JP3885114B2 - 光走査プローブ装置 - Google Patents

光走査プローブ装置 Download PDF

Info

Publication number
JP3885114B2
JP3885114B2 JP2004056887A JP2004056887A JP3885114B2 JP 3885114 B2 JP3885114 B2 JP 3885114B2 JP 2004056887 A JP2004056887 A JP 2004056887A JP 2004056887 A JP2004056887 A JP 2004056887A JP 3885114 B2 JP3885114 B2 JP 3885114B2
Authority
JP
Japan
Prior art keywords
light
optical
mode fiber
single mode
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004056887A
Other languages
English (en)
Other versions
JP2004223269A (ja
Inventor
エー. アイザット ジョセフ
ヴィ. シバク マイケル
ロリンズ アンドルー
章弘 堀井
唯史 平田
修平 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of JP2004223269A publication Critical patent/JP2004223269A/ja
Application granted granted Critical
Publication of JP3885114B2 publication Critical patent/JP3885114B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02049Interferometers characterised by particular mechanical design details
    • G01B9/0205Interferometers characterised by particular mechanical design details of probe head
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02061Reduction or prevention of effects of tilts or misalignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02067Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
    • G01B9/02069Synchronization of light source or manipulator and detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/65Spatial scanning object beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Endoscopes (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

本発明は、光を用いた断層構造を観察する装置に関し、特に生体内部の断層構造を観察するための光走査プローブ装置に関するものである。
近年、生体組織を診断する場合、組織内部の光学的情報を得ることのできる装置として、低干渉性光を用いて被検体に対する断層像を得る干渉型のOCT(オプティカル・コヒーレンス・トモグラフィ)が例えばUSP5321501に開示されている。この、USP5321501に開示された装置は、体腔内に挿入するための柔軟な挿入部を有し、内部に低干渉性光を伝達するためのシングルモードファイバを用いた光プローブを用いて、血管などに挿入したり、内視鏡を用いて体腔内を観察することができる。
しかしながら、体腔内への挿入に応じて光プローブは湾曲し、その湾曲のため光ファイバに湾曲の仕方に応じて変化する複屈折性が生じる。OCTでは、被検体からの反射光と基準光との干渉信号を用い観察を行う。一般に被検体からの反射光と基準光との偏光の方向を合わせ、基準光との干渉強度が最大になるように調整するが、体腔内での湾曲による複屈折性の変化のため偏光方向が湾曲により変化し、干渉強度が挿入に従って変化する。特に、シングルモードファイバを含む照射光学系を一体に回転走査する場合、湾曲状態で回転すると、1回転ごとにファイバの複屈折性が大きく変化し、干渉強度が変化し、回転走査の方向によって検出感度が大きく異なるという問題点があった。
このようなファイバーの複屈折性の変動による干渉強度の変化を補償する方法として、ファラデーローテータのように偏光を45°旋回させる素子を挿入する方法が”Polarisation -insensitive fibre optic michelson interferometer” (Electr. Lett. Vol.27, p518-519, 1991)に開示されている。しかし、Faraday Rotatorは一般にガーネット結晶とガーネット結晶に磁界を与える磁性体が必要で、体腔内に挿入する細いプローブの先端に設けることができない。
“In vivo video rate optical coherence tomography”(A.M.Rollins et.al, 1998 Optical Society of America) にOCTで干渉位置の高速走査をガルバノメータミラーを用いた群遅延機構により行う方法が開示されている。ミラーを揺動させてできるだけ高速に走査するには、サイン(sin)波に近い形状でミラー角度を走査するのがよいが、深さの走査方向が揺動に合わせて交互に変化する。走査方向が変化すると、得られる干渉信号から2次元の像を再構成することが容易でなくなる。そこで、一方向の走査のみの干渉信号のみを用いると、実際に得ている信号の半分は捨てていることになり、光プローブ内の光学系の回転走査を行っている場合など、得られる2次元再構築像の解像度が1/2になるという問題がある。
上記で示される高速走査で例えば、レゾナンススキャナを用いると時間と走査角度の関係がサイン(sin)波形になり、非線形になる。しかし、干渉信号を2次元的な位置と強度のグラフ、または干渉位置と検出位置を2次元で取り強度を濃淡で表した濃淡画像で表す場合には、干渉信号は時間と線形に得られまた干渉位置は時間と非線形のため、得られた時系列の干渉信号をそのまま表示に用いることができない。例えば、生体内の断層表示を行った場合、干渉位置と検出位置が正確に表示できなければ、目盛りなどを用いて長さの計測などを行うことができない。
上記のように、レゾナンススキャナのような非線型な走査手段の場合、干渉位置の走査速度に比例して発生する干渉信号のドップラー周波数が走査角度に応じて変化する。OCTで用いる光ヘテロダイン検出では、このドップラー周波数を用いて検波するため高S/N比を得ているが、ドップラー周波数が走査中に変化する場合、広い周波数範囲の干渉信号を検波できるように復調器の周波数特性を設定するとノイズも含んで検波されS/N比が低下するという問題点があった。このS/N比の低下が問題である。
また、2次元的に走査したものを表示した場合、一部分を拡大する方法として、不要な部分の情報を切り捨てる方法と走査範囲そのものを変更する方法がある。走査範囲を変更する場合に、走査範囲の変更に合わせ、干渉位置の走査速度を変える必要のある場合がある。また、S/N比の向上のため、干渉位置の走査速度を低速にする場合もある。これらの場合も上記同様ドップラー周波数が変化するため、復調器の周波数特性の設定に関して同様な問題が生じる。
前記USP5321501に開示されたような体腔内に挿入する光プローブは、一般的に洗浄・消毒のため、観測装置本体と着脱する必要がある。また、着脱可能であれば光プローブの故障時に容易に交換できる。光プローブに設けられたシングルモードファイバの複屈折の状態は組み立て時の応力の掛かり方などそれぞれのプローブで異なるため、プローブ交換ごとに偏波面調整手段を用いて光プローブで得ることができる被検体からの反射光と基準光との偏光の方向を合わせ、基準光との干渉強度が最大になるようにする必要があり、煩雑である。
前記“In vivo video rate optical coherence tomography”(A.M.Rollins et.al) に示されるように、OCTで干渉位置の高速走査をガルバノメータミラーを用いた場合やレゾナンススキャナミラーを用いた場合、ガルバノメータミラーやレゾナンススキャナミラーは温度特性があり、温度の変化で走査範囲や走査速度が変化するという問題が有る。
前記“In vivo video rate optical coherence tomography”(A.M.Rollins et.al) に示されるように、OCTで干渉位置の高速走査をガルバノメータミラーを用いた場合やレゾナンススキャナミラーを用いた場合、最も高速に駆動する場合sin波状に駆動することになり、前述のように非線形駆動であるため、時系列で得られる干渉信号と干渉位置の関係が非線形で扱いにくい、復調器の周波数設定に起因するS/N比の悪化などの問題がある。
OCTで得られた断層像を表示する場合、画面上で示される長さは光路長であり、媒質によって大きく異なる。例えば、媒質が空気の場合n≒1であり、生体組織ではn=1.3〜1.5であるため光路長は実際の長さlに対しnlで表されるため、大きな誤差を生じるという問題点がある。
光透過性を持つ外側シースは、一般的にフッ素樹脂、ポリアミド(ナイロン)等の樹脂チューブで構成されるが、これら樹脂チューブの屈折率と、光学素子と外側シース内に封入された空気との屈折率との差は大きいため、外側シースの内側で光の大きな反射が起きる。同様に、シース外面とシース外の空気、水、消化器液との屈折率の差により、外側シースの外面でも強い反射が起きる。この反射により、照射光および観察光が弱まり観察のS/N比が悪くなる。
また、OCTの原理上、光路上の反射強度と光路長の相関を検出するため、強い反射を有する2つの面が近傍にあると光が反射面間を多重反射し、反射面が実際には存在しない光路長の部分に強い反射強度を検出してゴーストとなる。上記のような反射特にシースの内外面によるものなどの反射強度は、生体からの散乱・反射光である観察光に対して大きいため、復調回路のダイナミックレンジを占有し、弱い生体からの反射を、非常に強いシースの反射と同時に表示し、観察するのは困難である。また、多重反射は実際には存在しない部分に反射面のゴーストを生じ、観察性能は著しく劣化するという問題があった。特に、組織と同じ場所にゴーストが表示される場合、区別することが不可能ため、大きな問題である。
"In vivo Endoscopic Optical with Optical Coherence Tomography"(G.J.Tearny et.al, Scince vol. 276)に開示されたOCT用光プローブでは、先端のプリズム等の光学素子まで透明なシースで覆って密封している。
しかし、この技術では、フレキシブルなチューブをシースとして用いて、内視鏡の鉗子孔にプローブを挿通して体腔内に挿入する場合など、プローブが湾曲した場合、先端の光学素子の支持部が外側シースの内側に回転しながら接触し、外側シースの内側を傷つけ、その部位で光の乱反射が生じるため外側シースの光学特性を劣化させ、光学素子から出射するOCT照射光及び生体からの観察光を遮り観察性能を劣化させるという問題が有った。
また、シースの傷いた箇所が照射光及び観察光の位置でなくとも、プローブの湾曲形状によって回転シースが外側シースの位置に対して前後して移動するため、傷ついた箇所が観察光の場所に現れるという問題があった。
さらに、フッ素樹脂や、ポリアミドのような材料で構成されたプローブシースは、ランダムな屈折率分布のムラや、内部応力や、粒子による散乱など、光の伝搬波面を乱したり、光を予期できない方向に散乱させるといったように、低い光学的な性質しか持っていない。プローブの設計は、光が生体の中で回折限界フォーカススポットを結ばれるかどうか、また同じ光路を通ってシングルモードファイバに再入射するか、光路中に光の波面を乱したり、散乱によってプローブへの光の再入射を妨げ、OCT干渉系のヘテロダイン効果を落とす物体があるかどうかに依存している。従って、プローブが高い光学的な品質を有する光学窓を有することは、OCTの画像品質を上げる上で重要である。
図1は、OCTを内視鏡に応用したものの一例である。低コヒーレンス光源202からの光はシングルモードファイバー205に結合され、カップラー204のところまで導かれる。カップラー204で光は信号光側206と参照光側207とに分離される。
分離された参照光側の光はシングルモードファイバーで光路長可変手段の所まで導かれる。光路長可変手段から戻された光は再びシングルモードファイバーでカップラーのところまで導かれる。
一方、信号光側206に分離された光は参照光側207とは別のシングルモードファイバー205で信号光側先端光学系208まで導かれ、そこから測定対象に照射され、さらに、測定対象から反射されて戻って再び信号側先端光学系208、シングルモードファイバー205を通って、カップッラー204で参照側から戻ってきた光と合成される。合成された参照光側と信号光側の戻り光はシングルモードファイバー205でディテクター212まで導かれディテクター212で干渉信号を検出する。
図2は、図1における信号光側の先端部分の断面を拡大したものである。
シングルモードファイバー205の先端部は信号光側先端光学系208で構成されている。信号光側先端光学系208は光を生体に集光させるための屈折率分布レンズ(Gradient Index lens: GRINレンズ)221と、シングルモードファイバー205の曲がりによる偏光の影響をキャンセルするためのファラデーローテーター222、光の向きを変えるためのプリズム223でレンズユニット220を構成している。また、レンズユニットの外側には、円筒状の透明シース225がかぶせられている。
シングルモードファイバー205とレンズユニット220は、矢印219で示しているように長手方向(円筒状のシース225の中心軸)を軸として回転するようになっているので、測定対象を断面方向だけでなく円盤状に観察することができるようになっている。
信号光側先端光学系208には、シングルモードファイバー205から射出された光がファラデーローテーター222や屈折率分布レンズ221、プリズム223、シース225などの光学素子の境界面で数回反射した後再びシングルモードファイバー205に戻ってしまい、生体の像とゴーストが重なって写って画質が劣化するという問題があった。
その理由を図3(A)から(E)を使って説明する。
図3(A)(E)はゴーストが発生する原因の一例を示したもので、シングルモードファイバーを出た光の振る舞いを時間の経過とともに模式的に示したものである。
図3(A):シングルモードファイバー205から出た光が屈折率分布レンズ221とファラデーローテーター222の境界面に来たときに、多くの光はそのまま透過するが、一部の光が反射して再びシングルモードファイバー205側へ向かう。このとき、この境界面を透過する光を光a、反射する光を光bとする。
図3(B):シングルモード側へ向かった光bは次に屈折率分布レンズ221のシングルモードファイバー側の面で再び反射されて物体側へ向かう。一方 図3Aでそのまま通過した光aは、ファラデーローテーター(以後FRと省略して呼ぶことにする)222、プリズム223を通ってシース225と生体組織の中間のところまで進んでいる。
図3(C):光aは、生体組織226の中で反射されシングルモードファイバー205側へ向かう。そのころ、光bは屈折率分布レンズ221の中を物体側に向かって進んでいる。
図3(D):光bはプリズム223とFR222の境界面で反射され、再びシングルモードファイバー205側へ向かう。このとき、光aもプリズム223とFR22の境界面に達しており、光bと重なる。
図3(E):光aと光bは重なったままシングルモードファイバー205へ戻される。
以上のような状態になった場合、生体組織からの信号光と、先端光学系内で数回反射した光bとが重なる状況になり、生体の断層構造を見たときの画像は図4のよう生体組織の像227にゴースト像228が重なったものになる。
このようなゴースト像228は、光学素子の端面での反射回数が3回以下の場合に目立つ場合が多い。これは、一般に光学素子の端面の1面あたりの反射強度は、入射する光に対して−20dBから−30dBなので、光学素子端面での反射回数が3回であるとトータルの反射光の強度は−60dBから−90dB、反射回数が4回であると−80dB〜−120dBになる。一方、生体からの信号強度は、−50dB〜−70dBである。したがって、光学素子の端面での反射回数が3回以下の場合は、生体の信号強度とほぼ同じレベルになって観察に支障を来すことに由来する。
前記の説明での反射光の経路は一例であり、実際の先端光学系での多重反射は、今回の経路以外にも様々な経路で発生する。特にシースの形状は円筒形で、表面での反射防止処理が難しく、また、3回反射した光は観察位置に重なりやすいので問題であった。
信号光側先端光学系のもう1つの問題点は、先端光学系はシングルモードファイバーから射出された光が光学素子の境界面で反射し、それが直接シングルモードファイバー205に戻るような構成になっていることである。このような構成を“1回反射の構成”ということにすると、1回反射の構成は、図2の光学系では屈折率分布レンズのファイバー側の端面を除くすべての境界面から反射した光について成り立っていることになる。
もし、光学系が1回反射の構成になっていて光学素子端面からの反射光がシングルモードファイバーに入射すると、不要な光がシングルモードファイバーに多く戻ることになり、干渉信号を検出するときのS/N比が悪化してしまう。このため、先端光学系が1回反射の構成になっていると観察画面が非常に見にくくなるという現象が発生する。
図5(A)、(B)は、光がファラデーローテーター222とプリズム223の境界面で反射する1回反射の構成の例で、図5(A)は実際の光線の経路を表わしており、図5(B)は光線の経路が分かりやすいように反射面から光学系を折り返して表わしたものである。なお、図5(B)では、光は左側から射出されている。図5を見てわかるように反射した光が再びシングルモードファイバー205に戻ることがわかる。図2の光学系では、この例と同様に屈折率分布レンズのファイバー側の端面を除くすべての境界面で反射した光がシングルモードファイバー205に戻ることが起こっている。
図57(A)は光走査プローブの先端光学系を先端側から見た模式図、図57(B)は側面から見た模式図である。図57(A),(B)に示すように先端光学系は透明なフッ素樹脂チューブ320、プリズム308、GRINレンズ311、シングルモードファイバ301より構成される。シングルモードファイバ301に導光された光はその先端から、GRINレンズ311、プリズム308、フッ素樹脂チューブ320の順に入射され、観察ビーム317となる。フッ素樹脂チューブ320はその円筒面の周方向に対して凹レンズ効果を持っている。このため、観察ビーム317のシース円筒面に対する円周方向の焦点位置319aは、シース長手方向の焦点位置319bよりも長くなる。
また、図57(A),(B)に示す従来の技術では、先に述べた観察ビーム317のシース円筒面に対する円周方向の焦点位置319aとシース長手方向の焦点位置319bの位置関係は一定であり、変更することができなかった。
上記したように、光プローブが挿入した体腔内で湾曲して、プローブ内のファイバの復屈折変化による干渉強度の変化による問題があった。
本発明は、上記の従来技術の問題に鑑み、体腔内で光プローブが湾曲しても、プローブ内のファイバの複屈折変化による干渉強度の変化を補償される光走査プローブ装置を提供することを目的とする。
また、先端光学系における先の反射によるゴーストの発生を抑え、S/N比の向上を図することができる光走査プローブ装置を提供することを目的とする。
本発明の第1の光走査プローブ装置は、被検体に照射するための所定の観察光を発生する観察光発生手段と、前記観察光を導光するとともに、前記被検体で反射された反射光を導光する第1の導光手段と前記第1の導光手段で導光される前記観察光を前記被検体側に出射するとともに、前記被検体で反射された前記反射光を前記第1の導光手段に導く第2の導光手段と、前記第1の導光手段および前記第2の導光手段に対し被検体側の外周に設けられ、前記観察光および前記反射光を透過する光透過部材と、前記反射光と前記観察光から分岐された基準光とを干渉させ、所定の干渉信号を得る干渉信号取得手段と、を備え、前記第2の導光手段は、前記観察光を前記光透過部材に対して非垂直な所定の角度で前記被検体側に出射することを特徴とする。
本発明の第2の光走査プローブ装置は、前記第1の光走査プローブ装置において、前記第1の導光手段を移動することにより、前記第2の導光手段から出射される前記観察光を前記被検体に対して走査する走査手段を備えたことを特徴とする。
本発明の第3の光走査プローブ装置は、前記第1の光走査プローブ装置において、前記第2の導光手段が、前記光透過部材の法線に対して10゜以上の角度で前記観察光を出射することを特徴とする。
本発明の第4の光走査プローブ装置は、前記第1または第3の光走査プローブ装置において、前記第1の導光手段が、前記第1の導光手段の外周に設けられたシースに対して摺動自在であることを特徴とする。
本発明の第5の光走査プローブ装置は、前記第1の光走査プローブ装置において、前記第2の導光手段の両端面は、前記第2の導光手段の光軸に対して斜めに配置されていることを特徴とする。
本発明の第6の光走査プローブ装置は、前記第5の光走査プローブ装置において、前記第1の導光手段の端面と、前記第2の導光手段の両端面とは、前記第2の導光手段の光軸に対して斜めであって互いに同じ向きに配置されていることを特徴とする。
本発明の第7の光走査プローブ装置は、被検体内に挿入される光プローブと、被検体に照射するための照射光を発生させる光源と、前記照射光を前記光プローブの先端に導くための光ファイバーと、前記照射光を被検体に集光する集光手段と、前記光プローブの先端に設けられ、前記集光手段により集光された焦点を前記集光手段の光軸方向に対し略垂直に走査する走査手段を備えた先端光学系と、被検体からの戻り光を検出光として観察光から分離する分離手段と、前記検出光を検出する光検出手段と、を具備し、前記先端光学系における、被検体に対向する部分に光透過部材を有し、該光透過部材に対して集光光の光束が斜め入射するように設定されていることを特徴とする。
本発明の第8の光走査プローブ装置は、前記第7の光走査プローブ装置において、前記光透過部材のいずれかの面において、集光光の主光線の入射角が10゜以上であることを特徴とする。
本発明の第9の光走査プローブ装置は、前記第7または第8の光走査プローブ装置において、前記先端光学系において、光の反射により前記集光光の光束が前記光透過部材に対し斜め入射するように観察方向を偏向させる光学素子を備えていることを特徴とする。
本発明の第10の光走査プローブ装置は、前記第7の光走査プローブ装置において、前記集光手段及び前記先端光学系の両端面は、前記集光手段の光軸に対して斜めに配置されていることを特徴とする。
本発明の第11の光走査プローブ装置は、前記第10の光走査プローブ装置において、前記光ファイバーの端面と、前記集光手段及び前記先端光学系の両端面とは、前記集光手段の光軸に対して斜めであって互いに同じ向きに配置されていることを特徴とする。
本発明によれば、体腔内で光プローブが湾曲しても、プローブ内のファイバの複屈折変化による干渉強度の変化を補償されると共に、先端光学系における先の反射によるゴーストの発生を抑え、S/N比の向上を図ることができる光走査プローブ装置を提供することができる。
<第1の実施の形態>
第1の実施の形態によって、体腔内への挿入のために湾曲し、変化したファイバの複屈折性を補償でき、また体腔内でのラジアル走査の回転にしたがって変化したファイバの複屈折性を補償するものである。
図6は本発明の第1の実施の形態の光イメージング装置の構成を示し、図2は第1の実施の形態が挿通される内視鏡を示す。
図6に示す光イメージング装置〈光断層画像装置)1Aは、超高輝度発光ダイオード(以下、SLDと略記)や半導体アンプ(SOA)の自然放出光等の低干渉性光源2を有する。この低干渉性光源2はその波長が例えば1300nmで、その可干渉距離が例えば17μm程度であるような短い距離範囲のみで干渉性を示す低干渉性光の特徴を備えている。つまり、この光を例えぱ2つに分岐した後、再び混合した場合には分岐した点から混合した点までの2つの光路長の差が17μm程度の短い距離範囲内の場合には干渉した光として検出され、それより光路長が大きい場合には干渉しない特性を示す。
この低干渉性光源2の光は第1のシングルモードファイバ3の一端に入射され、他方の端面(先端面)側に伝送される。この第1のシングルモードファイバ3は途中の光カップラ部4で第2のシングルモードファイバ5と光学的に結合されている。従って、この光カップラ4部分で2つに分岐されて伝送される。第1のシングルモードファイバ3の(光カップラ部4より)先端側には、非回転部と回転部とで光を伝送可能な結合を行う光ロータリジョイント6が介挿され、この光ロータリジョイント6内の第3のシングルモードファイバ7の先端に光走査プローブ8のコネクタ部9が着脱自在で接続され、この光走査プローブ8内に挿通され、回転駆動される第4のシングルモードファイバ10に低干渉性光源2の光が伝送(導光)される。
そして、伝送された光は光走査プローブ8の先端側から被検体としての生体組織11側に走査されながら照射される。また、生体組織11側での表面或いは内部での散乱などした反射光の一部が取り込まれ、逆の光路を経て第1のシングルモードファイバ3側に戻り、光カップラ部4によりその一部が第2のシングルモードファイバ5側に移り、第2のシングルモードファイバ5の一端から光検出器としての例えばフォトダイオード12に入射される。なお、光ロータリジョイント6のロータ側は回転駆動装置13によって回転駆動される。
また、第2のシングルモードファイバ5の光カップラ部4より先端側には基準光の光路長を変える光路長の可変機構14が設けてある。この光路長の可変機構14は光走査プローブ8により生体組織11の深さ方向に所定の走査範囲だけ走査する光路長に対応してこの走査範囲の光路長だけ高速に変化する第1の光路長変化手段と、光走査プローブ8を交換して使用した場合の個々の光走査プローブ8の長さのバラツキを吸収できるようにその長さのバラツキ程度の光路長を変化できる第2の光路長の変化手段と、物体側と基準側の分散の不一致を補償する分散補償手段を備えている。
第2のシングルモードファイバ5の先端に対向するコリメートレンズ15を介してグレーティング16が配置されこのグレーティング(回折格子)16と対向するレンズ17を介して微小角度回動可能なガルバノメータミラー19が第1の光路長の変化手段として取付けられており、このガルバノメータミラー19はガルバノメータコントローラ20により、符号bで示すように高速に回転的に振動される。
このガルバノメータミラー19はガルバノメータのミラーにより反射させるもので、ガルバノメータに交流の駆動信号を印加してその可動部分に取り付けたミラーを高速に回転的に振動させるものである。
つまり、光走査プローブ8により、生体組織11の深さ方向に所定の距離だけ高速に走査できるようにガルバノメータコントローラ20により、駆動信号が印加され、この駆動信号により符号bで示すように高速に回転的に振動する。
そして、この回転的振動により第2のシングルモードファイバ5の端面から出射され、ガルバノメータミラー19で反射されて戻る光の光路長は生体組織11の深さ方向に走査する所定の距離の走査範囲だけ変化する。
つまり、ガルバノメータミラー19により、深さ方向の断層像を得るための第1の光路長の変化手段を形成している。このガルバノメータミラー19による光路長の変化手段は“In vivo video rate optical coherence tomography”(A.M.Rollins et.al) に開示されている。
この文献に示される光路長の変化手段は実際には、伝搬時間変化手段であり、真の光路長変化は僅かだが、低コヒーレンス光の群遅延により生じる干渉位置の変化は非常に大きい。ここではこの群遅延により生じる干渉位置の変化を含め光路長の変化という言葉で説明する。このディレイラインの他の重要な特徴は、2つの干渉アーム(物体側と参照側)の2次の光学的分散を補償できることである。これが重要なのは、物体側と参照側の干渉系中のファイバー長を一致させる必要がないからである。この補償なしに、ファイバー長を相違させるとコヒーレント長が非常に増加し、光軸方向の分解能が劣化する。分散補償は、グレーティング16とレンズ17の間隔を僅かに調整することで達成される。
また、第2のシングルモードファイバ5およびコリメートレンズ15は、その光軸方向に符号aで示すように移動自在な1軸ステージ18上に設けられ、第2の光路長の変化手段となっている。
また、第2のシングルモードファイバ5には、ファイバで構成される干渉系全体および光走査プローブ内のファイバの曲げによって生じる複屈折性の影響を取り除くための偏波面調整用のファイバーループ29が設けられている。
一方、1軸ステージ18は光走査プローブ8を交換した場合に対し、光走査プローブ8の光路長のバラツキを吸収できるだけの光路長の可変範囲を有する第2の光路長の可変手段を形成すると共に、ガルバノメータミラー19による光路長を変えて深さ方向の画像を得る場合に所望とする位置(例えば、光走査プローブ8の先端が生体組織11の表面に密着していない場合でも、1軸ステージ18による光路長を変化させることにより、生体組織11の表面位置から干渉する状態に設定することにより、その表面位置)から画像化することができるようにオフセットを調整するオフセット調整手段の機能も備えているようにしている。
この1軸ステージ18はステージ移動用のモータを備え、位置制御装置21によりそのモータに駆動信号を印加することにより1軸ステージ18は符号aで示す方向に移動する。
ステージの構成を図25に示す。横方向に光軸を維持しながら精密にスライドできるステージ178を載せたスライダ179があり、スライダ179にはボールネジ180が設けられ、ボールネジの基端にはステッピングモータ181が設けられ、ステッピングモータ181によるボールネジ180の回転に従ってステージ178は移動する。ステージ178上にはレンズ15と第2のシングルモードファイバ端が設けられ、グレーティング16に対し平行光を生成するように設定されたコリメータ182が設けられている。
図6に示されるこの光路長の可変機構14で光路長が変えられた光は第2のシングルモードファイバ5の途中に設けたカップラ部4で第1のシングルモードファイバ3側から漏れた光と混合されて、共にフォトダイオード12で受光される。なお、例えば第2のシングルモードファイバ5は1軸ステージ18をその可変範囲の中間位置付近に設定した状態では光カップラ部4から第4のシングルモードファイバ9等を経て光走査プローブ8の先端から生体組織11に至る光路長と、第2のシングルモードファイバ5を経て1軸ステージ18上のガルバノメータミラー19で反射される光路長とがほば等しい長さとなるように設定されている。
そして、実際に接続して使用される光走査プローブ8に応じて1軸ステージ18の位置を可変設定することにより、個々の光走査プローブ8の長さのバラツキを吸収し、かつガルバノメータミラー19を高速で回転的振動或いは高速振動させてその基準光側の光路長を周期的に変化することにより、この光路長と等しい値となる生体組織11の深さ位置での反射光とを干渉させ、他の深さ部分での反射光は非干渉にすることができるようにしている。
上記フォトダイオード12で光電変換された信号はアンプ22により増幅された後、復調器23に入力される。この復調器23では干渉した光の信号部分のみを抽出する復調処理を行い、その出力はA/D変換器24を経てコンピュータ25に入力される。このコンピュータ25では断層像に対応した画像データを生成し、モニタ26に出力し、その表示面に0CT像27を表示する。
このコンピュータ25は位置制御装置21と接続され、コンピュータ25は位置制御装置21を介して1軸ステージ18の位置の制御を行う。また、コンピュータ25はビデオ同期回路28と接続され、画像化する際のビデオ同期信号に同期して内部のメモリに断層像データを格納する。
また、このビデオ同期回路28のビデオ同期信号はそれぞれガルバノメータコントローラ20と回転駆動装置13にも送られ、例えばガルバノメータコントローラ20はビデオ同期信号(より具体的には高速及び低速の2つのビデオ同期信号における高速の第1のビデオ同期信号)に同期した周期で駆動信号を出力し、回転駆動装置13はビデオ同期信号(より具体的には低速の第2のビデオ同期信号)に同期した周期で第1のビデオ同期信号に同期した駆動信号を出力し、回転駆動装置13による回転により周方向に光を走査するようにしている。
第1の実施の形態における光走査プローブ8は、例えば図2に示すように内視鏡31の鉗子挿通口32から鉗子挿通用チャンネルを経てその先端開口から光走査プローブ8の先端側を突出させることができる。
この内視鏡31は、体腔内に挿入し易いように細長の挿入部33を有し、この挿入部33の後端には太幅の操作部34が設けてある。この挿入部33の後端付近には鉗子挿通口32が設けてあり、この鉗子挿通口32はその内部で鉗子挿通用チャンネルと連通している。
挿入部33内には図示しないライトガイドが挿通され、このライトガイドの入射端を光源装置に接続し、照明光を伝送して挿入部33の先端部に設けた照明窓から出射し、患部等を照明する。また、照明窓に隣接して観察窓が設けられ、この観察窓には対物光学系が取り付けられ、照明された患部等を光学系に観察できるようにしている。そして、内視鏡31の先端部の観察光学系の観察の下で、患部等の注目する部分の生体組織11側に光走査プローブ8により、低干渉性光を照射し、その生体組織11の内部の断層画像データを得て、モニタ26の表示面にOCT像27を表示できるようにしている。
また、挿入部33の先端部には湾曲部35および先端部36が設けられている。湾曲部35を挿通させて光走査プローブ8を挿入させる時、また光走査プローブ8の先端37を内視鏡先端部36より突出させて生体組織11に接させる時、光走査プローブの先端部36は小さな湾曲半径で湾曲する。
図8に、光走査プローブ8および回転駆動装置13の構成を示す。
光走査プローブ8は、細長い環状の樹脂チューブで構成された光学シース38と、シース38を回転駆動装置13に接続するコネクタ部9と、光学シース38の内側に設けられ、自在に回転するフレキシブルシャフト40と、フレキシブルシャフトの内腔に設けられた第4のシングルモードファイバー10と、フレキシブルシャフト40の先端に接続されたレンズユニット39と、フレキシブルシャフト40に接続された回転伝達コネクタ42と、第4のシングルモードファイバー10の他端に接続された光コネクタ41よりなる。
回転駆動装置13は、回転シャフト146および回転シャフトに接続された光ロータリージョイント6をもつ。回転シャフト146の他端部には光コネクタ41が設けられ、光コネクタ41と光ロータリージョイント6は第3のシングルモードファイバー7で接続されている。回転駆動装置13はモーター44およびモータープーリー45とエンコーダー46およびエンコーダープーリー47をもつ。また、モーター44およびエンコーダー46は回転駆動コントローラー48に接続されている。
次に、回転駆動装置13の作用を説明する。モーター44の回転はモータープーリー45に伝達され、ベルト43により回転シャフト146およびエンコーダープーリー47に伝達される。エンコーダー46は回転シャフト146の回転速度を検出し、その回転速度が指定された速度になるように回転駆動コントローラー48によりモーター44の駆動電流を制御する。これにより、回転シャフト146は指定された速度で一定に回転する。また、回転シャフトの回転角はエンコーダー46により検出され、回転駆動コントローラー48を経由して信号49に送られる。
信号49は、1回転を256パルスで分割したパルスであるA相である49a、A相に対し、45度の位相ずれをもつB相49bと、1回転に1回のパルスである49cよりなる。
次に、光走査プローブ8の作用を説明する。第3のシングルモードファイバー7で伝送光は光コネクタ41によって第4のシングルモードファイバー10に伝達される。また、回転シャフト146の回転は回転伝達コネクタ42によってフレキシブルシャフト40に伝達される。第4のシングルモードファイバー10の伝送光はレンズユニット39に伝達され、光学シース38を通して検査光として外部に出射され、生体組織からの反射光を受光し、再び第4のシングルモードファイバー10に伝達する。フレキシブルシャフト40の先端はレンズユニット39に接続されているため、フレキシブルシャフト40、レンズユニット39、第4のシングルモードファイバー10は一体で回転する。
図9(A)に光走査プローブ8の詳細を示す。光学シース38はナイロンチューブ64および先端キャップ65より構成され、ナイロンチューブ64および先端キャップ65は接着により接合されている。レンズユニット39はプリズム54、ファラデーローテータ53、GRINレンズ52およびレンズ枠55よりなる。
第4のシングルモードファイバー10はフェルール69に接着されている。
レンズユニット39およびフェルール69、フレキシブルシャフト40は繋ぎ部材56で接続されている。ファイバー端60より出射された光はGRINレンズ52に入射し、ファラデーローテータ53を透過し、プリズム54により方向を直角に曲げ、シース50aを透過して観察ビーム62となり、焦点63に集光する。ファイバー端60およびGRINレンズ52の間隔61を変えることにより、焦点63とシース50aの距離59を変更することができる。間隔管68は焦点位置を一意的に定めるために設けられている。
ファラデーローテータ53は、磁性ガーネット単結晶より構成されており、偏光を45度回転させる働きを有する。シングルモードファイバ10は体腔内挿入時に内視鏡の湾曲にしたがって湾曲し、更にフレキシブルシャフト40の回転により周期的に湾曲方向を変えながら回転している。このようなシングルモードファイバではファイバに加わる応力やねじれのために複屈折性が生じる。光カプラ4で干渉する光走査プローブ8からの戻り光と、光路長の可変機構14からの反射光との干渉光は偏光が一致していないと減衰するため、フレキシブルシャフト40の回転により周期的に干渉信号の振幅が変化することになり、観察像に明暗のムラができることになる。先端にファラデーローテータ53を設けると、シングルモードファイバがどのような複屈折性を持っても、シングルモードファイバ10よりファラデーローテータ53と透過し、生体に照射され、反射して再びファラデーローテータ53を透過し、シングルモードファイバ10に戻った光は、入射した偏光に対して90度旋回した偏光を出力し、ファイバの複屈折性により偏光が変わらないというファイバの複屈折性を補償する役割がある。これは、文献”Polarisation -insensitive fibre optic michelson interferometer” (Electr. Lett. Vol.27, p518-519, 1991)に開示されている。また、通常ファラデーローテータはガーネット結晶と結晶に磁界を与え偏光を45度回転させる磁石から構成されるが、このファラデーローテータ53は、結晶自身に磁性を有する磁性ガーネット単結晶より構成されるため結晶のみで済み、体腔内に挿入する光走査プローブの小さな先端部にも取り付けることができる。
また、ファラデーローテータ53をGRINレンズに接して設けることにより、平行光に近い光線がファラデーローテータ53に入射するため、ファイバ端60とGRINレンズ52の間にある場合に比較し、正確に偏光を45度回転させることができ、理論通りに複屈折性補償を行うことができる。また、ガーネット結晶は屈折率が非常に高いため、空気と接している場合に比較し、レンズやプリズムなどのガラス材と接着されている方が、界面でのフレネル反射を減衰でき、生体への照射光、生体からの観察光を減衰させることがないという特徴を有する。繋ぎ部材56はフレキシブルシャフト40の回転によりシース64に対し回転するため、シース内面73と接触して傷つく可能性が有る。フレキシブルシャフト40は光走査プローブ8の挿入形状により全長が変化するため繋ぎ部材56とシース内面73の接触により生じた傷が観察ビーム62と交差し、観察が正常に行われない可能性が有る。しかし、レンズユニット39のレンズ枠55に丸み付キャップ66が接続されている。丸み付キャップ66には開口部67が設けられ、観察ビーム62を透過できるようになっており、丸み付キャップ66のR部72がシース内面73と接触するため、丸み付キャップ66が回転してもシース内面73は傷つきにくい。また、丸み付きキャップ66と先端キャップ65の空間の間隔155は、ナイロンチューブ64等、光学シース38の温度による伸縮、また湾曲によるフレキシブルシャフト40とシース38の相対的移動のための余裕空間で、シースの材質に左右されるが通常8mm程度必要である。また、シース64の材質としてはFEP等のフッ素系樹脂を用いることもできる。
図9(B)にプローブ先端部の他の構成を示す。図9(A)との相違は、ナイロンチューブ64の内部に観察ビーム62の出射部位に減反射コーティング401を設けており、またナイロンチューブ64の外部にも減反射コーティング402が設けられていることである。減反射コーティング401を設けることで、チューブ内腔の空気とチューブ素材の屈折率差によるフレネル反射を抑制することができ、出射光と検出光の減衰を防止し、および内部反射を減衰させることができる。減反射コーティング402は空気または水などのシース38外部の媒質とチューブ素材の屈折率差によるフレネル反射を抑制することができ、同様の効果を得ることができる。また、シース内面と外面の反射によるゴーストを防止することができる。
図9(C)に他の構成を示す。先端キャップ403はガラスまたはポリサルホンのような硬質プラスチックなどの硬質の透明材料で構成されている。先端キャップ403はナイロンチューブ64の代わりに設けられた不透明な樹脂チューブ404と糸および接着剤405により接続されている。
先端キャップ403は硬質素材で構成されているため、先端キャップ403内部でレンズ枠55や繋ぎ部材56がフレキシブルシャフトの回転により接しても、先端キャップ403の内部が傷つき、それが観察ビーム62の光路中に現われ、ビームを阻害し、観察像を劣化させることがない。また硬質透過材料の高い光学特性により、生体中の回折限界集光スポットを保ち、プローブのシングルモードファイバーでの再入射を保証する。また先端キャップ403をガラスパイプと先端封止部材で構成することもできる。
図9(B)の減反射コーティング401の代わりに薄肉のガラスパイプを設けても、図9(C)と同様の効果を得ることができる。ガラスパイプである必要がある部分は、回転プリズムがシースと接触する可能性があり、また光がシースを透過する部分のみで良い。特に硬くて可撓性のある材料例えば、ポリシラザンのようなセラミックコーティングによって、耐摩耗性かつ可撓性のあるシースが実現される。
また、光学シース38とレンズユニット39〔図9(A)〕の間の内腔に屈折率整合水を充填することができる。この場合丸み付キャップ66の開口部67は観察ビーム62を透過すると共に、屈折率整合水が通過可能なようになっている。プリズム54の反射面は、屈折率整合水と直接接するため、プリズム素材の屈折率と整合水の屈折率が近いため全反射しない場合がある。この場合には、反射面にアルミコーティングや誘電多層膜コーティングなどの反射コーティングを設け、全反射させる。
図10に図6のコネクタ部9の詳細を示す。光学シース38はシース止め91の突起部97に取り付けられ、また、シース止め91には折れ止め93が設けられている。フレキシブルシャフト40はシャフト止め86に取り付けられている。シャフト止め86はベアリング87を介して回転自在にベアリング座89に保持されている。フェルール82は光コネクタハウジング83内部にあり、バネ85により、回転駆動装置13側に圧接されている。光コネクタハウジング83はシャフト止め86に接合されている。コネクタケース88は、パイプ状のスライドパイプ100に内接しており、スライドパイプ100はコネクタケース88に対して左右方向に図の点線で示される位置103まで摺動可能である。スライドパイプ100は取り付けリング104により回転駆動装置13のハウジング75に固定される。コネクタケース88には回転止め101が設けられ、スライドパイプ100にはスライド用長孔102(図10、10Aの双方に示される)が設けられているため、コネクタケース88がシャフト止め86と一緒に回転してしまうことはない。また、スライドパイプ100には図示しない突起が先端部に設けられ、ハウジング75に設けられた図示しない凹部と対応し、回転止めを形成し、取り付けリング104でスライドパイプ100をハウジング75に取り付けた場合には相互に回転しないような構成になっている。
回転駆動装置13の回転シャフト74の先端には、図10の光アダプタ77が設けられ、(図8の)光ロータリジョイント6からのファイバ7を接続する光コネクタ78が接続されている。光コネクタハウジング83には回転止めの突起105が設けられ、光アダプタ77はそれに対応する凹部106を有する。光コネクタハウジング83は止めネジ84によって光アダプタ77に取り付けられる。回転伝達装置13からの回転は光アダプタ77と光コネクタハウジング83との接続で伝達される。
コネクタ部9を(図8の)回転駆動装置13に接続する場合には、(図10の)スライドパイプ100を位置103にスライドさせ、光コネクタハウジング83およびフェルール82を光アダプタ77に接続し、止めネジ84によって取り付ける。次にスライドパイプ100をハウジング75に挿入し、取り付けリング104で固定する。
光コネクタハウジング83を回転することにより、シャフト止め86が回転し、フレキシブルシャフト40に回転が伝達される。また、シャフト止め86とフレキシブルシャフト40とシングルモードファイバー10には水密接着部98が設けられている。
また、シャフト止め86とベアリング座89の間にはOリング99が水密シールとして設けられている。また、シース止め91とベアリング座89の間には0リング94が設けられている。これらの水密シールにより、光学シース38とフレキシブルシャフト40との間に屈折率整合水を充填した場合にも、漏れ出すことがなく、ベアリング座89に設けられた注水口107より屈折率整合水を封入することができる。また、フレキシブルシャフト40の隙間から内部に浸入した水も漏れ出すことはない。
本装置で得られる画像を図26(A)に示す。ラジアル状の走査像184が表示され、測定のための画面上の距離目盛り185a、185bが設けられている。185aは空気中の光路長に対応したスケールが示されている。185bは生体組織の平均値である屈折率n=1.4の場合のスケールで、185aの1.4倍のスケールになっている。これは、光路長は実際の長さlに対し、nlで表されるからである。
また、図26(B)のように、部分を拡大して走査像の半分の拡大像186を表示することもできる。これはキーボード上の図示されない拡大率および表示範囲選択スイッチにより選択される。また、画像を図示しない内視鏡の観察像の向きと一致させるため、像を回転することができ、キーボードには図示しない回転角操作スイッチが設けられている。
図26(C)は、距離計測のためのスケールの別の実施例を示す。空気に対応する画像の領域250、252と、組織に対応する領域251を検出する画像処理アルゴリズムが導入されている。空気に対応する領域には、屈折率が1に対応するスケールが表示され、組織に対応する領域には例えば屈折率が1.4に対応するスケールが表示されている。
また、装置全体の構成を図27に示す。図6の構成は観測装置187内に内蔵されている。観測装置187の上にモニタ26が設置されている。観測装置からは光走査プローブ8を取り付けるための前後に進退可能なプローブ駆動ユニット188が設けられている。前後に進退可能なことにより、下部消化管など長い内視鏡での使用時の操作性を向上させている。また観測装置187前面には光学系調整パネル189があり、キーボード190が設けられている。また、観測装置187にはフットスイッチ191が接続されている。フットスイッチ191にはフリーズスイッチ192とレリーズスイッチ193が設けられ、フリーズスイッチ192を操作することで、リアルタイムで得られる画像を一時停止/解除できる。またレリーズスイッチ193を操作することで、一時停止した画像を、コンピュータに記録または、プリントアウトすることができる。
<第2の実施の形態>
第2の実施の形態を説明する。第2実施の形態によって、体腔内への挿入のために湾曲し、変化したファイバの複屈折性を補償することができ、また体腔内でのラジアル走査の回転にしたがって変化したファイバの複屈折性を補償することができる。
図11(A)〜図13にファラデーローテータを用いた光走査プローブ先端部の別の実施例を示す。図11(A)の構成では、繋ぎ部材56とフェルール69を一体化したレンズワク109を用いている以外は図9(A)と同様の構成であるが、光ファイバ10端部とGRINレンズ52の間隔にファラデーローテータ53を設けている。
図11(B)の構成では、レンズワク109に接し、GRINレンズ52を覆うように設けられた先端キャップ110内部に反射ミラー111を設け、ミラーで反射された観察光が出射する開口部67にファラデーローテータ53を埋め込んだものである。
図11(C)の構成では図9のGRINレンズ52の代わりに単体のレンズ112および間隔管113で構成されたレンズ群の中にファラデーローテータ53を設けている。この構成ではGRINレンズでは不可能な高度な収差補正を行いたい場合などに用いることができる。
上記いずれの場合も、体腔内への挿入のために湾曲することまた、ファイバがフレキシブルシャフト40の回転に応じて湾曲しながら回転することによって変化したファイバ10の複屈折性を補償するという効果を有する。
図12に水平方向に走査する光走査プローブを示す。
フレキシブルシャフト40とGRINレンズ52とファラデーローテータ53とプリズム54とシングルモードファイバー10はレンズ枠109により接合されている。フレキシブルシャフト40を左右fの方向に走査することにより観察ビーム62および焦点63は左右方向gに走査され、像を得ることができる。
図13にプローブの正面方向に走査する光走査プローブを示す。光走査プローブは対物レンズ115、ファラデーローテータ53、それらを支持するレンズ枠114、シングルモードファイバー10およびその先端117を上下方向kに走査するピエゾ素子137より構成される。ピエゾ素子116によりファイバー先端117を上下方向に走査することにより観察ビームが上下方向lに走査され、像を得ることができる。
図12および図13の構成では、体腔内への挿入のために湾曲し、変化したファイバ10の複屈折性を補償するという効果を有する。
<第3の実施の形態>
第3の実施の形態によって、ミラー揺動型のディレイラインを用いる光路長可変手段を用いた高速走査で、高解像な2次元の像を提供することができる。
深さ方向への1ラインのスキャニングと光走査プローブ8内のフレキシブルシャフト40による先端光学系の回転によって、ラジアル画像を生成する方法について説明する。
図14(A)にガルバノメータミラー19の移動により得られた深さ方向の走査位置曲線119と、ガルバノメータコントローラ20から得られるミラー走査のタイミング信号119と深さ方向の走査で得られた干渉信号(包絡線)120と、干渉信号を記録するラインメモリ121の関係を示す。横方向は時間である。
ガルバノメータミラー19をできるだけ高速に走査する場合、118に示すようにミラーの往復とも同じ波形で走査するのが効果的である。この場合、干渉信号120は往復の中間点123を中心にほぼ対象な波形122aと122bになる。ここで波形122aのみならず波形122bも用いてラジアル画像の構築を行えば、ラジアル方向の解像度を2倍にすることができる。ラインメモリ121には時系列に従って干渉信号120が記録される。
次に図14(B)に示される2次元のフレームメモリ172にラインメモリ121の内容をコピーする。波形118に示されるようにラインメモリ121に記録されるデータの内タイミング信号119から時間t1の間はミラー走査が線形でないため用いず、線形であるt2の区間のみをメモリの最初の位置a1と最後の位置b1の方向を保存してフレームメモリの1行目にコピーする。再び線形でないb1の位置から中間点123に対して対称なc1までの間のt3の区間を用いず、c1からa1に対して中間点123に関して対称なd1までの区間t4を最初の位置c1と最後の位置d1を逆にしてフレームメモリ172の次の行にコピーする。これにより、同じ方向に走査されたラジアル位置がわずかに異なる干渉信号がフレームメモリ172に記録できる。
これを次のタイミング信号173に関しても同様に行う。これを繰り返すと、ラジアル方向1周分に関して同じ方向に走査されたのと同じような干渉信号の2次元画像が得られる。これを図14(C)の様にプローブに近い側を中心側にして円状に変形させればラジアル画像が得られる。
この方法をDouble sided scanと名づける。
図15に図14(B)のような2次元画像を高速に図14(C)のようなラジアル画像に変換するアルゴリズムを示す。図15の左に示されるようにx方向が深さ方向r、y方向が回転角θに対応する2次元画像174があり、これを右に示されるrθ座標系175に変換する場合には、右図の座標系を(x(r,θ),y(r,θ))で表すと、
x(r,θ)=rcosθ
y(r,θ)=rsinθ
の変換Fで表される。しかしながら、実際には像174も像175も画素の集合体であるため、この変換式をそのまま用い像174を像175に変換すると外周部分では間隔の開いた画素のある像ができる。そこでFの逆変換
r(x,y)=√(x2+y2)
θ(x,y)=tan−1 (y/x)
を用い画素の対応関係を得ると、像175の複数の画素が像174に対応し、画素の抜けの無い像を構築できる。
この画素の対応関係はマッピングアレイという配列に記憶されている。マッピングアレイは変換先の画像(例えば円周状の)と同じ大きさの配列で、上記の変換式に基づいて、各画素に対応した保存された長方形の画像の画素値に対応したメモリのポインタを有している。変換時にはマッピングアレイに記憶された画素の対応関係にしたがって像174から像175への変換を行うことで、処理能力の低いパソコンを用いてもリアルタイムでラジアル像を得ることができる。
このDouble sided scanの方法では、現実にはガルバノメータミラー19(図6)やガルバノメータコントローラ20の温度特性などにより、走査の中間点123〔図14(A)〕に対する対称性などが変化する。この状態を図16に示す。この状態でラジアル画像を表示すると本来同一の境界線がだぶり、著しい画像の劣化を生じる。122bはフレームメモリ172にストアされた状態を示す。図に示されるように、122aと122bは時間Δtだけ波形が時間方向にずれている。ここで、124aと124bで示されるピークはプローブシース64の表面の反射であり、生体組織の散乱でおこる干渉信号に比較して信号強度がはるかに高い。そこで、ある一定のスレッショルドを超える信号をプローブシース64の表面の反射とし、124aと124bのピークを検出しそれらが一致するように図14(A)の区間t3の時間を変化させれば、波形の時間方向のずれをなくすことが出来、画質の劣化を防ぐことができる。
また、装置に図23に示される光学系調整パネル189に位相調整ノブ160を設け、位相調整ノブ160に接続された図示されないポテンショメータによってノブの位置を検出し、その位置に基づいて区間t3の時間を変化させることで、位相調整ノブ160を手動で回転させることで、実際の観察像を見ながらずれをなくすこともできる。また光学系調整パネル189には位相調整ノブによる手動調整か、プローブシース64の表面の反射による自動調整かを選択する手動/自動選択スイッチ162が設けられている。
図30に図14(B)で示されるマッピングアレイの代わりに、double-sided 走査データを収集し、ラジアル画像に変換する他の方法を示す。データ保存手段は図14(A)のt2、t3、t4の時間に収集したデータをすべて保存している。
マッピングアレイは長方形のフォーマットのデータを極座標に変換するだけでなく、t2の時間に対応するデータをラジアル方向の順方向の画像ライン(時間順に中心から周上)に変換し、t4の時間に対応するデータをラジアル方向の画像ラインの逆方向(時間順に周上から中心方向)に変換する。これにより順方向と逆方向のラインデータがラジアル画像にマッピングされ、t3の時間に対応するデータはマッピングアレイが指し示さないため参照されない。この方法により、ラインデータをフレームメモリに順方向と逆方向に書き込む必要がない。この方法の唯一欠点はt3に対応する不必要なデータにもメモリが割り当てられることである。順方向と逆方向のデータの位相制御は図14(A)に示されるt1またはt3またはその両方の間隔を調整することで行われる。
図14(A)の状態よりさらに高速にミラーを走査する方法に、ガルバノメータミラー19の代わりにレゾナンススキャンミラーを用いる方法がある。この場合図17に示されるようにミラーはミラーの共鳴周波数でサイン(sin)波状に走査されるため、走査深さも118のようにサイン(sin)波状に変化する。この場合は、比較的線形に近い範囲のe1〜e4で示される領域の干渉信号を用いる。e1〜e4は同一の間隔を有するが、対応する深さの範囲ではe1‘〜e4’に示されるようにそれぞれの幅は異なっている。そこで、画像化の際には、ラインメモリ121に記録されたe1〜e4の範囲を深さ方向に線形に対応するように変換して表示する必要がある。
深さ位置 dp=Acos (ω(t−t1))+B (A、B、ω:定数)
また、その時のミラーの移動速度が光ヘテロダイン検出のドップラー周波数になり、曲線125で示されるようになる。範囲e1〜e4の間にもドップラー周波数はΔf 126変化する。
図18に図1の復調器23の構成を示す。復調器23は、ハイパスフィルタ127とローパスフィルタ128で構成されるバンドパスフィルタ133と、検波機能を有するログアンプ129とローパスフィルタ130で構成される。バンドパスフィルタ133は光ヘテロダイン検出のドップラー周波数で変調された成分のみを取り出す。ログアンプ129は検波および対数増幅を行い、広いダイナミックレンジを有する生体組織からの散乱信号をディスプレイに表示可能な狭いダイナミックレンジに変換する。ローパスフィルタ130は変調信号を取り除き、散乱情報を有する包絡線信号にする。
図17のように、ドップラー周波数がΔf 126と大きく変化すると、バンドパスフィルタ133の通過範囲を広く取る必要が有り、そのためドップラー周波数fで変調されていない雑音成分もフィルタを通過し、S/N比が悪化する。そこで、図18に示されるように、リアルタイムでスキャニング速度を検出し、ドップラー周波数f131を算出し、それにローパスフィルタ130の周波数flに係数kを掛けたものを加算および差分したカットオフ周波数入力信号132a、132bをハイパスフィルタ127およびローパスフィルタ128のカットオフ値として入力し、リアルタイムで変化させると、ドップラ周波数fの変化によるS/N比の劣化を最小限にすることができる。
復調器23の2番目の実施例は、図28に示される、基準アームの走査が非線形的であっても高いS/N比を確保することのできるコヒーレントトラッキング復調器である。図28に示されるように、アンプからの入力信号はハイパスフィルタ201とローパスフィルタ202を直列にしたバンドパスフィルタにより、非線形に変調された干渉信号の所望の部分を通過させる。バンドパスされた信号は2つのミキサ205と206の入力となる。参照信号生器203は、基準側のディレイスキャナの位置の微分に比例し、計算された基準アームのドップラーシフト周波数に対応した、周波数の変調された基準信号を生成する。この信号はバンドパスされた干渉信号とミキサ205で復調信号の位相同期信号Iを生成するために混合される。基準信号は位相シフタ204により90度位相を遅らされ、復調信号の移相信号Qを生成するためにバンドパスされた干渉信号と混合される。I、Q成分はそれぞれローパスフィルタ207とハイパスフィルタ208を通り、強度演算手段209により一つの強度信号を得る。出力210はADコンバータによりデジタイズされる。あるいはI,Qを独立してデジタイズした後に、コンピュータで強度を演算してもよい。このトラッキング復調器はフィルタのパラメータの素早い変更なしに、ドップラー周波数の非線形性に追従することができる。
<第4の実施の形態>
第4の実施の形態によって、内部反射光等の定常光を減衰させ、干渉光信号の増大により検出系のS/Nを向上する。
図19に第4実施形態を示す。第1実施形態(図6)との相違部分を説明する。
図6の第1のシングルモードファイバ(SMF)3の部分の途中に光サーキュレータ136を設ける。分割されたSMFを137および138とする。光サーキュレータは3つのポートを持ち、SMF137、SMF138、SMF139が接続されている。また、第2のシングルモードファイバ5の末端にはアッテネータ141の一端が接続されている。SMF139およびアッテネータの他端は差動検出器140に接続されている。
光サーキュレータ136はSMF137からSMF138の方向および、SMF138の方向からSMF139の方向にのみ、光を低減衰で伝達でき、それ以外の光の疎通を遮断している。そのため低コヒーレンス光源2からの観察光はSMF137からSMF138を伝わり、カプラ4に伝わり、光走査プローブ8のある物体側と、光路長可変機構14のある参照側に分配される。物体側からの反射光と、参照側からの反射光はカプラ4で干渉し、位相が反対である干渉光がSMF138とSMF5に伝送される。SMF138に伝送された干渉光は光サーキュレータ136で僅かに減衰された後、SMF139に伝送される。SMF139からの光量と、SMF5からの光量の定常成分が同じになるようにアッテネータ141を調整し、差動検出器140に入力する。差動検出器140はSMF139からの光振幅とSMF5からの光振幅を差分・増幅して図6の復調器23へ出力する。SMF138の干渉光とSMF5の干渉光は位相が反転しており、干渉光以外の光学系の内部反射光などの定常光は同位相なので、差分すると定常光成分は大きく減衰し、干渉光成分は約2倍になり、干渉信号検出のS/N比を最大20dB程度向上させることができる。
また光路長の可変機構14に図19のダブルパスミラー142が光路中に設けられている。図6の光路長の可変機構14では第2のシングルモードファイバ5端部からの光はレンズ15、グレーティング16、レンズ17、ガルバノメータミラー19、レンズ17、グレーティング16、レンズ15、ファイバ端部へと戻るが、ダブルパスミラー142を設け、グレーティング16とガルバノメータミラー19を4回通過するようになる。このダブルパススキャニングの原理については文献“In vivo video rate optical coherence tomography”(A.M.Rollins et.al) に詳述されている。図6の光路長の可変機構14ではミラー19の回転角度によりファイバ端部に再び戻る光量が変化するのに対し、図19のダブルパススキャニングでは、ほぼ一定の光量が得られるため干渉信号の振幅がミラー1の回転角度に対し安定であるという利点がある。また、4回同じ光路を通過するため、同じ構成の光路長の可変機構14でより長い光路長の変化を得られるという利点もある。
図20に光サーキュレータを用いた別の実施例を示す。図6および図19の実施例はマイケルソン干渉系を基にしているが、図20はマッハツエンダー干渉系を基にしている。
低干渉性光源2は第1のシングルモードファイバ3に接続され、光カプラ148に接続される。光カプラの一方の出力はSMF164に接続され、光サーキュレータ136に接続されている。光サーキュレータ136には光ロータリジョイント6とSMF165が接続されている。光ロータリジョイント6には光走査プローブ8が接続されている。
光カプラ148の他方は偏波面調整ループ29を通りSMF167に接続されている。SMF167は透過型ディレイライン143を通り、SMF166に接続される。SMF165とSMF166は光カプラ147に接続され、光カプラ147の出力は差動検出器140に接続される。
低コヒーレンス光源2から出射した観察光は第1のSMF3を通り、光カプラ148に導光される。その光はα1:1−α1の比に分割されSMF164およびSMF167に伝送される。SMF164に伝送された光は光サーキュレータ136を通過し光ロータリジョイント6、光走査プローブ8を伝送し、観察物体に照射される。観察物体からの反射光は、光走査プローブ8と光ロータリジョイント6を通過し光サーキュレータ136を通り、SMF165に伝送される。
SMF167に伝送された光は、図6の光路長可変機構14に相当する透過型ディレイライン143に入る。SMF167端部から出射された光はコリメータレンズ145によって平行光に変換され、ビームスピリッタ146を透過し、グレーティング16に入射する。後は光路長可変機構14と同様に、レンズ17と透過し、ミラー19で反射され、レンズ17、グレーティング16と戻る。戻り光はビームスピリッタ146でコリメータレンズ144の方向に反射され、SMF166の端部に集光する。透過型ディレイライン143は、光路長可変機構14と同様の原理で、SMF166およびSMF167の光路長を可変することができる。SMF166とSMF165からの光は光カプラ147で干渉する。光カプラ147で得られた干渉光を差分検出器140で検出すると高S/N比で検出できるのは図19で説明した通りである。
さらに透過型ディレイライン143の高効率な実施例を図29に示す。光がSMF167に伝達され、図6の光路長可変手段14に対応する透過型ディレイライン143に入射される。SMF167の端部から出射した光はコリメータレンズ145により平行光に変換される。平行光はグレーティング16に入射する。ダブルパスの光路超変化手段14と同様に、入射光はレンズ17を透過し、ミラー19で反射し、レンズ17に戻り、ダブルパスミラー142に戻る。戻り光は、グレーティング16、レンズ17、またガルバノメータミラー19によりレンズ17、グレーティング16を通り、ピックオフミラー220によりコリメータレンズ144によりSMF166に入射される。ダブルパスミラー142とピックオフミラー220は図29の紙面の上下に、例えばコリメータレンズ145の上下に配置することができる。この透過型ディレイラインは、基準アームの内低コヒーレンス光源2に戻る無駄な光がないという利点がある。
<第5の実施の形態>
第5実施の形態によって、走査速度の安定化によるS/N比の向上と、走査速度・位置の高精度化を図れる。
図21に図6の光路長可変手段14の別の実施の形態を示す。ガルバノメータミラー19の代わりにポリゴンミラー149を設けた。レンズ17の光軸153にポリゴンミラー149の中心152を設けた場合、光軸153に対してポリゴンの1面が垂直な場合の面150に対し、ポリゴンミラーをθ回転させた場合の面151とで、この回転θによって得られる干渉位置の変化Δlは、レンズ17の焦点距離f、グレーティングのピッチp、ポリゴン回転中心の光軸からのオフセット hを用いると、
Δl=4θfλ/p+4q
q=(h-r sinθ)tanθ+ r-rcosθ
と表せる。qは光路長の変化である。回転θを角速度ωと時間tで表すとθ=wtであり、単位時間当たりの光路長差の変化量はdq /dt であり、これは光ヘテロダイン検波に用いられるドップラー周波数に比例している。
また、ポリゴンミラーは一定方向に回転しているため、深さ方向の走査は図14(A)のように正負両方向に交互に変化するのではなく、同じ方向の走査を回転により新たな面がレンズ17側に向くたびに行うことになる。そのため、図14(A)に示すような信号処理および図16に示される往復の走査に関する位相調整が不要である。また、温度変化による位相ずれなどに強いため、走査位置を正確に定めることができる。
また、ミラーの回転によるドップラー周波数の調整のため、また大きな光路長差の変化を得るために、ポリゴンミラーの中心152を光軸153からずらして設けることができる。
レゾナントスキャナを線形に駆動するための特別に設計された駆動信号を用いることができる。理想的な駆動信号は一定の三角波であり、一方向に一定の速度で走査した後、走査周期の半分で反対の方向に一定の速度で走査するものである。レゾナントスキャナは、理想的な駆動信号のフーリエ成分の基底波と考えられる。これをより線形に駆動するためには、より高次の高調波を加えれば良い。スキャナの機械的な応答特性により高次の高調波は減衰するので、2次・3次のの高調波のみで十分と考えられる。また、スキャナの機械的な応答特性により高次の高調波は減衰を高次成分を増幅することで補償することも可能である。
<第6の実施の形態>
第6実施の形態によって、自動的にかつ簡便にOCT装置の偏波面調整を行うことができる。
図22に、図6の偏波面コントローラの構成を示す。シングルモードファイバ(SMF)154が、円盤状のドラムにλ/4波長板に相当する複屈折性を有する様に定められ回数巻き付けられたλ/4波長ループ155 a, bとλ/2波長板に相当する複屈折性を有する様に定められ回数巻き付けられたλ/2波長ループ156と、よりなる。1/4波長ループ155a、λ/2波長ループ156と、λ/4波長ループ155b はそれぞれシャフト157a、157b、157cに取り付けられ、シャフト157a、157b、157c中心に回転できる。シャフト157a、157b、157cは端部にかさ歯車対158a、158b、158cを有し、かさ歯車対158a、158b、158cには偏波調整ノブ159a、159bが接続されている。
偏波調整ノブ159a、159b、159cを回転させるとかさ歯車対158a、158b、159cを介してシャフト157a、157b、157cを回転でき、λ/4波長ループ155a,λ/2波長ループ156と、λ/4波長ループ155bはシャフト157a、157b、157cの回転に応じてシャフト157a、157b、157c中心に回転される。λ/2波長ループ156と、λ/4波長ループ155a、155b はそれぞれλ/2波長板とλ/4波長板とに相当する複屈折性を有するため、ファイバ154を伝播している任意の偏光を別の任意の偏光に変換することができる。この働きにより、光走査プローブ8を有する物体側のファイバーの複屈折性により生じた偏光に対して、光路長可変手段14を有する参照側のファイバーの複屈折性により生じた偏光とを整合することが出来、光カプラ4で最大の干渉光の振幅を得ることができる。
図23にOCT装置の制御パネルの一部を示す。偏波調整ノブ159a、159b、159c偏波初期調整スイッチ174、Double sided scan位相調整ノブ160、自動/手動切り替えスイッチ162、光路長調整ノブ161、自動/手動切り替えスイッチ163が設けられている。
また、この偏波面調整を自動的に行うこともできる。図22に示されるようにシャフト157a、157b、157cはサーボモータ175a、175b、175cの軸に連結されている。光走査プローブ8の先端をイントラリピッド溶液などの、反射・散乱パラメータが予め分かった均一な液体に浸す。偏波初期調整スイッチ174が押されたら、液体中の干渉信号を測定し、その信号の振幅が最大になるようにサーボモータ175a、175b、175cをフィードバック制御し、位置決めすれば良い。一度最大値に設定できればサーボモータへの電流供給を止めれば、その後の微調整を偏波調整ノブ159a、159b、159cで手動で行うことができる。
偏波面コントローラには、偏波面調整ループを用いる方法以外に、ファイバ側面に方向性の可変圧力を加えるもの、Berek補償器を用いる方法があり、図22と同様の効果が得られる。これらの方法では2つの可変パラメータを変化させるだけであり、手動、自動共により容易に偏波面補償を行うことができる。
イントラリピッドのような溶液に浸漬する以外に、図24(A)の試験治具176、図24(B)の試験治具177、図24(C)試験治具300を偏光面を調整するために用いることができる。図24(A)は試験治具176を示す。ケース168に光走査プローブ8を挿入する挿入孔170が設けられている。ケース168には異なった散乱係数を有する散乱層169aと169bが設けられており、ラテックスビーズ、酸化チタン、硫酸バリウムがエポキシ樹脂で固定されたもの等で構成される。
図24(B)は試験治具168’を示す。試験治具168’の中に、既知の反射率を有する散乱・反射膜171が設けられている。
図24(C)は試験治具300を示す。試験治具300は積分球で構成される。
次に、第7、第8、第9の実施の形態を説明する。これらの実施の形態によって、ゴーストがなくなり、かつS/N比の向上がはかられた光断層診断装置の信号光側先端光学系が得られる。これは、光断層診断装置の信号光側先端光学系の光学素子の端面での反射回数が3回以下の光がシングルモードファイバーに戻らないようにすることによって得られる。
以下では屈折率分布レンズの光軸とは屈折率分布レンズの屈折率分布の軸のことである。本発明の信号光側先端光学系の中で、光を反射させることによって観察方向を偏向させる光学素子を用いている場合の屈折率分布レンズの光軸やシングルモードファイバーの光軸とは、観察方向を偏向させる光学素子の反射面で対称に折れ曲がるものとして定義する。
たとえば、図31のような構成の光学系の場合、屈折率分布レンズの光軸とは、プリズムの反射面Cよりシングルモードファイバー側では直線L1のようになり、プリズムの反射面Cより物体側では直線L2のようになる。
<第7の実施の形態>
図32は、本発明の光断層診断装置の信号光側先端光学系の第7の実施の形態を示したものである。信号光側の先端部は、信号光側のシングルモードファイバー245、集光作用がある屈折率分布レンズ241、ファラデーローテーター242、観察方向を偏向させるプリズム243、シース247より構成されており、それぞれが接着されている。図33は、図32を集光作用がある屈折率分布レンズ241の光軸にたいする角度が分かりやすいように直線になおして書き直したものである。
以下に本発明の第7の実施の形態のデータを示す。
s は面番号、 Rは各光学素子の端面の曲率半径、 dは面間隔、 nは屈折率、 θsは屈折率分布レンズの光軸に対する端面の法線の角度、ERは端面の有効半径を表わしている。
また、データの下段にあるn0、Aは屈折率分布レンズ241の定数で、n0は屈折率分布レンズ241の光軸上の屈折率、A は屈折率分布定数である。
屈折率分布レンズの光軸からの距離rの屈折率 n(r)は前記の二つの定数で次のように表わされる。
n(r) = n0(1−A・r2/2)
また、本実施の形態では、第6面、第7面はシリンドリカル形状のシースであるので、シリンドリカル面の軸方向の曲率半径 Raとラジアル方向の曲率半径 Rr とに分けて記述してある。
「実施の形態7のデータ」
シングルモードファイバー NA = 0.13、 θf = 6°、
arcsin(NA/n) = 5.1°
シングルモードファイバー光軸と屈折率分布レンズ光軸の偏芯量 0
主光線のシースの法線への入射角 : 11.7°
s R d n θs ER 備考
s1 ∞ - 1.46 - 0.005 nはシングルモードファイバーのコアの屈折率
s2 ∞ 3.28 *1 6 0.5 屈折率分布レンズ
s3 ∞ 0.31 2.36 6 0.5 ファラデーローテーター
s4 ∞ 1.15 1.854 6 0.5 プリズム
s5 ∞ 0.4 1 7
s6 *2 0.3 1.53 7 シース
s7 *3 ーーー 1 7

*1 屈折率分布レンズ n0 = 1.592 √A = 0.597
*2 シリンドリカル面 Ra = ∞ 、 Rr = -0.9
*3 シリンドリカル面 Ra = ∞ 、 Rr = -1.2

本実施の形態では、各光学素子の端面は入射する信号光の光束に対して垂直にならないようにしている。これは信号光側先端光学系内の各光学素子の端面の間での反射回数が3回以下の光がシングルモードファイバー245に戻らないようするためである。具体的には、信号側先端光学系のすべての光学素子の端面、すなわち、シングルモードファイバーおよび、屈折率分布レンズの両端、ファラデーローテーター242の両端、プリズムの入射側、及び出射側端面をそれぞれ屈折率分布レンズの光軸に対して斜めに研磨している。
この点について説明する。図34(A),(B)は例として、シングルモードファイバー245を出た光が第3面での1回反射した場合の光の経路を示したもので、図34(C),(D)はシングルモードファイバー245を出た光が第7面で1回反射した場合の光の経路を示したものである。図34(A),(C)は、シングルモードファイバー245を出た光が光学系内で反射する順番を示したものである。また、図34(B),(D)は光の反射経路が分かり易いように反射面(S3、S7)から光学系を折り返して示したもの(反射光が通らない部分は紛らわしいので省略した)である。本実施例のように反射面がある断面に対して平面の場合は、光学系を反射面に対して線対称に折り返すことによって光が反射した後の経路を追跡することが有効である。
本実施の形態では、 S3(シングルモードファイバー245と屈折率分布レンズ241)およびS7(シース247の外側の面)は斜めに研磨されているので、図34(B)および(D)の光学系は折れ曲がった光学系になる。なお、図34(B)および(D)において光は左側のシングルモードファイバーから射出されているとする。
シングルモードファイバー245からの光は、屈折率分布レンズ241のシングルモードファイバー側端面Pi1に達する。シングルモードファイバー245から射出される光はある決まった角度より小さい角度の広がりをもって射出される。本実施例では、シングルモードファイバー245のあとに屈折率分布レンズ241があるので、シングルモードファイバー245から射出された光は屈折率分布レンズ241の中で徐々に収束されながら進んだ後、反射面S3(またはS7)に達する。本実施例では、反射面S3(またはS7)が光束に対してななめに研磨されているので、反射面S3(またはS7)で反射された光束はもと来た光束に対して違う方向に戻される(図34(B)、(D)では光束はそのまま通過した形で表現される)。
そして、図34(A)及び(B)の例では、光が再びシングルモードファイバー245端面と同一な平面上に達したときには、光束はシングルモードファイバー245の中心からずれたところPo1 に位置するようになる。このためシングルモードファイバーには、反射面で反射した1回反射光が入射しないようにすることが可能になっている。
また、図34(C)および(D)の例では、反射面S7で反射した光束はファラデーローテーター242の側面(位置Po2)に当たって光が遮られるため、S7で反射した光がシングルモードファイバー245に戻ることはなくなる。
このように本発明による構成をとれば1回反射光がシングルモードファイバーに戻らないようにすることができる。本実施の形態では他の面に関しても光学素子の端面を通る信号光の光束は端面に対して垂直にならないようにすることによってシングルモードファイバーから出た光が光学素子の端面で反射した後けられたり、シングルモードファイバーからずれたところに戻ったりするようにすることができており、その結果、S/N比改善がなされている。
また、本実施例は、信号光側先端光学系の屈折率分布レンズの光軸とシングルモードファイバーの光軸とが一致しており、前記シングルモードファイバーの物体側の端面と、信号側先端光学系内の光学素子の端面はすべて同じ向きに斜めに研磨されている。
この点について図35(A)、(B)、(C)、(D)を用いて説明する。
これらの図は3回反射の経路の一例を示したもので、シングルモードファイバー、S3面(屈折率分布レンズ物体側)、 S2面(屈折率分布レンズファイバー側) → S3面(屈折率分布レンズ物体側)、シングルモードファイバーの経路の示したもので、図35(A)は、屈折率分布レンズの端面が同じ向きに斜めになっている場合、図35(C)は光学素子の端面が違う向きに斜めになっている場合(斜め研磨の角度はすべて6°)である。図35(A)、図35(C)はシングルモードファイバーを出た光が光学系内で反射する順番を示したものである。
図35(B),(D)は光の反射経路が分かり易いように反射面に対して光学系を線対称に折り曲げて表現したものである。
また、図35(B)、(D)において光は図の左側のシングルモードファイバーから射出されているものとする。
図35(A)、(B)、(C)、(D)において、シングルモードファイバー245から射出された光は、S2を通って、屈折率分布レンズ241内を通過しS3に達する。S3に達した光は反射されて、S2の方向へ進み再びS2に達する。このとき光がS2に戻ったときの光束の位置はS3が光束に対して斜めに研磨してあるために中心(屈折率分布レンズの光軸)からずれたPo3またはPo3’ に位置することになる。
そして、光は再びS2で反射されてS3の方向へ進むようになる。本発明の構成、すなわち、斜め研磨の向きを同じ向きにした場合図35(A)および(B)の構成をとった場合には、S2で反射された直後の光は屈折率分布レンズ241の光軸に対して大きな角度で進む形になっているので、光が屈折率分布レンズ内を進むうちに光がレンズの側面Po4 に当たってけられ、その結果反射光がシングルモードファイバーに戻らないようになる。一方、本発明の構成をとっていない図35(C)および(D)の構成をとった場合は、 S2で反射された直後の光は屈折率分布レンズ241の光軸に対してほぼ平行に進むため、光は屈折率分布レンズを進む際に屈折率分布レンズ241の光軸に沿って進み、再びS3に達する。そして、光はもう1回S3で反射してPo5に達し、最終的にはシングルモードファイバーに戻るようになる。
したがって、図35(C)および(D)の構成の場合にはゴーストが発生する。
したがって、屈折率分布レンズの光軸に対しシングルモードファイバーの物体側の端面と屈折率分布レンズの端面はすべて同じ向きに斜めに研磨することで、光学素子端面での反射回数が3回以下の反射光をシングルモードファイバーに戻らないようにする効果があることが分かる。
また、本実施の形態の光断層診断装置の信号光側先端光学系は、信号光側先端光学系の最も外側がシースで構成されており、シースへ入射する信号光の光束はシースに対して斜めに当るようにし、シースへ入射する信号光の主光線のシースの法線に対する入射角が10°以上にして、シース内で3回反射した光がシングルモードファイバーに戻らないようにしている。
ここで、シースへ入射する信号光の主光線とは、シングルモードファイバー内部の光軸上を進んだ光がたどる光線のことをいう。
信号光の主光線のシースの法線に対する入射角が10°以上にする方法としては、観察方向を偏向させる光学素子であるプリズム243の243C面の法線の角度を48.5°に設定することでおこなっている。
図36(A)−(D)は、シース内での3回反射の経路、すなわち、シングルモードファイバー ,第7面(シース物体側), 第6面(シースファイバー側),第7面(シース物体側), シングルモードファイバーの経路の示したもので、図36(A)は本発明の構成をとったもの、すなわち屈折率分布レンズの光軸に対するプリズム243の243C面の法線の角度を48.5°することでシースへの主光線の入射角11.7°にしたもの、図36(C)は本発明の構成から外れたもので、屈折率分布レンズの光軸に対するプリズム243の243C面の法線の角度が47°になっており、シースへの主光線の入射角6.1°になってしまっている場合である。
図36(A)および(C)は、シングルモードファイバーを出た光が光学系内で反射する順番を示したものである。図36(B)および(D)は光の反射経路が分かりやすいように反射面に対してまでの光学系を線対称に折り返して示したものである。
シングルモードファイバー245から射出された光は、屈折率分布レンズ241、ファラデーローテーター242、プリズム243を通って、シース247の外側の面S7に達する。
S7に達した光は反射されてシースの内側の面S6に達し、そこで再び反射され再びシース外側の面S7に達する。そして、その面で再び反射されて光はシングルモードファイバー側へ向かう。このとき、図36(A)のようにプリズム243の243C面の角度を45°より大きくして、シースに対する光線の入射角を10°より大きくしておく。そうすることでシースで3回反射して最終的にシングルモードファイバー245側へ向かう光は、はじめにシースに入射する光(外側へ向かう光)と大きくずれ、光がプリズム243やファラデーローテーター242、屈折率分布レンズ241などの側面( 図35BのPo6の位置)で光線がけられる。このため、S7から2回目に反射した光がシングルモードファイバーに戻ることはなくなる。
一方、図36(C)のようにプリズムの243C面の角度が45°に近く、シースに対する光線の入射角が10°より小さい場合は、シース内で反射して最終的にシングルモードファイバー245側へ向かう光は、はじめにシースに入射する光(外側へ向かう光)に対してあまりずれない。このためシース内で3回反射した光は再びプリズム243、ファラデーローテーター242、屈折率分布レンズ241を通ってシングルモードファイバー245が位置するPo7に達し、結果としてゴーストを発生させてしまう。
このように図36を見てわかるとおり、図36(B)のようにシースへの主光線の入射角シースへの主光線の入射角が10°より大きくすることで反射光が光学素子の側面でケラレるようにすることができ、3回反射の光がシングルモードファイバーに戻らなくすることができる。
このように、本発明の構成をとることで光学素子の端面での反射回数が3回以下の光がシングルモードファイバーに戻らないようにすることができ、ゴーストがなく、かつS/N比が良い光断層装置の先端光学系が得られる。
<第8の実施の形態>
図37は、本発明の光断層診断装置の信号光側先端光学系の第8の実施形態を示したものである。図38は、図37を集光作用がある屈折率分布レンズ光軸にたいする角度が分かりやすいように直線になおして書き直したものである。
本実施の形態の信号光側の先端部は、信号光側のシングルモードファイバー245、集光作用がある屈折率分布レンズ241、ファラデーローテーター242、観察方向を偏向する光学素子であるプリズム243、シース247より構成されている。 第7実施形態と異なる点は、シングルモードファイバー245と屈折率分布レンズ241が離れて設けられている点で、これによって、信号光が集光する位置を調整できるようになっている。
以下に本発明の第8の実施形態のデータを示す。
記号は実施の形態1と同様である。
「第8実施の形態のデータ」
シングルモードファイバー NA = 0.13、 θf = 8°、
arcsin(NA/n) = 5.1°
シングルモードファイバー光軸と屈折率分布レンズ光軸の偏芯量 0
主光線のシースの法線への入射角 : 11.3°
s R d n θs ER 備考
s1 ∞ - 1.46 - 0.005 シングルモードファイバー
s2(*4) ∞ 0.4 1 8 0.005 空気
s3 ∞ 2.63 *1 8 0.5 屈折率分布レンズ
s4 ∞ 0.31 2.36 8 0.5 ファラデーローテーター
s5 ∞ 1.15 1.854 8 0.5 プリズム
s6 ∞ 0.4 1 8
s7 *2 0.3 1.53 8 シース
s8 *3 ーーー 1 8

*1 屈折率分布レンス゛ n0 = 1.592 √A = 0.597
*2 シリンドリカル面 Ra = ∞ 、 Rr = -0.9
*3 シリンドリカル面 Ra = ∞ 、 Rr = -1.2
*4 シングルモードファイバー端面
本実施の形態では、信号光側先端光学系内の各光学素子の端面の間での反射回数が3回以下の光がシングルモードファイバーに戻らないようにするため、各光学素子の端面は入射する信号光の光束に対して垂直にならないようにしている。具体的には信号側先端光学系のすべての光学素子の端面、すなわち、シングルモードファイバーおよび、屈折率分布レンズの両端、ファラデーローテーターの両端、プリズムの入射側、及び出射側の端面がそれぞれ屈折率分布レンズの光軸に対して斜めに研磨されている。
このように各光学素子の端面を屈折率分布レンズの光軸に対して斜めにすることによって、実施の形態7と同様に1回反射光がシングルモードファイバーに戻らないようにすることが出来、S/N比を改善することができる。
また、本発明の光断層診断装置の信号光側先端光学系は、屈折率分布レンズの光軸に対し、シングルモードファイバーの物体側の端面と、屈折率分布レンズの端面はすべて同じ向きに斜めに研磨されている。さらに本実施形態は、各光学素子の端面は全て平面で、次の条件1,2を満たすように構成されている。
(条件1) θf > arcsin(NA /n)
(条件2) θs ≧ θf (s=1,2,・・・m)
ただし、 NAはシングルモードファイバーの端面を垂直に研磨した場合に空気中に射出される光のNA、 nはシングルモードファイバーのコアの屈折率で、
θfはシングルモードファイバーの物体側の端面の法線のシングルモードファイバーの光軸に対する角度、
θsは信号光側先端光学系の光学素子の第s面目の端面の法線の前記屈折率分布レンズの光軸に対する角度、
mは信号側先端光学系の境界面の数である。
(条件1)は、シングルモードファイバーの物体側の端面からの反射光が参照光と合成されるところに戻ることを防止する条件である。シングルモードファイバーの端面の角度がこの条件1を満たす場合はシングルモードファイバーの物体側端面で反射した光はシングルモードファイバーの光軸に対して大きい角度で戻るため、シングルモードファイバーのコアとクラッドの間で全反射をしない。このため反射光はカップラーに達するまでに十分に減衰し、S/N比を悪化させることはなくなる。一方、シングルモードファイバーの端面の角度が条件1を満たさない場合は、シングルモードファイバーと空気の境界面で反射した光はファイバーの光軸に対して小さい角度で戻るのでシングルモードファイバー内で全反射を繰り返し、参照光と信号光を合成するカプラーまで達してしまうのでS/N比が悪化してしまう。
(条件2)は、反射回数が3回以下の反射光がシングルモードファイバーに戻らないようにする条件である。
光学素子の端面の角度が(条件2)を満たす場合は、反射光の光線は屈折率分布レンズの光軸に対して大きな角度をもって飛ぶようになるので側面で光線がケラレたれり、シングルモードファイバーの有効径からにはずれやすくなる。光学素子の端面の角度が条件2を満たさない場合は、反射光の光束は屈折率分布レンズの光軸付近にとどまりやすくなるので、シングルモードファイバーに反射光が戻りやすくなる。
図39(A)および(B)は、光がシングルモードファイバー(s2) 、屈折率分布レンズのファイバー側(s3)、シングルモードファイバーの端面(s2)の順で通ったときの経路の示したものである。図39Aは条件1,2を全て満たすもの(θf=8°、θ3=8°)で発明の構成を取ったものの一例で、
図39(B)は、条件1は満たしているが条件2を満たしていないもの(θf=8°、θ3=3°)で発明の構成を取っていないものを表したものである。
本実施の形態では、シングルモードファイバー245と屈折率分布レンズ241の間に空気層があるため、斜め研磨されたシングルモードファイバー245から射出された光は、屈折率分布レンズ241のシングルモードファイバー側端面S3にあたって反射される経路が存在する。
このとき、図39(A)のようにS3(屈折率分布レンズ241のシングルモードファイバー側)の斜め研磨の角度が条件2を満たしていると、S3で反射された光は(広がっているが)、シングルモードファイバーから逃げるような位置〔図39(A)のPo8の位置〕 に反射されるため1回反射光はシングルモードファイバーに入射せず、その結果S/N比が良好な光学系を構成することができる。
一方、図39(B)のようにS3(屈折率分布レンズ241のシングルモードファイバー側)の斜め研磨の角度が条件2を満たしていないと、S3で反射されて広がった光の一部は再びシングルモードファイバーの方向〔図39(B)のPo9の位置〕に戻されるため、S3で反射された1回反射光がシングルモードファイバーに入射し、S/N比を悪化させる。
また、図示していないが、3回反射光がシングルモードファイバーに戻らないようにするには、実施の形態7と同様な考察により各光学素子端面の斜め研磨の向きは同じ向きにしたほうがよく、斜め研磨の角度はできればθfより大きくしたほうが良い。
以上の例を見てわかるように、シングルモードファイバーの物体側端面と光学素子端面の角度を条件1、2を満たすことによって端面での反射光をシングルモードファイバーに戻らないようすることができる。
また、本実施の形態でも、実施の形態と同様に、屈折率分布レンズの光軸とプリズム234のC面の法線の角度を48.5°にすることによって、シースの法線に対するシースへ入射する主光線の角度を11.3°以上にして、シース内で3回反射した光がシングルモードファイバーに戻らないようにしている。
<第9実施の形態>
図40は、本発明の光断層診断装置の信号光側先端光学系の第9の実施の形態を示したものである。図41は、図40を集光作用がある屈折率分布レンズ光軸にたいする角度が分かりやすいように直線になおして書き直したものである。
本実施形態の信号光側の先端部は、信号光側のシングルモードファイバー245、集光作用がある屈折率分布レンズ241、ファラデーローテーター242、プリズム243、シース247より構成されている。 本実施形態が実施形態7,8と異なる点は、屈折率分布レンズの光軸に対してシングルモードファイバーの光軸を偏心させている点である。
以下に本発明の第9の実施形態のデータを示す。記号は実施形態7と同様である。
「第9実施の形態のデータ」
シングルモードファイバー NA = 0.13、 arcsin(NA/n) = 5.1
シングルモードファイバー光軸と屈折率分布レンズ光軸の偏芯量 −0.24
主光線のシースの法線への入射角 : 11.8°
s R d n θ ER 備考
s1(*4) ∞ - 1.46 - 0.005 シングルモードファイバー
s2 ∞ 0.4 1 8 0.005 空気
s3 ∞ 2.63 *1 8 0.5 屈折率分布レンズ
s4 ∞ 0.31 2.36 0 0.5 ファラデーローテーター
s5 ∞ 1 1.854 0 0.5 プリズム
s6 ∞ 0.4 1 0
s7 *2 0.3 1.53 0 シース
s8 *3 ーーー 1 0

*1 屈折率分布レンズ n0 = 1.592 √A =
*2 シリンドリカル面 Ra = ∞ 、 Rr = -0.9
*3 シリンドリカル面 Ra = ∞ 、 Rr = -1.2
*4 シングルモードファイバー端面
本実施の形態では、信号光側先端光学系内の各光学素子の端面の間での反射回数が3回以下の光がシングルモードファイバーに戻らないようにするため、各光学素子の端面は入射する信号光の光束に対して垂直にならないようにしている。
具体的には集光作用がある光学素子である屈折率分布レンズの光軸に対してシングルモードファイバーの光軸を偏心させることによって光学素子の端面からの反射光がシングルモードファイバーに戻らないようにしたものである。
屈折率分布レンズの光軸とシングルモードファイバーの光軸をずらすと、シングルモードファイバーから出た光束は図41のように屈折率分布レンズのファイバー側では光軸からずれたところを通るようになる。屈折率分布レンズの光軸からずれたところに入射した光は屈折率分布レンズ内で曲げられる。そして、屈折率分布レンズの物体側も含んで屈折率分布レンズより物体側のファラデーローテーター、プリズムの端面に対して斜めにあたるようになり、各端面で3回以下の反射光がシングルモードファイバーに戻ることを防止することが可能になる。
本実施の形態のように屈折率分布レンズの光軸に対してシングルモードファイバーの光軸を偏心させた場合、屈折率分布レンズの物体側の端面およびそれより物体側にある光学素子の端面では屈折率分布レンズの光軸に対して信号光の光束が斜めになるので、屈折率分布レンズの物体側の端面およびそれより物体側にある光学素子の端面は屈折率分布レンズの光軸に対して垂直にしても反射光がシングルモードファイバーに戻らないようにすることができる。
また、屈折率分布レンズの光軸に対してシングルモードファイバーの光軸を偏心させると、観察方向を偏向させるプリズムを通常の90°偏向させるもの(直角プリズム)を使用してもシースへ入射する信号光の光束をシースに対して斜めに入射させることができる。
本実施の形態では、屈折率分布レンズの光軸に対してシングルモードファイバーの光軸を−0.24 偏心させることで、プリズムのC面の法線の屈折率分布レンズの光軸に対する角度が45°である通常のプリズムを使用しても、シースへの信号光の主光線の入射角を11.8°にすることができた。
一方、屈折率分布レンズのシングルモードファイバー側の端面およびシングルモードファイバーと屈折率分布レンズの間にある光学素子の端面を屈折率分布レンズの光軸に対して垂直にすると、信号光が光学素子の端面に対して垂直に当り、反射光がシングルモードファイバーに戻ってしまう場合がある。この事態を回避するには、各光学素子の端面の角度を以下の条件1、3を満たすように設定するとよい。
(条件1) θf > arcsin(NA /n)
(条件3) θg ≧ θf
ただし、 NAはシングルモードファイバーの端面を垂直に研磨した場合に空気中に射出される光のNA、
nはシングルモードファイバーのコアの屈折率で、
θfはシングルモードファイバーの光軸に対するシングルモードファイバーの物体側の端面の法線の角度
θgは、屈折率分布レンズの光軸に対する屈折率分布レンズのシングルモードファイバー側の端面の法線及びシングルモードファイバーと屈折率分布レンズの間にあるすべての光学素子の端面の法線の角度である。
(条件1)は、実施の形態2のところと同様で、シングルモードファイバーの物体側端面からの反射光が参照光と合成されるところまで戻らないようにする条件である。
(条件3)は、屈折率分布レンズのシングルモードファイバー側端面とその面よりシングルモード側にある光学素子からの反射光がシングルモードファイバーからずれるようにするための条件である。
このとき屈折率分布レンズの配置する位置は本実施の形態のように、シングルモードファイバーに空気層を挟んで隣接させるか、シングルモードファイバーに直接接着するのが良い。このような配置にすることによってシングルモードファイバーと屈折率分布レンズのシングルモードファイバー側以外は端面を斜め研磨にする必要がなくなり加工性が良くなる。
以上のように、OCTの信号光側先端光学系を実施の形態7から9のように構成することによって、ゴーストの発生がなく、S/N比が良いOCT画像をえることができる。
<第10実施の形態>
図42から43(B)に第10実施の形態を示す。図42、図43(A)に光走査プローブ先端部の構成を示す。
光学シース端部302は柔軟性のあるフッ素樹脂チューブ320およびその先端開口を閉塞する先端キャップ305により構成され、フッ素樹脂チューブ320および先端キャップ305は接着により接合されている。このフッ素樹脂チューブ320は少なくともその先端側が光透過性である。レンズユニット303は先端側より、プリズム308、ファラデーローテーター309、GRINレンズ311の順にそれぞれ接着によって接合して構成される。このプリズム308から出射される観察ビーム317は、フッ素樹脂チューブ320円筒面の垂線に対しプローブ先端側に出射角θなる角度を持つようにプリズム308が設計されている。角度θは12〜13度程度に設定される。シングルモードファイバ1の終端部はフェルール315と接着剤316で固定される。フェルール315は後端側の外周面を削り細径にした段削りになっている。
レンズユニット303およびフェルール315は中空のハウジング312内で接着により連結固定され、シングルモードファイバ301の先端側端面とGRINレンズ311の後端側端面が接着により接続される。また、フレキシブルシャフト304の先端部はハウジング312挿入されると同時に、その内腔にフェルール315の段削り部321およびシングルモードファイバ301を挿入させながら、接着により連結固定される。
図43(A)に示すようにハウジング312先端側には、レンズユニット303を両側で挟むような形態で保護枠310を設ける。また、ハウジング312先端側には丸み付きキャップ306が接着により接合される。この丸み付きキャップ306には観察ビーム317が透過できるように開口部307が設けられている。
GRINレンズ311の両端面には斜め研磨が施され、その両端面は互いに平行である。フェルール315の端面にも、GRINレンズ311と同じ角度の斜め研磨が施されている。よって、プリズム308とファラデーローテーター309の接合面、ファラデーローテーター309とGRINレンズ311の接合面およびGRINレンズ311とフェルール315の接合面はそれぞれ平行であり、接合面の垂線は光軸Oに対して所定の角度を持っている。その角度は6度程度に設定される。
GRINレンズ311後端側端面の鋭角側の頂点およびフェルール315端面の鈍角側の頂点にはそれぞれマーキング313を施す。また、ハウジング312にはGRINレンズ311とフェルール315接合部付近に確認穴314を設ける。
次に第10実施形態の作用を説明する。シングルモードファイバ301に導光され、フェルール315端面から出射された光はGRINレンズ311に入射し、ファラデーローテーター309を透過し、プリズム308により方向を変更されシース20を透過する観察ビーム317となり焦点318に集光する。GRINレンズ311の長手方向の長さを変えることにより焦点位置319を変更することができる。
プリズム308、ファラデーロテーター309、GRINレンズ311、フェルール315の各接合面がそれぞれ光軸Oと垂直な方向に対して所定の角度を持っているため、各接着面で生ずる光の反射光及び多重反射光の光軸は光軸Oとずれ、シングルモードファイバ301に戻らない。
観察ビーム317はフッ素樹脂チューブ320円筒面の垂線に対し出射角θなる角度を持つため、フッ素樹脂チューブ320の内面、外面で生ずる光の反射光及び多重反射光は、シングルモードファイバ301には戻らない。また生体組織の観察時はプローブ後端側よりも先端側が生体組織に近づくような形態で観察されることが多い。よって、観察ビーム317の出射角θを先端側に向けてあることで、観察ビーム317が生体組織により垂直に近く入射するようにすることができ、より正確なOCT像を得ることができるという利点がある。
図43(B)に示すように、GRINレンズ311とフェルール315の接合面の接着時に確認穴314よりマーキング313を確認しその位相を一致させるように接合すれば、ハウジング312の中でGRINレンズ311とフェルール315の斜め研磨面の位相を一致させることができる。同時に接着時に余分となってはみ出た接着材を確認穴314から逃がすことができる。
また、このようにしてレンズユニット303はハウジング312を介してフェルール315と一体に接合されるため、光軸Oを容易かつ確実に一致させることができる。
図43(A)に示すようにハウジング312に設けた保護枠310がレンズユニット303を保護するため、ハウジング312に丸み付きキャップ306を接着する際などの組立て時に、レンズユニット303を損傷する危険性を低減することができる。また同時に保護枠310によりハウジング312に対する丸み付きキャップ306の接着しろを大きく確保することができる。
第10実施の形態によれば、光学素子での反射光が光ファイバに戻らないため、システムのS/N比を向上される。また、正しい位置・位相関係で組み立てが可能であり、光学設計どおりの光学性能を保証できる。さらに、組立て性、生産性を向上させる。
<第11実施の形態>
本発明の第11実施の形態を図44〜図45(B)に示す。図44に各光学素子を斜めに接合した光走査プローブの別の実施形態を、図45(A), 図45(B)に図44に示されるA-A断面、B-B断面をそれぞれ示す。
図44の構成では図42の構成と基本的には同じ構成であるが、以下に述べる点において異なっている。まず、プリズム308の替わりに丸み付きキャップ306に接着されたミラー323を設けており、ミラー323から出射される観察ビーム317のフッ素樹脂チューブ円筒面の垂線に対する出射角θが後端側を向いている。次に、GRINレンズ311斜め研磨面の両端面の垂線は光軸Oとある角度を持っているが、それぞれ異なる角度で研磨されている。よって、ファラデーローテーター309、フェルール315との間の接合面が異なる角度を持つ。また、マーキング313及び確認穴314設ける替わりに、GRINレンズ311後端側斜め研磨面の鈍角側頂点の円筒面に図45(A)に示すようなDカット324を、フェルール315先端側斜め研磨面の鋭角側頂点の円筒面に図45(B)に示すようなDカット324をそれぞれ設け、ハウジング312内腔のそれぞれ対応した位置にもDカット324を設ける。
次に第11実施の形態の作用を示す。第10実施の形態と基本的に同様であるが、以下の点が異なる。
図45の構成のように各光学素子の端面の研磨角度が異なっていても、各接合面の垂線は光軸Oに対してある角度をもっているため、第10の実施形態と同様、各接合面で生ずる光の反射光および多重反射光はシングルモードファイバー301には直接戻らない作用は変わらない。
丸み付きキャップ306をハウジング312に接着する際、挿入する間隔331を変えることにより焦点位置319を変化させることができる。観察ビーム317の出射角θは後端側に向けてあるが、フッ素樹脂チューブ320の内面、外面で生ずる光の反射光及び多重反射光はシングルモードファイバに301戻らない作用は同じである。
ハウジング324内でGRINレンズ311とフェルール315の端面同士を接着する際、斜めに研磨された各接着面の位相は挿入時にDカット324により整合されるため、面同士は各素子をDカット324に合わせて挿入するのみで確実に接合される。
第11実施の形態によれば、第10の実施形態と同様の効果に加え、組立て時にピント位置の調整が可能となる。さらに、第1の実施形態に比べ斜め研磨面の位相合わせが簡単になり、組立て性が向上する。
<第12実施の形態>
図46(A)〜図48(B)に基づいて本発明の第12実施の形態を説明する。図46(B)に光走査プローブ先端部側面の模式図を、図46(A)に光走査プローブを先端側から見た模式図を示す。
光走査プローブの先端部は、フッ素樹脂チューブ320の内部に後端側からシングルモードファイバ301、GRINレンズ311、プリズム308を接合して構成される。プリズム308の光出射面はプローブ周方向が曲面となるような円筒状凸面332を施した円筒レンズ部334を設ける。
図47(A),(B)の構成は、円筒状凸面332の曲率を強くしたこと以外は図46(A),(B)の構成と同じである。図48(A),(B)の構成は、円筒状凸面332をプローブ長手方向に施したこと以外は図46(A),(B)の構成と同じである。図46(A)〜図48(B)の円筒レンズ部334は、プリズム308を研磨して設けても、プリズムに円筒状凸レンズを接着することによって設けても良い。
次に第12実施の形態の作用を説明する。最初に、図46(A),(B)の構成での作用を説明する。シングルモードファイバ301に導光された光はGRINレンズ311に入射しプリズム308によって光路を変更されて、フッ素樹脂チューブ320を透過する観察ビーム317となる。
ここで説明上、フッ素樹脂チューブ320円筒面の周方向をX軸、フッ素樹脂チューブ320長軸方向をY軸と定義する。フッ素樹脂チューブ320の曲面は観察ビーム317のX軸方向に対し凹レンズ効果をもっているが、円筒状凸面332がその効果を打ち消すように設計すれば、観察ビーム317のX軸焦点位置319aとY軸焦点位置319bは一致させることができる。
図47(A),(B) の構成では、図46(A),(B)の構成に比べ円筒状凸面の曲率をさらに強めてあるため、フッ素樹脂チューブ320の凹レンズ効果よりも円筒状凸面332の凸レンズ効果のパワーが上回り、観察ビーム317のX軸焦点位置319bよりもY軸焦点位置319aを積極的に短くすることができる。
図48(A),(B)の構成では、X軸焦点位置319aがフッ素樹脂チューブ320曲面の凹レンズ効果により遠ざけられ、Y軸焦点位置319bは円筒状凸面332により近づけられるため、319aと319bの距離をさらに積極的に離すことができる。
12実施の形態によれば、X軸焦点位置とY軸焦点位置を一致させることにより、観察ビームのエネルギー密度を1点に集中させ、S/N比を向上させることができる。また逆に、X軸焦点位置とY軸焦点位置を離すことにより観察ビームのエネルギー密度を分散させ、観察深度を向上させることができる。
<第13実施の形態>
図49(A)〜図50(B)に基づいて本発明の第13実施形態を説明する。図49(A),(B)の構成では、GRINレンズ311の替わりに凸レンズ325を設けたこと、プリズム308の円筒状凸面332をなくし、凸レンズ325とシングルモードファイバ301間に円筒状凹レンズ326を設けたこと以外は第12実施形態と同様である。円筒状凹レンズ326は図49(B)のように、観察ビーム317に対してY軸方向に凹レンズ効果を持たせるように配置する。
図50(A),(B)の構成では、円筒状凹レンズ326をプリズム308と凸レンズ325の間に配置し、観察ビーム317のX軸方向に対し凹レンズ効果を持たせるような向きに配置したこと以外は図49(A),(B)の構成と同じである。
次に第13実施形態の作用を説明する。図49(A),(B)の構成では、円筒状凹レンズ326が観察ビーム317のY軸方向に対し凹レンズ効果を持ち、フッ素樹脂チューブ320がX軸方向に対して凹レンズ効果を持つので、両者の凹レンズ効果のパワーを一致させるように円筒状凹面333の曲率を設計すれば、X軸焦点位置319aとY軸焦点位置319bを一致させることができる。さらに円筒状凹面333の曲率を大きくすれば、フッ素樹脂チューブ320の凹レンズ効果よりも円筒状凹レンズ326の凹レンズ効果のパワーが上回り、X軸焦点位置319aよりもY軸焦点位置319bを積極的に遠ざけることができる。
図50の構成では、円筒状凹レンズ326およびフッ素樹脂チューブ320の両方が観察ビーム317のX軸方向に対し凹レンズ効果もつため、Y軸焦点位置319bよりもX軸319aを積極的に遠ざけることができる。
第12の実施の形態と同様の効果に加え、GRINレンズを用いないため硬質長が短縮できる。
<第14実施の形態>
図51A〜52Bに基づいて本発明の第14実施の形態を説明する。プリズム308の円筒状凸面332をなくし、GRINレンズ311の替わりに断面が楕円形になるように圧延加工した楕円GRINレンズ327を配置したこと以外は第12実施形態と同様の構成である。
図51(A)に示すように楕円GRINレンズ327断面の長軸が観察ビーム317と同じ方向を向くように配置し、図52Aに示すように楕円GRINレンズ327断面の短軸が観察ビーム317と同じ方向を向くように配置する。
第14実施の形態によれば、第12実施の形態におけるプリズムに施した円筒状凸面332の作用と、本実施の形態における楕円GRINレンズ327に入射する光の楕円長軸、短軸方向で結像点が異なることを同じ作用と置き換え、第12実施の形態と同様の作用を得る。
第12の実施の形態と同様の効果に加え、円筒レンズ効果を設けるためにGRINレンズの圧延加工を用いるため、光学部品の研磨を必要としない。よって、工数・コストの削減が期待できる。
<第15実施の形態>
図53(A)〜図53(B)に基づいて本発明の第15の実施形態を説明する。プリズム308の替わりに丸み付きキャップ306に挿入された円筒状凸ミラー328を設けたこと以外は、第12の実施の形態と同様である。
図53(A)、図54(A)はプローブを先端側から見た図であり、フッ素樹脂チューブ320の断面および円筒状凸ミラー328を挿入させた丸み付きキャップ306の先端が見える。
図53(A),(B)の構成では、円筒状凸ミラー328は観察ビーム317のY軸方向に対し凹レンズ効果を持つような向きに配置され、図13の構成では円筒状凸ミラー328は観察ビーム317のX軸方向に対して凹レンズ効果を持つように配置されている。
第15実施の形態の作用を説明する。第13実施の実施の形態の円筒状凹レンズ332が、本実施の形態における円筒状凸ミラー328が持つ凹レンズ効果と同じ作用をし、第13実施の形態と同様の作用を得る。また、丸み付きキャップ306の挿入間隔により、319a、319bを同じ距離で変化させることができる。
第15実施の形態によれば、第13実施形態と同様の効果に加え、組立て時に全体的なピント位置を調整することができる。
<第16実施の形態>
図55(A)、図56(A)に基づいて、第16実施形態を説明する。図55(A), 55(B)の構成では、プリズム308出射面の円筒状凸面332の替わりに屈折率分布板329を接合したこと以外は第12実施の形態と同様の構成である。
屈折率分布板329には接合面に対して1次元的に屈折率を変化させてあり、中心から外側へ向かうにしたがって屈折率が低くなるようにしてある。これはGRINレンズを切り出すことなどにより作成可能である。図56(A),56(B)の構成は屈折率分布板329をプリズム308とGRINレンズ311の間に接合したこと以外は図55(A),図55(B)と同じである。
図55の構成では、屈折率分布板329の屈折率分布方向330が図55(A)のように先端側から見えるように配置し、図56の構成では、屈折率分布板329の屈折率分布方向330が図55(B)のような側面から見えるように、屈折率分布板329を配置する。
第16実施の形態の作用を説明する。第12の実施形態における、プリズム8の円筒状凸面32が、屈折率分布板29と同じ作用を持ち、第12の実施形態と同様。
第16実施の形態によれば、第12の実施形態と同様の効果に加え、従来実施の形態の光学系に屈折率分布板を加えるのみで凸レンズ効果が付与できるので、従来部品・光学設計ががそのまま流用でき、工数・コストの削減ができる。
上記発明は、多数の実施の形態で説明されているが、この発明の範囲は実施の形態ではなく特許請求の範囲で規定される。
[付記]
本発明は、体腔内で光プローブが湾曲しても、プローブ内のファイバの複屈折変化による干渉強度の変化を補償される光イメージング装置を提供することにある。
また、光プローブの先端部に設置可能な小型の複屈折補償手段を提供することである。さらに湾曲状態で回転した場合に発生する、1回転ごとに生じるファイバの複屈折性変化による干渉強度の変化を補償する装置の提供である。更に、Faraday Rotatorの複屈折補償手段を効果的に働かせる装置の提供である。更に、光プローブの先端光学部材を小型に構成できる装置の提供である。
さらに、本発明は、走査方向が伝搬時間変化手段の揺動ミラーの揺動の向きによって交互に変化しても、同一方向に走査した状態に補正した干渉信号を得られる光イメージング装置を提供することである。更にまた、ガルバノメータミラーや特にレゾナンススキャナミラーなどの高速走査ミラーを用いた場合、温度特性や動特性のヒステリシスなどのために、往復の走査に僅かなヒステリシスやずれが生じた場合にも、補正した干渉信号にずれが生じるのを防止する光イメージング装置の提供である。また、上記補正を自動的に行う装置の提供である。
更に、本発明は干渉位置の走査が、時間に対し非線形な場合にも、干渉信号を線形な関係で取得する光イメージング装置の提供である。
更に、本発明は、干渉位置の走査速度の変化に起因する干渉信号のドップラー周波数の変化があっても、復調器において高いS/N比を有する光ヘテロダイン検波が行える。光イメージング装置の提供である。
更に、本発明は偏光面を自動的に調整する光イメージング装置の提供である。
更に、本発明は外乱に走査範囲や走査速度が乱されにくい干渉位置走査手段の提供である。
更に、本発明は高速で線形に近い走査が行える、干渉位置走査手段の提供である。
更に、本発明的は表示画面上の長さを屈折率の違いによらず正しく測定できる光イメージング装置の提供である。
更に、本発明はシース内面または外面の反射を減衰させる手段の提供である。
更に、本発明はシース内側に生じた内部の光学素子の回転により生じた傷を防止し、シースの信号光が透過する部分の光学的特性を高く保つ手段の提供である。
更に、本発明は、ゴーストの発生がなく、S/N比が良好で観察の能力に優れたOCTの信号光側先端光学系を提供である。
更に、本発明は、S/N比を向上させた光走査プローブの提供である。
更に、本発明は、観察深度を向上させた光走査プローブの提供である。
更に、本発明は組立および製造性の良い光走査プローブの提供である。
本発明によって、光プローブ内のシングルモードの出射端から被検体までの光路の間に複屈折補償手段を設けることで、プローブ内のファイバの複屈折変化による干渉強度の変化を補償される。また、Faraday Rotatorを磁性を有する磁性ガーネット結晶を用いることで光プローブの先端部に小型の複屈折補償手段を設けることができる。また、Faraday Rotatorにほぼ平行の光線を入射することで、Faraday Rotatorを通る光線のほとんどが正確に45°の偏光面の旋回を起こすことになり、複屈折補償の効率が高くなる。
更に、本発明によって、基準位置検出手段に基づいて揺動の特定の一方向の揺動に対応する干渉強度信号を保存する第1の記憶手段と、上記方向と逆方向の揺動に対応する干渉信号を保存する第2の記憶手段を有し、第1の記憶手段および第2の記憶手段の記憶内容を逆方向の順番に読み出すことによって同一方向に走査した干渉信号を得る。更に、第1の記憶手段と第2の記憶手段を異なった遅延を設けて読み出し、その遅延を制御することで往復の走査で生じたヒステリシスやずれを補正する。更に、干渉信号中の基準信号を検出し、それぞれの基準信号が一致するように遅延設定手段を調整することで、往復の走査で生じたヒステリシスやずれを自動補正する。
更に、本発明によって、干渉強度信号を時系列で保存する記憶手段と干渉位置に対応する記憶手段中の位置を算出する算出手段と、算出手段を用いて、記憶手段中の位置を算出し、その記憶内容を読み出すことで、干渉位置に対応した干渉信号を得る。
更に、本発明によって、干渉位置の走査により生じる干渉信号のドップラー周波数を算出する算出手段と、算出されたドップラー周波数に対応して復調器の周波数特性を変化させることで、高いS/N比を得られるように復調器を常にセットすることができる。
更に、本発明によって、光プローブ挿入部端部近傍に設けられた基準反射手段と、基準反射手段からの反射光を前記干渉手段により得られた干渉信号強度より得、それが最大値になるように偏波調整手段を設定することで、自動でプローブ毎の偏波面調整が行える。
更に、本発明によって、前記伝搬手段変化手段が分光手段と結像手段と反射ミラーを有し、反射ミラーがポリゴンミラーで構成され、ポリゴンミラーの回転により干渉位置の走査を行う。ポリゴンミラーでの走査は時系列に対し線形に近く、回転速度を安定化するのは容易なため、走査範囲、走査速度を安定化するのが容易である。
更に、本発明によって、媒質中の光路長を示すスケールと、組織中の光路長、あるいは媒質に対応する部分では媒質中の光路長を示し、組織に対応する部分では組織中の光路長を示す2つ以上のスケールが設けられた光イメージング装置が構成される。
更に、光の出射部および入射部に設けられた光学窓が、ガラスや溶融シリカのような硬質の高光透過部材であり、屈折率の不連続による内部反射や散乱がないように製造・研磨され、内外部の光学表面を提供するものが示される。
更に、本発明によって、信号光側の先端光学系内の光学素子の端面で多重反射する光のうち、反射回数が3回以下の光がシングルモードファイバーにもどらないようにすることによって、ゴーストの発生がなく、S/N比が良好で観察の能力に優れたOCTの信号光側先端光学系を提供される。
更に、本発明によって、光走査プローブから出射される観察ビームにおいて、シース円筒面周方向の焦点位置と、シース長手方向の焦点位置を一致させ、焦点が1点に集中することにより、S/N比をの向上をおこなう光走査プローブが提供される。
更に、本発明によって、また、シース円筒面周方向の焦点位置とシース長手方向の焦点位置を積極的に離し、観察ビームのビームスポット径を観察ビーム長軸方向に対し長い距離にわたって略均一に近づけることにより、観察深度を深くした光走査プローブが提供される。
[付記項]
1.被検体内に挿通可能な柔軟な細長の挿入部と、
低干渉性光源と、前記挿入部の先端側端面から前記被検体に前記低干渉性光を出射すると共に、前記被検体から反射された反射光を検出するための、シングルモードファイバからなる導光手段と、
前記ファイバよりの出射光を前記被検体に集光し、前記被検体からの反射光を検出するため、前記挿入部の先端側に設けられた少なくとも1つ以上のレンズと、
前記シングルモードファイバと被検体の間に設けられた複屈折補償手段と、
前記シングルモードファイバから出射した前記低干渉光を走査出射する走査出射手段と、
前記シングルモードファイバで検出した反射光と前記光源から生成した基準光とを干渉させる干渉手段を有し、得られた干渉成分の信号を得ることを特徴とする光プローブ。
2.複屈折率補償手段が磁性ガーネット単結晶を有するFaraday Rotatorであることを特徴とする、付記項1に記載の光イメージング装置。
3.前記Faraday Rotatorが偏波面を45度回転させることを特徴とする付記項1に記載の光イメージング装置。
4.走査出射手段が出射光の光路を変更する出射光変更手段と、前記シングルモードファイバ、少なくとも一つのレンズ、出射光変更手段を一体的に回転する回転走査手段と、回転するシングルモードファイバと干渉手段を接続する光ロータリジョイントを有することを特徴とする、付記項1に記載の光イメージング装置。
5.出射光変更手段がプリズムを用いたミラーであることを特徴とする付記項4に記載の光イメージング装置。
6.前記レンズの少なくとも一つが屈折率分布型(GRIN)レンズであることを特徴とする付記項1に記載の光イメージング装置。
7.前記Faraday Rotatorが前記GRINレンズと前記プリズムの間に設けられていることを特徴とする付記項6に記載の光イメージング装置。
8.前記Faraday Rotatorが前記GRINレンズと前記プリズムが接着によって一体的に構成されていることを特徴とする付記項7に記載の光イメージング装置。
9.被検体に低干渉性光を照射し、被検体において散乱した光の情報から被検体の断層像を構築する光イメージング装置であって、
低干渉性光を被検体に照射し、被検体よりの反射光を受光する光照射受光手段と、
光照射受光手段と接続し、被検体から戻ってきた低干渉性光と基準光とを干渉させるとともに、前記干渉位置を光軸に対し軸方向に走査するため、その走査範囲に対応した伝搬時間を変化させる伝搬時間変化手段と、
干渉光強度を干渉信号として検出する光検出器と、
前記伝搬手段変化手段が光学素子の揺動位置に対応して干渉位置を変化し、光学素子が繰り返し揺動することにより干渉位置を連続的に変化させるもので、
光学素子の基準位置検出手段と、
基準位置検出手段に基づいて揺動の特定の一方向の揺動に対応する干渉強度信号を保存する第1の記憶手段と、
上記方向と逆方向の揺動に対応する干渉信号を保存する第2の記憶手段を有し、
第1の記憶手段および第2の記憶手段の記憶内容を逆方向の順番に読み出すことによって、
同一方向に走査した干渉信号を得ることを特徴とする光イメージング装置。
10.前記揺動する光学素子がミラーを含むことを特徴とする付記項9に記載の光イメージング装置。
11.前記ミラーがガルバノメータミラー、レゾナントスキャンミラー、またはレトロリフレクトミラーであることを特徴とする付記項10に記載の光イメージング装置。
12.前記基準位置検出手段が揺動手段の駆動信号を含むことを特徴とする付記項9に記載の光イメージング装置。
13.前記第1の記憶手段と前記第2の記憶手段が、干渉信号をA/D変換したデジタル信号を記憶するラインメモリであることを特徴とする付記項9に記載の光イメージング装置。
14.前記第1の記憶手段と前記第2の記憶手段を異なった遅延を設けて読み出し、その遅延を設定するための遅延設定手段を設けることを特徴とする付記項9に記載の光イメージング装置。
15.遅延設定をおこなう手動入力手段を設けることを特徴とする付記項14に記載の光イメージング装置。
16.前記第1の記憶手段と前記第2の記憶手段それぞれに記憶された干渉信号中の基準信号を検出し、それぞれの基準信号が一致するように前記遅延設定手段を調整する位相調整手段を設けることを特徴とする付記項14に記載の光イメージング装置。
17.前記第1の記憶手段と前記第2の記憶手段それぞれから読み出した干渉信号を2次元画像中の隣接する線上に濃淡で表示することを特徴とする付記項9に記載の光イメージング装置。
18.前記第1の記憶手段と前記第2の記憶手段が、往復の揺動に対応する干渉強度信号を記憶する単一の記憶手段より構成され、単一の記憶手段の最初および最後から干渉強度信号を読み出すことによって同一方向に走査した干渉信号を得ることを特徴とする付記項9に記載の光イメージング装置。
19.前記単一の記憶手段の最初からの読み出しと、最後からの読み出しに異なった遅延を設けて読み出し、その遅延を設定するための遅延設定手段を設けることを特徴とする付記項18に記載の光イメージング装置。
20.前記単一の記憶手段の最初からの読み出しと、最後からの読み出しに異なった遅延を設けて読み出し、その遅延を設定するための遅延設定手段を設けることを特徴とする付記項18に記載の光イメージング装置。
21.前記単一の記憶手段の最初からの読み出しと、最後からの読み出しされた干渉強度信号データセットを2次元画像中の隣接する線上に濃淡で表示することを特徴とする付記項18に記載の光イメージング装置。
22.被検体に低干渉性光を照射し、被検体において散乱した光の情報から被検体の断層像を構築する光イメージング装置であって、
低干渉性光を被検体に照射し、被検体よりの反射光を受光する光照射受光手段と、
光照射受光手段と接続し、被検体から戻ってきた低干渉性光と基準光とを干渉させるとともに、前記干渉位置を光軸に対し軸方向に走査するため、その走査範囲に対応した伝搬時間を変化させる伝搬時間変化手段と、
干渉光強度を干渉信号として検出する光検出器と、
前記伝搬手段変化手段が光学素子の移動位置に対応して干渉位置を変化し、光学素子が連続的に移動することにより干渉位置を連続的に変化させるもので、
干渉位置の位置検出手段と、
干渉強度信号を時系列で保存する記憶手段と
干渉位置に対応する記憶手段中の位置を算出する算出手段と、
算出手段を用いて、記憶手段中の位置を算出し、その記憶内容を読み出すことで、干渉位置に対応した干渉信号を得ることを特徴とする光イメージング装置。
23.被検体に低干渉性光を照射し、被検体において散乱した光の情報から被検体の断層像を構築する光イメージング装置であって、
低干渉性光を被検体に照射し、被検体よりの反射光を受光する光照射受光手段と、
光照射受光手段と接続し、被検体から戻ってきた低干渉性光と基準光とを干渉させるとともに、前記干渉位置を光軸に対し軸方向に走査するため、その走査範囲に対応した伝搬時間を変化させる伝搬時間変化手段と、
干渉光強度を干渉信号として検出する光検出器と、
干渉位置の走査により生じる干渉信号のドップラー周波数を算出する算出手段と、
光検出器からの信号を復調する復調器と、
算出されたドップラー周波数に対応して復調器の周波数特性を変化させる周波数特性設定手段を有することを特徴とする。
24.前記伝搬時間変化手段が、時間に対し非線形に干渉位置を変化させることを特徴とする付記項23に記載の光イメージング装置。
25.前記伝搬時間変化手段がガルバノメータミラーを有することを特徴とする付記項23に記載の光イメージング装置。
26.前記伝搬時間変化手段がレゾナンススキャナミラーを有することを特徴とする付記項23に記載の光イメージング装置。
27.走査範囲の長さに対応し、干渉位置の移動速度とドップラー周波数を設定する手段を有することを特徴とする付記項23に記載の光イメージング装置。
28.前記復調器がドップラー周波数の近傍の周波数帯を通過させるバンドパスフィルタを有することを特徴とする付記項23に記載の光イメージング装置。
29.前記バンドパスフィルタの高域および低域のカットオフ周波数を、伝搬時間変化手段の非線形性に対応して変化させる周波数特性設定手段を有することを特徴とする付記項28に記載の光イメージング装置。
30.前記復調器がコヒーレント復調器を有する追従復調器であり、追従復調器が参照アームの伝搬時間変化に応じて変化するドップラーシフト周波数の算出手段により得られた参照周波数を用いることを特徴とする付記項23に記載の光イメージング装置。
31.被検体に低干渉性光を照射し、被検体において散乱した光の情報から被検体の断層像を構築する光イメージング装置であって、
被検体内に挿通可能な柔軟な細長の挿入部を有し、挿入部の先端側端面から前記被検体に前記低干渉性光を出射すると共に、前記被検体から反射された反射光を検出するための、シングルモードファイバからなる導光手段を有する光プローブと
光プローブと接続し、被検体から戻ってきた低干渉性光と基準光とを干渉させる干渉手段と、
光プローブと干渉手段との光路の間に設けられた光プローブ着脱手段と、
干渉手段と接続し、前記干渉位置を光軸に対し軸方向に走査するため、その走査範囲に対応した伝搬時間を変化させる伝搬時間変化手段と、
干渉手段から光プローブおよび干渉手段から伝搬時間変化手段を構成するすべての光路中の少なくとも一箇所に設けられた偏波調整手段と、
光プローブ挿入部端部近傍に設けられた基準反射手段と、
基準反射手段からの反射光を前記干渉手段により得られた干渉信号強度より得、それが最大値になるように偏波調整手段を設定する偏波最適化手段
を有することを特徴とする光イメージング装置。
32.出射光の光路を変更する出射光変更手段と、前記シングルモードファイバ、レンズ、出射光変更手段を一体的に回転する回転走査手段と、回転するシングルモードファイバと干渉手段を接続する光ロータリジョイントを有する走査出射手段を有することを特徴とする付記項31に記載の光イメージング装置。
33.出射光の光路を変更する出射光変更手段と、前記シングルモードファイバ、レンズ、出射光変更手段を一体的に直線的に走査するリニア走査手段を有する走査出射手段を有することを特徴とする請求項31に記載の光イメージング装置。
34.前記偏波調整手段が、少なくとも一つの光ファイバループを有することを特徴とする付記項31に記載の光イメージング装置。
35.前記偏波調整手段が、少なくとも一つのλ/2波長板およびλ/4波長板を有することを特徴とする付記項31に記載の光イメージング装置。
36.前記基準反射手段が、液体の散乱体であることを特徴とする付記項31に記載の光イメージング装置。
37.前記基準反射手段が、固体の反射または散乱体であることを特徴とする付記項31に記載の光イメージング装置。
38.前記基準反射手段が、積分球であることを特徴とする付記項31に記載の光イメージング装置。
39.前記基準反射手段が、シングルモードファイバから挿入部先端側端面に至る光路中に設けられている光学素子の一部であることを特徴とする付記項31に記載の光イメージング装置。
40.前記光学素子が、レンズ、プリズム、Faraday Rotator、光学シースの表面であることを特徴とする付記項39に記載の光イメージング装置。
41.被検体に低干渉性光を照射し、被検体において散乱した光の情報から被検体の断層像を構築する光イメージング装置であって、
低干渉性光を被検体に照射し、被検体よりの反射光を受光する光照射受光手段と、
光照射受光手段と接続し、被検体から戻ってきた低干渉性光と基準光とを干渉させるとともに、前記干渉位置を光軸に対し軸方向に走査するため、その走査範囲に対応した伝搬時間を変化させる伝搬時間変化手段と、
前記伝搬手段変化手段が分光手段と結像手段と反射ミラーを有し、
反射ミラーがポリゴンミラーで構成され、ポリゴンミラーの回転により干渉位置の走査を行うことを特徴とする。
42.前記分光手段がグレーティングであり、前記結像手段がレンズであり、レンズからレンズの焦点距離分の距離近傍に前記ポリゴンミラーの反射面が設けられていることを特徴とする付記項41に記載の光イメージング装置。
43.前記伝搬時間変化手段の光軸から一定距離離れた位置に前記ポリゴンミラーの回転中心が設けられていることを特徴とする付記項41に記載の光イメージング装置。
44.前記ポリゴンミラーに回転基準位置検出手段が設けられていることを特徴とする付記項41に記載の光イメージング装置。
45.被検体に低干渉性光を照射し、被検体において散乱した光の情報から被検体の断層像を構築する光イメージング装置であって、
低干渉性光を被検体に照射し、被検体よりの反射光を受光する光照射受光手段と、
光照射受光手段と接続し、被検体から戻ってきた低干渉性光と基準光とを干渉させるとともに、前記干渉位置を光軸に対し軸方向に走査するため、その走査範囲に対応した伝搬時間を変化させる伝搬時間変化手段と、
前記伝搬手段変化手段が分光手段と結像手段と反射ミラーを有し、
反射ミラーを含むレゾナントスキャナと、
レゾナントスキャナの共振周波数の2次以上の高次周波数の駆動信号を生成するレゾナントスキャナドライバを有することを特徴とする。
46.被検体に低干渉性光を照射し、被検体において散乱した光の情報から被検体の断層像を構築する光イメージング装置の表示手段であって、媒質中の光路長を示すスケールと、組織中の光路長を示すスケールの少なくとも2つのスケールを有することを特徴とする光イメージング装置。
47.前記スケールは屈折率n≒1の光路長と、n=1.3〜1.5の光路長を示すことを特徴とする付記項46に記載の光イメージング装置。
48.媒質に対応する画像上の位置に前記媒質中の光路長を示すスケールを有し、組織に対応する画像上の位置に組織中の光路長を示すスケールを有することを特徴とする付記項46に記載の光イメージング装置。
49.被検体に低干渉性光を照射し、被検体において散乱した光の情報から被検体の断層像を構築する光イメージング装置用の光プローブ装置であって、
全長の大部分が柔軟な樹脂チューブで構成され少なくともその先端は光透過性の良い素材で形成されているシースと、
シースの光透過性の良い素材で形成されている部分の内側に設けられ、光をシース側に向けて出射し、その透過光をシース外側の被検体に照射し、被検体からの反射・散乱・励起光をシースを透過して入射するような光の出射・入射部と、
シースの検出光が透過する部分の少なくとも一部分に減反射コーティングが設けられていることを特徴とする光プローブ装置。
50.前記減反射コーティングが誘電体多層膜コーティングであることを特徴とする付記項49に記載の光イメージング装置。
51.シースの内部に前記減反射コーティングが設けられていることを特徴とする付記項49に記載の光イメージング装置。
52.シースの外部に前記減反射コーティングが設けられていることを特徴とする付記項49に記載の光イメージング装置。
53.被検体に低干渉性光を照射し、被検体において散乱した光の情報から被検体の断層像を構築する光イメージング装置用の光プローブ装置であって、
全長の大部分が柔軟な樹脂チューブで構成されたシースと、その先端部に設けられた光透過性の良い素材で形成された光学窓と、
光学窓の内側に設けられ、光を光学窓内側に向けて出射し、その透過光を光学窓外側の被検体に照射し、被検体からの反射・散乱・励起光を光学窓を透過して入射するような光の出射・入射部と、
光学窓内壁の、検出光が透過する部分の少なくとも一部分に硬質の高透過性部材が設けられていることを特徴とする光プローブ装置。
54.前記硬質の高透過性部材がガラスパイプであることを特徴とする付記項53に記載の光イメージング装置。
55.前記硬質の高透過性部材が硬質プラスチックであることを特徴とする付記項53に記載の光イメージング装置。
56.被検体に低干渉性光を照射し、被検体において散乱した光の情報から被検体の断層像を構築する光イメージング装置用の光プローブ装置であって、
全長の大部分が柔軟な樹脂チューブで構成され少なくともその先端は光透過性の良い素材で形成されているシースと、
シースの光透過性の良い素材で形成されている部分の内側に設けられ、光をシース内側に向けて出射し、その透過光をシース外側の被検体に照射し、被検体からの反射・散乱・励起光をシースを透過して入射するような光の出射・入射部と、
シースの検出光が透過する部分の少なくとも一部分に耐摩耗性コーティングが設けられていることを特徴とする光プローブ装置。
57.前記耐摩耗性コーティングがセラミックコーティングであることを特徴とする付記項56に記載の光イメージング装置。
58.前記セラミックコーティングがポリシラザンであることを特徴とする付記項57に記載の光イメージング装置。
59.コヒーレンス長が短い光源から射出された低コヒーレンス光を信号光側と参照光側に分け、信号光を観察物体に照射した後再び信号光を参照光と合成させて干渉信号をとるときに参照光側の光路長を変化させることで断層構造を観察できるようにした光診断装置において、
前記光断層診断装置の信号側の先端部は、シングルモードファイバーと少なくとも1つの光学素子からなる信号側先端光学系から構成され、さらに前記信号側先端部内にある光学素子を、
前記信号側先端光学系内にある光学素子の端面の間での反射回数が3回以下の光がシングルモードファイバーにもどらないように構成したことを特徴とする光診断装置の信号光側光学系。
60.前記信号光側先端光学系内の光学素子の端面は、前記光学素子の端面に入射する信号光の光束に対して垂直にならないように設けられていることを特徴とする付記項59の光断層診断装置の信号光側先端光学系。
61.前記信号光側先端光学系の光学素子の少なくとも1つは光を集光する作用のある屈折率分布レンズであることを特徴とする付記項59または60の光断層診断装置の信号光側先端光学系。
62.前記信号光側先端光学系内には、少なくとも1つの集光作用をもつ光学素子が設けられており、前記集光作用を持つ光学素子の光軸に対して、前記先端光学系のすべての光学素子の端面が斜めになっていることを特徴とした付記項59または60の光断層診断装置の信号光側先端光学系。
63.前記集光作用がある光学素子は屈折率分布レンズであることを特徴とする付記62の断層診断装置の信号光側先端光学系。
64.前記信号光側先端光学系の屈折率分布レンズの光軸とシングルモードファイバーの光軸とが一致していおり、前記シングルモードファイバーの物体側の端面と、信号側先端光学系内の光学素子の端面はすべて同じ向きに斜めに研磨されていることを特徴とする付記項63の光断層診断装置の信号光側先端光学系。
65.前記信号側先端光学系内の光学素子の端面は、次の条件1、2を満たすことを特徴とする付記項63または64の光断層診断装置の信号光側先端光学系。
(条件1) θf > arcsin(NA /n)
(条件2) θs ≧ θf (s=1,2,・・・m)
ただし、 NAはシングルモードファイバーの端面を垂直に研磨した場合に空気中に射出される光のNA、 nはシングルモードファイバーのコアの屈折率で、
θfはシングルモードファイバーの物体側の端面の法線のシングルモードファイバーの光軸に対する角度、
θsは信号光側先端光学系の光学素子の第s面目の端面の法線の前記屈折率分布レンズの光軸に対する角度、
sは信号側先端光学系の境界面の数である。
66.前記信号光側先端光学系内には、少なくとも1つの集光作用をもつ光学素子が設けられており、前記集光作用を持つ光学素子の光軸に対して、シングルモードファイバーの光軸を偏心させたことを特徴とする付記項59または60の光断層診断装置の信号光側先端光学系。
67.前記集光作用をもつ光学素子は、屈折率分布レンズであることを特徴とした付記項66の光断層診断装置の信号光側先端光学系。
68.前記屈折率分布レンズの物体面側端面および前記屈折率分布レンズの物体面側端面より物体側にあるすべての光学素子の端面は前記屈折率分布レンズの光軸と垂直であることを特徴とする請求項67の光断層診断装置の信号光側先端光学系。
69.次の条件1、3を満たすことを特徴とする付記項67または68の光断層診断装置の信号光側先端光学系。
(条件1) θf > arcsin(NA /n)
(条件3) θg ≧ θf
ただし、 NAはシングルモードファイバーの端面を垂直に研磨した場合に空気中に射出される光のNA、
nはシングルモードファイバーのコアの屈折率で、
θfはシングルモードファイバーの光軸に対するシングルモードファイバーの物体側の端面の法線の角度,
θgは、屈折率分布レンズの光軸に対する屈折率分布レンズのシングルモードファイバー側の端面の法線及びシングルモードファイバーと屈折率分布レンズの間にあるすべての光学素子の端面の法線のの角度。
70.前記信号光側先端光学系の最も外側はシースで構成されており、前記シースへ入射する信号光の光束はシースの表面に対して斜めに入射するようにしたことを特徴とする請求項59〜69の光断層診断装置の信号光側先端光学系。
71.シースへ入射する信号光の主光線のシースの表面の法線に対する入射角が10°以上であることを特徴とし付記項70の光断層診断装置の信号光側先端光学系。
72.前記信号光側先端光学系には、光を反射させることによって観察方向を偏向させる光学素子が少なくとも1つ設けられており、前記観察方向を偏向させる光学素子の偏向角は前記信号光の光束がシースの表面に対して斜め入射するように設定されていることを特徴とした付記項59〜71の光断層診断装置の信号光側先端光学系。
73.被検体に低干渉性の光を照射し、被検体において散乱した光の情報から被検体の断層画像を構築する光イメージング装置用の光走査プローブ装置であって、
シングルモードファイバーと、
前記シングルモードファイバーを挿入固定する中空なファイバ端部材であって、シングルモードファイバー端面とその端面が同じ面になるように斜めに研磨されたファイバ端部材と、
前記ファイバ端部材と光軸を一致して接合され、少なくともファイバ端側接合面に斜め研磨を施したGRINレンズと、
前記GRINレンズのもう一方の端面側に配置される少なくとも1つの光学素子よりなる光学系であって、前記光学系内の光学素子の少なくとも1つの光の出射または入射面の垂線が、信号光の光束に対して特定の角度を持つような先端光学系と、
前記ファイバ端部材と前記GRINレンズの光中心軸を一致させて接合するための光中心軸一致手段と、
を有することを特徴とした光走査プローブ装置。
74.前記光中心軸一致手段は、内腔に前記ファイバ端部材と前記GRINレンズを挿入して接合させる1つのパイプ部材によるものであることを特徴とする付記項73の光走査プローブ装置。
75.前記ファイバ端部材と前記GRINレンズの接合面において、斜めに研磨された面の位相を一致させて接合する研磨面位相一致手段を設けることを特徴とする付記項73の光走査プローブ装置。
76.前記研磨面位相一致手段は、前記パイプ部材において前記ファイバ端部材と前記GRINレンズが接合される付近の側面に設けた窓と、前記ファイバ端部材と前記GRINレンズが接合される付近に前記ファイバ端部材と前記GRINレンズにそれぞれ設けたマーキングによるものであることを特徴とする 付記項75の光走査プローブ装置。
77.前記研磨面位相一致手段は、前記パイプ部材内腔が円筒以外の形状であることと、前記ファイバ端部材の側面およびGRINレンズの断面形状が前記内腔と同じ形状であることを特徴とする付記項75の光走査プローブ装置。
78.前記パイプ部材の内腔と前記ファイバ端部材の側面およびGRINレンズの断面形状はDカット形状であることを特徴とする付記項77の光走査プローブ装置。
79.前記パイプ部材に、GRINレンズより先端側にある前記光学系の少なくとも1つの光学素子を保護する手段を設けたことを特徴とする付記項73の光走査プローブ装置。
80.被検体に低干渉性の光を照射し、被検体において散乱した光の情報から被検体の断層画像を構築する光イメージング装置用の光走査プローブ装置であって、
先端が開口していない細長く柔軟な筒状のシースであって、少なくともその先端側の側面は光透過性のよい素材で形成されているシースと、
前記シースの内腔に設けられ、低干渉光が出射されように設けられているシングルモードファイバと、
前記シングルモードファイバの先端から出射された光を集光させるためのレンズと、
シース円筒面に対しほぼ垂直方向に出射光の光路を変更するために前記レンズに固定されている出射光路変更手段と、
前記出射光のビーム断面において特定の軸方向に正または負の屈折力を持つ補正光学系と,
を有することを特徴とする光走査プローブ装置。
81.前記特定の軸方向は、前記シース円筒面の周方向または前記シース長軸方向であることを特徴とする付記項80の光走査プローブ装置。
82.前記出射光のビームに対して前記シース円筒面の周方向をX軸、前記シース長軸方向をY軸とし、前記補正光学系は前記出射光ビームの前記X軸方向に対し円筒凸レンズ効果を持つように構成されていることを特徴とする付記項81の光走査プローブ装置。
83. 前記補正光学系は、前記出射光ビームの前記Y軸方向に対し円筒凹レンズ効果を持つように構成されていることを特徴とする付記項82の光走査プローブ装置。
84.前記補正光学系は、前記出射光ビームの前記X軸方向に対し円筒凸レンズ効果を持つように構成されていることを特徴とする付記項82の光走査プローブ装置。
85.前記補正光学系は、前記出射光ビームの前記Y軸方向に対し円筒凹レンズ効果を持つように構成されていることを特徴とする付記項82の光走査プローブ装置。
86.前記出射光路変更手段はプリズムであり、プリズムに設けた曲面により前記補正光学系を構成することを特徴とする付記項80の光走査プローブ装置。
87.円筒レンズを配置することにより、前記円補正光学系を構成することを特徴とする付記項80の光走査プローブ装置。
88.前記レンズはGRINレンズであり、GRINレンズの長軸側面を圧延することにより、前記補正光学系を構成することを特徴とする付記項80の光走査プローブ装置。
89. 前記出射光路変更手段はミラーであり、ミラーに設けた曲面により前記補正光学系を構成することを特徴とする付記項80の光走査プローブ装置。
90.屈折率分布板を設けることにより、前記補正光学系を構成することを特徴とする付記項80の光走査プローブ装置。
図1は内視鏡に適用されるOCT装置のダイヤグラム(先行例)、 図2は図1の一部のダイヤグラム断面図の従来技術を示す(先行例ではない)、 図3(A)〜(E)は、ゴーストの生じる例の断面図、 図4はゴーストの生じた画像を示す説明図、 図5(A)〜(B)はファラデーローテーターとプリズムの境界面で光が反射されて、1回反射の構成になっている例を示す説明図、 図6は本発明の第1実施の形態の光イメージング装置のブロックダイアグラム、 図7は使用時の内視鏡を示す説明図、 図8は、本発明の第1実施の形態の光走査プローブと回転駆動装置を示す概念図、 図9(A)は光光走査プローブの詳細を示し、(B)と(C)はプローブ先端部の他の構成を示す説明図、 図10は、本発明の第1実施の形態のコネクタを示す説明図、 図11(A)は本発明の第2実施の形態の光走査プローブを示し、(B)は第2実施の形態の変形例を示す光走査プローブの説明図、(C)は第2実施の形態の変形例を示す光走査プローブの説明図、 図12および図13は更なる第2実施の形態の変形例を示す光走査プローブの概念図、 図13は図12と同じ光走査プローブの説明図、 図14(A)は、深さ方向の走査位置の曲線と、ミラー走査タイミング信号と、干渉信号の関係を示したタイムチャートを示し、(B)はメモリマップを示し、(C)はメモリ中のデータと表示位置の関係を示す、 図15は2次元画像とラジアル(周状)画像の変換を示す、 図16は干渉信号を示すタイムチャート、 図17は、深さ方向の走査位置の曲線と、タイミング信号の関係を示すタイムチャート、 図18は復調器のブロックダイアグラム、 図19は、本発明の第4実施の形態を示すブロックダイアグラム、 図20は、本発明の第4実施の形態の変形例を示すブロックダイアグラム、 図21は、本発明の第5実施の形態を示す概念図、 図22は偏光コントローラをパースで示す、 図23はOCT装置の制御パネルの一部を示す。 図24(A)、(B)、(C)は試験治具を示す概念図、 図25は、本発明の第1実施の形態のステージを示す概念図、 図26(A)は、本発明の第1実施の形態で得られた画像を示す説明図、(B)は第1実施の形態の変形例で得られた画像を示す説明図、(C)は距離測定のためのスケールを画像中に設けた説明図、 図27は第1実施の形態をパースで示したもので、 図28はコヒーレントトラッキング復調器を示す説明図、 図29は透過ディレイラインを示す説明図、 図30は図14(B)の代りのマッピングアレイを示す、 図31は光断層装置の光学系をを示す概念図、 図32は 第7実施の形態を示す説明図、 図33は図32を直線に直した説明図、 図34(A)〜(D)は光路を示す説明図、 図35(A)〜(D)は光路を示す説明図、 図36(A)〜(D)は光路を示す説明図、 図37は第8実施の形態を示す説明図、 図38は図37を直線に直した説明図、 図39(A)、(B)は光路を示す図、 図40は第9実施の形態を示す説明図、 図41は図40を直線に直した説明図、 図42は第10実施の形態の光走査プローブの端部を示す図、 図43(A)と(B)は、図42に示す光走査プローブの端部のパース図、 図44は第11実施の形態の光走査プローブの端部の断面図、 図45(A)、(B)は、図44の45A−45A、45B−45Bの線の断面、 図46(A)は第12実施の形態の光走査プローブの端部からの概念図を示し、(B)は光走査プローブの側面からの概念図を示す、 図47(A)は第12実施の形態の変形例の光走査プローブの端部からの概念図を示し、(B)は光走査プローブの側面からの概念図を示す、 図48(A)は第12実施の形態の変形例の光走査プローブの端部からの概念図を示し、(B)は光走査プローブの側面からの概念図を示す、 図49(A)は第13実施の形態の光走査プローブの端部からの概念図を示し、(B)は光走査プローブの側面からの概念図を示す、 図50(A)は第13実施の形態の変形例の光走査プローブの端部からの概念図を示し、(B)は光走査プローブの側面からの概念図を示す、 図51(A)は第14実施の形態の光走査プローブの端部からの概念図を示し、(B)は光走査プローブの側面からの概念図を示す、 図52(A)は第14実施の形態の変形例の光走査プローブの端部からの概念図を示し、(B)は光走査プローブの側面からの概念図を示す、 図53(A)は第15実施の形態の光走査プローブの端部からの概念図を示し、(B)は光走査プローブの側面からの概念図を示す、 図54(A)は第15実施の形態の変形例の光走査プローブの端部からの概念図を示し、(B)は光走査プローブの側面からの概念図を示す、 図55(A)は第16実施の形態の光走査プローブの端部からの概念図を示し、(B)は光走査プローブの側面からの概念図を示す、 図56(A)は第16実施の形態の変形例の光走査プローブの端部からの概念図を示し、(B)は光走査プローブの側面からの概念図を示す、 図57(A)は従来技術の光走査プローブの端部からの概念図を示し、(B)は光走査プローブの側面からの概念図を示す。
符号の説明
1A:光イメージング装置
2 :低干渉性光源
3 :シングルモードファイバ
4 :光カップラ部
5 :シングルモードファイバ
6 :光ロータリジョイント
8 :光走査プローブ
10:シングルモードファイバ

Claims (11)

  1. 被検体に照射するための所定の観察光を発生する観察光発生手段と、
    記観察光を導光するとともに、前記被検体で反射された反射光を導光する第1の導光手段と
    前記第1の導光手段で導光される前記観察光を前記被検体側に出射するとともに、前記被検体で反射された前記反射光を前記第1の導光手段に導く第2の導光手段と、
    前記第1の導光手段および前記第2の導光手段に対し被検体側の外周に設けられ、前記観察光および前記反射光を透過する光透過部材と、
    前記反射光と前記観察光から分岐された基準光とを干渉させ、所定の干渉信号を得る干渉信号取得手段と、
    を備え
    前記第2の導光手段は、前記観察光を前記光透過部材に対して非垂直な所定の角度で前記被検体側に出射することを特徴とする光走査プローブ装置。
  2. 前記第1の導光手段を移動することにより、前記第2の導光手段から出射される前記観察光を前記被検体に対して走査する走査手段を備えたことを特徴とする請求項1に記載の光走査プローブ装置。
  3. 前記第2の導光手段が、前記光透過部材の法線に対して10゜以上の角度で前記観察光を出射することを特徴とする請求項1に記載の光走査プローブ装置。
  4. 前記第1の導光手段が、前記第1の導光手段の外周に設けられたシースに対して摺動自在であることを特徴とする請求項1または3に記載の光走査プローブ装置。
  5. 前記第2の導光手段の両端面は、前記第2の導光手段の光軸に対して斜めに配置されていることを特徴とする請求項1に記載の光走査プローブ装置。
  6. 前記第1の導光手段の端面と、前記第2の導光手段の両端面とは、前記第2の導光手段の光軸に対して斜めであって互いに同じ向きに配置されていることを特徴とする請求項5に記載の光走査プローブ装置。
  7. 被検体内に挿入される光プローブと、
    被検体に照射するための照射光を発生させる光源と、
    前記照射光を前記光プローブの先端に導くための光ファイバーと、
    前記照射光を被検体に集光する集光手段と、
    前記光プローブの先端に設けられ、前記集光手段により集光された焦点を前記集光手段の光軸方向に対し略垂直に走査する走査手段を備えた先端光学系と、
    被検体からの戻り光を検出光として観察光から分離する分離手段と、
    前記検出光を検出する光検出手段と、
    を具備し、
    前記先端光学系における、被検体に対向する部分に光透過部材を有し、該光透過部材に対して集光光の光束が斜め入射するように設定されていることを特徴とする光走査プローブ装置。
  8. 前記光透過部材のいずれかの面において、集光光の主光線の入射角が10゜以上であることを特徴とする請求項7に記載の光走査プローブ装置。
  9. 前記先端光学系において、光の反射により前記集光光の光束が前記光透過部材に対し斜め入射するように観察方向を偏向させる光学素子を備えていることを特徴とする請求項7又は8に記載の光走査プローブ装置。
  10. 前記集光手段及び前記先端光学系の両端面は、前記集光手段の光軸に対して斜めに配置されていることを特徴とする請求項7に記載の光走査プローブ装置。
  11. 前記光ファイバーの端面と、前記集光手段及び前記先端光学系の両端面とは、前記集光手段の光軸に対して斜めであって互いに同じ向きに配置されていることを特徴とする請求項10に記載の光走査プローブ装置。
JP2004056887A 1999-02-04 2004-03-01 光走査プローブ装置 Expired - Lifetime JP3885114B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11880799P 1999-02-04 1999-02-04
US09/315,982 US6615072B1 (en) 1999-02-04 1999-05-21 Optical imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000028231A Division JP4576017B2 (ja) 1999-02-04 2000-02-04 光イメージング装置

Publications (2)

Publication Number Publication Date
JP2004223269A JP2004223269A (ja) 2004-08-12
JP3885114B2 true JP3885114B2 (ja) 2007-02-21

Family

ID=26816758

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2000028231A Expired - Lifetime JP4576017B2 (ja) 1999-02-04 2000-02-04 光イメージング装置
JP2004056887A Expired - Lifetime JP3885114B2 (ja) 1999-02-04 2004-03-01 光走査プローブ装置
JP2004056888A Pending JP2004209268A (ja) 1999-02-04 2004-03-01 光イメージング装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2000028231A Expired - Lifetime JP4576017B2 (ja) 1999-02-04 2000-02-04 光イメージング装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2004056888A Pending JP2004209268A (ja) 1999-02-04 2004-03-01 光イメージング装置

Country Status (2)

Country Link
US (2) US6615072B1 (ja)
JP (3) JP4576017B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022760A1 (ja) 2013-08-10 2015-02-19 並木精密宝石株式会社 光イメージング用プローブ
US9869821B2 (en) 2014-01-06 2018-01-16 Namiki Seimitsu Houseki Kabushiki Kaisha Probe for optical imaging
US10422621B2 (en) 2015-07-03 2019-09-24 Adamant Namiki Precision Jewel Co., Ltd. Optical measurement device having a plurality of rotary shafts and displacement detectors for detecting axial displacement of each rotary shaft and using the detected axial displacement for three-dimensional image correction

Families Citing this family (405)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6615072B1 (en) * 1999-02-04 2003-09-02 Olympus Optical Co., Ltd. Optical imaging device
US6687010B1 (en) * 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
US7555333B2 (en) 2000-06-19 2009-06-30 University Of Washington Integrated optical scanning image acquisition and display
US6738659B2 (en) * 2000-08-31 2004-05-18 Hsu Pei-Feng Optical imaging using the temporal direct reflective signal from a minimized pulse width laser
DE60141090D1 (de) * 2000-10-30 2010-03-04 Gen Hospital Corp Optische systeme zur gewebeanalyse
US6687036B2 (en) * 2000-11-03 2004-02-03 Nuonics, Inc. Multiplexed optical scanner technology
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
JP2002263106A (ja) * 2001-03-12 2002-09-17 Olympus Optical Co Ltd 光プローブ装置
JP2002272674A (ja) * 2001-03-14 2002-09-24 Olympus Optical Co Ltd 光走査プローブ装置
JP2004528111A (ja) * 2001-04-30 2004-09-16 ザ・ジェネラル・ホスピタル・コーポレイション 焦点特性とコヒーレンス・ゲートを制御するために動的フィードバックを用いた、光干渉トモグラフィにおける写像性と感度を改善するための方法及び装置
AT503309B1 (de) 2001-05-01 2011-08-15 Gen Hospital Corp Vorrichtung zur bestimmung von atherosklerotischem belag durch messung von optischen gewebeeigenschaften
US7616986B2 (en) * 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
WO2003011764A2 (en) * 2001-08-03 2003-02-13 Volker Westphal Real-time imaging system and method
US6809866B2 (en) * 2001-08-03 2004-10-26 Olympus Corporation Optical imaging apparatus
US6980299B1 (en) * 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
EP1441215B1 (en) * 2001-10-31 2012-08-01 Olympus Corporation Optical scanning type observation device
AU2002357155A1 (en) * 2001-12-10 2003-06-23 Carnegie Mellon University Endoscopic imaging system
US7736301B1 (en) * 2001-12-18 2010-06-15 Advanced Cardiovascular Systems, Inc. Rotatable ferrules and interfaces for use with an optical guidewire
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US6904197B2 (en) * 2002-03-04 2005-06-07 Corning Incorporated Beam bending apparatus and method of manufacture
CA2390072C (en) * 2002-06-28 2018-02-27 Adrian Gh Podoleanu Optical mapping apparatus with adjustable depth resolution and multiple functionality
US6891984B2 (en) * 2002-07-25 2005-05-10 Lightlab Imaging, Llc Scanning miniature optical probes with optical distortion correction and rotational control
US7376456B2 (en) * 2002-08-05 2008-05-20 Infraredx, Inc. Near-infrared spectroscopic analysis of blood vessel walls
US7486985B2 (en) * 2002-08-05 2009-02-03 Infraredx, Inc. Near-infrared spectroscopic analysis of blood vessel walls
US7283247B2 (en) * 2002-09-25 2007-10-16 Olympus Corporation Optical probe system
US7567349B2 (en) 2003-03-31 2009-07-28 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
EP2319404B1 (en) * 2003-01-24 2015-03-11 The General Hospital Corporation System and method for identifying tissue low-coherence interferometry
US8054468B2 (en) 2003-01-24 2011-11-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7474407B2 (en) * 2003-02-20 2009-01-06 Applied Science Innovations Optical coherence tomography with 3d coherence scanning
US7129473B2 (en) * 2003-05-16 2006-10-31 Olympus Corporation Optical image pickup apparatus for imaging living body tissue
US7376455B2 (en) * 2003-05-22 2008-05-20 Scimed Life Systems, Inc. Systems and methods for dynamic optical imaging
US6943881B2 (en) * 2003-06-04 2005-09-13 Tomophase Corporation Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
EP2030562A3 (en) 2003-06-06 2009-03-25 The General Hospital Corporation Process and apparatus for a wavelength tuning source
US7319782B2 (en) * 2003-06-18 2008-01-15 Hogan Josh N Real-time imaging and analysis system
ITRM20030361A1 (it) * 2003-07-23 2005-01-24 Marcello Marzoli Testa di scansione, ed apparato endoscopico utilizzante tale testa.
KR20060084852A (ko) 2003-09-15 2006-07-25 지고 코포레이션 표면 3각 측량 및 박막 코팅을 통한 프로파일링
GB2406638B (en) * 2003-10-01 2006-03-29 Amc Amsterdam Interferometric measurement apparatus and method therefor
DE10346678A1 (de) * 2003-10-08 2005-05-12 Siemens Ag Endoskopieeinrichtung umfassend eine Endoskopiekapsel oder einen Endoskopiekopf mit einer Bildaufnahmeeinrichtung sowie Bildgebungsverfahren für eine solche Endoskopieeinrichtung
US20050143664A1 (en) * 2003-10-09 2005-06-30 Zhongping Chen Scanning probe using MEMS micromotor for endosocopic imaging
CN103181753B (zh) * 2003-10-27 2016-12-28 通用医疗公司 用于使用频域干涉测量法进行光学成像的方法和设备
US20050113701A1 (en) * 2003-11-26 2005-05-26 Scimed Life Systems, Inc. Rotating measuring device
US7551293B2 (en) * 2003-11-28 2009-06-23 The General Hospital Corporation Method and apparatus for three-dimensional spectrally encoded imaging
EP1691666B1 (en) 2003-12-12 2012-05-30 University of Washington Catheterscope 3d guidance and interface system
US7145661B2 (en) * 2003-12-31 2006-12-05 Carl Zeiss Meditec, Inc. Efficient optical coherence tomography (OCT) system and method for rapid imaging in three dimensions
US20050171437A1 (en) * 2004-01-14 2005-08-04 Neptec Optical Solutions, Inc. Optical switching system for catheter-based analysis and treatment
US7242480B2 (en) * 2004-05-14 2007-07-10 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
US20050254059A1 (en) * 2004-05-14 2005-11-17 Alphonse Gerard A Low coherence interferometric system for optical metrology
US7190464B2 (en) * 2004-05-14 2007-03-13 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
US7474408B2 (en) * 2004-05-14 2009-01-06 Medeikon Corporation Low coherence interferometry utilizing phase
EP1754016B1 (en) 2004-05-29 2016-05-18 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging
EP1771755B1 (en) 2004-07-02 2016-09-21 The General Hospital Corporation Endoscopic imaging probe comprising dual clad fibre
DE502004009167D1 (de) * 2004-07-19 2009-04-23 Fraunhofer Ges Forschung Videoendoskopievorrichtung
WO2006017837A2 (en) 2004-08-06 2006-02-16 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
WO2006024014A2 (en) 2004-08-24 2006-03-02 The General Hospital Corporation Process, system and software arrangement for measuring a mechanical strain and elastic properties of a sample
EP2272421A1 (en) 2004-08-24 2011-01-12 The General Hospital Corporation Method and apparatus for imaging of vessel segments
GB2417789A (en) * 2004-09-01 2006-03-08 Oti Ophthalmic Technologies Scanning delay line for interferometer
EP1789832B1 (en) * 2004-09-01 2014-03-19 Optos PLC Transmissive scanning delay line for oct
US7365859B2 (en) * 2004-09-10 2008-04-29 The General Hospital Corporation System and method for optical coherence imaging
KR101257100B1 (ko) 2004-09-29 2013-04-22 더 제너럴 하스피탈 코포레이션 광 간섭 영상화 시스템 및 방법
JP4471163B2 (ja) * 2004-09-30 2010-06-02 富士フイルム株式会社 光断層画像取得装置
JP2006105626A (ja) * 2004-09-30 2006-04-20 Sunx Ltd 光ファイバセンサヘッド
US8498681B2 (en) * 2004-10-05 2013-07-30 Tomophase Corporation Cross-sectional mapping of spectral absorbance features
US7970458B2 (en) * 2004-10-12 2011-06-28 Tomophase Corporation Integrated disease diagnosis and treatment system
WO2006050320A2 (en) * 2004-10-29 2006-05-11 The General Hospital Corporation Polarization-sensitive optical coherence tomography
US7382949B2 (en) * 2004-11-02 2008-06-03 The General Hospital Corporation Fiber-optic rotational device, optical system and method for imaging a sample
JP2006132995A (ja) * 2004-11-02 2006-05-25 Shiyoufuu:Kk 光コヒーレンストモグラフィー装置および計測ヘッド
JP5695001B2 (ja) * 2004-11-02 2015-04-01 ザ ジェネラル ホスピタル コーポレイション 試料の画像形成のための光ファイバ回転装置、光学システム及び方法
WO2006058049A1 (en) 2004-11-24 2006-06-01 The General Hospital Corporation Common-path interferometer for endoscopic oct
US8922781B2 (en) 2004-11-29 2014-12-30 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
US7330270B2 (en) * 2005-01-21 2008-02-12 Carl Zeiss Meditec, Inc. Method to suppress artifacts in frequency-domain optical coherence tomography
EP1852692A1 (en) * 2005-01-21 2007-11-07 School Juridical Person Kitasato Gakuen Optical coherent tomography device
DE102005005037B4 (de) * 2005-02-03 2012-02-02 Siemens Ag Einrichtung zur Aufnahme elektrophysiologischer Signale und zur Darstellung der Signale oder daraus ermittelter Signalinformationen
JP2006215007A (ja) * 2005-02-07 2006-08-17 Fujinon Corp プローブユニット
JP4685467B2 (ja) * 2005-02-07 2011-05-18 富士フイルム株式会社 Oct画像診断装置用プローブ
JP4647327B2 (ja) * 2005-02-07 2011-03-09 富士フイルム株式会社 Oct画像診断装置用プローブユニット
JP2006215006A (ja) * 2005-02-07 2006-08-17 Fujinon Corp 光断層画像化装置
JP2006212355A (ja) * 2005-02-07 2006-08-17 Fujinon Corp 光断層画像化装置
US7346233B2 (en) * 2005-02-14 2008-03-18 Corning Incorporated Single mode (SM) fiber optical reader system and method for interrogating resonant waveguide-grating sensor(s)
US7530948B2 (en) 2005-02-28 2009-05-12 University Of Washington Tethered capsule endoscope for Barrett's Esophagus screening
US20060241495A1 (en) * 2005-03-23 2006-10-26 Eastman Kodak Company Wound healing monitoring and treatment
ATE451669T1 (de) 2005-04-28 2009-12-15 Gen Hospital Corp Bewertung von bildmerkmalen einer anatomischen struktur in optischen kohärenztomographiebildern
DE102005021061B4 (de) * 2005-05-06 2011-12-15 Siemens Ag Verfahren zur tomographischen Darstellung eines Hohlraumes durch Optische-Kohärenz-Tomographie (OCT) und eine OCT-Vorrichtung zur Durchführung des Verfahrens
JP2006322767A (ja) * 2005-05-18 2006-11-30 Kowa Co 光断層画像化装置
EP1887926B1 (en) * 2005-05-31 2014-07-30 The General Hospital Corporation System and method which use spectral encoding heterodyne interferometry techniques for imaging
EP1889037A2 (en) * 2005-06-01 2008-02-20 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
WO2007002969A1 (en) * 2005-07-04 2007-01-11 Medizinische Universität Wien Optical coherence tomography probe device
JP5547402B2 (ja) 2005-08-09 2014-07-16 ザ ジェネラル ホスピタル コーポレイション 光コヒーレンストモグラフィにおいて偏光に基づく直交復調を実行する装置、方法及び記憶媒体
JP4895255B2 (ja) * 2005-09-22 2012-03-14 富士フイルム株式会社 共焦点顕微鏡装置
JP2007085931A (ja) * 2005-09-22 2007-04-05 Fujinon Corp 光断層画像化装置
US20070121196A1 (en) 2005-09-29 2007-05-31 The General Hospital Corporation Method and apparatus for method for viewing and analyzing of one or more biological samples with progressively increasing resolutions
JP4545696B2 (ja) * 2005-09-30 2010-09-15 富士フイルム株式会社 光プローブ
JP2007101263A (ja) * 2005-09-30 2007-04-19 Fujifilm Corp 光断層画像化装置
US7831298B1 (en) 2005-10-04 2010-11-09 Tomophase Corporation Mapping physiological functions of tissues in lungs and other organs
JP5203951B2 (ja) * 2005-10-14 2013-06-05 ザ ジェネラル ホスピタル コーポレイション スペクトル及び周波数符号化蛍光画像形成
JP2007135947A (ja) * 2005-11-21 2007-06-07 Fujifilm Corp 光プローブおよび光断層画像化装置
US8537203B2 (en) * 2005-11-23 2013-09-17 University Of Washington Scanning beam with variable sequential framing using interrupted scanning resonance
EP1971848B1 (en) 2006-01-10 2019-12-04 The General Hospital Corporation Systems and methods for generating data based on one or more spectrally-encoded endoscopy techniques
US20070213618A1 (en) * 2006-01-17 2007-09-13 University Of Washington Scanning fiber-optic nonlinear optical imaging and spectroscopy endoscope
JP2009523574A (ja) * 2006-01-18 2009-06-25 ザ ジェネラル ホスピタル コーポレイション 1つ又は複数の内視鏡顕微鏡検査法を使用してデータを生成するシステム及び方法
CN104257348A (zh) * 2006-01-19 2015-01-07 通用医疗公司 通过上皮内腔器官束扫描对上皮内腔器官进行光学成像的方法和系统
US8145018B2 (en) 2006-01-19 2012-03-27 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements
US20070223006A1 (en) * 2006-01-19 2007-09-27 The General Hospital Corporation Systems and methods for performing rapid fluorescence lifetime, excitation and emission spectral measurements
US20070171430A1 (en) * 2006-01-20 2007-07-26 The General Hospital Corporation Systems and methods for providing mirror tunnel micropscopy
JP5680829B2 (ja) 2006-02-01 2015-03-04 ザ ジェネラル ホスピタル コーポレイション 複数の電磁放射をサンプルに照射する装置
EP1986562B1 (en) * 2006-02-01 2015-04-08 The General Hospital Corporation Apparatus for controlling at least one of at least two sections of at least one fiber
JP5524487B2 (ja) 2006-02-01 2014-06-18 ザ ジェネラル ホスピタル コーポレイション コンフォーマルレーザ治療手順を用いてサンプルの少なくとも一部分に電磁放射を放射する方法及びシステム。
EP3143926B1 (en) 2006-02-08 2020-07-01 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
US20070191682A1 (en) * 2006-02-15 2007-08-16 Jannick Rolland Optical probes for imaging narrow vessels or lumens
EP2309221A1 (en) 2006-02-24 2011-04-13 The General Hospital Corporation Methods and systems for performing angle-resolved fourier-domain optical coherence tomography
US9561078B2 (en) 2006-03-03 2017-02-07 University Of Washington Multi-cladding optical fiber scanner
WO2007109540A2 (en) * 2006-03-17 2007-09-27 The General Hospital Corporation Arrangement, method and computer-accessible medium for identifying characteristics of at least a portion of a blood vessel contained within a tissue using spectral domain low coherence interferometry
US20070216908A1 (en) * 2006-03-17 2007-09-20 University Of Washington Clutter rejection filters for optical doppler tomography
JP2007252475A (ja) 2006-03-22 2007-10-04 Fujifilm Corp 光断層画像化装置および光断層画像の画質調整方法
JP4755934B2 (ja) * 2006-03-31 2011-08-24 富士フイルム株式会社 波長可変レーザ装置および光断層画像化装置
JP4838029B2 (ja) * 2006-03-30 2011-12-14 テルモ株式会社 画像診断装置およびその処理方法
DE102006014765A1 (de) * 2006-03-30 2007-10-04 Robert Bosch Gmbh Sensorobjektiv
WO2007118129A1 (en) * 2006-04-05 2007-10-18 The General Hospital Corporation Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
US7474820B2 (en) * 2006-04-27 2009-01-06 Invuity, Inc. Micro-optic adapters and tips for surgical illumination fibers
WO2007133961A2 (en) 2006-05-10 2007-11-22 The General Hospital Corporation Processes, arrangements and systems for providing frequency domain imaging of a sample
US7782464B2 (en) * 2006-05-12 2010-08-24 The General Hospital Corporation Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images
US7460248B2 (en) * 2006-05-15 2008-12-02 Carestream Health, Inc. Tissue imaging system
US7488930B2 (en) * 2006-06-02 2009-02-10 Medeikon Corporation Multi-channel low coherence interferometer
KR100777002B1 (ko) 2006-06-05 2007-11-21 케이 이엔지(주) 간섭광 및 편광을 동시에 이용할 수 있는 복합 방식의광간섭성 단층 촬영 시스템
US20070291275A1 (en) * 2006-06-16 2007-12-20 Prescient Medical, Inc. Side-viewing optical acoustic sensors and their use in intravascular diagnostic probes
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
JP2008070350A (ja) * 2006-08-15 2008-03-27 Fujifilm Corp 光断層画像化装置
JP2008070349A (ja) * 2006-08-15 2008-03-27 Fujifilm Corp 光断層画像化装置
US20080058629A1 (en) * 2006-08-21 2008-03-06 University Of Washington Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation
US7920271B2 (en) 2006-08-25 2011-04-05 The General Hospital Corporation Apparatus and methods for enhancing optical coherence tomography imaging using volumetric filtering techniques
US7680373B2 (en) * 2006-09-13 2010-03-16 University Of Washington Temperature adjustment in scanning beam devices
WO2008048263A1 (en) * 2006-10-18 2008-04-24 Milner Thomas E Hemoglobin contrast in magneto-motive optical doppler tomography, optical coherence tomography, and ultrasound imaging methods and apparatus
WO2008049118A2 (en) 2006-10-19 2008-04-24 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample and effecting such portion(s)
US20080097158A1 (en) * 2006-10-20 2008-04-24 Infraredx, Inc. Noise Suppression System and Method in Catheter Pullback and Rotation System
US20080097223A1 (en) * 2006-10-20 2008-04-24 Infraredx, Inc. Optical Catheter Carriage Interlock System and Method
US20080097224A1 (en) * 2006-10-20 2008-04-24 Infraredx, Inc. Manual and Motor Driven Optical Pullback and Rotation System and Method
US20080097408A1 (en) * 2006-10-20 2008-04-24 Infraredx, Inc. Pullback Carriage Interlock System and Method for Catheter System
JP2008128926A (ja) 2006-11-24 2008-06-05 Fujifilm Corp 光断層画像化装置
US20080132834A1 (en) * 2006-12-04 2008-06-05 University Of Washington Flexible endoscope tip bending mechanism using optical fibers as tension members
JP2008142454A (ja) * 2006-12-13 2008-06-26 Fujifilm Corp 医療診断用プローブ、および医療診断システム
US7738762B2 (en) * 2006-12-15 2010-06-15 University Of Washington Attaching optical fibers to actuator tubes with beads acting as spacers and adhesives
WO2008081653A1 (ja) * 2006-12-28 2008-07-10 Terumo Kabushiki Kaisha 光プローブ
US8305432B2 (en) 2007-01-10 2012-11-06 University Of Washington Scanning beam device calibration
ES2534572T3 (es) * 2007-01-10 2015-04-24 Lightlab Imaging, Inc. Métodos y aparato para tomografía de coherencia óptica de fuente de barrido
JP5507258B2 (ja) 2007-01-19 2014-05-28 ザ ジェネラル ホスピタル コーポレイション 光周波数領域イメージングにおける測定深度を制御するための装置及び方法
EP2111165B8 (en) * 2007-01-19 2017-10-04 Sunnybrook Health Sciences Centre Imaging probe with combined ultrasound and optical means of imaging
EP2104968A1 (en) 2007-01-19 2009-09-30 The General Hospital Corporation Rotating disk reflection for fast wavelength scanning of dispersed broadband light
US20080206804A1 (en) * 2007-01-19 2008-08-28 The General Hospital Corporation Arrangements and methods for multidimensional multiplexed luminescence imaging and diagnosis
DE102007004514A1 (de) * 2007-01-24 2008-07-31 Schleifring Und Apparatebau Gmbh Zweikanal Multimode Drehübertager
DE102007005726B4 (de) * 2007-01-31 2010-05-12 Sirona Dental Systems Gmbh Vorrichtung und Verfahren zur optischen 3D-Vermessung
US9414748B2 (en) * 2007-02-13 2016-08-16 Micro-Optics, Inc. Tomography probe
KR101337788B1 (ko) 2007-03-06 2013-12-06 고려대학교 산학협력단 휴대용 피부 검사용 편광 민감 광 간섭 영상 시스템
US8040496B2 (en) * 2007-03-16 2011-10-18 Lighthouse Imaging Corporation System and method for an illumination-quality test
WO2008116010A1 (en) * 2007-03-19 2008-09-25 The General Hospital Corporation System and method for providing noninvasive diagnosis of compartment syndrome exemplary laser speckle imaging procedure
US9176319B2 (en) 2007-03-23 2015-11-03 The General Hospital Corporation Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures
WO2008121844A1 (en) 2007-03-30 2008-10-09 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US8840566B2 (en) * 2007-04-02 2014-09-23 University Of Washington Catheter with imaging capability acts as guidewire for cannula tools
US20080243030A1 (en) * 2007-04-02 2008-10-02 University Of Washington Multifunction cannula tools
US8045177B2 (en) 2007-04-17 2011-10-25 The General Hospital Corporation Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy
US7706646B2 (en) 2007-04-24 2010-04-27 Tomophase Corporation Delivering light via optical waveguide and multi-view optical probe head
US7608842B2 (en) * 2007-04-26 2009-10-27 University Of Washington Driving scanning fiber devices with variable frequency drive signals
US7952718B2 (en) * 2007-05-03 2011-05-31 University Of Washington High resolution optical coherence tomography based imaging for intraluminal and interstitial use implemented with a reduced form factor
US8115919B2 (en) 2007-05-04 2012-02-14 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with a sample using optical microscopy
US8134554B1 (en) 2007-05-04 2012-03-13 Topcon Medical Systems, Inc. Method and apparatus for spatially mapping three-dimensional optical coherence tomography data with two-dimensional images
US20080281207A1 (en) * 2007-05-08 2008-11-13 University Of Washington Image acquisition through filtering in multiple endoscope systems
US20080281159A1 (en) * 2007-05-08 2008-11-13 University Of Washington Coordinating image acquisition among multiple endoscopes
JP5031437B2 (ja) * 2007-05-08 2012-09-19 オリンパス株式会社 内視鏡用冷却装置及び内視鏡装置
US8212884B2 (en) * 2007-05-22 2012-07-03 University Of Washington Scanning beam device having different image acquisition modes
DE102007026234A1 (de) * 2007-05-31 2008-12-04 Karl Storz Gmbh & Co. Kg Videoendoskop
CN100464697C (zh) * 2007-06-27 2009-03-04 浙江大学 用于oct平衡探测的透射式快速光学扫描延迟线
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
JP5524835B2 (ja) * 2007-07-12 2014-06-18 ヴォルカノ コーポレイション 生体内撮像用カテーテル
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
US8437587B2 (en) * 2007-07-25 2013-05-07 University Of Washington Actuating an optical fiber with a piezoelectric actuator and detecting voltages generated by the piezoelectric actuator
JP2009031230A (ja) * 2007-07-30 2009-02-12 Univ Of Tsukuba 計測データの表示方法
WO2009018456A2 (en) 2007-07-31 2009-02-05 The General Hospital Corporation Systems and methods for providing beam scan patterns for high speed doppler optical frequency domain imaging
US7682089B2 (en) * 2007-08-15 2010-03-23 Rohlen Brooks H System and method for positioning a probe
GB2452267B (en) * 2007-08-28 2010-06-16 Teraview Ltd Scanning Terahertz probe
JP5536650B2 (ja) 2007-08-31 2014-07-02 ザ ジェネラル ホスピタル コーポレイション 自己干渉蛍光顕微鏡検査のためのシステムと方法、及び、それに関連するコンピュータがアクセス可能な媒体
JP5064159B2 (ja) * 2007-09-19 2012-10-31 富士フイルム株式会社 光断層画像化装置
DE102007045570A1 (de) * 2007-09-24 2009-04-02 Robert Bosch Gmbh Sonde und Vorrichtung zum optischen Prüfen von Messobjekten
DE102007045568A1 (de) * 2007-09-24 2009-04-02 Robert Bosch Gmbh Sonde und Vorrichtung zum optischen Prüfen von Messobjekten
JP2011500173A (ja) * 2007-10-12 2011-01-06 ザ ジェネラル ホスピタル コーポレイション 管腔解剖構造の光学イメージングのためのシステムおよびプロセス
WO2009059034A1 (en) 2007-10-30 2009-05-07 The General Hospital Corporation System and method for cladding mode detection
JP5002429B2 (ja) * 2007-11-20 2012-08-15 テルモ株式会社 光干渉断層画像診断装置
US20090137893A1 (en) * 2007-11-27 2009-05-28 University Of Washington Adding imaging capability to distal tips of medical tools, catheters, and conduits
JP5140396B2 (ja) * 2007-11-28 2013-02-06 富士フイルム株式会社 光コネクタおよびこれを用いる光断層画像化装置
US8411922B2 (en) * 2007-11-30 2013-04-02 University Of Washington Reducing noise in images acquired with a scanning beam device
JP4986296B2 (ja) * 2008-01-08 2012-07-25 富士フイルム株式会社 光断層画像化システム
US20090177042A1 (en) * 2008-01-09 2009-07-09 University Of Washington Color image acquisition with scanning laser beam devices
US9332942B2 (en) * 2008-01-28 2016-05-10 The General Hospital Corporation Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
US11123047B2 (en) 2008-01-28 2021-09-21 The General Hospital Corporation Hybrid systems and methods for multi-modal acquisition of intravascular imaging data and counteracting the effects of signal absorption in blood
JP5192247B2 (ja) 2008-01-29 2013-05-08 並木精密宝石株式会社 Octプローブ
JP2009201969A (ja) * 2008-02-01 2009-09-10 Fujifilm Corp Oct用光プローブおよび光断層画像化装置
JP2009189522A (ja) * 2008-02-14 2009-08-27 Fujifilm Corp Oct用光プローブおよび光断層画像化装置
US20090208143A1 (en) * 2008-02-19 2009-08-20 University Of Washington Efficient automated urothelial imaging using an endoscope with tip bending
US20110144503A1 (en) * 2008-02-20 2011-06-16 Alpha Orthopaedics, Inc. Optical methods for monitoring of birefringent tissues
US20100016688A1 (en) * 2008-02-20 2010-01-21 Alpha Orthopaedics, Inc. Optical methods for real time monitoring of tissue treatment
JP5069585B2 (ja) * 2008-02-25 2012-11-07 富士フイルム株式会社 光プローブを用いた光断層画像化装置
US8452383B2 (en) * 2008-02-29 2013-05-28 Tomophase Corporation Temperature profile mapping and guided thermotherapy
JP5274862B2 (ja) * 2008-03-10 2013-08-28 東京エレクトロン株式会社 温度測定装置及び温度測定方法
EP2278915A4 (en) * 2008-05-07 2012-11-14 Volcano Corp OPTICAL IMAGING CATHETER FOR ABERRATION CORRECTION
EP2274572A4 (en) 2008-05-07 2013-08-28 Gen Hospital Corp SYSTEM, METHOD AND COMPUTER MEDIUM FOR MONITORING THE MOVEMENT OF VESSELS DURING A THREE-DIMENSIONAL MICROSCOPY EXAMINATION OF CORONARY ARTERIES
US20090287199A1 (en) * 2008-05-19 2009-11-19 Brian Hanley Side-firing laser fiber with protective tip and related methods
US20090287200A1 (en) * 2008-05-19 2009-11-19 Brian Hanley Side-firing laser fiber with glass fused reflector and capillary and related methods
US8425500B2 (en) 2008-05-19 2013-04-23 Boston Scientific Scimed, Inc. Method and apparatus for protecting capillary of laser fiber during insertion and reducing metal cap degradation
US9289262B2 (en) * 2008-05-19 2016-03-22 Boston Scientific Scimed, Inc. Dielectric coatings for laser fiber and related methods
WO2009155536A2 (en) 2008-06-20 2009-12-23 The General Hospital Corporation Fused fiber optic coupler arrangement and method for use thereof
JP5127605B2 (ja) 2008-07-07 2013-01-23 富士フイルム株式会社 光断層画像化装置
EP2309923B1 (en) 2008-07-14 2020-11-25 The General Hospital Corporation Apparatus and methods for color endoscopy
JP2010043994A (ja) * 2008-08-15 2010-02-25 Fujifilm Corp 光プローブ及び3次元画像取得装置
EP2322912A4 (en) * 2008-09-12 2014-10-08 Konica Minolta Opto Inc ROTARY OPTICAL FIBER MODULE AND OPTICAL COHERENCE TOMOGRAM GENERATING DEVICE
JP2010082040A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 内視鏡システム
WO2010047190A1 (ja) * 2008-10-20 2010-04-29 コニカミノルタオプト株式会社 光回転プローブ
US8937724B2 (en) 2008-12-10 2015-01-20 The General Hospital Corporation Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
JP5623028B2 (ja) * 2009-01-23 2014-11-12 キヤノン株式会社 光干渉断層画像を撮る撮像方法及びその装置
WO2010085775A2 (en) 2009-01-26 2010-07-29 The General Hospital Corporation System, method and computer-accessible medium for providing wide-field superresolution microscopy
CA2749670A1 (en) 2009-02-04 2010-08-12 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
JP5249073B2 (ja) * 2009-02-12 2013-07-31 株式会社ニデック 光干渉式距離計測装置
US10485422B2 (en) 2009-02-19 2019-11-26 Manish Dinkarrao Kulkarni System and method for imaging subsurface of specimen
WO2010098014A1 (ja) 2009-02-24 2010-09-02 テルモ株式会社 画像診断装置及びその制御方法
WO2010105197A2 (en) 2009-03-12 2010-09-16 The General Hospital Corporation Non-contact optical system, computer-accessible medium and method for measuring at least one mechanical property of tissue using coherent speckle techniques(s)
US8467858B2 (en) * 2009-04-29 2013-06-18 Tomophase Corporation Image-guided thermotherapy based on selective tissue thermal treatment
EP2440285B1 (en) * 2009-06-10 2021-08-04 Medtronic, Inc. Tissue oxygenation monitoring in heart failure
US8391979B2 (en) * 2009-06-10 2013-03-05 Medtronic, Inc. Shock reduction using absolute calibrated tissue oxygen saturation and total hemoglobin volume fraction
WO2010144662A1 (en) * 2009-06-10 2010-12-16 Medtronic, Inc. Absolute calibrated tissue oxygen saturation and total hemoglobin volume fraction
US8352008B2 (en) * 2009-06-10 2013-01-08 Medtronic, Inc. Active noise cancellation in an optical sensor signal
EP2440116B1 (en) * 2009-06-10 2018-02-28 Medtronic, Inc. Device and method for monitoring of absolute oxygen saturation and tissue hemoglobin concentration
JP5545618B2 (ja) * 2009-07-06 2014-07-09 株式会社ニデック 眼寸法測定装置
EP2453791B1 (en) * 2009-07-14 2023-09-06 The General Hospital Corporation Apparatus for measuring flow and pressure within a vessel
US8964017B2 (en) 2009-08-26 2015-02-24 Tomophase, Inc. Optical tissue imaging based on optical frequency domain imaging
US20110066017A1 (en) * 2009-09-11 2011-03-17 Medtronic, Inc. Method and apparatus for post-shock evaluation using tissue oxygenation measurements
JP5524549B2 (ja) * 2009-09-15 2014-06-18 テルモ株式会社 光プローブ
EP2480132A1 (en) * 2009-09-24 2012-08-01 Koninklijke Philips Electronics N.V. Optical probe system with increased scanning speed
EP2484267B1 (en) * 2009-09-30 2019-02-20 Terumo Kabushiki Kaisha Diagnostic imaging apparatus and method for controlling same
EP2322123A1 (en) 2009-11-13 2011-05-18 Carl Zeiss Surgical GmbH Surgical device
WO2011062087A1 (ja) * 2009-11-17 2011-05-26 コニカミノルタオプト株式会社 光断層画像測定装置のプローブ及びプローブの調整方法
US8911433B2 (en) * 2009-11-18 2014-12-16 Boston Scientific Scimed, Inc. Methods and apparatus related to a distal end of a side-fire optical fiber having multiple capillary components
US8532456B2 (en) 2009-12-17 2013-09-10 Boston Scientific Scimed, Inc. Methods and apparatus related to an optical fiber member having a removable cover
JP5814942B2 (ja) * 2010-01-25 2015-11-17 アクサン・テクノロジーズ・インコーポレーテッドAxsun Technologies,Inc. 光プローブ、光プローブの製造方法、およびレンズ構造体の製造方法
WO2011152894A2 (en) 2010-02-22 2011-12-08 Boston Scientific Scimed, Inc. Methods and apparatus related to a side-fire optical fiber having a robust distal end portion
WO2011109835A2 (en) 2010-03-05 2011-09-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
WO2011116347A1 (en) * 2010-03-19 2011-09-22 Quickvein, Inc. Apparatus and methods for imaging blood vessels
JP5592137B2 (ja) * 2010-03-30 2014-09-17 テルモ株式会社 光画像診断装置及びその表示制御方法
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
EP2575597B1 (en) 2010-05-25 2022-05-04 The General Hospital Corporation Apparatus for providing optical imaging of structures and compositions
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
JP6066901B2 (ja) 2010-06-03 2017-01-25 ザ ジェネラル ホスピタル コーポレイション 1つまたは複数の管腔器官内または管腔器官にある構造を撮像するための装置およびデバイスのための方法
JP5389749B2 (ja) * 2010-06-24 2014-01-15 富士フイルム株式会社 生体情報画像化装置及び方法
JP5631671B2 (ja) * 2010-09-07 2014-11-26 オリンパス株式会社 光イメージング装置
US20120075639A1 (en) * 2010-09-24 2012-03-29 Jeffrey Brennan Imaging systems and methods incorporating non-mechanical scanning beam actuation
WO2012058381A2 (en) 2010-10-27 2012-05-03 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
TWI453000B (zh) * 2010-11-12 2014-09-21 Crystalvue Medical Corp 光學裝置及其運作方法
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
DE112012000509T5 (de) * 2011-01-19 2014-01-02 Hoya Corporation OCT-Sonde
EP2680743A4 (en) * 2011-03-02 2014-08-13 Diagnostic Photonics Inc PORTABLE OPTICAL PROBE WITH FIXED FOCUS
JP5787063B2 (ja) * 2011-03-31 2015-09-30 株式会社ニデック 眼科撮影装置
JP2012229976A (ja) * 2011-04-26 2012-11-22 Hoya Corp 光走査型プローブ
WO2012149175A1 (en) 2011-04-29 2012-11-01 The General Hospital Corporation Means for determining depth-resolved physical and/or optical properties of scattering media
US8655431B2 (en) 2011-05-31 2014-02-18 Vanderbilt University Apparatus and method for real-time imaging and monitoring of an electrosurgical procedure
US9757038B2 (en) 2011-05-31 2017-09-12 Vanderbilt University Optical coherence tomography probe
CN106913358B (zh) * 2011-05-31 2021-08-20 光学实验室成像公司 多模式成像系统、设备和方法
JP2013031634A (ja) * 2011-06-30 2013-02-14 Canon Inc 撮像装置
US9131850B2 (en) * 2011-07-18 2015-09-15 St. Jude Medical, Inc. High spatial resolution optical coherence tomography rotation catheter
JP2014523536A (ja) 2011-07-19 2014-09-11 ザ ジェネラル ホスピタル コーポレイション 光コヒーレンストモグラフィーにおいて偏波モード分散補償を提供するためのシステム、方法、装置およびコンピュータアクセス可能な媒体
EP3835718B1 (en) 2011-08-25 2023-07-26 The General Hospital Corporation Apparatus for providing micro-optical coherence tomography inside a respiratory system
WO2013033592A1 (en) 2011-08-31 2013-03-07 Volcano Corporation Optical-electrical rotary joint and methods of use
JP2015502562A (ja) 2011-10-18 2015-01-22 ザ ジェネラル ホスピタル コーポレイション 再循環光学遅延を生成および/または提供するための装置および方法
CN102520505B (zh) * 2011-12-04 2015-02-25 中国科学院光电技术研究所 基于棱镜的双通光学延迟线
JP5120509B1 (ja) * 2012-02-15 2013-01-16 住友電気工業株式会社 光プローブおよび光学的測定方法
JP5655805B2 (ja) 2012-03-21 2015-01-21 住友電気工業株式会社 光プローブおよび光学的測定方法
JP6103775B2 (ja) * 2012-03-26 2017-03-29 テルモ株式会社 光学医療用デバイス及び光学医療用デバイスの制御方法
JP6024151B2 (ja) * 2012-03-29 2016-11-09 住友電気工業株式会社 光プローブ
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
WO2013170090A1 (en) * 2012-05-11 2013-11-14 California Institute Of Technology Control imaging methods in advanced ultrafast electron microscopy
WO2013177154A1 (en) 2012-05-21 2013-11-28 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US10539731B2 (en) * 2012-06-07 2020-01-21 Poinare Systems, Inc. Grin lens and methods of making the same
WO2014002732A1 (ja) * 2012-06-27 2014-01-03 オリンパスメディカルシステムズ株式会社 撮像装置および撮像システム
JP2014016318A (ja) * 2012-07-11 2014-01-30 Sumitomo Electric Ind Ltd 光断層画像取得方法
EP2888616A4 (en) 2012-08-22 2016-04-27 Gen Hospital Corp SYSTEM, METHOD AND COMPUTER-ACCESSIBLE MEDIA FOR MANUFACTURING MINIATURE ENDOSCOPES USING SOFT LITHOGRAPHY
DE102012108424A1 (de) * 2012-09-10 2014-03-13 Institut für Mess- und Regelungstechnik der Leibniz Universität Hannover Optisches System mit einer GRIN-Optik und Vorrichtung mit zumindest zwei optischen Systemen
CN104619235B (zh) * 2012-09-13 2017-03-29 奥林巴斯株式会社 测量探头以及生物体光学测量系统
GB2506191B (en) 2012-09-25 2018-06-27 Bae Systems Plc Apparatus and methods for use with optical rotating joint
GB2506190B (en) 2012-09-25 2018-06-27 Bae Systems Plc Apparatus and methods for use with optical rotating joint
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
EP2904671B1 (en) 2012-10-05 2022-05-04 David Welford Systems and methods for amplifying light
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
US20140153864A1 (en) * 2012-12-04 2014-06-05 Ninepoint Medical, Inc. Low cost extended depth of field optical probes
CA2894403A1 (en) 2012-12-13 2014-06-19 Volcano Corporation Devices, systems, and methods for targeted cannulation
EP2908088B1 (en) * 2012-12-13 2017-03-01 Toyo Seikan Group Holdings, Ltd. Method and device for measuring polishing amount of optical fiber component
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
CA2895989A1 (en) 2012-12-20 2014-07-10 Nathaniel J. Kemp Optical coherence tomography system that is reconfigurable between different imaging modes
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
EP2934282B1 (en) 2012-12-20 2020-04-29 Volcano Corporation Locating intravascular images
WO2014099899A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
EP2936626A4 (en) 2012-12-21 2016-08-17 David Welford SYSTEMS AND METHODS FOR REDUCING LIGHT WAVE LENGTH TRANSMISSION
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
CA2895940A1 (en) 2012-12-21 2014-06-26 Andrew Hancock System and method for multipath processing of image signals
WO2014100606A1 (en) 2012-12-21 2014-06-26 Meyer, Douglas Rotational ultrasound imaging catheter with extended catheter body telescope
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
EP2936426B1 (en) 2012-12-21 2021-10-13 Jason Spencer System and method for graphical processing of medical data
WO2014120791A1 (en) 2013-01-29 2014-08-07 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
WO2014121082A1 (en) 2013-02-01 2014-08-07 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
CN113705586A (zh) 2013-03-07 2021-11-26 飞利浦影像引导治疗公司 血管内图像中的多模态分割
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
CN105228518B (zh) 2013-03-12 2018-10-09 火山公司 用于诊断冠状微脉管疾病的系统和方法
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
CN105120759B (zh) 2013-03-13 2018-02-23 火山公司 用于从旋转血管内超声设备产生图像的系统和方法
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US20160030151A1 (en) 2013-03-14 2016-02-04 Volcano Corporation Filters with echogenic characteristics
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
JP6378311B2 (ja) 2013-03-15 2018-08-22 ザ ジェネラル ホスピタル コーポレイション 物体を特徴付ける方法とシステム
US9439570B2 (en) 2013-03-15 2016-09-13 Lx Medical Corporation Tissue imaging and image guidance in luminal anatomic structures and body cavities
US9364167B2 (en) 2013-03-15 2016-06-14 Lx Medical Corporation Tissue imaging and image guidance in luminal anatomic structures and body cavities
WO2014186353A1 (en) 2013-05-13 2014-11-20 The General Hospital Corporation Detecting self-interefering fluorescence phase and amplitude
US20140340756A1 (en) * 2013-05-17 2014-11-20 Ninepoint Medical, Inc. Optical coherence tomography optical probe systems and methods to reduce artifacts
WO2015009932A1 (en) 2013-07-19 2015-01-22 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
EP3021735A4 (en) 2013-07-19 2017-04-19 The General Hospital Corporation Determining eye motion by imaging retina. with feedback
US9668652B2 (en) 2013-07-26 2017-06-06 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
WO2015025932A1 (ja) * 2013-08-23 2015-02-26 住友電気工業株式会社 光プローブおよび光学的測定方法
DE102013110423A1 (de) * 2013-09-20 2015-04-09 Karl Storz Gmbh & Co. Kg Endoskop
US9696136B2 (en) 2013-09-25 2017-07-04 Carl Zeiss Meditec, Inc. Methods and systems for modifying second-order chromatic dispersion in optical coherence tomographic systems
JP2015104582A (ja) * 2013-11-29 2015-06-08 株式会社ニデック 光断層像撮影装置、及び光断層像撮影プログラム
US10022187B2 (en) * 2013-12-19 2018-07-17 Novartis Ag Forward scanning-optical probes, circular scan patterns, offset fibers
WO2015105870A1 (en) 2014-01-08 2015-07-16 The General Hospital Corporation Method and apparatus for microscopic imaging
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10130259B2 (en) 2014-02-05 2018-11-20 British Columbia Cancer Agency Branch Systems for optical imaging of biological tissues
JP6349881B2 (ja) * 2014-03-31 2018-07-04 株式会社ニデック 光断層像撮影装置
WO2015153982A1 (en) 2014-04-04 2015-10-08 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
JP6630061B2 (ja) * 2014-05-28 2020-01-15 天津先陽科技発展有限公司 拡散スペクトルデータの処理方法及び処理装置
US20150351629A1 (en) * 2014-06-06 2015-12-10 Novartis Ag Back reflection minimization for oct probes
WO2015188258A1 (en) * 2014-06-11 2015-12-17 Nova Coast Medical Ltd. Dispersion compensation
ES2907287T3 (es) 2014-07-25 2022-04-22 Massachusetts Gen Hospital Aparato para imagenología y diagnóstico in vivo
US20170265745A1 (en) * 2014-07-29 2017-09-21 Collage Medical Imaging Ltd. Integrated optical coherence tomography (oct) scanning and/or therapeutic access tools and methods
US9671564B2 (en) * 2014-08-08 2017-06-06 Kaiser Optical Systems Inc. Monolithic element and system for collimating or focusing laser light from or to an optical fiber
JP6387281B2 (ja) 2014-10-09 2018-09-05 浜松ホトニクス株式会社 Oct装置用光検出モジュール及びoct装置
US11159784B2 (en) * 2014-10-23 2021-10-26 Cognex Corporation System and method for calibrating a vision system with respect to a touch probe
EP3214999A1 (en) 2014-11-04 2017-09-13 Corning Incorporated Non-cylindrical hypotubes
WO2016079851A1 (ja) * 2014-11-20 2016-05-26 オリンパス株式会社 内視鏡システムおよび内視鏡
JP6425242B2 (ja) * 2014-12-16 2018-11-21 国立大学法人静岡大学 変調光検出のsn比を向上する方法
JP6033501B1 (ja) * 2014-12-25 2016-11-30 オリンパス株式会社 走査型内視鏡
JP6563666B2 (ja) * 2015-03-26 2019-08-21 テルモ株式会社 画像診断装置及びその制御方法、プログラム及びコンピュータ可読記憶媒体
CN107949311B (zh) 2015-04-16 2021-04-16 Gentuity有限责任公司 用于神经病学的微光探针
WO2016167204A1 (ja) * 2015-04-16 2016-10-20 住友電気工業株式会社 光プローブ
CN104825121B (zh) * 2015-05-08 2017-04-26 南京微创医学科技股份有限公司 内窥式oct微探头、oct成像系统及使用方法
US9927374B2 (en) 2015-06-10 2018-03-27 The Boeing Company Optical scanning assembly and method of inspecting a channel
EP3322959B1 (en) * 2015-07-13 2024-04-03 Renishaw Plc. Method for measuring an artefact
US10631718B2 (en) 2015-08-31 2020-04-28 Gentuity, Llc Imaging system includes imaging probe and delivery devices
US9915520B2 (en) * 2015-09-14 2018-03-13 Thorlabs, Inc. Apparatus and methods for one or more wavelength swept lasers and the detection of signals thereof
CN107091950B (zh) 2016-02-16 2021-01-19 姚晓天 基于光学传感原理集成了温度传感的反射式电流和磁场传感器
CN107085130B (zh) * 2016-02-16 2020-05-19 姚晓天 采用主动温度补偿的偏振不敏感电流和磁场传感器
JP6775995B2 (ja) * 2016-05-11 2020-10-28 キヤノン株式会社 光断層撮像装置、光断層撮像装置の作動方法、及びプログラム
CN109314574A (zh) * 2016-06-23 2019-02-05 皇家飞利浦有限公司 光学发送器、光学接收器和光学链路
JP6736397B2 (ja) * 2016-07-15 2020-08-05 キヤノン株式会社 光断層撮像装置、光断層撮像装置の作動方法、及びプログラム
KR101823122B1 (ko) * 2016-09-27 2018-01-29 울산과학기술원 광섬유형 혈관측정장치, 이의 제조방법, 광섬유형 혈관측정시스템 및 광섬유형 혈관측정시스템을 이용한 혈관측정방법
JP2018063160A (ja) * 2016-10-12 2018-04-19 富士通株式会社 検査装置および検査方法
US10631733B2 (en) 2017-03-13 2020-04-28 Go!Foton Holdings, Inc. Lens combination for an optical probe and assembly thereof
JP6423032B2 (ja) * 2017-03-29 2018-11-14 株式会社トプコン 3次元測量装置
US10426326B2 (en) * 2017-04-19 2019-10-01 Canon U.S.A, Inc. Fiber optic correction of astigmatism
CN107692969B (zh) * 2017-10-11 2024-07-02 深圳英美达医疗技术有限公司 一种内窥型光学相干断层成像探头及其成像系统
CN107752985B (zh) * 2017-11-17 2024-08-06 苏州阿格斯医疗技术有限公司 Oct成像方法、oct成像导管及oct系统
EP3700406A4 (en) 2017-11-28 2021-12-29 Gentuity LLC Imaging system
JP6867629B2 (ja) * 2018-01-31 2021-04-28 株式会社Screenホールディングス 画像処理方法、プログラムおよび記録媒体
WO2020018722A1 (en) * 2018-07-17 2020-01-23 The Regents Of The University Of California Optical device, system and method of monitoring thermal therapy in soft tissue
US10791923B2 (en) 2018-09-24 2020-10-06 Canon U.S.A., Inc. Ball lens for optical probe and methods therefor
US11105973B2 (en) 2019-01-11 2021-08-31 Schott Corporation Optically enhanced high resolution image guides
CN109924943B (zh) * 2019-04-25 2024-07-02 南京博视医疗科技有限公司 一种基于改进的线扫描成像系统的稳像方法及系统
CN110251085B (zh) * 2019-06-24 2020-07-17 北京理工大学 一种光学相干层析成像手持探头
JP7524305B2 (ja) 2019-08-12 2024-07-29 バード・アクセス・システムズ,インコーポレーテッド 医療機器用の形状センシングシステム
JP7408670B2 (ja) * 2019-08-20 2024-01-05 株式会社カネカ 光照射医療装置
CN111375136B (zh) * 2019-10-09 2021-12-28 鲍玉珍 太赫兹波理疗终端、用于早中期乳腺癌的太赫兹波理疗系统
US11525670B2 (en) 2019-11-25 2022-12-13 Bard Access Systems, Inc. Shape-sensing systems with filters and methods thereof
CN214804697U (zh) 2019-11-25 2021-11-23 巴德阿克塞斯系统股份有限公司 光学尖端追踪系统
US11474310B2 (en) * 2020-02-28 2022-10-18 Bard Access Systems, Inc. Optical connection systems and methods thereof
EP4127798A1 (en) 2020-03-30 2023-02-08 Bard Access Systems, Inc. Optical and electrical diagnostic systems and methods thereof
TWI749531B (zh) * 2020-04-22 2021-12-11 晉弘科技股份有限公司 掃描裝置以及光學同調斷層掃描系統
US11622816B2 (en) 2020-06-26 2023-04-11 Bard Access Systems, Inc. Malposition detection system
CN113926050A (zh) 2020-06-29 2022-01-14 巴德阿克塞斯系统股份有限公司 用于光纤的自动尺寸参考系
CN216317552U (zh) 2020-07-10 2022-04-19 巴德阿克塞斯系统股份有限公司 用于检测医疗装置的光纤技术的损坏和潜在损坏的医疗装置系统
WO2022031613A1 (en) 2020-08-03 2022-02-10 Bard Access Systems, Inc. Bragg grated fiber optic fluctuation sensing and monitoring system
WO2022029920A1 (ja) * 2020-08-05 2022-02-10 朝日インテック株式会社 光照射デバイス、及び、光照射システム
CN112237423A (zh) * 2020-08-13 2021-01-19 张海军 一种介入式弱磁与压力感知系统
WO2022067096A1 (en) 2020-09-25 2022-03-31 Bard Access Systems, Inc. Fiber optics oximetry system for detection and confirmation
JP7122506B2 (ja) * 2020-09-25 2022-08-22 ライトラボ・イメージング・インコーポレーテッド 光ファイバビーム方向付けシステム及び装置
EP4229456A1 (en) 2020-10-13 2023-08-23 Bard Access Systems, Inc. Disinfecting covers for functional connectors of medical devices and methods thereof
CN113324953A (zh) * 2021-05-27 2021-08-31 武汉大学 一种液体环境下的反射式光纤气体传感探头装置
CN113413139B (zh) * 2021-06-22 2022-09-16 赵雁之 一种基于光学相干弹性成像图像融合装置
WO2023049715A1 (en) * 2021-09-21 2023-03-30 Raytheon Company Dual-polarization rotationally-insensitive monostatic transceiver with standard fiber
WO2023150435A2 (en) * 2022-02-02 2023-08-10 The General Hospital Corporation An ultra-flexible miniature optical coherence tomography catheter and imaging method for endomicroscopy of the inner ear
US12089815B2 (en) 2022-03-17 2024-09-17 Bard Access Systems, Inc. Fiber optic medical systems and devices with atraumatic tip

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
WO1992019930A1 (en) * 1991-04-29 1992-11-12 Massachusetts Institute Of Technology Method and apparatus for optical imaging and measurement
JP4021975B2 (ja) * 1997-08-28 2007-12-12 オリンパス株式会社 光走査プローブ装置
US6069698A (en) * 1997-08-28 2000-05-30 Olympus Optical Co., Ltd. Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object
RU2148378C1 (ru) * 1998-03-06 2000-05-10 Геликонов Валентин Михайлович Устройство для оптической когерентной томографии, оптоволоконное сканирующее устройство и способ диагностики биоткани in vivo
US6201608B1 (en) * 1998-03-13 2001-03-13 Optical Biopsy Technologies, Inc. Method and apparatus for measuring optical reflectivity and imaging through a scattering medium
US6053613A (en) * 1998-05-15 2000-04-25 Carl Zeiss, Inc. Optical coherence tomography with new interferometer
JP2000097848A (ja) * 1998-09-18 2000-04-07 Dainippon Printing Co Ltd 表面プラズモン共鳴測定装置
US6615072B1 (en) * 1999-02-04 2003-09-02 Olympus Optical Co., Ltd. Optical imaging device
US6293674B1 (en) * 2000-07-11 2001-09-25 Carl Zeiss, Inc. Method and apparatus for diagnosing and monitoring eye disease

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022760A1 (ja) 2013-08-10 2015-02-19 並木精密宝石株式会社 光イメージング用プローブ
US9574870B2 (en) 2013-08-10 2017-02-21 Namiki Seimitsu Houseki Kabushiki Kaisha Probe for optical imaging
US9869821B2 (en) 2014-01-06 2018-01-16 Namiki Seimitsu Houseki Kabushiki Kaisha Probe for optical imaging
US10422621B2 (en) 2015-07-03 2019-09-24 Adamant Namiki Precision Jewel Co., Ltd. Optical measurement device having a plurality of rotary shafts and displacement detectors for detecting axial displacement of each rotary shaft and using the detected axial displacement for three-dimensional image correction

Also Published As

Publication number Publication date
US20030004412A1 (en) 2003-01-02
JP2000262461A (ja) 2000-09-26
US6564089B2 (en) 2003-05-13
JP2004223269A (ja) 2004-08-12
JP4576017B2 (ja) 2010-11-04
US6615072B1 (en) 2003-09-02
JP2004209268A (ja) 2004-07-29

Similar Documents

Publication Publication Date Title
JP3885114B2 (ja) 光走査プローブ装置
US7180600B2 (en) Optical imaging apparatus
JP5704516B2 (ja) 光断層画像測定装置のプローブ及びプローブの調整方法
JP2000097846A (ja) 光走査プローブ装置
US6687010B1 (en) Rapid depth scanning optical imaging device
US6847454B2 (en) Systems and methods for processing signals from an interferometer by an ultrasound console
US6501551B1 (en) Fiber optic imaging endoscope interferometer with at least one faraday rotator
EP0883793B1 (en) Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US8145018B2 (en) Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements
US7576865B2 (en) Optical coherent tomographic (OCT) imaging apparatus and method using a fiber bundle
US20060058614A1 (en) Tomographic image observation apparatus, endoscopic apparatus, and probe used therefor
CN101589301B (zh) 利用体积测定过滤技术来增强光学相干断层成像的装置和方法
US6466713B2 (en) Optical fiber head for providing lateral viewing
JP2000097846A5 (ja) 光走査プローブ装置及び光イメージング装置
US20150116726A1 (en) Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
US20140031679A1 (en) Optical scanning probe
JP4037538B2 (ja) 光イメージング装置
JP2008504557A (ja) マルチモードの光画像化方法及びその光ファイバスキャナ
JP2000321034A (ja) 光イメージング装置
US20120194661A1 (en) Endscopic spectral domain optical coherence tomography system based on optical coherent fiber bundle
US8204088B2 (en) Wavelength tunable laser and optical tomography system using the wavelength tunable laser
US8602975B2 (en) Optical rotary probe
JP2001079007A (ja) 光プローブ装置
JP2014094121A (ja) 光伝達装置及び光学素子
JP2014094123A (ja) 光伝達装置及び光学素子

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3885114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term