JP2009300097A - 光断層画像化装置 - Google Patents
光断層画像化装置 Download PDFInfo
- Publication number
- JP2009300097A JP2009300097A JP2008151628A JP2008151628A JP2009300097A JP 2009300097 A JP2009300097 A JP 2009300097A JP 2008151628 A JP2008151628 A JP 2008151628A JP 2008151628 A JP2008151628 A JP 2008151628A JP 2009300097 A JP2009300097 A JP 2009300097A
- Authority
- JP
- Japan
- Prior art keywords
- light
- interference
- imaging apparatus
- interference light
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Endoscopes (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
【課題】SD−OCT方式において、測定範囲を確保し、かつ低コストで高分解能化を可能とする。
【解決手段】低コヒーレンス光を射出する光源と、前記光源から射出された光を測定光と参照光とに分割する光分割手段と、前記測定対象からの測定光の反射光と前記参照光とを合波する合波手段と、前記合波された前記反射光と前記参照光との干渉光の方向を時間に応じて変化させる光線偏向手段と、前記偏向された干渉光を分光する複数の異なる波長帯域を有する分光手段と、前記分光された干渉光を検出する干渉光検出手段と、前記検出された干渉光に基づいて前記測定対象の断層画像を取得する画像取得手段とを備え、前記光線偏向手段により前記干渉光の方向を時間に応じて変化させ、前記分光手段が前記干渉光を分光する波長帯域が時間に応じて変化するようにした。
【選択図】図2
【解決手段】低コヒーレンス光を射出する光源と、前記光源から射出された光を測定光と参照光とに分割する光分割手段と、前記測定対象からの測定光の反射光と前記参照光とを合波する合波手段と、前記合波された前記反射光と前記参照光との干渉光の方向を時間に応じて変化させる光線偏向手段と、前記偏向された干渉光を分光する複数の異なる波長帯域を有する分光手段と、前記分光された干渉光を検出する干渉光検出手段と、前記検出された干渉光に基づいて前記測定対象の断層画像を取得する画像取得手段とを備え、前記光線偏向手段により前記干渉光の方向を時間に応じて変化させ、前記分光手段が前記干渉光を分光する波長帯域が時間に応じて変化するようにした。
【選択図】図2
Description
本発明は、光断層画像化装置に係り、特に、波長範囲切り替え可能なSD−OCT方式を用いた光断層画像化装置に関する。
従来、生体組織等の測定対象を切断せずに断面画像を取得する方法として光干渉断層(OCT;Optical Coherence Tomography)計測法を利用した光断層画像化装置が知られている。
このOCT計測法は、光干渉計測法の一種であり、OCTは大きく分けてTD−OCT(Time Domain OCT)とFD−OCT(Fourier Domain OCT)に分類される。FD−OCTはさらにSD−OCT(Spectral Domain OCT)とSS−OCT(Swept Source OCT)に分かれる。
TD−OCTは、光源から射出された光を測定光と参照光に分け、測定光を測定対象に照射して測定対象で反射した反射光と参照光とを合波して干渉光を得るものであるが、測定光と参照光との光路長が一致したときに干渉光が検出されることを利用した計測方法であり、参照光の光路長を変更することにより測定対象に対する測定位置(測定深さ)を変更可能としたものである。
SD−OCTは、広帯域の低コヒーレンス光を測定光と参照光とに分割した後、測定光を測定対象に照射させ、測定対象からの反射光と参照光とを干渉させ、この干渉光を各周波数成分に分解したチャンネルドスペクトルをフーリエ変換することにより、深さ方向の走査を行わずに光断層画像を構成するようにしたものである。
SS−OCTは、光源から射出されるレーザ光の周波数を掃引させて反射光と参照光とを各波長において干渉させ、一連の波長に対する干渉信号をフーリエ変換することにより測定対象の深さ位置における反射光強度を検出し、これを用いて光断層画像を構成するようにしたものである。
このように、SD−OCTはTD−OCTと同様、低コヒーレンス光源を用いるのに対して、SS−OCTは波長掃引光源という特殊なレーザを用いている。この波長掃引光源は、従来SOA(Semiconductor Optical Amplifier;半導体光増幅器)を用いた方式が各種開発されているが、現状では波長帯域が100nm程度以下で、その出力は30mW以下である。今後、広帯域化及び高出力化には技術的なブレークスルーが必要と予測される。
一方、低コヒーレンス光源は例えばCr:Forsteriteレーザのような超短パルスレーザを用いたスーパーコンティニューム光による光源が開発され、広帯域化、高出力化が期待されている。このような中で高速、高感度でかつ高分解能なOCTとして、SD−OCT方式が各種検討されている(例えば、非特許文献1等参照)。
OCT技術は、従来は主に眼科で使用されていたが、近年ではOCTの応用範囲は眼科にとどまらず、食道や気管支、大腸等生体内の各所への応用が検討されている。これらの部位においては、光の吸収係数が少ない波長1.0〜1.5μmの波長帯域の光が生体への影響が少なく生体計測に適しており、これにより生体内の観察ができることから、この波長帯域の光は生体の窓と呼ばれている。
S.H.Yun,et.al.,"High-speed spectral-domain optical coherence tomography at 1.3μm wavelength",Vol.11,No.26,OPTICS EXPRESS 3598
S.H.Yun,et.al.,"High-speed spectral-domain optical coherence tomography at 1.3μm wavelength",Vol.11,No.26,OPTICS EXPRESS 3598
しかしながら、SD−OCTで用いられる上記波長範囲に感度のあるInGaAs系のアレイディテクタは、コストが高いという問題がある。また上記アレイディテクタの画素数も1024ピクセル以下のものがほとんどであり、サンプリング点数が多く取れないという問題がある。
例えば、SLD(Super Luminescent Diode)のような狭帯域光源で、中心波長λ=1.34μm、波長範囲λd=120nm、ピクセル数Ns=1024の場合に測定可能距離Δzを計算してみる。
計算方法は例えば、Gerd Hausler & Michael Walter Lindner,"Coherence Radar and Spectral Radar-New Tools for Dermatological Diagnosis" Journal of Biomedical Optics,JAN.1998,Vol.3,No.1に記載されている式(8)を用いると、1ピクセル当たりの波長幅をδλ=λd/Nsとすると、測定可能距離は、Δz=(1/4)・λ2/δλによって計算できる。
これによれば、この場合δλ=120/1024=0.117nmであり、測定可能距離はΔz=(1/4)・(1.34)2/0.117=3.83mmとなる。また、1ピクセル当たりの距離δzは、δz=Δz/Ns=3.83/1024=3.74μmとなる。
これに対して、Cr:Forsteriteレーザを用いた広帯域光源(Cr:Forsterite with a dispersion shifted fiber)の場合、中心波長をλ=1.30μm、波長範囲をλd=400nm、ピクセル数をNs=1024として上と同様に計算すると以下のようになる。
1ピクセル当たりの波長幅δλ=400/1024=0.391nmより、測定可能距離Δzは、Δz=1.08mmであり、また1ピクセル当たりの距離はδz=1.06μmとなる。
このように広帯域光源の場合には、測定可能距離が狭帯域光源の場合よりも極めて小さくなってしまう。
このとき画素数をNs=2048ピクセルと2倍にすると、1ピクセル当たりの波長幅はδλ=0.195nmとなるので、測定可能距離はΔz=2.16mmとなる。食道、気管支、大腸の粘膜厚は通常2mm以下であり、粘膜内病変の診断を対象とした研究が行われているが、上記測定可能距離によれば、この通常の測定距離2mmを確保することができる。しかし、画素数2048のように画素数の多いディテクタは現在非常に高価である。
このように、高分解能が期待されるSD−OCTにおいて、光源の広帯域化による高分解能化が進展すると測定範囲が縮小するという問題が生じ、また、これを解決しようとして画素数の多いディテクタを用意しようとするとコストが上昇するという問題がある。
本発明は、このような事情に鑑みてなされたもので、SD−OCT方式において、測定範囲を確保し、かつ低コストで高分解能化が可能な光断層画像化装置を提供することを目的とする。
前記目的を達成するために、請求項1に記載の発明は、低コヒーレンス光を射出する光源と、前記光源から射出された光を測定光と参照光とに分割する光分割手段と、前記測定光を測定対象に照射したときの前記測定対象からの反射光と、前記参照光とを合波する合波手段と、前記合波された前記反射光と前記参照光との干渉光の方向を時間に応じて変化させる光線偏向手段と、前記光線偏向手段で偏向された前記干渉光を分光する複数の異なる波長帯域を有する分光手段と、前記分光手段により分光された前記干渉光を検出する干渉光検出手段と、前記検出された干渉光に基づいて前記測定対象の断層画像を取得する画像取得手段と、を備え、前記光線偏向手段により前記干渉光の方向を時間に応じて変化させることにより、前記分光手段が前記干渉光を分光する波長帯域が時間に応じて変化するようにしたSD−OCT装置として構成されたことを特徴とする光断層画像化装置を提供する。
これにより、SD−OCTによる光断層画像化装置において、測定範囲を確保し、低コストで高分解能を実現することが可能となる。
また、請求項2に示すように、前記光線偏向手段がポリゴンミラーであることを特徴とする。
また、請求項3に示すように、前記光線偏向手段がガルバノミラーであることを特徴とする。
これらの具体的手段により、干渉光の方向を容易に時間的に変化させることが可能となる。
また、請求項4に示すように、前記分光手段が透過型グレーティングであることを特徴とする。
また、請求項5に示すように、前記分光手段が反射型グレーティングであることを特徴とする。
また、請求項6に示すように、前記分光手段がプリズムであることを特徴とする。
また、請求項7に示すように、前記分光手段がグリズムであることを特徴とする。
これらの具体的手段により、容易に干渉光を所定の波長帯域に分光することが可能となる。
また、請求項8に示すように、前記干渉光検出手段がアレイディテクタであることを特徴とする。
これにより、分光された各波長帯域の干渉光を容易に検出することが可能となる。
以上説明したように、本発明によれば、SD−OCTによる光断層画像化装置において、測定範囲を確保し、低コストで高分解能を実現することができる。
以下、添付図面を参照して、本発明に係る光断層画像化装置について詳細に説明する。
図1は、本発明に係る光断層画像化装置の一実施形態を示す概略構成図である。
図1に示すように、本実施形態の光断層画像化装置1は、例えば、体腔内の生体組織や細胞等の測定対象Sの断層画像をSD−OCT(Spectral Domain OCT)方式により取得するものであって、光を射出する光源ユニット10と、光源ユニット10から射出された光(低コヒーレント光)Laを測定光L1と参照光L2とに分割する光分割手段2により分割された参照光L2の光路長を調整する光路長調整手段20と、光分割手段2により分割された測定光L1を測定対象まで導波するプローブ30と、プローブ30から測定光L1が測定対象Sに照射されたときの測定対象Sからの反射光L3と参照光L2とを合波する合波手段4と、合波手段4により合波された反射光L3と参照光L2との干渉光L4を検出する干渉光検出部(干渉光検出手段)40と、干渉光検出部40により検出された干渉光L4を周波数解析することにより測定対象Sの各深さ位置における干渉光L4の強度を検出し測定対象Sの断層画像を取得する処理部(画像取得手段)50と、取得された断層画像を表示する表示部52と、処理部50及び表示部52を制御する操作制御部54等を有している。
なお、本実施形態は、干渉光検出部40において干渉光L4を時間に応じて測定波長範囲を切り替えるようにして測定範囲を確保するとともに高分解能化を可能とするものである。
光源ユニット10は、例えばSLD(Super Luminescent Diode)やASE(Amplified Spontaneous Emission)等の低コヒーレント光Laを射出する光源11と、光源11から射出された光を光ファイバFB3内に入射させるための光学系12とを有している。なお、本実施形態の光断層画像化装置1は、体腔内の生体部位を測定対象Sとして断層画像を取得するものであり、低コヒーレント光Laを射出する光源11としては、上記SLDやASEなどの他に、熱光源、超短パルスレーザを用いたスーパーコンティニューム(SC)光等を用いることができる。
光分割手段2は、例えば2×2の光ファイバカプラからなっており、光源ユニット10から光ファイバFB3を介して導波されたレーザ光Laを測定光L1と参照光L2とに分割するものである。光分割手段2は、2つの光ファイバFB2、FB4にそれぞれ光学的に接続されており、測定光L1は光ファイバFB2側に導波され、参照光L2は光ファイバFB4側に導波されるようになっている。
光ファイバFB4の一方の先端は光分岐器(サーキュレータ)6に接続しており、光分岐器6にはさらに光ファイバFB5及び光ファイバFB7が接続されている。光ファイバFB4から導波された参照光L2は、光分岐器6から光ファイバFB5に導波される。そして、光ファイバFB5の先には光路長調整手段20が配置されている。
光路長調整手段20は、断層画像の取得を開始する位置を調整するために、参照光L2の光路長を変えるものである。光路長調整手段20は、光ファイバFB5から射出された参照光L2を反射させる反射ミラー22と、反射ミラー22と光ファイバFB5との間に配置された第1光学レンズ21aと、第1光学レンズ21aと反射ミラー22との間に配置された第2光学レンズ21bとを有している。
第1光学レンズ21aは、光ファイバFB5から射出された参照光L2を平行光にするとともに、反射ミラー22により反射された参照光L2を光ファイバFB5のコアに集光する機能を有している。また、第2光学レンズ21bは、第1光学レンズ21aにより平行光にされた参照光L2を反射ミラー22上に集光するとともに、反射ミラー22により反射された参照光L2を平行光にする機能を有している。
これにより、光ファイバFB5から射出された参照光L2は、第1光学レンズ21aにより平行光となり、第2光学レンズ21bにより反射ミラー22上に集光される。その後、反射ミラー22により反射された参照光L2は、第2光学レンズ21bにより平行光になり、第1光学レンズ21aにより光ファイバFB5のコアに集光される。
さらに、光路長調整手段20は、第2光学レンズ21bと反射ミラー22とを固定した可動ステージ23と、該可動ステージ23を第1光学レンズ21aの光軸方向に移動させるミラー移動機構24とを有している。そして可動ステージ23が矢印A方向に移動することにより、参照光L2の光路長が変更するように構成されている。
光路長調整手段20により光路長が変更された参照光L2は、再び光ファイバFB5に入射され、さらに光分岐器6を介して光ファイバFB7側に導波される。
一方、測定光L1を導波する光ファイバFB2の先には光分岐器(サーキュレータ)8が接続しており、光分岐器8にはさらに光ファイバFB1及び光ファイバFB6が接続されており、測定光L1は光分岐器8から光ファイバFB1側に導波される。
光ファイバFB1の一方の先端にはプローブ30が光学的に接続されており、測定光L1は光ファイバFB1からプローブ30内の光ファイバFB0に導波されるようになっている。プローブ30は、例えば鉗子口から鉗子チャンネルを介して体腔内に挿入されるものであって、光学コネクタOCによって光ファイバFB1に対して着脱可能に取り付けられている。
プローブ30は、光学コネクタOCを介して光ファイバFB1と接続されており、光ファイバFB1によって導波された測定光L1がプローブ30内の光ファイバFB0に入射される。入射された測定光L1は光ファイバFB0によって伝送され測定対象Sに照射される。そして、測定対象Sで反射した戻り光(反射光)L3は、再び光ファイバFB0に入射し、光学コネクタOCを介して光ファイバFB1に射出されるようになっている。
光ファイバFB1に入射した反射光L3は、光分岐器8を介して光ファイバFB6側に導波されるようになっている。
そして光ファイバFB6によって導波された反射光L3及び光ファイバFB7によって導波された参照光L2は、合波手段4によって合波され、干渉光L4として光ファイバFB8に出力される。合波手段4としては、上述した光分割手段2と同様の光ファイバカプラから成るファイバ干渉系が好適に例示されるが、その他に、ファイバでないレンズによる従来のバルク干渉系でも良い。
光ファイバFB8によって導波された干渉光L4は、干渉光検出部40によって検出される。
干渉光検出部40は、光ファイバFB8から射出された干渉光L4を導く光学系41、42と、光学系41、42によって導かれた干渉光L4の方向を時間に応じて変える光線偏向手段としての回転多面鏡(ポリゴンミラー)43と、回転多面鏡43で反射された干渉光L4を平行光束とするコリメータレンズ44と、平行光束とされた干渉光L4を各波長帯域毎に分光し測定波長範囲を切り替える分光手段45と、各波長帯域に分光された干渉光L4を集光する光学レンズ46と、集光された干渉光L4を検出する光検出手段47とから構成されている。
回転多面鏡(ポリゴンミラー)43は、図に示すように矢印Rの方向に回転しながらその面に入射した干渉光L4を分光手段45に向けて反射し、その回転に伴い干渉光L4の方向が時間に応じて変化し、分光手段45上を走査するようにするものである。このような光線偏向手段としては回転多面鏡(ポリゴンミラー)43に限定されるものではなく、その他に例えばガルバノミラーを用いることもできる。
分光手段45は、複数の異なる波長帯域を有し、干渉光L4を各波長帯域に分光するものであり、例えば透過型グレーティングが好適に例示されるが、その他に反射型グレーティングやプリズム、あるいはグレーティングとプリズムが合体したグリズム等を用いることもできる。なお、本実施形態では、分光手段45として透過型グレーティングを用いることとし、以後透過型グレーティング45と表示する。
光検出手段47は、CCD等の素子が1次元に配列されたアレイディテクタ、例えば、InGaAs系ラインセンサ、フォトダイオードアレイ等のラインセンサが好適に用いられる。なお、本実施形態では、光検出手段47として1次元アレイディテクタを用いることとし、以後1次元アレイディテクタ47と表示する。
具体的には、例えばGoodrich-Sensor Unlimited社から1024ピクセル、スキャンレート46000ライン/秒(46kHz)という仕様のSU−LDHシリーズの近赤外線(InGaAs)高速ラインスキャンカメラが市販されており、これが好適に利用可能である。
光検出手段(1次元アレイディテクタ)47は、処理部(画像取得手段)50に接続され、処理部50はCRTや液晶表示装置等からなる表示部52に接続されている。
処理部(画像取得手段)50は、光学コネクタOCからプローブ30が測定光L1を照射している測定対象Sの部位を検出し、干渉光検出部40で検出した干渉信号(干渉光L4)を周波数解析することにより測定対象Sのその深さ位置における反射情報を取得し、断層画像を取得するものである。
また、処理部50及び表示部52には、キーボードやマウス等の入力手段と、入力された情報に基づいて各種条件を管理する制御手段とを有する操作制御部54が接続されている。操作制御部54は、入力手段から入力されたオペレータの指示に基づいて、処理部50における各種処理条件等の入力、設定、変更や表示部52の表示設定の変更等を制御する。
図2に、干渉光検出部40の主要部を示す。図2(a)は平面図(上から見た図)であり、図2(b)は正面図(横から見た図)である。
図2(a)に示すように、干渉光検出部40の主要部は、光線偏向手段としての回転多面鏡(ポリゴンミラー)43、コリメータレンズ44、分光手段としての透過型グレーティング45、光学レンズ46及び光検出手段としての1次元アレイディテクタ47によって構成されている。
回転多面鏡43には、合波手段4によって反射光L3と参照光L2とが合波されて生成された干渉光L4が(図2では図示を省略した)光学系41、42を介して入射される。回転多面鏡43で反射された干渉光L4は、コリメータレンズ44に入射する。コリメータレンズ44は、入射した干渉光L4を平行光束L5として透過型グレーティング45に入射させる。
このとき、コリメータレンズ44は、図2(a)に示すように上から見ると平行光束L5が細く、また図2(b)に示すように横から見ると平行光束L5が太くなっているような光束として形成する。
また、回転多面鏡43は図に矢印Rで示すように回転しており、その回転に伴い平行光束L5も図2(a)に矢印Bで示すように平行移動し透過型グレーティング45上を時間に応じて走査するようになっている。
透過型グレーティング45は、図2(a)に示すように、上から見て平行光束とされた干渉光L4の走査方向Bに沿って、第1の領域45aと第2の領域45bとに2分割されている。ここで、例えば第1の領域45aは干渉光L4を第1の波長帯域1.0μm〜1.2μmに分光し、第2の領域45bは干渉光L4を第2の波長帯域1.2μm〜1.4μmに分光する。
図2(a)に示すように平行光束L5とされた干渉光L4が透過型グレーティング45の第1の領域45aに入射する場合は、図2(b)に示すように、横から見て太く形成された平行光束L5は透過型グレーティング45によって第1の波長帯域1.0μm〜1.2μmの光のみが分光されて透過する。分光された干渉光L4は、光学レンズ46を介して1次元アレイディテクタ47の各画素に入射して検出されるようになっている。
このように第1の波長帯域に分光されて1次元アレイディテクタ47で検出された干渉光L4のデータは、平行光束L5の第1の領域45aの走査が終了すると取り出されて処理部50に送られるようになっている。
回転多面鏡43の回転に伴い平行光束L5が(図2(a)の矢印B方向に平行移動して)透過型グレーティング45の第2の領域45bに入射されるようになると、干渉光L4は、同様にして透過型グレーティング45の第2の領域45bにより第2の波長帯域に分光される。このとき透過型グレーティング45によって第2の波長帯域1.2μm〜1.4μmの光のみが分光されて透過する。
第2の領域45bの走査が終了すると、1次元アレイディテクタ47で検出された干渉光L4のデータは処理部50に送られるようになっている。このようにして干渉光L4の広い波長帯域1.0μm〜1.4μmのデータが得られる。
このとき、光検出手段47として例えば上述したGoodrich-Sensor Unlimited社のSU−LDHシリーズの近赤外線(InGaAs)高速ラインスキャンカメラ(1024ピクセル、スキャンレート46000ライン/秒)を用い、第1の波長帯域及び第2の波長帯域でそれぞれ46kHzで走査すれば、全体として23kHzでデータを得ることができる。このとき、スキャンレートが早くなるとその分露光量が減少するためセンシティビティが低下する。
なお、このとき回転多面鏡43の回転に同期して高速ラインスキャンカメラの読み取り開始トリガをかけるように、回転多面鏡43で偏向された光が透過型グレーティング45の第1の領域45aに入射するタイミングを検出する始点検出センサ(図示省略)を設けるようにしても良い。そして、図3にタイミングチャートを示すように、始点検出センサが第1の領域45aに光が入射し始めるタイミングを検出した信号により、高速ラインスキャンカメラにより第1の領域45aで1回読み取りを行い、それに半周期遅れたタイミングで第2の領域45bで1回読み取るように制御する。
処理部50では、上述したようにそれぞれの時間で取得したデータを合わせてフーリエ変換し、測定対象Sの複数の深さ位置における反射光の強度を検出し、これに基づいて測定対象Sの断層画像を取得する。得られた断層画像は表示部52に表示される。
以下、本実施形態の光断層画像化装置1の作用について説明する。
断層画像を取得する際には、図1に示すように、まず可動ステージ23を矢印A方向に移動させることにより、測定可能領域内に測定対象Sが位置するように光路長の調整が行われる。その後、光源ユニット10から光Laが射出される。この光Laは、光分割手段2によって測定光L1と参照光L2に分割される。測定光L1はプローブ30から体腔内に向けて射出され、測定対象Sに照射される。
そして、測定対象Sからの反射光L3が光路長調整手段20の反射ミラー22において反射した参照光L2と合波され、反射光L3と参照光L2との干渉光L4が干渉光検出部40によって検出される。
干渉光検出部40においては、干渉光L4が光線偏向手段である回転多面鏡43に入射する。回転多面鏡43に入射した干渉光L4は反射され、コリメータレンズ44を介して透過型グレーティング45に入射される。このとき、回転多面鏡43の回転に伴い反射した干渉光L4の方向が時間とともに変化し、異なる複数の波長帯域の分光領域に干渉光L4の移動方向Bに沿って分割された透過型グレーティング45の各波長帯域を走査することとなる。その結果、干渉光L4が入射する透過型グレーティング45の波長帯域が第1の波長帯域、第2の波長帯域と、時間に応じて分光測定波長帯域が変化する。これにより、干渉光L4をより広い波長帯域に分光することができ、測定対象Sの深さ方向の解像度を向上させることができる。
干渉光検出手段40で検出された干渉光L4は、処理部(画像取得手段)50において周波数解析され、これに基づいて測定対象Sの深さ方向の情報が得られる。
上述した実施形態においては、透過型グレーティング(分光手段)45は、2つの異なる波長帯域に分割されていたが、分光系の分割は2分割に限定されるものではなく、3分割でも、4分割でも良い。例えば、分光系を第1の波長帯域1.1μm〜1.2μm、第2の波長帯域1.2μm〜1.3μm、第3の波長帯域1.3μm〜1.4μmのように3分割して、各波長帯域で46kHzで走査すれば、全体として15.3kHzでデータを取得することができる。
また、上述した実施形態においては、干渉光検出部の複数の異なる波長帯域を有する透過型グレーティングにより干渉光の波長を切り替えていたが、これでは検出の際には例えば1.0μm〜1.2μmの波長しか使用していないのに、測定対象にはこれ以外の波長の光も照射されてしまうので、測定対象に照射する光量を減らし効率的に測定光を照射するために、測定対象に対する照射光の波長を干渉光検出側での波長帯域と連動させて切り替えるようにしてもよい。
照射光の波長を切り替える手段としては、特に限定されるものではないが、例えば光源側に透過型フィルタを配置するようにしてもよい。このように検出側のフィルタと連動するように光源側にもフィルタを配置して、実際に検出に用いる波長帯域でのパワーを上げるようにすれば、測定対象に対する照射光の効率がよい。
以上、本発明の光断層画像化装置について詳細に説明したが、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。
1…光断層画像化装置、10…光源ユニット、11…光源、12…光学系、20…光路長調整手段、21a…第1光学レンズ、21b…第2光学レンズ、22…反射ミラー、23…可動ステージ、24…ミラー移動機構、30…プローブ、40…干渉光検出部、41、42…光学系、43…回転多面鏡(ポリゴンミラー)(光線偏向手段)、44…コリメータレンズ、45…分光手段(透過型グレーティング)、46…光学レンズ、47…光検出手段(1次元アレイディテクタ)、50…処理部(画像取得手段)、52…表示部、54…操作制御部
Claims (8)
- 低コヒーレンス光を射出する光源と、
前記光源から射出された光を測定光と参照光とに分割する光分割手段と、
前記測定光を測定対象に照射したときの前記測定対象からの反射光と、前記参照光とを合波する合波手段と、
前記合波された前記反射光と前記参照光との干渉光の方向を時間に応じて変化させる光線偏向手段と、
前記光線偏向手段で偏向された前記干渉光を分光する複数の異なる波長帯域を有する分光手段と、
前記分光手段により分光された前記干渉光を検出する干渉光検出手段と、
前記検出された干渉光に基づいて前記測定対象の断層画像を取得する画像取得手段と、
を備え、前記光線偏向手段により前記干渉光の方向を時間に応じて変化させることにより、前記分光手段が前記干渉光を分光する波長帯域が時間に応じて変化するようにしたSD−OCT装置として構成されたことを特徴とする光断層画像化装置。 - 前記光線偏向手段がポリゴンミラーであることを特徴とする請求項1に記載の光断層画像化装置。
- 前記光線偏向手段がガルバノミラーであることを特徴とする請求項1に記載の光断層画像化装置。
- 前記分光手段が透過型グレーティングであることを特徴とする請求項1〜3のいずれかに記載の光断層画像化装置。
- 前記分光手段が反射型グレーティングであることを特徴とする請求項1〜3のいずれかに記載の光断層画像化装置。
- 前記分光手段がプリズムであることを特徴とする請求項1〜3のいずれかに記載の光断層画像化装置。
- 前記分光手段がグリズムであることを特徴とする請求項1〜3のいずれかに記載の光断層画像化装置。
- 前記干渉光検出手段がアレイディテクタであることを特徴とする請求項1〜7のいずれかに記載の光断層画像化装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008151628A JP2009300097A (ja) | 2008-06-10 | 2008-06-10 | 光断層画像化装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008151628A JP2009300097A (ja) | 2008-06-10 | 2008-06-10 | 光断層画像化装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009300097A true JP2009300097A (ja) | 2009-12-24 |
Family
ID=41547175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008151628A Pending JP2009300097A (ja) | 2008-06-10 | 2008-06-10 | 光断層画像化装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009300097A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012021917A (ja) * | 2010-07-15 | 2012-02-02 | Kyokko Denki Kk | 流体検知センサ及び分光分析装置 |
WO2012157710A1 (ja) * | 2011-05-18 | 2012-11-22 | 住友電気工業株式会社 | 光断層画像取得装置 |
WO2013061863A1 (en) * | 2011-10-24 | 2013-05-02 | Canon Kabushiki Kaisha | Optical coherence tomographic imaging information acquisition apparatus |
CN103868596A (zh) * | 2014-02-21 | 2014-06-18 | 中国科学院光电研究院 | 一种大孔径空间外差干涉光谱成像方法及光谱仪 |
-
2008
- 2008-06-10 JP JP2008151628A patent/JP2009300097A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012021917A (ja) * | 2010-07-15 | 2012-02-02 | Kyokko Denki Kk | 流体検知センサ及び分光分析装置 |
WO2012157710A1 (ja) * | 2011-05-18 | 2012-11-22 | 住友電気工業株式会社 | 光断層画像取得装置 |
WO2013061863A1 (en) * | 2011-10-24 | 2013-05-02 | Canon Kabushiki Kaisha | Optical coherence tomographic imaging information acquisition apparatus |
CN103868596A (zh) * | 2014-02-21 | 2014-06-18 | 中国科学院光电研究院 | 一种大孔径空间外差干涉光谱成像方法及光谱仪 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4869877B2 (ja) | 光断層画像化装置 | |
JP4869896B2 (ja) | 光断層画像化装置 | |
JP4869895B2 (ja) | 光断層画像化装置 | |
JP4895277B2 (ja) | 光断層画像化装置 | |
US7751056B2 (en) | Optical coherence tomographic imaging apparatus | |
JP5541831B2 (ja) | 光断層画像化装置およびその作動方法 | |
US7372575B2 (en) | Optical tomographic apparatus | |
JP2007101250A (ja) | 光断層画像化方法 | |
JP4640813B2 (ja) | 光プローブおよび光断層画像化装置 | |
KR101380690B1 (ko) | 촬상 장치 및 촬상 방법 | |
JP5162431B2 (ja) | 光立体構造像装置 | |
JP2007101249A (ja) | 光断層画像化方法および装置 | |
JP2007101262A (ja) | 光断層画像化装置 | |
JP2007135947A (ja) | 光プローブおよび光断層画像化装置 | |
JP2007085931A (ja) | 光断層画像化装置 | |
JP2008128710A (ja) | 断層画像処理方法、装置およびプログラムならびにこれを用いた光断層画像化システム | |
JP2007101263A (ja) | 光断層画像化装置 | |
JP2007275193A (ja) | 光プローブおよび光断層画像化装置 | |
JP2010200820A (ja) | 光立体構造像装置及びその光信号処理方法 | |
US20200359903A1 (en) | Coherence gated photoacoustic remote sensing (cg-pars) | |
JP2007267927A (ja) | 光断層画像化方法および装置 | |
JP2008089349A (ja) | 光断層画像化装置 | |
JP2007101264A (ja) | 光断層画像化装置 | |
JP2009300097A (ja) | 光断層画像化装置 | |
JP2007212376A (ja) | 光断層画像化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20100621 |