EP2967507B1 - Tissue collection device for catheter - Google Patents
Tissue collection device for catheter Download PDFInfo
- Publication number
- EP2967507B1 EP2967507B1 EP13878091.1A EP13878091A EP2967507B1 EP 2967507 B1 EP2967507 B1 EP 2967507B1 EP 13878091 A EP13878091 A EP 13878091A EP 2967507 B1 EP2967507 B1 EP 2967507B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- housing
- tissue
- storage reservoir
- tip portion
- reservoir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320783—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/0233—Pointed or sharp biopsy instruments
- A61B10/0266—Pointed or sharp biopsy instruments means for severing sample
- A61B10/0275—Pointed or sharp biopsy instruments means for severing sample with sample notch, e.g. on the side of inner stylet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B2017/320064—Surgical cutting instruments with tissue or sample retaining means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320783—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter
- A61B2017/320791—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter with cutter extending outside the cutting window
Definitions
- tissue collection devices that can be used with occlusion-crossing devices or systems such as atherectomy catheters.
- the tissue collection devices described may be configured with one or more of the following features: adjustable crossing profile; easily cleanable or replaceable components; and/or venting elements. Methods of using the tissue collection devices described herein are also described.
- PAD Peripheral artery disease
- Peripheral artery disease is a progressive narrowing of the blood vessels most often caused by atherosclerosis, the collection of plaque or a fatty substance along the inner lining of the artery wall. Over time, this substance hardens and thickens, which may interfere with blood circulation to the arms, legs, stomach and kidneys. This narrowing forms an occlusion, completely or partially restricting flow through the artery. Blood circulation to the brain and heart may be reduced, increasing the risk for stroke and heart disease.
- Interventional treatments for PAD may include endarterectomy and/or atherectomy.
- Endarterectomy is surgical removal of plaque from the blocked artery to restore or improve blood flow.
- Endovascular therapies such as atherectomy are typically minimally invasive techniques that open or widen arteries that have become narrowed or blocked.
- Other treatments may include angioplasty to open the artery.
- a balloon angioplasty typically involves insertion of a catheter into a leg or arm artery and positioning the catheter such that the balloon resides within the blockage. The balloon, connected to the catheter, is expanded to open the artery. Surgeons may then place a wire mesh tube, called a stent, at the area of blockage to keep the artery open.
- Such minimally invasive techniques typically involve the placement of a guidewire through the occlusion.
- one or more interventional devices may be positioned to remove or displace the occlusion.
- placement of the guidewire while critical for effective treatment, may be difficult.
- Atherectomy offers a simple mechanical advantage over alternative therapies. Removing the majority of plaque mass (e.g., debulking) may create a larger initial lumen and dramatically increases the compliance of the arterial wall. As a result, stent deployment is greatly enhanced.
- Atherectomy is not commonly performed.
- Traditional atherectomy devices have been plagued by a number of problems, which have severely limited market adoption.
- available atherectomy devices often provide insufficient tissue collection and removal options during procedures.
- the storage capacity of the tissue collection compartment of an atherectomy device is not large enough to accommodate the amount of excised tissue.
- the device operator must remove the device in order to clean the filled compartment before finishing the procedure.
- the operator may continue the procedure without collecting the resulting debris, which then leaves the debris in the patient's system to possibly redeposit onto the vessel walls.
- tissue storage area often forms the largest crossing profile for the atherectomy device, which results in a larger crossing profile with increased storage capacity.
- Larger crossing profiles make it difficult for the atherectomy or other occlusion-crossing devices to cross tight vessel regions without damaging or injuring the surrounding vessel tissue.
- tissue collection device that can satisfy the competing interests of a small crossing profile and a large storage capacity.
- Atherectomy devices commonly utilize tissue packing devices that compress the stored tissue into the collection chamber to compact as much tissue into the chamber as possible. However, fluid trapped in the collection chamber generates back pressure against the packing device, which prevents optimal use of the storage space. To avoid these concerns, there is a need for a tissue collection device that vents or releases fluids from the storage chamber.
- tissue removed during atherectomy procedures can still exceed storage capacity regardless of how much storage is provided.
- the physician may remove an atherectomy device several times to clean the filled tissue collection chamber. This is often suboptimal as available devices do not have easily detachable collection chambers for quick cleaning. Accordingly, there is a need for a tissue collection device that is configured to be easily removed, replaced, and/or cleaned during a procedure.
- US 2011/0295148 discloses a device for collecting a tissue sample from an animal comprising a collection means having at least one cutting element for cutting a tissue sample and a means for storing the sample.
- the two-part form of claim 1 is based on this document.
- WO 2008/051951 discloses a biopsy collection device comprising a body portion configured for attachment to an endoscope, a passageway extending through the body portion for receiving a biopsy sampling device and a receptacle portion connected to the passageway and configured to retain a portion of tissue removed from a target site during a biopsy procedure.
- US 2005/0222663 discloses an atherectomy device for removing material from a vascular lumen comprising an elongate body, an opening in the body, a rotatable cutting element that is orientated to direct material being cut through the opening and a containment chamber formed along the body for receiving the cut material.
- US 2010/0292721 discloses an atherectomy catheter comprising a body having an opening, a rotatable shaft coupled to the body, a rotatable cutting element coupled to the rotatable shaft and a tissue collection chamber coupled to the body for retaining cut tissue.
- tissue collection devices, chambers, or reservoirs are described herein to address at least some of the challenges illustrated above.
- the present invention provides a detachable tissue collection device according to claim 1.
- Some exemplary devices described herein relate to a tissue collection device having a proximal end and a distal end defining a length of the device; a hollow shaft located along at least a portion of said length, the shaft defining a lumen; a tendon member residing in the shaft lumen; and a tissue storage reservoir having an adjustable cross-section.
- the tissue storage reservoir (which is defined by a tip portion) is movable between a first configuration and a second configuration, the second configuration having a smaller crossing profile and a reduced cross-section relative to the first configuration.
- the tip portion or tissue storage reservoir is configured to compress when moved to the second configuration and expand when moved to the first configuration.
- the tip portion or tissue storage reservoir may include a mesh that defines the storage reservoir. The mesh may be configured to collapse when the tip portion or tissue storage reservoir is moved from the first configuration to the second configuration.
- the tip portion or tissue storage reservoir includes a wire frame that is configured to collapse when the tip portion or tissue storage reservoir moves from the first to the second configuration.
- the tip portion or tissue storage reservoir may include an elastic material, a resilient material, or a shape-memory material.
- the tissue storage reservoir may be formed from a braided nitinol mesh that is configured to collapse and expand between the first and second configurations.
- the tissue storage reservoir is configured to move from the first configuration to the second configuration by applying a distally directed force along a longitudinal axis of the device. In any of the preceding examples, the distally directed force is applied to the distal end of the device.
- distally moving the tendon member against a distal end of the device applies a distally directed force to thereby move the tissue storage reservoir from a first configuration to a second configuration.
- the tissue storage reservoir has a distal end and a proximal end, the distal end of the reservoir fixed to the tendon member and the proximal end of the reservoir fixed to the hollow shaft.
- the reservoir is adapted to transition to the second configuration by distally moving the tendon member relative to the shaft.
- proximally moving the tendon member moves the tissue storage reservoir from a second configuration to a first configuration.
- the reservoir is adapted to transition to the second configuration by rotating the reservoir about the shaft to form a coiled collapsed configuration.
- the tissue storage reservoir includes a resilient frame configured to naturally return to the first configuration.
- the tissue storage reservoir is configured to move from the first configuration to the second configuration by extending the length of the device.
- the device may include a guidewire lumen and a guidewire residing in a guidewire lumen, wherein distally moving the guidewire against the distal end of the device applies a distally directed force to thereby move the tissue storage reservoir from a first configuration to a second configuration.
- the tissue storage reservoir is configured to return to the first configuration from the second configuration after the distal force is released.
- the tissue storage reservoir is configured to return to the first configuration from the second configuration by applying a proximally directed force to the distal end.
- the first configuration may have a crossing profile of about 2.032 mm (0.080 inches).
- the second configuration may have a crossing profile of about 0.508 mm (0.020 inches).
- the crossing profile of the tissue storage reservoir is between about 0.508 mm to about 2.032 mm (about 0.020 inches to about 0.080 inches).
- the proximal end of the device may be adapted to couple to a catheter.
- the device length is between about 10mm to about 100mm.
- the tissue collection device may include a tissue storage reservoir having a plurality of gaps having a width between about 50 ⁇ m to about 200 ⁇ m.
- the tissue storage reservoir may include a porous member configured allow fluid movement out of the storage reservoir.
- the tissue storage reservoir includes a plurality of gaps of between about 0.01 to about 0.5mm.
- the devices include a third configuration, the third configuration having a greater crossing profile relative to the first configuration.
- the tissue storage reservoir is adapted to be biased towards the first configuration.
- an atherectomy catheter device having an elongate body; a central lumen extending within the elongate body from a proximal end of the elongate body to a distal end of the elongate body; a rotatable cutter at the distal end of the elongate body and configured to rotate relative to the elongate body; and a tissue collection device according to claim 1 positioned at the distal end of the elongate body, distal of the rotatable cutter, the tissue collection device having an adjustable crossing profile.
- the tissue collection device includes a plurality of configurations, a first configuration having a smaller crossing profile and a reduced storage capacity relative to a second configuration.
- the atherectomy device has a crossing profile that is adjustable by varying the length of the tissue collection device or the tissue storage reservoir.
- the atherectomy device is configured for shortening the length of the tissue collection device to increase the crossing profile.
- the tip portion can include a braided mesh defining the storage reservoir.
- tissue collection device including a proximal end and a distal end defining a length of the device; and a tissue storage reservoir.
- the tissue storage reservoir includes a venting element configured to release fluid pressure in the storage reservoir.
- the venting element includes a plurality of apertures on the tip portion.
- the venting element includes a mesh material.
- the device e.g. tip portion
- the device may include a plurality of venting sections configured to allow fluid movement out of the storage reservoir.
- the venting element is positioned adjacent the distal end of the device.
- an atherectomy device including an elongate body; a central lumen extending within the elongate body from a proximal end of the elongate body to a distal end of the elongate body; a rotatable cutter at the distal end of the elongate body and configured to rotate relative to the elongate body; and a tissue collection device according to claim 1 positioned at the distal end of the elongate body, distal of the rotatable cutter.
- the tip portion may include a venting element configured to release fluid pressure in the storage reservoir.
- the first housing may be configured to couple to the second housing through a mated fit.
- substantially the entire tissue storage reservoir is detachable by uncoupling the first and second housings.
- the first housing includes a plurality of angled tabs and the second housing includes a plurality of slots for receiving the plurality of angled tabs to retain the first housing when the angled tabs are engaged with the slots.
- the angled tabs may be formed from a wall of the first housing. The first housing and the second housing may be laterally locked when mechanically coupled.
- any of the preceding exemplary devices may include a guidewire lumen defined by a first channel on the first housing and a second channel on the second housing.
- the first housing and second housing are rotationally locked when a guidewire is placed through the first and second channels.
- the storing step includes deflecting the excised tissue into the tissue storage reservoir. Any of the preceding methods may include packing the tissue into the storage reservoir.
- Further methods of performing an atherectomy include the steps of packing excised tissue into a storage reservoir defined by the distal tip region of an atherectomy catheter; and ventilating the storage reservoir to reduce back pressure in the storage reservoir.
- Any of the preceding methods of performing an atherectomy include the steps of detaching a portion of a distal tip region of an atherectomy catheter; and replacing the portion of the distal tip region.
- tissue collection device including a proximal end adapted to releasably couple to a distal end of an atherectomy catheter; a replaceable distal tissue storage reservoir configured to be removable from the atherectomy catheter by uncoupling the proximal end from the distal end of the catheter.
- the tissue collection device may include a first mating structure at the proximal end configured to couple to a second mating structure on the distal end of the catheter.
- the first mating structure includes a plurality of projecting tabs and the second mating structure includes a plurality of slots.
- the tissue collection devices described herein include a tissue chamber, reservoir, and/or tissue storage area adapted for receiving and retaining excised tissue or solid biological material.
- tissue collection devices can be used during minimally invasive procedures where tissue or other material is cut and removed from the patient's body.
- the tissue collection devices may be used with any suitable catheters including, at least, those described in U.S. 2012/0253186 , titled “OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES,” filed March 28, 2012, U.S. 2012/0046679 , titled “ATHERECTOMY CATHETERS WITH LONGITUDINALLY DISPLACEABLE DRIVE SHAFTS,” filed on July 1, 2011, U.S.
- devices described as being on a distal or proximal region of another device are not meant to limit the tissue collection device to any particular location or position. Rather, the described devices illustrate examples of how the contemplated tissue collection devices can be used with other devices or systems. Likewise, in some devices, the tissue collection devices may be described as having one or more specific features such as detachability or size adjustment. However, it is to be appreciated that the contemplated devices may include features in different combinations or variations than the examples provided. For example, some devices may be detachable and size adjustable or only detachable.
- tissue storage or collection devices with adjustable dimensions are provided.
- the devices may be designed to change one or more of cross-sectional size, length, inner diameter, outer diameter, etc. to allow the tissue storage device to move between collapsed and expanded configurations.
- the tissue collection device may employ a collapsed or compressed cross-section during insertion into the patient or navigation through narrow vessel sections. Once desired positioning is achieved, the tissue collection device may be expanded to increase the cross-section and crossing profile of the device.
- the tissue collection device may include a plurality of configurations ranging from a fully collapsed to a fully expanded configuration. For example, at the fully collapsed configuration, the device may have a minimum inner diameter and outer diameter. Likewise, at the fully expanded configuration, the device may have maximum inner and outer diameters. Additionally, beyond the fully collapsed or expanded positions, the tissue device may have configurations with dimensions between maximum and minimum dimensions.
- this provides the physician with a plurality of configurations within a preset range.
- the tissue collection device may adjust cross-sectional size and/or the crossing profile by changing the length of the device or a portion of the device.
- the device has a length adjustable portion (e.g., an adjustable tip portion) that contains the storage reservoir.
- the crossing profile around the storage reservoir is reduced by lengthening it (e.g., by lengthening the tip portion).
- applying a distally directed force at the distal end of the storage reservoir and/or tip portion pushes the distal end to extend or elongate the storage reservoir and/or tip portion.
- Elongating the tip portion consequently, also compresses the cross-section of the tissue storage reservoir contained within the tip portion to reduce the crossing profile of the device.
- Lengthening the tip portion/tissue reservoir is a means for transitioning the tissue collection device from a first expanded state to a second collapsed state.
- the tip portion/storage reservoir may return to an expanded position.
- the device is biased toward the expanded state whereby releasing the lengthening force allows the tissue storage reservoir to return unassisted to its expanded position.
- the storage reservoir may be made from a resilient or elastic material or frame with a natural elasticity that springs, recoils, or recovers to the expanded shape once the elongating force is removed or released.
- the tip portion may refer to and/or include the storage reservoir.
- the tip portion (and/or storage reservoir) is not limited to the distal tip region of the devices described herein; additional structures may be located at the distal (or in some orientations, proximal) tip regions. Further, the storage reservoir and/or tip portion may be located proximally of the distal tip of the device(s) described herein.
- the device may require an assisting force to transition from the collapsed to expanded state.
- a force may be applied to transition the collapsed device (e.g., tip portion and/or tissue reservoir) from the elongated configuration to the original expanded configuration.
- This also increases the collapsed crossing profile to the expanded crossing profile.
- this may be achieved by applying a proximal directed force that shortens the elongated tissue storage reservoir. The proximally directed force pulls the distal end of the elongated tip portion back towards the expanded configuration. This causes the outer diameter and crossing profile of the tissue storage reservoir to increase.
- a force applying element may be employed to impart force to the device.
- a tether, tendon member, guidewire, tensioning element, or any other suitable mechanism can be used for this purpose.
- some exemplary devices include a hollow shaft or lumen through which an elongate tendon member (e.g., wire) extends. A portion of the tendon member is attached to the tissue device such that moving the tendon member through the lumen imparts a configuration changing force to the device.
- a separate tendon and tendon lumen are not necessary where a guidewire and corresponding guidewire lumen can serve the same function.
- a guidewire may be received and retained in a guidewire lumen of the tissue collection device such that the guidewire can maneuver the device into various configurations.
- a general non-collapsible atherectomy catheter device 200 having a cutter 202 and distal tip region 201 with a tissue storage reservoir.
- the tissue storage reservoir is in the main body 204 of the catheter.
- a distal tip storage reservoir is described.
- the distal tip region may be hollow or otherwise configured to hold material cut by the atherectomy device.
- the distal tip region is clear or at least partially transparent, allowing one to see if material has been collected or remains in the tip region.
- the distal tip region may include a flush port or may otherwise be adapted to allow removal of cut material stored therein.
- the distal end may be tapered but may be open.
- the distal tip region may be removable and/or replaceable.
- a reusable locking mechanism such as threads, or the like, may be used to secure a distal tip region on the catheter.
- the distal tip region 201 is advanced into the patient's vasculature and maneuvered to a target treatment location. During advancement, the distal tip region must cross through vessel lesions or narrow/tortuous pathways to position the cutter 202 at a target site for tissue excision. To do so, the crossing profile of the distal tip region 201 must be sized to allow bypass through tight vessel cross-sections.
- the distal tip region 201 also serves as the tissue collection chamber for storing tissue removed by the cutter 202.
- the cutter 202 may excise the tissue and direct the tissue into a hollow reservoir inside the distal tip region 201. Any number of exemplary methods for doing so have been described in the applications aforementioned.
- the cutter 202 may have a scoop shape to cut and deflect tissue into a receiving collection chamber in the distal tip region 201.
- Figure 1 shows the distal tip region 201 having a closed nosecone construction with an opening at a proximal end for receiving cut tissue.
- the structure is relatively inelastic and does not easily compress or change shape. As such, the crossing profile is preset and is not easily changed without permanently deforming and, possibly, damaging the nosecone.
- FIG. 2 shows a collapsible tissue collection device 100 attached in the distal region 101 of the catheter 200.
- the tissue collection device 100 includes a proximal housing 104 that attaches the device 100 to the catheter body.
- the proximal housing 104 releasably couples the tissue collection device 100 to the main catheter body through any suitable mechanical attachment means such as friction fit, mated fit, threads, etc.
- the proximal housing 104 permanently secures the tissue collection device 100 to the catheter 200.
- the tissue collection device 100 has a size adjustable tip portion or tip 102.
- the tip portion 102 may also be attached to the proximal housing 104 at a proximal end 106 of the tip portion 102.
- the tip portion 102 includes a distal end 108 and a length of the device 100 between the two ends 106, 108.
- a storage reservoir 110 is contained within the tip portion 102.
- the tissue reservoir 110 may extend along a part of or all of the tip portion. Where the storage reservoir 110 extends to the distal end 108 of the tip portion 102, the distal end may be sealed to prevent the release of tissue from the reservoir.
- the proximal end 106 does not need to be sealed and can include an opening in communication with the tissue storage reservoir.
- the tissue storage reservoir is attached to the proximal end 106 and the distal end 108 of the tip portion by way of an adhesive or biocompatible polymer such as PEBAX®, Tecothane®, or polyimide.
- an adhesive or biocompatible polymer such as PEBAX®, Tecothane®, or polyimide.
- the structure of the reservoir may be fused to a polymer-based housing at the ends 106, 108.
- FIGs 2-3 show the collapsible tissue collection device 100 in expanded and collapsed states respectively.
- the tissue collection device 100 In the expanded state, the tissue collection device 100 has a larger crossing profile 103a relative to a collapsed configuration (collapsed crossing profile 103b shown in Figure 3 ).
- the device 100 can assume a reduced profile to navigate through narrow vessel structures.
- the tip portion 102 and/or the storage reservoir 110 may be made from an elastic, deformable, stretchable, or resilient structure or material.
- Suitable materials include biocompatible shape memory materials, alloys, metals, composites, polymers, etc. These include, but are not limited to, nitinol, PEBAX®, polyimide, PEEK, polyester, polypropylene, Tecothane®, stainless steel, elgiloy, cobalt-chromium alloys, carbon fiber, nylon, titanium and its alloys, or Kevlar.
- the material(s) forming the tissue portion/reservoir has a natural elasticity or resilience that biases the material to a relaxed shape. When deformed, the material exhibits a tendency to recover the relaxed shape. Additionally, any biocompatible material may be used that retains collected solids while allowing fluid movement out of the reservoir.
- the tissue reservoir is defined by a collapsible or foldable structure.
- This includes a compressible frame that allows the storage reservoir to reduce cross-sectional size.
- the storage reservoir or tip portion may be constructed from a collapsible frame that supports an unstructured elastic or deformable material.
- the frame may provide an outer structure or skeleton upon which a deformable material (e.g. flexible mesh) is draped and secured.
- Figure 6 shows device 300 with a frame 314 supporting an elastic material 312.
- the frame defines the outer boundaries of the tissue storage reservoir 310 while the elastic material 312 forms a sheath over the frame 314.
- the frame 314 is collapsible or foldable while providing support to the elastic material 312.
- the frame may also include additional support members such as struts, ribs, posts, joints, etc. to facilitate the configuration changes of the tissue collection device.
- the collapsible frame is a network forming a mesh or netted structure.
- a mesh frame may be braided or woven to increase strength and to better hold stored contents in the collection chamber.
- a wire mesh or netted frame may surround and define the storage reservoir inside the frame.
- FIG. 2 shows an example of a mesh structure forming the tissue reservoir on the tip portion 102.
- the mesh surrounds and defines the storage volume in the storage reservoir 110.
- the mesh is attached to the distal and proximal ends of the tip portion. Any attachments means may be used, including fusing the mesh to the ends using a melted polymer such as PEBAX®. In some cases, the mesh is also attached to the housing 104 for additional stability.
- the mesh is a braided wire that includes gaps and openings.
- the braid is structured such that gaps are sufficiently small to prevent the release of collected tissue from the storage reservoir.
- the gaps are about 0.25 sq cm.
- the gaps are between about 50 ⁇ m to about 200 ⁇ m in width.
- the gaps are about 0.01 to about 0.5mm in width.
- Figure 3 shows the tissue collection device 100 of Figure 2 in a reduced crossing profile configuration 120.
- the tip portion 102 is collapsed to reduce the cross-section of the storage reservoir.
- the phantom lines indicate the expanded configuration 118 relative to the shown collapsed configuration 120.
- the crossing profile 103a of the expanded configuration 118 is greater than the crossing profile 103b of the collapsed configuration.
- Figure 3 shows that the collapsed configuration 120 also exhibits a greater tip portion/storage reservoir length L2 relative to the length L1 of the expanded configuration 118.
- extending or elongating the tip portion 102 and tissue storage reservoir 110 reduces the crossing profile.
- One exemplary method of extending the length of the tip portion or storage reservoir 110 is to apply a distally directed force to the tip portion.
- This force can be applied along the length of the device or at the distal end 108.
- applying a distally directed force (F1) along the longitudinal axis of the tip portion 102 forces the tip portion to lengthen.
- F1 distally directed force
- the cross-section of the tip portion compresses to accommodate the tip portion elongation. This reduces the crossing profile of the tissue storage reservoir 110.
- the distally directed force may transition the tissue collection device from an unfolded to a folded configuration.
- the foldable outer frame 314 may include joints and ribs that pivot or move to reduce crossing profile when a distally directed force is applied.
- the braided mesh may accommodate stretching in one or more directions. As shown in Figures 2-3 , the mesh stretches in the longitudinal direction under the distally directed force. This allows the tissue reservoir to elongate while reducing the mesh's cross-section.
- the tissue collection device 100 can return to its expanded state without applying any assisting force to transition the device.
- This can be accomplished by using a resilient or elastic material for the tissue storage reservoir.
- the mesh material in Figure 2 may be biased toward the larger crossing profile configuration such that once the elongating force (F1) is removed, the mesh will recover its natural shape.
- any resilient material can be used whereby the material has a natural elasticity or tendency to return to an expanded state once the compressing force is no longer applied.
- the tissue collection device is not biased toward any particular configuration (e.g. relaxed expanded state). Instead, the material and/structure forming the tissue storage reservoir remains in the reduced profile configuration even after the elongating force (F1) is no longer applied to the device. In such cases, a proximally directed force (F2) may be required to pull the tip portion into a non-collapsed configuration. In other words, an assisting force is needed to transition the compressed tissue reservoir to an expanded state with a larger crossing profile.
- the device 2400 includes a storage reservoir 2410 at a tip portion of the device 2400.
- the expanded state 2418 for device 2400 is indicated by the dotted lines.
- the tissue storage reservoir 2140 is wrapped around a shaft 2420 on the device 2400.
- the storage reservoir 2410 is a loose braided mesh that can coil around the shaft 2420.
- the structure 2420 is a catheter, guidewire lumen, tendon member lumen, or other housing encircled by the storage reservoir.
- the storage reservoir 2410 is rotated or turned about the shaft 2420.
- the distal end 2408 of the storage reservoir is fixed to the shaft 2420 and the proximal end 2406 of the reservoir moves about the shaft 2420. Rotating the proximal end 2406 about the shaft 2420 coils the reservoir.
- the storage reservoir is first elongated and then coiled. Elongation can slightly compress the cross-section of reservoir to facilitate the coiling.
- Figure 4 shows the distally or proximally directed force applied by the tendon wire 109.
- the tendon wire 109 resides in a lumen that is defined, in part or whole, by a tendon housing.
- Figure 4 shows the housing in two parts. The first part 111a is at the proximal end and the second part 111b is at the distal end.
- the tendon member 109 is fed through an opening at each of the two-part housing components 111a-b.
- the tendon member 109 is exposed along a length of the tip portion 102 between the two housing components 111a-b.
- the housing components may be constructed to retain the tendon member 109 during configuration changes.
- the distal housing component 111b may include adhesive, stays, stops, or a tight fit such that the housing component resists distal movement of the tendon member 109.
- the tendon member is fixed or fused to the distal end of the tip portion or the tissue storage reservoir. In such cases, distally pushing the tendon member 109 against the distal housing component 111b imparts a distally directed force F1 to the distal end of the tip portion 102. This, in turn, pushes the tip portion distally to lengthen the device 100 and reduce the crossing profile.
- the tendon housing 111 may include adhesive, stays, stops, or fitting dimensions to retain the tendon member while a proximally directed force F2 is applied to pull the distal end of the tip portion proximally. This is applicable, for example, where the tissue storage reservoir does not naturally recover to the expanded state when the collapsing force (F1) is removed. The proximal force (F2) transitions the collapsed configuration back to the expanded state 118..
- Figures 2 , 5 , and 23a-c show various tendon member and housing variations.
- Figure 2 shows a lumen 112 along a length or a longitudinal axis of the tissue collection device 100.
- the lumen 112 is defined by a housing 111 that is also positioned along a length of the device 100.
- the housing 111 is fixed to the proximal end 106, distal end 108, and along a length of the tip portion 102.
- a tendon member 109 resides in the lumen 112.
- Figure 5 shows a similar arrangement with the housing having two components at the distal and proximal ends. Housing components 111a-b define a portion of the lumen where a tendon member is exposed in the area between the housing components.
- the housing 111 in Figure 2 may be made from an elastic material that can also elongate.
- the housing 111 may also be made from a mesh or wire net that can compress and elongate during configuration changes of the storage reservoir.
- FIGS 23a-c illustrates another alternative housing and tendon member arrangement.
- Tissue collection device 2300 has a tissue storage reservoir 2310 having a distal end 2303 and a proximal end 2305.
- the reservoir 2310 is fixed to the tendon member 2308 by an adhesive material 2314 (e.g. a melted and fused polymer).
- the reservoir 2310 is fixed to the tendon lumen housing 2306 by an adhesive material 2318 (e.g. a melted and fused polymer).
- the proximal end 2305 includes an opening 2316 for the excised tissue to be advanced into the reservoir 2310.
- the housing 2306 forms a sleeve with an inner lumen 2307 and the tendon member 2308 resides in the lumen 2307.
- the tendon member 2308 slides or moves longitudinally within lumen 2307. (See Figure 23b showing a cross-section of the housing and tendon member.)
- the device 2400 can be collapsed in a couple of ways.
- the tendon member 2308 is moved distally through the housing 2306 or lumen 2307. This distal movement applies a distal force Fd against the distal tip 2303 of the storage reservoir 2310. Because the proximal end 2305 of the reservoir is fixed to the housing 2306, the distal force Fd pushes against the distal tip 2303 to lengthen the reservoir 2310. This compresses the cross-section and results in the reduced crossing profile 2313b.
- the reservoir may be partially elongated before rotating the proximal end 2305 of the reservoir about the housing 2306. This twists and coils the reservoir 2310 about the housing 2306 to form a collapsed coiled state.
- the tissue collection devices can return to an expanded state by removing the collapsing force (i.e. removing a distal or coiling force) and allowing the device to recover a natural relaxed state.
- another force such as a proximal force is applied to move the device back to an expanded state.
- the reservoir may need to be rotated in a counter direction to unwind the coil. For example, referring to Figure 23c , if a clockwise direction winds the reservoir, then the opposing counter-clockwise direction uncoils the device.
- a separate tendon member and housing are not necessary as a guidewire lumen and guidewire can also transition the tissue collection devices between expanded and collapsed configurations.
- the tendon member may be configured to function as a guidewire and the tendon housing functions as a guidewire lumen.
- the tissue collection device may have two separate structures for the guidewire and tendon member.
- the polymer can be melted or softened to adhere the housing to the structure of the storage reservoir or tip portion.
- Suitable materials include polymers, such as polyimide tubing, that can be softened or melted to adhere to the collapsible frame.
- the tissue collection device 400 has an additional extended configuration beyond the collapsed or expanded configurations.
- the extended configuration has a greater crossing profile 403c relative to the collapsed and expanded configurations (403a-b).
- the extended configuration may allow the device to adjust cross-sectional dimensions to efficiently pack tissue in the storage space.
- the tissue collection device may have the following dimensions described.
- the minimum outer diameter is about 0.508 mm (0.020 inches).
- the maximum outer diameter is about 2.032 mm (0.080 inches).
- the device has an outer diameter between about 0.356 mm and about 2.54 mm (about 0.014 inches and about 0.10 inches).
- the length of the tissue collection device (when deployed) could range from about 10mm to about 100mm.
- the outer diameter/crossing profile (when deployed) could range from about 0.02 inches to about 0.15 inches.
- the range of the inner diameter may follow the range of the outer diameter, differing by virtue of the wall thickness of the device.
- the exemplary devices described provide for tissue collection devices that release trapped fluids and relieve fluid pressure in the storage reservoir of the devices.
- These devices may include venting members or venting elements through which fluid can escape and flow out of the storage reservoir.
- a tip portion of the device may include any suitable wall features such as holes, gaps, apertures, nets, mesh, slits, slots, etc. that accommodate the migration of fluids out of the storage reservoir.
- such exemplary devices prevent the buildup of fluids in the storage reservoir, which can prevent efficient use of the available storage space.
- any of the fluid releasing members or features described can be used with any of the other features described.
- fluid releasing members can be used with a collapsible tissue collection device.
- a detachable device can include venting elements.
- FIG 8 shows a tissue collection device 500 with a tip portion 502.
- the tip portion 502 has a distal end 508 and a proximal end 506.
- the device 500 includes a proximal housing 504 attached to the tip portion 502.
- the proximal housing 504 is adapted to attach or couple the device 500 to a catheter.
- the tip portion 502 includes a plurality of venting elements 505a at a distal end of the tip portion 502. Another set of venting elements 505b are located at another section of the tip portion 502.
- the venting elements may be holes or apertures allowing fluid to escape from the tissue storage reservoir 510. This is particularly useful when tissue is packed into the storage reservoir during an atherectomy procedure where a packing mechanism such as a plunger pushes tissue distally into the storage reservoir. A pocket of fluid in the distal area of the storage reservoir can create back pressure against the plunger. As such, the trapped fluid fills valuable storage space while also impeding the storage of additional tissue.
- the venting elements can be any suitable material or feature that allows fluid movement.
- Figure 9 shows a tissue collection device 600 with a tip portion 602 having venting elements 604a-b.
- the venting elements are formed from a mesh net that contains solid materials within the device 600 while allowing movement of fluids out of the storage reservoir.
- the mesh may be made out of any suitable material including an elastic or resilient material such as shape-memory alloys, biocompatible polymers, etc.
- the mesh is made from braided nitinol wires.
- suitable materials that can be used for the device include biocompatible alloys, metals, composites, polymers, etc. These include, but are not limited to, nitinol, PEBAX®, polyimide, PEEK, polyester, polypropylene, Tecothane®, stainless steel, elgiloy, cobalt-chromium alloys, carbon fiber, nylon, titanium and its alloys, or Kevlar. Additionally, any biocompatible material may be used to form the elastic or stretchable structure for the reservoir that can retain solids such as excised tissue while allow fluid movement out of the reservoir.
- the venting elements are limited to sections of the device. Venting elements 604a-b are separated by non-venting sections of the tip portion. In such variations, the venting sections may be fused to the material of the non-venting sections.
- the tip portion may be made from a thermoplastic polymer that can be melted and fused to the mesh to create venting elements and sections on the tip portion.
- the invention can provide for a tissue collection device that can be easily detached, replaced, and/or cleaned.
- the storage reservoirs of collection devices are often filled before a procedure is completed. Operators must then remove the treatment devices and clean the tissue collection device.
- Embodiments described provide for a tissue collection device having a storage reservoir that can be detached for efficient cleaning or replacement.
- the entire storage reservoir can be detached and replaced with a clean reservoir.
- the entire tip portion may be removed and replaced with a clean tip portion.
- a portion of the storage reservoir is removed to provide a distal opening through which stored material can be flushed out with cleaning solution (e.g. saline, water, etc.) before re-attaching the removed section.
- cleaning solution e.g. saline, water, etc.
- Figure 10 shows an exemplary detachable tissue collection device 800 having a tip portion 802 defined by a first housing 824 and a second housing 825.
- the first housing 824 and the second housing 825 are detachably coupled at an attachment section 826.
- the device 800 includes a proximal housing 804 for coupling the tissue collection device 800 to a catheter (e.g. atherectomy catheter).
- a catheter e.g. atherectomy catheter
- the tip portion 802 defines a tissue storage reservoir 810 within the first and second housings 824, 825.
- the storage reservoir 810 is shown filled with stored excised material 801.
- the first housing 824 is detached from the second housing 825. Once detached, shown in Figure 11 , the two housings can be separately cleaned to remove stored material. The housings may be flushed to clear and remove debris.
- the storage reservoir may be limited to the volume defined between the junction 826 and the proximal housing 804.
- the storage reservoir can be flushed out by cleaning the second housing 825 with cleaning fluid (e.g. saline) without flushing the first housing 824.
- cleaning fluid e.g. saline
- FIG. 12 shows a tissue collection device 700 with a tip portion 702.
- the tip portion 702 defines a storage reservoir 710.
- the tip portion may be formed from a first housing 724, which also surrounds the storage reservoir 710.
- the first housing 724 may be coupled to a second housing or proximal housing 725.
- the proximal housing 725 may be connected or coupled to a catheter.
- the second housing is a part of the main body of the catheter and is adapted to attach the tissue collection device to the catheter.
- the tissue collection device may include an attachment element for coupling the device to the catheter via an attachment section 726.
- any of the removable components can be disposable such that these can be easily replaced to avoid cleaning.
- Any suitable mechanism or means e.g. friction fit, mated fit, threaded fit, hooks, securing members, etc. may be used to detach a portion or the entirety of a tissue collection device to another device.
- Figures 13-20 illustrate embodiments of attachments according to the invention that can be used for this purpose.
- Figure 13 shows a second housing 925 with a proximal end 930 and a distal end 928. Additionally, the second housing is shown as having a generally cylindrical main body with a lumen between the proximal and distal ends. The slots or cutouts 932a-b are formed through the wall of the main body. Although shown with two slots having a generally rectangular shape, the second housing can have any number of slots with any shape. In this embodiment, the shape of the main body is designed to be inserted into a first housing shown in Figures 14-15 .
- the second housing may be a part of the tissue collection device, such as shown in Figure 10 .
- the second housing may be a part of a catheter, such as at a distal end of the catheter where the catheter attaches to a tissue collection device (see Figure 12 ).
- Figures 14-15 illustrate a first housing 1024 with a corresponding structure for releasably coupling to the second housing 925.
- the first housing may be part of the tissue collection device such as a section of the tip portion that can be removed from the rest of the tip portion.
- the first housing may define a portion of a nosecone on a catheter such that removing the first housing exposes the remaining section of the nosecone.
- the first housing may define the entire tip portion and storage reservoir such that the entire tip portion can be removed and replaced with a clean empty storage reservoir.
- the first housing has a main body with a distal end 1034 and a proximal end 1032.
- the first housing 1024 is shape set to the second housing such that the second housing 925 can be inserted into the first housing 1024 to form a snug fit.
- the first housing 1024 has an inner wall 1038 that contacts the outer wall 934 of the second housing 925 when fitted.
- the first housing 1024 includes protrusions shown as tabs 1036a-b that project from its main body towards the center. In some embodiments, the tabs 1036a-b protrude at an angle towards the center of the main body.
- Figure 14 shows the tabs with a proximal end 1033a-b that is fixed to the main body and a free end 1035a-b that extends toward the interior of the first housing 1024.
- the angled projection of the tabs creates recesses 1031a-b between the tabs and the inner wall 1038.
- the tabs are shown as formed from the main body of the first housing, the tabs can also be made of an separate structure or component that sits on the inner wall 1038 of the first housing 1024.
- the first housing 1024 has two tabs 1036a-b to interface and lock with the receiving slots 932a-b of the second housing 925.
- the first housing 1024 is placed over the outer wall 924 of the second housing 925 to form a snug fit.
- the proximal end 1032 of the first housing 1024 is advanced over the distal end 928 of the second housing 925.
- first housing 1024 (or the second housing 925) is rotated relative to the other housing to align the tabs 1036a-b with the slots 932a-b.
- an edge of the slots 932a-b is slid into the recess 1031a-b until a portion of the main body of the second housing is held between a tab surface and the inner wall of the first housing.
- Figure 16 shows the first housing 1024 surrounding the second housing 925 with tabs 1036a-b engaged with slots 932a-b.
- Figure 17 shows a cross-sectional view with the first and second housing rotated to align the tabs and slots. The tabs 1036a-b are received through the slots 932a-b into an interior of the second housing 925.
- the edge of the slots 932a-b are slid into the recesses 1031a-b to hold and lock the lateral orientation of the second housing 925 within the first housing 1024. As shown, rotating the first housing counter-clockwise disengages the coupling structures and releases the housings from one another.
- a locking mechanism is used to maintain the rotational orientation of the housings.
- Figure 18 shows the first and second housings having a guidewire channel or lumen 1023, 923 through which a guidewire 909 can reside once the first and second housings are coupled.
- the guidewire prevents the housings from substantially rotating relative to one another to decouple the housings while the guidewire is in the channels.
- Figures 19-20 show alternative embodiments of the first and second housings.
- Figure 19 shows a first housing 1124 with tabs 1136a-b and a plurality of apertures 1105. In some embodiments, the apertures provide for fluid pressure release.
- Figure 20 shows an alternative second housing 1125 having slots 1132a-c. Although the housings are shown with two or three tabs/slots, it is to be understood that any number of mating structures can be used to form the detachable tissue collection devices.
- the first housing is formed by shape setting the housing to the second housing and baking the first housing in an oven at about 262 degrees Celsius (504 degrees Fahrenheit) for 20 minutes.
- second housing has an inner diameter of about 1.651 mm (0.065 inches) and an outer diameter of about 1.829 mm (0.072 inches).
- the second housing may have a length of about 5.588 mm (0.220 inches).
- the cutouts may have a width of about 1.27 mm (0.050 inches) and a length of about 1.778 mm (0.070 inches). Where multiple cutouts are employed, the cutouts may be separated by a distance of about 0.635 mm (0.025 inches).
- the first housing may have an inner diameter of about 1.829 mm (0.072 inches) and an outer diameter of about 1.981 mm (0.078 inches).
- the first housing may have a length of about 5.842 mm (0.230 inches).
- Figure 21 shows a tissue collection device having a detachable distal tip 1224.
- the detachable tip 1224 is attached to a tip section 1225 at an attachment point 1226.
- the detachable distal tip 1224 also includes venting elements 1244 for releasing fluid pressure buildup on the storage reservoir.
- Figure 22 shows a tissue collection device 1300 with a collapsible tip portion 1302. The tip portion 1302 is also releasably coupled to an atherectomy catheter at attachment section 1326.
- any of the described tissue collection devices can be used with atherectomy or other occlusion crossing devices.
- the atherectomy devices typically include an elongate body and a rotatable tip (with a cutter) at the first distal end of the elongate body and configured to rotate relative to the elongate body.
- Such devices are described in U.S. 2012/0253186 , titled “OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES," filed March 28, 2012, U.S. 2012/0046679 , titled “ATHERECTOMY CATHETERS WITH LONGITUDINALLY DISPLACEABLE DRIVE SHAFTS,” filed on July 1, 2011, U.S.
- references to a structure or feature that is disposed "adjacent" another feature may have portions that overlap or underlie the adjacent feature.
- the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
- the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
- first and second may be used herein to describe various features/elements, these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
- a numeric value may have a value that is +/- 0.1% of the stated value (or range of values), +/- 1% of the stated value (or range of values), +/- 2% of the stated value (or range of values), +/- 5% of the stated value (or range of values), +/- 10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Vascular Medicine (AREA)
- Pathology (AREA)
- Surgical Instruments (AREA)
Description
- Described herein are tissue collection devices that can be used with occlusion-crossing devices or systems such as atherectomy catheters. The tissue collection devices described may be configured with one or more of the following features: adjustable crossing profile; easily cleanable or replaceable components; and/or venting elements. Methods of using the tissue collection devices described herein are also described.
- Peripheral artery disease (PAD) affects millions of people in the United States alone. PAD is a silent, dangerous disease that can have catastrophic consequences when left untreated. PAD is the leading cause of amputation in patients over 50 and is responsible for approximately 160,000 amputations in the United States each year.
- Peripheral artery disease (PAD) is a progressive narrowing of the blood vessels most often caused by atherosclerosis, the collection of plaque or a fatty substance along the inner lining of the artery wall. Over time, this substance hardens and thickens, which may interfere with blood circulation to the arms, legs, stomach and kidneys. This narrowing forms an occlusion, completely or partially restricting flow through the artery. Blood circulation to the brain and heart may be reduced, increasing the risk for stroke and heart disease.
- Interventional treatments for PAD may include endarterectomy and/or atherectomy. Endarterectomy is surgical removal of plaque from the blocked artery to restore or improve blood flow. Endovascular therapies such as atherectomy are typically minimally invasive techniques that open or widen arteries that have become narrowed or blocked. Other treatments may include angioplasty to open the artery. For example, a balloon angioplasty typically involves insertion of a catheter into a leg or arm artery and positioning the catheter such that the balloon resides within the blockage. The balloon, connected to the catheter, is expanded to open the artery. Surgeons may then place a wire mesh tube, called a stent, at the area of blockage to keep the artery open.
- Such minimally invasive techniques (e.g., atherectomy, angioplasty, etc.) typically involve the placement of a guidewire through the occlusion. Using the guidewire, one or more interventional devices may be positioned to remove or displace the occlusion. Unfortunately, placement of the guidewire, while critical for effective treatment, may be difficult. In particular, when placing a guidewire across an occlusion, it may be difficult to pass the guidewire through the occlusion while avoiding damage to the artery. For example, it is often difficult to prevent the guidewire from directing out of the lumen into the adventitia and surrounding tissues, potentially damaging the vessel and preventing effective treatment of the occlusion.
- One way to address this challenge has been the use of atherectomy as a viable primary or adjunctive therapy prior to stenting for the treatment of occlusive coronary artery disease. Atherectomy offers a simple mechanical advantage over alternative therapies. Removing the majority of plaque mass (e.g., debulking) may create a larger initial lumen and dramatically increases the compliance of the arterial wall. As a result, stent deployment is greatly enhanced.
- Despite the potential to improve restenosis rates associated with angioplasty and stenting in the coronary and peripheral vasculature, atherectomy is not commonly performed. Traditional atherectomy devices have been plagued by a number of problems, which have severely limited market adoption. For example, available atherectomy devices often provide insufficient tissue collection and removal options during procedures. Typically, the storage capacity of the tissue collection compartment of an atherectomy device is not large enough to accommodate the amount of excised tissue. As such, the device operator must remove the device in order to clean the filled compartment before finishing the procedure. Alternatively, the operator may continue the procedure without collecting the resulting debris, which then leaves the debris in the patient's system to possibly redeposit onto the vessel walls.
- Although having a larger storage space would solve this problem, the need for a greater tissue storage capacity is balanced against the necessity for an adequately narrow crossing profile. The tissue storage area often forms the largest crossing profile for the atherectomy device, which results in a larger crossing profile with increased storage capacity. Larger crossing profiles make it difficult for the atherectomy or other occlusion-crossing devices to cross tight vessel regions without damaging or injuring the surrounding vessel tissue. As such, there is a need for a tissue collection device that can satisfy the competing interests of a small crossing profile and a large storage capacity.
- Another challenge for atherectomy has been the tendency for collected tissue to form blockages within the collection chambers. Collected debris can seal off sections of the collection reservoir, trapping fluid in storage space. This results in reduced storage capacity as a portion of the chamber is now filled with fluids rather than debris (e.g. plaque) excised from the vessel. The trapped fluids also create fluid pressure resisting the storage of additional material. Atherectomy devices commonly utilize tissue packing devices that compress the stored tissue into the collection chamber to compact as much tissue into the chamber as possible. However, fluid trapped in the collection chamber generates back pressure against the packing device, which prevents optimal use of the storage space. To avoid these concerns, there is a need for a tissue collection device that vents or releases fluids from the storage chamber.
- Additionally, tissue removed during atherectomy procedures can still exceed storage capacity regardless of how much storage is provided. Depending on the treatment site, the physician may remove an atherectomy device several times to clean the filled tissue collection chamber. This is often suboptimal as available devices do not have easily detachable collection chambers for quick cleaning. Accordingly, there is a need for a tissue collection device that is configured to be easily removed, replaced, and/or cleaned during a procedure.
-
US 2011/0295148 discloses a device for collecting a tissue sample from an animal comprising a collection means having at least one cutting element for cutting a tissue sample and a means for storing the sample. The two-part form of claim 1 is based on this document.WO 2008/051951 discloses a biopsy collection device comprising a body portion configured for attachment to an endoscope, a passageway extending through the body portion for receiving a biopsy sampling device and a receptacle portion connected to the passageway and configured to retain a portion of tissue removed from a target site during a biopsy procedure. -
US 2005/0222663 discloses an atherectomy device for removing material from a vascular lumen comprising an elongate body, an opening in the body, a rotatable cutting element that is orientated to direct material being cut through the opening and a containment chamber formed along the body for receiving the cut material. -
US 2010/0292721 discloses an atherectomy catheter comprising a body having an opening, a rotatable shaft coupled to the body, a rotatable cutting element coupled to the rotatable shaft and a tissue collection chamber coupled to the body for retaining cut tissue. - In light of the concerns described above, tissue collection devices, chambers, or reservoirs are described herein to address at least some of the challenges illustrated above.
- The present invention provides a detachable tissue collection device according to claim 1.
- Some exemplary devices described herein relate to a tissue collection device having a proximal end and a distal end defining a length of the device; a hollow shaft located along at least a portion of said length, the shaft defining a lumen; a tendon member residing in the shaft lumen; and a tissue storage reservoir having an adjustable cross-section.
- In some variations, the tissue storage reservoir (which is defined by a tip portion) is movable between a first configuration and a second configuration, the second configuration having a smaller crossing profile and a reduced cross-section relative to the first configuration. In some exemplary devices, the tip portion or tissue storage reservoir is configured to compress when moved to the second configuration and expand when moved to the first configuration. Furthermore, the tip portion or tissue storage reservoir may include a mesh that defines the storage reservoir. The mesh may be configured to collapse when the tip portion or tissue storage reservoir is moved from the first configuration to the second configuration. In other exemplary devices, the tip portion or tissue storage reservoir includes a wire frame that is configured to collapse when the tip portion or tissue storage reservoir moves from the first to the second configuration.
- Additionally, the tip portion or tissue storage reservoir may include an elastic material, a resilient material, or a shape-memory material. In some cases, the tissue storage reservoir may be formed from a braided nitinol mesh that is configured to collapse and expand between the first and second configurations.
- In any of the preceding examples, the tissue storage reservoir is configured to move from the first configuration to the second configuration by applying a distally directed force along a longitudinal axis of the device. In any of the preceding examples, the distally directed force is applied to the distal end of the device.
- In any of the preceding exemplary devices, distally moving the tendon member against a distal end of the device applies a distally directed force to thereby move the tissue storage reservoir from a first configuration to a second configuration. In some cases, the tissue storage reservoir has a distal end and a proximal end, the distal end of the reservoir fixed to the tendon member and the proximal end of the reservoir fixed to the hollow shaft. In other variations, the reservoir is adapted to transition to the second configuration by distally moving the tendon member relative to the shaft. In any of the preceding exemplary devices, proximally moving the tendon member moves the tissue storage reservoir from a second configuration to a first configuration. In any of the preceding variations, the reservoir is adapted to transition to the second configuration by rotating the reservoir about the shaft to form a coiled collapsed configuration. In any of the preceding examples, the tissue storage reservoir includes a resilient frame configured to naturally return to the first configuration.
- In any of the preceding exemplary devices, the tissue storage reservoir is configured to move from the first configuration to the second configuration by extending the length of the device.
- Additionally, in any of the preceding examples, the device may include a guidewire lumen and a guidewire residing in a guidewire lumen, wherein distally moving the guidewire against the distal end of the device applies a distally directed force to thereby move the tissue storage reservoir from a first configuration to a second configuration. In any of the preceding exemplary devices, the tissue storage reservoir is configured to return to the first configuration from the second configuration after the distal force is released. In any of the preceding exemplary devices, the tissue storage reservoir is configured to return to the first configuration from the second configuration by applying a proximally directed force to the distal end.
- In any of the preceding examples, the first configuration may have a crossing profile of about 2.032 mm (0.080 inches). In any of the preceding examples, the second configuration may have a crossing profile of about 0.508 mm (0.020 inches). In any of the preceding examples, the crossing profile of the tissue storage reservoir is between about 0.508 mm to about 2.032 mm (about 0.020 inches to about 0.080 inches).
- Additionally, in any of the preceding examples, the proximal end of the device may be adapted to couple to a catheter.
- In any of the preceding examples, the device length is between about 10mm to about 100mm.
- In any of the preceding examples, the tissue collection device may include a tissue storage reservoir having a plurality of gaps having a width between about 50µm to about 200µm. In any of the preceding exemplary devices, the tissue storage reservoir may include a porous member configured allow fluid movement out of the storage reservoir. In any of the preceding exemplary devices, the tissue storage reservoir includes a plurality of gaps of between about 0.01 to about 0.5mm.
- In any of the preceding examples, the devices include a third configuration, the third configuration having a greater crossing profile relative to the first configuration.
- In any of the preceding exemplary devices, the tissue storage reservoir is adapted to be biased towards the first configuration.
- Further exemplary devices, provide for an atherectomy catheter device having an elongate body; a central lumen extending within the elongate body from a proximal end of the elongate body to a distal end of the elongate body; a rotatable cutter at the distal end of the elongate body and configured to rotate relative to the elongate body; and a tissue collection device according to claim 1 positioned at the distal end of the elongate body, distal of the rotatable cutter, the tissue collection device having an adjustable crossing profile.
- In any of the preceding examples, the tissue collection device includes a plurality of configurations, a first configuration having a smaller crossing profile and a reduced storage capacity relative to a second configuration. In other examples, the atherectomy device has a crossing profile that is adjustable by varying the length of the tissue collection device or the tissue storage reservoir. In further variations, the atherectomy device is configured for shortening the length of the tissue collection device to increase the crossing profile. In any of the preceding exemplary devices, the tip portion can include a braided mesh defining the storage reservoir.
- Other exemplary devices provide for a tissue collection device including a proximal end and a distal end defining a length of the device; and a tissue storage reservoir. The tissue storage reservoir includes a venting element configured to release fluid pressure in the storage reservoir. In some exemplary devices, the venting element includes a plurality of apertures on the tip portion. In further variations, the venting element includes a mesh material.
- In any of the preceding examples, the device (e.g. tip portion) may include a plurality of venting sections configured to allow fluid movement out of the storage reservoir. In any of the preceding exemplary devices, the venting element is positioned adjacent the distal end of the device.
- Further exemplary devices provide for an atherectomy device including an elongate body; a central lumen extending within the elongate body from a proximal end of the elongate body to a distal end of the elongate body; a rotatable cutter at the distal end of the elongate body and configured to rotate relative to the elongate body; and a tissue collection device according to claim 1 positioned at the distal end of the elongate body, distal of the rotatable cutter. In some embodiments, the tip portion may include a venting element configured to release fluid pressure in the storage reservoir.
- In any of the preceding exemplary devices, the first housing may be configured to couple to the second housing through a mated fit. In any of the preceding embodiments, substantially
the entire tissue storage reservoir is detachable by uncoupling the first and second housings. The first housing includes a plurality of angled tabs and the second housing includes a plurality of slots for receiving the plurality of angled tabs to retain the first housing when the angled tabs are engaged with the slots. The angled tabs may be formed from a wall of the first housing. The first housing and the second housing may be laterally locked when mechanically coupled. - Additionally, any of the preceding exemplary devices may include a guidewire lumen defined by a first channel on the first housing and a second channel on the second housing. In some exemplary devices, the first housing and second housing are rotationally locked when a guidewire is placed through the first and second channels.
- Also described but not claimed are methods of performing an atherectomy. These methods include collapsing a distal tip region of an atherectomy catheter to a collapsed configuration by applying a distally directed force to the distal tip region; expanding the distal tip region to an expanded configuration by releasing the distally directed force, wherein the expanded configuration has a larger crossing profile and cross-section relative to the collapsed configuration; and storing excised tissue in a tissue storage reservoir of the expanded distal tip region. In any of the preceding methods, the storing step includes deflecting the excised tissue into the tissue storage reservoir. Any of the preceding methods may include packing the tissue into the storage reservoir.
- Further methods of performing an atherectomy include the steps of packing excised tissue into a storage reservoir defined by the distal tip region of an atherectomy catheter; and ventilating the storage reservoir to reduce back pressure in the storage reservoir.
- Any of the preceding methods of performing an atherectomy include the steps of detaching a portion of a distal tip region of an atherectomy catheter; and replacing the portion of the distal tip region.
- Other exemplary devices provide for a detachable tissue collection device including a proximal end adapted to releasably couple to a distal end of an atherectomy catheter; a replaceable distal tissue storage reservoir configured to be removable from the atherectomy catheter by uncoupling the proximal end from the distal end of the catheter. In any of the preceding exemplary devices, the tissue collection device may include a first mating structure at the proximal end configured to couple to a second mating structure on the distal end of the catheter. The first mating structure includes a plurality of projecting tabs and the second mating structure includes a plurality of slots.
- The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative exemplary devices and, embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
-
FIG. 1 is a side view of an atherectomy catheter having a distal tissue collection chamber. -
FIG. 2 is a side view of a collapsible tissue collection device attached to a catheter. -
FIG. 3 is a side view of the tissue collection device ofFIG. 2 in a collapsed configuration. -
FIG. 4 is a side view of the tissue collection device with varying lengths in different configurations. -
FIG. 5 is a side view of another collapsible tissue collection device including a two-part guidewire housing. -
FIG. 6 is a side view of a collapsible tissue collection device with a collapsible frame supporting the tissue storage reservoir. -
FIG. 7 is a side view of an extended configuration for a collapsible tissue collection device. -
FIG. 8 is a side view of a vented tissue collection device with venting elements to release fluid pressure in the storage reservoir. -
FIG. 9 is a side view of an alternative vented tissue collection device. -
FIG. 10 is a side view of a detachable tissue collection device. -
FIG. 11 shows the device ofFIG. 10 with a first housing detached from a second housing of the tip portion. -
FIG. 12 is a side view of a tissue collection device with a proximal attachment section. -
FIG. 13 is a perspective view of a second housing for a detachable tissue collection device, according to the invention. -
FIG. 14 is a perspective view of a first housing for a detachable tissue collection device, according to the invention. -
FIG. 15 shows a bottom view of the first housing shown inFIG. 14 . -
FIG. 16 shows the first and second housings ofFIGS. 13-14 coupled. -
FIG. 17 shows the cross-section of the coupled housings inFIG. 16 . -
FIG. 18 is a perspective view of a pair of coupled housings with a guidewire lock. -
FIG. 19 is a perspective view of an alternative, according to the invention, of the first housing. -
FIG. 20 is a perspective view of an alternative, according to the invention, of the second housing. -
FIG. 21 is a side view of a detachable vented tissue collection device. -
FIG. 22 is a side view of a collapsible and detachable tissue collection device. -
FIGS. 23a-c shows an alternative collapsible tissue collection device. -
FIG. 24 shows a coiled collapsed configuration for a tissue collection device. -
FIG. 25 shows an uncoiled configuration for the device ofFIG. 24 . - The tissue collection devices described herein include a tissue chamber, reservoir, and/or tissue storage area adapted for receiving and retaining excised tissue or solid biological material. Advantageously, such collection devices can be used during minimally invasive procedures where tissue or other material is cut and removed from the patient's body. The tissue collection devices may be used with any suitable catheters including, at least, those described in
U.S. 2012/0253186 , titled "OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES," filed March 28, 2012,U.S. 2012/0046679 , titled "ATHERECTOMY CATHETERS WITH LONGITUDINALLY DISPLACEABLE DRIVE SHAFTS," filed on July 1, 2011,U.S. 2011/0004107 , titled "ATHERECTOMY CATHETER WITH LATERALLY-DISPLACEABLE TIP," filed on July 1, 2010, andU.S. 2011/0021926 , titled "CATHETER-BASED OFF-AXIS OPTICAL COHERENCE TOMOGRAPHY IMAGING SYSTEM," filed on July 1, 2010. - As an initial matter, devices described as being on a distal or proximal region of another device (e.g. catheter) are not meant to limit the tissue collection device to any particular location or position. Rather, the described devices illustrate examples of how the contemplated tissue collection devices can be used with other devices or systems. Likewise, in some devices, the tissue collection devices may be described as having one or more specific features such as detachability or size adjustment. However, it is to be appreciated that the contemplated devices may include features in different combinations or variations than the examples provided. For example, some devices may be detachable and size adjustable or only detachable.
- As discussed above, a challenge to using atherectomy or, more generally, occlusion-crossing devices, has been the difficulty in storing excised material such as plaque for removal from the patient. A large tissue storage volume often necessitates a large crossing profile to accommodate the storage capacity. To address this problem, tissue storage or collection devices with adjustable dimensions are provided. The devices may be designed to change one or more of cross-sectional size, length, inner diameter, outer diameter, etc. to allow the tissue storage device to move between collapsed and expanded configurations.
- In such exemplary cases, the tissue collection device may employ a collapsed or compressed cross-section during insertion into the patient or navigation through narrow vessel sections. Once desired positioning is achieved, the tissue collection device may be expanded to increase the cross-section and crossing profile of the device.
- In some cases, the tissue collection device may include a plurality of configurations ranging from a fully collapsed to a fully expanded configuration. For example, at the fully collapsed configuration, the device may have a minimum inner diameter and outer diameter. Likewise, at the fully expanded configuration, the device may have maximum inner and outer diameters. Additionally, beyond the fully collapsed or expanded positions, the tissue device may have configurations with dimensions between maximum and minimum dimensions. Advantageously, this provides the physician with a plurality of configurations within a preset range.
- To transition between configurations, the tissue collection device may adjust cross-sectional size and/or the crossing profile by changing the length of the device or a portion of the device. For example, in some examples, the device has a length adjustable portion (e.g., an adjustable tip portion) that contains the storage reservoir. The crossing profile around the storage reservoir is reduced by lengthening it (e.g., by lengthening the tip portion). In some cases, applying a distally directed force at the distal end of the storage reservoir and/or tip portion pushes the distal end to extend or elongate the storage reservoir and/or tip portion. Elongating the tip portion, consequently, also compresses the cross-section of the tissue storage reservoir contained within the tip portion to reduce the crossing profile of the device. Lengthening the tip portion/tissue reservoir, therefore, is a means for transitioning the tissue collection device from a first expanded state to a second collapsed state.
- Once the distally directed force is released, the tip portion/storage reservoir may return to an expanded position. In some cases, the device is biased toward the expanded state whereby releasing the lengthening force allows the tissue storage reservoir to return unassisted to its expanded position. For example, the storage reservoir may be made from a resilient or elastic material or frame with a natural elasticity that springs, recoils, or recovers to the expanded shape once the elongating force is removed or released.
- It should be noted that, as used herein, the tip portion may refer to and/or include the storage reservoir. The tip portion (and/or storage reservoir) is not limited to the distal tip region of the devices described herein; additional structures may be located at the distal (or in some orientations, proximal) tip regions. Further, the storage reservoir and/or tip portion may be located proximally of the distal tip of the device(s) described herein.
- Alternatively, in another case, the device may require an assisting force to transition from the collapsed to expanded state. In such cases, a force may be applied to transition the collapsed device (e.g., tip portion and/or tissue reservoir) from the elongated configuration to the original expanded configuration. This, in turn, also increases the collapsed crossing profile to the expanded crossing profile. In some variations, this may be achieved by applying a proximal directed force that shortens the elongated tissue storage reservoir. The proximally directed force pulls the distal end of the elongated tip portion back towards the expanded configuration. This causes the outer diameter and crossing profile of the tissue storage reservoir to increase.
- A force applying element may be employed to impart force to the device. A tether, tendon member, guidewire, tensioning element, or any other suitable mechanism can be used for this purpose. For example, some exemplary devices include a hollow shaft or lumen through which an elongate tendon member (e.g., wire) extends. A portion of the tendon member is attached to the tissue device such that moving the tendon member through the lumen imparts a configuration changing force to the device. In some variations, a separate tendon and tendon lumen are not necessary where a guidewire and corresponding guidewire lumen can serve the same function. For example, a guidewire may be received and retained in a guidewire lumen of the tissue collection device such that the guidewire can maneuver the device into various configurations.
- Referring now to
Figure 1 , a general non-collapsibleatherectomy catheter device 200 is shown having acutter 202 anddistal tip region 201 with a tissue storage reservoir. In some variations, the tissue storage reservoir is in themain body 204 of the catheter. However, for illustration purposes, a distal tip storage reservoir is described. - The distal tip region may be hollow or otherwise configured to hold material cut by the atherectomy device. In some variations the distal tip region is clear or at least partially transparent, allowing one to see if material has been collected or remains in the tip region. The distal tip region may include a flush port or may otherwise be adapted to allow removal of cut material stored therein. For example, the distal end may be tapered but may be open. The distal tip region may be removable and/or replaceable. A reusable locking mechanism, such as threads, or the like, may be used to secure a distal tip region on the catheter.
- In operation, the
distal tip region 201 is advanced into the patient's vasculature and maneuvered to a target treatment location. During advancement, the distal tip region must cross through vessel lesions or narrow/tortuous pathways to position thecutter 202 at a target site for tissue excision. To do so, the crossing profile of thedistal tip region 201 must be sized to allow bypass through tight vessel cross-sections. - Additionally, the
distal tip region 201 also serves as the tissue collection chamber for storing tissue removed by thecutter 202. At a target site, thecutter 202 may excise the tissue and direct the tissue into a hollow reservoir inside thedistal tip region 201. Any number of exemplary methods for doing so have been described in the applications aforementioned. For example, thecutter 202 may have a scoop shape to cut and deflect tissue into a receiving collection chamber in thedistal tip region 201.Figure 1 shows thedistal tip region 201 having a closed nosecone construction with an opening at a proximal end for receiving cut tissue. The structure is relatively inelastic and does not easily compress or change shape. As such, the crossing profile is preset and is not easily changed without permanently deforming and, possibly, damaging the nosecone. -
Figure 2 shows a collapsibletissue collection device 100 attached in thedistal region 101 of thecatheter 200. Thetissue collection device 100 includes aproximal housing 104 that attaches thedevice 100 to the catheter body. In some cases, theproximal housing 104 releasably couples thetissue collection device 100 to the main catheter body through any suitable mechanical attachment means such as friction fit, mated fit, threads, etc. In other exemplary devices, theproximal housing 104 permanently secures thetissue collection device 100 to thecatheter 200. - As shown, the
tissue collection device 100 has a size adjustable tip portion ortip 102. Thetip portion 102 may also be attached to theproximal housing 104 at aproximal end 106 of thetip portion 102. Thetip portion 102 includes adistal end 108 and a length of thedevice 100 between the two ends 106, 108. Astorage reservoir 110 is contained within thetip portion 102. Thetissue reservoir 110 may extend along a part of or all of the tip portion. Where thestorage reservoir 110 extends to thedistal end 108 of thetip portion 102, the distal end may be sealed to prevent the release of tissue from the reservoir. Unlike thedistal end 108, theproximal end 106 does not need to be sealed and can include an opening in communication with the tissue storage reservoir. This allows excised tissue to enter the reservoir through theproximal end 106. In some variations, the tissue storage reservoir is attached to theproximal end 106 and thedistal end 108 of the tip portion by way of an adhesive or biocompatible polymer such as PEBAX®, Tecothane®, or polyimide. For example, the structure of the reservoir may be fused to a polymer-based housing at theends -
Figures 2-3 show the collapsibletissue collection device 100 in expanded and collapsed states respectively. In the expanded state, thetissue collection device 100 has alarger crossing profile 103a relative to a collapsed configuration (collapsed crossingprofile 103b shown inFigure 3 ). By varying the cross-sectional size of the tissue reservoir, thedevice 100 can assume a reduced profile to navigate through narrow vessel structures. - In order to accommodate dimension changes, the
tip portion 102 and/or thestorage reservoir 110 may be made from an elastic, deformable, stretchable, or resilient structure or material. Suitable materials include biocompatible shape memory materials, alloys, metals, composites, polymers, etc. These include, but are not limited to, nitinol, PEBAX®, polyimide, PEEK, polyester, polypropylene, Tecothane®, stainless steel, elgiloy, cobalt-chromium alloys, carbon fiber, nylon, titanium and its alloys, or Kevlar. In some exemplary devices, the material(s) forming the tissue portion/reservoir has a natural elasticity or resilience that biases the material to a relaxed shape. When deformed, the material exhibits a tendency to recover the relaxed shape. Additionally, any biocompatible material may be used that retains collected solids while allowing fluid movement out of the reservoir. - In some exemplary devices, the tissue reservoir is defined by a collapsible or foldable structure. This includes a compressible frame that allows the storage reservoir to reduce cross-sectional size. For example, the storage reservoir or tip portion may be constructed from a collapsible frame that supports an unstructured elastic or deformable material. The frame may provide an outer structure or skeleton upon which a deformable material (e.g. flexible mesh) is draped and secured.
Figure 6 showsdevice 300 with aframe 314 supporting anelastic material 312. The frame defines the outer boundaries of thetissue storage reservoir 310 while theelastic material 312 forms a sheath over theframe 314. Theframe 314 is collapsible or foldable while providing support to theelastic material 312. The frame may also include additional support members such as struts, ribs, posts, joints, etc. to facilitate the configuration changes of the tissue collection device. - In some exemplary devices, the collapsible frame is a network forming a mesh or netted structure. A mesh frame may be braided or woven to increase strength and to better hold stored contents in the collection chamber. Moreover, a wire mesh or netted frame may surround and define the storage reservoir inside the frame.
-
Figure 2 shows an example of a mesh structure forming the tissue reservoir on thetip portion 102. The mesh surrounds and defines the storage volume in thestorage reservoir 110. As shown, the mesh is attached to the distal and proximal ends of the tip portion. Any attachments means may be used, including fusing the mesh to the ends using a melted polymer such as PEBAX®. In some cases, the mesh is also attached to thehousing 104 for additional stability. - In some variations, the mesh is a braided wire that includes gaps and openings. The braid is structured such that gaps are sufficiently small to prevent the release of collected tissue from the storage reservoir. In some exemplary devices, the gaps are about 0.25 sq cm. In other exemplary devices, the gaps are between about 50µm to about 200µm in width. In other exemplary devices, the gaps are about 0.01 to about 0.5mm in width.
- Referring now to
Figures 3-4 , the process and mechanism for expanding and collapsing a tissue collection device is described in greater detail.Figure 3 shows thetissue collection device 100 ofFigure 2 in a reducedcrossing profile configuration 120. Thetip portion 102 is collapsed to reduce the cross-section of the storage reservoir. The phantom lines indicate the expandedconfiguration 118 relative to the showncollapsed configuration 120. Thecrossing profile 103a of the expandedconfiguration 118 is greater than thecrossing profile 103b of the collapsed configuration. Additionally,Figure 3 shows that thecollapsed configuration 120 also exhibits a greater tip portion/storage reservoir length L2 relative to the length L1 of the expandedconfiguration 118. In this exemplary device, extending or elongating thetip portion 102 andtissue storage reservoir 110 reduces the crossing profile. - One exemplary method of extending the length of the tip portion or
storage reservoir 110 is to apply a distally directed force to the tip portion. This force can be applied along the length of the device or at thedistal end 108. In operation, applying a distally directed force (F1) along the longitudinal axis of thetip portion 102 forces the tip portion to lengthen. When the tip portion is stretched or extended, the cross-section of the tip portion compresses to accommodate the tip portion elongation. This reduces the crossing profile of thetissue storage reservoir 110. - Where a collapsible or foldable frame forms the tissue storage reservoir, the distally directed force may transition the tissue collection device from an unfolded to a folded configuration. Referring to
Figure 6 , the foldableouter frame 314 may include joints and ribs that pivot or move to reduce crossing profile when a distally directed force is applied. - Alternatively, where a flexible braided mesh (see
Figure 2 ) forms the reservoir, the braided mesh may accommodate stretching in one or more directions. As shown inFigures 2-3 , the mesh stretches in the longitudinal direction under the distally directed force. This allows the tissue reservoir to elongate while reducing the mesh's cross-section. - Returning the tissue reservoir to a larger crossing profile from the collapsed configuration can be achieved in several ways. In a first variation, the
tissue collection device 100 can return to its expanded state without applying any assisting force to transition the device. This can be accomplished by using a resilient or elastic material for the tissue storage reservoir. For example, the mesh material inFigure 2 may be biased toward the larger crossing profile configuration such that once the elongating force (F1) is removed, the mesh will recover its natural shape. For this purpose, any resilient material can be used whereby the material has a natural elasticity or tendency to return to an expanded state once the compressing force is no longer applied. - In a second variation, the tissue collection device is not biased toward any particular configuration (e.g. relaxed expanded state). Instead, the material and/structure forming the tissue storage reservoir remains in the reduced profile configuration even after the elongating force (F1) is no longer applied to the device. In such cases, a proximally directed force (F2) may be required to pull the tip portion into a non-collapsed configuration. In other words, an assisting force is needed to transition the compressed tissue reservoir to an expanded state with a larger crossing profile.
- Referring to
Figures 24-25 , an alternative process and mechanism for collapsing and expanding the tissue collection device is shown. Thedevice 2400 includes astorage reservoir 2410 at a tip portion of thedevice 2400. The expandedstate 2418 fordevice 2400 is indicated by the dotted lines. In the reduced crossing profile configuration shown, the tissue storage reservoir 2140 is wrapped around ashaft 2420 on thedevice 2400. In some variations, thestorage reservoir 2410 is a loose braided mesh that can coil around theshaft 2420. In some exemplary cases, thestructure 2420 is a catheter, guidewire lumen, tendon member lumen, or other housing encircled by the storage reservoir. - To maneuver the
device 2400 from the expandedconfiguration 2418 to the coiled collapsed configuration, thestorage reservoir 2410 is rotated or turned about theshaft 2420. In some exemplary devices, thedistal end 2408 of the storage reservoir is fixed to theshaft 2420 and theproximal end 2406 of the reservoir moves about theshaft 2420. Rotating theproximal end 2406 about theshaft 2420 coils the reservoir. In some variations, the storage reservoir is first elongated and then coiled. Elongation can slightly compress the cross-section of reservoir to facilitate the coiling. - For any of the described examples, any number of means or mechanisms can be used to apply a collapsing, expanding, or coiling force.
Figure 4 shows the distally or proximally directed force applied by thetendon wire 109. Thetendon wire 109 resides in a lumen that is defined, in part or whole, by a tendon housing.Figure 4 shows the housing in two parts. Thefirst part 111a is at the proximal end and thesecond part 111b is at the distal end. Thetendon member 109 is fed through an opening at each of the two-part housing components 111a-b. Thetendon member 109 is exposed along a length of thetip portion 102 between the twohousing components 111a-b. - To impart force, the housing components may be constructed to retain the
tendon member 109 during configuration changes. For example, thedistal housing component 111b may include adhesive, stays, stops, or a tight fit such that the housing component resists distal movement of thetendon member 109. In some variations, the tendon member is fixed or fused to the distal end of the tip portion or the tissue storage reservoir. In such cases, distally pushing thetendon member 109 against thedistal housing component 111b imparts a distally directed force F1 to the distal end of thetip portion 102. This, in turn, pushes the tip portion distally to lengthen thedevice 100 and reduce the crossing profile. - Additionally, the
tendon housing 111 may include adhesive, stays, stops, or fitting dimensions to retain the tendon member while a proximally directed force F2 is applied to pull the distal end of the tip portion proximally. This is applicable, for example, where the tissue storage reservoir does not naturally recover to the expanded state when the collapsing force (F1) is removed. The proximal force (F2) transitions the collapsed configuration back to the expandedstate 118.. -
Figures 2 ,5 , and23a-c show various tendon member and housing variations.Figure 2 shows alumen 112 along a length or a longitudinal axis of thetissue collection device 100. Thelumen 112 is defined by ahousing 111 that is also positioned along a length of thedevice 100. Thehousing 111 is fixed to theproximal end 106,distal end 108, and along a length of thetip portion 102. Atendon member 109 resides in thelumen 112.Figure 5 shows a similar arrangement with the housing having two components at the distal and proximal ends.Housing components 111a-b define a portion of the lumen where a tendon member is exposed in the area between the housing components. - Although both exemplary devices, and variations thereof, are suitable, the
housing 111 inFigure 2 may be made from an elastic material that can also elongate. For example, thehousing 111 may also be made from a mesh or wire net that can compress and elongate during configuration changes of the storage reservoir. -
Figures 23a-c illustrates another alternative housing and tendon member arrangement.Tissue collection device 2300 has atissue storage reservoir 2310 having adistal end 2303 and aproximal end 2305. At thedistal end 2303 thereservoir 2310 is fixed to thetendon member 2308 by an adhesive material 2314 (e.g. a melted and fused polymer). At theproximal end 2305, thereservoir 2310 is fixed to thetendon lumen housing 2306 by an adhesive material 2318 (e.g. a melted and fused polymer). Theproximal end 2305 includes anopening 2316 for the excised tissue to be advanced into thereservoir 2310. As shown, thehousing 2306 forms a sleeve with aninner lumen 2307 and thetendon member 2308 resides in thelumen 2307. Thetendon member 2308 slides or moves longitudinally withinlumen 2307. (SeeFigure 23b showing a cross-section of the housing and tendon member.) - In this exemplary case, the
device 2400 can be collapsed in a couple of ways. In one variation, thetendon member 2308 is moved distally through thehousing 2306 orlumen 2307. This distal movement applies a distal force Fd against thedistal tip 2303 of thestorage reservoir 2310. Because theproximal end 2305 of the reservoir is fixed to thehousing 2306, the distal force Fd pushes against thedistal tip 2303 to lengthen thereservoir 2310. This compresses the cross-section and results in the reducedcrossing profile 2313b. In another variation, the reservoir may be partially elongated before rotating theproximal end 2305 of the reservoir about thehousing 2306. This twists and coils thereservoir 2310 about thehousing 2306 to form a collapsed coiled state. - Additionally, as described in detail above, the tissue collection devices (including device 2400) can return to an expanded state by removing the collapsing force (i.e. removing a distal or coiling force) and allowing the device to recover a natural relaxed state. Alternatively, another force such as a proximal force is applied to move the device back to an expanded state. Where the collapsed state is a coiled configuration, the reservoir may need to be rotated in a counter direction to unwind the coil. For example, referring to
Figure 23c , if a clockwise direction winds the reservoir, then the opposing counter-clockwise direction uncoils the device. - In some cases, a separate tendon member and housing are not necessary as a guidewire lumen and guidewire can also transition the tissue collection devices between expanded and collapsed configurations. In such cases, the tendon member may be configured to function as a guidewire and the tendon housing functions as a guidewire lumen. Alternatively, the tissue collection device may have two separate structures for the guidewire and tendon member.
- Additionally, where a polymer is used to form the guidewire/tendon member housing, the polymer can be melted or softened to adhere the housing to the structure of the storage reservoir or tip portion. Suitable materials include polymers, such as polyimide tubing, that can be softened or melted to adhere to the collapsible frame.
- Referring to
Figure 7 , thetissue collection device 400 has an additional extended configuration beyond the collapsed or expanded configurations. The extended configuration has agreater crossing profile 403c relative to the collapsed and expanded configurations (403a-b). The extended configuration may allow the device to adjust cross-sectional dimensions to efficiently pack tissue in the storage space. - Although not limiting, the tissue collection device may have the following dimensions described. In some exemplary devices, the minimum outer diameter is about 0.508 mm (0.020 inches). In some exemplary devices, the maximum outer diameter is about 2.032 mm (0.080 inches). In some exemplary devices, the device has an outer diameter between about 0.356 mm and about 2.54 mm (about 0.014 inches and about 0.10 inches). In further exemplary devices, the length of the tissue collection device (when deployed) could range from about 10mm to about 100mm. The outer diameter/crossing profile (when deployed) could range from about 0.02 inches to about 0.15 inches. The range of the inner diameter may follow the range of the outer diameter, differing by virtue of the wall thickness of the device.
- In another aspect, the exemplary devices described provide for tissue collection devices that release trapped fluids and relieve fluid pressure in the storage reservoir of the devices. These devices may include venting members or venting elements through which fluid can escape and flow out of the storage reservoir. A tip portion of the device may include any suitable wall features such as holes, gaps, apertures, nets, mesh, slits, slots, etc. that accommodate the migration of fluids out of the storage reservoir. Advantageously, such exemplary devices, prevent the buildup of fluids in the storage reservoir, which can prevent efficient use of the available storage space. Additionally, any of the fluid releasing members or features described can be used with any of the other features described. For example, fluid releasing members can be used with a collapsible tissue collection device. Furthermore, a detachable device can include venting elements.
-
Figure 8 shows atissue collection device 500 with atip portion 502. Thetip portion 502 has adistal end 508 and aproximal end 506. Thedevice 500 includes aproximal housing 504 attached to thetip portion 502. In some exemplary devices, theproximal housing 504 is adapted to attach or couple thedevice 500 to a catheter. Thetip portion 502 includes a plurality of ventingelements 505a at a distal end of thetip portion 502. Another set of ventingelements 505b are located at another section of thetip portion 502. - The venting elements may be holes or apertures allowing fluid to escape from the
tissue storage reservoir 510. This is particularly useful when tissue is packed into the storage reservoir during an atherectomy procedure where a packing mechanism such as a plunger pushes tissue distally into the storage reservoir. A pocket of fluid in the distal area of the storage reservoir can create back pressure against the plunger. As such, the trapped fluid fills valuable storage space while also impeding the storage of additional tissue. - Although shown as apertures, the venting elements can be any suitable material or feature that allows fluid movement.
Figure 9 shows atissue collection device 600 with atip portion 602 havingventing elements 604a-b. The venting elements are formed from a mesh net that contains solid materials within thedevice 600 while allowing movement of fluids out of the storage reservoir. The mesh may be made out of any suitable material including an elastic or resilient material such as shape-memory alloys, biocompatible polymers, etc. In some exemplary devices, the mesh is made from braided nitinol wires. - Additionally, suitable materials that can be used for the device include biocompatible alloys, metals, composites, polymers, etc. These include, but are not limited to, nitinol, PEBAX®, polyimide, PEEK, polyester, polypropylene, Tecothane®, stainless steel, elgiloy, cobalt-chromium alloys, carbon fiber, nylon, titanium and its alloys, or Kevlar. Additionally, any biocompatible material may be used to form the elastic or stretchable structure for the reservoir that can retain solids such as excised tissue while allow fluid movement out of the reservoir. In some variations, the venting elements are limited to sections of the device. Venting
elements 604a-b are separated by non-venting sections of the tip portion. In such variations, the venting sections may be fused to the material of the non-venting sections. For example, the tip portion may be made from a thermoplastic polymer that can be melted and fused to the mesh to create venting elements and sections on the tip portion. - The invention can provide for a tissue collection device that can be easily detached, replaced, and/or cleaned. The storage reservoirs of collection devices are often filled before a procedure is completed. Operators must then remove the treatment devices and clean the tissue collection device.
- Embodiments described provide for a tissue collection device having a storage reservoir that can be detached for efficient cleaning or replacement. In some variations, the entire storage reservoir can be detached and replaced with a clean reservoir. For example, the entire tip portion may be removed and replaced with a clean tip portion. In other embodiments, a portion of the storage reservoir is removed to provide a distal opening through which stored material can be flushed out with cleaning solution (e.g. saline, water, etc.) before re-attaching the removed section.
-
Figure 10 shows an exemplary detachabletissue collection device 800 having atip portion 802 defined by afirst housing 824 and asecond housing 825. Thefirst housing 824 and thesecond housing 825 are detachably coupled at anattachment section 826. In some exemplary cases, thedevice 800 includes aproximal housing 804 for coupling thetissue collection device 800 to a catheter (e.g. atherectomy catheter). - The
tip portion 802 defines atissue storage reservoir 810 within the first andsecond housings storage reservoir 810 is shown filled with stored excisedmaterial 801. To remove the material, thefirst housing 824 is detached from thesecond housing 825. Once detached, shown inFigure 11 , the two housings can be separately cleaned to remove stored material. The housings may be flushed to clear and remove debris. - In some exemplary devices, the storage reservoir may be limited to the volume defined between the
junction 826 and theproximal housing 804. In such variations, the storage reservoir can be flushed out by cleaning thesecond housing 825 with cleaning fluid (e.g. saline) without flushing thefirst housing 824. - Alternatively, the entire tip portion may be removed for cleaning or replacement.
Figure 12 shows atissue collection device 700 with atip portion 702. Thetip portion 702 defines astorage reservoir 710. The tip portion may be formed from afirst housing 724, which also surrounds thestorage reservoir 710. Thefirst housing 724 may be coupled to a second housing orproximal housing 725. Theproximal housing 725 may be connected or coupled to a catheter. In some variations, the second housing is a part of the main body of the catheter and is adapted to attach the tissue collection device to the catheter. In such cases, the tissue collection device may include an attachment element for coupling the device to the catheter via anattachment section 726. - Advantageously, because the entire tissue collection device or portions thereof are detachable, any of the removable components can be disposable such that these can be easily replaced to avoid cleaning.
- Any suitable mechanism or means (e.g. friction fit, mated fit, threaded fit, hooks, securing members, etc.) may be used to detach a portion or the entirety of a tissue collection device to another device.
Figures 13-20 illustrate embodiments of attachments according to the invention that can be used for this purpose. -
Figure 13 shows asecond housing 925 with aproximal end 930 and adistal end 928. Additionally, the second housing is shown as having a generally cylindrical main body with a lumen between the proximal and distal ends. The slots orcutouts 932a-b are formed through the wall of the main body. Although shown with two slots having a generally rectangular shape, the second housing can have any number of slots with any shape. In this embodiment, the shape of the main body is designed to be inserted into a first housing shown inFigures 14-15 . - As described above, the second housing may be a part of the tissue collection device, such as shown in
Figure 10 . Alternatively, the second housing may be a part of a catheter, such as at a distal end of the catheter where the catheter attaches to a tissue collection device (seeFigure 12 ). -
Figures 14-15 illustrate afirst housing 1024 with a corresponding structure for releasably coupling to thesecond housing 925. As described above, the first housing may be part of the tissue collection device such as a section of the tip portion that can be removed from the rest of the tip portion. For example, the first housing may define a portion of a nosecone on a catheter such that removing the first housing exposes the remaining section of the nosecone. Alternatively, the first housing may define the entire tip portion and storage reservoir such that the entire tip portion can be removed and replaced with a clean empty storage reservoir. - As shown, the first housing has a main body with a
distal end 1034 and aproximal end 1032. Thefirst housing 1024 is shape set to the second housing such that thesecond housing 925 can be inserted into thefirst housing 1024 to form a snug fit. Thefirst housing 1024 has aninner wall 1038 that contacts theouter wall 934 of thesecond housing 925 when fitted. Thefirst housing 1024 includes protrusions shown astabs 1036a-b that project from its main body towards the center. In some embodiments, thetabs 1036a-b protrude at an angle towards the center of the main body. -
Figure 14 shows the tabs with aproximal end 1033a-b that is fixed to the main body and afree end 1035a-b that extends toward the interior of thefirst housing 1024. The angled projection of the tabs createsrecesses 1031a-b between the tabs and theinner wall 1038. Although the tabs are shown as formed from the main body of the first housing, the tabs can also be made of an separate structure or component that sits on theinner wall 1038 of thefirst housing 1024. - In the illustrated embodiment, the
first housing 1024 has twotabs 1036a-b to interface and lock with the receivingslots 932a-b of thesecond housing 925. In operation, thefirst housing 1024 is placed over the outer wall 924 of thesecond housing 925 to form a snug fit. Theproximal end 1032 of thefirst housing 1024 is advanced over thedistal end 928 of thesecond housing 925. - Then the first housing 1024 (or the second housing 925) is rotated relative to the other housing to align the
tabs 1036a-b with theslots 932a-b. To lock the first and second housings, an edge of theslots 932a-b is slid into therecess 1031a-b until a portion of the main body of the second housing is held between a tab surface and the inner wall of the first housing.Figure 16 shows thefirst housing 1024 surrounding thesecond housing 925 withtabs 1036a-b engaged withslots 932a-b.Figure 17 shows a cross-sectional view with the first and second housing rotated to align the tabs and slots. Thetabs 1036a-b are received through theslots 932a-b into an interior of thesecond housing 925. The edge of theslots 932a-b are slid into therecesses 1031a-b to hold and lock the lateral orientation of thesecond housing 925 within thefirst housing 1024. As shown, rotating the first housing counter-clockwise disengages the coupling structures and releases the housings from one another. - In some variations, a locking mechanism is used to maintain the rotational orientation of the housings.
Figure 18 shows the first and second housings having a guidewire channel orlumen guidewire 909 can reside once the first and second housings are coupled. The guidewire prevents the housings from substantially rotating relative to one another to decouple the housings while the guidewire is in the channels. -
Figures 19-20 show alternative embodiments of the first and second housings.Figure 19 shows afirst housing 1124 withtabs 1136a-b and a plurality ofapertures 1105. In some embodiments, the apertures provide for fluid pressure release.Figure 20 shows an alternativesecond housing 1125 havingslots 1132a-c. Although the housings are shown with two or three tabs/slots, it is to be understood that any number of mating structures can be used to form the detachable tissue collection devices. - Additionally, any suitable materials such as nitinol, stainless steel (e.g. grade 304), or titanium or alloys may be used form the housings. Coatings including gold or platinum may be used to promote radiopacity. In some embodiments, the first housing is formed by shape setting the housing to the second housing and baking the first housing in an oven at about 262 degrees Celsius (504 degrees Fahrenheit) for 20 minutes.
- In some embodiments, second housing has an inner diameter of about 1.651 mm (0.065 inches) and an outer diameter of about 1.829 mm (0.072 inches). The second housing may have a length of about 5.588 mm (0.220 inches). The cutouts may have a width of about 1.27 mm (0.050 inches) and a length of about 1.778 mm (0.070 inches). Where multiple cutouts are employed, the cutouts may be separated by a distance of about 0.635 mm (0.025 inches).
- In other embodiments, the first housing may have an inner diameter of about 1.829 mm (0.072 inches) and an outer diameter of about 1.981 mm (0.078 inches). The first housing may have a length of about 5.842 mm (0.230 inches).
- Any of the features of the described tissue collection devices can be used in combination without departing from the disclosure. For example,
Figure 21 shows a tissue collection device having a detachabledistal tip 1224. Thedetachable tip 1224 is attached to atip section 1225 at anattachment point 1226. The detachabledistal tip 1224 also includes ventingelements 1244 for releasing fluid pressure buildup on the storage reservoir. Similarly,Figure 22 shows atissue collection device 1300 with acollapsible tip portion 1302. Thetip portion 1302 is also releasably coupled to an atherectomy catheter atattachment section 1326. - In addition, any of the described tissue collection devices can be used with atherectomy or other occlusion crossing devices. In such cases, the atherectomy devices typically include an elongate body and a rotatable tip (with a cutter) at the first distal end of the elongate body and configured to rotate relative to the elongate body. Such devices are described in
U.S. 2012/0253186 , titled "OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES," filed March 28, 2012,U.S. 2012/0046679 , titled "ATHERECTOMY CATHETERS WITH LONGITUDINALLY DISPLACEABLE DRIVE SHAFTS," filed on July 1, 2011,U.S. 2011/0004107 , titled "ATHERECTOMY CATHETER WITH LATERALLY-DISPLACEABLE TIP," filed on July 1, 2010, andU.S. 2011/0021926 , titled "CATHETER-BASED OFF-AXIS OPTICAL COHERENCE TOMOGRAPHY IMAGING SYSTEM," filed on July 1, 2010. - Additional details pertinent to the present invention, including materials and manufacturing techniques, may be employed as within the level of those with skill in the relevant art. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms "a," "and," "said," and "the" include plural referents unless the context clearly dictates otherwise. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the examples described herein, but only by the appended claims.
- When a feature or element is herein referred to as being "on" another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being "directly on" another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being "connected", "attached" or "coupled" to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being "directly connected", "directly attached" or "directly coupled" to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed "adjacent" another feature may have portions that overlap or underlie the adjacent feature.
- It will be further understood that the terms "comprises" and/or "comprising," when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items and may be abbreviated as "/".
- Spatially relative terms, such as "under", "below", "lower", "over", "upper" and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as "under" or "beneath" other elements or features would then be oriented "over" the other elements or features. Thus, the exemplary term "under" can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms "upwardly", "downwardly", "vertical", "horizontal" and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
- Although the terms "first" and "second" may be used herein to describe various features/elements, these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
- As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word "about" or "approximately," even if the term does not expressly appear. The phrase "about" or "approximately" may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/- 0.1% of the stated value (or range of values), +/- 1% of the stated value (or range of values), +/- 2% of the stated value (or range of values), +/- 5% of the stated value (or range of values), +/- 10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
Claims (7)
- A detachable tissue collection device comprising:a tip portion having a first housing (1024) and a second housing (925), the first housing (1024) adapted to mechanically couple to the second housing (925) to form the tip portion; anda tissue storage reservoir defined by the tip portion, wherein at least a section of the storage reservoir is configured to be detachable by uncoupling the first housing (1024) from the second housing (925) characterized in that the first housing (1024) comprises a plurality of angled tabs (1036a-b) andthe second housing (925) comprises a plurality of slots (932a-b) for receiving the plurality of angled tabs (1036a-b) to retain the first housing (1024) when the angled tabs (1036a-b) are engaged with the slots (932a-b).
- The device of claim 1, wherein the first housing (1024) is configured to couple to the second housing (925) through a mated fit.
- The device of claim 1, wherein substantially the entire tissue storage reservoir is detachable by uncoupling the first and second housings (1024, 925).
- The device of claim 1, wherein the angled tabs (1036a-b) are formed from a wall (1038) of the first housing (1024).
- The device of claim 1, wherein the first housing (1024) and the second housing (925) are laterally locked when mechanically coupled.
- The device of claim 1, further comprising a guidewire lumen (1023, 923) defined by a first channel (1023) on the first housing (1024) and a second channel (923) on the second housing (925).
- The device of claim 1, wherein the first housing (1024) and second housing (925) are rotationally locked when a guidewire is placed through the first and second channels (1023, 923).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2013/031978 WO2014142954A1 (en) | 2013-03-15 | 2013-03-15 | Tissue collection device for catheter |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2967507A1 EP2967507A1 (en) | 2016-01-20 |
EP2967507A4 EP2967507A4 (en) | 2016-11-23 |
EP2967507B1 true EP2967507B1 (en) | 2018-09-05 |
Family
ID=51537323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13878091.1A Not-in-force EP2967507B1 (en) | 2013-03-15 | 2013-03-15 | Tissue collection device for catheter |
Country Status (3)
Country | Link |
---|---|
US (2) | US11096717B2 (en) |
EP (1) | EP2967507B1 (en) |
WO (1) | WO2014142954A1 (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9125562B2 (en) | 2009-07-01 | 2015-09-08 | Avinger, Inc. | Catheter-based off-axis optical coherence tomography imaging system |
US8062316B2 (en) | 2008-04-23 | 2011-11-22 | Avinger, Inc. | Catheter system and method for boring through blocked vascular passages |
EP2424608B1 (en) | 2009-04-28 | 2014-03-19 | Avinger, Inc. | Guidewire support catheter |
JP6101078B2 (en) | 2009-05-28 | 2017-03-29 | アビンガー・インコーポレイテッドAvinger, Inc. | Optical coherence tomography for bioimaging |
WO2011003006A2 (en) | 2009-07-01 | 2011-01-06 | Avinger, Inc. | Atherectomy catheter with laterally-displaceable tip |
JP2013531542A (en) | 2010-07-01 | 2013-08-08 | アビンガー・インコーポレイテッド | An atherectomy catheter having a longitudinally movable drive shaft |
US11382653B2 (en) | 2010-07-01 | 2022-07-12 | Avinger, Inc. | Atherectomy catheter |
CA2831306C (en) | 2011-03-28 | 2018-11-20 | Avinger, Inc. | Occlusion-crossing devices, imaging, and atherectomy devices |
US9949754B2 (en) | 2011-03-28 | 2018-04-24 | Avinger, Inc. | Occlusion-crossing devices |
JP2014521462A (en) | 2011-08-05 | 2014-08-28 | シルク・ロード・メディカル・インコーポレイテッド | Method and system for treating acute ischemic stroke |
US10779855B2 (en) | 2011-08-05 | 2020-09-22 | Route 92 Medical, Inc. | Methods and systems for treatment of acute ischemic stroke |
WO2013059363A1 (en) | 2011-10-17 | 2013-04-25 | Avinger, Inc. | Atherectomy catheters and non-contact actuation mechanism for catheters |
US9345406B2 (en) | 2011-11-11 | 2016-05-24 | Avinger, Inc. | Occlusion-crossing devices, atherectomy devices, and imaging |
EP2849660B1 (en) | 2012-05-14 | 2021-08-25 | Avinger, Inc. | Atherectomy catheter drive assemblies |
EP2849636B1 (en) | 2012-05-14 | 2020-04-22 | Avinger, Inc. | Optical coherence tomography with graded index fiber for biological imaging |
US9498247B2 (en) | 2014-02-06 | 2016-11-22 | Avinger, Inc. | Atherectomy catheters and occlusion crossing devices |
US11284916B2 (en) | 2012-09-06 | 2022-03-29 | Avinger, Inc. | Atherectomy catheters and occlusion crossing devices |
EP2967507B1 (en) | 2013-03-15 | 2018-09-05 | Avinger, Inc. | Tissue collection device for catheter |
WO2014142958A1 (en) | 2013-03-15 | 2014-09-18 | Avinger, Inc. | Optical pressure sensor assembly |
EP2967371B1 (en) | 2013-03-15 | 2024-05-15 | Avinger, Inc. | Chronic total occlusion crossing devices with imaging |
WO2015006353A1 (en) | 2013-07-08 | 2015-01-15 | Avinger, Inc. | Identification of elastic lamina to guide interventional therapy |
US9265512B2 (en) * | 2013-12-23 | 2016-02-23 | Silk Road Medical, Inc. | Transcarotid neurovascular catheter |
CN106102608B (en) | 2014-02-06 | 2020-03-24 | 阿维格公司 | Atherectomy catheters and occlusion crossing devices |
US9241699B1 (en) | 2014-09-04 | 2016-01-26 | Silk Road Medical, Inc. | Methods and devices for transcarotid access |
CN107106190B (en) | 2014-07-08 | 2020-02-28 | 阿维格公司 | High-speed chronic full-closure crossing device |
US11027104B2 (en) | 2014-09-04 | 2021-06-08 | Silk Road Medical, Inc. | Methods and devices for transcarotid access |
EP3253437B1 (en) | 2015-02-04 | 2019-12-04 | Route 92 Medical, Inc. | Rapid aspiration thrombectomy system |
US11065019B1 (en) | 2015-02-04 | 2021-07-20 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
EP3322338A4 (en) | 2015-07-13 | 2019-03-13 | Avinger, Inc. | Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters |
JP6927986B2 (en) | 2016-01-25 | 2021-09-01 | アビンガー・インコーポレイテッドAvinger, Inc. | OCT imaging catheter with delay compensation |
WO2017161166A1 (en) * | 2016-03-16 | 2017-09-21 | Avinger, Inc. | Atherectomy catheters and occlusion crossing devices |
EP3435892B1 (en) | 2016-04-01 | 2024-04-03 | Avinger, Inc. | Atherectomy catheter with serrated cutter |
WO2017210466A1 (en) * | 2016-06-03 | 2017-12-07 | Avinger, Inc. | Catheter device with detachable distal end |
EP3478190B1 (en) | 2016-06-30 | 2023-03-15 | Avinger, Inc. | Atherectomy catheter with shapeable distal tip |
US20180078410A1 (en) * | 2016-09-20 | 2018-03-22 | Cosmin-Adrian Gavanescu | Surgery Device |
WO2019222518A2 (en) | 2018-05-17 | 2019-11-21 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
WO2021076356A1 (en) | 2019-10-18 | 2021-04-22 | Avinger, Inc. | Occlusion-crossing devices |
Family Cites Families (589)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3367727A (en) | 1965-10-22 | 1968-02-06 | Abraham W. Ward | Oral surgery tool with interchangeable blades |
US3908637A (en) | 1974-04-22 | 1975-09-30 | Louis W Doroshow | Rigid urethral instrument |
GB1531659A (en) | 1977-07-21 | 1978-11-08 | Gekhman B | Apparatus for disintegration of urinary concretions |
US4527553A (en) | 1980-04-28 | 1985-07-09 | Upsher Michael S | Laryngoscope with improved light source |
US4578061A (en) | 1980-10-28 | 1986-03-25 | Lemelson Jerome H | Injection catheter and method |
US5435805A (en) | 1992-08-12 | 1995-07-25 | Vidamed, Inc. | Medical probe device with optical viewing capability |
US4621353A (en) | 1982-09-09 | 1986-11-04 | Burroughs Corporation | Optical memory system providing improved focusing control and improved beam combining and separating apparatus |
US4487206A (en) | 1982-10-13 | 1984-12-11 | Honeywell Inc. | Fiber optic pressure sensor with temperature compensation and reference |
FR2541784B1 (en) | 1983-02-25 | 1986-05-16 | Thomson Csf | DEVICE FOR STATIC DEFLECTION OF AN INFRARED BEAM |
US4611600A (en) | 1983-11-21 | 1986-09-16 | Cordis Corporation | Optical fiber pressure transducer |
US4598710A (en) | 1984-01-20 | 1986-07-08 | Urban Engineering Company, Inc. | Surgical instrument and method of making same |
US5178153A (en) | 1984-03-08 | 1993-01-12 | Einzig Robert E | Fluid flow sensing apparatus for in vivo and industrial applications employing novel differential optical fiber pressure sensors |
US5041082A (en) | 1986-06-16 | 1991-08-20 | Samuel Shiber | Mechanical atherectomy system and method |
US4926858A (en) | 1984-05-30 | 1990-05-22 | Devices For Vascular Intervention, Inc. | Atherectomy device for severe occlusions |
US4781186A (en) | 1984-05-30 | 1988-11-01 | Devices For Vascular Intervention, Inc. | Atherectomy device having a flexible housing |
US4552554A (en) | 1984-06-25 | 1985-11-12 | Medi-Tech Incorporated | Introducing catheter |
US4651753A (en) * | 1984-10-12 | 1987-03-24 | Jayco Pharmaceuticals | Endoscopic multiple biopsy instrument |
US4686982A (en) | 1985-06-19 | 1987-08-18 | John Nash | Spiral wire bearing for rotating wire drive catheter |
US4681106A (en) | 1985-08-12 | 1987-07-21 | Intravascular Surgical Instruments, Inc. | Catheter based surgical methods and apparatus therefor |
US4654024A (en) | 1985-09-04 | 1987-03-31 | C.R. Bard, Inc. | Thermorecanalization catheter and method for use |
US5182291A (en) | 1986-02-14 | 1993-01-26 | Sanofi | Pyrozala-pyridyl aminoabkoxyphenol compounds |
US5000185A (en) | 1986-02-28 | 1991-03-19 | Cardiovascular Imaging Systems, Inc. | Method for intravascular two-dimensional ultrasonography and recanalization |
US4771774A (en) | 1986-02-28 | 1988-09-20 | Devices For Vascular Intervention, Inc. | Motor drive unit |
US4691708A (en) | 1986-03-10 | 1987-09-08 | Cordis Corporation | Optical pressure sensor for measuring blood pressure |
US4842578A (en) | 1986-03-12 | 1989-06-27 | Dyonics, Inc. | Surgical abrading instrument |
JPH0732758B2 (en) | 1986-05-21 | 1995-04-12 | オリンパス光学工業株式会社 | Endoscope |
US4729763A (en) | 1986-06-06 | 1988-03-08 | Henrie Rodney A | Catheter for removing occlusive material |
SE453561B (en) | 1986-06-25 | 1988-02-15 | Radisensor Ab | MINIATURIZED SENSOR FOR PHYSIOLOGICAL PRESSURE SEATS |
US4841977A (en) | 1987-05-26 | 1989-06-27 | Inter Therapy, Inc. | Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly |
US4808163A (en) * | 1987-07-29 | 1989-02-28 | Laub Glenn W | Percutaneous venous cannula for cardiopulmonary bypass |
US4850354A (en) | 1987-08-13 | 1989-07-25 | Baxter Travenol Laboratories, Inc. | Surgical cutting instrument |
US4857046A (en) | 1987-10-21 | 1989-08-15 | Cordis Corporation | Drive catheter having helical pump drive shaft |
US5529580A (en) | 1987-10-30 | 1996-06-25 | Olympus Optical Co., Ltd. | Surgical resecting tool |
US5047040A (en) | 1987-11-05 | 1991-09-10 | Devices For Vascular Intervention, Inc. | Atherectomy device and method |
US4920961A (en) * | 1988-06-02 | 1990-05-01 | Circon Corporation | System for disconnetably mounting an endoscope sheath with an endoscope tool |
EP0347098B1 (en) | 1988-06-13 | 1996-02-28 | Samuel Shiber | Atherectomy system with a guide-wire |
SE460396B (en) | 1988-07-29 | 1989-10-09 | Radisensor Ab | MINIATURIZED SENSOR DEVICE FOR SEATING PHYSIOLOGICAL PRESSURE IN VIVO |
US5099850A (en) | 1989-01-17 | 1992-03-31 | Olympus Optical Co., Ltd. | Ultrasonic diagnostic apparatus |
US5431673A (en) | 1989-02-17 | 1995-07-11 | American Biomed, Inc. | Distal atherectomy catheter |
US4911148A (en) | 1989-03-14 | 1990-03-27 | Intramed Laboratories, Inc. | Deflectable-end endoscope with detachable flexible shaft assembly |
US5002560A (en) * | 1989-09-08 | 1991-03-26 | Advanced Cardiovascular Systems, Inc. | Expandable cage catheter with a rotatable guide |
US5226909A (en) | 1989-09-12 | 1993-07-13 | Devices For Vascular Intervention, Inc. | Atherectomy device having helical blade and blade guide |
US5085662A (en) | 1989-11-13 | 1992-02-04 | Scimed Life Systems, Inc. | Atherectomy catheter and related components |
US5054501A (en) | 1990-05-16 | 1991-10-08 | Brigham & Women's Hospital | Steerable guide wire for cannulation of tubular or vascular organs |
US5674232A (en) | 1990-06-05 | 1997-10-07 | Halliburton; Alexander George | Catheter and method of use thereof |
BE1003189A5 (en) | 1990-07-27 | 1992-01-07 | B A Cosurvey Optics S P R L B | PRESSURE SENSOR. |
WO1992002276A1 (en) | 1990-08-06 | 1992-02-20 | Acculase, Inc. | Fiber optic laser catheter and method of use |
US5449372A (en) * | 1990-10-09 | 1995-09-12 | Scimed Lifesystems, Inc. | Temporary stent and methods for use and manufacture |
US5217479A (en) | 1991-02-14 | 1993-06-08 | Linvatec Corporation | Surgical cutting instrument |
US5142155A (en) | 1991-03-11 | 1992-08-25 | Hewlett-Packard Company | Catheter tip fluorescence-quenching fiber optic pressure sensor |
US6564087B1 (en) | 1991-04-29 | 2003-05-13 | Massachusetts Institute Of Technology | Fiber optic needle probes for optical coherence tomography imaging |
US5956355A (en) | 1991-04-29 | 1999-09-21 | Massachusetts Institute Of Technology | Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser |
US6134003A (en) | 1991-04-29 | 2000-10-17 | Massachusetts Institute Of Technology | Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope |
US6485413B1 (en) | 1991-04-29 | 2002-11-26 | The General Hospital Corporation | Methods and apparatus for forward-directed optical scanning instruments |
US6501551B1 (en) | 1991-04-29 | 2002-12-31 | Massachusetts Institute Of Technology | Fiber optic imaging endoscope interferometer with at least one faraday rotator |
US5465147A (en) | 1991-04-29 | 1995-11-07 | Massachusetts Institute Of Technology | Method and apparatus for acquiring images using a ccd detector array and no transverse scanner |
WO1992019930A1 (en) | 1991-04-29 | 1992-11-12 | Massachusetts Institute Of Technology | Method and apparatus for optical imaging and measurement |
US7074231B2 (en) | 1991-06-13 | 2006-07-11 | Advanced Cardiovascular Systems, Inc. | Convertible mode vascular catheter system |
US5190050A (en) | 1991-11-08 | 1993-03-02 | Electro-Catheter Corporation | Tip deflectable steerable catheter |
WO1993013716A1 (en) | 1992-01-13 | 1993-07-22 | Schneider (Usa) Inc. | Surgical cutting tool |
US5192291A (en) | 1992-01-13 | 1993-03-09 | Interventional Technologies, Inc. | Rotationally expandable atherectomy cutter assembly |
GB9207532D0 (en) | 1992-04-07 | 1992-05-20 | Innovata Biomed Ltd | Medical connection system |
JPH0627343A (en) | 1992-07-06 | 1994-02-04 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber juncture for optical fiber amplifier |
US5312415A (en) | 1992-09-22 | 1994-05-17 | Target Therapeutics, Inc. | Assembly for placement of embolic coils using frictional placement |
US5425371A (en) | 1992-10-05 | 1995-06-20 | Metatech Corporation | Fiberoptic pressure transducer |
US5383460A (en) | 1992-10-05 | 1995-01-24 | Cardiovascular Imaging Systems, Inc. | Method and apparatus for ultrasound imaging and atherectomy |
CA2107741C (en) | 1992-10-07 | 2000-06-27 | Peter T. Keith | Ablation devices and methods of use |
US5333142A (en) | 1992-10-26 | 1994-07-26 | The United States Of America As Represented By The Secretary Of The Navy | Technique for intracavity sum frequency generation |
US5643297A (en) | 1992-11-09 | 1997-07-01 | Endovascular Instruments, Inc. | Intra-artery obstruction clearing apparatus and methods |
US5383467A (en) | 1992-11-18 | 1995-01-24 | Spectrascience, Inc. | Guidewire catheter and apparatus for diagnostic imaging |
US5368564A (en) | 1992-12-23 | 1994-11-29 | Angeion Corporation | Steerable catheter |
US5460168A (en) | 1992-12-25 | 1995-10-24 | Olympus Optical Co., Ltd. | Endoscope cover assembly and cover-system endoscope |
US5372601A (en) | 1993-03-30 | 1994-12-13 | Lary; Banning G. | Longitudinal reciprocating incisor |
US5429136A (en) | 1993-04-21 | 1995-07-04 | Devices For Vascular Intervention, Inc. | Imaging atherectomy apparatus |
EP0696185B1 (en) | 1993-04-28 | 1998-08-12 | Focal, Inc. | Apparatus, product and use related to intraluminal photothermoforming |
US5868778A (en) | 1995-10-27 | 1999-02-09 | Vascular Solutions, Inc. | Vascular sealing apparatus and method |
US5383896A (en) | 1993-05-25 | 1995-01-24 | Gershony; Gary | Vascular sealing device |
US6017359A (en) | 1993-05-25 | 2000-01-25 | Vascular Solutions, Inc. | Vascular sealing apparatus |
US5951583A (en) | 1993-05-25 | 1999-09-14 | Vascular Solutions, Inc. | Thrombin and collagen procoagulant and process for making the same |
US5579767A (en) | 1993-06-07 | 1996-12-03 | Prince; Martin R. | Method for imaging abdominal aorta and aortic aneurysms |
US5366464A (en) | 1993-07-22 | 1994-11-22 | Belknap John C | Atherectomy catheter device |
CH687228A5 (en) | 1993-09-15 | 1996-10-31 | Synthes Ag | Drill head. |
JPH09503411A (en) | 1993-10-07 | 1997-04-08 | ボストン・サイエンティフィック・コーポレーション | Dilatation catheter |
US5507760A (en) | 1993-11-09 | 1996-04-16 | Devices For Vascular Intervention, Inc. | Cutter device |
JPH07184888A (en) | 1993-12-27 | 1995-07-25 | Toshiba Corp | Ultrasonic diagnostic system |
US5437284A (en) | 1993-12-30 | 1995-08-01 | Camino Laboratories, Inc. | System and method for in vivo calibration of a sensor |
US5517998A (en) | 1994-01-24 | 1996-05-21 | Medamicus, Inc. | Closed loop pressure determination system and method for fiber optic pressure transducer system |
JP2869020B2 (en) | 1994-03-23 | 1999-03-10 | 康男 橋本 | Cancer treatment device |
EP0673627B1 (en) | 1994-03-23 | 2000-01-05 | Yasuo Hashimoto | Catheter with optical fiber |
US5507795A (en) * | 1994-04-29 | 1996-04-16 | Devices For Vascular Intervention, Inc. | Catheter with perfusion system |
US6032673A (en) | 1994-10-13 | 2000-03-07 | Femrx, Inc. | Methods and devices for tissue removal |
US5836957A (en) | 1994-12-22 | 1998-11-17 | Devices For Vascular Intervention, Inc. | Large volume atherectomy device |
US5632754A (en) | 1994-12-23 | 1997-05-27 | Devices For Vascular Intervention | Universal catheter with interchangeable work element |
DE19504261A1 (en) | 1995-02-09 | 1996-09-12 | Krieg Gunther | Angioplasty catheter for dilating and / or opening blood vessels |
US5613981A (en) | 1995-04-21 | 1997-03-25 | Medtronic, Inc. | Bidirectional dual sinusoidal helix stent |
US5681336A (en) | 1995-09-07 | 1997-10-28 | Boston Scientific Corporation | Therapeutic device for treating vien graft lesions |
AU709432B2 (en) | 1995-09-20 | 1999-08-26 | California Institute Of Technology | Detecting thermal discrepancies in vessel walls |
US6615071B1 (en) | 1995-09-20 | 2003-09-02 | Board Of Regents, The University Of Texas System | Method and apparatus for detecting vulnerable atherosclerotic plaque |
US6375615B1 (en) | 1995-10-13 | 2002-04-23 | Transvascular, Inc. | Tissue penetrating catheters having integral imaging transducers and their methods of use |
US5556405A (en) | 1995-10-13 | 1996-09-17 | Interventional Technologies Inc. | Universal dilator with reciprocal incisor |
RU2185859C2 (en) | 1995-10-20 | 2002-07-27 | Надим М. Закка | Device for removing stenoses and supporting vascular walls |
US5907425A (en) | 1995-12-19 | 1999-05-25 | The Board Of Trustees Of The Leland Stanford Junior University | Miniature scanning confocal microscope |
SE9601541D0 (en) | 1995-11-08 | 1996-04-23 | Pacesetter Ab | Guidewire assembly |
US5843050A (en) | 1995-11-13 | 1998-12-01 | Micro Therapeutics, Inc. | Microcatheter |
SE9504334D0 (en) | 1995-12-04 | 1995-12-04 | Pacesetter Ab | Guidewire assembly |
US5676012A (en) | 1995-12-05 | 1997-10-14 | Spectrum Manufacturing, Inc. | Process for forming endoscopic shaver blade from elongate tube |
US6373573B1 (en) | 2000-03-13 | 2002-04-16 | Lj Laboratories L.L.C. | Apparatus for measuring optical characteristics of a substrate and pigments applied thereto |
US5733296A (en) | 1996-02-06 | 1998-03-31 | Devices For Vascular Intervention | Composite atherectomy cutter |
US5935139A (en) * | 1996-05-03 | 1999-08-10 | Boston Scientific Corporation | System for immobilizing or manipulating an object in a tract |
NL1003172C2 (en) | 1996-05-20 | 1997-11-21 | Cordis Europ | Catheter insertion sheath with occlusion balloon. |
ATE279883T1 (en) | 1996-06-11 | 2004-11-15 | Roke Manor Research | CATHETER TRACKING SYSTEM |
US5795295A (en) | 1996-06-25 | 1998-08-18 | Carl Zeiss, Inc. | OCT-assisted surgical microscope with multi-coordinate manipulator |
US5779721A (en) | 1996-07-26 | 1998-07-14 | Kensey Nash Corporation | System and method of use for revascularizing stenotic bypass grafts and other blood vessels |
US6830577B2 (en) | 1996-07-26 | 2004-12-14 | Kensey Nash Corporation | System and method of use for treating occluded vessels and diseased tissue |
US6080170A (en) | 1996-07-26 | 2000-06-27 | Kensey Nash Corporation | System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels |
US6929481B1 (en) | 1996-09-04 | 2005-08-16 | Immersion Medical, Inc. | Interface device and method for interfacing instruments to medical procedure simulation systems |
US5830145A (en) | 1996-09-20 | 1998-11-03 | Cardiovascular Imaging Systems, Inc. | Enhanced accuracy of three-dimensional intraluminal ultrasound (ILUS) image reconstruction |
US5722403A (en) | 1996-10-28 | 1998-03-03 | Ep Technologies, Inc. | Systems and methods using a porous electrode for ablating and visualizing interior tissue regions |
US5904651A (en) | 1996-10-28 | 1999-05-18 | Ep Technologies, Inc. | Systems and methods for visualizing tissue during diagnostic or therapeutic procedures |
US5872879A (en) | 1996-11-25 | 1999-02-16 | Boston Scientific Corporation | Rotatable connecting optical fibers |
JPH10161018A (en) | 1996-11-27 | 1998-06-19 | Olympus Optical Co Ltd | Optical system |
US5899915A (en) | 1996-12-02 | 1999-05-04 | Angiotrax, Inc. | Apparatus and method for intraoperatively performing surgery |
US6120516A (en) | 1997-02-28 | 2000-09-19 | Lumend, Inc. | Method for treating vascular occlusion |
US6010449A (en) | 1997-02-28 | 2000-01-04 | Lumend, Inc. | Intravascular catheter system for treating a vascular occlusion |
US6508825B1 (en) | 1997-02-28 | 2003-01-21 | Lumend, Inc. | Apparatus for treating vascular occlusions |
US5843103A (en) | 1997-03-06 | 1998-12-01 | Scimed Life Systems, Inc. | Shaped wire rotational atherectomy device |
US6183487B1 (en) | 1997-03-06 | 2001-02-06 | Scimed Life Systems, Inc. | Ablation device for reducing damage to vessels and/or in-vivo stents |
US6758854B1 (en) | 1997-05-09 | 2004-07-06 | St. Jude Medical | Splittable occlusion balloon sheath and process of use |
US5851212A (en) | 1997-06-11 | 1998-12-22 | Endius Incorporated | Surgical instrument |
US6013072A (en) | 1997-07-09 | 2000-01-11 | Intraluminal Therapeutics, Inc. | Systems and methods for steering a catheter through body tissue |
US6048349A (en) | 1997-07-09 | 2000-04-11 | Intraluminal Therapeutics, Inc. | Systems and methods for guiding a medical instrument through a body |
US5987995A (en) | 1997-07-17 | 1999-11-23 | Sentec Corporation | Fiber optic pressure catheter |
CA2297120A1 (en) | 1997-07-24 | 1999-02-04 | James F. Mcguckin, Jr. | Urinary catheter |
GB9717580D0 (en) | 1997-08-19 | 1997-10-22 | Curry Paul | Device for opening blocked tubes |
US6402719B1 (en) | 1997-09-05 | 2002-06-11 | Cordis Webster, Inc. | Steerable DMR catheter with infusion tube |
EP0904797A3 (en) | 1997-09-24 | 2000-08-09 | ECLIPSE SURGICAL TECHNOLOGIES, Inc. | Steerable catheter with tip alignment and surface contact detector |
US5951482A (en) | 1997-10-03 | 1999-09-14 | Intraluminal Therapeutics, Inc. | Assemblies and methods for advancing a guide wire through body tissue |
US6193676B1 (en) | 1997-10-03 | 2001-02-27 | Intraluminal Therapeutics, Inc. | Guide wire assembly |
CA2309428A1 (en) | 1997-11-07 | 1999-05-20 | Prolifix Medical, Inc. | Methods and systems for treating obstructions in a body lumen |
US6183432B1 (en) | 1997-11-13 | 2001-02-06 | Lumend, Inc. | Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip |
US5938671A (en) | 1997-11-14 | 1999-08-17 | Reflow, Inc. | Recanalization apparatus and devices for use therein and method |
US6110164A (en) | 1997-12-05 | 2000-08-29 | Intratherapeutics, Inc. | Guideless catheter segment |
US6027514A (en) | 1997-12-17 | 2000-02-22 | Fox Hollow Technologies, Inc. | Apparatus and method for removing occluding material from body lumens |
US20050171478A1 (en) | 1998-01-13 | 2005-08-04 | Selmon Matthew R. | Catheter system for crossing total occlusions in vasculature |
US6231546B1 (en) | 1998-01-13 | 2001-05-15 | Lumend, Inc. | Methods and apparatus for crossing total occlusions in blood vessels |
US6416527B1 (en) | 1998-01-28 | 2002-07-09 | St. Jude Medical Cardiovascular Group, Inc. | Vessel cutting device |
US6824550B1 (en) | 2000-04-06 | 2004-11-30 | Norbon Medical, Inc. | Guidewire for crossing occlusions or stenosis |
US6175669B1 (en) | 1998-03-30 | 2001-01-16 | The Regents Of The Universtiy Of California | Optical coherence domain reflectometry guidewire |
AU762604B2 (en) | 1998-03-31 | 2003-06-26 | Transvascular, Inc. | Catheters, systems and methods for percutaneous in situ arterio-venous bypass |
US6666874B2 (en) | 1998-04-10 | 2003-12-23 | Endicor Medical, Inc. | Rotational atherectomy system with serrated cutting tip |
US6482217B1 (en) | 1998-04-10 | 2002-11-19 | Endicor Medical, Inc. | Neuro thrombectomy catheter |
US6001112A (en) | 1998-04-10 | 1999-12-14 | Endicor Medical, Inc. | Rotational atherectomy device |
US6290668B1 (en) | 1998-04-30 | 2001-09-18 | Kenton W. Gregory | Light delivery catheter and methods for the use thereof |
US6285903B1 (en) | 1998-06-30 | 2001-09-04 | Eclipse Surgical Technologies, Inc. | Intracorporeal device with radiopaque marker |
US6307985B1 (en) | 1998-07-10 | 2001-10-23 | Micro Therapeutics, Inc. | Optical transmission system |
US6290689B1 (en) | 1999-10-22 | 2001-09-18 | Corazón Technologies, Inc. | Catheter devices and methods for their use in the treatment of calcified vascular occlusions |
US6440124B1 (en) | 1998-07-22 | 2002-08-27 | Endovasix, Inc. | Flexible flow apparatus and method for the disruption of occlusions |
US6319227B1 (en) | 1998-08-05 | 2001-11-20 | Scimed Life Systems, Inc. | Automatic/manual longitudinal position translator and rotary drive system for catheters |
US6106515A (en) | 1998-08-13 | 2000-08-22 | Intraluminal Therapeutics, Inc. | Expandable laser catheter |
US6241744B1 (en) | 1998-08-14 | 2001-06-05 | Fox Hollow Technologies, Inc. | Apparatus for deploying a guidewire across a complex lesion |
EP1125095B1 (en) | 1998-09-11 | 2008-02-27 | Joseph A. Izatt | Interferometers for optical coherence domain reflectometry and optical coherence tomography using nonreciprocal optical elements |
US6398755B1 (en) | 1998-10-06 | 2002-06-04 | Scimed Life Systems, Inc. | Driveable catheter system |
US6228076B1 (en) | 1999-01-09 | 2001-05-08 | Intraluminal Therapeutics, Inc. | System and method for controlling tissue ablation |
US6134002A (en) | 1999-01-14 | 2000-10-17 | Duke University | Apparatus and method for the rapid spectral resolution of confocal images |
US6445944B1 (en) | 1999-02-01 | 2002-09-03 | Scimed Life Systems | Medical scanning system and related method of scanning |
US6855123B2 (en) | 2002-08-02 | 2005-02-15 | Flow Cardia, Inc. | Therapeutic ultrasound system |
EP1168965A1 (en) | 1999-03-15 | 2002-01-09 | Prolifix Medical, Inc. | Shielded atherectomy device |
US6911026B1 (en) | 1999-07-12 | 2005-06-28 | Stereotaxis, Inc. | Magnetically guided atherectomy |
US20040044350A1 (en) | 1999-04-09 | 2004-03-04 | Evalve, Inc. | Steerable access sheath and methods of use |
US6645217B1 (en) | 1999-05-15 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Over-the-wire atherectomy catheter |
US6719769B2 (en) | 1999-11-15 | 2004-04-13 | Cardica, Inc. | Integrated anastomosis tool with graft vessel attachment device and cutting device |
US6563105B2 (en) | 1999-06-08 | 2003-05-13 | University Of Washington | Image acquisition with depth enhancement |
US6294775B1 (en) | 1999-06-08 | 2001-09-25 | University Of Washington | Miniature image acquistion system using a scanning resonant waveguide |
US6890329B2 (en) | 1999-06-15 | 2005-05-10 | Cryocath Technologies Inc. | Defined deflection structure |
US6546272B1 (en) | 1999-06-24 | 2003-04-08 | Mackinnon Nicholas B. | Apparatus for in vivo imaging of the respiratory tract and other internal organs |
US6445939B1 (en) | 1999-08-09 | 2002-09-03 | Lightlab Imaging, Llc | Ultra-small optical probes, imaging optics, and methods for using same |
US7771444B2 (en) * | 2000-12-20 | 2010-08-10 | Fox Hollow Technologies, Inc. | Methods and devices for removing material from a body lumen |
US6638233B2 (en) | 1999-08-19 | 2003-10-28 | Fox Hollow Technologies, Inc. | Apparatus and methods for material capture and removal |
US7708749B2 (en) * | 2000-12-20 | 2010-05-04 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US7713279B2 (en) | 2000-12-20 | 2010-05-11 | Fox Hollow Technologies, Inc. | Method and devices for cutting tissue |
US20030125757A1 (en) * | 2000-12-20 | 2003-07-03 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US20030120295A1 (en) | 2000-12-20 | 2003-06-26 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US6447525B2 (en) | 1999-08-19 | 2002-09-10 | Fox Hollow Technologies, Inc. | Apparatus and methods for removing material from a body lumen |
US7887556B2 (en) | 2000-12-20 | 2011-02-15 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US8328829B2 (en) | 1999-08-19 | 2012-12-11 | Covidien Lp | High capacity debulking catheter with razor edge cutting window |
US6299622B1 (en) | 1999-08-19 | 2001-10-09 | Fox Hollow Technologies, Inc. | Atherectomy catheter with aligned imager |
WO2001015609A1 (en) | 1999-08-31 | 2001-03-08 | Fox Hollow Technologies | Atherectomy catheter with a rotating and telescoping cutter |
US6687010B1 (en) | 1999-09-09 | 2004-02-03 | Olympus Corporation | Rapid depth scanning optical imaging device |
US6673042B1 (en) * | 1999-11-22 | 2004-01-06 | Wilfred J. Samson | Expandable venous cannula and method of use |
DK176336B1 (en) | 1999-12-22 | 2007-08-20 | Asahi Optical Co Ltd | Endoscopic tissue collection instrument |
US6929633B2 (en) | 2000-01-25 | 2005-08-16 | Bacchus Vascular, Inc. | Apparatus and methods for clot dissolution |
US7036979B2 (en) | 2000-01-28 | 2006-05-02 | Asahi Kasei Kabushiki Kaisha | Photothermal transducing spectroscopic analyzer |
US6629953B1 (en) | 2000-02-18 | 2003-10-07 | Fox Hollow Technologies, Inc. | Methods and devices for removing material from a vascular site |
US6579298B1 (en) | 2000-02-29 | 2003-06-17 | Scimed Life Systems, Inc. | Method and apparatus for treating vein graft lesions |
US8475484B2 (en) | 2000-04-05 | 2013-07-02 | Medrad, Inc. | Liquid seal assembly for a rotating torque tube |
CA2403925C (en) | 2000-04-05 | 2008-09-16 | Stx Medical, Inc. | Intralumenal material removal systems and methods |
US7344546B2 (en) | 2000-04-05 | 2008-03-18 | Pathway Medical Technologies | Intralumenal material removal using a cutting device for differential cutting |
US20040243162A1 (en) | 2000-04-05 | 2004-12-02 | Pathway Medical Technologies, Inc. | Interventional catheter assemblies and control systems |
US10092313B2 (en) | 2000-04-05 | 2018-10-09 | Boston Scientific Limited | Medical sealed tubular structures |
US6565588B1 (en) | 2000-04-05 | 2003-05-20 | Pathway Medical Technologies, Inc. | Intralumenal material removal using an expandable cutting device |
US6454717B1 (en) | 2000-04-13 | 2002-09-24 | Scimed Life Systems, Inc. | Concentric catheter drive shaft clutch |
US6517528B1 (en) | 2000-04-13 | 2003-02-11 | Scimed Life Systems, Inc. | Magnetic catheter drive shaft clutch |
US6975898B2 (en) | 2000-06-19 | 2005-12-13 | University Of Washington | Medical imaging, diagnosis, and therapy using a scanning single optical fiber system |
US7555333B2 (en) | 2000-06-19 | 2009-06-30 | University Of Washington | Integrated optical scanning image acquisition and display |
US6511474B1 (en) * | 2000-07-12 | 2003-01-28 | Corpak, Inc. | Bolus for non-occluding high flow enteral feeding tube |
US6575995B1 (en) | 2000-07-14 | 2003-06-10 | Advanced Cardiovascular Systems, Inc. | Expandable cage embolic material filter system and method |
US6572643B1 (en) | 2000-07-19 | 2003-06-03 | Vascular Architects, Inc. | Endoprosthesis delivery catheter assembly and method |
EP1432960A2 (en) | 2000-09-04 | 2004-06-30 | Forskningscenter Riso | Optical amplification in coherence reflectometry |
US6451009B1 (en) | 2000-09-12 | 2002-09-17 | The Regents Of The University Of California | OCDR guided laser ablation device |
US6845190B1 (en) | 2000-11-27 | 2005-01-18 | University Of Washington | Control of an optical fiber scanner |
US6856712B2 (en) | 2000-11-27 | 2005-02-15 | University Of Washington | Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition |
US20020072706A1 (en) | 2000-12-11 | 2002-06-13 | Thomas Hiblar | Transluminal drug delivery catheter |
US7927784B2 (en) | 2000-12-20 | 2011-04-19 | Ev3 | Vascular lumen debulking catheters and methods |
US20040167554A1 (en) | 2000-12-20 | 2004-08-26 | Fox Hollow Technologies, Inc. | Methods and devices for reentering a true lumen from a subintimal space |
US20050222519A1 (en) | 2000-12-20 | 2005-10-06 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US20050154407A1 (en) | 2000-12-20 | 2005-07-14 | Fox Hollow Technologies, Inc. | Method of evaluating drug efficacy for treating atherosclerosis |
US7699790B2 (en) | 2000-12-20 | 2010-04-20 | Ev3, Inc. | Debulking catheters and methods |
US20060235366A1 (en) | 2000-12-20 | 2006-10-19 | Fox Hollow Technologies, Inc. | Method of evaluating a treatment for vascular disease |
US20060032508A1 (en) | 2000-12-20 | 2006-02-16 | Fox Hollow Technologies, Inc. | Method of evaluating a treatment for vascular disease |
US20100121360A9 (en) | 2000-12-20 | 2010-05-13 | Fox Hollow Technologies, Inc | Testing a patient population having a cardiovascular condition for drug efficacy |
IL140780A0 (en) | 2001-01-08 | 2002-02-10 | Gaber Benny | Deflectable guiding apparatus |
US6503261B1 (en) | 2001-01-17 | 2003-01-07 | Scimed Life Systems, Inc. | Bi-directional atherectomy burr |
US6497649B2 (en) | 2001-01-21 | 2002-12-24 | University Of Washington | Alleviating motion, simulator, and virtual environmental sickness by presenting visual scene components matched to inner ear vestibular sensations |
US6542665B2 (en) | 2001-02-17 | 2003-04-01 | Lucent Technologies Inc. | GRIN fiber lenses |
US6760112B2 (en) | 2001-02-17 | 2004-07-06 | Lucent Technologies Inc. | Grin-fiber lens based optical endoscopes |
US20020115931A1 (en) | 2001-02-21 | 2002-08-22 | Strauss H. William | Localizing intravascular lesions on anatomic images |
US20020138091A1 (en) | 2001-03-23 | 2002-09-26 | Devonrex, Inc. | Micro-invasive nucleotomy device and method |
US6616676B2 (en) | 2001-04-10 | 2003-09-09 | Scimed Life Systems, Inc. | Devices and methods for removing occlusions in vessels |
WO2002083003A1 (en) | 2001-04-11 | 2002-10-24 | Clarke Dana S | Tissue structure identification in advance of instrument |
US6522452B2 (en) | 2001-04-26 | 2003-02-18 | Jds Uniphase Corporation | Latchable microelectromechanical structures using non-newtonian fluids, and methods of operating same |
AT503309B1 (en) | 2001-05-01 | 2011-08-15 | Gen Hospital Corp | DEVICE FOR DETERMINING ATHEROSCLEROTIC BEARING BY MEASURING OPTICAL TISSUE PROPERTIES |
US7616986B2 (en) | 2001-05-07 | 2009-11-10 | University Of Washington | Optical fiber scanner for performing multimodal optical imaging |
US7329223B1 (en) | 2001-05-31 | 2008-02-12 | Abbott Cardiovascular Systems Inc. | Catheter with optical fiber sensor |
US6879851B2 (en) | 2001-06-07 | 2005-04-12 | Lightlab Imaging, Llc | Fiber optic endoscopic gastrointestinal probe |
WO2002100249A2 (en) | 2001-06-13 | 2002-12-19 | Cardiovascular Innovations, Inc. | Apparatus and method for ultrasonically identifying vulnerable plaque |
US6702744B2 (en) | 2001-06-20 | 2004-03-09 | Advanced Cardiovascular Systems, Inc. | Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery |
US6728571B1 (en) | 2001-07-16 | 2004-04-27 | Scimed Life Systems, Inc. | Electronically scanned optical coherence tomography with frequency modulated signals |
US6827701B2 (en) | 2001-07-17 | 2004-12-07 | Kerberos Proximal Solutions | Fluid exchange system for controlled and localized irrigation and aspiration |
US6599296B1 (en) | 2001-07-27 | 2003-07-29 | Advanced Cardiovascular Systems, Inc. | Ratcheting handle for intraluminal catheter systems |
US20030045835A1 (en) | 2001-08-30 | 2003-03-06 | Vascular Solutions, Inc. | Method and apparatus for coagulation and closure of pseudoaneurysms |
US6961123B1 (en) | 2001-09-28 | 2005-11-01 | The Texas A&M University System | Method and apparatus for obtaining information from polarization-sensitive optical coherence tomography |
US7507245B2 (en) | 2001-10-19 | 2009-03-24 | Cardiovascular Systems, Inc. | Rotational angioplasty device with abrasive crown |
US6749344B2 (en) | 2001-10-24 | 2004-06-15 | Scimed Life Systems, Inc. | Connection apparatus for optical coherence tomography catheters |
US20050021075A1 (en) * | 2002-12-30 | 2005-01-27 | Bonnette Michael J. | Guidewire having deployable sheathless protective filter |
FR2832505B1 (en) | 2001-11-16 | 2008-07-04 | Inst Francais Du Petrole | OPTICAL FIBER REFRACTOMETER |
FR2832516B1 (en) | 2001-11-19 | 2004-01-23 | Tokendo Sarl | ROTARY ENDOSCOPES WITH A DEVIED DISTAL VIEW |
US7557929B2 (en) | 2001-12-18 | 2009-07-07 | Massachusetts Institute Of Technology | Systems and methods for phase measurements |
US7729742B2 (en) | 2001-12-21 | 2010-06-01 | Biosense, Inc. | Wireless position sensor |
US6947787B2 (en) | 2001-12-21 | 2005-09-20 | Advanced Cardiovascular Systems, Inc. | System and methods for imaging within a body lumen |
US7493156B2 (en) | 2002-01-07 | 2009-02-17 | Cardiac Pacemakers, Inc. | Steerable guide catheter with pre-shaped rotatable shaft |
EP1471844A2 (en) | 2002-01-16 | 2004-11-03 | Eva Corporation | Catheter hand-piece apparatus and method of using the same |
WO2003079272A1 (en) | 2002-03-15 | 2003-09-25 | University Of Washington | Materials and methods for simulating focal shifts in viewers using large depth of focus displays |
US6869414B2 (en) | 2002-03-22 | 2005-03-22 | Cardiac Pacemakers, Inc. | Pre-shaped catheter with proximal articulation and pre-formed distal end |
RU2218191C2 (en) | 2002-04-11 | 2003-12-10 | Научно-исследовательский институт радиоэлектроники и лазерной техники Московского государственного технического университета им. Н.Э.Баумана | Endovasal mini robot |
US7738945B2 (en) | 2002-04-19 | 2010-06-15 | University Of Washington | Method and apparatus for pseudo-projection formation for optical tomography |
US7811825B2 (en) | 2002-04-19 | 2010-10-12 | University Of Washington | System and method for processing specimens and images for optical tomography |
US20050085708A1 (en) | 2002-04-19 | 2005-04-21 | University Of Washington | System and method for preparation of cells for 3D image acquisition |
US20110201924A1 (en) | 2002-04-30 | 2011-08-18 | The General Hospital Corporation | Method and Apparatus for Improving Image Clarity and Sensitivity in Optical Tomography Using Dynamic Feedback to Control Focal Properties and Coherence Gating |
US6852109B2 (en) | 2002-06-11 | 2005-02-08 | Intraluminal Therapeutics, Inc. | Radio frequency guide wire assembly with optical coherence reflectometry guidance |
US6891984B2 (en) | 2002-07-25 | 2005-05-10 | Lightlab Imaging, Llc | Scanning miniature optical probes with optical distortion correction and rotational control |
US20040039371A1 (en) | 2002-08-23 | 2004-02-26 | Bruce Tockman | Coronary vein navigator |
US7359554B2 (en) | 2002-08-26 | 2008-04-15 | Cleveland Clinic Foundation | System and method for identifying a vascular border |
US7076135B2 (en) | 2002-09-20 | 2006-07-11 | Nippon Telegraph And Telephone Corporation | Optical module and manufacturing method therefor |
US7087064B1 (en) | 2002-10-15 | 2006-08-08 | Advanced Cardiovascular Systems, Inc. | Apparatuses and methods for heart valve repair |
AU2003269460A1 (en) | 2002-10-18 | 2004-05-04 | Arieh Sher | Atherectomy system with imaging guidewire |
US20040147934A1 (en) | 2002-10-18 | 2004-07-29 | Kiester P. Douglas | Oscillating, steerable, surgical burring tool and method of using the same |
US7493154B2 (en) | 2002-10-23 | 2009-02-17 | Medtronic, Inc. | Methods and apparatus for locating body vessels and occlusions in body vessels |
US6849064B2 (en) | 2002-10-25 | 2005-02-01 | James S. Hamada | Minimal access lumbar diskectomy instrumentation and method |
US6867753B2 (en) | 2002-10-28 | 2005-03-15 | University Of Washington | Virtual image registration in augmented display field |
EP1592992B1 (en) | 2003-01-24 | 2012-05-30 | University of Washington | Optical beam scanning system for compact image display or image acquisition |
US7474407B2 (en) | 2003-02-20 | 2009-01-06 | Applied Science Innovations | Optical coherence tomography with 3d coherence scanning |
JP2007503623A (en) | 2003-03-03 | 2007-02-22 | モンタナ ステート ユニバーシティー−ボーズマン | Compact confocal optical device, system and method |
US7715896B2 (en) | 2003-03-21 | 2010-05-11 | Boston Scientific Scimed, Inc. | Systems and methods for internal tissue penetration |
US20040254599A1 (en) | 2003-03-25 | 2004-12-16 | Lipoma Michael V. | Method and apparatus for pre-lancing stimulation of puncture site |
US7001369B2 (en) | 2003-03-27 | 2006-02-21 | Scimed Life Systems, Inc. | Medical device |
US6934444B2 (en) | 2003-04-10 | 2005-08-23 | Sioptical, Inc. | Beam shaping and practical methods of reducing loss associated with mating external sources and optics to thin silicon waveguides |
US8246640B2 (en) | 2003-04-22 | 2012-08-21 | Tyco Healthcare Group Lp | Methods and devices for cutting tissue at a vascular location |
DE10323217A1 (en) | 2003-05-22 | 2004-12-16 | Siemens Ag | Optical coherent tomography system of examination of tissues or organs, has position sensor at tip of catheter and reconstructs volume image based on sectional images and associated position data |
US7488340B2 (en) | 2003-06-02 | 2009-02-10 | Vascular Solutions, Inc. | Vascular access closure system |
USD489973S1 (en) | 2003-06-02 | 2004-05-18 | Vascular Solutions, Inc. | Medical device package |
US6943881B2 (en) | 2003-06-04 | 2005-09-13 | Tomophase Corporation | Measurements of optical inhomogeneity and other properties in substances using propagation modes of light |
US7150749B2 (en) | 2003-06-13 | 2006-12-19 | Sherwood Services Ag | Vessel sealer and divider having elongated knife stroke and safety cutting mechanism |
US7311723B2 (en) | 2003-07-11 | 2007-12-25 | University Of Washington | Scanning laser device and methods of use |
JP2007502676A (en) | 2003-08-21 | 2007-02-15 | アイシェム コーポレイション | Automated method and system for vascular plaque detection and analysis |
US7608048B2 (en) | 2003-08-28 | 2009-10-27 | Goldenberg Alec S | Rotating soft tissue biopsy needle |
DE202004021949U1 (en) | 2003-09-12 | 2013-05-27 | Vessix Vascular, Inc. | Selectable eccentric remodeling and / or ablation of atherosclerotic material |
US7758625B2 (en) | 2003-09-12 | 2010-07-20 | Abbott Vascular Solutions Inc. | Delivery system for medical devices |
EP2740416B1 (en) | 2003-10-03 | 2021-05-05 | Boston Scientific Limited, an Irish company | Systems for a delivering a medical implant to an anatomical location in a patient |
WO2005032642A2 (en) | 2003-10-03 | 2005-04-14 | Acumen Medical, Inc. | Expandable guide sheath and apparatus and methods for making them |
JP2005114473A (en) | 2003-10-06 | 2005-04-28 | Hitachi Medical Corp | Light detection method and biological light-measuring instrument |
WO2005034776A1 (en) | 2003-10-07 | 2005-04-21 | Henry Ford Health System | Embolectomy catheter |
CN103181753B (en) | 2003-10-27 | 2016-12-28 | 通用医疗公司 | For the method and apparatus using frequency-domain interferometry to carry out optical imagery |
US7776062B2 (en) * | 2003-10-27 | 2010-08-17 | Besselink Petrus A | Self-activating endoluminal device |
EP1691666B1 (en) | 2003-12-12 | 2012-05-30 | University of Washington | Catheterscope 3d guidance and interface system |
US20050149096A1 (en) | 2003-12-23 | 2005-07-07 | Hilal Said S. | Catheter with conduit traversing tip |
US20050141843A1 (en) | 2003-12-31 | 2005-06-30 | Invitrogen Corporation | Waveguide comprising scattered light detectable particles |
DE102004001498B4 (en) | 2004-01-09 | 2008-01-10 | Siemens Ag | Catheter for insertion into a vessel |
US20050159731A1 (en) | 2004-01-16 | 2005-07-21 | Lee Don W. | Intravascular catheter |
US7706863B2 (en) | 2004-01-21 | 2010-04-27 | University Of Washington | Methods for assessing a physiological state of a mammalian retina |
US20050197623A1 (en) | 2004-02-17 | 2005-09-08 | Leeflang Stephen A. | Variable steerable catheters and methods for using them |
DE102004008371B4 (en) | 2004-02-20 | 2006-05-24 | Siemens Ag | atherectomy |
DE102004008370B4 (en) | 2004-02-20 | 2006-06-01 | Siemens Ag | Catheter for performing and monitoring rotablation |
AU2005220069B9 (en) | 2004-03-04 | 2011-05-12 | Straub Medical Ag | Catheter for sucking, fragmenting removing material extractable from blood vessels |
JP2005249704A (en) | 2004-03-08 | 2005-09-15 | Fujinon Corp | Tomographic apparatus |
US20050203425A1 (en) | 2004-03-10 | 2005-09-15 | Phil Langston | Coaxial dual lumen pigtail catheter |
JP4789922B2 (en) | 2004-03-23 | 2011-10-12 | カリフォルニア インスティテュート オブ テクノロジー | Forward scanning imaging fiber optic detector |
US7126693B2 (en) | 2004-03-29 | 2006-10-24 | Carl Zeiss Meditec, Inc. | Simple high efficiency optical coherence domain reflectometer design |
DE102004015640B4 (en) | 2004-03-31 | 2007-05-03 | Siemens Ag | Apparatus for performing a cutting-balloon intervention with OCT monitoring |
US20050228428A1 (en) | 2004-04-07 | 2005-10-13 | Afsar Ali | Balloon catheters and methods for manufacturing balloons for balloon catheters |
US20050251116A1 (en) | 2004-05-05 | 2005-11-10 | Minnow Medical, Llc | Imaging and eccentric atherosclerotic material laser remodeling and/or ablation catheter |
US7242480B2 (en) | 2004-05-14 | 2007-07-10 | Medeikon Corporation | Low coherence interferometry for detecting and characterizing plaques |
EP1754016B1 (en) | 2004-05-29 | 2016-05-18 | The General Hospital Corporation | Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging |
US7196318B2 (en) | 2004-07-16 | 2007-03-27 | Kin-Man Yip | Fiber-optic sensing system |
US20060049587A1 (en) | 2004-09-09 | 2006-03-09 | Cornwell Webster R | Tool connector |
US20060064009A1 (en) | 2004-09-21 | 2006-03-23 | Webler William E | Vessel imaging devices and methods |
KR101257100B1 (en) | 2004-09-29 | 2013-04-22 | 더 제너럴 하스피탈 코포레이션 | System and Method for Optical Coherence Imaging |
US7382949B2 (en) | 2004-11-02 | 2008-06-03 | The General Hospital Corporation | Fiber-optic rotational device, optical system and method for imaging a sample |
US8409191B2 (en) | 2004-11-04 | 2013-04-02 | Boston Scientific Scimed, Inc. | Preshaped ablation catheter for ablating pulmonary vein ostia within the heart |
DE102005045071A1 (en) | 2005-09-21 | 2007-04-12 | Siemens Ag | Catheter device with a position sensor system for the treatment of a partial and / or complete vascular occlusion under image monitoring |
WO2006058049A1 (en) | 2004-11-24 | 2006-06-01 | The General Hospital Corporation | Common-path interferometer for endoscopic oct |
JP5219518B2 (en) | 2004-12-09 | 2013-06-26 | ザ ファウンドリー, エルエルシー | Aortic valve repair |
US7402151B2 (en) | 2004-12-17 | 2008-07-22 | Biocardia, Inc. | Steerable guide catheters and methods for their use |
US8983582B2 (en) | 2004-12-20 | 2015-03-17 | Advanced Cardiovascular Systems, Inc. | Methods and apparatuses for positioning within an internal channel |
US7455649B2 (en) | 2005-01-05 | 2008-11-25 | Vascular Solutions, Inc. | Abdominal tissue support for femoral puncture procedures |
WO2006076731A1 (en) | 2005-01-12 | 2006-07-20 | University Of Florida Research Foundation, Inc. | Full circumferential scanning oct intravascular imaging probe based on scanning mems miror |
US7854755B2 (en) | 2005-02-01 | 2010-12-21 | Boston Scientific Scimed, Inc. | Vascular catheter, system, and method |
EP1843709B1 (en) | 2005-02-04 | 2016-04-06 | AMS Research, LLC | Needle design for male transobturator sling |
WO2006086700A2 (en) | 2005-02-10 | 2006-08-17 | Lightlab Imaging, Inc. | Optical coherence tomography apparatus and methods |
US20060190024A1 (en) | 2005-02-24 | 2006-08-24 | Bei Nianjiong | Recovery catheter apparatus and method |
US7530948B2 (en) | 2005-02-28 | 2009-05-12 | University Of Washington | Tethered capsule endoscope for Barrett's Esophagus screening |
US20060252993A1 (en) | 2005-03-23 | 2006-11-09 | Freed David I | Medical devices and systems |
JP2006288775A (en) | 2005-04-12 | 2006-10-26 | Hitachi Medical Corp | System for supporting endoscopic surgery |
US20060229646A1 (en) | 2005-04-12 | 2006-10-12 | Sparks Kurt D | Forward-directed atherectomy catheter |
US7794413B2 (en) | 2005-04-19 | 2010-09-14 | Ev3, Inc. | Libraries and data structures of materials removed by debulking catheters |
US20060264907A1 (en) | 2005-05-02 | 2006-11-23 | Pulsar Vascular, Inc. | Catheters having stiffening mechanisms |
DE102005021061B4 (en) | 2005-05-06 | 2011-12-15 | Siemens Ag | Method for tomographic imaging of a cavity by optical coherence tomography (OCT) and an OCT device for carrying out the method |
JP4643361B2 (en) | 2005-05-30 | 2011-03-02 | オリンパス株式会社 | Endoscope treatment tool and endoscope treatment tool system |
CA2509590A1 (en) | 2005-06-06 | 2006-12-06 | Solar International Products Inc. | Portable imaging apparatus |
US7783337B2 (en) | 2005-06-06 | 2010-08-24 | Board Of Regents, The University Of Texas System | OCT using spectrally resolved bandwidth |
JP2008543511A (en) | 2005-06-24 | 2008-12-04 | ヴォルケイノウ・コーポレーション | Vascular image preparation method |
DE102005029897A1 (en) | 2005-06-27 | 2007-01-04 | Siemens Ag | Picture giving procedure with optical coherence tomography catheter for visualizing molecular functional processes in vulnerable plaques of a blood vessel of a patient, comprises producing tomography picture of contrast agent-marked plaque |
WO2007002969A1 (en) | 2005-07-04 | 2007-01-11 | Medizinische Universität Wien | Optical coherence tomography probe device |
WO2007008788A2 (en) | 2005-07-08 | 2007-01-18 | Imalux Corporation | Common-path frequency-domain optical coherence reflectometer and optical coherence tomography device |
US7428053B2 (en) | 2005-07-08 | 2008-09-23 | Imalux Corporation | Common path frequency domain optical coherence reflectometry/tomography device |
DE102005032961A1 (en) | 2005-07-14 | 2007-01-18 | Siemens Ag | Method and device for generating an image by means of optical coherence tomography |
US20080132929A1 (en) | 2005-07-19 | 2008-06-05 | O'sullivan Denis F | Surgical bur with anti-chatter flute geometry |
US20070038173A1 (en) | 2005-07-27 | 2007-02-15 | Fox Hollow Technologies, Inc. | Methods affecting markers in patients having vascular disease |
US7844348B2 (en) | 2005-08-09 | 2010-11-30 | Greatbatch Ltd. | Fiber optic assisted medical lead |
US20070088230A1 (en) | 2005-09-06 | 2007-04-19 | Fmd Co., Ltd | Medical instrument and medical equipment for treatment, and rotational handle device |
DE102005045088B4 (en) | 2005-09-21 | 2007-05-16 | Siemens Ag | Optical coherence tomography system |
DE102005048892B4 (en) | 2005-09-22 | 2009-01-15 | Siemens Ag | Device for carrying out rotablation and medical treatment device |
EP1928297B1 (en) | 2005-09-29 | 2010-11-03 | Bioptigen, Inc. | Portable optical coherence tomography devices and related systems |
JP4545696B2 (en) | 2005-09-30 | 2010-09-15 | 富士フイルム株式会社 | Optical probe |
EP2361549A3 (en) | 2005-09-30 | 2012-05-02 | Cornova, Inc. | System for analysis and treatment of a body lumen |
JP2007101249A (en) | 2005-09-30 | 2007-04-19 | Fujifilm Corp | Optical tomographic imaging method and apparatus |
WO2007044612A2 (en) | 2005-10-07 | 2007-04-19 | Bioptigen, Inc. | Imaging systems using unpolarized light and related methods and controllers |
JP4850495B2 (en) | 2005-10-12 | 2012-01-11 | 株式会社トプコン | Fundus observation apparatus and fundus observation program |
US8047996B2 (en) | 2005-10-31 | 2011-11-01 | Volcano Corporation | System and method for reducing angular geometric distortion in an imaging device |
US20070106147A1 (en) | 2005-11-01 | 2007-05-10 | Altmann Andres C | Controlling direction of ultrasound imaging catheter |
US7728985B2 (en) | 2005-11-14 | 2010-06-01 | Imalux Corporation | Polarization-sensitive common path optical coherence reflectometry/tomography device |
JP2007135947A (en) | 2005-11-21 | 2007-06-07 | Fujifilm Corp | Optical probe and optical tomographic imaging system |
US8537203B2 (en) | 2005-11-23 | 2013-09-17 | University Of Washington | Scanning beam with variable sequential framing using interrupted scanning resonance |
US7801343B2 (en) | 2005-11-29 | 2010-09-21 | Siemens Medical Solutions Usa, Inc. | Method and apparatus for inner wall extraction and stent strut detection using intravascular optical coherence tomography imaging |
DE102005059262B4 (en) | 2005-12-12 | 2008-02-07 | Siemens Ag | catheter device |
US20070213618A1 (en) | 2006-01-17 | 2007-09-13 | University Of Washington | Scanning fiber-optic nonlinear optical imaging and spectroscopy endoscope |
JP5680829B2 (en) | 2006-02-01 | 2015-03-04 | ザ ジェネラル ホスピタル コーポレイション | A device that irradiates a sample with multiple electromagnetic radiations |
US7989207B2 (en) | 2006-02-17 | 2011-08-02 | Tyco Healthcare Group Lp | Testing lumenectomy samples for markers of non-vascular diseases |
JP4454030B2 (en) | 2006-02-21 | 2010-04-21 | 国立大学法人 筑波大学 | Image processing method for three-dimensional optical tomographic image |
US9561078B2 (en) | 2006-03-03 | 2017-02-07 | University Of Washington | Multi-cladding optical fiber scanner |
US7785286B2 (en) | 2006-03-30 | 2010-08-31 | Volcano Corporation | Method and system for imaging, diagnosing, and/or treating an area of interest in a patient's body |
US7846175B2 (en) | 2006-04-03 | 2010-12-07 | Medrad, Inc. | Guidewire and collapsable filter system |
DE102006016957B4 (en) | 2006-04-11 | 2010-04-22 | Vimecon Gmbh | laser applicator |
MY144980A (en) | 2006-04-17 | 2011-12-15 | Univ Sains Malaysia | Method for rapid detection of lymphatic filariasis |
US8808310B2 (en) | 2006-04-20 | 2014-08-19 | Integrated Vascular Systems, Inc. | Resettable clip applier and reset tools |
US20090221904A1 (en) | 2006-05-04 | 2009-09-03 | Shealy David J | Inflammatory condition progression, diagnosis and treatment monitoring methods, systems, apparatus, and uses |
US20070270647A1 (en) | 2006-05-19 | 2007-11-22 | Ams Research Corporation | Handle for Multifunction Endoscope |
US20070276419A1 (en) | 2006-05-26 | 2007-11-29 | Fox Hollow Technologies, Inc. | Methods and devices for rotating an active element and an energy emitter on a catheter |
US20070288036A1 (en) | 2006-06-09 | 2007-12-13 | Niranjan Seshadri | Assembly for crossing a chronic total occlusion and method therefor |
US8007506B2 (en) | 2006-06-30 | 2011-08-30 | Atheromed, Inc. | Atherectomy devices and methods |
KR20090049051A (en) | 2006-06-30 | 2009-05-15 | 아테로메드, 아이엔씨. | Atherectomy devices and methods |
US9492192B2 (en) | 2006-06-30 | 2016-11-15 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
US9314263B2 (en) | 2006-06-30 | 2016-04-19 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
US8628549B2 (en) | 2006-06-30 | 2014-01-14 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
US20090018566A1 (en) | 2006-06-30 | 2009-01-15 | Artheromed, Inc. | Atherectomy devices, systems, and methods |
US8920448B2 (en) | 2006-06-30 | 2014-12-30 | Atheromed, Inc. | Atherectomy devices and methods |
US20080045986A1 (en) | 2006-06-30 | 2008-02-21 | Atheromed, Inc. | Atherectomy devices and methods |
IL176889A0 (en) | 2006-07-16 | 2006-10-31 | Medigus Ltd | Devices and methods for treating morbid obesity |
JP4984706B2 (en) | 2006-07-19 | 2012-07-25 | 株式会社デンソー | Manufacturing method of microstructure |
US20080033396A1 (en) | 2006-08-01 | 2008-02-07 | Percutaneous Systems, Inc. | Vascular sheaths and methods for their deployment |
US7674253B2 (en) | 2006-08-18 | 2010-03-09 | Kensey Nash Corporation | Catheter for conducting a procedure within a lumen, duct or organ of a living being |
US20080058629A1 (en) | 2006-08-21 | 2008-03-06 | University Of Washington | Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation |
US7538886B2 (en) | 2006-08-22 | 2009-05-26 | Imalux Corporation | Common path time domain optical coherence reflectometry/tomography device |
EP1892501A3 (en) | 2006-08-23 | 2009-10-07 | Heliotis AG | Colorimetric three-dimensional microscopy |
JP5139298B2 (en) | 2006-08-24 | 2013-02-06 | テルモ株式会社 | Connection device, auxiliary device and adapter fixing member |
WO2008029506A1 (en) | 2006-09-04 | 2008-03-13 | School Juridical Person Kitasato Gakuen | Optical coherence tomography apparatus |
US7821643B2 (en) | 2006-09-06 | 2010-10-26 | Imalux Corporation | Common path systems and methods for frequency domain and time domain optical coherence tomography using non-specular reference reflection and a delivering device for optical radiation with a partially optically transparent non-specular reference reflector |
US20080065205A1 (en) | 2006-09-11 | 2008-03-13 | Duy Nguyen | Retrievable implant and method for treatment of mitral regurgitation |
US7840283B1 (en) | 2006-09-21 | 2010-11-23 | Pacesetter, Inc. | Bipolar screw-in lead |
US8068921B2 (en) | 2006-09-29 | 2011-11-29 | Vivant Medical, Inc. | Microwave antenna assembly and method of using the same |
US7824089B2 (en) | 2006-10-03 | 2010-11-02 | Alcon, Inc. | Gradient index surgical illuminator |
US8394078B2 (en) | 2006-10-04 | 2013-03-12 | Medrad, Inc. | Interventional catheters incorporating an active aspiration system |
US8852219B2 (en) | 2006-10-04 | 2014-10-07 | Bayer Medical Care Inc. | Interventional catheters having cutter assemblies and differential cutting surfaces for use in such assemblies |
US8126239B2 (en) | 2006-10-20 | 2012-02-28 | Siemens Aktiengesellschaft | Registering 2D and 3D data using 3D ultrasound data |
EP2091442B1 (en) | 2006-10-26 | 2011-05-18 | Wilson-Cook Medical Inc. | Biopsy collection device |
JP4869877B2 (en) | 2006-11-17 | 2012-02-08 | 富士フイルム株式会社 | Optical tomographic imaging system |
JP2010515472A (en) | 2006-11-27 | 2010-05-13 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | System and method for fusing real-time ultrasound images to pre-collected medical images |
US20080146942A1 (en) | 2006-12-13 | 2008-06-19 | Ep Medsystems, Inc. | Catheter Position Tracking Methods Using Fluoroscopy and Rotational Sensors |
US7879004B2 (en) | 2006-12-13 | 2011-02-01 | University Of Washington | Catheter tip displacement mechanism |
JP2008145376A (en) | 2006-12-13 | 2008-06-26 | Fujifilm Corp | Optical tomographic imaging system |
DE202006018883U1 (en) | 2006-12-14 | 2007-02-15 | Aesculap Ag & Co. Kg | Surgical obturator, comprises control element securing the cutting device in an active position |
US8961551B2 (en) | 2006-12-22 | 2015-02-24 | The Spectranetics Corporation | Retractable separating systems and methods |
US9028520B2 (en) | 2006-12-22 | 2015-05-12 | The Spectranetics Corporation | Tissue separating systems and methods |
JP4389032B2 (en) | 2007-01-18 | 2009-12-24 | 国立大学法人 筑波大学 | Optical coherence tomography image processing device |
EP2111165B8 (en) | 2007-01-19 | 2017-10-04 | Sunnybrook Health Sciences Centre | Imaging probe with combined ultrasound and optical means of imaging |
WO2008087613A2 (en) | 2007-01-20 | 2008-07-24 | Ecole Polytechnique Federale De Lausanne (Epfl) | Dual beam heterodyne fourier domain optical coherence tomography |
JP2008183208A (en) | 2007-01-30 | 2008-08-14 | Hoya Corp | Oct probe and oct system |
US7946997B2 (en) | 2007-02-16 | 2011-05-24 | Radi Medical Systems Ab | Measurement system to measure a physiological condition in a body |
US20080221388A1 (en) | 2007-03-09 | 2008-09-11 | University Of Washington | Side viewing optical fiber endoscope |
US8840566B2 (en) | 2007-04-02 | 2014-09-23 | University Of Washington | Catheter with imaging capability acts as guidewire for cannula tools |
US20080243030A1 (en) | 2007-04-02 | 2008-10-02 | University Of Washington | Multifunction cannula tools |
JP2008253492A (en) | 2007-04-04 | 2008-10-23 | Fujifilm Corp | Tomographic image processing method, apparatus and program |
US7583872B2 (en) | 2007-04-05 | 2009-09-01 | University Of Washington | Compact scanning fiber device |
US7813538B2 (en) | 2007-04-17 | 2010-10-12 | University Of Washington | Shadowing pipe mosaicing algorithms with application to esophageal endoscopy |
EP2432015A1 (en) | 2007-04-18 | 2012-03-21 | Invisage Technologies, Inc. | Materials, systems and methods for optoelectronic devices |
US7952718B2 (en) | 2007-05-03 | 2011-05-31 | University Of Washington | High resolution optical coherence tomography based imaging for intraluminal and interstitial use implemented with a reduced form factor |
WO2008151155A2 (en) | 2007-05-31 | 2008-12-11 | Board Of Regents, The University Of Texas System | Polarization-sensitive spectral interferometry |
JP5576274B2 (en) | 2007-06-28 | 2014-08-20 | ゴア エンタープライズ ホールディングス,インコーポレイティド | Improved catheter |
US8852112B2 (en) | 2007-06-28 | 2014-10-07 | W. L. Gore & Associates, Inc. | Catheter with deflectable imaging device and bendable electrical conductor |
JP5291304B2 (en) | 2007-06-29 | 2013-09-18 | テルモ株式会社 | Optical cable and optical interference diagnostic imaging apparatus using the same |
AU2008271034A1 (en) | 2007-06-29 | 2009-01-08 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
EP2170452B1 (en) | 2007-07-09 | 2013-02-13 | Cook Medical Technologies LLC | Balloon catheter with deflation mechanism |
WO2009009802A1 (en) | 2007-07-12 | 2009-01-15 | Volcano Corporation | Oct-ivus catheter for concurrent luminal imaging |
JP5524835B2 (en) | 2007-07-12 | 2014-06-18 | ヴォルカノ コーポレイション | In vivo imaging catheter |
US20090024084A1 (en) | 2007-07-16 | 2009-01-22 | Peritec Biosciences Ltd. | Multi-lumen catheter assembly and method of providing relative motion thereto |
US20090028507A1 (en) | 2007-07-27 | 2009-01-29 | Ashley Wesley Jones | Fiber optic adapter with integrated shutter |
JP5608556B2 (en) | 2007-08-10 | 2014-10-15 | ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム | Forward imaging optical coherence tomography (OCT) system and probe |
DE102007039556B3 (en) | 2007-08-22 | 2009-01-22 | Carl Mahr Holding Gmbh | Optical microprobe |
JP5154868B2 (en) | 2007-09-10 | 2013-02-27 | テルモ株式会社 | Diagnostic imaging apparatus and operating method thereof |
JP5022841B2 (en) | 2007-09-14 | 2012-09-12 | Hoya株式会社 | Endoscopic high-frequency treatment instrument |
US20090076447A1 (en) | 2007-09-19 | 2009-03-19 | Jack Casas | Method and apparatus for conducting peripheral vascular disease procedures using a novel anchor balloon catheter |
US8489190B2 (en) | 2007-10-08 | 2013-07-16 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US8236016B2 (en) | 2007-10-22 | 2012-08-07 | Atheromed, Inc. | Atherectomy devices and methods |
US8070762B2 (en) | 2007-10-22 | 2011-12-06 | Atheromed Inc. | Atherectomy devices and methods |
US8372064B2 (en) | 2007-11-08 | 2013-02-12 | Angiodynamics, Inc. | Articulatable device for delivering therapeutic energy to tissue |
US7813609B2 (en) | 2007-11-12 | 2010-10-12 | Lightlab Imaging, Inc. | Imaging catheter with integrated reference reflector |
US8582934B2 (en) | 2007-11-12 | 2013-11-12 | Lightlab Imaging, Inc. | Miniature optical elements for fiber-optic beam shaping |
US8613721B2 (en) | 2007-11-14 | 2013-12-24 | Medrad, Inc. | Delivery and administration of compositions using interventional catheters |
US20090137893A1 (en) | 2007-11-27 | 2009-05-28 | University Of Washington | Adding imaging capability to distal tips of medical tools, catheters, and conduits |
US7791009B2 (en) | 2007-11-27 | 2010-09-07 | University Of Washington | Eliminating illumination crosstalk while using multiple imaging devices with plural scanning devices, each coupled to an optical fiber |
US8059274B2 (en) | 2007-12-07 | 2011-11-15 | The Spectranetics Corporation | Low-loss polarized light diversion |
JP5129562B2 (en) | 2007-12-27 | 2013-01-30 | 富士フイルム株式会社 | Optical tomographic imaging method and system |
US8983580B2 (en) | 2008-01-18 | 2015-03-17 | The Board Of Trustees Of The University Of Illinois | Low-coherence interferometry and optical coherence tomography for image-guided surgical treatment of solid tumors |
WO2009094341A2 (en) | 2008-01-21 | 2009-07-30 | The Regents Of The University Of California | Endovascular optical coherence tomography device |
US20090185135A1 (en) | 2008-01-22 | 2009-07-23 | Volk Donald A | Real image forming eye examination lens utilizing two reflecting surfaces providing upright image |
JP2009201969A (en) | 2008-02-01 | 2009-09-10 | Fujifilm Corp | Oct optical probe and optical tomography imaging apparatus |
US20090206131A1 (en) | 2008-02-15 | 2009-08-20 | Ethicon Endo-Surgery, Inc. | End effector coupling arrangements for a surgical cutting and stapling instrument |
US20090208143A1 (en) | 2008-02-19 | 2009-08-20 | University Of Washington | Efficient automated urothelial imaging using an endoscope with tip bending |
US8784440B2 (en) | 2008-02-25 | 2014-07-22 | Covidien Lp | Methods and devices for cutting tissue |
DE102008013854A1 (en) | 2008-03-12 | 2009-09-24 | Siemens Aktiengesellschaft | Catheter and associated medical examination and treatment facility |
US8348429B2 (en) | 2008-03-27 | 2013-01-08 | Doheny Eye Institute | Optical coherence tomography device, method, and system |
US8125645B2 (en) | 2008-03-31 | 2012-02-28 | Fujifilm Corporation | Optical tomographic imaging system, tomographic image acquiring method, and optical tomographic image forming method |
US8374680B2 (en) | 2008-04-21 | 2013-02-12 | Medtronic Vascular, Inc. | Needleless catheters and methods for true lumen re-entry in treatment of chronic total occlusions and other disorders |
US9125562B2 (en) | 2009-07-01 | 2015-09-08 | Avinger, Inc. | Catheter-based off-axis optical coherence tomography imaging system |
WO2009131655A2 (en) | 2008-04-23 | 2009-10-29 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Automated assessment of optic nerve head with spectral domain optical coherence tomograph |
US8548571B2 (en) | 2009-12-08 | 2013-10-01 | Avinger, Inc. | Devices and methods for predicting and preventing restenosis |
US8062316B2 (en) | 2008-04-23 | 2011-11-22 | Avinger, Inc. | Catheter system and method for boring through blocked vascular passages |
US20100125253A1 (en) | 2008-11-17 | 2010-05-20 | Avinger | Dual-tip Catheter System for Boring through Blocked Vascular Passages |
US20090270838A1 (en) | 2008-04-24 | 2009-10-29 | Medtronic Vascular, Inc. | Catheter Flushing Mandrel |
EP2278908B1 (en) | 2008-04-27 | 2021-06-02 | Loma Vista Medical, Inc. | Biological navigation device |
US20090275966A1 (en) | 2008-05-05 | 2009-11-05 | Miroslav Mitusina | Flexible inner members having flexible regions comprising a plurality of intertwined helical cuts |
JP5538368B2 (en) | 2008-05-15 | 2014-07-02 | アクサン・テクノロジーズ・インコーポレーテッド | OCT coupling probe and integrated system |
US8757812B2 (en) | 2008-05-19 | 2014-06-24 | University of Washington UW TechTransfer—Invention Licensing | Scanning laser projection display devices and methods for projecting one or more images onto a surface with a light-scanning optical fiber |
JP2011521747A (en) | 2008-06-02 | 2011-07-28 | ライトラブ イメージング, インコーポレイテッド | Quantitative method for obtaining tissue features from optical coherence tomography images |
WO2009148317A1 (en) | 2008-06-05 | 2009-12-10 | Technische Universiteit Delft | Automatic catheter positioning system |
JP5340648B2 (en) | 2008-06-12 | 2013-11-13 | オリンパスメディカルシステムズ株式会社 | Subject information calculation apparatus and subject information calculation method |
CN102066998B (en) | 2008-06-20 | 2014-04-16 | 泰尔茂株式会社 | Connection device and optical imaging device |
JP2010011958A (en) | 2008-07-02 | 2010-01-21 | Fujifilm Corp | Optical tomographic imaging probe and optical tomographic imaging apparatus using the same |
US8313493B2 (en) | 2008-07-10 | 2012-11-20 | Cook Medical Technologies Llc | Hydraulic guidewire advancement system |
US20100023033A1 (en) | 2008-07-25 | 2010-01-28 | Medtronic Vescular, Inc. | Hydrodynamic Thrombectomy Catheter |
JP2010042182A (en) | 2008-08-18 | 2010-02-25 | Fujifilm Corp | Laser treatment device |
US8711471B2 (en) | 2008-08-21 | 2014-04-29 | Nlight Photonics Corporation | High power fiber amplifier with stable output |
JP2010081957A (en) | 2008-09-29 | 2010-04-15 | Olympus Corp | Light source device |
US20100082000A1 (en) | 2008-09-30 | 2010-04-01 | Medtronic, Inc. | Catheter system with reinforced member |
US20100081873A1 (en) | 2008-09-30 | 2010-04-01 | AiHeart Medical Technologies, Inc. | Systems and methods for optical viewing and therapeutic intervention in blood vessels |
US8414604B2 (en) | 2008-10-13 | 2013-04-09 | Covidien Lp | Devices and methods for manipulating a catheter shaft |
CA2743140A1 (en) | 2008-11-11 | 2010-05-20 | Shifamed, Llc | Low profile electrode assembly |
US8864654B2 (en) | 2010-04-20 | 2014-10-21 | Jeffrey B. Kleiner | Method and apparatus for performing retro peritoneal dissection |
FR2939281B1 (en) | 2008-12-10 | 2014-07-04 | Affflex Europ | DEVICE FOR SAMPLING AN ANIMAL TISSUE SAMPLE |
US20100198081A1 (en) | 2009-02-02 | 2010-08-05 | John Harold Hanlin | Scanning light imager |
US8403916B2 (en) | 2009-02-26 | 2013-03-26 | Enteroptyx | Surgical instrument having a magnetically driven detachable tool assembly |
DE102009014489B4 (en) | 2009-03-23 | 2011-03-10 | Siemens Aktiengesellschaft | Catheter and medical device |
EP2424608B1 (en) | 2009-04-28 | 2014-03-19 | Avinger, Inc. | Guidewire support catheter |
ES2532407T3 (en) | 2009-04-29 | 2015-03-26 | Covidien Lp | Devices for cutting and scraping tissue |
US8632557B2 (en) | 2009-05-12 | 2014-01-21 | Cardiovascular Systems, Inc. | Rotational atherectomy device and method to improve abrading efficiency |
CN102458276B (en) * | 2009-05-14 | 2014-05-21 | 泰科保健集团有限合伙公司 | Easily cleaned atherectomy catheters and methods of use |
DE102009021580B3 (en) | 2009-05-15 | 2010-11-25 | Medizinisches Laserzentrum Lübeck GmbH | Forward scanning OCT endoscope |
JP6101078B2 (en) | 2009-05-28 | 2017-03-29 | アビンガー・インコーポレイテッドAvinger, Inc. | Optical coherence tomography for bioimaging |
US8226566B2 (en) | 2009-06-12 | 2012-07-24 | Flowcardia, Inc. | Device and method for vascular re-entry |
US8920369B2 (en) | 2009-06-24 | 2014-12-30 | Shifamed Holdings, Llc | Steerable delivery sheaths |
WO2011003006A2 (en) | 2009-07-01 | 2011-01-06 | Avinger, Inc. | Atherectomy catheter with laterally-displaceable tip |
EP2453791B1 (en) | 2009-07-14 | 2023-09-06 | The General Hospital Corporation | Apparatus for measuring flow and pressure within a vessel |
US8523867B2 (en) | 2009-07-31 | 2013-09-03 | Zimmer Gmbh | Orthopaedic reamer |
US8151648B2 (en) | 2009-08-03 | 2012-04-10 | University Of Maryland | Ultra-miniature fiber-optic pressure sensor system and method of fabrication |
US8435228B2 (en) | 2009-08-12 | 2013-05-07 | Medrad, Inc. | Interventional catheter assemblies incorporating guide wire brake and management systems |
US8388582B2 (en) | 2009-08-12 | 2013-03-05 | Medrad, Inc. | Systems and methods for operating interventional catheters using a common operating console and adaptive interface components |
US20110071401A1 (en) | 2009-09-24 | 2011-03-24 | Boston Scientific Scimed, Inc. | Systems and methods for making and using a stepper motor for an intravascular ultrasound imaging system |
WO2011044387A2 (en) | 2009-10-07 | 2011-04-14 | The Board Of Regents Of The University Of Texas System | Pressure-sensing medical devices, systems and methods, and methods of forming medical devices |
WO2011062087A1 (en) | 2009-11-17 | 2011-05-26 | コニカミノルタオプト株式会社 | Probe for optical tomographic image measurement device and method for adjusting probe |
BR112012013389A2 (en) | 2009-12-02 | 2018-03-06 | Tyco Healthcare | methods and devices for cutting a fabric |
WO2011072149A1 (en) * | 2009-12-11 | 2011-06-16 | Fox Hollow Technologies, Inc. | Material removal device having improved material capture efficiency and methods of use |
US8478384B2 (en) | 2010-01-19 | 2013-07-02 | Lightlab Imaging, Inc. | Intravascular optical coherence tomography system with pressure monitoring interface and accessories |
US20110208222A1 (en) | 2010-02-25 | 2011-08-25 | Boris Ljahnicky | System and Method for the Treatment of Occluded Vessels |
US9545289B2 (en) | 2010-02-26 | 2017-01-17 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for endoluminal valve creation |
US8738151B2 (en) | 2010-04-28 | 2014-05-27 | Medtronic, Inc. | Body portal anchors and systems |
US8764779B2 (en) | 2010-05-13 | 2014-07-01 | Rex Medical, L.P. | Rotational thrombectomy wire |
JP6066901B2 (en) | 2010-06-03 | 2017-01-25 | ザ ジェネラル ホスピタル コーポレイション | Method for apparatus and device for imaging structures in or in one or more luminal organs |
BR112012031907A2 (en) | 2010-06-14 | 2020-08-04 | Covidien Lp | material removal device. |
US20110319905A1 (en) | 2010-06-23 | 2011-12-29 | Palme Robert A | Multiple function vascular device |
US10548478B2 (en) | 2010-07-01 | 2020-02-04 | Avinger, Inc. | Balloon atherectomy catheters with imaging |
JP2013531542A (en) * | 2010-07-01 | 2013-08-08 | アビンガー・インコーポレイテッド | An atherectomy catheter having a longitudinally movable drive shaft |
WO2014039096A1 (en) | 2012-09-06 | 2014-03-13 | Avinger, Inc. | Re-entry stylet for catheter |
US11382653B2 (en) | 2010-07-01 | 2022-07-12 | Avinger, Inc. | Atherectomy catheter |
JP2013542776A (en) | 2010-10-06 | 2013-11-28 | スミス アンド ネフュー インコーポレーテッド | System for use in tissue repair |
TWI556849B (en) | 2010-10-21 | 2016-11-11 | 美敦力阿福盧森堡公司 | Catheter apparatus for renal neuromodulation |
WO2012057940A1 (en) | 2010-10-28 | 2012-05-03 | Boston Scientific Scimed, Inc. | Systems and methods for reducing non-uniform rotation distortion in ultrasound images |
CN103328033B (en) | 2010-11-09 | 2016-05-18 | 奥普森斯公司 | There is the seal wire of internal pressure sensor |
WO2012064966A2 (en) | 2010-11-11 | 2012-05-18 | Tyco Healthcare Group Lp | Flexible debulking catheters with imaging and methods of use and manufacture |
EP2484297B1 (en) | 2011-02-04 | 2017-04-26 | Arthrex, Inc. | Curved bur |
GB2518340A (en) | 2011-03-15 | 2015-03-25 | Barts & London Nhs Trust | Steerable element for use in surgery |
US9949754B2 (en) | 2011-03-28 | 2018-04-24 | Avinger, Inc. | Occlusion-crossing devices |
CA2831306C (en) | 2011-03-28 | 2018-11-20 | Avinger, Inc. | Occlusion-crossing devices, imaging, and atherectomy devices |
US8801713B2 (en) | 2011-04-07 | 2014-08-12 | DePuy Synthes Products, LLC | Surgical drill instrument with motor and locking mechanism to receive an attachment and a cutting burr |
JP2012229976A (en) | 2011-04-26 | 2012-11-22 | Hoya Corp | Optical scanning probe |
US20120289971A1 (en) | 2011-05-11 | 2012-11-15 | Merit Medical Systems, Inc. | Multiple lumen retrieval device and method of using |
CA2837577C (en) | 2011-05-27 | 2018-05-29 | Lightlab Imaging, Inc. | Optical coherence tomography and pressure based systems and methods |
US9814862B2 (en) | 2011-06-30 | 2017-11-14 | The Spectranetics Corporation | Reentry catheter and method thereof |
JP5989312B2 (en) | 2011-08-18 | 2016-09-07 | 東芝メディカルシステムズ株式会社 | Image processing display device and image processing display program |
WO2013033592A1 (en) | 2011-08-31 | 2013-03-07 | Volcano Corporation | Optical-electrical rotary joint and methods of use |
WO2013033490A1 (en) | 2011-08-31 | 2013-03-07 | Volcano Corporation | Rotational imaging systems with stabilizers |
WO2013040498A1 (en) | 2011-09-16 | 2013-03-21 | Translucent Medical, Inc. | System and method for virtually tracking a surgical tool on a movable display |
US20130085514A1 (en) | 2011-09-30 | 2013-04-04 | Tyco Healthcare Group Lp | Rotating occlusion treatment system |
CN103957825B (en) | 2011-10-13 | 2018-12-07 | 阿瑟罗迈德公司 | Atherectomy device, system and method |
WO2013059363A1 (en) | 2011-10-17 | 2013-04-25 | Avinger, Inc. | Atherectomy catheters and non-contact actuation mechanism for catheters |
US9345406B2 (en) | 2011-11-11 | 2016-05-24 | Avinger, Inc. | Occlusion-crossing devices, atherectomy devices, and imaging |
CA2801744C (en) | 2012-01-17 | 2015-10-13 | Covidien Lp | Material removal device and method of use |
US20130211221A1 (en) | 2012-02-08 | 2013-08-15 | Imricor Medical Systems, Inc. | System and method for identifying and communicating with an interventional medical device |
US8967885B2 (en) | 2012-02-23 | 2015-03-03 | Corning Incorporated | Stub lens assemblies for use in optical coherence tomography systems |
GB201203994D0 (en) | 2012-03-07 | 2012-04-18 | Everingham John S | medical applicator |
US9036966B2 (en) | 2012-03-28 | 2015-05-19 | Corning Incorporated | Monolithic beam-shaping optical systems and methods for an OCT probe |
JP5579218B2 (en) | 2012-03-28 | 2014-08-27 | 株式会社東芝 | Manufacturing method of pressure sensing element |
EP2849660B1 (en) | 2012-05-14 | 2021-08-25 | Avinger, Inc. | Atherectomy catheter drive assemblies |
EP2849636B1 (en) | 2012-05-14 | 2020-04-22 | Avinger, Inc. | Optical coherence tomography with graded index fiber for biological imaging |
US11406412B2 (en) | 2012-05-14 | 2022-08-09 | Avinger, Inc. | Atherectomy catheters with imaging |
US9888994B2 (en) * | 2012-05-15 | 2018-02-13 | Transverse Medical, Inc. | Catheter-based apparatuses and methods |
US20130317519A1 (en) | 2012-05-25 | 2013-11-28 | Hansen Medical, Inc. | Low friction instrument driver interface for robotic systems |
US9381062B2 (en) | 2012-05-31 | 2016-07-05 | Covidien Lp | Electro-mechanical intravascular device |
US10537308B2 (en) * | 2012-07-06 | 2020-01-21 | Michael Zhadkevich | Catheter for prevention of stroke and method of use |
US9498247B2 (en) | 2014-02-06 | 2016-11-22 | Avinger, Inc. | Atherectomy catheters and occlusion crossing devices |
US11284916B2 (en) | 2012-09-06 | 2022-03-29 | Avinger, Inc. | Atherectomy catheters and occlusion crossing devices |
US9579157B2 (en) | 2012-09-13 | 2017-02-28 | Covidien Lp | Cleaning device for medical instrument and method of use |
CA2891061C (en) | 2012-11-08 | 2018-05-01 | Covidien Lp | Tissue-removing catheter including operational control mechanism |
US9943329B2 (en) | 2012-11-08 | 2018-04-17 | Covidien Lp | Tissue-removing catheter with rotatable cutter |
ES2978868T3 (en) | 2012-11-19 | 2024-09-23 | Lightlab Imaging Inc | Interface devices, systems and methods for multimodal probes |
CN105007842B (en) * | 2012-12-05 | 2018-03-09 | 急速医疗有限公司 | Device for adjunctive medical therapy |
WO2014093154A1 (en) | 2012-12-12 | 2014-06-19 | Covidien Lp | Tissue-removing catheter including urging mechanism |
JP6502260B2 (en) | 2012-12-12 | 2019-04-17 | コヴィディエン リミテッド パートナーシップ | Tissue removal catheter for body lumens |
EP2934324B1 (en) | 2012-12-21 | 2020-05-06 | Volcano Corporation | Display control for a multi-sensor medical device |
US20140188440A1 (en) | 2012-12-31 | 2014-07-03 | Intuitive Surgical Operations, Inc. | Systems And Methods For Interventional Procedure Planning |
CA2897275C (en) | 2013-01-07 | 2020-11-24 | Taryag Medical Ltd. | Expandable atherectomy device |
US20140275996A1 (en) | 2013-03-12 | 2014-09-18 | Volcano Corporation | Systems and methods for constructing an image of a body structure |
EP2967507B1 (en) | 2013-03-15 | 2018-09-05 | Avinger, Inc. | Tissue collection device for catheter |
EP2967371B1 (en) | 2013-03-15 | 2024-05-15 | Avinger, Inc. | Chronic total occlusion crossing devices with imaging |
WO2014142958A1 (en) | 2013-03-15 | 2014-09-18 | Avinger, Inc. | Optical pressure sensor assembly |
US10136913B2 (en) | 2013-03-15 | 2018-11-27 | The Spectranetics Corporation | Multiple configuration surgical cutting device |
WO2015002997A2 (en) | 2013-07-01 | 2015-01-08 | Avinger, Inc. | Occlusion sheath for imaging catheter |
WO2015006353A1 (en) | 2013-07-08 | 2015-01-15 | Avinger, Inc. | Identification of elastic lamina to guide interventional therapy |
US8829953B1 (en) | 2014-01-09 | 2014-09-09 | Freescale Semiconductor, Inc. | Programmable clock divider |
CN106102608B (en) | 2014-02-06 | 2020-03-24 | 阿维格公司 | Atherectomy catheters and occlusion crossing devices |
CN107106190B (en) | 2014-07-08 | 2020-02-28 | 阿维格公司 | High-speed chronic full-closure crossing device |
CN104494261B (en) | 2014-12-11 | 2016-08-17 | 昆山市张浦彩印厂 | Degradable EVOH high-barrier composite film |
US20180207417A1 (en) | 2015-07-06 | 2018-07-26 | Avinger, Inc. | Self-alignment mechanism for imaging catheter and drive assembly |
EP3322338A4 (en) | 2015-07-13 | 2019-03-13 | Avinger, Inc. | Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters |
JP6927986B2 (en) | 2016-01-25 | 2021-09-01 | アビンガー・インコーポレイテッドAvinger, Inc. | OCT imaging catheter with delay compensation |
EP3435892B1 (en) | 2016-04-01 | 2024-04-03 | Avinger, Inc. | Atherectomy catheter with serrated cutter |
EP3249541B1 (en) | 2016-05-27 | 2020-07-08 | NXP USA, Inc. | A data processor |
WO2017210466A1 (en) | 2016-06-03 | 2017-12-07 | Avinger, Inc. | Catheter device with detachable distal end |
EP3478190B1 (en) | 2016-06-30 | 2023-03-15 | Avinger, Inc. | Atherectomy catheter with shapeable distal tip |
JP2019535399A (en) | 2016-11-16 | 2019-12-12 | アビンガー・インコーポレイテッドAvinger, Inc. | Method, system and apparatus for displaying real-time catheter position |
JP7299918B2 (en) | 2018-04-19 | 2023-06-28 | アビンガー・インコーポレイテッド | occlusion crossing device |
-
2013
- 2013-03-15 EP EP13878091.1A patent/EP2967507B1/en not_active Not-in-force
- 2013-03-15 WO PCT/US2013/031978 patent/WO2014142954A1/en active Application Filing
- 2013-03-15 US US14/776,749 patent/US11096717B2/en active Active
-
2021
- 2021-08-23 US US17/445,648 patent/US11980386B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2967507A1 (en) | 2016-01-20 |
US11096717B2 (en) | 2021-08-24 |
US20220079617A1 (en) | 2022-03-17 |
US11980386B2 (en) | 2024-05-14 |
WO2014142954A1 (en) | 2014-09-18 |
US20160008025A1 (en) | 2016-01-14 |
EP2967507A4 (en) | 2016-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11980386B2 (en) | Tissue collection device for catheter | |
JP6957441B2 (en) | Embolic protection device and usage | |
CN108697498B (en) | Plug protective basket device | |
US9254213B2 (en) | Stent delivery device | |
EP1316292B1 (en) | Apparatus for temporary intraluminal protection | |
JP4234437B2 (en) | Intravascular filter system | |
EP1489994B1 (en) | Guide wire apparatus for prevention of distal atheroembolization | |
US7766934B2 (en) | Embolic protection device with an integral basket and bag | |
EP1371344B1 (en) | Temporary intraluminal filter device | |
US7771452B2 (en) | Embolic protection device with a filter bag that disengages from a basket | |
US7708770B2 (en) | Stent delivery device with embolic protection | |
EP1202681B9 (en) | Distal protection device | |
US20060184194A1 (en) | Embolic protection device | |
US20030149467A1 (en) | Methods, systems and devices for delivering stents | |
US20060100658A1 (en) | Interventional guiding sheath system and method of use | |
JP2004536663A (en) | Temporary intravascular filter guidewire | |
AU2002352628A1 (en) | Stent delivery device with embolic protection | |
JP2005500865A (en) | System and method for vascular filter retrieval | |
CN110234295B (en) | Embolic filtering system | |
US20140088634A1 (en) | Vascular filters and methods for using them | |
JP7490167B2 (en) | STENT DELIVERY CATHETER HAVING CONVERTIBLE LIVING HINGE FOR SLOW TO FAST RETRACTION - Patent application | |
WO2024138010A2 (en) | Embolic protection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20161020 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61B 10/02 20060101AFI20161014BHEP Ipc: A61B 17/3207 20060101ALI20161014BHEP Ipc: A61M 25/09 20060101ALI20161014BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180301 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20180726 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1036893 Country of ref document: AT Kind code of ref document: T Effective date: 20180915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013043376 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181206 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1036893 Country of ref document: AT Kind code of ref document: T Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190105 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013043376 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
26N | No opposition filed |
Effective date: 20190606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190315 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190315 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200304 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190315 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200214 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210302 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130315 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602013043376 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221001 |