US11344327B2 - Catheter device with detachable distal end - Google Patents

Catheter device with detachable distal end Download PDF

Info

Publication number
US11344327B2
US11344327B2 US16/305,136 US201716305136A US11344327B2 US 11344327 B2 US11344327 B2 US 11344327B2 US 201716305136 A US201716305136 A US 201716305136A US 11344327 B2 US11344327 B2 US 11344327B2
Authority
US
United States
Prior art keywords
nosecone
distal
section
proximal
atherectomy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/305,136
Other versions
US20200323553A1 (en
Inventor
Anthony J. Fernandez
Richard R. Newhauser
Himanshu N. Patel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avinger Inc
Original Assignee
Avinger Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avinger Inc filed Critical Avinger Inc
Priority to US16/305,136 priority Critical patent/US11344327B2/en
Publication of US20200323553A1 publication Critical patent/US20200323553A1/en
Assigned to AVINGER, INC. reassignment AVINGER, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEWHAUSER, RICHARD R., FERNANDEZ, ANTHONY J., PATEL, HIMANSHU N.
Application granted granted Critical
Publication of US11344327B2 publication Critical patent/US11344327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320783Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00473Distal part, e.g. tip or head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320064Surgical cutting instruments with tissue or sample retaining means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320783Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter
    • A61B2017/320791Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter with cutter extending outside the cutting window

Definitions

  • This application is related to tissue collection devices that can be used with occlusion-crossing devices or systems such as atherectomy catheters.
  • occlusion-crossing devices or systems such as atherectomy catheters.
  • nosecones that can be used with catheter devices where the connection does not interfere with the catheter device cutter and its function of cutting and clearing out debulked tissue.
  • PAD Peripheral artery disease
  • Peripheral artery disease is a progressive narrowing of the blood vessels most often caused by atherosclerosis, the collection of plaque or a fatty substance along the inner lining of the artery wall. Over time, this substance hardens and thickens, which may interfere with blood circulation to the arms, legs, stomach and kidneys. This narrowing forms an occlusion, completely or partially restricting flow through the artery. Blood circulation to the brain and heart may be reduced, increasing the risk for stroke and heart disease.
  • Interventional treatments for PAD may include endarterectomy and/or atherectomy.
  • Atherectomy offers a simple mechanical advantage over alternative therapies. Removing the majority of plaque mass (e.g., debulking) may create a larger initial lumen and dramatically increases the compliance of the arterial wall. As a result, stent deployment is greatly enhanced.
  • Atherectomy may provide a minimally invasive solution to clearing the way for placement of stents within initially blocked arteries
  • tissue collection and/or tissue removal from the arteries is a common challenge during atherectomy procedures.
  • One mechanism for handling debulked tissue is to collect the tissue in a distal nosecone or collection chamber of the device.
  • removing the tissue from the collection chamber or cleaning the chamber remains difficult. Accordingly, an atherectomy catheter that addresses some of these problems is desired.
  • an atherectomy catheter in one embodiment, includes an elongate catheter body, a cutter at a distal end of the catheter body, and a nosecone attached to a distal end of the catheter body.
  • the cutter is configured to excise tissue from the body.
  • the nosecone is configured to hold tissue excised from the cutter.
  • the nosecone includes a distal section, a proximal section, and a connection mechanism that is configured to allow the distal section to attach and detach from the proximal section during use.
  • the distal section includes a plug configured to sit within an inner diameter of the proximal section when the proximal section is connected to the distal section.
  • the nosecone can further include a hollow interior portion configured to receive excised tissue.
  • the nosecone can be flexible.
  • the atherectomy catheter can further include a guidewire channel disposed along an exterior of the nosecone.
  • the guidewire channel can include a distal portion extending along the distal section of the nosecone and a proximal portion extending along the proximal section of the nosecone.
  • the distal portion and proximal portion can be configured to align when the proximal section and the distal section are connected together.
  • the distal portion and proximal portions can be configured to prevent the proximal section and distal sections from rotating relative to one another when a guidewire is placed therethrough.
  • connection mechanism can further include a tab configured to be gripped through the distal section of the nosecone to rotate the distal section relative to the proximal section to activate or deactivate the connection mechanism.
  • the connection mechanism can further include a cam and ball bearing configured to lock and unlock the proximal section relative to the distal section.
  • the connection mechanism can include a plurality of snap arms configured to extend into the proximal section and to interlock with apertures on the proximal section.
  • the snap arms can each include a tab configured to fit within the apertures.
  • the tabs can be chamfered along a side edge such that rotation of the distal section towards the chamfered edges causes the distal section to automatically unlock from the proximal section.
  • the nosecone can be configured to pivot away from the elongate catheter body to further expose the cutter.
  • the cutter can be configured to move axially into the nosecone to pack tissue.
  • an atherectomy catheter in one embodiment, includes a catheter body having a catheter body proximal end, a catheter body distal end, a cutting window, a cutter exposable through the cutting window, a nosecone, and a collar.
  • a nosecone has a nosecone proximal end and a nosecone distal end. The nosecone proximal end is configured to couple and decouple from the nosecone distal end.
  • the collar has a collar inner surface configured to maintain a detachable connection between the nosecone proximal end with the nosecone distal end.
  • the nosecone can further include a hollow interior portion configured to receive excised tissue.
  • the atherectomy catheter can further include a locking mechanism for maintaining connection between the nosecone proximal end with the nosecone distal end.
  • the locking mechanism components can be disposed on the nosecone proximal end, the collar, the nosecone distal end, or a combination thereof.
  • the locking mechanism can utilize corresponding threads for mating the detachable nosecone proximal end to the nosecone distal end.
  • the locking mechanism can utilize at least one tab and corresponding aperture for mating the detachable nosecone distal end to the nosecone proximal end.
  • the locking mechanism may not interfere with cutter's ability to extend past the locking mechanism.
  • the nosecone can be rigid.
  • the nosecone can be flexible.
  • the nosecone can include both flexible and rigid regions.
  • the atherectomy catheter can further include a guidewire channel disposed on the nosecone and the catheter body.
  • an atherectomy catheter includes a catheter body having a catheter body proximal end, a catheter body distal end, a cutting window, a cutter exposable through the cutting window, a nosecone, a collar, and a locking mechanism for maintaining connection between the proximal and distal ends of the nosecone.
  • a nosecone has a nosecone proximal end and a nosecone distal end.
  • the nosecone proximal end is configured to couple and decouple from the nosecone distal end.
  • the collar is configured to maintain connection between the nosecone proximal end with the nosecone distal end.
  • the locking mechanism components are disposed on the nosecone proximal end, the collar, the nosecone distal end, or a combination thereof.
  • the nosecone can further include a hollow interior portion configured to receive excised tissue.
  • the locking mechanism can utilize corresponding threads for mating the nosecone proximal end with the nosecone distal end.
  • the locking mechanism can utilize at least one tab and corresponding aperture for mating the nosecone proximal end with the detachable nosecone distal end.
  • the locking mechanism cannot interfere with the cutter's ability to extend past the locking mechanism.
  • the nosecone can be rigid.
  • the nosecone can be flexible.
  • the nosecone can include both flexible and rigid regions.
  • an atherectomy catheter includes a catheter body having a catheter body proximal end, a catheter body distal end, a cutting window, a cutter exposable through the cutting window, a nosecone, a collar, and a locking mechanism for maintaining connection between the detachable nosecone and the catheter body.
  • a nosecone has a nosecone proximal end and a nosecone distal end. The nosecone proximal end is configured to couple and decouple from the nosecone distal end.
  • the collar is configured to maintain connection between the detachable nosecone and the catheter body.
  • the locking mechanism includes corresponding threads on the collar, nosecone proximal end, or nosecone distal end adapted to couple the proximal and distal ends of the nosecone.
  • an atherectomy catheter in one embodiment, includes a catheter body having a catheter body proximal end, a catheter body distal end, a cutting window, a cutter exposable through the cutting window, a nosecone, a collar, and a locking mechanism for maintaining connection between the proximal and distal ends of the nosecone.
  • a nosecone has a nosecone proximal end and a nosecone distal end.
  • the nosecone proximal end is configured to couple and decouple from the nosecone distal end.
  • the collar is configured to maintain connection between the detachable nosecone and the catheter body.
  • the locking mechanism includes at least one tab disposed on the collar having corresponding aperture adapted to mate the proximal and distal ends of the nosecone.
  • the atherectomy catheter can further include a drive system configured to extend and retract the cutter within the nosecone.
  • FIG. 1A shows a distal end of an atherectomy catheter having a tissue connection nosecone with a detachable distal end
  • FIG. 1B is a perspective view of an exemplary coupling mechanism for coupling detachable proximal and distal sections of a nosecone.
  • FIG. 1C shows a cross-section of the coupling mechanism of FIG. 1B .
  • FIG. 1D is a perspective views of a first coupling element of the coupling mechanism of FIG. 1B .
  • FIGS. 1E and 1F shows a perspective view of a second coupling element of the coupling mechanism of FIG. 1B .
  • FIGS. 2A and 2B show an alternative exemplary coupling mechanism for a nosecone.
  • FIG. 2A shows a coupling element including two tabs.
  • FIG. 2B shows a coupling element including to corresponding apertures and configured to lock with the coupling element of FIG. 2A .
  • FIG. 3A shows a top perspective view of a portion of an atherectomy catheter having a nosecone with a detachable distal end that is connected through a single tab coupling mechanism.
  • FIG. 3B shows a bottom perspective view of the portion of the atherectomy catheter of FIG. 3A .
  • FIG. 4A shows a side perspective view of a portion of a nosecone with a detachable distal end that is connected through a twist mechanism.
  • FIG. 4B shows a bottom view of the portion of the nosecone of FIG. 4A .
  • FIG. 4C-4E show the nosecone of FIG. 4A with the collar removed so as to make the twist/aligning features between the proximal and distal ends visible.
  • FIG. 5A shows an exemplary nosecone having a detachable distal end activated by a cam and ball mechanism.
  • FIG. 5B shows a the cam and ball mechanism.
  • FIG. 5C shows a close-up of the nosecone of FIG. 5A in the locked position with the distal portion of the nosecone removed for clarity.
  • FIG. 5D shows a cross-section through the locked nosecone shown in FIG. 5C .
  • FIG. 5E shows a close-up of the nosecone of FIG. 5A in the unlocked position with the distal portion of the nosecone removed for clarity.
  • FIG. 5F shows a cross-section through the unlocked nosecone shown in FIG. 5E .
  • FIG. 5G shows the nosecone of FIG. 5A with the distal end detached from the proximal end.
  • FIG. 5H shows a cross-section through FIG. 5B to more clearly show the cam path.
  • FIG. 6A shows an exemplary nosecone having a detachable distal end activated by a snap mechanism.
  • FIG. 6B shows the proximal and distal ends disconnected.
  • FIG. 6C is a cross-section showing the proximal and distal ends connected.
  • FIG. 7 shows a separable nosecone with monorail guidewire lumen.
  • Described herein are atherectomy catheters including an elongate body, a cutter, and a nosecone configured to collect debulked tissue.
  • the nosecone includes an atraumatic distal end, a proximal end that couples to the remainder of the catheter body, and an interior region for collecting excised tissue.
  • the proximal portion of the nosecone is detachable from the distal portion for ease of for ease of cleaning and/or for quick replacement of the distal portion of the nosecone during an atherectomy procedure.
  • the nosecones described herein include features that both allow easy coupling of the proximal and distal ends of the nosecone and prevent unwanted decoupling during use. Moreover, the interior surface of the nosecone with detachable distal/proximal portions can be substantially smooth, allowing a cutter to extend therein (e.g., to pack tissue) without hindrance.
  • the distal end of an exemplary atherectomy catheter 1200 is shown in FIG. 1A .
  • the atherectomy catheter includes a catheter body 1201 , a hollow nosecone 1204 , an annular rotatable cutter 1210 , and a cutter window 1207 through which the cutter can debulk tissue.
  • the hollow nosecone 1204 can be configured to collect tissue as it is removed in the body. Further, in some embodiments, the cutter 1210 can be moved axially into the nosecone 1204 to pack tissue therein. Moreover, in some embodiments, the nosecone 1204 can hinge relative to the catheter body 1201 , such as at a pivot point. As shown in FIG. 1A , in some embodiments, the nosecone can include holes 1244 therein for venting.
  • a distal section or end 1205 of the nosecone 1204 can be configured to detach from the proximal portion 1206 of the nosecone 1200 at attachment/detachment point 1226 to allow for ease of removing collected or packed tissue.
  • the attachment/detachment point 1226 can include, for example, one or more coupling elements. Various embodiments of coupling elements are described herein.
  • FIGS. 1B-1F show an exemplary coupling mechanism 111 that includes a first coupling element 925 configured to interface with a corresponding coupling element 1024 for locking and unlocking of the proximal and distal portions of a nosecone (such as nosecone 1204 ).
  • FIG. 1D shows the coupling element 925 , which includes a proximal end 930 and a distal end 928 .
  • the coupling element 925 includes a generally cylindrical main body with a lumen between the proximal and distal ends.
  • the slots or cutouts 932 a - b are formed through the wall of the main body. Although shown with two slots having a generally rectangular shape, the coupling element 925 can have any number of slots with any shape.
  • the shape of the main body is designed to be inserted into the corresponding coupling element 1024 for attachment.
  • FIGS. 1E and 1F illustrate the corresponding coupling element 1024 that is configured to releasably attach to the coupling element 925 .
  • the corresponding coupling element 1024 is shape set to the coupling element 924 such that coupling element 925 can be inserted into the corresponding coupling element 1024 to form a snug fit (as shown in FIGS. 1B-1C ).
  • the corresponding coupling element 1024 has an inner wall 1038 that contacts the outer wall 934 of the coupling element 925 when fitted.
  • the corresponding coupling element 1024 includes protrusions shown as tabs 1036 a - b that project from its main body towards the center. In some embodiments, the tabs 1036 a - b protrude at an angle towards the center of the main body and are configured to extend into the receiving slots 932 a - b.
  • the corresponding coupling element 1024 is placed over the outer wall 924 of the coupling element 925 .
  • the proximal end 1032 of the corresponding coupling element 1024 is advanced over the distal end 928 of the coupling element 925 .
  • the corresponding coupling element 1024 (or the coupling element 925 ) is rotated relative to the other element to align the tabs 1036 a - b with the slots 932 a - b .
  • FIGS. 1B-1C shows the corresponding coupling element 1024 surrounding the coupling element 925 with tabs 1036 a - b engaged with slots 932 a - b .
  • the tabs 1036 a - b are received through the slots 932 a - b into an interior of the coupling element 925 .
  • the edge of the slots 932 a - b are slid into the recesses 1031 a - b to hold and lock the lateral orientation of the coupling element 925 within the corresponding coupling element 1024 . As shown, rotating the corresponding coupling element counter-clockwise disengages the coupling elements and releases the coupling elements from one another.
  • FIGS. 2A and 2B show variations of the coupling elements shown in FIGS. 1B-1F .
  • FIG. 2A shows a corresponding coupling element 1124 with two tabs 1136 a - b and a plurality of apertures 1105 .
  • the apertures provide for fluid pressure release.
  • FIG. 2B shows a coupling element 1125 having slots 1132 a - c , e.g., configured to interact with tabs 1136 a - b of FIG. 2A .
  • the coupling elements of FIGS. 1B-I F and 2 A- 2 B are shown with two or three tabs/slots, it is to be understood that any number of mating structures can be used to form the detachable tissue collection devices.
  • FIG. 3A shows another embodiment of a nosecone 204 that can be used with an atherectomy catheter.
  • the nosecone 204 includes a distal end 205 that is detachable from a proximal end 206 at coupling mechanism 211 .
  • the nosecone distal end 205 is atraumatic.
  • the nosecone 204 further includes a cutting aperture 207 that allows cutter (e.g., an annular cutter) of the device to be exposed therethrough for cutting and removing tissue.
  • the nosecone proximal end 206 is configured to couple with the remainder of the catheter body, such as at a connection point 202 .
  • the catheter body 201 can be coupled with the nosecone 204 proximal to the cutting aperture 207 .
  • the nosecone 204 can be connected at a hinge point so as to hinge away from the catheter body.
  • the coupling between the nosecone 204 distal end 205 and proximal end 206 may include a collar 211 .
  • the collar 211 may be attached permanently to the nosecone proximal end 106 as shown.
  • the collar 211 can include a collar aperture 212 that is able to couple to a corresponding feature (e.g. a tab 119 or other protrusion) on the proximal end 105 of the nosecone 204 .
  • the tab 219 can be configured to include an amount of flexibility such that a user is able to push the end of the collar 211 past the tab 219 to align the tab 219 and the collar aperture 212 .
  • the insertion of the distal end 205 into the collar 211 can be aided by the angled or beveled distal edge of the collar 211 .
  • the tab 219 can be engaged or locked within the aperture 212 by an extension 221 on the collar 211 .
  • the extension 221 is configured to contact the tab 219 , causing the tab 219 to pivot (e.g., at a flexion point) with the proximal end of the tab 219 moving radially towards the central axis of the collar 211 and the distal end of the tab 219 moving radially away from the central axis of the collar 211 to engage/attach within the collar aperture 212 and lock the tab 219 in place.
  • the proximal and distal ends 206 , 205 of the nosecone will then be connected and/or locked together.
  • the user can push on the tab to free the tab from the collar aperture 212 and slide the collar 211 axially away from the distal end 205 of the nosecone 204 .
  • the collar 211 may be permanently attached to the distal end 205 of the nosecone 204 rather than the proximal end 206 .
  • the proximal end 206 of the nosecone 204 may include corresponding features with the collar 211 including tabs with corresponding apertures that are able to mate, corresponding threads that screw together, etc.
  • the collar 211 may be completely detachable from both the nosecone proximal end 206 and the nosecone distal end 205 .
  • the collar 211 may have two or more coupling features for mating the nosecone proximal end 206 to the nosecone distal end 205 .
  • the coupling features on the collar 211 in this example may also be used to properly align the nosecone proximal end 206 with the nosecone distal end 205 .
  • the collar may have tabs that mate with corresponding tab acceptors on both the nosecone distal end 205 and the nosecone proximal end 206 for holding the two components together, but in addition, the collar 211 may also have additions features that aid with ensuring that the nosecone distal end 205 is properly aligned with the nosecone proximal end 206 .
  • additional features may include, but are not limited to, protrusions and corresponding apertures or slots.
  • FIGS. 4A-4E another coupling mechanism 310 between the distal end 305 and proximal end 306 of a nosecone 304 is shown.
  • the coupling mechanism 310 for the nosecone 304 employs a twist type motion to engage and disengage the nosecone distal end 305 with the nosecone proximal end 306 .
  • the twist coupling mechanism 310 is best shown in FIGS. 4C-4E (the collar 311 has been removed in these figures for clarity).
  • the twist coupling mechanism 310 includes a hooked, curved, or c-shaped extension 315 on the distal end 305 that interlock or mates with a corresponding hooked, curved, or c-shaped extension 316 on the proximal end 306 when the proximal and distal ends 306 , 305 are rotated relative to one another.
  • Each extension 315 , 316 includes a wave-like curve or bump 326 , 325 that fits with the corresponding bump 326 , 325 on the opposite side.
  • the collar 311 can be clamped over the twist mechanism 310 to keep the extensions 315 , 316 from rotating apart during use.
  • the collar 311 can be permanently attached to either the proximal end (as shown in FIGS. 3A-3B ) or the distal end. When attached to the proximal end, the collar 311 can have a beveled or angled distal edge to aid in insertion of the distal end 305 therein.
  • FIGS. 5A-5H Another exemplary embodiment of a nosecone 504 is shown in FIGS. 5A-5H .
  • the nosecone 504 includes a proximal end 506 and a detachable distal end 505 .
  • the nosecone 504 further includes a coupling mechanism 515 configured to allow for attachment and detachment of the distal end 505 of the nosecone 504 .
  • the coupling mechanism 515 includes a solid plug 571 that fits within, and seals to, the inner diameter of the proximal end 506 of the nosecone 504 .
  • the coupling mechanism 515 further includes an annular collar 573 configured to permanently attach to the proximal end 505 of the nosecone.
  • the coupling mechanism 515 connects together by twisting a rotatable tab 525 (which is fixed to the collar 573 ) to activate a cam 577 .
  • a ball bearing 527 sits within an outer window 533 .
  • the ball bearing 525 is pulled back inside the window 533 into the inner slot 531 (as shown in FIGS. 5E-5F ).
  • the user can grab the tab 525 (e.g., through a flexible portion of the distal end 505 ), insert the plug 571 into the distal end 505 , and rotate the tab 525 . As shown in FIG. 5G , doing so will cause the peak in the cam 577 to push the ball 527 from the window 531 towards the window 533 . Once engaged in the window 533 , the ball 527 will prevent future movement of the proximal and distal ends 506 , 507 relative to one another. To unlock, the user can rotate the tab 525 in the opposite direction. This will cause the ball 527 to move all the way back into the inner window 531 , allowing the distal end 505 to be pulled distally away from the proximal end 506 .
  • the coupling mechanisms 515 is positioned close to the distal tip of the nosecone 504 (e.g., 1-2 inches, such as approximately 1.5 inches away from the distal edge of the cutting window 507 ). This can advantageously provide for ample room for tissue packing inside the proximal portion 506 and prevent interference of the coupling mechanism 515 with the cutter as it packs tissue.
  • FIGS. 6A-6C Another exemplary embodiment of a nosecone 604 is shown in FIGS. 6A-6C .
  • the nosecone 604 includes a proximal end 606 and a detachable distal end 605 .
  • the nosecone 604 further includes a coupling mechanism 622 configured to allow for attachment and detachment of the distal end 605 from the proximal end 606 .
  • the coupling mechanism 622 includes a solid plug 671 that fits within, and seals to, the inner diameter of the proximal end 606 of the nosecone.
  • the coupling mechanism 622 further includes two snap arms 623 a,b that extend proximally away from the plug 671 .
  • the snap arms 623 a,b can further include radially extending tabs 625 a,b that are configured to snap into corresponding snap window 624 a,b on the proximal end 606 .
  • the user can release the distal end 605 by pushing on the tabs 625 a,b .
  • the tabs 625 a,b can be chamfered at one edge such that either clockwise or counterclockwise rotation can automatically push the tabs 625 a,b to release the coupling mechanism 622 .
  • the coupling mechanism 622 is positioned close to the distal tip of the nosecone 604 (e.g., there can be about 1-2 inches, such as 1.5 inches, from a distal edge of the cutter window 607 to a proximal end of the snap arms). This can advantageously provide for ample room for tissue packing inside the proximal portion 606 and prevent interference of the coupling mechanism 622 with the cutter as it packs tissue.
  • a guidewire lumen 755 can extend down the side of the nosecone.
  • the guidewire lumen 755 can include two interconnectable sections (one section attached to the proximal end 706 and another section attached to the distal end 705 ). Insertion of the guidewire through the lumen 755 can help keep the proximal and distal ends 706 , 705 of the nosecone together.
  • the insertion of the guidewire through the lumen 755 can help prevent rotation of the proximal and distal ends 706 , 705 relative to one another when a rotatable or twisting locking mechanism 710 is used to unlock (e.g., any of the embodiments described herein that include twisting or rotation to unlock).
  • features on both the nosecone distal end and the nosecone proximal end may aid a user in properly aligning the nosecone proximal end with the nosecone distal end.
  • the nosecone proximal end and the nosecone distal end may be angled or biased such that they fit together.
  • the nosecone proximal end and the catheter distal end may further include features on the angled or biased end surfaces that are configured to mate.
  • the attachment features can include an auditory or physical signal that indicates that the proximal and distal ends of the nosecone are connected (e.g., the detent feature can make a clicking noise to signal locking).
  • the attachment mechanisms and distal ends of the nosecones described herein can be reusable.
  • the distal end of the nosecone is meant as a single use, and the attachment mechanisms cannot be detached and then reattached.
  • the tab features can be configured to break or become unusable after disengaged.
  • the attachment mechanisms shown with respect to FIGS. 3A-6C have a substantially smooth inner circumference (i.e., on the inside of the nosecone) and are free of tabs or mechanisms that extend radially inwards into the nosecone. This can advantageously prevent the attachment mechanisms from interfering with the movement of the cutter as it is moved into the nosecone (i.e., for packing) and/or prevent pieces of excised plaque or tissue from becoming entangled on radially inwardly protruding extensions of the attachment mechanisms.
  • the nosecone attachment mechanisms described herein are a set distance from the cutting window to further eliminate interference with the cutter.
  • the distance between the attachment mechanism and the cutting window can be, for example, 0.5′′-1.0′′, such as 0.6′′-0.8′′, such as approximately 0.68′′ or 0.70′′.
  • the distal edge of the cutter, when fully extended, can be positioned just proximal of the attachment mechanisms.
  • any suitable mechanism or means e.g. friction fit, mated fit, threaded fit, hooks, securing members, etc.
  • any suitable mechanism or means e.g. friction fit, mated fit, threaded fit, hooks, securing members, etc.
  • any suitable mechanism or means may be used in addition to, or in place of, the attachment mechanisms described herein to detach a portion or the entirety of a tissue collection device to another device.
  • any suitable materials such as nitinol, stainless steel (e.g. grade 304 ), or titanium or alloys may be used to form the attachment mechanisms. Coatings including gold or platinum may be used to promote radiopacity.
  • Having a nosecone with detachable sections therein can advantageously be used for flushing or otherwise clearing excised tissue out of the nosecone. That is, after tissue has been excised and collected in the nosecone (such as by packing it into the nosecone through axial movement of the cutter), the distal end or section of the nosecone can be removed, thereby permitting the proximal end to be flushed (e.g., from the cutting window through the open distal end) and/or allowing either the proximal or the distal end to be easily cleared with a tissue removal tool.
  • the above coupling mechanisms have been described as being used to attach and detach to portions of a nosecone, they can also be used to couple other portions of a catheter.
  • the entire tissue-collection portion of the nosecone can be removable from the rest of the catheter using one of the coupling mechanisms described herein.
  • the atherectomy devices typically include an elongate body and a rotatable tip (with a cutter) at the first distal end of the elongate body and configured to rotate relative to the elongate body.
  • the atherectomy devices typically include an elongate body and a rotatable tip (with a cutter) at the first distal end of the elongate body and configured to rotate relative to the elongate body.
  • Such devices are described in U.S. Patent Application No. 61/646,843, titled “ATHERECTOMY CATHETERS WITH IMAGING,” filed on May 14, 2012, U.S. patent application Ser. No. 13/433,049, titled “OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES,” filed Mar. 28, 2012, U.S. patent application Ser. No.
  • references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
  • spatially relative terms such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under.
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
  • first and second may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
  • a numeric value may have a value that is +/ ⁇ 0.1% of the stated value (or range of values), +/ ⁇ 1% of the stated value (or range of values), +/ ⁇ 2% of the stated value (or range of values), +/ ⁇ 5% of the stated value (or range of values), +/ ⁇ 10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Surgical Instruments (AREA)

Abstract

An atherectomy catheter includes an elongate catheter body, a cutter at a distal end of the catheter body, and a nosecone attached to a distal end of the catheter body. The cutter is configured to excise tissue from the body. The nosecone is configured to hold tissue excised from the cutter. The nosecone includes a distal section, a proximal section, and a connection mechanism that is configured to allow the distal section to attach and detach from the proximal section during use. The distal section includes a plug configured to sit within an inner diameter of the proximal section when the proximal section is connected to the distal section.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Provisional Patent Application No. 62/345,483, filed Jun. 3, 2016, and titled “DETACHING NOSECONE FOR CATHETER DEVICE,” the entirety of which is incorporated by reference herein.
This application may be related to PCT Application WO 2014/142954 entitled, “TISSUE COLLECTION DEVICE FOR CATHETER” filed on Mar. 15, 2013, which is herein incorporated by reference in its entirety. This application may also be related to U.S. patent application Ser. No. 13/175,232, filed Jul. 1, 2011, titled “ATHERECTOMY CATHETERS WITH LONGITUDINALLY DISPLACEABLE DRIVE SHAFTS,” now U.S. Pat. No. 9,345,510, which is herein incorporated by reference in its entirety.
INCORPORATION BY REFERENCE
All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
FIELD
This application is related to tissue collection devices that can be used with occlusion-crossing devices or systems such as atherectomy catheters. In particular, described herein are nosecones that can be used with catheter devices where the connection does not interfere with the catheter device cutter and its function of cutting and clearing out debulked tissue.
BACKGROUND
Peripheral artery disease (PAD) affects millions of people in the United States alone. PAD is a silent, dangerous disease that can have catastrophic consequences when left untreated. PAD is the leading cause of amputation in patients over 50 and is responsible for approximately 160,000 amputations in the United States each year.
Peripheral artery disease (PAD) is a progressive narrowing of the blood vessels most often caused by atherosclerosis, the collection of plaque or a fatty substance along the inner lining of the artery wall. Over time, this substance hardens and thickens, which may interfere with blood circulation to the arms, legs, stomach and kidneys. This narrowing forms an occlusion, completely or partially restricting flow through the artery. Blood circulation to the brain and heart may be reduced, increasing the risk for stroke and heart disease.
Interventional treatments for PAD may include endarterectomy and/or atherectomy. Atherectomy offers a simple mechanical advantage over alternative therapies. Removing the majority of plaque mass (e.g., debulking) may create a larger initial lumen and dramatically increases the compliance of the arterial wall. As a result, stent deployment is greatly enhanced.
While atherectomy may provide a minimally invasive solution to clearing the way for placement of stents within initially blocked arteries, there remains a need to improve certain aspects of atherectomy catheters presently available. For example, tissue collection and/or tissue removal from the arteries is a common challenge during atherectomy procedures. One mechanism for handling debulked tissue is to collect the tissue in a distal nosecone or collection chamber of the device. However, removing the tissue from the collection chamber or cleaning the chamber remains difficult. Accordingly, an atherectomy catheter that addresses some of these problems is desired.
SUMMARY OF THE DISCLOSURE
In general, in one embodiment, an atherectomy catheter includes an elongate catheter body, a cutter at a distal end of the catheter body, and a nosecone attached to a distal end of the catheter body. The cutter is configured to excise tissue from the body. The nosecone is configured to hold tissue excised from the cutter. The nosecone includes a distal section, a proximal section, and a connection mechanism that is configured to allow the distal section to attach and detach from the proximal section during use. The distal section includes a plug configured to sit within an inner diameter of the proximal section when the proximal section is connected to the distal section.
This and other embodiments can include one or more of the following features. The nosecone can further include a hollow interior portion configured to receive excised tissue. The nosecone can be flexible. The atherectomy catheter can further include a guidewire channel disposed along an exterior of the nosecone. The guidewire channel can include a distal portion extending along the distal section of the nosecone and a proximal portion extending along the proximal section of the nosecone. The distal portion and proximal portion can be configured to align when the proximal section and the distal section are connected together. The distal portion and proximal portions can be configured to prevent the proximal section and distal sections from rotating relative to one another when a guidewire is placed therethrough. The connection mechanism can further include a tab configured to be gripped through the distal section of the nosecone to rotate the distal section relative to the proximal section to activate or deactivate the connection mechanism. The connection mechanism can further include a cam and ball bearing configured to lock and unlock the proximal section relative to the distal section. The connection mechanism can include a plurality of snap arms configured to extend into the proximal section and to interlock with apertures on the proximal section. The snap arms can each include a tab configured to fit within the apertures. The tabs can be chamfered along a side edge such that rotation of the distal section towards the chamfered edges causes the distal section to automatically unlock from the proximal section. The nosecone can be configured to pivot away from the elongate catheter body to further expose the cutter. The cutter can be configured to move axially into the nosecone to pack tissue.
In general, in one embodiment, an atherectomy catheter includes a catheter body having a catheter body proximal end, a catheter body distal end, a cutting window, a cutter exposable through the cutting window, a nosecone, and a collar. A nosecone has a nosecone proximal end and a nosecone distal end. The nosecone proximal end is configured to couple and decouple from the nosecone distal end. The collar has a collar inner surface configured to maintain a detachable connection between the nosecone proximal end with the nosecone distal end.
This and other embodiments can include one or more of the following features. The nosecone can further include a hollow interior portion configured to receive excised tissue. The atherectomy catheter can further include a locking mechanism for maintaining connection between the nosecone proximal end with the nosecone distal end. The locking mechanism components can be disposed on the nosecone proximal end, the collar, the nosecone distal end, or a combination thereof. The locking mechanism can utilize corresponding threads for mating the detachable nosecone proximal end to the nosecone distal end. The locking mechanism can utilize at least one tab and corresponding aperture for mating the detachable nosecone distal end to the nosecone proximal end. The locking mechanism may not interfere with cutter's ability to extend past the locking mechanism. The nosecone can be rigid. The nosecone can be flexible. The nosecone can include both flexible and rigid regions. The atherectomy catheter can further include a guidewire channel disposed on the nosecone and the catheter body.
In general, an atherectomy catheter includes a catheter body having a catheter body proximal end, a catheter body distal end, a cutting window, a cutter exposable through the cutting window, a nosecone, a collar, and a locking mechanism for maintaining connection between the proximal and distal ends of the nosecone. A nosecone has a nosecone proximal end and a nosecone distal end. The nosecone proximal end is configured to couple and decouple from the nosecone distal end. The collar is configured to maintain connection between the nosecone proximal end with the nosecone distal end. The locking mechanism components are disposed on the nosecone proximal end, the collar, the nosecone distal end, or a combination thereof.
This and other embodiments can include one or more of the following features. The nosecone can further include a hollow interior portion configured to receive excised tissue. The locking mechanism can utilize corresponding threads for mating the nosecone proximal end with the nosecone distal end. The locking mechanism can utilize at least one tab and corresponding aperture for mating the nosecone proximal end with the detachable nosecone distal end. The locking mechanism cannot interfere with the cutter's ability to extend past the locking mechanism. The nosecone can be rigid. The nosecone can be flexible. The nosecone can include both flexible and rigid regions.
In general, an atherectomy catheter includes a catheter body having a catheter body proximal end, a catheter body distal end, a cutting window, a cutter exposable through the cutting window, a nosecone, a collar, and a locking mechanism for maintaining connection between the detachable nosecone and the catheter body. A nosecone has a nosecone proximal end and a nosecone distal end. The nosecone proximal end is configured to couple and decouple from the nosecone distal end. The collar is configured to maintain connection between the detachable nosecone and the catheter body. The locking mechanism includes corresponding threads on the collar, nosecone proximal end, or nosecone distal end adapted to couple the proximal and distal ends of the nosecone.
In general, in one embodiment, an atherectomy catheter includes a catheter body having a catheter body proximal end, a catheter body distal end, a cutting window, a cutter exposable through the cutting window, a nosecone, a collar, and a locking mechanism for maintaining connection between the proximal and distal ends of the nosecone. A nosecone has a nosecone proximal end and a nosecone distal end. The nosecone proximal end is configured to couple and decouple from the nosecone distal end. The collar is configured to maintain connection between the detachable nosecone and the catheter body. The locking mechanism includes at least one tab disposed on the collar having corresponding aperture adapted to mate the proximal and distal ends of the nosecone.
This and other embodiments can include one or more of the following features. The atherectomy catheter can further include a drive system configured to extend and retract the cutter within the nosecone.
BRIEF DESCRIPTION OF THE DRAWINGS
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
FIG. 1A shows a distal end of an atherectomy catheter having a tissue connection nosecone with a detachable distal end
FIG. 1B is a perspective view of an exemplary coupling mechanism for coupling detachable proximal and distal sections of a nosecone. FIG. 1C shows a cross-section of the coupling mechanism of FIG. 1B. FIG. 1D is a perspective views of a first coupling element of the coupling mechanism of FIG. 1B. FIGS. 1E and 1F shows a perspective view of a second coupling element of the coupling mechanism of FIG. 1B.
FIGS. 2A and 2B show an alternative exemplary coupling mechanism for a nosecone. FIG. 2A shows a coupling element including two tabs. FIG. 2B shows a coupling element including to corresponding apertures and configured to lock with the coupling element of FIG. 2A.
FIG. 3A shows a top perspective view of a portion of an atherectomy catheter having a nosecone with a detachable distal end that is connected through a single tab coupling mechanism.
FIG. 3B shows a bottom perspective view of the portion of the atherectomy catheter of FIG. 3A.
FIG. 4A shows a side perspective view of a portion of a nosecone with a detachable distal end that is connected through a twist mechanism.
FIG. 4B shows a bottom view of the portion of the nosecone of FIG. 4A.
FIG. 4C-4E show the nosecone of FIG. 4A with the collar removed so as to make the twist/aligning features between the proximal and distal ends visible.
FIG. 5A shows an exemplary nosecone having a detachable distal end activated by a cam and ball mechanism.
FIG. 5B shows a the cam and ball mechanism.
FIG. 5C shows a close-up of the nosecone of FIG. 5A in the locked position with the distal portion of the nosecone removed for clarity.
FIG. 5D shows a cross-section through the locked nosecone shown in FIG. 5C.
FIG. 5E shows a close-up of the nosecone of FIG. 5A in the unlocked position with the distal portion of the nosecone removed for clarity.
FIG. 5F shows a cross-section through the unlocked nosecone shown in FIG. 5E.
FIG. 5G shows the nosecone of FIG. 5A with the distal end detached from the proximal end.
FIG. 5H shows a cross-section through FIG. 5B to more clearly show the cam path.
FIG. 6A shows an exemplary nosecone having a detachable distal end activated by a snap mechanism.
FIG. 6B shows the proximal and distal ends disconnected.
FIG. 6C is a cross-section showing the proximal and distal ends connected.
FIG. 7 shows a separable nosecone with monorail guidewire lumen.
DETAILED DESCRIPTION
Described herein are atherectomy catheters including an elongate body, a cutter, and a nosecone configured to collect debulked tissue. The nosecone includes an atraumatic distal end, a proximal end that couples to the remainder of the catheter body, and an interior region for collecting excised tissue. The proximal portion of the nosecone is detachable from the distal portion for ease of for ease of cleaning and/or for quick replacement of the distal portion of the nosecone during an atherectomy procedure.
The nosecones described herein include features that both allow easy coupling of the proximal and distal ends of the nosecone and prevent unwanted decoupling during use. Moreover, the interior surface of the nosecone with detachable distal/proximal portions can be substantially smooth, allowing a cutter to extend therein (e.g., to pack tissue) without hindrance.
The distal end of an exemplary atherectomy catheter 1200 is shown in FIG. 1A, The atherectomy catheter includes a catheter body 1201, a hollow nosecone 1204, an annular rotatable cutter 1210, and a cutter window 1207 through which the cutter can debulk tissue. The hollow nosecone 1204 can be configured to collect tissue as it is removed in the body. Further, in some embodiments, the cutter 1210 can be moved axially into the nosecone 1204 to pack tissue therein. Moreover, in some embodiments, the nosecone 1204 can hinge relative to the catheter body 1201, such as at a pivot point. As shown in FIG. 1A, in some embodiments, the nosecone can include holes 1244 therein for venting. A distal section or end 1205 of the nosecone 1204 can be configured to detach from the proximal portion 1206 of the nosecone 1200 at attachment/detachment point 1226 to allow for ease of removing collected or packed tissue. The attachment/detachment point 1226 can include, for example, one or more coupling elements. Various embodiments of coupling elements are described herein.
FIGS. 1B-1F show an exemplary coupling mechanism 111 that includes a first coupling element 925 configured to interface with a corresponding coupling element 1024 for locking and unlocking of the proximal and distal portions of a nosecone (such as nosecone 1204).
FIG. 1D shows the coupling element 925, which includes a proximal end 930 and a distal end 928. The coupling element 925 includes a generally cylindrical main body with a lumen between the proximal and distal ends. The slots or cutouts 932 a-b are formed through the wall of the main body. Although shown with two slots having a generally rectangular shape, the coupling element 925 can have any number of slots with any shape. The shape of the main body is designed to be inserted into the corresponding coupling element 1024 for attachment.
FIGS. 1E and 1F illustrate the corresponding coupling element 1024 that is configured to releasably attach to the coupling element 925. The corresponding coupling element 1024 is shape set to the coupling element 924 such that coupling element 925 can be inserted into the corresponding coupling element 1024 to form a snug fit (as shown in FIGS. 1B-1C). The corresponding coupling element 1024 has an inner wall 1038 that contacts the outer wall 934 of the coupling element 925 when fitted. Further, the corresponding coupling element 1024 includes protrusions shown as tabs 1036 a-b that project from its main body towards the center. In some embodiments, the tabs 1036 a-b protrude at an angle towards the center of the main body and are configured to extend into the receiving slots 932 a-b.
Thus, in operation, the corresponding coupling element 1024 is placed over the outer wall 924 of the coupling element 925. The proximal end 1032 of the corresponding coupling element 1024 is advanced over the distal end 928 of the coupling element 925. Then the corresponding coupling element 1024 (or the coupling element 925) is rotated relative to the other element to align the tabs 1036 a-b with the slots 932 a-b. To lock the coupling elements, an edge of the slots 932 a-b is slid into the recess 1031 a-b until a portion of the main body of the coupling element 925 is held between a tab surface and the inner wall of the corresponding coupling element 1024. FIGS. 1B-1C shows the corresponding coupling element 1024 surrounding the coupling element 925 with tabs 1036 a-b engaged with slots 932 a-b. The tabs 1036 a-b are received through the slots 932 a-b into an interior of the coupling element 925. The edge of the slots 932 a-b are slid into the recesses 1031 a-b to hold and lock the lateral orientation of the coupling element 925 within the corresponding coupling element 1024. As shown, rotating the corresponding coupling element counter-clockwise disengages the coupling elements and releases the coupling elements from one another.
FIGS. 2A and 2B show variations of the coupling elements shown in FIGS. 1B-1F. For example, FIG. 2A shows a corresponding coupling element 1124 with two tabs 1136 a-b and a plurality of apertures 1105. In some embodiments, the apertures provide for fluid pressure release. FIG. 2B shows a coupling element 1125 having slots 1132 a-c, e.g., configured to interact with tabs 1136 a-b of FIG. 2A. Although the coupling elements of FIGS. 1B-I F and 2A-2B are shown with two or three tabs/slots, it is to be understood that any number of mating structures can be used to form the detachable tissue collection devices.
FIG. 3A shows another embodiment of a nosecone 204 that can be used with an atherectomy catheter. The nosecone 204 includes a distal end 205 that is detachable from a proximal end 206 at coupling mechanism 211. The nosecone distal end 205 is atraumatic.
The nosecone 204 further includes a cutting aperture 207 that allows cutter (e.g., an annular cutter) of the device to be exposed therethrough for cutting and removing tissue. The nosecone proximal end 206 is configured to couple with the remainder of the catheter body, such as at a connection point 202. For example, the catheter body 201 can be coupled with the nosecone 204 proximal to the cutting aperture 207. In some embodiments, the nosecone 204 can be connected at a hinge point so as to hinge away from the catheter body.
Referring to FIGS. 3A and 3B, the coupling between the nosecone 204 distal end 205 and proximal end 206 may include a collar 211. The collar 211, in turn, may be attached permanently to the nosecone proximal end 106 as shown. The collar 211 can include a collar aperture 212 that is able to couple to a corresponding feature (e.g. a tab 119 or other protrusion) on the proximal end 105 of the nosecone 204. The tab 219 can be configured to include an amount of flexibility such that a user is able to push the end of the collar 211 past the tab 219 to align the tab 219 and the collar aperture 212. The insertion of the distal end 205 into the collar 211 can be aided by the angled or beveled distal edge of the collar 211.
Once aligned with the collar aperture 212, the tab 219 can be engaged or locked within the aperture 212 by an extension 221 on the collar 211. The extension 221 is configured to contact the tab 219, causing the tab 219 to pivot (e.g., at a flexion point) with the proximal end of the tab 219 moving radially towards the central axis of the collar 211 and the distal end of the tab 219 moving radially away from the central axis of the collar 211 to engage/attach within the collar aperture 212 and lock the tab 219 in place. Once the tab 219 is locked in place, the proximal and distal ends 206, 205 of the nosecone will then be connected and/or locked together. To disengage the collar 211 from the distal end 205 of the nosecone 204, the user can push on the tab to free the tab from the collar aperture 212 and slide the collar 211 axially away from the distal end 205 of the nosecone 204.
In an alternative embodiment, the collar 211 may be permanently attached to the distal end 205 of the nosecone 204 rather than the proximal end 206. Here, the proximal end 206 of the nosecone 204 may include corresponding features with the collar 211 including tabs with corresponding apertures that are able to mate, corresponding threads that screw together, etc.
In some other variations, the collar 211 may be completely detachable from both the nosecone proximal end 206 and the nosecone distal end 205. In this design, the collar 211 may have two or more coupling features for mating the nosecone proximal end 206 to the nosecone distal end 205. The coupling features on the collar 211 in this example may also be used to properly align the nosecone proximal end 206 with the nosecone distal end 205. For example, the collar may have tabs that mate with corresponding tab acceptors on both the nosecone distal end 205 and the nosecone proximal end 206 for holding the two components together, but in addition, the collar 211 may also have additions features that aid with ensuring that the nosecone distal end 205 is properly aligned with the nosecone proximal end 206. These additional features may include, but are not limited to, protrusions and corresponding apertures or slots.
Turning to FIGS. 4A-4E, another coupling mechanism 310 between the distal end 305 and proximal end 306 of a nosecone 304 is shown. The coupling mechanism 310 for the nosecone 304 employs a twist type motion to engage and disengage the nosecone distal end 305 with the nosecone proximal end 306. The twist coupling mechanism 310 is best shown in FIGS. 4C-4E (the collar 311 has been removed in these figures for clarity). The twist coupling mechanism 310 includes a hooked, curved, or c-shaped extension 315 on the distal end 305 that interlock or mates with a corresponding hooked, curved, or c-shaped extension 316 on the proximal end 306 when the proximal and distal ends 306, 305 are rotated relative to one another. Each extension 315, 316 includes a wave-like curve or bump 326, 325 that fits with the corresponding bump 326, 325 on the opposite side. To connect the proximal and distal portions 306, 305, the two portions can be rotated relative to one another. To release, they can be rotated in the opposite direction.
Referring back to FIGS. 4A-4B, the collar 311 can be clamped over the twist mechanism 310 to keep the extensions 315, 316 from rotating apart during use. The collar 311 can be permanently attached to either the proximal end (as shown in FIGS. 3A-3B) or the distal end. When attached to the proximal end, the collar 311 can have a beveled or angled distal edge to aid in insertion of the distal end 305 therein.
Another exemplary embodiment of a nosecone 504 is shown in FIGS. 5A-5H. As shown in FIG. 5A, the nosecone 504 includes a proximal end 506 and a detachable distal end 505. The nosecone 504 further includes a coupling mechanism 515 configured to allow for attachment and detachment of the distal end 505 of the nosecone 504. Referring to FIGS. 5B and 5G, the coupling mechanism 515 includes a solid plug 571 that fits within, and seals to, the inner diameter of the proximal end 506 of the nosecone 504. The coupling mechanism 515 further includes an annular collar 573 configured to permanently attach to the proximal end 505 of the nosecone. The coupling mechanism 515 connects together by twisting a rotatable tab 525 (which is fixed to the collar 573) to activate a cam 577. When the distal end 505 is locked to the proximal end 506 (as shown in FIGS. 5C and 5D), a ball bearing 527 sits within an outer window 533. When unlocked, however, the ball bearing 525 is pulled back inside the window 533 into the inner slot 531 (as shown in FIGS. 5E-5F).
In use, the user can grab the tab 525 (e.g., through a flexible portion of the distal end 505), insert the plug 571 into the distal end 505, and rotate the tab 525. As shown in FIG. 5G, doing so will cause the peak in the cam 577 to push the ball 527 from the window 531 towards the window 533. Once engaged in the window 533, the ball 527 will prevent future movement of the proximal and distal ends 506, 507 relative to one another. To unlock, the user can rotate the tab 525 in the opposite direction. This will cause the ball 527 to move all the way back into the inner window 531, allowing the distal end 505 to be pulled distally away from the proximal end 506.
The coupling mechanisms 515 is positioned close to the distal tip of the nosecone 504 (e.g., 1-2 inches, such as approximately 1.5 inches away from the distal edge of the cutting window 507). This can advantageously provide for ample room for tissue packing inside the proximal portion 506 and prevent interference of the coupling mechanism 515 with the cutter as it packs tissue.
Another exemplary embodiment of a nosecone 604 is shown in FIGS. 6A-6C. The nosecone 604 includes a proximal end 606 and a detachable distal end 605. The nosecone 604 further includes a coupling mechanism 622 configured to allow for attachment and detachment of the distal end 605 from the proximal end 606. The coupling mechanism 622 includes a solid plug 671 that fits within, and seals to, the inner diameter of the proximal end 606 of the nosecone. The coupling mechanism 622 further includes two snap arms 623 a,b that extend proximally away from the plug 671. The snap arms 623 a,b can further include radially extending tabs 625 a,b that are configured to snap into corresponding snap window 624 a,b on the proximal end 606. In some embodiments, the user can release the distal end 605 by pushing on the tabs 625 a,b. Further, in some embodiments, the tabs 625 a,b can be chamfered at one edge such that either clockwise or counterclockwise rotation can automatically push the tabs 625 a,b to release the coupling mechanism 622.
Again, the coupling mechanism 622 is positioned close to the distal tip of the nosecone 604 (e.g., there can be about 1-2 inches, such as 1.5 inches, from a distal edge of the cutter window 607 to a proximal end of the snap arms). This can advantageously provide for ample room for tissue packing inside the proximal portion 606 and prevent interference of the coupling mechanism 622 with the cutter as it packs tissue.
Referring to FIG. 7, in any of the embodiments described herein, a guidewire lumen 755 can extend down the side of the nosecone. The guidewire lumen 755 can include two interconnectable sections (one section attached to the proximal end 706 and another section attached to the distal end 705). Insertion of the guidewire through the lumen 755 can help keep the proximal and distal ends 706, 705 of the nosecone together. That is, the insertion of the guidewire through the lumen 755 can help prevent rotation of the proximal and distal ends 706, 705 relative to one another when a rotatable or twisting locking mechanism 710 is used to unlock (e.g., any of the embodiments described herein that include twisting or rotation to unlock).
In some embodiments, features on both the nosecone distal end and the nosecone proximal end may aid a user in properly aligning the nosecone proximal end with the nosecone distal end. For example, in some instances, the nosecone proximal end and the nosecone distal end may be angled or biased such that they fit together. To further ensure proper alignment or attachment of these two components, the nosecone proximal end and the catheter distal end may further include features on the angled or biased end surfaces that are configured to mate. In other examples, there may be visual indicators on the nosecone proximal end and the catheter body distal end that aid a user in aligning the two portions.
In some embodiments, the attachment features can include an auditory or physical signal that indicates that the proximal and distal ends of the nosecone are connected (e.g., the detent feature can make a clicking noise to signal locking).
In some embodiments, the attachment mechanisms and distal ends of the nosecones described herein can be reusable. In other embodiments, the distal end of the nosecone is meant as a single use, and the attachment mechanisms cannot be detached and then reattached. For example, the tab features can be configured to break or become unusable after disengaged.
The attachment mechanisms shown with respect to FIGS. 3A-6C have a substantially smooth inner circumference (i.e., on the inside of the nosecone) and are free of tabs or mechanisms that extend radially inwards into the nosecone. This can advantageously prevent the attachment mechanisms from interfering with the movement of the cutter as it is moved into the nosecone (i.e., for packing) and/or prevent pieces of excised plaque or tissue from becoming entangled on radially inwardly protruding extensions of the attachment mechanisms.
In some embodiments, the nosecone attachment mechanisms described herein are a set distance from the cutting window to further eliminate interference with the cutter. Thus, the distance between the attachment mechanism and the cutting window can be, for example, 0.5″-1.0″, such as 0.6″-0.8″, such as approximately 0.68″ or 0.70″. In some embodiments, the distal edge of the cutter, when fully extended, can be positioned just proximal of the attachment mechanisms.
It should be understood that any suitable mechanism or means (e.g. friction fit, mated fit, threaded fit, hooks, securing members, etc.) may be used in addition to, or in place of, the attachment mechanisms described herein to detach a portion or the entirety of a tissue collection device to another device.
Additionally, any suitable materials such as nitinol, stainless steel (e.g. grade 304), or titanium or alloys may be used to form the attachment mechanisms. Coatings including gold or platinum may be used to promote radiopacity.
Any of the features of the described tissue collection devices can be used in combination without departing from the disclosure.
Having a nosecone with detachable sections therein can advantageously be used for flushing or otherwise clearing excised tissue out of the nosecone. That is, after tissue has been excised and collected in the nosecone (such as by packing it into the nosecone through axial movement of the cutter), the distal end or section of the nosecone can be removed, thereby permitting the proximal end to be flushed (e.g., from the cutting window through the open distal end) and/or allowing either the proximal or the distal end to be easily cleared with a tissue removal tool.
Although the above coupling mechanisms have been described as being used to attach and detach to portions of a nosecone, they can also be used to couple other portions of a catheter. For example, in some embodiments, the entire tissue-collection portion of the nosecone can be removable from the rest of the catheter using one of the coupling mechanisms described herein.
Any of the described tissue collection devices can be used with atherectomy or other occlusion crossing devices. In such cases, the atherectomy devices typically include an elongate body and a rotatable tip (with a cutter) at the first distal end of the elongate body and configured to rotate relative to the elongate body. Such devices are described in U.S. Patent Application No. 61/646,843, titled “ATHERECTOMY CATHETERS WITH IMAGING,” filed on May 14, 2012, U.S. patent application Ser. No. 13/433,049, titled “OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES,” filed Mar. 28, 2012, U.S. patent application Ser. No. 13/175,232, titled “ATHERECTOMY CATHETERS WITH LONGITUDINALLY DISPLACEABLE DRIVE SHAFTS,” filed on Jul. 1, 2011, U.S. patent application Ser. No. 12/829,277, titled “ATHERECTOMY CATHETER WITH LATERALLY-DISPLACEABLE TIP,” filed on Jul. 1, 2010, and U.S. patent application Ser. No. 12/829,267, titled “CATHETER-BASED OFF-AXIS OPTICAL COHERENCE TOMOGRAPHY IMAGING SYSTEM,” filed on Jul. 1, 2010, International Patent Application No. PCT/US2015/014613, titled “ATHERECTOMY CATHETERS AND OCCLUSION CROSSING DEVICES,” filed on Feb. 5, 2015, U.S. patent application Ser. No. 15/072,272, titled “ATHERECTOMY CATHETERS DEVICES HAVING MULTI-CHANNEL BUSHINGS,” filed on Mar. 16, 2016, and U.S. patent application Ser. No. 15/076,568, titled “ATHERECTOMY CATHETERS AND OCCLUSION CROSSING DEVICES,” filed on Mar. 21, 2016, all of which are herein incorporated by reference in their entirety.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

Claims (15)

What is claimed is:
1. An atherectomy catheter comprising:
an elongate catheter body;
a cutter at a distal end of the catheter body configured to excise tissue from the body; and
a nosecone attached to a distal end of the catheter body and configured to hold tissue excised from the cutter, wherein the nosecone includes a distal section, a proximal section, and a connection mechanism therebetween that is configured to allow the distal section to attach and detach from the proximal section during use,
further wherein the distal section includes a plug configured to sit within an inner diameter of the proximal section when the proximal section is connected to the distal section; and wherein the plug is configured to be removed from the proximal section when the distal section is detached from the proximal section.
2. The atherectomy catheter of claim 1, wherein the nosecone further comprises a hollow interior portion configured to receive excised tissue.
3. The atherectomy catheter of claim 1, wherein the nosecone is flexible.
4. The atherectomy catheter of claim 1, further comprising a guidewire channel disposed along an exterior of the nosecone.
5. The atherectomy catheter of claim 4, wherein the guidewire channel comprises a distal portion extending along the distal section of the nosecone and a proximal portion extending along the proximal section of the nosecone, the distal portion and proximal portion configured to align when the proximal section and the distal section are connected together.
6. The atherectomy catheter of claim 5, further wherein the distal portion and proximal portions are configured to prevent the proximal section and distal sections from rotating relative to one another when a guidewire is placed therethrough.
7. The atherectomy catheter of claim 1, wherein the connection mechanism further includes a tab configured to be gripped through the distal section of the nosecone to rotate the distal section relative to the proximal section to activate or deactivate the connection mechanism.
8. The atherectomy catheter of claim 1, wherein the connection mechanism further includes a cam and ball bearing configured to lock and unlock the proximal section relative to the distal section.
9. The atherectomy device of claim 1, wherein the connection mechanism includes a plurality of snap arms configured to extend into the proximal section and to interlock with apertures on the proximal section.
10. The atherectomy device of claim 9, wherein the snap arms each include a tab configured to fit within the apertures.
11. The atherectomy device of claim 10, wherein the tabs are chamfered along a side edge such that rotation of the distal section towards the chamfered edges causes the distal section to automatically unlock from the proximal section.
12. The atherectomy device of claim 1, wherein the nosecone is configured to pivot away from the elongate catheter body to further expose the cutter.
13. The atherectomy device of claim 1, wherein the cutter is configured to move axially into the nosecone to pack tissue.
14. The atherectomy device of claim 1, wherein the plug comprises a solid plug.
15. The atherectomy device of claim 1, further wherein the nosecone is configured such that the proximal section comprises an open distal end when the distal section is detached from the proximal section.
US16/305,136 2016-06-03 2017-06-01 Catheter device with detachable distal end Active US11344327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/305,136 US11344327B2 (en) 2016-06-03 2017-06-01 Catheter device with detachable distal end

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662345483P 2016-06-03 2016-06-03
US16/305,136 US11344327B2 (en) 2016-06-03 2017-06-01 Catheter device with detachable distal end
PCT/US2017/035510 WO2017210466A1 (en) 2016-06-03 2017-06-01 Catheter device with detachable distal end

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/035510 A-371-Of-International WO2017210466A1 (en) 2016-06-03 2017-06-01 Catheter device with detachable distal end

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/747,715 Continuation US20220273336A1 (en) 2016-06-03 2022-05-18 Catheter device with detachable distal end

Publications (2)

Publication Number Publication Date
US20200323553A1 US20200323553A1 (en) 2020-10-15
US11344327B2 true US11344327B2 (en) 2022-05-31

Family

ID=60477855

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/305,136 Active US11344327B2 (en) 2016-06-03 2017-06-01 Catheter device with detachable distal end
US17/747,715 Pending US20220273336A1 (en) 2016-06-03 2022-05-18 Catheter device with detachable distal end

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/747,715 Pending US20220273336A1 (en) 2016-06-03 2022-05-18 Catheter device with detachable distal end

Country Status (5)

Country Link
US (2) US11344327B2 (en)
EP (1) EP3463123A4 (en)
JP (1) JP2019518543A (en)
CN (1) CN109475368A (en)
WO (1) WO2017210466A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices
US11957376B2 (en) 2016-04-01 2024-04-16 Avinger, Inc. Atherectomy catheter with serrated cutter
US11974830B2 (en) 2015-07-13 2024-05-07 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US12089868B2 (en) 2009-07-01 2024-09-17 Avinger, Inc. Methods of using atherectomy catheter with deflectable distal tip

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9788790B2 (en) 2009-05-28 2017-10-17 Avinger, Inc. Optical coherence tomography for biological imaging
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
EP2424608B1 (en) 2009-04-28 2014-03-19 Avinger, Inc. Guidewire support catheter
JP6205344B2 (en) 2011-03-28 2017-09-27 アビンガー・インコーポレイテッドAvinger, Inc. Occlusion crossing device, imaging device and atherectomy device
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
EP2967367B1 (en) 2013-03-15 2019-02-20 Avinger, Inc. Optical pressure sensor assembly
EP2967507B1 (en) 2013-03-15 2018-09-05 Avinger, Inc. Tissue collection device for catheter
WO2014143064A1 (en) 2013-03-15 2014-09-18 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US11723767B2 (en) 2019-08-15 2023-08-15 Boston Scientific Scimed, Inc. Medical device including attachable tip member

Citations (564)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367727A (en) 1965-10-22 1968-02-06 Abraham W. Ward Oral surgery tool with interchangeable blades
US3908637A (en) 1974-04-22 1975-09-30 Louis W Doroshow Rigid urethral instrument
US4178935A (en) 1977-07-21 1979-12-18 Ediny Jury G Method and apparatus for disintegration of urinary concretions
US4487206A (en) 1982-10-13 1984-12-11 Honeywell Inc. Fiber optic pressure sensor with temperature compensation and reference
US4527553A (en) 1980-04-28 1985-07-09 Upsher Michael S Laryngoscope with improved light source
US4552554A (en) 1984-06-25 1985-11-12 Medi-Tech Incorporated Introducing catheter
US4578061A (en) 1980-10-28 1986-03-25 Lemelson Jerome H Injection catheter and method
US4611600A (en) 1983-11-21 1986-09-16 Cordis Corporation Optical fiber pressure transducer
US4621353A (en) 1982-09-09 1986-11-04 Burroughs Corporation Optical memory system providing improved focusing control and improved beam combining and separating apparatus
US4639091A (en) 1983-02-25 1987-01-27 Thomson-Csf Static deflector device for an infrared beam
US4651753A (en) 1984-10-12 1987-03-24 Jayco Pharmaceuticals Endoscopic multiple biopsy instrument
US4654024A (en) 1985-09-04 1987-03-31 C.R. Bard, Inc. Thermorecanalization catheter and method for use
US4681106A (en) 1985-08-12 1987-07-21 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4686982A (en) 1985-06-19 1987-08-18 John Nash Spiral wire bearing for rotating wire drive catheter
US4691708A (en) 1986-03-10 1987-09-08 Cordis Corporation Optical pressure sensor for measuring blood pressure
JPS62275425A (en) 1986-05-21 1987-11-30 オリンパス光学工業株式会社 Endoscope
US4729763A (en) 1986-06-06 1988-03-08 Henrie Rodney A Catheter for removing occlusive material
US4771774A (en) 1986-02-28 1988-09-20 Devices For Vascular Intervention, Inc. Motor drive unit
US4781186A (en) * 1984-05-30 1988-11-01 Devices For Vascular Intervention, Inc. Atherectomy device having a flexible housing
US4841977A (en) 1987-05-26 1989-06-27 Inter Therapy, Inc. Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly
US4857046A (en) 1987-10-21 1989-08-15 Cordis Corporation Drive catheter having helical pump drive shaft
EP0347098A2 (en) 1988-06-13 1989-12-20 Samuel Shiber Atherectomy system with a guide-wire
US4920961A (en) 1988-06-02 1990-05-01 Circon Corporation System for disconnetably mounting an endoscope sheath with an endoscope tool
US4926858A (en) 1984-05-30 1990-05-22 Devices For Vascular Intervention, Inc. Atherectomy device for severe occlusions
US5000185A (en) 1986-02-28 1991-03-19 Cardiovascular Imaging Systems, Inc. Method for intravascular two-dimensional ultrasonography and recanalization
JPH03502060A (en) 1988-07-29 1991-05-16 ラディ・メディカル・システムズ・アクチェボラーグ miniature pressure sensor
US5018529A (en) 1986-06-25 1991-05-28 Radisensor Ab Miniaturized sensor for physiological pressure measurements
US5041082A (en) 1986-06-16 1991-08-20 Samuel Shiber Mechanical atherectomy system and method
US5047040A (en) 1987-11-05 1991-09-10 Devices For Vascular Intervention, Inc. Atherectomy device and method
WO1991017698A1 (en) 1990-05-16 1991-11-28 Brigham And Women's Hospital Steerable guide wire for tubular cannulation
US5085662A (en) 1989-11-13 1992-02-04 Scimed Life Systems, Inc. Atherectomy catheter and related components
US5099850A (en) 1989-01-17 1992-03-31 Olympus Optical Co., Ltd. Ultrasonic diagnostic apparatus
US5178153A (en) 1984-03-08 1993-01-12 Einzig Robert E Fluid flow sensing apparatus for in vivo and industrial applications employing novel differential optical fiber pressure sensors
US5182291A (en) 1986-02-14 1993-01-26 Sanofi Pyrozala-pyridyl aminoabkoxyphenol compounds
US5190050A (en) 1991-11-08 1993-03-02 Electro-Catheter Corporation Tip deflectable steerable catheter
US5192291A (en) 1992-01-13 1993-03-09 Interventional Technologies, Inc. Rotationally expandable atherectomy cutter assembly
JPH05103763A (en) 1991-03-11 1993-04-27 Hewlett Packard Co <Hp> Pressure sensor
JPH0627343A (en) 1992-07-06 1994-02-04 Nippon Telegr & Teleph Corp <Ntt> Optical fiber juncture for optical fiber amplifier
US5312425A (en) 1989-09-12 1994-05-17 Devices For Vascular Intervention, Inc. Atherectomy device having helical blade and blade guide
US5312415A (en) 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
US5321501A (en) 1991-04-29 1994-06-14 Massachusetts Institute Of Technology Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample
US5333142A (en) 1992-10-26 1994-07-26 The United States Of America As Represented By The Secretary Of The Navy Technique for intracavity sum frequency generation
US5358472A (en) 1992-01-13 1994-10-25 Schneider (Usa) Inc. Guidewire atherectomy catheter and method of using the same
US5366464A (en) 1993-07-22 1994-11-22 Belknap John C Atherectomy catheter device
US5372601A (en) 1993-03-30 1994-12-13 Lary; Banning G. Longitudinal reciprocating incisor
US5383460A (en) 1992-10-05 1995-01-24 Cardiovascular Imaging Systems, Inc. Method and apparatus for ultrasound imaging and atherectomy
US5383467A (en) 1992-11-18 1995-01-24 Spectrascience, Inc. Guidewire catheter and apparatus for diagnostic imaging
US5425273A (en) 1990-07-27 1995-06-20 Cosurvey Optics Fiber optic pressure sensor with inclusions in a compressible transparent material
US5429136A (en) 1993-04-21 1995-07-04 Devices For Vascular Intervention, Inc. Imaging atherectomy apparatus
US5431673A (en) 1989-02-17 1995-07-11 American Biomed, Inc. Distal atherectomy catheter
JPH07184888A (en) 1993-12-27 1995-07-25 Toshiba Corp Ultrasonic diagnostic system
US5437284A (en) 1993-12-30 1995-08-01 Camino Laboratories, Inc. System and method for in vivo calibration of a sensor
US5460168A (en) 1992-12-25 1995-10-24 Olympus Optical Co., Ltd. Endoscope cover assembly and cover-system endoscope
US5465147A (en) 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
JPH07308393A (en) 1994-03-23 1995-11-28 Yasuo Hashimoto Cancer treating apparatus
US5507725A (en) 1992-12-23 1996-04-16 Angeion Corporation Steerable catheter
US5507760A (en) 1993-11-09 1996-04-16 Devices For Vascular Intervention, Inc. Cutter device
US5507795A (en) 1994-04-29 1996-04-16 Devices For Vascular Intervention, Inc. Catheter with perfusion system
US5517998A (en) 1994-01-24 1996-05-21 Medamicus, Inc. Closed loop pressure determination system and method for fiber optic pressure transducer system
US5556405A (en) 1995-10-13 1996-09-17 Interventional Technologies Inc. Universal dilator with reciprocal incisor
US5607394A (en) 1993-10-07 1997-03-04 Boston Scientific Corp. Dilatation catheter having a field stylet
US5620426A (en) 1992-04-07 1997-04-15 Innovata Biomed Limited Connecting device
US5632755A (en) 1992-11-09 1997-05-27 Endo Vascular Intruments, Inc. Intra-artery obstruction clearing apparatus and methods
US5632754A (en) 1994-12-23 1997-05-27 Devices For Vascular Intervention Universal catheter with interchangeable work element
US5674232A (en) 1990-06-05 1997-10-07 Halliburton; Alexander George Catheter and method of use thereof
US5681336A (en) 1995-09-07 1997-10-28 Boston Scientific Corporation Therapeutic device for treating vien graft lesions
US5690634A (en) 1993-09-15 1997-11-25 Synthes (U.S.A.) Medullary drill head
EP0808638A1 (en) 1996-05-20 1997-11-26 Cordis Europa N.V. Catheter-introduction-sheath with occlusion balloon
US5722403A (en) 1996-10-28 1998-03-03 Ep Technologies, Inc. Systems and methods using a porous electrode for ablating and visualizing interior tissue regions
US5728148A (en) 1995-11-08 1998-03-17 Pacesetter Ab Stylet unit for implanting a medical electrode cable
US5749846A (en) 1992-08-12 1998-05-12 Vidamed, Inc. Medical probe device with optical viewing capability
US5795295A (en) 1996-06-25 1998-08-18 Carl Zeiss, Inc. OCT-assisted surgical microscope with multi-coordinate manipulator
US5807339A (en) 1995-12-04 1998-09-15 Pacesetter Ab Stylet unit for stiffening a hollow, flexible, elongated component
US5830145A (en) 1996-09-20 1998-11-03 Cardiovascular Imaging Systems, Inc. Enhanced accuracy of three-dimensional intraluminal ultrasound (ILUS) image reconstruction
US5836957A (en) 1994-12-22 1998-11-17 Devices For Vascular Intervention, Inc. Large volume atherectomy device
US5843050A (en) 1995-11-13 1998-12-01 Micro Therapeutics, Inc. Microcatheter
US5843103A (en) 1997-03-06 1998-12-01 Scimed Life Systems, Inc. Shaped wire rotational atherectomy device
US5851212A (en) 1997-06-11 1998-12-22 Endius Incorporated Surgical instrument
US5868778A (en) 1995-10-27 1999-02-09 Vascular Solutions, Inc. Vascular sealing apparatus and method
US5872879A (en) 1996-11-25 1999-02-16 Boston Scientific Corporation Rotatable connecting optical fibers
US5904651A (en) 1996-10-28 1999-05-18 Ep Technologies, Inc. Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
WO1999023958A1 (en) 1997-11-07 1999-05-20 Prolifix Medical, Inc. Methods and systems for treating obstructions in a body lumen
US5907425A (en) 1995-12-19 1999-05-25 The Board Of Trustees Of The Leland Stanford Junior University Miniature scanning confocal microscope
US5935075A (en) 1995-09-20 1999-08-10 Texas Heart Institute Detecting thermal discrepancies in vessel walls
US5938671A (en) 1997-11-14 1999-08-17 Reflow, Inc. Recanalization apparatus and devices for use therein and method
US5938602A (en) 1996-06-11 1999-08-17 Roke Manor Research Limited Catheter tracking system and method
US5951583A (en) 1993-05-25 1999-09-14 Vascular Solutions, Inc. Thrombin and collagen procoagulant and process for making the same
US5951482A (en) 1997-10-03 1999-09-14 Intraluminal Therapeutics, Inc. Assemblies and methods for advancing a guide wire through body tissue
US5951581A (en) 1996-12-02 1999-09-14 Angiotrax, Inc. Cutting apparatus having disposable handpiece
US5956355A (en) 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US5957952A (en) 1993-05-25 1999-09-28 Vascular Solutions, Inc. Vascular sealing device
US5987995A (en) 1997-07-17 1999-11-23 Sentec Corporation Fiber optic pressure catheter
US5997558A (en) 1996-07-26 1999-12-07 Kensey Nash Corporation System and method or use for revascularizing stenotic bypass grafts and other blood vessels
US6001112A (en) 1998-04-10 1999-12-14 Endicor Medical, Inc. Rotational atherectomy device
US6007530A (en) 1995-02-09 1999-12-28 C.R. Bard, Inc. Angioplasty catheter for expanding and/or opening up blood vessels
US6010449A (en) 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
US6013072A (en) 1997-07-09 2000-01-11 Intraluminal Therapeutics, Inc. Systems and methods for steering a catheter through body tissue
US6017359A (en) 1993-05-25 2000-01-25 Vascular Solutions, Inc. Vascular sealing apparatus
US6027514A (en) 1997-12-17 2000-02-22 Fox Hollow Technologies, Inc. Apparatus and method for removing occluding material from body lumens
US6032673A (en) 1994-10-13 2000-03-07 Femrx, Inc. Methods and devices for tissue removal
US6048349A (en) 1997-07-09 2000-04-11 Intraluminal Therapeutics, Inc. Systems and methods for guiding a medical instrument through a body
US6080170A (en) 1996-07-26 2000-06-27 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels
US6106515A (en) 1998-08-13 2000-08-22 Intraluminal Therapeutics, Inc. Expandable laser catheter
US6110164A (en) 1997-12-05 2000-08-29 Intratherapeutics, Inc. Guideless catheter segment
US6120516A (en) 1997-02-28 2000-09-19 Lumend, Inc. Method for treating vascular occlusion
US6120515A (en) 1996-02-06 2000-09-19 Devices For Vascular Intervention, Inc. Composite atherectomy cutter
WO2000054659A1 (en) 1999-03-15 2000-09-21 Prolifix Medical, Inc. Shielded atherectomy device
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US6134002A (en) 1999-01-14 2000-10-17 Duke University Apparatus and method for the rapid spectral resolution of confocal images
US6152951A (en) 1994-03-23 2000-11-28 Hamamatsu Photonics K.K. Method of treating cancer
US6152938A (en) 1997-08-19 2000-11-28 Curry; Paul Device for opening blocked tubes
US6175669B1 (en) 1998-03-30 2001-01-16 The Regents Of The Universtiy Of California Optical coherence domain reflectometry guidewire
US6176871B1 (en) 1993-04-28 2001-01-23 Focal, Inc. Apparatus and methods for intraluminal photothermoforming
US6183432B1 (en) 1997-11-13 2001-02-06 Lumend, Inc. Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip
US6193676B1 (en) 1997-10-03 2001-02-27 Intraluminal Therapeutics, Inc. Guide wire assembly
WO2001015609A1 (en) 1999-08-31 2001-03-08 Fox Hollow Technologies Atherectomy catheter with a rotating and telescoping cutter
US6228076B1 (en) 1999-01-09 2001-05-08 Intraluminal Therapeutics, Inc. System and method for controlling tissue ablation
US6241744B1 (en) 1998-08-14 2001-06-05 Fox Hollow Technologies, Inc. Apparatus for deploying a guidewire across a complex lesion
US20010005788A1 (en) 1997-07-24 2001-06-28 Mcguckin James F. Bladder dialysis urinary catheter
US6285903B1 (en) 1998-06-30 2001-09-04 Eclipse Surgical Technologies, Inc. Intracorporeal device with radiopaque marker
US6290668B1 (en) 1998-04-30 2001-09-18 Kenton W. Gregory Light delivery catheter and methods for the use thereof
US6294775B1 (en) 1999-06-08 2001-09-25 University Of Washington Miniature image acquistion system using a scanning resonant waveguide
US6299622B1 (en) 1999-08-19 2001-10-09 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
WO2001076680A1 (en) 2000-04-05 2001-10-18 Stx Medical, Inc. Intralumenal material removal systems and methods
US6307985B1 (en) 1998-07-10 2001-10-23 Micro Therapeutics, Inc. Optical transmission system
US20020019644A1 (en) 1999-07-12 2002-02-14 Hastings Roger N. Magnetically guided atherectomy
US6375615B1 (en) 1995-10-13 2002-04-23 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers and their methods of use
US6402719B1 (en) 1997-09-05 2002-06-11 Cordis Webster, Inc. Steerable DMR catheter with infusion tube
US20020072706A1 (en) 2000-12-11 2002-06-13 Thomas Hiblar Transluminal drug delivery catheter
US20020082585A1 (en) 1999-06-15 2002-06-27 Sean Carroll Defined deflection structure
US20020082626A1 (en) 1999-11-15 2002-06-27 Donohoe Brendan M. Integrated anastomosis tool with graft vessel attachment device and cutting device
US6416527B1 (en) 1998-01-28 2002-07-09 St. Jude Medical Cardiovascular Group, Inc. Vessel cutting device
RU2185859C2 (en) 1995-10-20 2002-07-27 Надим М. Закка Device for removing stenoses and supporting vascular walls
US20020115931A1 (en) 2001-02-21 2002-08-22 Strauss H. William Localizing intravascular lesions on anatomic images
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US6445944B1 (en) 1999-02-01 2002-09-03 Scimed Life Systems Medical scanning system and related method of scanning
US6447525B2 (en) 1999-08-19 2002-09-10 Fox Hollow Technologies, Inc. Apparatus and methods for removing material from a body lumen
US6451036B1 (en) 1998-04-10 2002-09-17 Endicor Medical, Inc. Rotational atherectomy system with stationary cutting elements
US6454717B1 (en) 2000-04-13 2002-09-24 Scimed Life Systems, Inc. Concentric catheter drive shaft clutch
US20020147459A1 (en) 2001-04-10 2002-10-10 Mehran Bashiri Devices and methods for removing occlusions in vessels
US20020158547A1 (en) 2001-04-26 2002-10-31 Wood Robert L. Latchable microelectromechanical structures using non-newtonian fluids, and methods of operating same
US6482216B1 (en) 1997-03-06 2002-11-19 Scimed Life Systems, Inc. Ablation device including guidewire with abrasive tip
US6482217B1 (en) 1998-04-10 2002-11-19 Endicor Medical, Inc. Neuro thrombectomy catheter
US6485413B1 (en) 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US6497649B2 (en) 2001-01-21 2002-12-24 University Of Washington Alleviating motion, simulator, and virtual environmental sickness by presenting visual scene components matched to inner ear vestibular sensations
US6501551B1 (en) 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US20030002038A1 (en) 2000-01-28 2003-01-02 Kazuma Mawatari Photothermic transducing spectroscopic analyzer
US6503261B1 (en) 2001-01-17 2003-01-07 Scimed Life Systems, Inc. Bi-directional atherectomy burr
US6511458B2 (en) 1998-01-13 2003-01-28 Lumend, Inc. Vascular re-entry catheter
US20030028100A1 (en) 2001-05-01 2003-02-06 Tearney Guillermo J. Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties
US6517528B1 (en) 2000-04-13 2003-02-11 Scimed Life Systems, Inc. Magnetic catheter drive shaft clutch
US20030032880A1 (en) 2001-06-13 2003-02-13 Pauliina Moore Apparatus and method for ultrasonically identifying vulnerable plaque
US20030045835A1 (en) 2001-08-30 2003-03-06 Vascular Solutions, Inc. Method and apparatus for coagulation and closure of pseudoaneurysms
US6542665B2 (en) 2001-02-17 2003-04-01 Lucent Technologies Inc. GRIN fiber lenses
US6544230B1 (en) 1998-03-31 2003-04-08 Transvascular, Inc. Catheters, systems and methods for percutaneous in situ arterio-venous bypass
US6546272B1 (en) 1999-06-24 2003-04-08 Mackinnon Nicholas B. Apparatus for in vivo imaging of the respiratory tract and other internal organs
US6551302B1 (en) 1997-09-24 2003-04-22 Michael J. Rosinko Steerable catheter with tip alignment and surface contact detector
US6563105B2 (en) 1999-06-08 2003-05-13 University Of Washington Image acquisition with depth enhancement
US6564087B1 (en) 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US6565588B1 (en) 2000-04-05 2003-05-20 Pathway Medical Technologies, Inc. Intralumenal material removal using an expandable cutting device
US20030097044A1 (en) 2001-11-19 2003-05-22 Tokendo (S.A.R.L.) Deviated distal viewing endoscope
US20030095248A1 (en) 2001-11-16 2003-05-22 Didier Frot Optical-fiber refractometer
US6572563B2 (en) 1999-12-22 2003-06-03 Pentax Corporation Endoscopic tissue collecting instrument
US6572643B1 (en) 2000-07-19 2003-06-03 Vascular Architects, Inc. Endoprosthesis delivery catheter assembly and method
US6575995B1 (en) 2000-07-14 2003-06-10 Advanced Cardiovascular Systems, Inc. Expandable cage embolic material filter system and method
US6579298B1 (en) 2000-02-29 2003-06-17 Scimed Life Systems, Inc. Method and apparatus for treating vein graft lesions
US20030120150A1 (en) 2001-12-21 2003-06-26 Assaf Govari Wireless position sensor
US20030120295A1 (en) 2000-12-20 2003-06-26 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20030125756A1 (en) 2001-10-19 2003-07-03 Leonid Shturman Rotational angioplasty device with abrasive crown
US20030125757A1 (en) 2000-12-20 2003-07-03 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20030125758A1 (en) 2000-12-20 2003-07-03 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20030139751A1 (en) 2000-01-25 2003-07-24 Bacchus Vascular Inc. Apparatus and methods for clot dissolution
US6599296B1 (en) 2001-07-27 2003-07-29 Advanced Cardiovascular Systems, Inc. Ratcheting handle for intraluminal catheter systems
US6615071B1 (en) 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
US20030181855A1 (en) 2002-03-22 2003-09-25 Simpson John A. Pre-shaped catheter with proximal articulation and pre-formed distal end
US6629953B1 (en) 2000-02-18 2003-10-07 Fox Hollow Technologies, Inc. Methods and devices for removing material from a vascular site
US6638233B2 (en) 1999-08-19 2003-10-28 Fox Hollow Technologies, Inc. Apparatus and methods for material capture and removal
US6645217B1 (en) 1999-05-15 2003-11-11 Advanced Cardiovascular Systems, Inc. Over-the-wire atherectomy catheter
US6657727B1 (en) 1998-09-11 2003-12-02 Joseph A. Izatt Interferometers for optical coherence domain reflectometry and optical coherence tomography using nonreciprocal optical elements
RU2218191C2 (en) 2002-04-11 2003-12-10 Научно-исследовательский институт радиоэлектроники и лазерной техники Московского государственного технического университета им. Н.Э.Баумана Endovasal mini robot
US20040002650A1 (en) 2001-06-20 2004-01-01 Evgenia Mandrusov Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US6687010B1 (en) 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
US20040039371A1 (en) 2002-08-23 2004-02-26 Bruce Tockman Coronary vein navigator
US20040057667A1 (en) 2002-09-20 2004-03-25 Koji Yamada Optical module and manufacturing method therefor
US20040059257A1 (en) 2001-01-08 2004-03-25 Benny Gaber Deflectable guiding apparatus
JP2004509695A (en) 2000-09-29 2004-04-02 エンドバシックス,インコーポレイテッド Flexible flow device and method of breaking obstruction
US6728571B1 (en) 2001-07-16 2004-04-27 Scimed Life Systems, Inc. Electronically scanned optical coherence tomography with frequency modulated signals
US20040082850A1 (en) 2002-10-23 2004-04-29 Medtonic, Inc. Methods and apparatus for locating body vessels and occlusions in body vessels
US6730063B2 (en) 1999-10-22 2004-05-04 Corazon Technologies, Inc. Catheter devices and methods for their use in the treatment of calcified vascular occlusions
US20040092915A1 (en) 1990-08-06 2004-05-13 Levatter Jeffrey I. Fiber optic laser catheter and method of using it
US20040093001A1 (en) 2002-10-25 2004-05-13 Hamada James S. Minimal access lumbar diskectomy instrumentation and method
USD489973S1 (en) 2003-06-02 2004-05-18 Vascular Solutions, Inc. Medical device package
JP2004516073A (en) 2000-12-20 2004-06-03 フォックス ハロウ テクノロジーズ,インコーポレイティド Reduced volume catheter
US6758854B1 (en) 1997-05-09 2004-07-06 St. Jude Medical Splittable occlusion balloon sheath and process of use
US6760112B2 (en) 2001-02-17 2004-07-06 Lucent Technologies Inc. Grin-fiber lens based optical endoscopes
US20040147934A1 (en) 2002-10-18 2004-07-29 Kiester P. Douglas Oscillating, steerable, surgical burring tool and method of using the same
US20040167554A1 (en) 2000-12-20 2004-08-26 Fox Hollow Technologies, Inc. Methods and devices for reentering a true lumen from a subintimal space
US20040167553A1 (en) 2000-12-20 2004-08-26 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
US20040181249A1 (en) 2003-03-10 2004-09-16 Pathway Medical Technologies, Inc. Bearing system to support a rotatable operating head in an intracorporeal device
US20040186368A1 (en) 2003-03-21 2004-09-23 Scimed Life Systems, Inc. Systems and methods for internal tissue penetration
US20040193140A1 (en) 2003-03-27 2004-09-30 Scimed Life Systems,Inc. Medical device
US6800085B2 (en) 1997-02-28 2004-10-05 Lumend, Inc. Methods and apparatus for treating vascular occlusions
US20040202418A1 (en) 2003-04-10 2004-10-14 Margaret Ghiron Beam shaping and practical methods of reducing loss associated with mating external sources and optics to thin silicon waveguides
US20040230213A1 (en) 2000-04-05 2004-11-18 Pathway Medical Technologies, Inc. Liquid seal assembly for a rotating torque tube
US20040230212A1 (en) 2000-04-05 2004-11-18 Pathway Medical Technologies, Inc. Medical sealed tubular structures
US6824550B1 (en) 2000-04-06 2004-11-30 Norbon Medical, Inc. Guidewire for crossing occlusions or stenosis
US20040243162A1 (en) 2000-04-05 2004-12-02 Pathway Medical Technologies, Inc. Interventional catheter assemblies and control systems
US6830577B2 (en) 1996-07-26 2004-12-14 Kensey Nash Corporation System and method of use for treating occluded vessels and diseased tissue
US20040254599A1 (en) 2003-03-25 2004-12-16 Lipoma Michael V. Method and apparatus for pre-lancing stimulation of puncture site
US20040260236A1 (en) 2002-01-07 2004-12-23 Cardiac Pacemakers, Inc. Guide catheter steering using pre-shaped rotatable shaft
US6845190B1 (en) 2000-11-27 2005-01-18 University Of Washington Control of an optical fiber scanner
US20050020925A1 (en) 2003-05-22 2005-01-27 Martin Kleen Optical coherence tomography system for the examination of human or animal tissue or of organs
US20050027199A1 (en) 2001-04-11 2005-02-03 Clarke Dana S. Tissue structure identification in advance of instrument
US6853457B2 (en) 2000-09-04 2005-02-08 Forskningscenter Riso Optical amplification in coherence reflectometry
US6852109B2 (en) 2002-06-11 2005-02-08 Intraluminal Therapeutics, Inc. Radio frequency guide wire assembly with optical coherence reflectometry guidance
US6856712B2 (en) 2000-11-27 2005-02-15 University Of Washington Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition
US20050043614A1 (en) 2003-08-21 2005-02-24 Huizenga Joel T. Automated methods and systems for vascular plaque detection and analysis
US20050054947A1 (en) 2003-08-28 2005-03-10 Goldenberg Alec S. Rotating soft tissue biopsy needle
US6867753B2 (en) 2002-10-28 2005-03-15 University Of Washington Virtual image registration in augmented display field
US20050075660A1 (en) 2003-10-03 2005-04-07 Chu Michael S. H. Systems and methods for delivering a medical implant to an anatomical location in a patient
US6879851B2 (en) 2001-06-07 2005-04-12 Lightlab Imaging, Llc Fiber optic endoscopic gastrointestinal probe
US20050085708A1 (en) 2002-04-19 2005-04-21 University Of Washington System and method for preparation of cells for 3D image acquisition
US20050085721A1 (en) 2002-04-19 2005-04-21 University Of Washington System and method for processing specimens and images for optical tomography
JP2005114473A (en) 2003-10-06 2005-04-28 Hitachi Medical Corp Light detection method and biological light-measuring instrument
US20050105097A1 (en) 2001-12-18 2005-05-19 Massachusetts Institute Of Technology Systems and methods for phase measurements
US20050141843A1 (en) 2003-12-31 2005-06-30 Invitrogen Corporation Waveguide comprising scattered light detectable particles
US20050154407A1 (en) 2000-12-20 2005-07-14 Fox Hollow Technologies, Inc. Method of evaluating drug efficacy for treating atherosclerosis
US20050159712A1 (en) 2000-07-12 2005-07-21 Erik Andersen Catheter having a tip with an elongated collar
US20050159731A1 (en) 2004-01-16 2005-07-21 Lee Don W. Intravascular catheter
US20050171478A1 (en) 1998-01-13 2005-08-04 Selmon Matthew R. Catheter system for crossing total occlusions in vasculature
US20050177068A1 (en) 2000-12-20 2005-08-11 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20050182295A1 (en) 2003-12-12 2005-08-18 University Of Washington Catheterscope 3D guidance and interface system
US20050187571A1 (en) 2004-02-20 2005-08-25 Siemens Aktiengesellschaft Device for applying and monitoring medical atherectomy
US20050192496A1 (en) 2004-01-09 2005-09-01 Michael Maschke Catheter for inserting into a vessel
JP2005230550A (en) 2004-02-20 2005-09-02 Siemens Ag Apparatus for applying and monitoring rotablation
US20050197623A1 (en) 2004-02-17 2005-09-08 Leeflang Stephen A. Variable steerable catheters and methods for using them
US20050201662A1 (en) 2002-07-25 2005-09-15 Petersen Christopher L. Scanning miniature optical probes with optical distortion correction and rotational control
JP2005249704A (en) 2004-03-08 2005-09-15 Fujinon Corp Tomographic apparatus
US6947787B2 (en) 2001-12-21 2005-09-20 Advanced Cardiovascular Systems, Inc. System and methods for imaging within a body lumen
US20050222519A1 (en) 2000-12-20 2005-10-06 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20050222663A1 (en) 2000-12-20 2005-10-06 Fox Hollow Technologies, Inc. Debulking catheters and methods
US6961123B1 (en) 2001-09-28 2005-11-01 The Texas A&M University System Method and apparatus for obtaining information from polarization-sensitive optical coherence tomography
US20050251116A1 (en) 2004-05-05 2005-11-10 Minnow Medical, Llc Imaging and eccentric atherosclerotic material laser remodeling and/or ablation catheter
JP2005533533A (en) 2001-10-24 2005-11-10 シメッド ライフ システムズ インコーポレイテッド Optical catheter connector
EP0845692B1 (en) 1996-11-27 2005-11-16 Olympus Corporation Optical system with a rotationally asymmetric curved surface
US6975898B2 (en) 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
US20060011820A1 (en) 2004-07-16 2006-01-19 Kin-Man Yip And Chow-Shing Shin Fiber-optic sensing system
US20060032508A1 (en) 2000-12-20 2006-02-16 Fox Hollow Technologies, Inc. Method of evaluating a treatment for vascular disease
US20060046235A1 (en) 1996-09-04 2006-03-02 David Alexander Interface device and method for interfacing instruments to medical procedure simulation systems
US20060049587A1 (en) 2004-09-09 2006-03-09 Cornwell Webster R Tool connector
US20060064009A1 (en) 2004-09-21 2006-03-23 Webler William E Vessel imaging devices and methods
US20060084911A1 (en) 1998-10-06 2006-04-20 Boston Scientific Scimed, Inc. Driveable catheter systems and methods
US20060109478A1 (en) 2004-11-24 2006-05-25 The General Hospital Corporation Devices and arrangements for performing coherence range imaging using a common path interferometer
US20060135870A1 (en) 2004-12-20 2006-06-22 Webler William E Methods and apparatuses for positioning within an internal channel
US7068878B2 (en) 2003-01-24 2006-06-27 University Of Washington Optical beam scanning system for compact image display or image acquisition
US7074231B2 (en) 1991-06-13 2006-07-11 Advanced Cardiovascular Systems, Inc. Convertible mode vascular catheter system
US20060173475A1 (en) 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US20060229646A1 (en) 2005-04-12 2006-10-12 Sparks Kurt D Forward-directed atherectomy catheter
US20060229659A1 (en) 2004-12-09 2006-10-12 The Foundry, Inc. Aortic valve repair
US20060235262A1 (en) 2005-02-04 2006-10-19 Arnal Kevin R Needle design for male transobturator sling
US20060235366A1 (en) 2000-12-20 2006-10-19 Fox Hollow Technologies, Inc. Method of evaluating a treatment for vascular disease
US20060236019A1 (en) 2005-04-19 2006-10-19 Fox Hollow Technologies, Inc. Libraries and data structures of materials removed by debulking catheters
US7126693B2 (en) 2004-03-29 2006-10-24 Carl Zeiss Meditec, Inc. Simple high efficiency optical coherence domain reflectometer design
US20060241503A1 (en) 2005-02-10 2006-10-26 Lightlab Imaging, Inc. Optical coherence tomography apparatus and methods
JP2006288775A (en) 2005-04-12 2006-10-26 Hitachi Medical Corp System for supporting endoscopic surgery
US20060239982A1 (en) 2000-12-20 2006-10-26 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20060244973A1 (en) 2003-10-27 2006-11-02 Seok-Hyun Yun Method and apparatus for performing optical imaging using frequency-domain interferometry
US20060252993A1 (en) 2005-03-23 2006-11-09 Freed David I Medical devices and systems
JP2006313158A (en) 2005-05-06 2006-11-16 Siemens Ag Method for displaying tomographic image of lumen by using optical coherence tomography and optical coherence tomography system
US20060264907A1 (en) 2005-05-02 2006-11-23 Pulsar Vascular, Inc. Catheters having stiffening mechanisms
US20060264741A1 (en) 1993-06-07 2006-11-23 Prince Martin R Method and apparatus for imaging abdominal aorta and aortic aneurysms
JP2006526790A (en) 2003-06-04 2006-11-24 トモフェイズ コーポレーション Measurement of optical heterogeneity and other properties in materials using light propagation modes
JP2006326157A (en) 2005-05-30 2006-12-07 Olympus Corp Treatment instrument for endoscope and treatment instrument system for endoscope
WO2006133030A2 (en) 2005-06-06 2006-12-14 Board Of Regents Oct using spectrally resolved bandwidth
US20070010840A1 (en) 2003-04-22 2007-01-11 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue at a vascular location
US20070015979A1 (en) 2005-07-14 2007-01-18 Siemens Aktiengesellschaft Method and device for generating an image using optical coherence tomography
US20070038125A1 (en) 2005-06-27 2007-02-15 Siemens Aktiengesellschaft Oct-based imaging method
US20070035855A1 (en) 2003-03-03 2007-02-15 Dickensheets David L Miniature confocal optical device, system, and method
US20070038173A1 (en) 2005-07-27 2007-02-15 Fox Hollow Technologies, Inc. Methods affecting markers in patients having vascular disease
US20070038061A1 (en) 2005-06-24 2007-02-15 Volcano Corporation Three dimensional co-registration for intravascular diagnosis and therapy
US20070050019A1 (en) 2002-10-15 2007-03-01 Hyde Gregory M Apparatuses and methods for heart valve repair
JP2007083057A (en) 2005-09-22 2007-04-05 Siemens Ag Catheter device, medical treatment device, and method for creating examination images when performing atherectomy
JP2007083053A (en) 2005-09-21 2007-04-05 Siemens Ag Catheter device and image monitoring method for treating vessel blockage
US20070078469A1 (en) 2000-12-20 2007-04-05 Fox Hollow Technologies, Inc Testing a patient population having a cardiovascular condition for drug efficacy
US20070078500A1 (en) 2005-09-30 2007-04-05 Cornova, Inc. Systems and methods for analysis and treatment of a body lumen
US20070081166A1 (en) 2005-09-29 2007-04-12 Bioptigen, Inc. Portable Optical Coherence Tomography (OCT) Devices and Related Systems
CN1947652A (en) 2005-10-12 2007-04-18 株式会社拓普康 Optical image measuring device, fundus observation device, storage media for optical image measuring program and and fundus observation program
US20070088230A1 (en) 2005-09-06 2007-04-19 Fmd Co., Ltd Medical instrument and medical equipment for treatment, and rotational handle device
KR20070047221A (en) 2005-11-01 2007-05-04 바이오센스 웹스터 인코포레이티드 Controlling direction of ultrasound imaging catheter
US20070106155A1 (en) 2005-10-31 2007-05-10 Novelis, Inc. System and method for reducing angular geometric distortion in an imaging device
US20070135712A1 (en) 2005-12-12 2007-06-14 Siemens Aktiengesellschaft Catheter device
US7242480B2 (en) 2004-05-14 2007-07-10 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
US20070167710A1 (en) 2005-11-29 2007-07-19 Siemens Corporate Research, Inc. Method and Apparatus for Inner Wall Extraction and Stent Strut Detection Using Intravascular Optical Coherence Tomography Imaging
US20070196926A1 (en) 2006-02-17 2007-08-23 Fox Hollow Technologies, Inc. Testing lumenectomy samples for Markers of non-vascular diseases
US7261687B2 (en) 2004-03-23 2007-08-28 California Institute Of Technology Forward scanning imaging optical fiber probe
JP2007225349A (en) 2006-02-21 2007-09-06 Univ Of Tsukuba Image processing method for three-dimensional optical tomography image
US20070213618A1 (en) 2006-01-17 2007-09-13 University Of Washington Scanning fiber-optic nonlinear optical imaging and spectroscopy endoscope
US20070219484A1 (en) 2004-03-04 2007-09-20 Straub Medical Ag Catheter For Aspirating, Fragmenting And Removing Material
US20070250080A1 (en) 2006-04-20 2007-10-25 Integrated Vascular Systems, Inc. Resettable clip applier and reset tools
US20070255252A1 (en) 2003-10-07 2007-11-01 Mehta Bharat A Embolectomy Catheter
US7291146B2 (en) 2003-09-12 2007-11-06 Minnow Medical, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US7297131B2 (en) 2002-08-02 2007-11-20 Flowcardia Inc. Therapeutic ultrasound system
US20070270647A1 (en) 2006-05-19 2007-11-22 Ams Research Corporation Handle for Multifunction Endoscope
JP2007533361A (en) 2003-10-03 2007-11-22 アキュメン・メディカル・インコーポレイテッド Inflatable sheath and device and method of manufacturing the same
US20070276419A1 (en) 2006-05-26 2007-11-29 Fox Hollow Technologies, Inc. Methods and devices for rotating an active element and an energy emitter on a catheter
US20070288036A1 (en) 2006-06-09 2007-12-13 Niranjan Seshadri Assembly for crossing a chronic total occlusion and method therefor
US7311723B2 (en) 2003-07-11 2007-12-25 University Of Washington Scanning laser device and methods of use
US20070299309A1 (en) 2005-02-28 2007-12-27 University Of Washington Monitoring disposition of tethered capsule endoscope in esophagus
US20080004643A1 (en) 2006-06-30 2008-01-03 Atheromed, Inc. Atherectomy devices and methods
US20080004646A1 (en) 2006-06-30 2008-01-03 Atheromed, Inc. Atherectomy devices and methods
WO2008005888A2 (en) 2006-06-30 2008-01-10 Atheromed, Inc. Atherectomy devices and methods
US20080015491A1 (en) 2005-02-24 2008-01-17 Abbott Vascular Solutions, Inc. Recovery catheter apparatus and method
US20080015618A1 (en) 2006-07-16 2008-01-17 Elazar Sonnenschein Devices and methods for treating morbid obesity
US20080027334A1 (en) 2004-03-10 2008-01-31 Vascular Solutions, Inc. Coaxial dual lumen pigtail catheter
JP2008023627A (en) 2006-07-19 2008-02-07 Denso Corp Optical gas concentration detector and manufacturing method of microstructure used therefor
US20080033396A1 (en) 2006-08-01 2008-02-07 Percutaneous Systems, Inc. Vascular sheaths and methods for their deployment
US20080045986A1 (en) 2006-06-30 2008-02-21 Atheromed, Inc. Atherectomy devices and methods
US20080049234A1 (en) 2006-08-23 2008-02-28 Peter Seitz Colorimetric three-dimensional microscopy
US20080058629A1 (en) 2006-08-21 2008-03-06 University Of Washington Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation
US20080065124A1 (en) * 1999-08-19 2008-03-13 Foxhollow Technologies, Inc. High capacity debulking catheter with razor edge cutting window
US20080065205A1 (en) 2006-09-11 2008-03-13 Duy Nguyen Retrievable implant and method for treatment of mitral regurgitation
WO2008029506A1 (en) 2006-09-04 2008-03-13 School Juridical Person Kitasato Gakuen Optical coherence tomography apparatus
WO2008042987A2 (en) 2006-10-04 2008-04-10 Pathway Medical Technologies, Inc. Interventional catheters
US20080095421A1 (en) 2006-10-20 2008-04-24 Siemens Corporation Research, Inc. Registering 2d and 3d data using 3d ultrasound data
US7366376B2 (en) 2004-09-29 2008-04-29 The General Hospital Corporation System and method for optical coherence imaging
WO2008051951A1 (en) 2006-10-26 2008-05-02 Wilson-Cook Medical Inc. Biopsy collection device
US7382949B2 (en) 2004-11-02 2008-06-03 The General Hospital Corporation Fiber-optic rotational device, optical system and method for imaging a sample
WO2008065600A2 (en) 2006-11-27 2008-06-05 Koninklijke Philips Electronics, N.V. System and method for fusing real-time ultrasound images with pre-acquired medical images
US20080132929A1 (en) 2005-07-19 2008-06-05 O'sullivan Denis F Surgical bur with anti-chatter flute geometry
JP2008128708A (en) 2006-11-17 2008-06-05 Fujifilm Corp Optical tomographic imaging apparatus
US20080139897A1 (en) 2001-05-31 2008-06-12 Ainsworth Robert D Catheter with optical fiber sensor
US20080147000A1 (en) 2006-12-13 2008-06-19 University Of Washington Catheter tip displacement mechanism
US20080146942A1 (en) 2006-12-13 2008-06-19 Ep Medsystems, Inc. Catheter Position Tracking Methods Using Fluoroscopy and Rotational Sensors
US20080154296A1 (en) 2006-12-22 2008-06-26 The Spectranetics Corporation Tissue Separating Systems and Methods
US20080154293A1 (en) 2006-12-22 2008-06-26 The Spectranetics Corporation Retractable Separating Systems and Methods
JP2008145376A (en) 2006-12-13 2008-06-26 Fujifilm Corp Optical tomographic imaging system
US20080177138A1 (en) 2007-01-19 2008-07-24 Brian Courtney Scanning mechanisms for imaging probe
WO2008087613A2 (en) 2007-01-20 2008-07-24 Ecole Polytechnique Federale De Lausanne (Epfl) Dual beam heterodyne fourier domain optical coherence tomography
JP2008175698A (en) 2007-01-18 2008-07-31 Univ Of Tsukuba Image processing method and image processing apparatus of optical coherence tomography
US20080186501A1 (en) 2005-01-12 2008-08-07 University Of Florid Research Foundation, Inc. Full Circumferential Scanning Oct Intravascular Imaging Probe Based On Scanning Mems Mirror
JP2008183208A (en) 2007-01-30 2008-08-14 Hoya Corp Oct probe and oct system
US20080207996A1 (en) 2005-06-06 2008-08-28 Solar International Products, Inc Portable Imaging Apparatus
US20080221388A1 (en) 2007-03-09 2008-09-11 University Of Washington Side viewing optical fiber endoscope
US7426036B2 (en) 2005-07-08 2008-09-16 Imalux Corporation Common path frequency domain optical coherence reflectometer and common path frequency domain optical coherence tomography device
US20080228033A1 (en) 2005-07-04 2008-09-18 Medizinische Universität Wien Optical Coherence Tomography Probe Device
US7428001B2 (en) 2002-03-15 2008-09-23 University Of Washington Materials and methods for simulating focal shifts in viewers using large depth of focus displays
US7428053B2 (en) 2005-07-08 2008-09-23 Imalux Corporation Common path frequency domain optical coherence reflectometry/tomography device
US20080243030A1 (en) 2007-04-02 2008-10-02 University Of Washington Multifunction cannula tools
US20080243031A1 (en) 2007-04-02 2008-10-02 University Of Washington Catheter with imaging capability acts as guidewire for cannula tools
JP2008253492A (en) 2007-04-04 2008-10-23 Fujifilm Corp Tomographic image processing method, apparatus and program
US20080262312A1 (en) 2007-04-17 2008-10-23 University Of Washington Shadowing pipe mosaicing algorithms with application to esophageal endoscopy
US20080275485A1 (en) 2006-04-03 2008-11-06 Possis Medical, Inc. Guidewire with collapsible filter system and method of use
US7455649B2 (en) 2005-01-05 2008-11-25 Vascular Solutions, Inc. Abdominal tissue support for femoral puncture procedures
US7474407B2 (en) 2003-02-20 2009-01-06 Applied Science Innovations Optical coherence tomography with 3d coherence scanning
WO2009005779A1 (en) 2007-06-29 2009-01-08 Atheromed, Inc. Atherectomy devices, systems, and methods
WO2009006335A1 (en) 2007-06-28 2009-01-08 Gore Enterprise Holdings, Inc. Improved catheter
US20090018566A1 (en) 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
US20090018567A1 (en) 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
US20090018565A1 (en) 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
WO2009009799A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging
US20090024084A1 (en) 2007-07-16 2009-01-22 Peritec Biosciences Ltd. Multi-lumen catheter assembly and method of providing relative motion thereto
US20090024085A1 (en) 2006-06-30 2009-01-22 Artheromed, Inc Atherectomy devices, systems, and methods
JP2009014751A (en) 2007-06-29 2009-01-22 Terumo Corp Optical cable and optical interference image diagnostic apparatus using the same
US20090024191A1 (en) 2006-03-03 2009-01-22 University Of Washington Multi-cladding optical fiber scanner
US20090028407A1 (en) 2005-11-23 2009-01-29 University Of Washington Scanning beam with variable sequential framing using interrupted scanning resonance
US20090028507A1 (en) 2007-07-27 2009-01-29 Ashley Wesley Jones Fiber optic adapter with integrated shutter
US7488340B2 (en) 2003-06-02 2009-02-10 Vascular Solutions, Inc. Vascular access closure system
WO2009023635A1 (en) 2007-08-10 2009-02-19 Board Of Regents, The University Of Texas System Forward-imaging optical coherence tomography (oct) systems and probe
WO2009024344A1 (en) 2007-08-22 2009-02-26 Carl Mahr Holding Gmbh Optical microprobe
US20090076447A1 (en) 2007-09-19 2009-03-19 Jack Casas Method and apparatus for conducting peripheral vascular disease procedures using a novel anchor balloon catheter
JP2009066252A (en) 2007-09-14 2009-04-02 Hoya Corp High frequency treatment instrument for endoscope
US20090093764A1 (en) 2007-10-08 2009-04-09 Ais Gmbh Aachen Innovative Solutions Catheter device
US20090099641A1 (en) 2003-09-12 2009-04-16 Abbott Vascular Solutions Inc. Delivery system for medical devices
JP2009078150A (en) 1998-08-05 2009-04-16 Boston Scientific Ltd Automatic/manual longitudinal position translator and rotary drive system for catheter
US7530976B2 (en) 2001-07-17 2009-05-12 Fox Hollow Technologies, Inc. Fluid exchange system for controlled and localized irrigation and aspiration
US20090125019A1 (en) 2007-11-08 2009-05-14 Douglass Valerie L Articulatable Device for Delivering Therapeutic Energy to Tissue
US7538886B2 (en) 2006-08-22 2009-05-26 Imalux Corporation Common path time domain optical coherence reflectometry/tomography device
US7539362B2 (en) 2005-11-21 2009-05-26 Fujifilm Corporation Optical probe and optical tomography system
US7538859B2 (en) 2006-02-01 2009-05-26 The General Hospital Corporation Methods and systems for monitoring and obtaining information of at least one portion of a sample using conformal laser therapy procedures, and providing electromagnetic radiation thereto
US20090135280A1 (en) 2007-11-27 2009-05-28 University Of Washington Eliminating illumination crosstalk while imaging using multiple imaging devices
US20090137893A1 (en) 2007-11-27 2009-05-28 University Of Washington Adding imaging capability to distal tips of medical tools, catheters, and conduits
US7542145B2 (en) 2005-09-30 2009-06-02 Fujifilm Corporation Optical tomography method and optical tomography system
US7545504B2 (en) 2005-10-07 2009-06-09 Biotigen, Inc. Imaging systems using unpolarized light and related methods and controllers
US7544162B2 (en) 2005-09-30 2009-06-09 Fujifilm Corporation Optical probe
US20090152664A1 (en) 2007-04-18 2009-06-18 Ethan Jacob Dukenfield Klem Materials, Systems and Methods for Optoelectronic Devices
US7555333B2 (en) 2000-06-19 2009-06-30 University Of Washington Integrated optical scanning image acquisition and display
US20090185135A1 (en) 2008-01-22 2009-07-23 Volk Donald A Real image forming eye examination lens utilizing two reflecting surfaces providing upright image
WO2009094341A2 (en) 2008-01-21 2009-07-30 The Regents Of The University Of California Endovascular optical coherence tomography device
US20090198125A1 (en) 2008-02-01 2009-08-06 Fujifilm Corporation Oct optical probe and optical tomography imaging apparatus
US20090196554A1 (en) 2006-08-24 2009-08-06 Terumo Kabushiki Kaisha Coupling device, auxilliary device and adaptor fixing member
US7577471B2 (en) 2005-09-21 2009-08-18 Siemens Aktiengesellschaft Optical coherence tomography system
EP2090245A1 (en) 2008-02-15 2009-08-19 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US20090208143A1 (en) 2008-02-19 2009-08-20 University Of Washington Efficient automated urothelial imaging using an endoscope with tip bending
US20090216180A1 (en) 2008-02-25 2009-08-27 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
US7583872B2 (en) 2007-04-05 2009-09-01 University Of Washington Compact scanning fiber device
US20090221920A1 (en) 2008-01-18 2009-09-03 Boppart Stephen A Low-coherence interferometry and optical coherence tomography for image-guided surgical treatment of solid tumors
US20090221904A1 (en) 2006-05-04 2009-09-03 Shealy David J Inflammatory condition progression, diagnosis and treatment monitoring methods, systems, apparatus, and uses
US20090244485A1 (en) 2008-03-27 2009-10-01 Walsh Alexander C Optical coherence tomography device, method, and system
US20090244547A1 (en) 2008-03-31 2009-10-01 Fujifilm Corporation Optical tomographic imaging system, tomographic image acquiring method, and optical tomographic image forming method
US20090264826A1 (en) 2008-04-21 2009-10-22 Medtronic Vascular, Inc. Needleless Catheters and Methods for True Lumen Re-Entry in Treatment of Chronic Total Occlusions and Other Disorders
US7616986B2 (en) 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
US20090284749A1 (en) 2008-05-15 2009-11-19 Axsun Technologies, Inc. OCT Combining Probes and Integrated Systems
US20090292199A1 (en) 2007-06-28 2009-11-26 W.L. Gore & Associates, Inc. Catheter
WO2009148317A1 (en) 2008-06-05 2009-12-10 Technische Universiteit Delft Automatic catheter positioning system
US20090306520A1 (en) 2008-06-02 2009-12-10 Lightlab Imaging, Inc. Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
CN101601581A (en) 2008-06-12 2009-12-16 奥林巴斯医疗株式会社 Biological observation apparatus and method
US20090316116A1 (en) 2008-05-19 2009-12-24 University Of Washington Uw Techtransfer - Invention Licensing Scanning laser projection display for small handheld devices
US20090318862A1 (en) 2004-04-07 2009-12-24 Boston Scientific Scimed, Inc. Balloon catheters and methods for manufacturing balloons for balloon catheters
US7637885B2 (en) 2004-03-31 2009-12-29 Siemens Aktiengesellschaft Catheter device for applying a medical cutting balloon intervention
US20100004544A1 (en) 2008-07-02 2010-01-07 Masahiro Toida Optical tomographic imaging probe, and optical tomographic imaging apparatus using the same
US20100021926A1 (en) 2006-04-17 2010-01-28 Universiti Sains Malaysia Method for rapid detection of lymphatic filariasis
JP2010042182A (en) 2008-08-18 2010-02-25 Fujifilm Corp Laser treatment device
US20100049225A1 (en) 2007-10-22 2010-02-25 Atheromed, Inc. Atherectomy devices and methods
US7674253B2 (en) 2006-08-18 2010-03-09 Kensey Nash Corporation Catheter for conducting a procedure within a lumen, duct or organ of a living being
US7682319B2 (en) 1999-04-09 2010-03-23 Evalve, Inc. Steerable access sheath and methods of use
US20100082000A1 (en) 2008-09-30 2010-04-01 Medtronic, Inc. Catheter system with reinforced member
US20100080016A1 (en) 2008-09-29 2010-04-01 Olympus Corporation Light source apparatus
WO2010039464A1 (en) 2008-09-30 2010-04-08 AiHeart Medical Technologies, Inc. Systems and methods for optical viewing and therapeutic intervention in blood vessels
US7706863B2 (en) 2004-01-21 2010-04-27 University Of Washington Methods for assessing a physiological state of a mammalian retina
US20100125253A1 (en) 2008-11-17 2010-05-20 Avinger Dual-tip Catheter System for Boring through Blocked Vascular Passages
WO2010056771A1 (en) 2008-11-11 2010-05-20 Shifamed Llc Low profile electrode assembly
US20100130996A1 (en) 2008-10-13 2010-05-27 Fox Hollow Technologies, Inc. Devices and methods for manipulating a catheter shaft
US7728985B2 (en) 2005-11-14 2010-06-01 Imalux Corporation Polarization-sensitive common path optical coherence reflectometry/tomography device
JP2010518900A (en) 2007-02-16 2010-06-03 ラディ・メディカル・システムズ・アクチェボラーグ Device for measuring the physiological state of the body
US7734332B2 (en) 2002-10-18 2010-06-08 Ariomedica Ltd. Atherectomy system with imaging guidewire
US7738945B2 (en) 2002-04-19 2010-06-15 University Of Washington Method and apparatus for pseudo-projection formation for optical tomography
US7771425B2 (en) 2003-06-13 2010-08-10 Covidien Ag Vessel sealer and divider having a variable jaw clamping mechanism
US20100217245A1 (en) 2009-02-26 2010-08-26 Prescott Anthony D Surgical Instrument Having a Magnetically Driven Detachable Tool Assembly
US7785286B2 (en) 2006-03-30 2010-08-31 Volcano Corporation Method and system for imaging, diagnosing, and/or treating an area of interest in a patient's body
US20100241147A1 (en) 2009-03-23 2010-09-23 Michael Maschke Catheter and medical apparatus as well as method for assisting an intervention to remove plaque
US20100253949A1 (en) 2007-11-12 2010-10-07 Lightlab Imaging, Inc. Miniature Optical Elements for Fiber-Optic Beam Shaping
US7813609B2 (en) 2007-11-12 2010-10-12 Lightlab Imaging, Inc. Imaging catheter with integrated reference reflector
US7821643B2 (en) 2006-09-06 2010-10-26 Imalux Corporation Common path systems and methods for frequency domain and time domain optical coherence tomography using non-specular reference reflection and a delivering device for optical radiation with a partially optically transparent non-specular reference reflector
US7824089B2 (en) 2006-10-03 2010-11-02 Alcon, Inc. Gradient index surgical illuminator
US20100292721A1 (en) 2009-05-14 2010-11-18 Fox Hollow Technologies, Inc. Easily cleaned atherectomy catheters and methods of use
US20100292539A1 (en) 2009-05-15 2010-11-18 Medizinisches Laserzentrum Luebeck Gmbh Forward Scanning OCT Endoscope
US7840283B1 (en) 2006-09-21 2010-11-23 Pacesetter, Inc. Bipolar screw-in lead
US20100312263A1 (en) 2009-04-29 2010-12-09 Fox Hollow Technologies, Inc. Methods and devices for cutting and abrading tissue
US20100317973A1 (en) 2009-06-12 2010-12-16 Henry Nita Device and method for vascular re-entry
US20100324472A1 (en) 2007-11-14 2010-12-23 Pathway Medical Technologies, Inc. Delivery and administration of compositions using interventional catheters
US20110023617A1 (en) 2009-08-03 2011-02-03 University Of Maryland Ultra-miniature fiber-optic pressure sensor system and method of fabrication
US20110028977A1 (en) 2009-07-31 2011-02-03 Zimmer, Gmbh Orthopaedic reamer
US20110040238A1 (en) 2009-08-12 2011-02-17 Pathway Medical Technologies, Inc. Interventional catheter assemblies incorporating guide wire brake and management systems
US20110058250A1 (en) 2008-08-21 2011-03-10 Nlight Photonics Corporation High power fiber amplifier with stable output
US20110060186A1 (en) 2008-04-27 2011-03-10 Alexander Quillin Tilson Biological navigation device
US20110071401A1 (en) 2009-09-24 2011-03-24 Boston Scientific Scimed, Inc. Systems and methods for making and using a stepper motor for an intravascular ultrasound imaging system
WO2011044387A2 (en) 2009-10-07 2011-04-14 The Board Of Regents Of The University Of Texas System Pressure-sensing medical devices, systems and methods, and methods of forming medical devices
US20110106004A1 (en) 2009-08-12 2011-05-05 Pathway Medical Technologies, Inc. Systems and methods for operating interventional catheters using a common operating console and adaptive interface components
US7944568B2 (en) 2007-12-27 2011-05-17 Fujifilm Corporation Method and system for producing tomographic image by optical tomography with processing of interference light signals
US20110118660A1 (en) 2006-10-04 2011-05-19 Pathway Medical Technologies, Inc. Interventional catheters incorporating an active aspiration system
WO2011062087A1 (en) 2009-11-17 2011-05-26 コニカミノルタオプト株式会社 Probe for optical tomographic image measurement device and method for adjusting probe
US7952718B2 (en) 2007-05-03 2011-05-31 University Of Washington High resolution optical coherence tomography based imaging for intraluminal and interstitial use implemented with a reduced form factor
US20110130777A1 (en) 2009-12-02 2011-06-02 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
US20110144673A1 (en) 2009-12-11 2011-06-16 Fox Hollow Technologies, Inc. Material removal device having improved material capture efficiency and methods of use
US7972299B2 (en) 2007-07-09 2011-07-05 Cook Medical Technologies Llc Balloon catheter with deflation mechanism
US20110201924A1 (en) 2002-04-30 2011-08-18 The General Hospital Corporation Method and Apparatus for Improving Image Clarity and Sensitivity in Optical Tomography Using Dynamic Feedback to Control Focal Properties and Coherence Gating
US8002763B2 (en) 2008-04-24 2011-08-23 Medtronic Vascular, Inc. Catheter flushing mandrel
US20110208222A1 (en) 2010-02-25 2011-08-25 Boris Ljahnicky System and Method for the Treatment of Occluded Vessels
US20110257478A1 (en) 2010-04-20 2011-10-20 Spinewindow Llc Method and apparatus for performing retro peritoneal dissection
US20110264125A1 (en) 2010-02-26 2011-10-27 Wilson Fletcher T Systems and methods for endoluminal valve creation
US20110270187A1 (en) 2010-04-28 2011-11-03 Nelson Brian D Body portal anchors and systems
US8059274B2 (en) 2007-12-07 2011-11-15 The Spectranetics Corporation Low-loss polarized light diversion
US8062316B2 (en) 2008-04-23 2011-11-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US8068921B2 (en) 2006-09-29 2011-11-29 Vivant Medical, Inc. Microwave antenna assembly and method of using the same
US20110295148A1 (en) 2008-12-10 2011-12-01 Jean-Jacques Destoumieux Device for collecting a tissue sample from an animal
US20110301625A1 (en) 2008-07-25 2011-12-08 Medtronic Vascular, Inc. Hydrodynamic Thrombectomy Catheter
US20110319905A1 (en) 2010-06-23 2011-12-29 Palme Robert A Multiple function vascular device
US20120004506A1 (en) 2010-06-03 2012-01-05 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US20120002928A1 (en) 2008-06-20 2012-01-05 Terumo Kabushiki Kaisha Coupling device and optical imaging device
WO2012057940A1 (en) 2010-10-28 2012-05-03 Boston Scientific Scimed, Inc. Systems and methods for reducing non-uniform rotation distortion in ultrasound images
US20120123352A1 (en) 2010-11-11 2012-05-17 Tyco Healthcare Group Lp Flexible debulking catheters with imaging and methods of use and manufacture
WO2012061935A1 (en) 2010-11-09 2012-05-18 Opsens Inc. Guidewire with internal pressure sensor
US20120136350A1 (en) 2010-10-21 2012-05-31 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
JP2012143558A (en) 2011-01-10 2012-08-02 Rex Medical Lp Rotational thrombectomy wire
WO2012123737A1 (en) 2011-03-15 2012-09-20 Barts And The London Nhs Trust Steerable element for use in surgery
US20120238869A1 (en) 2010-01-19 2012-09-20 Lightlab Imaging, Inc. Intravascular Optical Coherence Tomography System with Pressure Monitoring Interface and Accessories
US20120259337A1 (en) 2011-04-07 2012-10-11 Synthes Usa, Llc Surgical drill instrument with motor and locking mechanism to receive an attachment and a cutting burr
US20120277730A1 (en) 2009-06-24 2012-11-01 Amr Salahieh Steerable Delivery Sheaths
US20120289971A1 (en) 2011-05-11 2012-11-15 Merit Medical Systems, Inc. Multiple lumen retrieval device and method of using
US8313493B2 (en) 2008-07-10 2012-11-20 Cook Medical Technologies Llc Hydraulic guidewire advancement system
JP2012229976A (en) 2011-04-26 2012-11-22 Hoya Corp Optical scanning probe
WO2012166332A1 (en) 2011-05-27 2012-12-06 Lightlab Imaging, Inc. Optical coherence tomography and pressure based systems and methods
JP2012533353A (en) 2009-07-14 2012-12-27 ザ ジェネラル ホスピタル コーポレイション Apparatus, system and method for measuring flow and pressure inside a blood vessel
US20130035692A1 (en) 2010-10-06 2013-02-07 Peter Klindt Sorensen System for use in tissue repair
WO2013033490A1 (en) 2011-08-31 2013-03-07 Volcano Corporation Rotational imaging systems with stabilizers
US20130065124A1 (en) 2008-09-29 2013-03-14 Hideaki Morishima Non-aqueous electrolyte secondary battery, electrode used for secondary battery, and method of manufacturing electrode
US20130072787A1 (en) 2011-09-16 2013-03-21 Translucent Medical, Inc. System and method for virtually tracking a surgical tool on a movable display
CN103027727A (en) 2011-09-30 2013-04-10 泰科保健集团有限合伙公司 Rotating occlusion treatment system
US20130096589A1 (en) 2011-10-17 2013-04-18 Maegan K. Spencer Atherectomy catheters and non-contact actuation mechanism for catheters
WO2013056262A1 (en) 2011-10-13 2013-04-18 Atheromed, Inc. Atherectomy apparatus, systems and methods
US20130184549A1 (en) 2004-11-04 2013-07-18 Boston Scientific Scimed, Inc. Preshaped ablation catheter for ablating pulmonary vein ostia within the heart
US20130211221A1 (en) 2012-02-08 2013-08-15 Imricor Medical Systems, Inc. System and method for identifying and communicating with an interventional medical device
US20130223801A1 (en) 2012-02-23 2013-08-29 Venkata Adiseshaiah Bhagavatula Stub lens assemblies for use in optical coherence tomography systems
US20130223798A1 (en) 2011-08-31 2013-08-29 Robert K. Jenner Optical-electrical rotary joint and methods of use
US8548571B2 (en) 2009-12-08 2013-10-01 Avinger, Inc. Devices and methods for predicting and preventing restenosis
US8548603B2 (en) 2005-08-09 2013-10-01 Greatbatch Ltd. Fiber optic assisted medical lead
US20130255069A1 (en) 2012-03-28 2013-10-03 Yoshihiro Higashi Method for manufacturing pressure sensing device
US20130266259A1 (en) 2012-03-28 2013-10-10 Corning Incorporated Monolithic beam-shaping optical systems and methods for an oct probe
US20130287282A1 (en) 2011-08-18 2013-10-31 Toshiba Medical Systems Corporation Image processing display device and an image processing display program
US20130296695A1 (en) 2009-07-01 2013-11-07 Maegan K. Spencer Catheter-based off-axis optical coherence tomography imaging system
US20130317519A1 (en) 2012-05-25 2013-11-28 Hansen Medical, Inc. Low friction instrument driver interface for robotic systems
US20130325003A1 (en) 2012-05-31 2013-12-05 Tyco Healthcare Group Lp Electro-mechanical intravascular device
US20130331819A1 (en) 2004-12-17 2013-12-12 Biocardia, Inc. Method of Accessing a Contralateral Femoral Artery of a Patient
US8632557B2 (en) 2009-05-12 2014-01-21 Cardiovascular Systems, Inc. Rotational atherectomy device and method to improve abrading efficiency
US8644913B2 (en) 2011-03-28 2014-02-04 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US8647335B2 (en) 2006-04-11 2014-02-11 Vimecon Gmbh Laser applicator
US8696695B2 (en) 2009-04-28 2014-04-15 Avinger, Inc. Guidewire positioning catheter
US20140128893A1 (en) 2012-11-08 2014-05-08 Covidien Lp Tissue-removing catheter with rotatable cutter
WO2014077870A1 (en) 2012-11-19 2014-05-22 Lightlab Imaging, Inc. Multimodel imaging systems, probes and methods
WO2014093148A2 (en) 2012-12-12 2014-06-19 Covidien Lp Tissue-removing catheter for body lumen
US20140187949A1 (en) 2012-12-31 2014-07-03 Intuitive Surgical Operations, Inc. Systems and Methods For Interventional Procedure Planning
US20140222047A1 (en) 2012-12-12 2014-08-07 Covidien Lp Tissue-Removing Catheter Including Urging Mechanism
US20140222042A1 (en) 2012-11-08 2014-08-07 Covidien Lp Tissue-Removing Catheter Including Operational Control Mechanism
US20140275996A1 (en) 2013-03-12 2014-09-18 Volcano Corporation Systems and methods for constructing an image of a body structure
US20140291985A1 (en) 2013-03-28 2014-10-02 Covidien Lp Snap connection for two tubes
US20140343410A1 (en) 2013-05-17 2014-11-20 Benedikt Graf Determining angular orientation for imaging
US20140371718A1 (en) 2011-06-30 2014-12-18 The Spectranetics Corporation Reentry cathether and method thereof
US20150025310A1 (en) 2012-03-07 2015-01-22 Oi Medical Limited Medical applicator
US20150036146A1 (en) 2013-07-31 2015-02-05 Corning Incorporated Oct probes and oct optical probe component for use therein
US20150141816A1 (en) 2012-05-14 2015-05-21 Avinger, Inc. Atherectomy catheters with imaging
WO2015074018A1 (en) 2013-11-18 2015-05-21 Volcano Corporation Tracking an intraluminal catheter
US20150146211A1 (en) 2013-11-27 2015-05-28 Corning Incorporated Optical coherence tomography probe
US20150164530A1 (en) 2013-03-15 2015-06-18 The Spectranetics Corporation Multiple configuration surgical cutting device
WO2015101747A1 (en) 2013-12-31 2015-07-09 Inria Institut National De Recherche En Informatique Et En Automatique System and method for monitoring the movement of a medical instrument in the body of a subject
US20150208922A1 (en) 2010-07-01 2015-07-30 Avinger,Inc Balloon atherectomy catheters with imaging
WO2015120146A1 (en) 2014-02-06 2015-08-13 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9119662B2 (en) 2010-06-14 2015-09-01 Covidien Lp Material removal device and method of use
CN104968285A (en) 2013-01-07 2015-10-07 塔尔雅格医疗有限公司 Expandable atherectomy device
WO2015165736A1 (en) 2014-04-29 2015-11-05 Koninklijke Philips N.V. Device for determining a specific position of a catheter
EP2942028A1 (en) 2014-05-05 2015-11-11 Covidien LP End-effector force measurement drive circuit
US20150320975A1 (en) 2012-09-06 2015-11-12 Avinger, Inc. Re-entry stylet for catheter
US20160008025A1 (en) 2013-03-15 2016-01-14 Avinger, Inc. Tissue collection device for catheter
US20160038030A1 (en) 2013-03-15 2016-02-11 Avinger, Inc. Optical pressure sensor assembly
JP2016508758A (en) 2012-12-21 2016-03-24 ヴォルカノ コーポレイションVolcano Corporation Display control for multi-sensor medical devices
US9333007B2 (en) 2007-10-22 2016-05-10 Atheromed, Inc. Atherectomy devices and methods
US9345510B2 (en) 2010-07-01 2016-05-24 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US9345398B2 (en) 2012-05-14 2016-05-24 Avinger, Inc. Atherectomy catheter drive assemblies
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US20160144155A1 (en) 2013-07-01 2016-05-26 Avinger, Inc. Occlusion sheath for imaging catheter
US9351757B2 (en) 2012-01-17 2016-05-31 Covidien Lp Material removal device and method of use
US20160310700A1 (en) 2015-04-23 2016-10-27 Medtronic, Inc. Assemblies and methods for deflectable shaft catheters
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9498600B2 (en) 2009-07-01 2016-11-22 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US20160354110A1 (en) 2015-06-08 2016-12-08 Covidien Lp Tissue-removing catheter, tissue-removing element, and method of making same
US20160354109A1 (en) 2015-06-08 2016-12-08 Covidien Lp Tissue-removing catheter, tissue-removing element, and method of making same
WO2017007853A1 (en) 2015-07-06 2017-01-12 Avinger, Inc. Self-alignment mechanism for imaging catheter and drive assembly
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US9579157B2 (en) 2012-09-13 2017-02-28 Covidien Lp Cleaning device for medical instrument and method of use
US20170172666A1 (en) 2015-12-18 2017-06-22 Biosense Webster (Israel) Ltd. Using Force Sensor to Give Angle of Ultrasound Beam
WO2017132247A1 (en) 2016-01-25 2017-08-03 Avinger, Inc. Oct imaging catheter with lag correction
US9788790B2 (en) 2009-05-28 2017-10-17 Avinger, Inc. Optical coherence tomography for biological imaging
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
WO2018094041A1 (en) 2016-11-16 2018-05-24 Avinger, Inc. Methods, systems and apparatuses for displaying real-time catheter position
US20180146978A1 (en) 2014-07-08 2018-05-31 Avinger, Inc. High speed chronic total occlusion crossing devices
US20180192880A1 (en) 2015-07-13 2018-07-12 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US20180200488A1 (en) 2017-01-17 2018-07-19 Medtronic, Inc. Shuttle apparatus and associated systems and methods
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US20180364024A1 (en) 2015-06-17 2018-12-20 Corning Incorporated Beam-shaping elements for optical coherence tomography probes
US10213224B2 (en) 2014-06-27 2019-02-26 Covidien Lp Cleaning device for catheter and catheter including the same
US10314667B2 (en) 2015-03-25 2019-06-11 Covidien Lp Cleaning device for cleaning medical instrument
US20200060718A1 (en) 2010-07-01 2020-02-27 Avinger, Inc. Atherectomy catheter
US20210059713A1 (en) 2018-04-19 2021-03-04 Avinger, Inc. Occlusion-crossing devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217549B1 (en) * 1997-02-28 2001-04-17 Lumend, Inc. Methods and apparatus for treating vascular occlusions

Patent Citations (634)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367727A (en) 1965-10-22 1968-02-06 Abraham W. Ward Oral surgery tool with interchangeable blades
US3908637A (en) 1974-04-22 1975-09-30 Louis W Doroshow Rigid urethral instrument
US4178935A (en) 1977-07-21 1979-12-18 Ediny Jury G Method and apparatus for disintegration of urinary concretions
US4527553A (en) 1980-04-28 1985-07-09 Upsher Michael S Laryngoscope with improved light source
US4578061A (en) 1980-10-28 1986-03-25 Lemelson Jerome H Injection catheter and method
US4621353A (en) 1982-09-09 1986-11-04 Burroughs Corporation Optical memory system providing improved focusing control and improved beam combining and separating apparatus
US4487206A (en) 1982-10-13 1984-12-11 Honeywell Inc. Fiber optic pressure sensor with temperature compensation and reference
US4639091A (en) 1983-02-25 1987-01-27 Thomson-Csf Static deflector device for an infrared beam
US4611600A (en) 1983-11-21 1986-09-16 Cordis Corporation Optical fiber pressure transducer
US5178153A (en) 1984-03-08 1993-01-12 Einzig Robert E Fluid flow sensing apparatus for in vivo and industrial applications employing novel differential optical fiber pressure sensors
US4781186A (en) * 1984-05-30 1988-11-01 Devices For Vascular Intervention, Inc. Atherectomy device having a flexible housing
US4926858A (en) 1984-05-30 1990-05-22 Devices For Vascular Intervention, Inc. Atherectomy device for severe occlusions
US4552554A (en) 1984-06-25 1985-11-12 Medi-Tech Incorporated Introducing catheter
US4651753A (en) 1984-10-12 1987-03-24 Jayco Pharmaceuticals Endoscopic multiple biopsy instrument
US4686982A (en) 1985-06-19 1987-08-18 John Nash Spiral wire bearing for rotating wire drive catheter
US4681106A (en) 1985-08-12 1987-07-21 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4654024A (en) 1985-09-04 1987-03-31 C.R. Bard, Inc. Thermorecanalization catheter and method for use
US5182291A (en) 1986-02-14 1993-01-26 Sanofi Pyrozala-pyridyl aminoabkoxyphenol compounds
US4771774A (en) 1986-02-28 1988-09-20 Devices For Vascular Intervention, Inc. Motor drive unit
US5000185A (en) 1986-02-28 1991-03-19 Cardiovascular Imaging Systems, Inc. Method for intravascular two-dimensional ultrasonography and recanalization
US4691708A (en) 1986-03-10 1987-09-08 Cordis Corporation Optical pressure sensor for measuring blood pressure
JPS62275425A (en) 1986-05-21 1987-11-30 オリンパス光学工業株式会社 Endoscope
US4729763A (en) 1986-06-06 1988-03-08 Henrie Rodney A Catheter for removing occlusive material
US5041082A (en) 1986-06-16 1991-08-20 Samuel Shiber Mechanical atherectomy system and method
US5018529A (en) 1986-06-25 1991-05-28 Radisensor Ab Miniaturized sensor for physiological pressure measurements
US4841977A (en) 1987-05-26 1989-06-27 Inter Therapy, Inc. Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly
US4857046A (en) 1987-10-21 1989-08-15 Cordis Corporation Drive catheter having helical pump drive shaft
US5047040A (en) 1987-11-05 1991-09-10 Devices For Vascular Intervention, Inc. Atherectomy device and method
US4920961A (en) 1988-06-02 1990-05-01 Circon Corporation System for disconnetably mounting an endoscope sheath with an endoscope tool
EP0347098A2 (en) 1988-06-13 1989-12-20 Samuel Shiber Atherectomy system with a guide-wire
JPH03502060A (en) 1988-07-29 1991-05-16 ラディ・メディカル・システムズ・アクチェボラーグ miniature pressure sensor
US5099850A (en) 1989-01-17 1992-03-31 Olympus Optical Co., Ltd. Ultrasonic diagnostic apparatus
US5431673A (en) 1989-02-17 1995-07-11 American Biomed, Inc. Distal atherectomy catheter
US5312425A (en) 1989-09-12 1994-05-17 Devices For Vascular Intervention, Inc. Atherectomy device having helical blade and blade guide
US5085662A (en) 1989-11-13 1992-02-04 Scimed Life Systems, Inc. Atherectomy catheter and related components
WO1991017698A1 (en) 1990-05-16 1991-11-28 Brigham And Women's Hospital Steerable guide wire for tubular cannulation
US5674232A (en) 1990-06-05 1997-10-07 Halliburton; Alexander George Catheter and method of use thereof
US5425273A (en) 1990-07-27 1995-06-20 Cosurvey Optics Fiber optic pressure sensor with inclusions in a compressible transparent material
US20040092915A1 (en) 1990-08-06 2004-05-13 Levatter Jeffrey I. Fiber optic laser catheter and method of using it
JPH05103763A (en) 1991-03-11 1993-04-27 Hewlett Packard Co <Hp> Pressure sensor
US5459570A (en) 1991-04-29 1995-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements
US5956355A (en) 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US6160826A (en) 1991-04-29 2000-12-12 Massachusetts Institute Of Technology Method and apparatus for performing optical frequency domain reflectometry
US6485413B1 (en) 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US6501551B1 (en) 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US5321501A (en) 1991-04-29 1994-06-14 Massachusetts Institute Of Technology Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample
US5465147A (en) 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
US6564087B1 (en) 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US7074231B2 (en) 1991-06-13 2006-07-11 Advanced Cardiovascular Systems, Inc. Convertible mode vascular catheter system
US5190050A (en) 1991-11-08 1993-03-02 Electro-Catheter Corporation Tip deflectable steerable catheter
US5192291A (en) 1992-01-13 1993-03-09 Interventional Technologies, Inc. Rotationally expandable atherectomy cutter assembly
US5358472A (en) 1992-01-13 1994-10-25 Schneider (Usa) Inc. Guidewire atherectomy catheter and method of using the same
US5620426A (en) 1992-04-07 1997-04-15 Innovata Biomed Limited Connecting device
JPH0627343A (en) 1992-07-06 1994-02-04 Nippon Telegr & Teleph Corp <Ntt> Optical fiber juncture for optical fiber amplifier
US5749846A (en) 1992-08-12 1998-05-12 Vidamed, Inc. Medical probe device with optical viewing capability
US5312415A (en) 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
US5383460A (en) 1992-10-05 1995-01-24 Cardiovascular Imaging Systems, Inc. Method and apparatus for ultrasound imaging and atherectomy
US5333142A (en) 1992-10-26 1994-07-26 The United States Of America As Represented By The Secretary Of The Navy Technique for intracavity sum frequency generation
US5632755A (en) 1992-11-09 1997-05-27 Endo Vascular Intruments, Inc. Intra-artery obstruction clearing apparatus and methods
US5383467A (en) 1992-11-18 1995-01-24 Spectrascience, Inc. Guidewire catheter and apparatus for diagnostic imaging
US5507725A (en) 1992-12-23 1996-04-16 Angeion Corporation Steerable catheter
US5460168A (en) 1992-12-25 1995-10-24 Olympus Optical Co., Ltd. Endoscope cover assembly and cover-system endoscope
US5372601A (en) 1993-03-30 1994-12-13 Lary; Banning G. Longitudinal reciprocating incisor
US5429136A (en) 1993-04-21 1995-07-04 Devices For Vascular Intervention, Inc. Imaging atherectomy apparatus
US6176871B1 (en) 1993-04-28 2001-01-23 Focal, Inc. Apparatus and methods for intraluminal photothermoforming
US5951583A (en) 1993-05-25 1999-09-14 Vascular Solutions, Inc. Thrombin and collagen procoagulant and process for making the same
US5957952A (en) 1993-05-25 1999-09-28 Vascular Solutions, Inc. Vascular sealing device
US6017359A (en) 1993-05-25 2000-01-25 Vascular Solutions, Inc. Vascular sealing apparatus
US20060264741A1 (en) 1993-06-07 2006-11-23 Prince Martin R Method and apparatus for imaging abdominal aorta and aortic aneurysms
US5366464A (en) 1993-07-22 1994-11-22 Belknap John C Atherectomy catheter device
US5690634A (en) 1993-09-15 1997-11-25 Synthes (U.S.A.) Medullary drill head
US5607394A (en) 1993-10-07 1997-03-04 Boston Scientific Corp. Dilatation catheter having a field stylet
US5507760A (en) 1993-11-09 1996-04-16 Devices For Vascular Intervention, Inc. Cutter device
JPH07184888A (en) 1993-12-27 1995-07-25 Toshiba Corp Ultrasonic diagnostic system
US5437284A (en) 1993-12-30 1995-08-01 Camino Laboratories, Inc. System and method for in vivo calibration of a sensor
US5517998A (en) 1994-01-24 1996-05-21 Medamicus, Inc. Closed loop pressure determination system and method for fiber optic pressure transducer system
US6283957B1 (en) 1994-03-23 2001-09-04 Hamamatsu Photonics K.K. Cancer therapeutic instrument
JPH07308393A (en) 1994-03-23 1995-11-28 Yasuo Hashimoto Cancer treating apparatus
US6152951A (en) 1994-03-23 2000-11-28 Hamamatsu Photonics K.K. Method of treating cancer
US5507795A (en) 1994-04-29 1996-04-16 Devices For Vascular Intervention, Inc. Catheter with perfusion system
US6032673A (en) 1994-10-13 2000-03-07 Femrx, Inc. Methods and devices for tissue removal
US5836957A (en) 1994-12-22 1998-11-17 Devices For Vascular Intervention, Inc. Large volume atherectomy device
US5632754A (en) 1994-12-23 1997-05-27 Devices For Vascular Intervention Universal catheter with interchangeable work element
US6007530A (en) 1995-02-09 1999-12-28 C.R. Bard, Inc. Angioplasty catheter for expanding and/or opening up blood vessels
US5681336A (en) 1995-09-07 1997-10-28 Boston Scientific Corporation Therapeutic device for treating vien graft lesions
US5935075A (en) 1995-09-20 1999-08-10 Texas Heart Institute Detecting thermal discrepancies in vessel walls
US6615071B1 (en) 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
US6375615B1 (en) 1995-10-13 2002-04-23 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers and their methods of use
US5556405A (en) 1995-10-13 1996-09-17 Interventional Technologies Inc. Universal dilator with reciprocal incisor
RU2185859C2 (en) 1995-10-20 2002-07-27 Надим М. Закка Device for removing stenoses and supporting vascular walls
US5868778A (en) 1995-10-27 1999-02-09 Vascular Solutions, Inc. Vascular sealing apparatus and method
US5728148A (en) 1995-11-08 1998-03-17 Pacesetter Ab Stylet unit for implanting a medical electrode cable
US5843050A (en) 1995-11-13 1998-12-01 Micro Therapeutics, Inc. Microcatheter
US5807339A (en) 1995-12-04 1998-09-15 Pacesetter Ab Stylet unit for stiffening a hollow, flexible, elongated component
US5907425A (en) 1995-12-19 1999-05-25 The Board Of Trustees Of The Leland Stanford Junior University Miniature scanning confocal microscope
US6120515A (en) 1996-02-06 2000-09-19 Devices For Vascular Intervention, Inc. Composite atherectomy cutter
JP2002214127A (en) 1996-02-27 2002-07-31 Massachusetts Inst Of Technol <Mit> Method and device for performing optical measurement by using optical fiber imaging guide wire, catheter or endoscope
EP0808638A1 (en) 1996-05-20 1997-11-26 Cordis Europa N.V. Catheter-introduction-sheath with occlusion balloon
US5938602A (en) 1996-06-11 1999-08-17 Roke Manor Research Limited Catheter tracking system and method
US5795295A (en) 1996-06-25 1998-08-18 Carl Zeiss, Inc. OCT-assisted surgical microscope with multi-coordinate manipulator
US6830577B2 (en) 1996-07-26 2004-12-14 Kensey Nash Corporation System and method of use for treating occluded vessels and diseased tissue
US6080170A (en) 1996-07-26 2000-06-27 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels
US5997558A (en) 1996-07-26 1999-12-07 Kensey Nash Corporation System and method or use for revascularizing stenotic bypass grafts and other blood vessels
US20060046235A1 (en) 1996-09-04 2006-03-02 David Alexander Interface device and method for interfacing instruments to medical procedure simulation systems
US5830145A (en) 1996-09-20 1998-11-03 Cardiovascular Imaging Systems, Inc. Enhanced accuracy of three-dimensional intraluminal ultrasound (ILUS) image reconstruction
US5904651A (en) 1996-10-28 1999-05-18 Ep Technologies, Inc. Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
US20010020126A1 (en) 1996-10-28 2001-09-06 David K. Swanson Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
US20020111548A1 (en) 1996-10-28 2002-08-15 Ep Technologies, Inc. Ablation and imaging catheter
US5722403A (en) 1996-10-28 1998-03-03 Ep Technologies, Inc. Systems and methods using a porous electrode for ablating and visualizing interior tissue regions
US5872879A (en) 1996-11-25 1999-02-16 Boston Scientific Corporation Rotatable connecting optical fibers
EP0845692B1 (en) 1996-11-27 2005-11-16 Olympus Corporation Optical system with a rotationally asymmetric curved surface
US5951581A (en) 1996-12-02 1999-09-14 Angiotrax, Inc. Cutting apparatus having disposable handpiece
US6120516A (en) 1997-02-28 2000-09-19 Lumend, Inc. Method for treating vascular occlusion
US6010449A (en) 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
US6800085B2 (en) 1997-02-28 2004-10-05 Lumend, Inc. Methods and apparatus for treating vascular occlusions
US5843103A (en) 1997-03-06 1998-12-01 Scimed Life Systems, Inc. Shaped wire rotational atherectomy device
US6482216B1 (en) 1997-03-06 2002-11-19 Scimed Life Systems, Inc. Ablation device including guidewire with abrasive tip
US6758854B1 (en) 1997-05-09 2004-07-06 St. Jude Medical Splittable occlusion balloon sheath and process of use
US5851212A (en) 1997-06-11 1998-12-22 Endius Incorporated Surgical instrument
US6013072A (en) 1997-07-09 2000-01-11 Intraluminal Therapeutics, Inc. Systems and methods for steering a catheter through body tissue
US6048349A (en) 1997-07-09 2000-04-11 Intraluminal Therapeutics, Inc. Systems and methods for guiding a medical instrument through a body
US6970732B2 (en) 1997-07-09 2005-11-29 Intraluminal Therapeutics, Inc. Method for guiding a medical instrument through a body
US5987995A (en) 1997-07-17 1999-11-23 Sentec Corporation Fiber optic pressure catheter
US20010005788A1 (en) 1997-07-24 2001-06-28 Mcguckin James F. Bladder dialysis urinary catheter
US6152938A (en) 1997-08-19 2000-11-28 Curry; Paul Device for opening blocked tubes
US6402719B1 (en) 1997-09-05 2002-06-11 Cordis Webster, Inc. Steerable DMR catheter with infusion tube
US6551302B1 (en) 1997-09-24 2003-04-22 Michael J. Rosinko Steerable catheter with tip alignment and surface contact detector
US6193676B1 (en) 1997-10-03 2001-02-27 Intraluminal Therapeutics, Inc. Guide wire assembly
US5951482A (en) 1997-10-03 1999-09-14 Intraluminal Therapeutics, Inc. Assemblies and methods for advancing a guide wire through body tissue
WO1999023958A1 (en) 1997-11-07 1999-05-20 Prolifix Medical, Inc. Methods and systems for treating obstructions in a body lumen
US6183432B1 (en) 1997-11-13 2001-02-06 Lumend, Inc. Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip
US5938671A (en) 1997-11-14 1999-08-17 Reflow, Inc. Recanalization apparatus and devices for use therein and method
US6110164A (en) 1997-12-05 2000-08-29 Intratherapeutics, Inc. Guideless catheter segment
US6027514A (en) 1997-12-17 2000-02-22 Fox Hollow Technologies, Inc. Apparatus and method for removing occluding material from body lumens
US20050171478A1 (en) 1998-01-13 2005-08-04 Selmon Matthew R. Catheter system for crossing total occlusions in vasculature
US6511458B2 (en) 1998-01-13 2003-01-28 Lumend, Inc. Vascular re-entry catheter
US6416527B1 (en) 1998-01-28 2002-07-09 St. Jude Medical Cardiovascular Group, Inc. Vessel cutting device
US6175669B1 (en) 1998-03-30 2001-01-16 The Regents Of The Universtiy Of California Optical coherence domain reflectometry guidewire
US6544230B1 (en) 1998-03-31 2003-04-08 Transvascular, Inc. Catheters, systems and methods for percutaneous in situ arterio-venous bypass
US6001112A (en) 1998-04-10 1999-12-14 Endicor Medical, Inc. Rotational atherectomy device
US6206898B1 (en) 1998-04-10 2001-03-27 Endicor Medical, Inc. Rotational atherectomy device
US6482217B1 (en) 1998-04-10 2002-11-19 Endicor Medical, Inc. Neuro thrombectomy catheter
US6666874B2 (en) 1998-04-10 2003-12-23 Endicor Medical, Inc. Rotational atherectomy system with serrated cutting tip
US6451036B1 (en) 1998-04-10 2002-09-17 Endicor Medical, Inc. Rotational atherectomy system with stationary cutting elements
US7172610B2 (en) 1998-04-10 2007-02-06 Ev3 Endovascular, Inc. Rotational atherectomy system with stationary cutting elements
US6454779B1 (en) 1998-04-10 2002-09-24 Endicor Medical, Inc. Rotational atherectomy device
US6290668B1 (en) 1998-04-30 2001-09-18 Kenton W. Gregory Light delivery catheter and methods for the use thereof
US6285903B1 (en) 1998-06-30 2001-09-04 Eclipse Surgical Technologies, Inc. Intracorporeal device with radiopaque marker
US6307985B1 (en) 1998-07-10 2001-10-23 Micro Therapeutics, Inc. Optical transmission system
JP2009078150A (en) 1998-08-05 2009-04-16 Boston Scientific Ltd Automatic/manual longitudinal position translator and rotary drive system for catheter
US6106515A (en) 1998-08-13 2000-08-22 Intraluminal Therapeutics, Inc. Expandable laser catheter
US7288087B2 (en) 1998-08-13 2007-10-30 Intraluminal Therapeutics, Inc. Expandable laser catheter
US6241744B1 (en) 1998-08-14 2001-06-05 Fox Hollow Technologies, Inc. Apparatus for deploying a guidewire across a complex lesion
US6657727B1 (en) 1998-09-11 2003-12-02 Joseph A. Izatt Interferometers for optical coherence domain reflectometry and optical coherence tomography using nonreciprocal optical elements
US20060084911A1 (en) 1998-10-06 2006-04-20 Boston Scientific Scimed, Inc. Driveable catheter systems and methods
US6228076B1 (en) 1999-01-09 2001-05-08 Intraluminal Therapeutics, Inc. System and method for controlling tissue ablation
US6134002A (en) 1999-01-14 2000-10-17 Duke University Apparatus and method for the rapid spectral resolution of confocal images
US6445944B1 (en) 1999-02-01 2002-09-03 Scimed Life Systems Medical scanning system and related method of scanning
WO2000054659A1 (en) 1999-03-15 2000-09-21 Prolifix Medical, Inc. Shielded atherectomy device
US7682319B2 (en) 1999-04-09 2010-03-23 Evalve, Inc. Steerable access sheath and methods of use
US6645217B1 (en) 1999-05-15 2003-11-11 Advanced Cardiovascular Systems, Inc. Over-the-wire atherectomy catheter
US6563105B2 (en) 1999-06-08 2003-05-13 University Of Washington Image acquisition with depth enhancement
US6294775B1 (en) 1999-06-08 2001-09-25 University Of Washington Miniature image acquistion system using a scanning resonant waveguide
US20020082585A1 (en) 1999-06-15 2002-06-27 Sean Carroll Defined deflection structure
US6546272B1 (en) 1999-06-24 2003-04-08 Mackinnon Nicholas B. Apparatus for in vivo imaging of the respiratory tract and other internal organs
US20020019644A1 (en) 1999-07-12 2002-02-14 Hastings Roger N. Magnetically guided atherectomy
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US8911459B2 (en) 1999-08-19 2014-12-16 Covidien Lp Debulking catheters and methods
US6447525B2 (en) 1999-08-19 2002-09-10 Fox Hollow Technologies, Inc. Apparatus and methods for removing material from a body lumen
US20150057690A1 (en) * 1999-08-19 2015-02-26 Covidien Lp Debulking Catheters and Methods
US6299622B1 (en) 1999-08-19 2001-10-09 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
US20080065124A1 (en) * 1999-08-19 2008-03-13 Foxhollow Technologies, Inc. High capacity debulking catheter with razor edge cutting window
US6638233B2 (en) 1999-08-19 2003-10-28 Fox Hollow Technologies, Inc. Apparatus and methods for material capture and removal
WO2001015609A1 (en) 1999-08-31 2001-03-08 Fox Hollow Technologies Atherectomy catheter with a rotating and telescoping cutter
US6687010B1 (en) 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
US6730063B2 (en) 1999-10-22 2004-05-04 Corazon Technologies, Inc. Catheter devices and methods for their use in the treatment of calcified vascular occlusions
US20020082626A1 (en) 1999-11-15 2002-06-27 Donohoe Brendan M. Integrated anastomosis tool with graft vessel attachment device and cutting device
US6572563B2 (en) 1999-12-22 2003-06-03 Pentax Corporation Endoscopic tissue collecting instrument
US20030139751A1 (en) 2000-01-25 2003-07-24 Bacchus Vascular Inc. Apparatus and methods for clot dissolution
US20030002038A1 (en) 2000-01-28 2003-01-02 Kazuma Mawatari Photothermic transducing spectroscopic analyzer
US6629953B1 (en) 2000-02-18 2003-10-07 Fox Hollow Technologies, Inc. Methods and devices for removing material from a vascular site
US6579298B1 (en) 2000-02-29 2003-06-17 Scimed Life Systems, Inc. Method and apparatus for treating vein graft lesions
US6818001B2 (en) 2000-04-05 2004-11-16 Pathway Medical Technologies, Inc. Intralumenal material removal systems and methods
US20040230213A1 (en) 2000-04-05 2004-11-18 Pathway Medical Technologies, Inc. Liquid seal assembly for a rotating torque tube
US20040230212A1 (en) 2000-04-05 2004-11-18 Pathway Medical Technologies, Inc. Medical sealed tubular structures
US20040243162A1 (en) 2000-04-05 2004-12-02 Pathway Medical Technologies, Inc. Interventional catheter assemblies and control systems
WO2001076680A1 (en) 2000-04-05 2001-10-18 Stx Medical, Inc. Intralumenal material removal systems and methods
US6565588B1 (en) 2000-04-05 2003-05-20 Pathway Medical Technologies, Inc. Intralumenal material removal using an expandable cutting device
US7344546B2 (en) 2000-04-05 2008-03-18 Pathway Medical Technologies Intralumenal material removal using a cutting device for differential cutting
US6824550B1 (en) 2000-04-06 2004-11-30 Norbon Medical, Inc. Guidewire for crossing occlusions or stenosis
US6454717B1 (en) 2000-04-13 2002-09-24 Scimed Life Systems, Inc. Concentric catheter drive shaft clutch
US6517528B1 (en) 2000-04-13 2003-02-11 Scimed Life Systems, Inc. Magnetic catheter drive shaft clutch
US7555333B2 (en) 2000-06-19 2009-06-30 University Of Washington Integrated optical scanning image acquisition and display
US6975898B2 (en) 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
US20090235396A1 (en) 2000-06-19 2009-09-17 University Of Washington Integrated optical scanning image acquisition and display
US20050159712A1 (en) 2000-07-12 2005-07-21 Erik Andersen Catheter having a tip with an elongated collar
US6575995B1 (en) 2000-07-14 2003-06-10 Advanced Cardiovascular Systems, Inc. Expandable cage embolic material filter system and method
US6572643B1 (en) 2000-07-19 2003-06-03 Vascular Architects, Inc. Endoprosthesis delivery catheter assembly and method
US6853457B2 (en) 2000-09-04 2005-02-08 Forskningscenter Riso Optical amplification in coherence reflectometry
JP2004509695A (en) 2000-09-29 2004-04-02 エンドバシックス,インコーポレイテッド Flexible flow device and method of breaking obstruction
US6856712B2 (en) 2000-11-27 2005-02-15 University Of Washington Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition
US6845190B1 (en) 2000-11-27 2005-01-18 University Of Washington Control of an optical fiber scanner
US20020072706A1 (en) 2000-12-11 2002-06-13 Thomas Hiblar Transluminal drug delivery catheter
EP2353526B1 (en) 2000-12-20 2013-09-04 Covidien LP Catheter for removing atheromatous or thrombotic occlusive material
JP2004516073A (en) 2000-12-20 2004-06-03 フォックス ハロウ テクノロジーズ,インコーポレイティド Reduced volume catheter
US20040167553A1 (en) 2000-12-20 2004-08-26 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
US20050222519A1 (en) 2000-12-20 2005-10-06 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20050222663A1 (en) 2000-12-20 2005-10-06 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20060239982A1 (en) 2000-12-20 2006-10-26 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20050177068A1 (en) 2000-12-20 2005-08-11 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20050154407A1 (en) 2000-12-20 2005-07-14 Fox Hollow Technologies, Inc. Method of evaluating drug efficacy for treating atherosclerosis
US20070078469A1 (en) 2000-12-20 2007-04-05 Fox Hollow Technologies, Inc Testing a patient population having a cardiovascular condition for drug efficacy
US20060032508A1 (en) 2000-12-20 2006-02-16 Fox Hollow Technologies, Inc. Method of evaluating a treatment for vascular disease
US20030125758A1 (en) 2000-12-20 2003-07-03 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20030125757A1 (en) 2000-12-20 2003-07-03 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20060235366A1 (en) 2000-12-20 2006-10-19 Fox Hollow Technologies, Inc. Method of evaluating a treatment for vascular disease
US20040167554A1 (en) 2000-12-20 2004-08-26 Fox Hollow Technologies, Inc. Methods and devices for reentering a true lumen from a subintimal space
US20030120295A1 (en) 2000-12-20 2003-06-26 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20080065125A1 (en) 2000-12-20 2008-03-13 Foxhollow Technologies, Inc. High capacity debulking catheter with distal driven cutting wheel
US20040059257A1 (en) 2001-01-08 2004-03-25 Benny Gaber Deflectable guiding apparatus
US6503261B1 (en) 2001-01-17 2003-01-07 Scimed Life Systems, Inc. Bi-directional atherectomy burr
US6497649B2 (en) 2001-01-21 2002-12-24 University Of Washington Alleviating motion, simulator, and virtual environmental sickness by presenting visual scene components matched to inner ear vestibular sensations
US6760112B2 (en) 2001-02-17 2004-07-06 Lucent Technologies Inc. Grin-fiber lens based optical endoscopes
US6542665B2 (en) 2001-02-17 2003-04-01 Lucent Technologies Inc. GRIN fiber lenses
US20020115931A1 (en) 2001-02-21 2002-08-22 Strauss H. William Localizing intravascular lesions on anatomic images
US20020147459A1 (en) 2001-04-10 2002-10-10 Mehran Bashiri Devices and methods for removing occlusions in vessels
US20050027199A1 (en) 2001-04-11 2005-02-03 Clarke Dana S. Tissue structure identification in advance of instrument
US20020158547A1 (en) 2001-04-26 2002-10-31 Wood Robert L. Latchable microelectromechanical structures using non-newtonian fluids, and methods of operating same
US20030028100A1 (en) 2001-05-01 2003-02-06 Tearney Guillermo J. Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties
US7616986B2 (en) 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
US20080139897A1 (en) 2001-05-31 2008-06-12 Ainsworth Robert D Catheter with optical fiber sensor
US6879851B2 (en) 2001-06-07 2005-04-12 Lightlab Imaging, Llc Fiber optic endoscopic gastrointestinal probe
US20030032880A1 (en) 2001-06-13 2003-02-13 Pauliina Moore Apparatus and method for ultrasonically identifying vulnerable plaque
US20040002650A1 (en) 2001-06-20 2004-01-01 Evgenia Mandrusov Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US6728571B1 (en) 2001-07-16 2004-04-27 Scimed Life Systems, Inc. Electronically scanned optical coherence tomography with frequency modulated signals
US7530976B2 (en) 2001-07-17 2009-05-12 Fox Hollow Technologies, Inc. Fluid exchange system for controlled and localized irrigation and aspiration
US6599296B1 (en) 2001-07-27 2003-07-29 Advanced Cardiovascular Systems, Inc. Ratcheting handle for intraluminal catheter systems
US20030045835A1 (en) 2001-08-30 2003-03-06 Vascular Solutions, Inc. Method and apparatus for coagulation and closure of pseudoaneurysms
US6961123B1 (en) 2001-09-28 2005-11-01 The Texas A&M University System Method and apparatus for obtaining information from polarization-sensitive optical coherence tomography
US20030125756A1 (en) 2001-10-19 2003-07-03 Leonid Shturman Rotational angioplasty device with abrasive crown
JP2005533533A (en) 2001-10-24 2005-11-10 シメッド ライフ システムズ インコーポレイテッド Optical catheter connector
US20030095248A1 (en) 2001-11-16 2003-05-22 Didier Frot Optical-fiber refractometer
US20030097044A1 (en) 2001-11-19 2003-05-22 Tokendo (S.A.R.L.) Deviated distal viewing endoscope
US20050105097A1 (en) 2001-12-18 2005-05-19 Massachusetts Institute Of Technology Systems and methods for phase measurements
US20030120150A1 (en) 2001-12-21 2003-06-26 Assaf Govari Wireless position sensor
US6947787B2 (en) 2001-12-21 2005-09-20 Advanced Cardiovascular Systems, Inc. System and methods for imaging within a body lumen
US20040260236A1 (en) 2002-01-07 2004-12-23 Cardiac Pacemakers, Inc. Guide catheter steering using pre-shaped rotatable shaft
US7428001B2 (en) 2002-03-15 2008-09-23 University Of Washington Materials and methods for simulating focal shifts in viewers using large depth of focus displays
US20030181855A1 (en) 2002-03-22 2003-09-25 Simpson John A. Pre-shaped catheter with proximal articulation and pre-formed distal end
RU2218191C2 (en) 2002-04-11 2003-12-10 Научно-исследовательский институт радиоэлектроники и лазерной техники Московского государственного технического университета им. Н.Э.Баумана Endovasal mini robot
US7738945B2 (en) 2002-04-19 2010-06-15 University Of Washington Method and apparatus for pseudo-projection formation for optical tomography
US20050085708A1 (en) 2002-04-19 2005-04-21 University Of Washington System and method for preparation of cells for 3D image acquisition
US20050085721A1 (en) 2002-04-19 2005-04-21 University Of Washington System and method for processing specimens and images for optical tomography
US20110201924A1 (en) 2002-04-30 2011-08-18 The General Hospital Corporation Method and Apparatus for Improving Image Clarity and Sensitivity in Optical Tomography Using Dynamic Feedback to Control Focal Properties and Coherence Gating
US6852109B2 (en) 2002-06-11 2005-02-08 Intraluminal Therapeutics, Inc. Radio frequency guide wire assembly with optical coherence reflectometry guidance
US20050201662A1 (en) 2002-07-25 2005-09-15 Petersen Christopher L. Scanning miniature optical probes with optical distortion correction and rotational control
US7297131B2 (en) 2002-08-02 2007-11-20 Flowcardia Inc. Therapeutic ultrasound system
US20040039371A1 (en) 2002-08-23 2004-02-26 Bruce Tockman Coronary vein navigator
US20040057667A1 (en) 2002-09-20 2004-03-25 Koji Yamada Optical module and manufacturing method therefor
US20070050019A1 (en) 2002-10-15 2007-03-01 Hyde Gregory M Apparatuses and methods for heart valve repair
US20040147934A1 (en) 2002-10-18 2004-07-29 Kiester P. Douglas Oscillating, steerable, surgical burring tool and method of using the same
US7734332B2 (en) 2002-10-18 2010-06-08 Ariomedica Ltd. Atherectomy system with imaging guidewire
US20040082850A1 (en) 2002-10-23 2004-04-29 Medtonic, Inc. Methods and apparatus for locating body vessels and occlusions in body vessels
US20040093001A1 (en) 2002-10-25 2004-05-13 Hamada James S. Minimal access lumbar diskectomy instrumentation and method
US6867753B2 (en) 2002-10-28 2005-03-15 University Of Washington Virtual image registration in augmented display field
US7068878B2 (en) 2003-01-24 2006-06-27 University Of Washington Optical beam scanning system for compact image display or image acquisition
US7474407B2 (en) 2003-02-20 2009-01-06 Applied Science Innovations Optical coherence tomography with 3d coherence scanning
US20070035855A1 (en) 2003-03-03 2007-02-15 Dickensheets David L Miniature confocal optical device, system, and method
US20040220519A1 (en) 2003-03-10 2004-11-04 Pathway Medical Technologies, Inc. Interventional catheter assemblies and control systems
US20040236312A1 (en) 2003-03-10 2004-11-25 Pathway Medical Technologies, Inc. Seal for a connector of a movable catheter system
US7485127B2 (en) 2003-03-10 2009-02-03 Pathway Medical Technologies, Inc. Tubular torque transmitting system for medical device
US20040181249A1 (en) 2003-03-10 2004-09-16 Pathway Medical Technologies, Inc. Bearing system to support a rotatable operating head in an intracorporeal device
US20040186368A1 (en) 2003-03-21 2004-09-23 Scimed Life Systems, Inc. Systems and methods for internal tissue penetration
US20040254599A1 (en) 2003-03-25 2004-12-16 Lipoma Michael V. Method and apparatus for pre-lancing stimulation of puncture site
US20040193140A1 (en) 2003-03-27 2004-09-30 Scimed Life Systems,Inc. Medical device
US20040202418A1 (en) 2003-04-10 2004-10-14 Margaret Ghiron Beam shaping and practical methods of reducing loss associated with mating external sources and optics to thin silicon waveguides
US20070010840A1 (en) 2003-04-22 2007-01-11 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue at a vascular location
US20050020925A1 (en) 2003-05-22 2005-01-27 Martin Kleen Optical coherence tomography system for the examination of human or animal tissue or of organs
US7488340B2 (en) 2003-06-02 2009-02-10 Vascular Solutions, Inc. Vascular access closure system
USD489973S1 (en) 2003-06-02 2004-05-18 Vascular Solutions, Inc. Medical device package
US20090073444A1 (en) 2003-06-04 2009-03-19 Tomophase Corporation Optical measurements of properties in substances using propagation modes of light
JP2006526790A (en) 2003-06-04 2006-11-24 トモフェイズ コーポレーション Measurement of optical heterogeneity and other properties in materials using light propagation modes
US7771425B2 (en) 2003-06-13 2010-08-10 Covidien Ag Vessel sealer and divider having a variable jaw clamping mechanism
US7311723B2 (en) 2003-07-11 2007-12-25 University Of Washington Scanning laser device and methods of use
US20050043614A1 (en) 2003-08-21 2005-02-24 Huizenga Joel T. Automated methods and systems for vascular plaque detection and analysis
US20050054947A1 (en) 2003-08-28 2005-03-10 Goldenberg Alec S. Rotating soft tissue biopsy needle
US20090099641A1 (en) 2003-09-12 2009-04-16 Abbott Vascular Solutions Inc. Delivery system for medical devices
US7291146B2 (en) 2003-09-12 2007-11-06 Minnow Medical, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US20050075660A1 (en) 2003-10-03 2005-04-07 Chu Michael S. H. Systems and methods for delivering a medical implant to an anatomical location in a patient
JP2007533361A (en) 2003-10-03 2007-11-22 アキュメン・メディカル・インコーポレイテッド Inflatable sheath and device and method of manufacturing the same
JP2005114473A (en) 2003-10-06 2005-04-28 Hitachi Medical Corp Light detection method and biological light-measuring instrument
US20070255252A1 (en) 2003-10-07 2007-11-01 Mehta Bharat A Embolectomy Catheter
CN1875242A (en) 2003-10-27 2006-12-06 通用医疗公司 Method and apparatus for performing optical imaging using frequency-domain interferometry
US20060244973A1 (en) 2003-10-27 2006-11-02 Seok-Hyun Yun Method and apparatus for performing optical imaging using frequency-domain interferometry
US20050182295A1 (en) 2003-12-12 2005-08-18 University Of Washington Catheterscope 3D guidance and interface system
US20050141843A1 (en) 2003-12-31 2005-06-30 Invitrogen Corporation Waveguide comprising scattered light detectable particles
US20050192496A1 (en) 2004-01-09 2005-09-01 Michael Maschke Catheter for inserting into a vessel
US20050159731A1 (en) 2004-01-16 2005-07-21 Lee Don W. Intravascular catheter
US7706863B2 (en) 2004-01-21 2010-04-27 University Of Washington Methods for assessing a physiological state of a mammalian retina
US20050197623A1 (en) 2004-02-17 2005-09-08 Leeflang Stephen A. Variable steerable catheters and methods for using them
JP2005230550A (en) 2004-02-20 2005-09-02 Siemens Ag Apparatus for applying and monitoring rotablation
US20050187571A1 (en) 2004-02-20 2005-08-25 Siemens Aktiengesellschaft Device for applying and monitoring medical atherectomy
US20050203553A1 (en) 2004-02-20 2005-09-15 Siemens Aktiengesellschaft Device for the performance and monitoring of rotablation
US20070219484A1 (en) 2004-03-04 2007-09-20 Straub Medical Ag Catheter For Aspirating, Fragmenting And Removing Material
JP2005249704A (en) 2004-03-08 2005-09-15 Fujinon Corp Tomographic apparatus
US20080027334A1 (en) 2004-03-10 2008-01-31 Vascular Solutions, Inc. Coaxial dual lumen pigtail catheter
US7261687B2 (en) 2004-03-23 2007-08-28 California Institute Of Technology Forward scanning imaging optical fiber probe
US7126693B2 (en) 2004-03-29 2006-10-24 Carl Zeiss Meditec, Inc. Simple high efficiency optical coherence domain reflectometer design
US7637885B2 (en) 2004-03-31 2009-12-29 Siemens Aktiengesellschaft Catheter device for applying a medical cutting balloon intervention
US20090318862A1 (en) 2004-04-07 2009-12-24 Boston Scientific Scimed, Inc. Balloon catheters and methods for manufacturing balloons for balloon catheters
US20050251116A1 (en) 2004-05-05 2005-11-10 Minnow Medical, Llc Imaging and eccentric atherosclerotic material laser remodeling and/or ablation catheter
US7242480B2 (en) 2004-05-14 2007-07-10 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
US20060011820A1 (en) 2004-07-16 2006-01-19 Kin-Man Yip And Chow-Shing Shin Fiber-optic sensing system
US20060049587A1 (en) 2004-09-09 2006-03-09 Cornwell Webster R Tool connector
US20060064009A1 (en) 2004-09-21 2006-03-23 Webler William E Vessel imaging devices and methods
US7366376B2 (en) 2004-09-29 2008-04-29 The General Hospital Corporation System and method for optical coherence imaging
US7382949B2 (en) 2004-11-02 2008-06-03 The General Hospital Corporation Fiber-optic rotational device, optical system and method for imaging a sample
US20130184549A1 (en) 2004-11-04 2013-07-18 Boston Scientific Scimed, Inc. Preshaped ablation catheter for ablating pulmonary vein ostia within the heart
US20060109478A1 (en) 2004-11-24 2006-05-25 The General Hospital Corporation Devices and arrangements for performing coherence range imaging using a common path interferometer
US20060229659A1 (en) 2004-12-09 2006-10-12 The Foundry, Inc. Aortic valve repair
US20130331819A1 (en) 2004-12-17 2013-12-12 Biocardia, Inc. Method of Accessing a Contralateral Femoral Artery of a Patient
EP1859732A1 (en) 2004-12-20 2007-11-28 Advanced Cardiovascular Systems, Inc. Methods and apparatuses for positioning within an internal channel
US20060135870A1 (en) 2004-12-20 2006-06-22 Webler William E Methods and apparatuses for positioning within an internal channel
US7455649B2 (en) 2005-01-05 2008-11-25 Vascular Solutions, Inc. Abdominal tissue support for femoral puncture procedures
US20080186501A1 (en) 2005-01-12 2008-08-07 University Of Florid Research Foundation, Inc. Full Circumferential Scanning Oct Intravascular Imaging Probe Based On Scanning Mems Mirror
US20060173475A1 (en) 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US20060235262A1 (en) 2005-02-04 2006-10-19 Arnal Kevin R Needle design for male transobturator sling
US20060241503A1 (en) 2005-02-10 2006-10-26 Lightlab Imaging, Inc. Optical coherence tomography apparatus and methods
US20080015491A1 (en) 2005-02-24 2008-01-17 Abbott Vascular Solutions, Inc. Recovery catheter apparatus and method
US20070299309A1 (en) 2005-02-28 2007-12-27 University Of Washington Monitoring disposition of tethered capsule endoscope in esophagus
US7530948B2 (en) 2005-02-28 2009-05-12 University Of Washington Tethered capsule endoscope for Barrett's Esophagus screening
US20060252993A1 (en) 2005-03-23 2006-11-09 Freed David I Medical devices and systems
JP2006288775A (en) 2005-04-12 2006-10-26 Hitachi Medical Corp System for supporting endoscopic surgery
US20060229646A1 (en) 2005-04-12 2006-10-12 Sparks Kurt D Forward-directed atherectomy catheter
US20060236019A1 (en) 2005-04-19 2006-10-19 Fox Hollow Technologies, Inc. Libraries and data structures of materials removed by debulking catheters
US20060264907A1 (en) 2005-05-02 2006-11-23 Pulsar Vascular, Inc. Catheters having stiffening mechanisms
JP2006313158A (en) 2005-05-06 2006-11-16 Siemens Ag Method for displaying tomographic image of lumen by using optical coherence tomography and optical coherence tomography system
US20060264743A1 (en) 2005-05-06 2006-11-23 Siemens Aktiengesellschaft Method for tomographically displaying a cavity by optical coherence tomography (OCT) and an OCT device for carrying out the method
JP2006326157A (en) 2005-05-30 2006-12-07 Olympus Corp Treatment instrument for endoscope and treatment instrument system for endoscope
US20070015969A1 (en) 2005-06-06 2007-01-18 Board Of Regents, The University Of Texas System OCT using spectrally resolved bandwidth
US20080207996A1 (en) 2005-06-06 2008-08-28 Solar International Products, Inc Portable Imaging Apparatus
WO2006133030A2 (en) 2005-06-06 2006-12-14 Board Of Regents Oct using spectrally resolved bandwidth
US20070038061A1 (en) 2005-06-24 2007-02-15 Volcano Corporation Three dimensional co-registration for intravascular diagnosis and therapy
US20070038125A1 (en) 2005-06-27 2007-02-15 Siemens Aktiengesellschaft Oct-based imaging method
US20080228033A1 (en) 2005-07-04 2008-09-18 Medizinische Universität Wien Optical Coherence Tomography Probe Device
US7428053B2 (en) 2005-07-08 2008-09-23 Imalux Corporation Common path frequency domain optical coherence reflectometry/tomography device
US7426036B2 (en) 2005-07-08 2008-09-16 Imalux Corporation Common path frequency domain optical coherence reflectometer and common path frequency domain optical coherence tomography device
US20070015979A1 (en) 2005-07-14 2007-01-18 Siemens Aktiengesellschaft Method and device for generating an image using optical coherence tomography
US20080132929A1 (en) 2005-07-19 2008-06-05 O'sullivan Denis F Surgical bur with anti-chatter flute geometry
US20070038173A1 (en) 2005-07-27 2007-02-15 Fox Hollow Technologies, Inc. Methods affecting markers in patients having vascular disease
US8548603B2 (en) 2005-08-09 2013-10-01 Greatbatch Ltd. Fiber optic assisted medical lead
US20070088230A1 (en) 2005-09-06 2007-04-19 Fmd Co., Ltd Medical instrument and medical equipment for treatment, and rotational handle device
US7577471B2 (en) 2005-09-21 2009-08-18 Siemens Aktiengesellschaft Optical coherence tomography system
JP2007083053A (en) 2005-09-21 2007-04-05 Siemens Ag Catheter device and image monitoring method for treating vessel blockage
US7729745B2 (en) 2005-09-22 2010-06-01 Siemens Aktiengesellschaft Device for carrying out rotablation
JP2007083057A (en) 2005-09-22 2007-04-05 Siemens Ag Catheter device, medical treatment device, and method for creating examination images when performing atherectomy
US7753852B2 (en) 2005-09-22 2010-07-13 Siemens Aktiengesellschaft Atherectomy catheter with combined OCT/IVUS imaging
US20070081166A1 (en) 2005-09-29 2007-04-12 Bioptigen, Inc. Portable Optical Coherence Tomography (OCT) Devices and Related Systems
US7544162B2 (en) 2005-09-30 2009-06-09 Fujifilm Corporation Optical probe
JP2009509690A (en) 2005-09-30 2009-03-12 コルノヴァ インク System and method for body cavity analysis and treatment
US20070078500A1 (en) 2005-09-30 2007-04-05 Cornova, Inc. Systems and methods for analysis and treatment of a body lumen
US7542145B2 (en) 2005-09-30 2009-06-02 Fujifilm Corporation Optical tomography method and optical tomography system
US7545504B2 (en) 2005-10-07 2009-06-09 Biotigen, Inc. Imaging systems using unpolarized light and related methods and controllers
CN1947652A (en) 2005-10-12 2007-04-18 株式会社拓普康 Optical image measuring device, fundus observation device, storage media for optical image measuring program and and fundus observation program
US20070106155A1 (en) 2005-10-31 2007-05-10 Novelis, Inc. System and method for reducing angular geometric distortion in an imaging device
KR20070047221A (en) 2005-11-01 2007-05-04 바이오센스 웹스터 인코포레이티드 Controlling direction of ultrasound imaging catheter
US7728985B2 (en) 2005-11-14 2010-06-01 Imalux Corporation Polarization-sensitive common path optical coherence reflectometry/tomography device
US7539362B2 (en) 2005-11-21 2009-05-26 Fujifilm Corporation Optical probe and optical tomography system
US20090028407A1 (en) 2005-11-23 2009-01-29 University Of Washington Scanning beam with variable sequential framing using interrupted scanning resonance
US20070167710A1 (en) 2005-11-29 2007-07-19 Siemens Corporate Research, Inc. Method and Apparatus for Inner Wall Extraction and Stent Strut Detection Using Intravascular Optical Coherence Tomography Imaging
US20070135712A1 (en) 2005-12-12 2007-06-14 Siemens Aktiengesellschaft Catheter device
US20070213618A1 (en) 2006-01-17 2007-09-13 University Of Washington Scanning fiber-optic nonlinear optical imaging and spectroscopy endoscope
US7538859B2 (en) 2006-02-01 2009-05-26 The General Hospital Corporation Methods and systems for monitoring and obtaining information of at least one portion of a sample using conformal laser therapy procedures, and providing electromagnetic radiation thereto
US20070196926A1 (en) 2006-02-17 2007-08-23 Fox Hollow Technologies, Inc. Testing lumenectomy samples for Markers of non-vascular diseases
JP2007225349A (en) 2006-02-21 2007-09-06 Univ Of Tsukuba Image processing method for three-dimensional optical tomography image
US20090024191A1 (en) 2006-03-03 2009-01-22 University Of Washington Multi-cladding optical fiber scanner
US7785286B2 (en) 2006-03-30 2010-08-31 Volcano Corporation Method and system for imaging, diagnosing, and/or treating an area of interest in a patient's body
US20080275485A1 (en) 2006-04-03 2008-11-06 Possis Medical, Inc. Guidewire with collapsible filter system and method of use
US8647335B2 (en) 2006-04-11 2014-02-11 Vimecon Gmbh Laser applicator
US20100021926A1 (en) 2006-04-17 2010-01-28 Universiti Sains Malaysia Method for rapid detection of lymphatic filariasis
US20070250080A1 (en) 2006-04-20 2007-10-25 Integrated Vascular Systems, Inc. Resettable clip applier and reset tools
US20090221904A1 (en) 2006-05-04 2009-09-03 Shealy David J Inflammatory condition progression, diagnosis and treatment monitoring methods, systems, apparatus, and uses
US20070270647A1 (en) 2006-05-19 2007-11-22 Ams Research Corporation Handle for Multifunction Endoscope
US20070276419A1 (en) 2006-05-26 2007-11-29 Fox Hollow Technologies, Inc. Methods and devices for rotating an active element and an energy emitter on a catheter
US20070288036A1 (en) 2006-06-09 2007-12-13 Niranjan Seshadri Assembly for crossing a chronic total occlusion and method therefor
US20080004643A1 (en) 2006-06-30 2008-01-03 Atheromed, Inc. Atherectomy devices and methods
US20090018566A1 (en) 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
WO2008005888A2 (en) 2006-06-30 2008-01-10 Atheromed, Inc. Atherectomy devices and methods
US20080045986A1 (en) 2006-06-30 2008-02-21 Atheromed, Inc. Atherectomy devices and methods
US20090024085A1 (en) 2006-06-30 2009-01-22 Artheromed, Inc Atherectomy devices, systems, and methods
US20080004644A1 (en) 2006-06-30 2008-01-03 Atheromed, Inc. Atherectomy devices and methods
US20090018567A1 (en) 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
US20090018565A1 (en) 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
US20080004646A1 (en) 2006-06-30 2008-01-03 Atheromed, Inc. Atherectomy devices and methods
US20080004645A1 (en) 2006-06-30 2008-01-03 Atheromed, Inc. Atherectomy devices and methods
US20080015618A1 (en) 2006-07-16 2008-01-17 Elazar Sonnenschein Devices and methods for treating morbid obesity
JP2008023627A (en) 2006-07-19 2008-02-07 Denso Corp Optical gas concentration detector and manufacturing method of microstructure used therefor
US20080033396A1 (en) 2006-08-01 2008-02-07 Percutaneous Systems, Inc. Vascular sheaths and methods for their deployment
US7674253B2 (en) 2006-08-18 2010-03-09 Kensey Nash Corporation Catheter for conducting a procedure within a lumen, duct or organ of a living being
US20080058629A1 (en) 2006-08-21 2008-03-06 University Of Washington Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation
US7538886B2 (en) 2006-08-22 2009-05-26 Imalux Corporation Common path time domain optical coherence reflectometry/tomography device
US20080049234A1 (en) 2006-08-23 2008-02-28 Peter Seitz Colorimetric three-dimensional microscopy
US20090196554A1 (en) 2006-08-24 2009-08-06 Terumo Kabushiki Kaisha Coupling device, auxilliary device and adaptor fixing member
WO2008029506A1 (en) 2006-09-04 2008-03-13 School Juridical Person Kitasato Gakuen Optical coherence tomography apparatus
US7821643B2 (en) 2006-09-06 2010-10-26 Imalux Corporation Common path systems and methods for frequency domain and time domain optical coherence tomography using non-specular reference reflection and a delivering device for optical radiation with a partially optically transparent non-specular reference reflector
US20080065205A1 (en) 2006-09-11 2008-03-13 Duy Nguyen Retrievable implant and method for treatment of mitral regurgitation
US7840283B1 (en) 2006-09-21 2010-11-23 Pacesetter, Inc. Bipolar screw-in lead
US8068921B2 (en) 2006-09-29 2011-11-29 Vivant Medical, Inc. Microwave antenna assembly and method of using the same
US7824089B2 (en) 2006-10-03 2010-11-02 Alcon, Inc. Gradient index surgical illuminator
US20080103439A1 (en) 2006-10-04 2008-05-01 Pathway Medical Technologies, Inc. Interventional catheters incorporating an active aspiration system
US20080103516A1 (en) 2006-10-04 2008-05-01 Pathway Medical Technologies, Inc. Interventional catheters having cutter assemblies and differential cutting surfaces for use in such assemblies
US20080103446A1 (en) 2006-10-04 2008-05-01 Pathway Medical Technologies, Inc. Interventional catheters incorporating aspiration and/or infusion systems
US20110118660A1 (en) 2006-10-04 2011-05-19 Pathway Medical Technologies, Inc. Interventional catheters incorporating an active aspiration system
WO2008042987A2 (en) 2006-10-04 2008-04-10 Pathway Medical Technologies, Inc. Interventional catheters
US20080095421A1 (en) 2006-10-20 2008-04-24 Siemens Corporation Research, Inc. Registering 2d and 3d data using 3d ultrasound data
WO2008051951A1 (en) 2006-10-26 2008-05-02 Wilson-Cook Medical Inc. Biopsy collection device
JP2008128708A (en) 2006-11-17 2008-06-05 Fujifilm Corp Optical tomographic imaging apparatus
WO2008065600A2 (en) 2006-11-27 2008-06-05 Koninklijke Philips Electronics, N.V. System and method for fusing real-time ultrasound images with pre-acquired medical images
US20080147000A1 (en) 2006-12-13 2008-06-19 University Of Washington Catheter tip displacement mechanism
US20080146942A1 (en) 2006-12-13 2008-06-19 Ep Medsystems, Inc. Catheter Position Tracking Methods Using Fluoroscopy and Rotational Sensors
JP2008145376A (en) 2006-12-13 2008-06-26 Fujifilm Corp Optical tomographic imaging system
US20080154296A1 (en) 2006-12-22 2008-06-26 The Spectranetics Corporation Tissue Separating Systems and Methods
US20080154293A1 (en) 2006-12-22 2008-06-26 The Spectranetics Corporation Retractable Separating Systems and Methods
JP2008175698A (en) 2007-01-18 2008-07-31 Univ Of Tsukuba Image processing method and image processing apparatus of optical coherence tomography
US20080177138A1 (en) 2007-01-19 2008-07-24 Brian Courtney Scanning mechanisms for imaging probe
WO2008086613A1 (en) 2007-01-19 2008-07-24 Sunnybrook Health Sciences Centre Imaging probe with combined ultrasound and optical means of imaging
WO2008087613A2 (en) 2007-01-20 2008-07-24 Ecole Polytechnique Federale De Lausanne (Epfl) Dual beam heterodyne fourier domain optical coherence tomography
JP2008183208A (en) 2007-01-30 2008-08-14 Hoya Corp Oct probe and oct system
JP2010518900A (en) 2007-02-16 2010-06-03 ラディ・メディカル・システムズ・アクチェボラーグ Device for measuring the physiological state of the body
US20080221388A1 (en) 2007-03-09 2008-09-11 University Of Washington Side viewing optical fiber endoscope
US20080243031A1 (en) 2007-04-02 2008-10-02 University Of Washington Catheter with imaging capability acts as guidewire for cannula tools
US20080243030A1 (en) 2007-04-02 2008-10-02 University Of Washington Multifunction cannula tools
JP2008253492A (en) 2007-04-04 2008-10-23 Fujifilm Corp Tomographic image processing method, apparatus and program
US7583872B2 (en) 2007-04-05 2009-09-01 University Of Washington Compact scanning fiber device
US20080262312A1 (en) 2007-04-17 2008-10-23 University Of Washington Shadowing pipe mosaicing algorithms with application to esophageal endoscopy
US20090152664A1 (en) 2007-04-18 2009-06-18 Ethan Jacob Dukenfield Klem Materials, Systems and Methods for Optoelectronic Devices
US7952718B2 (en) 2007-05-03 2011-05-31 University Of Washington High resolution optical coherence tomography based imaging for intraluminal and interstitial use implemented with a reduced form factor
US20090292199A1 (en) 2007-06-28 2009-11-26 W.L. Gore & Associates, Inc. Catheter
WO2009006335A1 (en) 2007-06-28 2009-01-08 Gore Enterprise Holdings, Inc. Improved catheter
JP2009014751A (en) 2007-06-29 2009-01-22 Terumo Corp Optical cable and optical interference image diagnostic apparatus using the same
WO2009005779A1 (en) 2007-06-29 2009-01-08 Atheromed, Inc. Atherectomy devices, systems, and methods
US7972299B2 (en) 2007-07-09 2011-07-05 Cook Medical Technologies Llc Balloon catheter with deflation mechanism
US20090043191A1 (en) 2007-07-12 2009-02-12 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
WO2009009799A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging
US20090024084A1 (en) 2007-07-16 2009-01-22 Peritec Biosciences Ltd. Multi-lumen catheter assembly and method of providing relative motion thereto
US20090028507A1 (en) 2007-07-27 2009-01-29 Ashley Wesley Jones Fiber optic adapter with integrated shutter
WO2009023635A1 (en) 2007-08-10 2009-02-19 Board Of Regents, The University Of Texas System Forward-imaging optical coherence tomography (oct) systems and probe
WO2009024344A1 (en) 2007-08-22 2009-02-26 Carl Mahr Holding Gmbh Optical microprobe
JP2009066252A (en) 2007-09-14 2009-04-02 Hoya Corp High frequency treatment instrument for endoscope
US20090076447A1 (en) 2007-09-19 2009-03-19 Jack Casas Method and apparatus for conducting peripheral vascular disease procedures using a novel anchor balloon catheter
US20090093764A1 (en) 2007-10-08 2009-04-09 Ais Gmbh Aachen Innovative Solutions Catheter device
US9333007B2 (en) 2007-10-22 2016-05-10 Atheromed, Inc. Atherectomy devices and methods
US20100049225A1 (en) 2007-10-22 2010-02-25 Atheromed, Inc. Atherectomy devices and methods
US20090125019A1 (en) 2007-11-08 2009-05-14 Douglass Valerie L Articulatable Device for Delivering Therapeutic Energy to Tissue
US7813609B2 (en) 2007-11-12 2010-10-12 Lightlab Imaging, Inc. Imaging catheter with integrated reference reflector
US20100253949A1 (en) 2007-11-12 2010-10-07 Lightlab Imaging, Inc. Miniature Optical Elements for Fiber-Optic Beam Shaping
US20100324472A1 (en) 2007-11-14 2010-12-23 Pathway Medical Technologies, Inc. Delivery and administration of compositions using interventional catheters
US20090135280A1 (en) 2007-11-27 2009-05-28 University Of Washington Eliminating illumination crosstalk while imaging using multiple imaging devices
US20090137893A1 (en) 2007-11-27 2009-05-28 University Of Washington Adding imaging capability to distal tips of medical tools, catheters, and conduits
US8059274B2 (en) 2007-12-07 2011-11-15 The Spectranetics Corporation Low-loss polarized light diversion
US7944568B2 (en) 2007-12-27 2011-05-17 Fujifilm Corporation Method and system for producing tomographic image by optical tomography with processing of interference light signals
US20090221920A1 (en) 2008-01-18 2009-09-03 Boppart Stephen A Low-coherence interferometry and optical coherence tomography for image-guided surgical treatment of solid tumors
WO2009094341A2 (en) 2008-01-21 2009-07-30 The Regents Of The University Of California Endovascular optical coherence tomography device
US20090185135A1 (en) 2008-01-22 2009-07-23 Volk Donald A Real image forming eye examination lens utilizing two reflecting surfaces providing upright image
JP2009201969A (en) 2008-02-01 2009-09-10 Fujifilm Corp Oct optical probe and optical tomography imaging apparatus
US20090198125A1 (en) 2008-02-01 2009-08-06 Fujifilm Corporation Oct optical probe and optical tomography imaging apparatus
EP2090245A1 (en) 2008-02-15 2009-08-19 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US20090208143A1 (en) 2008-02-19 2009-08-20 University Of Washington Efficient automated urothelial imaging using an endoscope with tip bending
US20090216180A1 (en) 2008-02-25 2009-08-27 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
US20090244485A1 (en) 2008-03-27 2009-10-01 Walsh Alexander C Optical coherence tomography device, method, and system
US20090244547A1 (en) 2008-03-31 2009-10-01 Fujifilm Corporation Optical tomographic imaging system, tomographic image acquiring method, and optical tomographic image forming method
US20090264826A1 (en) 2008-04-21 2009-10-22 Medtronic Vascular, Inc. Needleless Catheters and Methods for True Lumen Re-Entry in Treatment of Chronic Total Occlusions and Other Disorders
US8062316B2 (en) 2008-04-23 2011-11-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US9918734B2 (en) 2008-04-23 2018-03-20 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US20180256187A1 (en) 2008-04-23 2018-09-13 Himanshu N. Patel Catheter system and method for boring through blocked vascular passages
US8361097B2 (en) 2008-04-23 2013-01-29 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US9572492B2 (en) 2008-04-23 2017-02-21 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US8002763B2 (en) 2008-04-24 2011-08-23 Medtronic Vascular, Inc. Catheter flushing mandrel
US20110060186A1 (en) 2008-04-27 2011-03-10 Alexander Quillin Tilson Biological navigation device
WO2009140617A2 (en) 2008-05-15 2009-11-19 Axsun Technologies, Inc. Oct combining probes and integrated systems
US20090284749A1 (en) 2008-05-15 2009-11-19 Axsun Technologies, Inc. OCT Combining Probes and Integrated Systems
US20090316116A1 (en) 2008-05-19 2009-12-24 University Of Washington Uw Techtransfer - Invention Licensing Scanning laser projection display for small handheld devices
JP2011521747A (en) 2008-06-02 2011-07-28 ライトラブ イメージング, インコーポレイテッド Quantitative method for obtaining tissue features from optical coherence tomography images
US20090306520A1 (en) 2008-06-02 2009-12-10 Lightlab Imaging, Inc. Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
WO2009148317A1 (en) 2008-06-05 2009-12-10 Technische Universiteit Delft Automatic catheter positioning system
CN101601581A (en) 2008-06-12 2009-12-16 奥林巴斯医疗株式会社 Biological observation apparatus and method
US20120002928A1 (en) 2008-06-20 2012-01-05 Terumo Kabushiki Kaisha Coupling device and optical imaging device
US20100004544A1 (en) 2008-07-02 2010-01-07 Masahiro Toida Optical tomographic imaging probe, and optical tomographic imaging apparatus using the same
US8313493B2 (en) 2008-07-10 2012-11-20 Cook Medical Technologies Llc Hydraulic guidewire advancement system
US20110301625A1 (en) 2008-07-25 2011-12-08 Medtronic Vascular, Inc. Hydrodynamic Thrombectomy Catheter
JP2010042182A (en) 2008-08-18 2010-02-25 Fujifilm Corp Laser treatment device
US20110058250A1 (en) 2008-08-21 2011-03-10 Nlight Photonics Corporation High power fiber amplifier with stable output
US20100080016A1 (en) 2008-09-29 2010-04-01 Olympus Corporation Light source apparatus
US20130065124A1 (en) 2008-09-29 2013-03-14 Hideaki Morishima Non-aqueous electrolyte secondary battery, electrode used for secondary battery, and method of manufacturing electrode
WO2010039464A1 (en) 2008-09-30 2010-04-08 AiHeart Medical Technologies, Inc. Systems and methods for optical viewing and therapeutic intervention in blood vessels
US20100082000A1 (en) 2008-09-30 2010-04-01 Medtronic, Inc. Catheter system with reinforced member
US20100130996A1 (en) 2008-10-13 2010-05-27 Fox Hollow Technologies, Inc. Devices and methods for manipulating a catheter shaft
WO2010056771A1 (en) 2008-11-11 2010-05-20 Shifamed Llc Low profile electrode assembly
US20100125253A1 (en) 2008-11-17 2010-05-20 Avinger Dual-tip Catheter System for Boring through Blocked Vascular Passages
US20110295148A1 (en) 2008-12-10 2011-12-01 Jean-Jacques Destoumieux Device for collecting a tissue sample from an animal
US20100217245A1 (en) 2009-02-26 2010-08-26 Prescott Anthony D Surgical Instrument Having a Magnetically Driven Detachable Tool Assembly
US20100241147A1 (en) 2009-03-23 2010-09-23 Michael Maschke Catheter and medical apparatus as well as method for assisting an intervention to remove plaque
US20180042520A1 (en) 2009-04-28 2018-02-15 Himanshu N. Patel Guidewire positioning catheter
US9642646B2 (en) 2009-04-28 2017-05-09 Avinger, Inc. Guidewire positioning catheter
US8696695B2 (en) 2009-04-28 2014-04-15 Avinger, Inc. Guidewire positioning catheter
US20100312263A1 (en) 2009-04-29 2010-12-09 Fox Hollow Technologies, Inc. Methods and devices for cutting and abrading tissue
US8632557B2 (en) 2009-05-12 2014-01-21 Cardiovascular Systems, Inc. Rotational atherectomy device and method to improve abrading efficiency
US20100292721A1 (en) 2009-05-14 2010-11-18 Fox Hollow Technologies, Inc. Easily cleaned atherectomy catheters and methods of use
US20100292539A1 (en) 2009-05-15 2010-11-18 Medizinisches Laserzentrum Luebeck Gmbh Forward Scanning OCT Endoscope
US9788790B2 (en) 2009-05-28 2017-10-17 Avinger, Inc. Optical coherence tomography for biological imaging
US20180049700A1 (en) 2009-05-28 2018-02-22 John F. Black Optical coherence tomography for biological imaging
US20100317973A1 (en) 2009-06-12 2010-12-16 Henry Nita Device and method for vascular re-entry
US20120277730A1 (en) 2009-06-24 2012-11-01 Amr Salahieh Steerable Delivery Sheaths
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US10052125B2 (en) 2009-07-01 2018-08-21 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US20130296695A1 (en) 2009-07-01 2013-11-07 Maegan K. Spencer Catheter-based off-axis optical coherence tomography imaging system
US9498600B2 (en) 2009-07-01 2016-11-22 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
JP2012533353A (en) 2009-07-14 2012-12-27 ザ ジェネラル ホスピタル コーポレイション Apparatus, system and method for measuring flow and pressure inside a blood vessel
US20110028977A1 (en) 2009-07-31 2011-02-03 Zimmer, Gmbh Orthopaedic reamer
US20110023617A1 (en) 2009-08-03 2011-02-03 University Of Maryland Ultra-miniature fiber-optic pressure sensor system and method of fabrication
US20110040238A1 (en) 2009-08-12 2011-02-17 Pathway Medical Technologies, Inc. Interventional catheter assemblies incorporating guide wire brake and management systems
US20110106004A1 (en) 2009-08-12 2011-05-05 Pathway Medical Technologies, Inc. Systems and methods for operating interventional catheters using a common operating console and adaptive interface components
US20110071401A1 (en) 2009-09-24 2011-03-24 Boston Scientific Scimed, Inc. Systems and methods for making and using a stepper motor for an intravascular ultrasound imaging system
WO2011044387A2 (en) 2009-10-07 2011-04-14 The Board Of Regents Of The University Of Texas System Pressure-sensing medical devices, systems and methods, and methods of forming medical devices
US20110092955A1 (en) 2009-10-07 2011-04-21 Purdy Phillip D Pressure-Sensing Medical Devices, Systems and Methods, and Methods of Forming Medical Devices
WO2011062087A1 (en) 2009-11-17 2011-05-26 コニカミノルタオプト株式会社 Probe for optical tomographic image measurement device and method for adjusting probe
US20110130777A1 (en) 2009-12-02 2011-06-02 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
JP2013512736A (en) 2009-12-02 2013-04-18 タイコ ヘルスケア グループ リミテッド パートナーシップ Method and apparatus for cutting tissue
US8548571B2 (en) 2009-12-08 2013-10-01 Avinger, Inc. Devices and methods for predicting and preventing restenosis
US20140005534A1 (en) 2009-12-08 2014-01-02 Xuanmin He Devices and methods for predicting and preventing restenosis
US20110144673A1 (en) 2009-12-11 2011-06-16 Fox Hollow Technologies, Inc. Material removal device having improved material capture efficiency and methods of use
US20120238869A1 (en) 2010-01-19 2012-09-20 Lightlab Imaging, Inc. Intravascular Optical Coherence Tomography System with Pressure Monitoring Interface and Accessories
US20110208222A1 (en) 2010-02-25 2011-08-25 Boris Ljahnicky System and Method for the Treatment of Occluded Vessels
US20110264125A1 (en) 2010-02-26 2011-10-27 Wilson Fletcher T Systems and methods for endoluminal valve creation
US20110257478A1 (en) 2010-04-20 2011-10-20 Spinewindow Llc Method and apparatus for performing retro peritoneal dissection
JP2013524930A (en) 2010-04-22 2013-06-20 ライトラブ イメージング, インコーポレイテッド Small optical elements for optical fiber beam shaping
US20110270187A1 (en) 2010-04-28 2011-11-03 Nelson Brian D Body portal anchors and systems
US20120004506A1 (en) 2010-06-03 2012-01-05 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US9119662B2 (en) 2010-06-14 2015-09-01 Covidien Lp Material removal device and method of use
US20110319905A1 (en) 2010-06-23 2011-12-29 Palme Robert A Multiple function vascular device
US20150208922A1 (en) 2010-07-01 2015-07-30 Avinger,Inc Balloon atherectomy catheters with imaging
US9345510B2 (en) 2010-07-01 2016-05-24 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US20160262791A1 (en) 2010-07-01 2016-09-15 Himanshu N. Patel Atherectomy catheters with longitudinally displaceable drive shafts
US20200060718A1 (en) 2010-07-01 2020-02-27 Avinger, Inc. Atherectomy catheter
US20130035692A1 (en) 2010-10-06 2013-02-07 Peter Klindt Sorensen System for use in tissue repair
US20120136350A1 (en) 2010-10-21 2012-05-31 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
WO2012057940A1 (en) 2010-10-28 2012-05-03 Boston Scientific Scimed, Inc. Systems and methods for reducing non-uniform rotation distortion in ultrasound images
WO2012061935A1 (en) 2010-11-09 2012-05-18 Opsens Inc. Guidewire with internal pressure sensor
US20120123352A1 (en) 2010-11-11 2012-05-17 Tyco Healthcare Group Lp Flexible debulking catheters with imaging and methods of use and manufacture
JP2012143558A (en) 2011-01-10 2012-08-02 Rex Medical Lp Rotational thrombectomy wire
US20140046250A1 (en) 2011-03-15 2014-02-13 Barts And The London Nhs Trust Steerable element for use in surgery
WO2012123737A1 (en) 2011-03-15 2012-09-20 Barts And The London Nhs Trust Steerable element for use in surgery
US8644913B2 (en) 2011-03-28 2014-02-04 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US20170238808A1 (en) 2011-03-28 2017-08-24 John B. Simpson Occlusion-crossing devices, imaging, and atherectomy devices
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US20120259337A1 (en) 2011-04-07 2012-10-11 Synthes Usa, Llc Surgical drill instrument with motor and locking mechanism to receive an attachment and a cutting burr
JP2012229976A (en) 2011-04-26 2012-11-22 Hoya Corp Optical scanning probe
US20120289971A1 (en) 2011-05-11 2012-11-15 Merit Medical Systems, Inc. Multiple lumen retrieval device and method of using
WO2012166332A1 (en) 2011-05-27 2012-12-06 Lightlab Imaging, Inc. Optical coherence tomography and pressure based systems and methods
US20140371718A1 (en) 2011-06-30 2014-12-18 The Spectranetics Corporation Reentry cathether and method thereof
US20130287282A1 (en) 2011-08-18 2013-10-31 Toshiba Medical Systems Corporation Image processing display device and an image processing display program
WO2013033490A1 (en) 2011-08-31 2013-03-07 Volcano Corporation Rotational imaging systems with stabilizers
US20130223798A1 (en) 2011-08-31 2013-08-29 Robert K. Jenner Optical-electrical rotary joint and methods of use
US20130072787A1 (en) 2011-09-16 2013-03-21 Translucent Medical, Inc. System and method for virtually tracking a surgical tool on a movable display
CN103027727A (en) 2011-09-30 2013-04-10 泰科保健集团有限合伙公司 Rotating occlusion treatment system
US9345511B2 (en) 2011-10-13 2016-05-24 Atheromed, Inc. Atherectomy apparatus, systems and methods
WO2013056262A1 (en) 2011-10-13 2013-04-18 Atheromed, Inc. Atherectomy apparatus, systems and methods
US20130096589A1 (en) 2011-10-17 2013-04-18 Maegan K. Spencer Atherectomy catheters and non-contact actuation mechanism for catheters
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US20160262839A1 (en) 2011-11-11 2016-09-15 Maegan K. Spencer Occlusion-crossing devices, atherectomy devices, and imaging
US9351757B2 (en) 2012-01-17 2016-05-31 Covidien Lp Material removal device and method of use
US20130211221A1 (en) 2012-02-08 2013-08-15 Imricor Medical Systems, Inc. System and method for identifying and communicating with an interventional medical device
US20130223801A1 (en) 2012-02-23 2013-08-29 Venkata Adiseshaiah Bhagavatula Stub lens assemblies for use in optical coherence tomography systems
US20150025310A1 (en) 2012-03-07 2015-01-22 Oi Medical Limited Medical applicator
US20130255069A1 (en) 2012-03-28 2013-10-03 Yoshihiro Higashi Method for manufacturing pressure sensing device
US20130266259A1 (en) 2012-03-28 2013-10-10 Corning Incorporated Monolithic beam-shaping optical systems and methods for an oct probe
US20150141816A1 (en) 2012-05-14 2015-05-21 Avinger, Inc. Atherectomy catheters with imaging
US20170238803A1 (en) 2012-05-14 2017-08-24 Manish Kankaria Optical coherence tomography with graded index fiber for biological imaging
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US20160338582A1 (en) 2012-05-14 2016-11-24 Brian Y. Tachibana Atherectomy catheter drive assemblies
US9345398B2 (en) 2012-05-14 2016-05-24 Avinger, Inc. Atherectomy catheter drive assemblies
US20130317519A1 (en) 2012-05-25 2013-11-28 Hansen Medical, Inc. Low friction instrument driver interface for robotic systems
US20130325003A1 (en) 2012-05-31 2013-12-05 Tyco Healthcare Group Lp Electro-mechanical intravascular device
US20150320975A1 (en) 2012-09-06 2015-11-12 Avinger, Inc. Re-entry stylet for catheter
US10406316B2 (en) 2012-09-13 2019-09-10 Covidien Lp Cleaning device for medical instrument and method of use
US9579157B2 (en) 2012-09-13 2017-02-28 Covidien Lp Cleaning device for medical instrument and method of use
US20140128893A1 (en) 2012-11-08 2014-05-08 Covidien Lp Tissue-removing catheter with rotatable cutter
US20140222042A1 (en) 2012-11-08 2014-08-07 Covidien Lp Tissue-Removing Catheter Including Operational Control Mechanism
JP2015533584A (en) 2012-11-08 2015-11-26 コヴィディエン リミテッド パートナーシップ Tissue removal catheter including motion control mechanism
WO2014077870A1 (en) 2012-11-19 2014-05-22 Lightlab Imaging, Inc. Multimodel imaging systems, probes and methods
US20140222047A1 (en) 2012-12-12 2014-08-07 Covidien Lp Tissue-Removing Catheter Including Urging Mechanism
WO2014093148A2 (en) 2012-12-12 2014-06-19 Covidien Lp Tissue-removing catheter for body lumen
JP2016508758A (en) 2012-12-21 2016-03-24 ヴォルカノ コーポレイションVolcano Corporation Display control for multi-sensor medical devices
US20140187949A1 (en) 2012-12-31 2014-07-03 Intuitive Surgical Operations, Inc. Systems and Methods For Interventional Procedure Planning
CN104968285A (en) 2013-01-07 2015-10-07 塔尔雅格医疗有限公司 Expandable atherectomy device
US20140275996A1 (en) 2013-03-12 2014-09-18 Volcano Corporation Systems and methods for constructing an image of a body structure
US20160008025A1 (en) 2013-03-15 2016-01-14 Avinger, Inc. Tissue collection device for catheter
US20180256039A1 (en) 2013-03-15 2018-09-13 Peter H. Smith Chronic total occlusion crossing devices with imaging
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US20150164530A1 (en) 2013-03-15 2015-06-18 The Spectranetics Corporation Multiple configuration surgical cutting device
US20160038030A1 (en) 2013-03-15 2016-02-11 Avinger, Inc. Optical pressure sensor assembly
US20140291985A1 (en) 2013-03-28 2014-10-02 Covidien Lp Snap connection for two tubes
US20140343410A1 (en) 2013-05-17 2014-11-20 Benedikt Graf Determining angular orientation for imaging
US20160144155A1 (en) 2013-07-01 2016-05-26 Avinger, Inc. Occlusion sheath for imaging catheter
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US20150036146A1 (en) 2013-07-31 2015-02-05 Corning Incorporated Oct probes and oct optical probe component for use therein
WO2015074018A1 (en) 2013-11-18 2015-05-21 Volcano Corporation Tracking an intraluminal catheter
US20150146211A1 (en) 2013-11-27 2015-05-28 Corning Incorporated Optical coherence tomography probe
WO2015101747A1 (en) 2013-12-31 2015-07-09 Inria Institut National De Recherche En Informatique Et En Automatique System and method for monitoring the movement of a medical instrument in the body of a subject
US20170065295A1 (en) 2014-02-06 2017-03-09 Himanshu N. Patel Atherectomy catheters and occlusion crossing devices
US20170273711A1 (en) 2014-02-06 2017-09-28 John B. Simpson Atherectomy catheters devices having multi-channel bushings
US9592075B2 (en) 2014-02-06 2017-03-14 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
WO2015120146A1 (en) 2014-02-06 2015-08-13 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
WO2015165736A1 (en) 2014-04-29 2015-11-05 Koninklijke Philips N.V. Device for determining a specific position of a catheter
EP2942028A1 (en) 2014-05-05 2015-11-11 Covidien LP End-effector force measurement drive circuit
US10213224B2 (en) 2014-06-27 2019-02-26 Covidien Lp Cleaning device for catheter and catheter including the same
US20180146978A1 (en) 2014-07-08 2018-05-31 Avinger, Inc. High speed chronic total occlusion crossing devices
US10314667B2 (en) 2015-03-25 2019-06-11 Covidien Lp Cleaning device for cleaning medical instrument
US20160310700A1 (en) 2015-04-23 2016-10-27 Medtronic, Inc. Assemblies and methods for deflectable shaft catheters
US20160354110A1 (en) 2015-06-08 2016-12-08 Covidien Lp Tissue-removing catheter, tissue-removing element, and method of making same
US20160354109A1 (en) 2015-06-08 2016-12-08 Covidien Lp Tissue-removing catheter, tissue-removing element, and method of making same
US20180364024A1 (en) 2015-06-17 2018-12-20 Corning Incorporated Beam-shaping elements for optical coherence tomography probes
US20180207417A1 (en) 2015-07-06 2018-07-26 Avinger, Inc. Self-alignment mechanism for imaging catheter and drive assembly
WO2017007853A1 (en) 2015-07-06 2017-01-12 Avinger, Inc. Self-alignment mechanism for imaging catheter and drive assembly
US20180192880A1 (en) 2015-07-13 2018-07-12 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US20170172666A1 (en) 2015-12-18 2017-06-22 Biosense Webster (Israel) Ltd. Using Force Sensor to Give Angle of Ultrasound Beam
WO2017132247A1 (en) 2016-01-25 2017-08-03 Avinger, Inc. Oct imaging catheter with lag correction
WO2018094041A1 (en) 2016-11-16 2018-05-24 Avinger, Inc. Methods, systems and apparatuses for displaying real-time catheter position
US20190313941A1 (en) 2016-11-16 2019-10-17 Avinger, Inc. Methods, systems and apparatuses for displaying real-time catheter position
US20180200488A1 (en) 2017-01-17 2018-07-19 Medtronic, Inc. Shuttle apparatus and associated systems and methods
US20210059713A1 (en) 2018-04-19 2021-03-04 Avinger, Inc. Occlusion-crossing devices

Non-Patent Citations (38)

* Cited by examiner, † Cited by third party
Title
Aziz et al.; Chronic total occlusions—a stiff challege requiring a major breakthrough: is there light at the end of the tunnel?; Heart; vol. 91; suppl. III; pp. 42-48; Jun. 2005.
Bayer Material Science: ; Snap-Fit Joints for Plastics; 26 pages; retrieved from the Internet: ( https://web.archive.org/web/20121119232733if_/http://fab.cba.mit.edu:80/classes/S62.12/people/vernelle.noel/Plastic_Snap_fit_design.pdf) on Sep. 26, 2018.
Black et al.; U.S. Appl. No. 16/506,851 entitled "Optical coherence tomography for biological imaging," filed Jul. 9, 2019.
Choma et al.; Sensitivity advantage of swept source and fourier domain optical coherence tomography; Optics Express; 11(18); pp. 2183-2189; Sep. 8, 2003.
Christensen; U.S. Appl. No. 16/069,545 entitled "OCT imaging catheter with lag correction," filed Jul. 12, 2018.
De Boer et al.; Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography; Optics Letters; 28(21); pp. 2067-2069; Nov. 2003.
Emkey et al.; Analysis and evaluation of graded-index fiber-lenses; Journal of Lightwave Technology; vol. LT-5; No. 9; pp. 1156-1164; Sep. 1987.
Gonzalo et al.; Optical coherence tomography patterns of stent restenosis; Am. Heart J.; 158(2); pp. 284-293; Aug. 2009.
Han et al.; In situ Frog Retina Imaging Using Common-Path OCT with a Gold-Coated Bare Fiber Probe; CFM6; San Jose, California; CLEO, May 4, 2008; 2 pages.
Kankaria; U.S. Appl. No. 17/209,162 entitled "Optical coherence tomography with graded index fiber for biological imaging," filed Mar. 22, 2021.
Leitgeb et al.; Performance of fourier domain vs time domain optical coherence tomography; Optics Express; 11(8); pp. 889-894; Apr. 21, 2003.
Linares et al.; Arbitrary single-mode coupling by tapered and nontapered grin fiber lenses; Applied Optics; vol. 29; No. 28; pp. 4003-4007; Oct. 1, 1990.
Merriam Webster; Proximal (Definition); 10 pages; retrieved from the internet (https://www.merriam-webster.com/dictionary/proximal) on Jun. 9, 2021.
Muller et al.; Time-gated infrared fourier-domain optical coherence tomography; CFM5; San Jose, California; CLEO May 4, 2008; 2 pages.
Newhauser et al.; U.S. Appl. No. 15/954,407 entitled "Occlusion-crossing devices," filed Apr. 16, 2018.
Newhauser et al.; U.S. Appl. No. 17/209,168 entitled "Occlusion-crossing devices," filed Mar. 22, 2021.
Patel et al., U.S. Appl. No. 16/310,470 entitled "Atherectomy catheter with shapeable distal tip," filed Dec. 17, 2019.
Patel et al.; U.S. Appl. No. 16/148,246 entitled "Atherectomy catheter with serrated cutter," filed Oct. 1, 2018.
Patel et al.; U.S. Appl. No. 16/516,093 entitled "High speed chronic total occlusion crossing devices," filed Jul. 18, 2019.
Patel et al.; U.S. Appl. No. 16/681,807 entitled "Atherectomy catheters and occlusion crossing devices," filed Nov. 12, 2019.
Patel et al.; U.S. Appl. No. 16/801,047 entitled "Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters," filed Feb. 25, 2020.
Rollins et al.; Optimal interferometer designs for optical coherence tomography; Optics Letters; 24(21); pp. 1484-1486; Nov. 1999.
Rosenthal et al.; U.S. Appl. No. 16/105,743 entitled "Atherectomy catheter with laterally-displaceable tip," filed Aug. 20, 2018.
Schmitt et al.; A new rotational thrombectomy catheter: System design and first clinical esperiences; Cardiovascular and Interventional Radiology; Sprinver-Verlag; 22(6); pp. 504-509; Nov. 1, 1999.
Sharma et al.; Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography; vol. 78; 113102; 5 pages; Nov. 6, 2007.
Sharma et al.; Optical coherence tomography based on an all-fiber autocorrelator using probe-end reflection as reference; CWJ13; San Francisco, California; CLEO May 16, 2004; 4 pages.
Shinkle et al.; Evaluation of stent placement and outcomes with optical coherence tomography; Interv. Cardiol.; 2(4); pp. 535-543; (manuscript version, 12 pages); Aug. 2010.
Simpson et al.; U.S. Appl. No. 16/194,183 entitled "Indetification of elastic lamina to guide interventional therapy," filed Nov. 16, 2018.
Simpson et al.; U.S. Appl. No. 17/075,548 entitled "Identification of elastic lamina to guide interventional therapy," filed Oct. 20, 2020.
Smith et al.; U.S. Appl. No. 16/941,310 entitled "Chronic total occlusion crossing devices with imaging," filed Jul. 28, 2020.
Smith et al.; U.S. Appl. No. 17/189,123 entitled "Optical pressure sensor assembly," filed Mar. 1, 2021.
Spencer et al.; U.S. Appl. No. 16/943,446 entitled "Catheter-based off-axis optical coherence tomography imaging system," filed Jul. 30, 2020.
Stamper et al.; Plaque characterization with optical coherence tomography. Journal of the American College of Cardiology. 47(8); pp. 69-79; Apr. 18, 2006.
Suparno et al.; Light scattering with single-mode fiber collimators; Applied Optics; vol. 33; No. 30; pp. 7200-7205; Oct. 20, 1994.
Tachibana et al.; U.S. Appl. No. 16/372,112 entitled "Atherectomy catheter drive assemblies," filed Apr. 1, 2019.
Tanaka et al.; Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography; Journal of Biomedical Optics; 15(1); pp. (011104-1)-(011104-8); Jan.-Feb. 2010.
Wang et al.; Common-path endoscopic Fourier domain OCT with a reference Michelson interferometer; Proceedings of the SPIE; vol. 7566; pp. 75660L-75660L-7; Jan. 2010.
Wikipedia; Hinge; 4 pages; retrieved from the internet (https://en.wikipedia.org/w/index.php?title=Hinge&oldid=479569345) on Jun. 9, 2021.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12089868B2 (en) 2009-07-01 2024-09-17 Avinger, Inc. Methods of using atherectomy catheter with deflectable distal tip
US11974830B2 (en) 2015-07-13 2024-05-07 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11957376B2 (en) 2016-04-01 2024-04-16 Avinger, Inc. Atherectomy catheter with serrated cutter
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices

Also Published As

Publication number Publication date
WO2017210466A1 (en) 2017-12-07
EP3463123A4 (en) 2020-01-08
US20200323553A1 (en) 2020-10-15
US20220273336A1 (en) 2022-09-01
CN109475368A (en) 2019-03-15
JP2019518543A (en) 2019-07-04
EP3463123A1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
US20220273336A1 (en) Catheter device with detachable distal end
US11957376B2 (en) Atherectomy catheter with serrated cutter
CN109996581B (en) Methods and systems for rapid retrieval of transcatheter heart valve delivery systems
AU2018278184B2 (en) Coupling devices for surgical instruments and related methods
US8257386B2 (en) Surgical instrument
JP6280041B2 (en) Introducer sheath assembly with locking dilator
EP2211758B1 (en) Guidewire stop
EP3041423B1 (en) Spinal rod persuader
EP0279957B1 (en) Surgical knife
EP2958520B1 (en) Transapical delivery system
JP2016107091A (en) Loading unit attachment band for surgical stapling instrument
US11744628B2 (en) Instruments and related methods for breaking reduction tabs
CN115697223A (en) Lockless obturator with interference fit feature
JP2019534123A (en) Surgical introducer with guidance system receptacle
CN113966189A (en) Steerable instrument including separable parts
JP6074503B2 (en) Holder and medical instrument
JP6511511B2 (en) Reusable Delivery Device
US20220226027A1 (en) Interspinous implant insertion instrument with wing actuation tool
US20210386324A1 (en) Surgical sizer sound
US20230364387A1 (en) Advanced 3-Way Steering
WO2024134276A1 (en) Device for removal of kidney stones

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

AS Assignment

Owner name: AVINGER, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FERNANDEZ, ANTHONY J.;NEWHAUSER, RICHARD R.;PATEL, HIMANSHU N.;SIGNING DATES FROM 20200727 TO 20211206;REEL/FRAME:058512/0006

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE