 Expired - Fee Related JP3898729B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/909,594 US6543225B2 (en) 2001-07-20 2001-07-20 Split four stroke cycle internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003514102A Division JP3798403B2 (ja) 2001-07-20 2002-07-08 分割式4ストロークサイクル内燃機関

Publications (3)

Publication Number Publication Date
JP2006097692A JP2006097692A (ja) 2006-04-13
JP2006097692A5 JP2006097692A5 (ja) 2006-06-01
JP3898729B2 true JP3898729B2 (ja) 2007-03-28

Family

ID=25427513

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003514102A Expired - Fee Related JP3798403B2 (ja) 2001-07-20 2002-07-08 分割式4ストロークサイクル内燃機関
JP2005315036A Expired - Fee Related JP3898729B2 (ja) 2001-07-20 2005-10-28 分割式4ストロークサイクル内燃機関

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2003514102A Expired - Fee Related JP3798403B2 (ja) 2001-07-20 2002-07-08 分割式4ストロークサイクル内燃機関

Country Status (17)

Country Link
US (6) US6543225B2 (ja)
EP (1) EP1417403B1 (ja)
JP (2) JP3798403B2 (ja)
KR (1) KR100710916B1 (ja)
CN (2) CN100378303C (ja)
AR (1) AR037999A1 (ja)
AT (1) ATE388313T1 (ja)
AU (1) AU2002322411B2 (ja)
BR (1) BR0211335B1 (ja)
CA (1) CA2490405C (ja)
DE (1) DE60225451T2 (ja)
ES (1) ES2302829T3 (ja)
MX (1) MXPA04000604A (ja)
MY (1) MY131882A (ja)
RU (1) RU2286470C2 (ja)
TW (1) TW539800B (ja)
WO (1) WO2003008785A1 (ja)

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543225B2 (en) * 2001-07-20 2003-04-08 Scuderi Group Llc Split four stroke cycle internal combustion engine
JP3606237B2 (ja) * 2001-07-25 2005-01-05 日産自動車株式会社 内燃機関
WO2003012266A1 (en) 2001-07-30 2003-02-13 Massachusetts Institute Of Technology Internal combustion engine
US6880501B2 (en) * 2001-07-30 2005-04-19 Massachusetts Institute Of Technology Internal combustion engine
WO2003040530A2 (en) * 2001-11-02 2003-05-15 Scuderi Group Llc Split four stroke engine
US7191738B2 (en) * 2002-02-28 2007-03-20 Liquidpiston, Inc. Liquid piston internal combustion power system
ITTS20030013A1 (it) * 2003-06-13 2004-12-14 Alberto Rizzi Motore a scoppio con linee di corsa dei pistoni fuori dall'asse radiale
MY138166A (en) * 2003-06-20 2009-04-30 Scuderi Group Llc Split-cycle four-stroke engine
US6986329B2 (en) * 2003-07-23 2006-01-17 Scuderi Salvatore C Split-cycle engine with dwell piston motion
WO2005071230A2 (en) * 2004-01-12 2005-08-04 Liquidpiston, Inc. Haybrid cycle combustion engine and methods
NZ531314A (en) 2004-02-23 2006-10-27 Shuttleworth Axial Motor Compa Recirculation system for motor
US6994057B2 (en) * 2004-03-04 2006-02-07 Loth John L Compression ignition engine by air injection from air-only cylinder to adjacent air-fuel cylinder
US7650754B2 (en) 2004-05-20 2010-01-26 Gilbert Staffend Transmission between rotary devices
US7556015B2 (en) * 2004-05-20 2009-07-07 Staffend Gilbert S Rotary device for use in an engine
US7621167B2 (en) * 2004-05-20 2009-11-24 Gilbert Staffend Method of forming a rotary device
US7059294B2 (en) * 2004-05-27 2006-06-13 Wright Innovations, Llc Orbital engine
US7658169B2 (en) * 2005-03-09 2010-02-09 Zajac Optimum Output Motors, Inc. Internal combustion engine and method with improved combustion chamber
US7273023B2 (en) * 2005-03-11 2007-09-25 Tour Engine, Inc. Steam enhanced double piston cycle engine
RU2007137638A (ru) 2005-03-11 2009-04-20 Тур Энджин, Инк. (Us) Двухпоршневой двигатель
JP2008537060A (ja) * 2005-04-18 2008-09-11 ツアー エンジン インコーポレーティッド 蒸気増強式ダブルピストンサイクル機関
US7021270B1 (en) * 2005-05-11 2006-04-04 Dan Stanczyk Connecting rod and crankshaft assembly for an engine
US7765785B2 (en) * 2005-08-29 2010-08-03 Kashmerick Gerald E Combustion engine
US20070199299A1 (en) * 2005-08-29 2007-08-30 Kashmerick Gerald E Combustion Engine
US7353786B2 (en) * 2006-01-07 2008-04-08 Scuderi Group, Llc Split-cycle air hybrid engine
US7434551B2 (en) 2006-03-09 2008-10-14 Zajac Optimum Output Motors, Inc. Constant temperature internal combustion engine and method
MY145271A (en) * 2006-03-24 2012-01-13 Scuderi Group Llc System and method for split-cycle engine waste heat recovery
US7421987B2 (en) * 2006-05-26 2008-09-09 Lgd Technology, Llc Variable valve actuator with latch at one end
US7942117B2 (en) * 2006-05-27 2011-05-17 Robinson Thomas C Engine
US7431024B2 (en) * 2006-06-02 2008-10-07 Polaris Industries Inc. Method and operation of an engine
US8135534B2 (en) * 2006-07-26 2012-03-13 Langham J Michael Hydraulic engine
WO2008016979A2 (en) 2006-08-02 2008-02-07 Liquidpiston, Inc. Hybrid cycle rotary engine
US7611432B2 (en) * 2006-08-08 2009-11-03 Gm Global Technology Operations, Inc. Hybrid powertrain
US8151759B2 (en) * 2006-08-24 2012-04-10 Wright Innovations, Llc Orbital engine
US7766302B2 (en) * 2006-08-30 2010-08-03 Lgd Technology, Llc Variable valve actuator with latches at both ends
US7513224B2 (en) * 2006-09-11 2009-04-07 The Scuderi Group, Llc Split-cycle aircraft engine
US7387093B2 (en) * 2006-10-02 2008-06-17 James Scott Hacsi Internal combustion engine with sidewall combustion chamber and method
DE102006048108A1 (de) * 2006-10-11 2008-04-30 Audi Ag V-Motor
US7791892B2 (en) * 2007-01-31 2010-09-07 International Business Machines Corporation Electronic component for an electronic carrier substrate
JP2010519462A (ja) * 2007-02-27 2010-06-03 スクデリ グループ リミテッド ライアビリティ カンパニー 水噴射を伴う分割サイクルエンジン
JP4815012B2 (ja) * 2007-04-09 2011-11-16 セト、 チャンダン クマール 分離サイクル可変容量火花点火ロータリー機関
US7536984B2 (en) * 2007-04-16 2009-05-26 Lgd Technology, Llc Variable valve actuator with a pneumatic booster
RU2435047C2 (ru) * 2007-08-07 2011-11-27 СКАДЕРИ ГРУП, ЭлЭлСи Двигатель с разделенным циклом со спиральным перепускным каналом
KR101128473B1 (ko) 2007-08-13 2012-03-23 스쿠데리 그룹 엘엘씨 압력 평형 엔진 밸브들
US7975485B2 (en) * 2007-08-29 2011-07-12 Yuanping Zhao High efficiency integrated heat engine (HEIHE)
US8082892B2 (en) * 2007-10-10 2011-12-27 Yuanping Zhao High efficiency integrated heat engine-2 (HEIHE-2)
CA2704263C (en) * 2007-10-31 2015-10-06 14007 Mining Inc. Hybrid engine
DE102008008859A1 (de) 2008-02-13 2009-09-03 Salinovic, Hrvoje Das aktive modulare Brennkraftmaschinensystem-AMICES
US8449270B2 (en) * 2008-04-02 2013-05-28 Frank Michael Washko Hydraulic powertrain system
US7975667B2 (en) * 2008-05-12 2011-07-12 Michael Inden Crankshaft-free drive shaft and piston assembly of a split-cycle four-stroke engine
EP2313627A2 (en) * 2008-06-16 2011-04-27 Planetary Rotor Engine Company Planetary rotary engine
WO2010017199A2 (en) * 2008-08-04 2010-02-11 Liquidpiston, Inc. Isochoric heat addition engines and methods
US20100095661A1 (en) * 2008-10-17 2010-04-22 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drive system and method for recovering waste energy from a vehicle
US8166928B2 (en) * 2008-11-06 2012-05-01 Ford Global Technologies, Llc Pressurized air variable compression ratio engine system
EP2389499B1 (en) * 2009-01-22 2015-04-15 Scuderi Group, Inc. Valve lash adjustment system for a split-cycle engine
US20100180875A1 (en) * 2009-01-22 2010-07-22 The Scuderi Group, Llc Seating control device for a valve for a split-cycle engine
US8584629B2 (en) * 2009-01-24 2013-11-19 Tour Engine, Inc. Interstage valve in double piston cycle engine
US20100236533A1 (en) * 2009-03-23 2010-09-23 Riccardo Meldolesi Valve Seat Insert for a Split-Cycle Engine
DE102009029808B4 (de) 2009-04-09 2013-05-23 Willi Fechner Gmbh Verbrennungsmotor
US20100258067A1 (en) * 2009-04-14 2010-10-14 Lung-Tan Hu Overhead-exhaust type cross-cycle internal combustion engine
AU2010236903B2 (en) * 2009-04-17 2012-08-02 Scuderi Group, Llc Part-load control in a split-cycle engine
RU2486356C1 (ru) * 2009-05-01 2013-06-27 СКАДЕРИ ГРУП, ЭлЭлСи Двигатель с расщепленным циклом (варианты) и способ впрыска топлива в нем
US8353159B2 (en) * 2009-05-06 2013-01-15 Shapiro Robert L Combustion engine with heat recovery system
US8763571B2 (en) * 2009-05-07 2014-07-01 Scuderi Group, Inc. Air supply for components of a split-cycle engine
US8272357B2 (en) * 2009-07-23 2012-09-25 Lgd Technology, Llc Crossover valve systems
ITPI20090117A1 (it) 2009-09-23 2011-03-23 Roberto Gentili Motore ad accensione spontanea ad immissione progressiva della carica in fase di combustione
MX2011011837A (es) * 2010-03-15 2011-11-29 Scuderi Group Llc Motor hibrido de aire de ciclo dividido con modo de encendido y carga.
US8918238B2 (en) * 2010-04-12 2014-12-23 Lung-Tan Hu Mackay cold-expansion engine system
US9074526B2 (en) * 2010-06-10 2015-07-07 Zajac Optimum Output Motors, Inc. Split cycle engine and method with increased power density
DE102010024005A1 (de) * 2010-06-11 2011-12-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Brennkraftmaschine
WO2011159756A1 (en) 2010-06-18 2011-12-22 Scuderi Group, Llc Split-cycle engine with crossover passage combustion
DE102010032055B4 (de) * 2010-07-23 2015-01-08 Hong Kong Meta Co. Ltd. Verfahren zum Betreiben einer Brennkraftmaschine sowie Brennkraftmaschine
MX2012012361A (es) * 2010-09-24 2012-11-16 Scuderi Group Llc Cilindro turboalimentado de compresion reducida para un motor de ciclo dividido.
US8833315B2 (en) 2010-09-29 2014-09-16 Scuderi Group, Inc. Crossover passage sizing for split-cycle engine
KR20130111560A (ko) 2010-10-01 2013-10-10 스쿠데리 그룹, 인크. 스플릿-사이클 공기 하이브리드 v-엔진
CA2825804A1 (en) 2011-01-27 2012-08-02 Scuderi Group, Inc. Lost-motion variable valve actuation system with cam phaser
CN103443408A (zh) 2011-01-27 2013-12-11 史古德利集团公司 具有阀停用的无效运动可变阀致动系统
DE102011012095B4 (de) 2011-02-23 2015-07-02 Hrvoje Salinovic AMICES II : Hybridisierung der Brennkraftmotorsysteme nach dem Additionsprinzip
EP2691607B1 (en) 2011-03-29 2016-07-20 LiquidPiston, Inc. Cycloid rotor engine
US8607566B2 (en) 2011-04-15 2013-12-17 GM Global Technology Operations LLC Internal combustion engine with emission treatment interposed between two expansion phases
EP2699777B1 (en) * 2011-04-19 2017-01-18 MISTRY, Jiban Jyoti Split cycle reciprocating piston spark ignition engine
US20120279479A1 (en) * 2011-05-08 2012-11-08 Kelley William A Heat Recycling Internal Combustion Enines
CN102748118A (zh) * 2011-06-20 2012-10-24 摩尔动力(北京)技术股份有限公司 单工质连续燃烧室活塞热动力系统
CN102352794A (zh) * 2011-09-23 2012-02-15 优华劳斯汽车系统(上海)有限公司 内燃发动机
US9097178B2 (en) 2011-11-30 2015-08-04 Tour Engine, Inc. Crossover valve in double piston cycle engine
RU2485334C1 (ru) * 2011-12-05 2013-06-20 Ривенер Мусавирович Габдуллин Способ работы двигателя внутреннего сгорания
US9109468B2 (en) 2012-01-06 2015-08-18 Scuderi Group, Llc Lost-motion variable valve actuation system
US8904981B2 (en) 2012-05-08 2014-12-09 Caterpillar Inc. Alternating split cycle combustion engine and method
JP6368720B2 (ja) 2013-01-25 2018-08-01 リキッドピストン, インコーポレイテッド 空冷式回転機関
EP2971636A1 (en) 2013-03-15 2016-01-20 Scuderi Group, Inc. Split-cycle engines with direct injection
US10018112B2 (en) 2013-06-05 2018-07-10 Wise Motor Works, Ltd. Internal combustion engine with paired, parallel, offset pistons
DE102013009291A1 (de) 2013-06-07 2014-12-11 Poul Henrik Woelfle Mehrzylinder-Verbrennungsmotor mit optionaler Nachexpansion und entsprechende Verfahren
DE102013009292A1 (de) 2013-06-07 2014-12-11 Poul Henrik Woelfle Mehrzylinder-Verbrennungsmotor mit optionaler Vergrößerung des Expansionsvolumens und Nachexpansion und entsprechende Verfahren
TR201818555T4 (tr) * 2013-07-17 2019-01-21 Tour Engine Inc Ayrık çevrimli motorda makara mekik krosover valfi.
CN105829678B (zh) * 2013-12-19 2019-10-11 沃尔沃卡车集团 内燃机
WO2015109256A1 (en) 2014-01-20 2015-07-23 Tour Engine Inc. Variable volume transfer shuttle capsule and valve mechanism
CN103982297A (zh) * 2014-04-08 2014-08-13 张玉辉 组合高效节能发动机
DE102014013503A1 (de) * 2014-09-11 2016-03-17 Man Truck & Bus Ag Ventil für einen Verbrennungsmotor
DE102014013611B4 (de) * 2014-09-13 2022-10-27 Rolls-Royce Solutions GmbH Verfahren zur Ausführung mit einer Kolbenbrennkraftmaschine
CN104405498B (zh) * 2014-10-24 2017-01-25 廖玮 一种变压缩比增容循环活塞式内燃机
WO2016116928A1 (en) 2015-01-19 2016-07-28 Tour Engine, Inc. Split cycle engine with crossover shuttle valve
US9574537B2 (en) 2015-02-23 2017-02-21 GM Global Technology Operations LLC Fuel rail for an internal combustion engine
CN105020002A (zh) * 2015-08-03 2015-11-04 湖州新奥利吸附材料有限公司 内燃机的借力压缩缸
TWI635696B (zh) * 2015-09-30 2018-09-11 徐夫子 Resonant type flywheel energy storage and power device, resonance type flywheel energy storage and power system
WO2017101965A1 (en) * 2015-12-14 2017-06-22 Volvo Truck Corporation An internal combustion engine system and a method for an internal combustion engine system
US10253680B2 (en) * 2017-02-15 2019-04-09 Roland Clark Internal combustion engine having fuel/air induction system
CN106988878A (zh) * 2017-04-15 2017-07-28 雷敬汉 推杆五活齿传动并列双缸内燃机
US10235736B2 (en) * 2017-04-21 2019-03-19 Intel Corporation Intelligent graphics dispatching mechanism
CA3021866C (en) 2017-11-22 2019-09-10 Wise Motor Works, Ltd. Internal combustion engine with paired, parallel, offset pistons
IL255916B (en) * 2017-11-26 2020-08-31 Yacob Rafaeli Rotary valve assembly for an engine head in an internal combustion engine
CN110118164A (zh) * 2018-02-06 2019-08-13 谈石元 弯曲连杆压缩机
WO2020044176A1 (en) * 2018-08-31 2020-03-05 Narasimha Murthy P L Ahobala Internal combustion engine with split cylinder and free piston and power generation using the same
RU2691284C1 (ru) * 2018-10-01 2019-06-11 Александр Васильевич Ноздричев Криогенная газопаровая поршневая электростанция, газопаровой блок, поршневой цилиндр внутреннего сгорания на природном газе и кислороде, газопаровой поршневой цилиндр и линейная синхронная электрическая машина
WO2020097569A1 (en) 2018-11-09 2020-05-14 Tour Engine, Inc. Transfer mechanism for a split-cycle engine
CN112228241B (zh) * 2020-10-22 2023-07-21 上海齐耀动力技术有限公司 一种发动机用组合式机身

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US848029A (en) 1901-05-23 1907-03-26 Friedrich August Haselwander Internal-combustion engine.
US1062999A (en) * 1902-10-30 1913-05-27 Samuel J Webb Gas-engine.
US810347A (en) 1905-03-16 1906-01-16 American Rotary Engine Company Gas-engine.
US939376A (en) 1909-05-13 1909-11-09 William Morten Appleton Internal-combustion engine.
US1111841A (en) 1911-03-07 1914-09-29 Joseph Koenig Internal-combustion engine.
US1392359A (en) 1916-12-12 1921-10-04 Rudqvist Carl Two-stroke-cycle engine
US1248250A (en) 1916-12-29 1917-11-27 Robert H Bohler Internal-combustion engine.
US1301141A (en) 1917-09-18 1919-04-22 Thomas Abney Napier Leadbetter Internal-combustion engine.
US1372216A (en) * 1919-03-12 1921-03-22 James O Casaday Internal-combustion engine
GB299602A (en) 1928-07-12 1928-11-01 John William Johnston Improvements in and relating to internal combustion engines
US1790198A (en) * 1929-02-18 1931-01-27 Cizek Vojtech Internal-combustion engine
US1969815A (en) 1930-01-20 1934-08-14 Continental Motors Corp Internal combustion engine
US1856048A (en) 1930-11-26 1932-04-26 Henry R Ahrens Internal combustion engine
GB383866A (en) 1931-08-18 1932-11-24 Axel Edelsteen Improvements in twin cylinder internal combustion engines
US2091410A (en) 1935-12-28 1937-08-31 Mallory Marion Internal combustion engine
US2091411A (en) 1936-06-15 1937-08-31 Mallory Marion Internal combustion engine
US2091412A (en) 1936-07-07 1937-08-31 Mallory Marion Internal combustion engine
US2091413A (en) 1936-07-22 1937-08-31 Mallory Marion Internal combustion engine
US2154856A (en) 1937-04-19 1939-04-18 Mallory Marion Internal combustion engine
US2269948A (en) 1939-04-28 1942-01-13 Mallory Marion Internal combustion engine
US2280712A (en) 1940-09-20 1942-04-21 Mallory Marion Internal combustion engine
GB721025A (en) 1953-07-09 1954-12-29 John Henry Smith Improvements in or relating to internal-combustion engines
US2974541A (en) 1954-09-07 1961-03-14 Gen Motors Corp Offset piston-pin balancing arrangement for engines
US2957455A (en) 1958-12-01 1960-10-25 John Dolza V-six engines
US3623463A (en) * 1969-09-24 1971-11-30 Gerrit De Vries Internal combustion engine
US3774581A (en) 1972-10-04 1973-11-27 Gen Motors Corp Combination poppet and reed valve
US3895614A (en) 1973-12-03 1975-07-22 Henry E Bailey Split piston two-stroke four cycle internal combustion engine
JPS5139306A (ja) 1974-10-01 1976-04-01 Choichi Sugawara Nishoteienjin
JPS5191416A (en) 1975-02-08 1976-08-11 Kyukitotsuki 4 saikurugasorinenjin
DE2515271A1 (de) 1975-04-08 1976-10-21 Robert Hofmann Abgasarmer explosionsmotor
DE2625155A1 (de) 1976-06-04 1977-12-15 Rolf Schnause Vorrichtung fuer strassenverkehrsfahrzeuge mit warnblinkanlage zum selbsttaetigen warnblinken beim oeffnen der tuer bzw. mehrerer tueren
DE2628155A1 (de) 1976-06-23 1978-01-05 Ewald Dipl Ing Renner Verbrennungsmotor
ZA785334B (en) 1977-09-22 1979-09-26 J Wishart Improved split cycle internal combustion engines
FR2416344A1 (fr) * 1978-02-02 1979-08-31 Kovacs Andre Moteur a combustion interne a chambre de compression et de detente separees
US4215659A (en) * 1978-11-16 1980-08-05 Purification Sciences Inc. Internal combustion engine
JPS568815A (en) 1979-07-02 1981-01-29 Mitsubishi Monsanto Chem Co Method of growing of compound semiconductor in vapor phase epitaxial film
JPS5699018A (en) 1980-01-09 1981-08-10 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for measuring torque of differential rolling mill
JPS56145641A (en) 1980-04-14 1981-11-12 Shimadzu Corp Method of purifying electro-optical device
SU1023121A1 (ru) 1980-06-11 1983-06-15 Харьковский Ордена Ленина Политехнический Институт Им.В.И.Ленина Способ работы четырехтактного двигател внутреннего сгорани
US4450754A (en) 1980-08-18 1984-05-29 Liljequist Jon L Mechanical arrangements for piston-crankshaft devices
US4344405A (en) * 1980-12-22 1982-08-17 Zaharis Edward J Internal combustion engine
JPS57181923A (en) 1981-02-02 1982-11-09 Shii Burianto Kuraido Internal combustion engine
US4696158A (en) * 1982-09-29 1987-09-29 Defrancisco Roberto F Internal combustion engine of positive displacement expansion chambers with multiple separate combustion chambers of variable volume, separate compressor of variable capacity and pneumatic accumulator
JPS60143116A (ja) 1983-12-29 1985-07-29 Nissan Motor Co Ltd 車両の空調用フアンモ−タ制御回路
JPS60245852A (ja) 1984-05-16 1985-12-05 Kawasaki Heavy Ind Ltd エンジンのバランス機構
JPS60256642A (ja) 1984-05-31 1985-12-18 Kawasaki Heavy Ind Ltd エンジンのバランサ機構
US4805571A (en) 1985-05-15 1989-02-21 Humphrey Cycle Engine Partners, L.P. Internal combustion engine
JP2523482B2 (ja) 1985-11-27 1996-08-07 株式会社日立製作所 ブラウン管
JPS63124830A (ja) 1986-11-13 1988-05-28 Akira Kaiya 高圧縮比エンジン
US4945866A (en) * 1987-03-26 1990-08-07 Chabot Jr Bertin R Altered piston timing engine
SU1551880A1 (ru) 1988-06-23 1990-03-23 Пермский политехнический институт Уравновешенный двигатель внутреннего сгорани
US4955328A (en) 1988-08-19 1990-09-11 Standard Oil Company Leading piston engine with two cylinders interconnected through a transfer port
DE69021878T2 (de) 1989-06-16 1996-04-25 Rotec Engines Pty. Ltd., Nundah, Queensland Kolbenmaschine mit pumpenzylindern und kraftzylindern.
US5158047A (en) * 1990-05-14 1992-10-27 Schaal Jack E Delayed drop power stroke internal combustion engine
US5146884A (en) 1990-11-26 1992-09-15 Merkel Ronald F Engine with an offset crankshaft
US5146864A (en) * 1991-04-16 1992-09-15 Venturi Designs Ltd. Variable length batten
JPH05156954A (ja) 1991-12-02 1993-06-22 Masaaki Yoshimasu 連続燃焼式容積形内燃機関
RU2027879C1 (ru) 1992-06-16 1995-01-27 Акционерное общество "Новатор" Двигатель внутреннего сгорания
US5203287A (en) 1992-08-07 1993-04-20 Tommy Hasbun Oscillating piston engine
JPH08158887A (ja) 1992-09-24 1996-06-18 Saburo Shirayanagi エンジン
JPH06159836A (ja) 1992-11-25 1994-06-07 Sanyo Electric Co Ltd ガスサイクル機関
US5546897A (en) * 1993-11-08 1996-08-20 Brackett; Douglas C. Internal combustion engine with stroke specialized cylinders
US5964087A (en) * 1994-08-08 1999-10-12 Tort-Oropeza; Alejandro External combustion engine
JPH08232675A (ja) 1995-02-27 1996-09-10 Osamu Kunida 無カム式行程分離エンジン
US5499605A (en) * 1995-03-13 1996-03-19 Southwest Research Institute Regenerative internal combustion engine
JPH08261004A (ja) 1995-03-20 1996-10-08 Osamu Kunida 霧水噴射圧入式行程分離エンジン
DK0839266T3 (da) 1995-07-18 2003-09-08 Revolution Engine Technologies Forbrændingsmotor med modstående stempler
US5623894A (en) 1995-11-14 1997-04-29 Caterpillar Inc. Dual compression and dual expansion engine
US5799636A (en) 1996-03-16 1998-09-01 Fish; Robert D. Split cycle engines
FR2748776B1 (fr) 1996-04-15 1998-07-31 Negre Guy Procede de moteur a combustion interne cyclique a chambre de combustion independante a volume constant
US6279550B1 (en) * 1996-07-17 2001-08-28 Clyde C. Bryant Internal combustion engine
US5711267A (en) 1996-11-01 1998-01-27 Williams; Kenneth A. Internal combustion engine with optimum torque output
US5950579A (en) 1998-01-05 1999-09-14 Ott; Vern D. Internal combustion engine
AU3089899A (en) 1998-03-17 1999-10-11 Tecat Engineering, Inc. High power density, diesel engine
US6202416B1 (en) 1998-08-13 2001-03-20 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Dual-cylinder expander engine and combustion method with two expansion strokes per cycle
US6230671B1 (en) 1998-11-02 2001-05-15 Raymond C. Achterberg Variable compression and asymmetrical stroke internal combustion engine
US6058901A (en) 1998-11-03 2000-05-09 Ford Global Technologies, Inc. Offset crankshaft engine
SE514444C2 (sv) * 1999-04-08 2001-02-26 Cargine Engineering Ab Förbränningsförfarande vid en kolvförbränningsmotor
US6415749B1 (en) * 1999-04-27 2002-07-09 Oded E. Sturman Power module and methods of operation
JP2001012250A (ja) 1999-06-30 2001-01-16 Akira Miyata ピストン・ポンプ式エンジン
US6606970B2 (en) * 1999-08-31 2003-08-19 Richard Patton Adiabatic internal combustion engine with regenerator and hot air ignition
ATE301771T1 (de) 1999-08-31 2005-08-15 Richard Patton Brennkraftmaschine mit regenerator und heissluftzündvorrichtung
JP2001207801A (ja) 2000-01-26 2001-08-03 Akira Miyata ピストンポンプ式エンジン
GB0007917D0 (en) * 2000-03-31 2000-05-17 Npower An engine
GB0007923D0 (en) * 2000-03-31 2000-05-17 Npower A two stroke internal combustion engine
US6543225B2 (en) * 2001-07-20 2003-04-08 Scuderi Group Llc Split four stroke cycle internal combustion engine
WO2003012266A1 (en) * 2001-07-30 2003-02-13 Massachusetts Institute Of Technology Internal combustion engine
WO2003040530A2 (en) * 2001-11-02 2003-05-15 Scuderi Group Llc Split four stroke engine
WO2004072448A2 (en) * 2003-02-12 2004-08-26 D-J Engineering, Inc. Air injection engine
MY138166A (en) * 2003-06-20 2009-04-30 Scuderi Group Llc Split-cycle four-stroke engine
US6986329B2 (en) * 2003-07-23 2006-01-17 Scuderi Salvatore C Split-cycle engine with dwell piston motion
US7353786B2 (en) * 2006-01-07 2008-04-08 Scuderi Group, Llc Split-cycle air hybrid engine
US7481190B2 (en) * 2006-03-01 2009-01-27 Scuderi Group, Llc Split-cycle engine with disc valve

Also Published As

Publication number Publication date
CA2490405C (en) 2011-02-08
US20090250046A1 (en) 2009-10-08
US6609371B2 (en) 2003-08-26
AU2002322411B2 (en) 2006-09-21
DE60225451T2 (de) 2008-09-18
EP1417403A1 (en) 2004-05-12
CN100378303C (zh) 2008-04-02
WO2003008785A1 (en) 2003-01-30
US20030015171A1 (en) 2003-01-23
US20040050046A1 (en) 2004-03-18
US7017536B2 (en) 2006-03-28
CN1533471A (zh) 2004-09-29
RU2286470C2 (ru) 2006-10-27
JP2006097692A (ja) 2006-04-13
ATE388313T1 (de) 2008-03-15
US7628126B2 (en) 2009-12-08
DE60225451D1 (de) 2008-04-17
JP3798403B2 (ja) 2006-07-19
ES2302829T3 (es) 2008-08-01
US20050139178A1 (en) 2005-06-30
MY131882A (en) 2007-09-28
US6543225B2 (en) 2003-04-08
BR0211335A (pt) 2004-09-28
US20060168957A1 (en) 2006-08-03
AR037999A1 (es) 2004-12-22
JP2004536252A (ja) 2004-12-02
CN1221731C (zh) 2005-10-05
KR20040021638A (ko) 2004-03-10
TW539800B (en) 2003-07-01
RU2004105143A (ru) 2005-04-20
KR100710916B1 (ko) 2007-04-27
EP1417403B1 (en) 2008-03-05
CA2490405A1 (en) 2003-01-30
US20030014971A1 (en) 2003-01-23
CN1724855A (zh) 2006-01-25
US6880502B2 (en) 2005-04-19
MXPA04000604A (es) 2004-07-08
BR0211335B1 (pt) 2011-02-08

Similar Documents

Publication Publication Date Title
JP3898729B2 (ja) 分割式4ストロークサイクル内燃機関
US6722127B2 (en) Split four stroke engine
AU2002322411A1 (en) Split four stroke cycle internal combustion engine
US6986329B2 (en) Split-cycle engine with dwell piston motion
US6230671B1 (en) Variable compression and asymmetrical stroke internal combustion engine
JPH05503129A (ja) 内燃機関
AU2003201333B2 (en) Engine with Variable Compression Ratio
CN100443706C (zh) 单一或多个摆动活塞串联为二缸或多缸四冲程内燃发动机
JP2008002300A (ja) 水平作動エンジン
JPH03168330A (ja) 内燃機関

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees