JP2007135947A - 光プローブおよび光断層画像化装置 - Google Patents

光プローブおよび光断層画像化装置 Download PDF

Info

Publication number
JP2007135947A
JP2007135947A JP2005335157A JP2005335157A JP2007135947A JP 2007135947 A JP2007135947 A JP 2007135947A JP 2005335157 A JP2005335157 A JP 2005335157A JP 2005335157 A JP2005335157 A JP 2005335157A JP 2007135947 A JP2007135947 A JP 2007135947A
Authority
JP
Japan
Prior art keywords
light
optical
optical fiber
probe
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005335157A
Other languages
English (en)
Inventor
Yuichi Teramura
友一 寺村
Masami Hatori
正美 羽鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005335157A priority Critical patent/JP2007135947A/ja
Priority to US11/602,183 priority patent/US7539362B2/en
Publication of JP2007135947A publication Critical patent/JP2007135947A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • G01N2021/9548Scanning the interior of a cylinder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Endoscopes (AREA)

Abstract

【課題】筒状のプローブ外筒を有し、その外筒の周面から出射する光を偏向させる機能を備えた光プローブにおいて、細径化を容易にし、コストダウンを実現する。
【解決手段】筒状のプローブ外筒11の内部空間に、該外筒11の長手方向に延びる状態にして光ファイバ13を配置する。そして光ファイバ13の先端から出射した光Lを、例えばプローブ外筒11の周方向に偏向させる光偏向素子17を該光ファイバ13に固定して設けるともに、光ファイバ13をモータ15等からなる駆動手段によって回転させることにより、光偏向素子17を回転させる。また光ファイバ13の先端部近傍に、該光ファイバ13の外周面より耐摩耗性の高い保護部材16を固定し、この保護部材16をプローブ外筒11側の軸受け部12に回転自在に受承させる。
【選択図】図1

Description

本発明は光プローブに関し、特に詳細には、筒状のプローブ外筒を有し、その周面から出射する光を偏向させる機能を備えた光プローブに関するものである。
また本発明は、上述のような光プローブを用いる光断層画像化装置に関するものである。
従来、生体組織等の測定対象の断層画像を取得する方法の一つとして、例えば特許文献1、2に示されるように、OCT(Optical Coherence Tomography)計測により光断層画像を取得する方法が提案されている。このOCT計測は、光干渉計測の一種であり、二つに分けた光、すなわち測定光と参照光との光路長が光源のコヒーレンス長以内の範囲で一致したときにのみ光干渉が検出されることを利用した計測方法である。すなわちこの方法において、光源から射出された低コヒーレント光は測定光と参照光とに分割され、測定光は測定対象に照射され、測定対象からの反射光が合波手段に導かれる。一方、参照光は、測定対象内の測定したい任意の場所からの反射光と光路長が同一となる様にその光路長が調整され、合波手段に導かれる。そして、合波手段により測定光と参照光が合波され、光検出器によりその光強度が検出される。
一次元の断層像を得るためには、測定光の光路長を測定エリアに応じて走査することで、測定光の進行方向と同一の軸に沿った反射率分布に応じた干渉強度波形が得られる。すなわち、測定対象の深さ方向に有する構造に応じた光反射強度分布を得ることができる。さらに、測定対象へ当てる測定光の照射位置を、偏向手段、あるいは物理的な移動手段を用いて光軸と垂直な一次元方向に走査する事で、二次元の光反射強度の断層像が得られる。さらに、測定光の照射位置を、光軸方向と垂直な二次元方向に亘って走査することで、三次元の光反射強度の断層像を得ることができる。
上記OCT装置においては、参照光の光路長を変更することにより、測定対象に対する測定位置(測定深さ)を変更し断層画像を取得するようになっており、この手法は一般にTD−OCT(Time domain OCT)計測と称されている。より具体的に、特許文献1の参照光の光路長調整機構は、光ファイバから射出した参照光をミラーに集光する光学系を有し、ミラーのみを参照光のビーム軸方向に移動させて光路長の調整を行っている。また特許文献2に示された参照光の光路長調整機構は、光ファイバから射出した参照光をレンズによって平行光化し、平行光になった参照光を再び光路長調整レンズにより集光して光ファイバに入射させ、そして、光路長調整レンズを参照光のビーム軸方向に進退させて光路長の調整を行っている。
他方、上述した参照光の光路長の変更を行うことなく高速に断層画像を取得する装置として、SD−OCT(Spectral Domain OCT)計測による光断層画像化装置が提案されている。このSD−OCT装置は、上記TD−OCTと同様に干渉計を用いて測定光と参照光に分割した広帯域の低コヒーレント光を、光路長をほぼ等しく合わせて干渉させた後、干渉光を分光手段により各光周波数成分に分解し、アレイ型光検出器にて各光周波数成分毎の干渉光強度を測定し、ここで得られたスペクトル干渉波形を計算機でフーリエ変換解析することにより、光路長の走査を物理的に行わずに光軸方向の一次元断層画像を構成するようにしたものである。上記TD−OCTと同様に、測定光の照射位置を光軸と垂直な方向に走査することで、二次元、さらには三次元の断層画像を得ることができる。
さらに、参照光の光路長の変更を行うことなく高速に断層画像を取得する装置として、SS−OCT(Swept source OCT)計測による光断層画像化装置も提案されている。このSS−OCT装置は、光源に光周波数可変レーザ光源を用いる。高コヒーレンスなレーザ光は、測定光と参照光とに分割され、測定光は測定対象に照射され、測定対象からの反射光が合波手段に導かれる。一方、参照光は、測定光と光路長をほぼ等しく合わせて干渉させた後、合波手段に導かれる。そして、合波手段により測定光と参照光が合波され、光検出器によりその光強度が検出される。光周波数可変レーザ光源の周波数を掃引させることで、各光周波数成分毎の干渉光強度を測定し、ここで得られたスペクトル干渉波形を計算機でフーリエ変換することにより、光路長の走査を物理的に行わずに光軸方向の一次元断層画像を構成するようにしたものである。上記TD−OCTと同様に、測定光の照射位置を光軸と垂直な方向に走査することで、二次元、さらには三次元の断層画像を得ることができる。
以上説明したような各方式の光断層画像化装置においては、通常、測定対象のある面に沿った断層画像を取得するようにしており、そのためには、測定対象において測定光を少なくとも光軸と垂直な1次元方向に走査させる必要がある。このような光走査を行う手段の一つとして、従来、特許文献3に示されるように、筒状のプローブ外筒を有し、その外筒の周面から出射する光を該周面に沿った方向に偏向させる機能を備えた光プローブが公知となっている。より具体的にこの光プローブは、被検体内部に挿入される挿入部(プローブ外筒)と、このプローブ外筒の内部空間に挿通された回転可能な中空シャフトと、該シャフトの内部に挿通された光ファイバと、上記シャフトの先端に固定されてこのシャフトと共に回転し、光ファイバの先端から出射した光をプローブ外筒の周面回り方向に偏向させる光偏向素子とを備えたものである。
特開平6−165784号公報 特開2003−139688号公報 特許第3104984号公報
光断層画像の観察は、これまでに報告のある消化器から、気管支、尿管、血管とより微細な領域への展開が期待されており、そのような観点から、光プローブをより細径化することが望まれている。しかし、上記特許文献3に示された光プローブでは、シャフトの強度を確保するためにそれをかなりの肉厚に形成することが必要で、またシャフトと内部の光ファイバとの間に空隙を確保する必要があるため、微細化が難しくなっている。
また、被検体内のより深い領域を観察したいという要求があり、その際には数mにも及ぶ長いプローブを作製する必要があるが、微細で長い円筒形のシャフト内部に光ファイバを通す作業は非常に困難である。その上、シャフト内部に挿通させる際に光ファイバを破損することもあるので、このような光プローブは生産性が悪いものとなっている。さらに、このような円筒形のシャフトの作製はコストが嵩むので、それにより光プローブのコストが高いものとなってしまう。
剛性が高い光ファイバを用いる場合は、光ファイバを上述のようなシャフトに挿通させずに、その先端部に光偏向素子を固定した状態で該光ファイバを回転させることも考えられる。そのようにする場合は、光ファイバを円滑に回転可能とするために、それとプローブ外筒の内周面との間に空隙が設定されるが、そのような構造においては光ファイバの先端部がふらついて回転することが避けられない。そうであると、光プローブから出射した光の偏向軌跡が不規則に乱れるので、被検体内の正確な断層画像を構成することが不可能になる。
本発明は上記の事情に鑑みてなされたものであり、細径化が容易で、低コストで作製することができ、その上、プローブ外筒の周面から出射する光を一定の面内で軌跡を描くように整然と偏向させることができる光プローブを提供することを目的とする。
また本発明は、そのような光プローブを用いることにより、小型化および低コスト化を実現できる光断層画像化装置を提供することを目的とする。
本発明による光プローブは、プローブ外筒の中に中空のシャフトを挿通させ、さらに該シャフト内に光ファイバを挿通させるといった複雑な構成を避けて、プローブ外筒の中で光ファイバを回転させる構成を採用した上で、プローブ外筒側に設けた軸受け部に光ファイバを回転自在に受承させることにより、上記目的を達成するようにしたものである。
すなわち、より具体的に本発明による光プローブは、
筒状のプローブ外筒と、
このプローブ外筒の内部空間に、該外筒の軸方向に延びる状態に配設された光ファイバと、
この光ファイバを前記プローブ外筒の周方向に回転させる駆動手段と、
前記光ファイバと一体的に保持されて回転し、該光ファイバの先端から出射した光を偏向させる光偏向素子と、
前記光ファイバの先端から出射した光を集光して、前記プローブ外筒の周外方に配された被走査体において収束させる集光手段と、
前記光ファイバの外周面よりも高い耐摩耗性を有し、該光ファイバの先端近傍位置において前記外周面の一部に固定された保護部材と、
前記プローブ外筒の内周面に固定されて、前記保護部材を介して前記光ファイバを回転自在に受承する軸受け部とを備えたことを特徴とするものである。
なお通常、光ファイバのクラッドの外側には紫外線硬化型樹脂等の樹脂からなる被覆が形成されるが、その場合、光ファイバの外周面は樹脂から形成されていることになる。そのような場合、この外周面よりも高い耐摩耗性を有する保護部材としては、例えばステンレス等の金属からなるものを好適に用いることができる。
また上記保護部材には、上記軸受け部の一部に当接して、該保護部材の光ファイバ軸方向への移動を抑止する当接部が形成されていることが望ましい。
他方、本発明による光断層画像化装置は、先に説明したような各計測方式の光断層画像化装置に、本発明による光プローブが用いられたことを特徴とするものである。すなわち、より具体的に本発明による光断層画像化装置は、
光を射出する光源と、
この光源から射出された光を測定光と参照光とに分割する光分割手段と、
前記測定光を測定対象に照射する照射光学系と、
前記測定対象に測定光が照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
合波された前記反射光と前記参照光との干渉光を検出する干渉光検出手段と、
この検出された干渉光の周波数および強度に基づいて、前記測定対象の複数の深さ位置における反射光の強度を検出し、これらの各深さ位置における反射光の強度に基づいて測定対象の断層画像を取得する画像取得手段とを備えてなる光断層画像化装置において、
前記照射光学系が、本発明による光プローブを含んで構成されていることを特徴とするものである。
本発明の光プローブは、プローブ外筒の中に配した光ファイバに光偏向素子を保持させ、この光ファイバを回転させて光偏向素子を回転させるようにしているので、プローブ外筒の中に中空のシャフトを挿通させ、さらに該シャフト内に光ファイバを挿通させるようにした従来の光プローブと比べると構造が極めて簡単になる。そこでこの光プローブは、細径化が容易で、しかも低コストで作製可能となる。
さらにこの本発明による光プローブは、プローブ外筒の中に光ファイバを配置したものであるので、それら両者の間に上記中空シャフト等が介在する場合と異なって、全長をかなり長く形成する場合でも光ファイバの配置が非常に難しくなることが無く、よってこの点からも作製コストを低く抑えることが可能になる。
そして、上述のようにプローブ外筒の中に直接的に光ファイバを配置していても、該光ファイバはその先端近傍位置に固定された前記保護部材を介して、プローブ外筒側の軸受け部に回転自在に受承されているから、光ファイバの先端部がふらついて回転するようなことがない。したがってこの光プローブによれば、プローブ外筒の周面から出射する光を、一定の面内で軌跡を描くように整然と偏向させることが可能になる。
さらに本発明の光プローブにおいて、光ファイバは、その外周面よりも高い耐摩耗性を有する保護部材を介して軸受け部に受承されているから、回転する光ファイバの外周面が、プローブ外筒の内周面との摩擦によって摩耗してしまうことも防止される。
また本発明の光プローブにおいて、特に保護部材に、上記軸受け部の一部に当接して、該保護部材の光ファイバ軸方向への移動を抑止する当接部が形成されている場合は、この保護部材が軸受け部から脱落することが防止される。そうであれば、保護部材が軸受け部から脱落した状態で光ファイバが回転し、その結果、光ファイバの外周面や光偏向素子がプローブ外筒の内周面と擦れて破損あるいは摩耗してしまうことを防止できる。
一方、本発明による光断層画像化装置は、上述した通りの本発明による光プローブが適用されたものであるから、小型化および低コスト化を実現できるものとなる。
以下、図面を参照して本発明の実施形態を詳細に説明する。図1は、本発明の第1の実施形態による光プローブ10の一部破断側面形状を示すものであり、また図2はこの光プローブ10を、図1のA−A線の位置で破断して示す立断面図である。この光プローブ10は、一例として光断層画像化装置の一部となる内視鏡の先端部分を構成するものであり、図3にはその光断層画像化装置の全体形状を示してある。
まず図3を参照して、光断層画像化装置の概略について説明する。本装置は、光プローブ10を含む内視鏡50と、この内視鏡50が接続される光源装置51、ビデオプロセッサ52および光断層処理装置53と、ビデオプロセッサ52に接続されたモニタ54とを備えている。内視鏡50は、可撓性を有する細長のプローブ外筒11と、このプローブ外筒11の後端に連設された操作部56と、この操作部56の側部から延出されたユニバーサルコード57とを備えている。
ユニバーサルコード57内には、光源装置51からの照明光を伝送する図示外のライトガイドが挿通されており、またユニバーサルコード57の端部には、光源装置51に着脱自在に接続される光源コネクタ58が設けられている。この光源コネクタ58からは信号ケーブル59が延出され、この信号ケーブル59の端部に、前記ビデオプロセッサ52に着脱自在に接続される信号コネクタ60が設けられている。光源装置51は、後述のようにして断層像が取得される被検体70の部分に照明光を照射するためのものである。
また前記操作部56には、プローブ外筒11に設けられた湾曲部を湾曲操作するための湾曲操作ノブ61と、ライトガイド駆動部62とが設けられ、このライトガイド駆動部62と前記光断層処理装置53とが、ライドガイド63を介して接続されている。プローブ外筒11は、例えば人体の臓器等の被検体70内に挿入されるようになっている。
次に図1および図2を参照して、光プローブ10について説明する。この光プローブ10は、先端が閉じられた円筒状のプローブ外筒11と、このプローブ外筒11の内周面の一部に固定された円環状の軸受け部12と、プローブ外筒11の内部空間において、該外筒11の軸方向に延びる状態に配設された1本の光ファイバ13と、この光ファイバ13の外周面の一部に固定された歯車14aと、この歯車14aに噛合する歯車14bと、該歯車14bを回転させるモータ15とを有している。
また、上記光ファイバ13の先端に近い位置においてその外周面の一部には、円筒形の保護部材16が嵌合固定され、この保護部材16は前記軸受け部12に回転自在に受承されている。したがって上記モータ15が駆動されると、その回転力が歯車14bおよび14aを介して光ファイバ13に伝達され、該光ファイバ13がその長軸回りに、つまりプローブ外筒11の周方向に回転する。以上の通り本実施形態においては、歯車14bおよび14a並びにモータ15により、光ファイバ13を回転させる駆動手段が構成されている。
なお保護部材16は、光ファイバ13の外周面よりも高い耐摩耗性を有する材料から形成されている。図2に示されるように、光ファイバ13がコア13aおよびクラッド13bを有し、このクラッド13bの外側に紫外線硬化型樹脂等の樹脂からなる被覆13cが設けられている場合、光ファイバ13の外周面は樹脂から形成されていることになる。そのような場合保護部材16は、樹脂よりも耐摩耗性が高い例えばステンレス等の金属や、あるいは「テフロン(登録商標)」等の高耐摩耗性を有する樹脂から形成される。
なお図中には特に示していないが、歯車14aが固定された部分に近い位置においても、光ファイバ13には上記保護部材16と同様の保護部材が固定され、その保護部材が上記軸受け部12と同様の軸受け部に回転自在に受承されている。
さらにこの光プローブ10は、光ファイバ13の先端に固定されたロッドレンズ18と、このロッドレンズ18に固定されたプリズムミラー17とを有している。プリズムミラー17は、光ファイバ13の先端から出射した光Lの光路を90°変え、光ファイバ13が上述のように回転するとそれとともに回転して、光ファイバ13の先端から出射した光Lをプローブ外筒11の周方向に偏向させる。またロッドレンズ18は、光ファイバ13の先端から出射した光Lを、プローブ外筒11の周外方に配された被走査体としての被検体70において収束するように集光する。なお本実施形態においてこのロッドレンズ18およびプリズムミラー17は、後述するように、被検体70で反射した光Lを光ファイバ13の先端に導いて、該先端から光ファイバ13に入射させる導光手段を兼ねている。
そして図3に示される通り、内視鏡50の内部には、光ファイバ13の基端に向かい合う状態にして入射光学系20が配設されている。ライドガイド63を導波して来てそこから出射した光Lは、この入射光学系20で集光されて、上記基端から光ファイバ13に入射するようになっている。
以下、上記構成の光プローブ10の作用について説明する。図3に示す光断層処理装置53内にはレーザ等の光源(図示せず)が配置され、そこから射出されたレーザ光等の光Lはライドガイド63に入射してそこを導波する。ライドガイド63から出射した後、入射光学系20を経て光ファイバ13に入射した光Lは、光ファイバ13を導波してその先端から出射し、ロッドレンズ18で集光された後プリズムミラー17で反射して90°光路を変え、透光性のプローブ外筒11からプローブ外に出射する。そしてモータ15が駆動されると前述のように光ファイバ13が回転し、それに固定されているプリズムミラー17およびロッドレンズ18も回転する。
プリズムミラー17が上記のように回転することにより、そこから出射した光Lは、プローブ外筒11の周方向に偏向し、被検体70を図3の矢印R方向に走査する。この光Lは被検体70において散乱しながら反射し、その反射光の一部はプリズムミラー17に入射してロッドレンズ18側に反射する。この反射光はロッドレンズ18により集光されて、光ファイバ13の先端から該光ファイバ13内に入射する。
こうして光ファイバ13内を伝搬した反射光は該光ファイバ13の基端から出射し、図3に示す入射光学系20を経てライドガイド63に入射し、このライドガイド63を導波して光断層処理装置53に送光される。光断層処理装置53内において上記反射光は、光プローブ10側に向かう前記光Lの光路から分岐され、図示しない光検出器によって検出される。そして、この光検出器の出力に基づいて被検体70の断層画像が形成され、その断層画像がモニタ54に表示される。
以上説明した通り本実施形態の光プローブ10は、プローブ外筒11の中に光ファイバ13を配置し、この光ファイバ13を回転させて光偏向素子としてのプリズムミラー17を回転させるようにしているので、プローブ外筒の中に中空のシャフトを挿通させ、さらに該シャフト内に光ファイバを挿通させた構造を有する従来の光プローブと比べると構造が極めて簡単になる。そこでこの光プローブ10は、細径化が容易で、しかも低コストで作製可能となる。
さらに本実施形態の光プローブ10は、プローブ外筒11の中に直接的に光ファイバ13を配置したものであるので、それら両者の間に中空シャフト等が介在する場合と異なって、全長をかなり長く形成する場合でも光ファイバ13の配置が非常に難しくなることが無く、よってこの点からも作製コストを低く抑えることが可能になる。
そして、上述のようにプローブ外筒11の中に直接的に光ファイバ13を配置していても、該光ファイバ13はその先端近傍位置に固定された保護部材16を介して、プローブ外筒11側の軸受け部12に回転自在に受承されているから、光ファイバ13の先端部がふらついて回転するようなことがない。したがってこの光プローブ10によれば、プローブ外筒11の周面から出射する光Lを、一定の面内で軌跡を描くように整然と偏向させることが可能である。
さらに本実施形態の光プローブ10において、光ファイバ13は、その外周面よりも高い耐摩耗性を有する保護部材16を介して軸受け部12に受承されているから、回転する光ファイバ13の外周面が、プローブ外筒11の内周面との摩擦によって摩耗してしまうことも防止される。
次に、本発明の第2の実施形態について説明する。図4は、本発明の第2の実施形態による光プローブ100の一部破断側面形状を示すものである。なおこの図4において、図1〜3中の要素と同等の要素には同番号を付し、それらについての説明は特に必要のない限り省略する(以下、同様)。
この第2実施形態の光プローブ100は、先に説明した第1実施形態の光プローブ10と比べると、保護部材16に代えて、2つの当接部16a、16aを有する保護部材16′が適用された点が異なるものであり、その他の点は基本的に同様に構成されている。
上記保護部材16′は、2つの当接部16a、16aが軸受け部12の両側に位置する状態に配設されている。これらの当接部16a、16aの外径は、軸受け部12の内径と外径の中間の大きさとされている。したがって、この保護部材16′つまり光ファイバ13がファイバ軸方向に大きく動こうとすると、当接部16a、16aのいずれかが軸受け部12の端面に当接するので、そのような光ファイバ13の動きが抑止される。そうであれば、保護部材16′が軸受け部12から脱落した状態で光ファイバ13が回転し、その結果、光ファイバ13の外周面やプリズムミラー17がプローブ外筒11の内周面と擦れて破損あるいは摩耗しまうことを防止できる。
なお上に説明した軸受け部12は、前述した通り、1つに限らずに複数設けてもよい。また、プローブ外筒11の中に光ファイバ13を複数配置し、それらをまとめて回転させるように構成することも可能である。また、軸受け部12と保護部材16あるいは16′との間にグリースを付着させて、光ファイバ13の回転をさらに円滑化するようにしてもよい。さらに、プローブ外筒11の内部を、オイル等の粘性の高い液体で満たすようにしてもよい。
また、以上説明した実施形態においては、光偏向素子であるプリズムミラー17と集光手段であるロッドレンズ18とが密着配置されているが、このようにすることは必ずしも必要ではなく、それぞれが離間して配置されてもよい。また、光偏向素子と集光手段の光軸に沿った位置は、上述の各実施形態におけるのとは逆転させて、光源側に光偏向素子が位置するようにしてもよい。
また、以上説明した各実施形態の光プローブは光断層画像化装置の一部となる内視鏡を構成するものであるが、本発明はその種の光プローブに限らず、筒状のプローブ外筒を有し、その外筒の周面から出射する光を外筒の周方向に偏向させる光プローブ全般に適用可能であり、いずれの場合も先に説明した効果を奏することができる。
以下、本発明による光プローブが適用される光断層画像化装置の例について説明する。まず図5に示す光断層画像化装置1は、例えば体腔内の生体組織や細胞等の測定対象の断層画像を前述のSD−OCT計測により取得するものであって、光Laを射出する光源ユニット210と、光源ユニット210から射出された光Laを測定光L1と参照光L2とに分割する光分割手段3と、光分割手段3により分割された参照光L2の光路長を調整する光路長調整手段220と、光分割手段3により分割された測定光L1を測定対象Sbに照射する光プローブ10と、こうして測定対象Sbに測定光L1が照射されたとき該測定対象Sbで反射した反射光L3と参照光L2とを合波する合波手段4と、合波された反射光L3と参照光L2との間の干渉光L4を検出する干渉光検出手段240とを有している。
光源ユニット210は、低コヒーレント光Laを射出する例えばSLD(Super Luminescent Diode)やASE(Amplified Spontaneous Emission)、超短パルスレーザ光を非線形媒質に照射させて広帯域光を得るスーパーコンティニューム等の光源111と、この光源111から射出された光を光ファイバFB1内に入射させるための光学系112とを有している。
光分割手段3は、例えば2×2の光ファイバカプラから構成されており、光源ユニット210から光ファイバFB1を介して導波した光Laを測定光L1と参照光L2とに分割する。この光分割手段3は、2本の光ファイバFB2、FB3にそれぞれ光学的に接続されており、測定光L1は光ファイバFB2を導波し、参照光L2は光ファイバFB3を導波する。なお、本例におけるこの光分割手段3は、合波手段4としても機能するものである。
光ファイバFB2には、先に図1に示した光プローブ10が光学的に接続されており、測定光L1は光ファイバFB2から光プローブ10へ導波する。光プローブ10は、例えば鉗子口から鉗子チャンネルを介して体腔内に挿入されるものであって、光学コネクタ31により光ファイバFB2に対して着脱可能に取り付けられている。
一方、光ファイバFB3の参照光L2の射出側には光路長調整手段220が配置されている。光路長調整手段220は、断層画像の取得を開始する位置を調整するために、参照光L2の光路長を変更するものであって、光ファイバFB3から射出された参照光L2を反射させる反射ミラー22と、反射ミラー22と光ファイバFB3との間に配置された第1光学レンズ21aと、第1光学レンズ21aと反射ミラー22との間に配置された第2光学レンズ21bとを有している。
第1光学レンズ21aは、光ファイバFB3のコアから射出された参照光L2を平行光にするとともに、反射ミラー22により反射された参照光L2を光ファイバFB3のコアに集光する機能を有している。また、第2光学レンズ21bは、第1光学レンズ21aにより平行光にされた参照光L2を反射ミラー22上に集光するとともに、反射ミラー22により反射された参照光L2を平行光にする機能を有している。つまり、第1光学レンズ21aと第2光学レンズ21bとにより共焦点光学系が形成されている。
したがって、光ファイバFB3から射出した参照光L2は、第1光学レンズ21aにより平行光になり、第2光学レンズ21bにより反射ミラー22上に集光される。その後、反射ミラー22により反射された参照光L2は、第2光学レンズ21bにより平行光になり、第1光学レンズ21aにより光ファイバFB3のコアに集光される。
さらに光路長調整手段220は、第2光学レンズ21bと反射ミラー22とを固定した基台23と、該基台23を第1光学レンズ21aの光軸方向に移動させるミラー移動手段24とを有している。そして基台23が矢印A方向に移動することにより、参照光L2の光路長が変えられるようになっている。
また合波手段4は、前述の通り2×2の光ファイバカプラからなり、光路長調整手段220により周波数シフトおよび光路長の変更が施された参照光L2と、測定対象Sbからの反射光L3とを合波し、光ファイバFB4を介して干渉光検出手段240側に射出するように構成されている。
一方、干渉光検出手段240は、合波手段4により合波された反射光L3と参照光L2との干渉光L4を検出するものであって、光ファイバFB4から出射した干渉光L4を平行光化するコリメータレンズ141と、複数の波長帯域を有する干渉光L4を各波長帯域毎に分光する分光手段142と、分光手段142により分光された各波長帯域の干渉光L4を検出する光検出手段144とを有している。
分光手段144は例えば回折格子素子等から構成されており、そこに入射した干渉光L4を分光して、光検出手段144に向けて射出する。また光検出手段144は、例えば1次元もしくは2次元に光センサが配列されてなるCCD等の素子から構成され、各光センサが、上述のように分光された干渉光L4を波長帯域毎にそれぞれ検出するようになっている。
上記光検出手段144は例えばパーソナルコンピュータ等のコンピュータシステムからなる画像取得手段250に接続され、この画像取得手段250はCRTや液晶表示装置等からなる表示装置260に接続されている。
以下、上記構成を有する光断層画像化装置1の作用について説明する。断層画像を取得する際には、まず基台23を矢印A方向に移動させることにより、測定可能領域内に測定対象Sbが位置するように光路長の調整が行われる。その後、光源ユニット210から光Laが射出され、この光Laは光分割手段3により測定光L1と参照光L2とに分割される。測定光L1は光プローブ10から体腔内に向けて射出され、測定対象Sbに照射される。このとき、前述したように作動する該光プローブ10により、そこから出射した測定光L1が測定対象Sbを1次元に走査する。そして、測定対象Sbからの反射光L3が反射ミラー22において反射した参照光L2と合波され、反射光L3と参照光L2との干渉光L4が干渉光検出手段240によって検出される。この検出された干渉光L4が画像取得手段250において適当な波形補償、ノイズ除去を施した上でフーリエ変換されることにより、測定対象Sbの深さ方向の反射光強度分布情報が得られる。
そして、光プローブ10により上述のように測定光L1を測定対象Sb上で走査させれば、この走査方向に沿った各部分において測定対象Sbの深さ方向の情報が得られるので、この走査方向を含む断層面についての断層画像を取得することができる。このようにして取得された断層画像は、表示装置260に表示される。なお、例えば光プローブ10を図5の左右方向に移動させて、測定対象Sbに対して測定光L1を、上記走査方向に対して直交する第2の方向に走査させることにより、この第2の方向を含む断層面についての断層画像をさらに取得することも可能である。
次に、本発明による光プローブが適用される光断層画像化装置の別の例について説明する。図6に示す光断層画像化装置300は、測定対象の断層画像を前述のSS−OCT計測により取得するものであって、具体的に図5の光断層画像化装置1と異なる点は、光源ユニットおよび干渉光検出手段の構成である。
本装置における光源ユニット310は、周波数を一定の周期で掃引させながらレーザ光Laを射出するものである。具体的に該光源ユニット310は、半導体光増幅器(半導体利得媒質)311と光ファイバFB10とを有しており、光ファイバFB10が半導体光増幅器311の両端に接続された構造を有している。半導体光増幅器311は駆動電流の注入により微弱な放出光を光ファイバFB10の一端側に射出するとともに、光ファイバFB10の他端側から入射された光を増幅する機能を有している。そして、半導体光増幅器311に駆動電流が供給されたとき、半導体光増幅器311および光ファイバFB10により形成される光共振器によりパルス状のレーザ光Laが光ファイバFB1へ射出されるようになっている。
さらに、光ファイバFB10には光分岐器312が結合されており、光ファイバFB10内を導波する光の一部が光分岐器312から光ファイバFB11側へ射出されるようになっている。光ファイバFB11から射出した光はコリメータレンズ313、回折格子素子314、光学系315を介して回転多面鏡(ポリゴンミラー)316において反射される。そして反射された光は光学系315、回折格子素子314、コリメータレンズ313を介して再び光ファイバFB11に入射される。
ここで、この回転多面鏡316は矢印R1方向に回転するものであって、各反射面の角度が光学系315の光軸に対して変化するようになっている。これにより、回折格子素子314において分光された光のうち、特定の周波数域の光だけが再び光ファイバFB11に戻るようになる。この光ファイバFB11に戻る光の周波数は光学系315の光軸と反射面との角度によって決まる。そして光ファイバFB11に入射した特定の周波数域の光が光分岐器312から光ファイバFB10に入射され、結果として特定の周波数域のレーザ光Laが光ファイバFB1側に射出されるようになっている。
したがって、回転多面鏡316が矢印R1方向に等速で回転したとき、再び光ファイバFB11に入射される光の波長λは、時間の経過に伴って一定の周期で変化することになる。こうして光源ユニット310からは、波長掃引されたレーザ光Laが光ファイバFB1側に射出される。
干渉光検出手段240は、合波手段4により合波された反射光L3と参照光L2との干渉光L4を検出する。そして、画像取得手段250は、干渉光検出手段240により検出された干渉光L4をフーリエ変換することにより、測定対象Sbの各深さ位置における反射光L3の強度を検出し、測定対象Sbの断層画像を取得する。そして、この取得された断層画像が表示装置260に表示される。なお本例の装置は、干渉光L4を光ファイバカプラ3で二分した光をそれぞれ光検出器40aと40bに導き、演算手段241においてバランス検波を行う機構を有している。以上の通り本例では、光検出器40a、40bおよび演算手段241により干渉光検出手段240が構成されている。
ここで、干渉光検出手段240および画像取得手段250における干渉光L4の検出および画像の生成について簡単に説明する。なお、この点の詳細については「武田 光夫、「光周波数走査スペクトル干渉顕微鏡」、光技術コンタクト、2003、Vol.41、No.7、p426−p432」に詳しい記載がなされている。
測定光L1が測定対象Sbに照射されたとき、測定対象Sbの各深さからの反射光L3と参照光L2とがいろいろな光路長差をもって干渉しあう際の各光路長差lに対する干渉縞の光強度をS(l)とすると、干渉光検出手段240において検出される光強度I(k)は、
I(k)=∫ S(l)[1+cos(kl)]dl
で表される。ここで、kは波数、lは光路長差である。上式は波数k=ω/cを変数とする光周波数領域のインターフェログラムとして与えられていると考えることができる。このため、画像取得手段250において、干渉光検出手段240が検出したスペクトル干渉縞をフーリエ変換を行い、干渉光L4の光強度S(l)を決定することにより、測定対象Sbの測定開始位置からの距離情報と反射強度情報とを取得し、断層画像を生成することができる。
この光断層画像化装置300においても、図5の装置に用いられたものと同様の構成を有する光プローブ10が用いられており、その作用も図5の装置におけるのと同様である。
次に、本発明による光プローブが適用される光断層画像化装置のさらに別の例について説明する。図7に示す光断層画像化装置400は、測定対象の断層画像を前述のTD−OCT計測により取得するものであって、レーザ光Laを射出する光源111および集光レンズ112からなる光源ユニット210と、光源ユニット210から射出されて光ファイバFB1を伝搬するレーザ光Laを分割する光分割手段2と、ここを通過したレーザ光Laを測定光L1と参照光L2とに分割する光分割手段3と、光分割手段3により分割されて光ファイバFB3を伝搬した参照光L2の光路長を調整する光路長調整手段220と、光分割手段3により分割されて光ファイバFB2を伝搬した測定光L1を測定対象Sbに照射する光プローブ10と、光プローブ10から測定光L1が測定対象Sbに照射されたときの測定対象からの反射光L3と参照光L2とを合波する合波手段4(光分割手段3が兼ねている)と、合波手段4により合波されて反射光L3と参照光L2との干渉光L4を検出する干渉光検出手段240とを備えている。
上記光路長調整手段220は、光ファイバFB3から出射した参照光L2を平行光化するコリメータレンズ21と、このコリメータレンズ21との距離を変えるように図中矢印A方向に移動可能とされたミラー23と、このミラー23を移動させるミラー移動手段24とから構成されて、測定対象Sb内の測定位置を深さ方向に変化させるために、参照光L2の光路長を変える機能を有している。そして、光路長調整手段220により光路長の変更がなされた参照光L2が合波手段4に導波されるようになっている。
干渉光検出手段240は、合波手段4から光ファイバFB2を伝搬して来た干渉光L4の光強度を検出する。具体的には、測定光L1の全光路長と測定対象Sbのある点で反射、もしくは後方散乱された反射光L3の合計と、参照光L2の光路長差が光源のコヒーレンス長よりも短い場合にのみ、反射光量に比例した振幅の干渉信号が検出される。また、光路長調整手段220により光路長を走査することで、干渉信号が得られる測定対象Sbの反射点位置(深さ)が変わって行き、それにより、干渉光検出手段240が測定対象Sbの各測定位置における反射率信号を検出するようになっている。なお、測定位置の情報は光路長調整手段220から画像取得手段へ出力されるようになっている。そして、ミラー移動手段24における測定位置の情報と干渉光検出手段240により検出された信号とに基づいて、画像取得手段250により測定対象Sbの深さ方向の反射光強度分布情報が得られる。
そして、光プローブ10により上述のように測定光L1を測定対象Sb上で走査させれば、この走査方向に沿った各部分において測定対象Sbの深さ方向の情報が得られるので、この走査方向を含む断層面についての断層画像を取得することができる。このようにして取得された断層画像は、表示装置260に表示される。なお、例えば光プローブ10を図5の左右方向に移動させて、測定対象Sbに対して測定光L1を、上記走査方向と直交する第2の方向に走査させることにより、この第2の方向を含む断層面についての断層画像をさらに取得することも可能である。
この光断層画像化装置400においても、図5の装置に用いられたものと同様の構成を有する光プローブ10が用いられており、その作用も図5の装置におけるのと同様である。
以上、光プローブ10が用いられた光断層画像化装置1、300、400について説明したが、その光プローブ10に代えて、先に述べた本発明の別の実施形態による光プローブ100を用いることも勿論可能である。
本発明の第1実施形態による光プローブを示す一部破断側面図 図1の光プローブの立断面図 図1の光プローブが適用された光断層画像化装置の全体斜視図 本発明の第2実施形態による光プローブを示す一部破断側面図 本発明の光プローブが用いられた、SD−OCT計測による光断層画像化装置の一例を示す概略構成図 本発明の光プローブが用いられた、SS−OCT計測による光断層画像化装置の一例を示す概略構成図 本発明の光プローブが用いられた、TD−OCT計測による光断層画像化装置の一例を示す概略構成図
符号の説明
10、100 光プローブ
11 プローブ外筒
12 軸受け部
13 光ファイバ
14a、14b 歯車
15 モータ
16、16′ 保護部材
17 プリズムミラー
18 ロッドレンズ
L 光

Claims (4)

  1. 筒状のプローブ外筒と、
    このプローブ外筒の内部空間に、該外筒の軸方向に延びる状態に配設された光ファイバと、
    この光ファイバを前記プローブ外筒の周方向に回転させる駆動手段と、
    前記光ファイバと一体的に保持されて回転し、該光ファイバの先端から出射した光を偏向させる光偏向素子と、
    前記光ファイバの先端から出射した光を集光して、前記プローブ外筒の周外方に配された被走査体において収束させる集光手段と、
    前記光ファイバの外周面よりも高い耐摩耗性を有し、該光ファイバの先端近傍位置において前記外周面の一部に固定された保護部材と、
    前記プローブ外筒の内周面に固定されて、前記保護部材を介して前記光ファイバを回転自在に受承する軸受け部とを備えたことを特徴とする光プローブ。
  2. 前記光ファイバの周面が樹脂からなり、前記保護部材が金属から形成されていることを特徴とする請求項1記載の光プローブ。
  3. 前記保護部材に、前記軸受け部の一部に当接して、該保護部材の光ファイバ軸方向への移動を抑止する当接部が形成されていることを特徴とする請求項1または2記載の光プローブ。
  4. 光を射出する光源と、
    この光源から射出された光を測定光と参照光とに分割する光分割手段と、
    前記測定光を測定対象に照射する照射光学系と、
    前記測定対象に測定光が照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
    合波された前記反射光と前記参照光との干渉光を検出する干渉光検出手段と、
    この検出された干渉光の周波数および強度に基づいて、前記測定対象の複数の深さ位置における反射光の強度を検出し、これらの各深さ位置における反射光の強度に基づいて測定対象の断層画像を取得する画像取得手段とを備えてなる光断層画像化装置において、
    前記照射光学系が、請求項1から3いずれか1項記載の光プローブを含んで構成されていることを特徴とする光断層画像化装置。
JP2005335157A 2005-11-21 2005-11-21 光プローブおよび光断層画像化装置 Abandoned JP2007135947A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005335157A JP2007135947A (ja) 2005-11-21 2005-11-21 光プローブおよび光断層画像化装置
US11/602,183 US7539362B2 (en) 2005-11-21 2006-11-21 Optical probe and optical tomography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005335157A JP2007135947A (ja) 2005-11-21 2005-11-21 光プローブおよび光断層画像化装置

Publications (1)

Publication Number Publication Date
JP2007135947A true JP2007135947A (ja) 2007-06-07

Family

ID=38053131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005335157A Abandoned JP2007135947A (ja) 2005-11-21 2005-11-21 光プローブおよび光断層画像化装置

Country Status (2)

Country Link
US (1) US7539362B2 (ja)
JP (1) JP2007135947A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019058644A (ja) * 2017-06-16 2019-04-18 キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc 2次元センサを含む放射状ライン走査分光計

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007026234A1 (de) * 2007-05-31 2008-12-04 Karl Storz Gmbh & Co. Kg Videoendoskop
JP5052279B2 (ja) * 2007-09-28 2012-10-17 富士フイルム株式会社 光断層画像化装置
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US9788790B2 (en) 2009-05-28 2017-10-17 Avinger, Inc. Optical coherence tomography for biological imaging
US8062316B2 (en) 2008-04-23 2011-11-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US8548571B2 (en) 2009-12-08 2013-10-01 Avinger, Inc. Devices and methods for predicting and preventing restenosis
JP2010038634A (ja) * 2008-08-01 2010-02-18 Fujifilm Corp 光プローブおよび光断層画像化装置
JP5259374B2 (ja) * 2008-12-19 2013-08-07 富士フイルム株式会社 光構造観察装置及びその構造情報処理方法
EP2424608B1 (en) 2009-04-28 2014-03-19 Avinger, Inc. Guidewire support catheter
JP5236573B2 (ja) * 2009-05-14 2013-07-17 富士フイルム株式会社 光構造計測装置及びその光プローブ
EP2448502B1 (en) 2009-07-01 2022-04-06 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
WO2014039099A1 (en) 2012-09-06 2014-03-13 Avinger, Inc. Balloon atherectomy catheters with imaging
US9345510B2 (en) 2010-07-01 2016-05-24 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
WO2014039096A1 (en) 2012-09-06 2014-03-13 Avinger, Inc. Re-entry stylet for catheter
JP6205344B2 (ja) 2011-03-28 2017-09-27 アビンガー・インコーポレイテッドAvinger, Inc. 閉塞クロッシング用デバイス、撮像用デバイスおよびアテローム切除用デバイス
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US9482511B2 (en) * 2011-07-22 2016-11-01 Insight Photonic Solutions, Inc. System and method for interlacing differing coherence length sweeps to improve OCT image quality
EP2768406B1 (en) 2011-10-17 2019-12-04 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
CN102551677B (zh) * 2012-03-06 2013-11-27 天津大学 用于漫射光断层成像的内窥式旋转探头
WO2013172974A1 (en) 2012-05-14 2013-11-21 Avinger, Inc. Atherectomy catheter drive assemblies
EP2849661B1 (en) 2012-05-14 2020-12-09 Avinger, Inc. Atherectomy catheters with imaging
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
JP5778354B2 (ja) * 2012-10-25 2015-09-16 浜松ホトニクス株式会社 細胞観察装置、電気刺激装置、及び細胞観察方法
WO2014065329A1 (ja) * 2012-10-25 2014-05-01 浜松ホトニクス株式会社 細胞観察装置及び細胞観察方法
JP6253027B2 (ja) * 2013-01-25 2017-12-27 並木精密宝石株式会社 光イメージング用プローブ
US20140260590A1 (en) * 2013-03-14 2014-09-18 DGI Geoscience Inc. Borehole profiling and imaging
EP2967507B1 (en) 2013-03-15 2018-09-05 Avinger, Inc. Tissue collection device for catheter
EP2967367B1 (en) 2013-03-15 2019-02-20 Avinger, Inc. Optical pressure sensor assembly
WO2014143064A1 (en) 2013-03-15 2014-09-18 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
MX2016010141A (es) 2014-02-06 2017-04-06 Avinger Inc Cateteres de aterectomia y dispositivos de cruce de oclusion.
CN105212889B (zh) * 2014-07-03 2017-05-03 孔垂泽 单孔检查腹腔镜
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
DE102015000050A1 (de) * 2015-01-09 2016-07-14 Olympus Winter & Ibe Gmbh Edoskopoptik
WO2017011587A1 (en) 2015-07-13 2017-01-19 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
CN105510243A (zh) * 2015-12-31 2016-04-20 聚光科技(杭州)股份有限公司 一种光谱分析装置
JP6927986B2 (ja) 2016-01-25 2021-09-01 アビンガー・インコーポレイテッドAvinger, Inc. 遅延補正を備えたoctイメージングカテーテル
WO2017173370A1 (en) 2016-04-01 2017-10-05 Avinger, Inc. Atherectomy catheter with serrated cutter
CN109475368A (zh) 2016-06-03 2019-03-15 阿维格公司 具有可拆卸远端的导管装置
CN109414273B (zh) 2016-06-30 2023-02-17 阿维格公司 具有可塑形的远侧头端的斑块切除导管
WO2018122916A1 (ja) * 2016-12-26 2018-07-05 オリンパス株式会社 光ファイバ走査装置および内視鏡
JP2022553223A (ja) 2019-10-18 2022-12-22 アビンガー・インコーポレイテッド 閉塞横断装置
CN112059797A (zh) * 2020-09-23 2020-12-11 芜湖市久强轴承制造有限公司 一种轴承外圈工件去毛刺装置
CN112834177B (zh) * 2021-01-08 2022-12-06 集美大学 一种航标灯器的可移动式光学测量装置
CN116671958B (zh) * 2023-04-25 2024-08-02 深圳英美达医疗技术有限公司 一种超声小探头、超声装置以及内窥镜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1156786A (ja) * 1997-08-28 1999-03-02 Olympus Optical Co Ltd 光走査プローブ装置
JP2000097846A (ja) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd 光走査プローブ装置
JP3104984B2 (ja) * 1990-09-27 2000-10-30 オリンパス光学工業株式会社 断層像観察用光走査装置
JP2001264246A (ja) * 2000-03-21 2001-09-26 Olympus Optical Co Ltd 光イメージング装置
JP2002153472A (ja) * 2000-11-22 2002-05-28 Fuji Photo Film Co Ltd 画像診断装置
JP2004209268A (ja) * 1999-02-04 2004-07-29 Univ Hospital Of Cleveland 光イメージング装置
JP2005278762A (ja) * 2004-03-29 2005-10-13 Fujinon Corp 穿刺型内視鏡用プローブ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325061B2 (ja) 1992-11-30 2002-09-17 オリンパス光学工業株式会社 光断層イメージング装置
JP3869249B2 (ja) 2001-11-05 2007-01-17 オリンパス株式会社 光イメージング装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3104984B2 (ja) * 1990-09-27 2000-10-30 オリンパス光学工業株式会社 断層像観察用光走査装置
JPH1156786A (ja) * 1997-08-28 1999-03-02 Olympus Optical Co Ltd 光走査プローブ装置
JP2000097846A (ja) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd 光走査プローブ装置
JP2004209268A (ja) * 1999-02-04 2004-07-29 Univ Hospital Of Cleveland 光イメージング装置
JP2001264246A (ja) * 2000-03-21 2001-09-26 Olympus Optical Co Ltd 光イメージング装置
JP2002153472A (ja) * 2000-11-22 2002-05-28 Fuji Photo Film Co Ltd 画像診断装置
JP2005278762A (ja) * 2004-03-29 2005-10-13 Fujinon Corp 穿刺型内視鏡用プローブ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019058644A (ja) * 2017-06-16 2019-04-18 キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc 2次元センサを含む放射状ライン走査分光計

Also Published As

Publication number Publication date
US20070115477A1 (en) 2007-05-24
US7539362B2 (en) 2009-05-26

Similar Documents

Publication Publication Date Title
JP2007135947A (ja) 光プローブおよび光断層画像化装置
JP4640813B2 (ja) 光プローブおよび光断層画像化装置
US10800831B2 (en) Systems and methods for obtaining information associated with an anatomical sample using optical microscopy
JP4895277B2 (ja) 光断層画像化装置
JP4642681B2 (ja) 光断層画像化装置
US7620445B2 (en) Apparatus for acquiring tomographic image formed by ultrasound-modulated fluorescence
JP2007275193A (ja) 光プローブおよび光断層画像化装置
JP5064159B2 (ja) 光断層画像化装置
JP2008253492A (ja) 断層画像処理方法および装置ならびにプログラム
JP2009201969A (ja) Oct用光プローブおよび光断層画像化装置
JP2007101249A (ja) 光断層画像化方法および装置
JP4907279B2 (ja) 光断層画像化装置
JP2007085931A (ja) 光断層画像化装置
JP2008125939A (ja) 光プローブおよびこれを用いた光治療診断システム
JP2007267927A (ja) 光断層画像化方法および装置
JP2008289850A (ja) 光プローブおよび光断層画像化装置
JP2007101267A (ja) 光断層画像化装置
JP4874906B2 (ja) 光断層画像取得方法及び光断層画像化装置
JP5447512B2 (ja) 光干渉断層画像取得装置及び光干渉断層画像取得装置に用いるプローブ
JP2008275529A (ja) 断層画像処理方法および装置ならびにプログラム
JP2008253493A (ja) 断層画像処理方法および装置ならびにプログラム
JP2007101265A (ja) 光断層画像化装置
WO2016081731A1 (en) Systems and methods for obtaining information associated with an anatomical sample using optical microscopy
JP2009300097A (ja) 光断層画像化装置
JP2009178200A (ja) Oct用光プローブおよび光断層画像化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110905