JPH0627343A - Optical fiber juncture for optical fiber amplifier - Google Patents

Optical fiber juncture for optical fiber amplifier

Info

Publication number
JPH0627343A
JPH0627343A JP17865092A JP17865092A JPH0627343A JP H0627343 A JPH0627343 A JP H0627343A JP 17865092 A JP17865092 A JP 17865092A JP 17865092 A JP17865092 A JP 17865092A JP H0627343 A JPH0627343 A JP H0627343A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
housings
amplifier
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17865092A
Other languages
Japanese (ja)
Inventor
Makoto Yamada
誠 山田
Makoto Shimizu
誠 清水
Fumiaki Hanawa
文明 塙
Yasutake Oishi
泰丈 大石
Shoichi Sudo
昭一 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17865092A priority Critical patent/JPH0627343A/en
Publication of JPH0627343A publication Critical patent/JPH0627343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To lower the reflectivity occurring in the Fresnel reflection of a Pr- added fluoride optical fiber and quartz optical fiber indispensable for the higher gain characteristic of an optical amplifier in the juncture of these two fibers necessary in the case of constitution of the optical amplifier of a specific wavelength band. CONSTITUTION:This juncture is formed by holding the ends of the non-quartz optical fiber 1-1 added with a rare earth element having a laser transition level in the core part or clad part and the quartz optical fiber 1-2 connected thereto in housings 7-1, 7-2 and connecting the housings to each other in such a manner that the optical axes thereof are aligned to each other. Dielectric substance films or multilayered dielectric substance films 6 exist over the entire surface at the connection boundary of at least one housing or near the end faces of the fibers and the housings are adhered to each other by interposing an adhesive therebetween.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信及び光計測の分
野において必要となる光ファイバ増幅器で用いられる低
損失、低反射特性を有する光ファイバの接続部に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber connection portion having a low loss and a low reflection characteristic used in an optical fiber amplifier which is required in the fields of optical communication and optical measurement.

【0002】[0002]

【従来の技術】コア部あるいはクラッド部にレーザ遷移
準位を有する希土類元素を添加した光ファイバは、光フ
ァイバ増幅器用の光ファイバとして注目を集めている。
信号波長1.5μm帯では、石英系光ファイバにEr元
素を添加することにより、高効率、高出力パワー、偏波
無依存特性、低雑音等に優れる光ファイバ増幅器が実現
されている。一方、信号波長1.3μm帯では、Prを
添加したフッ化物光ファイバが提案され、現在、同光フ
ァイバ増幅器を実現に向け盛んに研究されている。
2. Description of the Related Art An optical fiber in which a rare earth element having a laser transition level is added to a core part or a clad part is attracting attention as an optical fiber for an optical fiber amplifier.
In the signal wavelength 1.5 μm band, an optical fiber amplifier excellent in high efficiency, high output power, polarization independent characteristics, low noise, etc. has been realized by adding an Er element to a silica optical fiber. On the other hand, in the signal wavelength band of 1.3 μm, a Pr-doped fluoride optical fiber has been proposed and is currently being actively researched for realizing the optical fiber amplifier.

【0003】図7に1.3μm帯光ファイバ増幅器の基
本構成を示す(従来技術1)。1−1はPr添加フッ化
物光ファイバを示し、利得係数を上げるため比屈折率差
Δが2%以上の高Δ光ファイバが用いられる。1−2は
後に詳述する高Δ石英系光ファイバである。9はPr添
加フッ化物光ファイバ1-1を励起する励起光源(励起波
長は1.02μm)、10は励起光源9で発生した励起
光と信号光を合波するための光ファイバカップラ、11
は光増幅器の発振を抑えるためのファイバ型光アイソレ
ータを示す。ファイバカップラ10、ファイバ型光アイ
ソレータ11で使用される光ファイバは各々、石英系光
ファイバであり、比屈折率差Δは、通常0.3%であ
る。
FIG. 7 shows the basic structure of a 1.3 μm band optical fiber amplifier (prior art 1). Reference numeral 1-1 represents a Pr-doped fluoride optical fiber, and a high Δ optical fiber having a relative refractive index difference Δ of 2% or more is used to increase the gain coefficient. 1-2 is a high Δ silica optical fiber which will be described in detail later. Reference numeral 9 is an excitation light source for exciting the Pr-doped fluoride optical fiber 1-1 (excitation wavelength is 1.02 μm), 10 is an optical fiber coupler for combining the excitation light generated by the excitation light source 9 and the signal light, 11
Shows a fiber type optical isolator for suppressing the oscillation of the optical amplifier. The optical fibers used in the fiber coupler 10 and the fiber-type optical isolator 11 are silica optical fibers, and the relative refractive index difference Δ is usually 0.3%.

【0004】高Δ石英系光ファイバ1−2は一端AがT
EC(Thermally-Diffused Expanded Core; 熱拡散によ
るコア拡大技術)処理によりコアを拡大されたものであ
り、Pr添加フッ化物光ファイバ1−1とほぼ同等のΔ
及びカットオフ波長を有し、光ファイバカップラ10と
Pr添加フッ化物光ファイバ1−1、及びファイバ型光
アイソレータ11とPr添加フッ化物光ファイバ1−1
の間に挿入し、光ファイバカップラ10とPr添加フッ
化物光ファイバ1−1及びファイバ型光アイソレータ1
1とPr添加フッ化物光ファイバ1−1との結合効率を
向上させるために使用される。
The high Δ quartz optical fiber 1-2 has T at one end A.
The core is expanded by EC (Thermally-Diffused Expanded Core; core expansion technology by thermal diffusion), and the Δ is almost equal to that of the Pr-doped fluoride optical fiber 1-1.
And a cutoff wavelength, and an optical fiber coupler 10 and a Pr-doped fluoride optical fiber 1-1, and a fiber type optical isolator 11 and a Pr-doped fluoride optical fiber 1-1.
The optical fiber coupler 10, the Pr-doped fluoride optical fiber 1-1, and the fiber type optical isolator 1.
1 and the Pr-doped fluoride optical fiber 1-1 are used to improve the coupling efficiency.

【0005】上記光増幅器を実際に作製する場合、各部
品は、通常、低損失・低反射接続可能で信頼性に優れる
融着或いは光コネクタ接続技術が用いられる。しかし、
Pr添加フッ化物光ファイバ1−1と高Δ石英系光ファ
イバ1−2間の接続は、 (1) 両光ファイバの軟化温度の差(石英系光ファイバ〜
1400°C、フッ化物光ファイバ〜300°C)によ
り融着技術が適用できない。
When the above-mentioned optical amplifier is actually manufactured, each component is usually manufactured by fusion bonding or an optical connector connection technique which allows low loss and low reflection connection and is highly reliable. But,
The connection between the Pr-doped fluoride optical fiber 1-1 and the high Δ silica optical fiber 1-2 is as follows: (1) Difference in softening temperature of both optical fibers (silica optical fiber ~
1400 ° C, fluoride optical fiber to 300 ° C), the fusion technology cannot be applied.

【0006】(2) 高Δ光ファイバ同士の接続のため光コ
ネクタ作製上の軸ずれによる挿入損失が大きくなり、光
コネクタ接続技術が適用できない。
(2) Since the high Δ optical fibers are connected to each other, the insertion loss due to the misalignment in manufacturing the optical connector becomes large, and the optical connector connecting technology cannot be applied.

【0007】等の理由により有効な接続手段がなく、光
ファイバ増幅器を作製する上で問題であった。
Due to the above reasons, there is no effective connecting means, which has been a problem in manufacturing an optical fiber amplifier.

【0008】本問題を解決する方法として、従来は、図
8及び9に示すように、各々の光ファイバ1−1或いは
1−2を光ファイバ保持筐体7−1或いは7−2で保持
し、互いに光軸が一致するように光ファイバ保持筐体7
−1,7−2同士を調整後、図9に示すように接着剤8
を用いて接続する従来技術2が有効であると考えられる
(特願平3-195336) 。光ファイバ1−1或いは1−2は
V溝基板3−1,3−2により位置決めが行なわれ、接
着剤5−1,5−2と光ファイバ固定用板4−1,4−
2により光ファイバ用筐体2−1,2−2に固定され
る。本技術をPr添加フッ化物光ファイバ1−1と高Δ
石英系光ファイバ1−2間の接続に用いることにより、
低損失で耐環境性に優れる光接続が可能である。
As a method for solving this problem, conventionally, as shown in FIGS. 8 and 9, each optical fiber 1-1 or 1-2 is held by an optical fiber holding housing 7-1 or 7-2. , The optical fiber holding housing 7 so that the optical axes thereof coincide with each other.
After adjusting -1, 7-2, as shown in FIG.
It is considered that the prior art 2 in which the connection is made by using is effective (Japanese Patent Application No. 3-195336). The optical fiber 1-1 or 1-2 is positioned by the V-groove substrates 3-1 and 3-2, and the adhesives 5-1 and 5-2 and the optical fiber fixing plates 4-1 and 4- are used.
It is fixed to the optical fiber housings 2-1 and 2-2 by 2. This technology is applied to Pr-doped fluoride optical fiber 1-1 and high Δ
By using the connection between the quartz optical fibers 1-2,
Optical connection with low loss and excellent environmental resistance is possible.

【0009】[0009]

【発明が解決しようとする課題】しかし、本技術ではP
r添加フッ化物光ファイバ1−1と高Δ石英系光ファイ
バ1−2間の接続時に生ずるフレネル反射を低減するこ
とに関して大きな問題がある。例えば、比屈折率3.7
%、カットオフ波長1.0μm、コア屈折率1.56と
比屈折率2.3%、カットオフ波長0.7μm、コア屈
折率1.49の石英系光ファイバを接続する場合、フレ
ネル反射率は−32.8dB(0.053%)である。
従って、Pr添加フッ化物光ファイバを用いた光増幅器
の利得の上限は、前記フレネル反射によって約30dB
に制限される。
However, in the present technology, P
There is a major problem in reducing the Fresnel reflection that occurs when connecting the r-doped fluoride optical fiber 1-1 and the high Δ silica optical fiber 1-2. For example, the relative refractive index 3.7
%, A cutoff wavelength of 1.0 μm, a core refractive index of 1.56 and a relative refractive index of 2.3%, a cutoff wavelength of 0.7 μm, and a core refractive index of 1.49 when connecting a silica optical fiber, Fresnel reflectance Is -32.8 dB (0.053%).
Therefore, the upper limit of the gain of the optical amplifier using the Pr-doped fluoride optical fiber is about 30 dB due to the Fresnel reflection.
Limited to.

【0010】本発明は、かかる事情に鑑みなされたもの
であり、その目的は1.3μm帯光増幅器を構成する場
合に必要なPr添加フッ化物光ファイバと石英系光ファ
イバの接続部において、光増幅器の高利得特性化(30
dB以上)のために必要不可欠な両者のフレネル反射に
起因する反射率を低減することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an optical fiber at a connecting portion between a Pr-doped fluoride optical fiber and a silica-based optical fiber, which is necessary for constructing a 1.3 μm band optical amplifier. High gain characteristics of amplifier (30
It is necessary to reduce the reflectance due to Fresnel reflection of both, which is indispensable for (dB or more).

【0011】[0011]

【課題を解決するための手段】本発明の基本的構成を図
1に示す。従来の構成と比べ最大の特徴は、光ファイバ
を保持した筐体の少なくとも一方の筐体の界面に、誘電
体膜(誘電体多層膜を含む)が存在することにある。
FIG. 1 shows the basic configuration of the present invention. The greatest feature compared to the conventional configuration is that a dielectric film (including a dielectric multilayer film) is present at the interface of at least one of the housings holding the optical fiber.

【0012】以下に図1及び2を用いて本発明について
説明する。7−1及び7−2は光ファイバ保持筐体を示
し、Pr添加フッ化物光ファイバなどの非石英系光ファ
イバ1−1或いは石英系光ファイバ1−2、光ファイバ
用筐体2−1,2−2、V溝基板3−1,3−2、光フ
ァイバ固定用板4−1,4−2、及び接着剤5−1,5
−2により構成される。一方の光ファイバ保持筐体の一
方(7−2)の接続端面には誘電体膜6が付加してあ
る。ただし、図では光ファイバ保持筐体7−2の接続端
面に誘電体膜6が付加してあるが光ファイバ保持筐体7
−1の方でも、また両者の接続端面でもよい。さらに、
接続部全面に誘電体膜が付加してあるが、光ファイバ端
面近傍のみでもよい。光ファイバ保持筐体7−1及び7
−2は互いに光軸が一致するように筐体同士を調整後、
図2に示すように紫外線硬化或いは熱硬化接着剤8を用
いて互い接続する。
The present invention will be described below with reference to FIGS. Reference numerals 7-1 and 7-2 denote optical fiber holding casings, which are non-silica optical fibers 1-1 such as Pr-doped fluoride optical fibers or silica optical fibers 1-2, optical fiber casings 2-1. 2-2, V-groove substrates 3-1, 3-2, optical fiber fixing plates 4-1, 4-2, and adhesives 5-1 and 5
-2. The dielectric film 6 is added to the connection end face of one (7-2) of one optical fiber holding housing. However, in the figure, the dielectric film 6 is added to the connection end surface of the optical fiber holding casing 7-2, but the optical fiber holding casing 7
It may be -1 or the connecting end surface of both. further,
Although the dielectric film is added to the entire surface of the connecting portion, it may be provided only near the end face of the optical fiber. Optical fiber holding housings 7-1 and 7
-2, after adjusting the housings so that the optical axes match each other,
As shown in FIG. 2, they are connected to each other using an ultraviolet curing or thermosetting adhesive 8.

【0013】上記接続において反射率を低減するために
は接着剤8の屈折率と誘電体膜6の特性を精密に調整す
る。光ファイバ1−1の等価屈折率をn1、光ファイバ
1−2の等価屈折率をn2とする場合、接着剤8の屈折
率はn1に調整する。また、誘電体膜6は屈折率n1と
n2の境界面で無反射特性を有するように作製する。例
えば誘電体膜6として1層膜を使用し無反射特性を実現
する場合、その膜の屈折率n及び膜厚tは以下の条件を
満足しなければならない。
In order to reduce the reflectance in the above connection, the refractive index of the adhesive 8 and the characteristics of the dielectric film 6 are precisely adjusted. When the equivalent refractive index of the optical fiber 1-1 is n1 and the equivalent refractive index of the optical fiber 1-2 is n2, the refractive index of the adhesive 8 is adjusted to n1. Further, the dielectric film 6 is manufactured so as to have antireflection characteristics at the boundary surface between the refractive indices n1 and n2. For example, when a single-layer film is used as the dielectric film 6 to realize antireflection characteristics, the refractive index n and the film thickness t of the film must satisfy the following conditions.

【0014】 n2 =n1・n2 (1) n・t=λ/4 (2) ただし、λは使用波長であり、Pr添加フッ化物光ファ
イバを用いた1.3μm用の光増幅器ではλ=1.3μ
mである。
N 2 = n1 · n2 (1) n · t = λ / 4 (2) However, λ is a used wavelength, and λ = in a 1.3 μm optical amplifier using a Pr-doped fluoride optical fiber. 1.3μ
m.

【0015】[0015]

【作用】本発明では従来構造に比べ、接続界面に屈折率
を適切に選択した接着剤と誘電体膜を装加することによ
り、石英系光ファイバとPr添加フッ化物光ファイバな
どの非石英系光ファイバの接続部分のフレネル反射率が
低減し高利得特性を有する光増幅器が実現できる。
In the present invention, as compared with the conventional structure, by adding an adhesive and a dielectric film whose refractive index is appropriately selected to the connection interface, a silica optical fiber and a non-silica optical fiber such as Pr-doped fluoride optical fiber are added. It is possible to realize an optical amplifier having a high gain characteristic in which the Fresnel reflectance of the connecting portion of the optical fiber is reduced.

【0016】[0016]

【実施例】以下に図面を参照し本発明をより具体的に詳
述するが、以下に開示する実施例は本発明の単なる例示
に過ぎず、本発明の範囲を何等限定するものではない。
The present invention will be described in more detail below with reference to the drawings, but the embodiments disclosed below are merely examples of the present invention and do not limit the scope of the present invention.

【0017】図1及び図2を参照して本発明の実施例1
を説明する。1−1はPrを500ppm添加したZr
F4系のフッ化物光ファイバであり、比屈折率3.7
%、カットオフ波長1.0μm、コア屈折率1.56で
ある。1−2は高Δ石英系光ファイバであり、比屈折率
2.3%、カットオフ波長0.7μm、コア屈折率1.
49である。2−1,2−2は光ファイバ用筐体、3−
1,3−2はV溝基板、4−1,4−2は光ファイバ固
定用板であり、材質はガラスである。5−1,5−2は
紫外線硬化接着剤である。7−1,7−2は1−1,2
−1,3−1,4−1,5−1或いは1−2,2−2,
3−2,4−2,5−2の部品から構成される光ファイ
バ保持筐体を示す。光ファイバ保持筐体7−2の接続端
面は誘電体膜6としてSiOとSiO2 との混合(以
下、SiOx膜)を蒸着法を用いて作製した。蒸着膜6
は式(1) 及び(2) から膜厚は2138A、屈折率は1.
52とした。膜厚は膜厚モニタにより調整した。一方、
図3に示すようにSiOx膜の屈折率は蒸着中の酸素分
圧により調整できるため、酸素分圧を9×10-5Tor
rに設定し、屈折率1.52のSiOx膜を形成した。
Embodiment 1 of the present invention with reference to FIGS. 1 and 2.
Will be explained. 1-1 is Zr added with 500 ppm of Pr
It is an F4 type fluoride optical fiber and has a relative refractive index of 3.7.
%, The cutoff wavelength is 1.0 μm, and the core refractive index is 1.56. 1-2 is a high Δ silica optical fiber having a relative refractive index of 2.3%, a cutoff wavelength of 0.7 μm, and a core refractive index of 1.
49. 2-1 and 2-2 are optical fiber housings, 3-
Reference numerals 1 and 3-2 are V-groove substrates, reference numerals 4-1 and 4-2 are optical fiber fixing plates, and the material thereof is glass. 5-1 and 5-2 are ultraviolet curing adhesives. 7-1 and 7-2 are 1-1 and 2
-1,3-1,4-1,5-1 or 1-2,2-2
3 shows an optical fiber holding housing composed of parts 3-2, 4-2 and 5-2. On the connection end face of the optical fiber holding housing 7-2, a mixture of SiO and SiO2 (hereinafter referred to as SiOx film) was prepared as the dielectric film 6 by using a vapor deposition method. Evaporated film 6
From equations (1) and (2), the film thickness is 2138 A and the refractive index is 1.
52. The film thickness was adjusted by a film thickness monitor. on the other hand,
As shown in FIG. 3, the refractive index of the SiOx film can be adjusted by the partial pressure of oxygen during vapor deposition, so the partial pressure of oxygen is 9 × 10 −5 Torr.
Setting to r, a SiOx film having a refractive index of 1.52 was formed.

【0018】光ファイバ保持筐体7−1及び7−2は互
いに光軸が一致するように筐体同士を調整後、図2に示
すように紫外線硬化接着剤8を用いて接続した。紫外線
硬化接着剤8の屈折率は1.56(波長1.3μm)で
ある。
The optical fiber holding casings 7-1 and 7-2 were adjusted so that their optical axes coincided with each other, and then connected using an ultraviolet curing adhesive 8 as shown in FIG. The refractive index of the ultraviolet curable adhesive 8 is 1.56 (wavelength 1.3 μm).

【0019】本接続部の反射率を反射減衰量測定器を用
いて測定したところ、-42dB であった。誘電体膜(この
場合はSiOx膜)を付加しない場合の反射利率-32.8d
B に比べ約10dBの特性改善が図れた。
When the reflectance of this connection portion was measured using a return loss measuring instrument, it was -42 dB. Reflection rate without adding dielectric film (SiOx film in this case) -32.8d
The characteristic was improved by about 10 dB compared to B.

【0020】さらに、図4に示すように、本発明の接続
部を有する1.3μm帯光ファイバ増幅器を構成した。
9はPr添加フッ化物光ファイバ1−1を励起する励起
光源(励起波長は1.02μm、Tiサファイヤレーザ
使用)、10は励起光源9で発生した励起光と信号光を
合波するための光ファイバカップラ、11は光増幅器の
発振を抑えるためのファイバ型光アイソレータを示す。
光ファイバカップラ10、ファイバ型光アイソレータ1
1で使用される光ファイバは各々、石英系光光ファイバ
であり、比屈折率差Δは、通常0.3%である。
Further, as shown in FIG. 4, a 1.3 μm band optical fiber amplifier having the connection portion of the present invention was constructed.
9 is an excitation light source that excites the Pr-doped fluoride optical fiber 1-1 (excitation wavelength is 1.02 μm, Ti sapphire laser is used), and 10 is light for combining the excitation light generated by the excitation light source 9 and the signal light. A fiber coupler 11 is a fiber type optical isolator for suppressing the oscillation of the optical amplifier.
Optical fiber coupler 10, fiber type optical isolator 1
The optical fibers used in No. 1 are silica optical fibers, and the relative refractive index difference Δ is usually 0.3%.

【0021】高Δ石英系光ファイバ1−2の光ファイバ
カップラ10と接続される一端及びファイバ型光アイソ
レータ11と接続する一端はTEC処理によりコアを拡
大され、光ファイバカップラ10とPr添加フッ化物光
ファイバ1−1、及びファイバ型光アイソレータ10と
Pr添加フッ化物光ファイバ1−1の間の結合効率を向
上させるために使用した。
One end of the high Δ silica optical fiber 1-2 which is connected to the optical fiber coupler 10 and one end which is connected to the fiber type optical isolator 11 have their cores enlarged by the TEC treatment, and the optical fiber coupler 10 and Pr-doped fluoride are added. It was used to improve the coupling efficiency between the optical fiber 1-1 and the fiber type optical isolator 10 and the Pr-doped fluoride optical fiber 1-1.

【0022】図5に増幅特性を示す。信号利得35dB
以上の特性を有する光増幅器が構成された。従って本発
明の接続部を用いることにより高利得な光増幅器を構成
できることが判明した。
FIG. 5 shows the amplification characteristic. Signal gain 35 dB
An optical amplifier having the above characteristics was constructed. Therefore, it was found that a high gain optical amplifier can be constructed by using the connection portion of the present invention.

【0023】実施例1は光ファイバ保持筐体7−2の接
続端面の全面に誘電体膜(この場合はSiOx膜)6を
蒸着した。しかし、実施例1の接続部をヒートサイクル
試験(−30〜80°C)した場合、接続部における剥
離が起こるケースがあった。従って、実施例2では光フ
ァイバ保持筐体同士の接続強度を考慮し、図6に示すよ
うに高Δ石英系光ファイバ1−2の端面近傍のみに誘電
体膜(この場合はSiOx膜)6´を蒸着した(膜厚、
屈折率は実施例1と同じ)。ファイバ端面近傍のみに誘
電体膜(SiOx膜)6´を付加した光ファイバ保持筐
体7−2´を用いて実施例1と同様の接続を行ない実施
例1と同じ反射減衰量(−42dB)を得た。また、増
幅実験においても実施例1と同様信号利得30dB以上
の特性を有する光増幅器が構成された。
In Example 1, a dielectric film (SiOx film in this case) 6 was vapor-deposited on the entire connection end face of the optical fiber holding casing 7-2. However, when the connection part of Example 1 was subjected to the heat cycle test (−30 to 80 ° C.), there were cases where peeling occurred at the connection part. Therefore, in Example 2, considering the connection strength between the optical fiber holding casings, as shown in FIG. 6, the dielectric film (SiOx film) 6 was formed only in the vicinity of the end face of the high Δ silica optical fiber 1-2. ′ Was deposited (film thickness,
The refractive index is the same as in Example 1). The optical fiber holding housing 7-2 'having a dielectric film (SiOx film) 6'added only near the fiber end face is used to perform the same connection as that of the first embodiment, and the same return loss (-42 dB) as that of the first embodiment. Got Also in the amplification experiment, an optical amplifier having a signal gain of 30 dB or more was constructed as in the first embodiment.

【0024】さらに本接続部のヒートサイクル試験(−
30〜80°C)を行っても接続部の剥離は観測され
ず、信頼性の高い接続部が構成できた。
Furthermore, a heat cycle test (-
No peeling of the connection part was observed even after 30 to 80 ° C.), and a highly reliable connection part could be constructed.

【0025】以上の実施例では、非石英系光ファイバと
してZrF4系のフッ化物光ファイバを用いたが、他の
フッ化物光ファイバ、例えばInF3系、ZnF2系、AlF3系ガ
ラス等(泉谷徹郎監修、”新しいガラスとその物性”第
16章 経営システム研究所発行、1984年、または
Tomozawa and Doremus編 Treatise on materials scien
ce and technology volum 26、第4章 Academic Press,
Inc.1985 等を参照)のガラスを用いたフッ化物光ファ
イバ、またはフッ化物ガラス以外にThC14-PbC12-NaCl系
等の塩化物ガラス、AgBr-PbBr2-CsBr-CdBr2 系の臭化物
ガラス、CdF2-BaCl2-NaCl 系のフッ化−塩化物ガラス、
ZnBr2-TlBr-Tl1系の臭化−ヨウ化物ガラス(”ニューガ
ラスハンドブック”、ニューガラスハンドブック編集委
員会編、丸善株式会社、1991年参照)またGe-S系、
As-S系、Ge-P-S系、As-Ge-S 系カルコゲナイドガラス等
のガラスからなる非石英系光ファイバ、さらに燐酸ガラ
ス、弗燐酸ガラス、Al- 硅酸系多成分ガラス光ファイバ
を用いてもよい。また光ファイバ保持筐体を接続するた
めに紫外線硬化接着剤を用いたが、熱硬化接着剤を使用
してもい、ファイバ筐体の材質もガラスだけでなく金属
等を用いてもい。さらに誘電体多層膜としてSiOxの
1層膜を用いたがMgF2、MgO2等の他の誘電体材を使用す
ると共にそれら材料の多層構造にしても当然よい。
In the above embodiments, the ZrF4 type fluoride optical fiber was used as the non-quartz type optical fiber, but other fluoride optical fibers such as InF3 type, ZnF2 type, AlF3 type glass, etc. (supervised by Tetsuro Izumitani, "New glass and its physical properties" Chapter 16, Management System Research Institute, 1984, or
Tomozawa and Doremus Edition Treatise on materials scien
ce and technology volum 26, Chapter 4, Academic Press,
(Refer to Inc. 1985, etc.) Fluoride optical fiber using glass, or chloride glass such as ThC14-PbC12-NaCl system other than fluoride glass, AgBr-PbBr2-CsBr-CdBr2 system bromide glass, CdF2-BaCl2 -NaCl-based fluoro-chloride glass,
ZnBr2-TlBr-Tl1 system bromide-iodide glass (see "New Glass Handbook", edited by New Glass Handbook, Maruzen Co., Ltd., 1991), Ge-S system,
Using non-quartz optical fiber made of As-S, Ge-PS, As-Ge-S chalcogenide glass, etc., and further phosphate glass, fluorophosphate glass, Al-silicic acid multi-component glass optical fiber Good. Further, although the ultraviolet curable adhesive is used for connecting the optical fiber holding housing, a thermosetting adhesive may be used, and the material of the fiber housing may be not only glass but also metal or the like. Further, although a single layer film of SiOx is used as the dielectric multilayer film, other dielectric materials such as MgF2 and MgO2 may be used and a multilayer structure of those materials may be used.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば石
英系光ファイバと非石英系光ファイバの各々を光ファイ
バ保持筐体で保持し、両者を光軸が一致するように筐体
同士を調整後、接着剤を用いて接続する接続部におい
て、少なくとも一方の筐体の接続界面に誘電体膜又は
(誘電体多層膜)を付加し、接着剤の屈折率と誘電体膜
の特性を反射防止特性を有するように精密に調整したた
め、接続部における反射特性が誘電体膜の無い場合に比
べ向上する。このため本発明の接続部を1.3μm帯光
ファイバ増幅器に適用することにより高利得特性を有す
る光増幅器を構成できる。
As described above, according to the present invention, each of the silica-based optical fiber and the non-silica-based optical fiber is held by the optical fiber holding housing, and the housings are arranged so that their optical axes coincide with each other. After adjusting, the dielectric film or (dielectric multilayer film) is added to the connection interface of at least one case at the connection part where the adhesive is used for connection, and the refractive index of the adhesive and the characteristics of the dielectric film are adjusted. Since it is precisely adjusted to have the antireflection property, the reflection property at the connection portion is improved as compared with the case without the dielectric film. Therefore, by applying the connection portion of the present invention to a 1.3 μm band optical fiber amplifier, an optical amplifier having high gain characteristics can be constructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を説明する図FIG. 1 is a diagram illustrating a first embodiment of the present invention.

【図2】本発明の実施例1を説明する図FIG. 2 is a diagram for explaining the first embodiment of the present invention.

【図3】SiOx膜の屈折率変化を示す図FIG. 3 is a diagram showing changes in the refractive index of a SiOx film.

【図4】本発明を用いた光ファイバ増幅器の説明図FIG. 4 is an explanatory diagram of an optical fiber amplifier using the present invention.

【図5】図4の光ファイバ増幅器の増幅特性を説明する
5 is a diagram for explaining amplification characteristics of the optical fiber amplifier of FIG.

【図6】本発明の実施例2を説明する図FIG. 6 is a diagram illustrating a second embodiment of the present invention.

【図7】従来技術1を説明する図FIG. 7 is a diagram illustrating Prior Art 1;

【図8】従来技術2を説明する図FIG. 8 is a diagram illustrating Prior Art 2.

【図9】従来技術2を説明する図FIG. 9 is a diagram for explaining Prior Art 2.

【符号の説明】[Explanation of symbols]

1−1…Pr添加フッ化物光ファイバなどの非石英系光
ファイバ、1−2…石英系光ファイバ、2−1,2−2
…光ファイバ用筐体、3−1,3−2…V溝基板、4−
1,4−2…光ファイバ固定用板、5−1,5−2…接
着剤、6…誘電体膜、7−1,7−2…光ファイバ保持
筐体、8…光ファイバ保持筐体同士を接続する接着剤、
9…励起光源、10…光ファイバカップラ、11…ファ
イバ型アイソレータ。
1-1 ... Non-silica optical fiber such as Pr-doped fluoride optical fiber 1-2 ... Silica optical fiber 2-1 and 2-2
... Optical fiber housing, 3-1 and 3-2 ... V-groove substrate, 4-
1, 4-2 ... Optical fiber fixing plate, 5-1, 5-2 ... Adhesive agent, 6 ... Dielectric film, 7-1, 7-2 ... Optical fiber holding housing, 8 ... Optical fiber holding housing An adhesive that connects each other,
9 ... Excitation light source, 10 ... Optical fiber coupler, 11 ... Fiber type isolator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大石 泰丈 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 須藤 昭一 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasunori Oishi 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Shoichi Sudo 1-16-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 コア部あるいはクラッド部にレーザ遷移
準位を有する希土類元素を添加した非石英系光ファイバ
とそれに接続する石英系光ファイバの端部が筐体に保持
され、光軸が一致するように筐体同士を接続する光ファ
イバ増幅器用光ファイバ接続部において、 少なくとも一方の筐体の接続界面の全面或いはファイバ
端面近傍に誘電体膜或いは誘電体多層膜が存在し、か
つ、互いの筐体を接着剤を介在することにより接着した
ことを特徴とする光ファイバ増幅器用光ファイバ接続
部。
1. A non-quartz optical fiber having a core portion or a cladding portion to which a rare earth element having a laser transition level is added and an end portion of the quartz optical fiber connected to the non-quartz optical fiber are held in a housing so that their optical axes coincide with each other. As described above, in the optical fiber connecting portion for optical fiber amplifiers that connect the housings to each other, at least one of the housings has a dielectric film or a dielectric multilayer film on the entire connection interface or near the end face of the fiber, and the housings of the other housings. An optical fiber connecting portion for an optical fiber amplifier, characterized in that the body is adhered by interposing an adhesive.
【請求項2】 前記誘電体膜或いは誘電体多層膜とし
て、接続後に反射防止膜として作用する誘電体膜或いは
誘電体多層膜を用いることを特徴とする請求項1記載の
光ファイバ増幅器用光ファイバ接続部。
2. The optical fiber for an optical fiber amplifier according to claim 1, wherein a dielectric film or a dielectric multilayer film which acts as an antireflection film after connection is used as the dielectric film or the dielectric multilayer film. Connection.
【請求項3】 前記希土類元素添加非石英系光ファイバ
と前記石英系光ファイバの両者の比屈折率差が各々2%
以上であることを特徴とする請求項1又は2記載の光フ
ァイバ増幅器用光ファイバ接続部。
3. A relative refractive index difference between the rare earth element-doped non-silica optical fiber and the silica optical fiber is 2% each.
It is above, The optical fiber connection part for optical fiber amplifiers of Claim 1 or 2 characterized by the above-mentioned.
JP17865092A 1992-07-06 1992-07-06 Optical fiber juncture for optical fiber amplifier Pending JPH0627343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17865092A JPH0627343A (en) 1992-07-06 1992-07-06 Optical fiber juncture for optical fiber amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17865092A JPH0627343A (en) 1992-07-06 1992-07-06 Optical fiber juncture for optical fiber amplifier

Publications (1)

Publication Number Publication Date
JPH0627343A true JPH0627343A (en) 1994-02-04

Family

ID=16052176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17865092A Pending JPH0627343A (en) 1992-07-06 1992-07-06 Optical fiber juncture for optical fiber amplifier

Country Status (1)

Country Link
JP (1) JPH0627343A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858976A2 (en) * 1997-02-14 1998-08-19 Nippon Telegraph and Telephone Corporation Tellurite glass, optical amplifier, and light source
EP1039318A2 (en) * 1999-03-22 2000-09-27 OTC Optical Technologies Center s.r.l. Method of permanently joining optical fibres characterised by strongly different glass transition points
US6819858B2 (en) * 2000-10-26 2004-11-16 Shipley Company, L.L.C. Fiber array with V-groove chip and mount
JP2015231530A (en) * 2009-05-28 2015-12-24 アビンガー・インコーポレイテッドAvinger, Inc. Optical coherence tomography for bioimaging
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US9572492B2 (en) 2008-04-23 2017-02-21 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US9592075B2 (en) 2014-02-06 2017-03-14 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US9642646B2 (en) 2009-04-28 2017-05-09 Avinger, Inc. Guidewire positioning catheter
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US9918734B2 (en) 2008-04-23 2018-03-20 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US10052125B2 (en) 2009-07-01 2018-08-21 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10244934B2 (en) 2012-05-14 2019-04-02 Avinger, Inc. Atherectomy catheter drive assemblies
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US10349974B2 (en) 2010-07-01 2019-07-16 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US10363062B2 (en) 2011-10-17 2019-07-30 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US10470795B2 (en) 2014-02-06 2019-11-12 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US10729326B2 (en) 2009-07-01 2020-08-04 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US11135019B2 (en) 2011-11-11 2021-10-05 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858976A2 (en) * 1997-02-14 1998-08-19 Nippon Telegraph and Telephone Corporation Tellurite glass, optical amplifier, and light source
EP0858976A3 (en) * 1997-02-14 1999-05-06 Nippon Telegraph and Telephone Corporation Tellurite glass, optical amplifier, and light source
US6266181B1 (en) 1997-02-14 2001-07-24 Nippon Telegraph And Telephone Corporation Tellurite glass, optical amplifier, and light source
US6356387B1 (en) 1997-02-14 2002-03-12 Nippon Telegraph And Telephone Corporation Tellurite glass, optical amplifier, and light source
US6417963B1 (en) 1997-02-14 2002-07-09 Nippon Telegraph And Telephone Corporation Optical fiber splicing structure
EP1284247A1 (en) * 1997-02-14 2003-02-19 Nippon Telegraph and Telephone Corporation Tellurite glass, optical amplifier and light source
EP1285891A1 (en) * 1997-02-14 2003-02-26 Nippon Telegraph and Telephone Corporation Tellurite glass, optical amplifier and light source
EP1433760A1 (en) * 1997-02-14 2004-06-30 Nippon Telegraph and Telephone Corporation Optical fibre splicing structure
EP1595855A2 (en) 1997-02-14 2005-11-16 Nippon Telegraph and Telephone Corporation Tellurite glass, optical amplifier, and light source
EP1039318A2 (en) * 1999-03-22 2000-09-27 OTC Optical Technologies Center s.r.l. Method of permanently joining optical fibres characterised by strongly different glass transition points
EP1039318A3 (en) * 1999-03-22 2003-09-17 Agilent Technologies, Inc. (a Delaware corporation) Method of permanently joining optical fibres characterised by strongly different glass transition points
US6819858B2 (en) * 2000-10-26 2004-11-16 Shipley Company, L.L.C. Fiber array with V-groove chip and mount
US9572492B2 (en) 2008-04-23 2017-02-21 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US9918734B2 (en) 2008-04-23 2018-03-20 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US10869685B2 (en) 2008-04-23 2020-12-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US9642646B2 (en) 2009-04-28 2017-05-09 Avinger, Inc. Guidewire positioning catheter
US11076773B2 (en) 2009-04-28 2021-08-03 Avinger, Inc. Guidewire positioning catheter
US11998311B2 (en) 2009-04-28 2024-06-04 Avinger, Inc. Guidewire positioning catheter
US9788790B2 (en) 2009-05-28 2017-10-17 Avinger, Inc. Optical coherence tomography for biological imaging
US11284839B2 (en) 2009-05-28 2022-03-29 Avinger, Inc. Optical coherence tomography for biological imaging
JP2015231530A (en) * 2009-05-28 2015-12-24 アビンガー・インコーポレイテッドAvinger, Inc. Optical coherence tomography for bioimaging
US10342491B2 (en) 2009-05-28 2019-07-09 Avinger, Inc. Optical coherence tomography for biological imaging
US11839493B2 (en) 2009-05-28 2023-12-12 Avinger, Inc. Optical coherence tomography for biological imaging
US12053260B2 (en) 2009-07-01 2024-08-06 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US12089868B2 (en) 2009-07-01 2024-09-17 Avinger, Inc. Methods of using atherectomy catheter with deflectable distal tip
US10052125B2 (en) 2009-07-01 2018-08-21 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US11717314B2 (en) 2009-07-01 2023-08-08 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US10729326B2 (en) 2009-07-01 2020-08-04 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US10349974B2 (en) 2010-07-01 2019-07-16 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US11134849B2 (en) 2011-03-28 2021-10-05 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US11903677B2 (en) 2011-03-28 2024-02-20 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US10952763B2 (en) 2011-03-28 2021-03-23 Avinger, Inc. Occlusion-crossing devices
US10363062B2 (en) 2011-10-17 2019-07-30 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US11135019B2 (en) 2011-11-11 2021-10-05 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US10952615B2 (en) 2012-05-14 2021-03-23 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US10244934B2 (en) 2012-05-14 2019-04-02 Avinger, Inc. Atherectomy catheter drive assemblies
US11206975B2 (en) 2012-05-14 2021-12-28 Avinger, Inc. Atherectomy catheter drive assemblies
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US11647905B2 (en) 2012-05-14 2023-05-16 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US10722121B2 (en) 2013-03-15 2020-07-28 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US11980386B2 (en) 2013-03-15 2024-05-14 Avinger, Inc. Tissue collection device for catheter
US11890076B2 (en) 2013-03-15 2024-02-06 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US11723538B2 (en) 2013-03-15 2023-08-15 Avinger, Inc. Optical pressure sensor assembly
US10806484B2 (en) 2013-07-08 2020-10-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US11944342B2 (en) 2013-07-08 2024-04-02 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10568655B2 (en) 2014-02-06 2020-02-25 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US10470795B2 (en) 2014-02-06 2019-11-12 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9592075B2 (en) 2014-02-06 2017-03-14 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US11147583B2 (en) 2014-07-08 2021-10-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US11931061B2 (en) 2014-07-08 2024-03-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US11974830B2 (en) 2015-07-13 2024-05-07 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11627881B2 (en) 2015-07-13 2023-04-18 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11033190B2 (en) 2015-07-13 2021-06-15 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
US11957376B2 (en) 2016-04-01 2024-04-16 Avinger, Inc. Atherectomy catheter with serrated cutter
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices

Similar Documents

Publication Publication Date Title
JPH0627343A (en) Optical fiber juncture for optical fiber amplifier
JP3833621B2 (en) Polarization maintaining optical fiber
JPH04369280A (en) Fiber-optic amplifier
JP3530951B2 (en) Optical fiber, optical amplifier and optical transmission system
US5042896A (en) Polarization device
JPH11344636A (en) Optical fiber juncture and optical amplifier using the optical fiber juncture
JP2774963B2 (en) Functional optical waveguide medium
JPH06509427A (en) optical coupler housing
JPH0371115A (en) Optical circuit for light amplification
JPH11202126A (en) Dielectric multilayer film filter
JPH07211980A (en) Optical fiber amplifier
JPH10200175A (en) Optical fiber assembly and optical amplifying coupler
JP3099858B2 (en) Optical fiber connection
JPH08304857A (en) Optical amplifier
JP3067231B2 (en) Method for manufacturing optical waveguide for optical amplifier
JP2828276B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JP3609924B2 (en) Rare earth element doped optical fiber and broadband optical fiber amplifier using the same
JP2980248B2 (en) Optical fiber coupler
JPH11243244A (en) Optical fiber coupler, manufacture thereof and optical amplifier using the same
JPH0425804A (en) Optical connecting structure
JPH08110425A (en) Optical waveguide and its production and light transmission module
JPS58179802A (en) Refractive index compensation type single-polarization optical fiber
JP3184358B2 (en) Star coupler
JP2004037645A (en) Polarization holding optical fiber coupler
JP3012168B2 (en) Manufacturing method of optical fiber cable for optical amplifier