JPH0371115A - Optical circuit for light amplification - Google Patents
Optical circuit for light amplificationInfo
- Publication number
- JPH0371115A JPH0371115A JP20693789A JP20693789A JPH0371115A JP H0371115 A JPH0371115 A JP H0371115A JP 20693789 A JP20693789 A JP 20693789A JP 20693789 A JP20693789 A JP 20693789A JP H0371115 A JPH0371115 A JP H0371115A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- signal light
- light
- waveguide
- pump light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 78
- 230000003321 amplification Effects 0.000 title claims description 24
- 238000003199 nucleic acid amplification method Methods 0.000 title claims description 24
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000011521 glass Substances 0.000 claims description 13
- 238000005253 cladding Methods 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 27
- 239000013307 optical fiber Substances 0.000 abstract description 26
- 230000008878 coupling Effects 0.000 abstract description 7
- 238000010168 coupling process Methods 0.000 abstract description 7
- 238000005859 coupling reaction Methods 0.000 abstract description 7
- 230000000644 propagated effect Effects 0.000 abstract description 3
- 230000010354 integration Effects 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000010453 quartz Substances 0.000 description 5
- 238000005773 Enders reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、光増幅器を構成する光学部品に関するもので
あり、詳しくは、光通信分野において重要な1.3μm
帯および1.5μm帯における信号光を増幅する光回路
の構造に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to optical components constituting optical amplifiers.
This invention relates to the structure of an optical circuit that amplifies signal light in the band and 1.5 μm band.
(従来の技術)
最近、Er添加石英系光ファイバを用いた光増幅が1.
5μm帯で非常に高効率で動作することが明らかにされ
た。これは、Erが1.5 μmに有するレーザ発光を
利用したもので、Er添加光ファイバを伝搬する1、5
μm帯の信号光を、同時に入射したポンプ光により光増
幅するものである。この場合、ポンプ光にはErの吸収
に対応したものを用い、Erのエネルギー分布を反転分
布に変えて光増幅を生じさせる。(Prior Art) Recently, optical amplification using an Er-doped silica optical fiber has been developed.
It was revealed that it operates with extremely high efficiency in the 5 μm band. This utilizes the laser emission that Er has at 1.5 μm, and it propagates through an Er-doped optical fiber.
A signal light in the μm band is optically amplified by simultaneously incident pump light. In this case, a pump light compatible with absorption of Er is used, and the energy distribution of Er is changed to population inversion to cause optical amplification.
光ファイバを用いた光増幅器は、半導体レーザを増幅媒
体として用いた光増幅器と比較して、伝送用光ファイバ
と増幅用光ファイバがほぼ同−成分、同一コア径を有す
るので、結合損失がほとんどないなどの利点がある。Compared to optical amplifiers using semiconductor lasers as the amplification medium, optical amplifiers using optical fibers have almost the same components and core diameters as the transmission optical fiber and the amplification optical fiber, so there is almost no coupling loss. There are advantages such as:
Er添加光ファイバを用いた光増幅器の具体的な構成を
、第4図に示す。第4図において、■はポンプ用の半導
体レーザ(LD) 、2は信号光の光源である1、54
μmのLD、3は伝送用単一モード光ファイバ、4,4
aは誘電体多層膜旦う−で、1.54μmで反射率が1
00%、ポンプ光の波長で透過率が100%のものであ
る。5は光検出器(PD) 、6.6a。A specific configuration of an optical amplifier using an Er-doped optical fiber is shown in FIG. In Fig. 4, ■ is a semiconductor laser (LD) for pumping, 2 is a light source of signal light, 1, 54
μm LD, 3 is single mode optical fiber for transmission, 4,4
A is a dielectric multilayer film with a reflectance of 1 at 1.54 μm.
00%, and the transmittance is 100% at the wavelength of the pump light. 5 is a photodetector (PD), 6.6a.
6b、 6c、 6dはレンズ、7はEr添加光ファイ
バである。第4図に示す構成の光増幅器を動作させるに
は、ポンプ光1と光フアイバ3を伝搬した信号光を誘電
体旦う−4を介して希土類添加光ファイハフに入射させ
る。光ファイハフを伝搬したポンプ光と信号光は誘電体
ミラー4aで分離され、信号光強度は光検出器5で測定
される。この系でポンプ光強度を増加させていくと信号
光の増幅が始まる。6b, 6c, and 6d are lenses, and 7 is an Er-doped optical fiber. In order to operate the optical amplifier having the configuration shown in FIG. 4, the pump light 1 and the signal light propagated through the optical fiber 3 are made to enter the rare earth-doped optical fiber through the dielectric layer 4. The pump light and signal light propagated through the optical fiber are separated by a dielectric mirror 4a, and the signal light intensity is measured by a photodetector 5. When the pump light intensity is increased in this system, the signal light begins to be amplified.
ポンプ光として用いることができる1、Dにば、fir
の吸収に合わせて波長0.98μmまたは1.48μm
のものが可能である。1, D, fir which can be used as pump light
wavelength 0.98μm or 1.48μm according to the absorption of
is possible.
以」二の構成におUる問題点は、実際に伝送路に光増幅
器を導入して使用する際に、レンスやミラーなどの光学
部品を用いているので、コンパクトにまとめることが困
難であること、また衝撃、温度変化などの影響で光学軸
がずれ易いことなどであった。The problem with the second configuration is that optical components such as lenses and mirrors are used when the optical amplifier is actually introduced into the transmission line, so it is difficult to make it compact. Furthermore, the optical axis was easily misaligned due to impacts, temperature changes, etc.
(発明が解決しようとする課B)
本発明は、希土類添加光導波路を用いた光増幅器を構成
するにあたって、集積化と安定した動作を可能にする光
増幅用光回路の構造を提供することにある。(Problem B to be Solved by the Invention) The present invention provides a structure of an optical circuit for optical amplification that enables integration and stable operation when configuring an optical amplifier using a rare earth-doped optical waveguide. be.
(課題を解決するための手段)
本発明の光増幅用光回路は、Siなどの基板上に形成し
た平面型石英系ガラス導波路を用いて増幅媒体と合分波
用光回路を一体化して形成した構成とする。ずなわち光
を伝搬するコア部と該コア部の周りの屈折率の低いクラ
ッド層からなるガラス光導波路が平面基板」二に作製さ
れた光増幅用光回路において、希土類元素NdまたはE
rを添加した光導波路を少なくとも一部に有し、かつ2
波以上の光を合分波する光回路を2個以上有する。(Means for Solving the Problems) The optical circuit for optical amplification of the present invention integrates an amplification medium and an optical circuit for multiplexing and demultiplexing using a planar silica-based glass waveguide formed on a substrate such as Si. The configuration is as follows. In an optical amplification circuit in which a glass optical waveguide consisting of a core portion through which light propagates and a cladding layer with a low refractive index surrounding the core portion is fabricated on a flat substrate, rare earth elements Nd or E are used.
having at least a part of the optical waveguide doped with r, and 2
It has two or more optical circuits that multiplex and demultiplex light that is larger than waves.
本発明によれば、従来ポンプ光と信号光を合分波する光
学部品と希土類添加単一モート・光ファイバにより構成
されていた光増幅器を、同一基板上に集積化することが
可能で、衝撃等により光軸のずれが生しにくいなどの利
点がある。According to the present invention, it is possible to integrate on the same substrate an optical amplifier, which was conventionally composed of optical components for multiplexing and demultiplexing pump light and signal light, and a rare earth-doped single moat optical fiber. This has the advantage that optical axis misalignment is less likely to occur due to such factors.
またこの方法によれば、LSI工程とほぼ同様な手法に
より、光増幅器を構成することができるので、大量生産
が可能であり、かつ安価な光増幅器を製作することがで
きる。さらに同し材料でできている伝送用光ファイバと
石英系導波路の結合損失は0.5dB以下と非常に低損
失であり、温度変化等に対しても安定である。Furthermore, according to this method, the optical amplifier can be constructed using a technique substantially similar to the LSI process, so that mass production is possible and the optical amplifier can be manufactured at low cost. Furthermore, the coupling loss between the transmission optical fiber and the silica waveguide made of the same material is very low, 0.5 dB or less, and is stable against temperature changes.
以下に、希土類添加導波路における光増幅特性を検討す
る。導波路を伝搬する信号光とポンプ光強度をそれぞれ
Ts 、Ipとすると、その変化は次式で表わされる。The optical amplification characteristics of the rare earth doped waveguide will be discussed below. If the signal light and pump light intensities propagating through the waveguide are respectively Ts and Ip, their changes are expressed by the following equations.
I、h=hνp/εσ9τ (1)ip−
rp / Ith (2)il
−7Is /ε1 t h (3)
σ2ν。I, h=hνp/εσ9τ (1) ip−
rp/Ith (2)il
-7Is/ε1th (3)
σ2ν.
ここで、hニブランク定数
ν9 :ポンプ光周波数
νS :信号光周波数
σp :ポンプ光吸収断面積
σ5 :信号光吸収断面積
εニブランチ比
τ:けい光寿命
ρ:Er”+濃度
2:導波路の長さ
弐(1)〜(6)に基づいて計算した結果を第5図に示
す。第5図では、励起波長0.98μm 、 1.47
μm、出力40n+W、コアのEr”濃度を1.8 X
10”cm−’(3500ppm)として計算した。Here, h Ni blank constant ν9: Pump light frequency νS: Signal light frequency σp: Pump light absorption cross section σ5: Signal light absorption cross section ε Ni branch ratio τ: Fluorescence lifetime ρ: Er'' + concentration 2: Waveguide length The results calculated based on (1) to (6) are shown in Fig. 5. In Fig. 5, the excitation wavelength is 0.98 μm and 1.47 μm.
μm, output 40n+W, core Er” concentration 1.8
Calculated as 10"cm-' (3500ppm).
第5図より励起波長が0.98μmまたは1,47μm
のLDを用いて励起すれば、長さ10cmのEr添加導
波路において、約20dBの信号光の増幅ができること
がわかる。From Figure 5, the excitation wavelength is 0.98 μm or 1,47 μm.
It can be seen that if the LD is used to pump the signal light, it is possible to amplify the signal light by about 20 dB in an Er-doped waveguide with a length of 10 cm.
(実施例) 以下に図面を用いて本発明の詳細な説明する。(Example) The present invention will be described in detail below using the drawings.
実旌班上
この実施例では、St基板上にErを添加した単一モー
ト石英系ガラス導波路を作製し、ポンプ光と信号光の合
分波用回路および増幅用導波路を構成した。ガラス導波
路は光を伝搬するコア部と、このコア部の周りの屈折率
の低いクラッド層から構成されている。Practical Example In this example, a single-mode quartz-based glass waveguide doped with Er was fabricated on a St substrate, and a circuit for multiplexing and demultiplexing pump light and signal light and an amplification waveguide were constructed. A glass waveguide consists of a core portion through which light propagates, and a cladding layer with a low refractive index surrounding the core portion.
第1図はこの実施例の構造を示し、1aはポンプ光用L
D (波長1.47μm)、3aは伝送用単一モード光
ファイバ、5aは信号光検出用PD、8はEr石英系光
導波路、9は光方向性結合器をEr添加石英系光導波路
で構成したSi基板である。Si基板9は、2個の方向
性結合器(Iと■)と下側の増幅用導波路から成る。Figure 1 shows the structure of this embodiment, 1a is L for pump light.
D (wavelength 1.47 μm), 3a is a single mode optical fiber for transmission, 5a is a PD for signal light detection, 8 is an Er quartz optical waveguide, and 9 is an optical directional coupler made of an Er-doped silica optical waveguide. It is a Si substrate. The Si substrate 9 consists of two directional couplers (I and ■) and a lower amplification waveguide.
Er添加石英系先導波路を作製するには、まず、Si基
板9の上に、コア層用ガラス膜としてEr濃度3000
ppm 、膜厚8μm、比屈折率差0.7%のものを作
製した。次にLSI工程とほぼ同様なフォトリソグラフ
工程により、第1図に示ず構成の導波路(幅8μm)を
エツチングし、その後、オーバークラッドガラス膜を形
成した。基板全体の大きさは30mmX60mmであっ
た。方向性結合器では、波長1.47μmと波長1.5
4μmでのカップリング効率がそれぞれ99%と0%に
なるようにした。To fabricate an Er-doped quartz-based guiding waveguide, first, a glass film with an Er concentration of 3000 is deposited on the Si substrate 9 as a core layer glass film.
ppm, a film thickness of 8 μm, and a relative refractive index difference of 0.7%. Next, a waveguide (width 8 .mu.m) having a structure not shown in FIG. 1 was etched by a photolithography process similar to the LSI process, and then an overclad glass film was formed. The overall size of the substrate was 30 mm x 60 mm. In the directional coupler, the wavelength is 1.47μm and the wavelength is 1.5μm.
The coupling efficiency at 4 μm was set to 99% and 0%, respectively.
第1図の光回路を用いた光増幅器を動作するには、ポン
プ光用LD Iaからの出力および光フアイバ3aを伝
搬してきた信号光(1,55μm)を、それぞれ方向性
結合器IのボートAとBに入射する。In order to operate the optical amplifier using the optical circuit shown in FIG. incident on A and B.
ポンプ光および信号光は、それぞれ方向性結合器のカッ
プリング効率が99%と0%であるから、両者ともポー
)Cに伝搬する。従って、信号光とポンプ光はポートC
以降のEr添加光導波路を伝搬し、その間に信号光は増
幅される。その後、方向性結合器■において方向性結合
器Iの場合と同じ原理でポンプ光と信号光は分離され、
信号光は光検出器5aにより測定される。Since the coupling efficiency of the directional coupler for the pump light and the signal light is 99% and 0%, respectively, both propagate to the port. Therefore, the signal light and pump light are connected to port C.
The signal light propagates through the subsequent Er-doped optical waveguide, during which time the signal light is amplified. After that, the pump light and signal light are separated in the directional coupler ■ using the same principle as in the case of the directional coupler I.
The signal light is measured by a photodetector 5a.
第1図の光増幅器において、出力25mWのポンプ光用
LDを用いて増幅実験を行ったところ、波長1.54μ
mの信号光を5dB増幅することができ、小型簡易型光
増幅器として応用範囲が広いことが確認された。When we conducted an amplification experiment using the optical amplifier shown in Figure 1 using a pump light LD with an output of 25 mW, we found that the wavelength was 1.54 μm.
It was confirmed that it was possible to amplify signal light of m by 5 dB, and that it has a wide range of applications as a small and simple optical amplifier.
失豊斑茎
この実施例では、実施例1と同しくErを添加した石英
系ガラス導波路を用いて同一基板上でポンプ光と信号光
の合分波用光回路および増幅用導波路を構成した。ただ
し、ポンプ光と信号光の合分波用に方向性結合器ではな
く、マツハツエンダ−型干渉計を用いた。In this example, an optical circuit for multiplexing and demultiplexing pump light and signal light and an amplification waveguide are constructed on the same substrate using a quartz-based glass waveguide doped with Er as in Example 1. did. However, instead of a directional coupler, a Matsuhatsu Ender interferometer was used to combine and demultiplex the pump light and signal light.
第2図はこの実施例の構造を示し、1b゛はポンプ光L
D (波長0.98μm)、3bは伝送用単一モード光
ファイバ、5bは信号光検出用PD、10はEr添加石
英系光導波路および光合分波回路を構成したSi基板で
ある。Si基板10の上に作製された光導波路は、斜線
部分内の光導波路のみがEr添加光導波路であって、斜
線部分外の光導波路ばErが添加されていない石英系光
導波路である。Figure 2 shows the structure of this embodiment, where 1b' is the pump light L.
D (wavelength: 0.98 μm), 3b is a single mode optical fiber for transmission, 5b is a PD for signal light detection, and 10 is a Si substrate that constitutes an Er-doped silica optical waveguide and an optical multiplexing/demultiplexing circuit. Of the optical waveguides fabricated on the Si substrate 10, only the optical waveguide within the shaded area is an Er-doped optical waveguide, and the optical waveguide outside the shaded area is a silica-based optical waveguide not doped with Er.
第2図に示したマツハツエンダ−型干渉計を用いて合波
する利点は、波長間隔の大きい光に関して結合率を精度
良く調節することができることである。従って、ポンプ
光と信号光として波長が0.98μmと1.54μmの
LDを用いる場合には、マツハツエンダ−型干渉計が有
利である。実際、第2図の光増幅器において、波長が0
.98μmと1.54μmでカップリング効率を、それ
ぞれ0と100%になるように調節し、出力25mWの
ポンプ光用LDにより、光ファイバを伝搬した波長1.
54μmの信号光を8dB増幅することができた。The advantage of multiplexing using the Matsuhatsu-Ender interferometer shown in FIG. 2 is that the coupling rate can be adjusted with high accuracy for light with a large wavelength interval. Therefore, when using LDs with wavelengths of 0.98 .mu.m and 1.54 .mu.m as pump light and signal light, the Matsuhatsu Ender type interferometer is advantageous. In fact, in the optical amplifier shown in Figure 2, the wavelength is 0.
.. The coupling efficiency was adjusted to 0 and 100% at 98 μm and 1.54 μm, respectively, and the wavelength 1.
It was possible to amplify 54 μm signal light by 8 dB.
実事自通史
この実施例では、高濃度Er添加単一モード光ファイバ
を石英系ガラス導波路に埋め込み、同一基板上でポンプ
光と信号光の合分波用光回路を形威し、光増幅器を構成
した。第3図はこの実施例の構造を示し、ICはポンプ
光用LD (波長1.47μm)、3cは伝送用単一モ
ード光ファイバ、5Cは信号光検出用PD、11は光合
分波回路を構成したSi基板、12は高濃度I!r添加
単一モード光ファイバである。高濃度Er添加単一モー
ド光ファイバ12をガラス導波路を構成したSi基板に
埋め込むには、フォトリソグラフィプロセスによりファ
イバ埋め込み部分をエツチングし、適当な長さの光ファ
イバを接着剤で固定した。Fact history In this example, a single mode optical fiber doped with high concentration Er is embedded in a silica-based glass waveguide, an optical circuit for multiplexing and demultiplexing pump light and signal light is formed on the same substrate, and an optical amplifier is constructed. was configured. Figure 3 shows the structure of this embodiment, where IC is a pump light LD (wavelength 1.47 μm), 3c is a single mode optical fiber for transmission, 5C is a PD for signal light detection, and 11 is an optical multiplexing/demultiplexing circuit. The constructed Si substrate 12 is a high concentration I! It is an r-doped single mode optical fiber. In order to embed the highly concentrated Er-doped single mode optical fiber 12 in the Si substrate constituting the glass waveguide, the fiber embedding portion was etched by a photolithography process, and an appropriate length of the optical fiber was fixed with adhesive.
第3図の光増幅器の動作原理は第1図の場合と同じであ
り、この光増幅器において、出力25mWのポンプ光用
LDを用いて増幅実験を行ったところ、波長1.5 μ
mの信号光を10dB増幅することができ、実施例1の
場合より増幅率を向上させることができた。The operating principle of the optical amplifier shown in Fig. 3 is the same as that shown in Fig. 1, and when an amplification experiment was conducted using this optical amplifier using a pump light LD with an output of 25 mW, it was found that the wavelength was 1.5 μm.
m signal light could be amplified by 10 dB, and the amplification factor could be improved compared to the case of Example 1.
0
なお前記実施例1〜3では、Er添加導波路を用いて1
.5μm帯の増幅器を構成したが、Er0代わりにNd
を用い0.83μmでポンプすることにより、はぼ同じ
構造の光回路で1.3μm帯の増幅をすることが可能で
ある。0 In Examples 1 to 3, the Er-doped waveguide was used to
.. A 5 μm band amplifier was constructed, but Nd was used instead of Er0.
By pumping at 0.83 .mu.m using a 1.3 .mu.m band, it is possible to amplify the 1.3 .mu.m band with an optical circuit having almost the same structure.
(発明の効果)
以上説明したように、本発明の光増幅用光回路は、1枚
の基板上にガラス導波路を用いた集積型光回路を用いて
光増幅器を構成しているので、■光ファイバを用いた場
合に比べて著しい小型化を図ることができる、
■衝撃、温度変化等による増幅特性の劣化がない、■石
英系ガラスは耐熱性、耐腐食性に優れているので、長期
安定、性に優れた光増幅器を作製することが可能である
、
などの利点がある。(Effects of the Invention) As explained above, the optical circuit for optical amplification of the present invention configures an optical amplifier using an integrated optical circuit using a glass waveguide on one substrate. Significant downsizing can be achieved compared to the case of using optical fibers, ■ No deterioration of amplification characteristics due to shock, temperature changes, etc. ■ Silica-based glass has excellent heat resistance and corrosion resistance, so it can be used for a long time. The advantages include that it is possible to create optical amplifiers with excellent stability and performance.
第1図は本発明の実施例1の光増幅用光回路の構成を示
す図、
第2図は本発明の実施例2の光増幅用光回路の構成を示
す図、
第3図は本発明の実施例3の光増幅用光回路の構成を示
す図、
第4図は従来のEr添加光ファイバを用いた光増幅器の
構成を示す図、
第5図は高濃度希土類添加導波路における信号光増幅率
の導波路長依存性(計算結果)を示す図である。
1 、 Di、 Ib、 lc−ポンプ光用1.1〕2
・・・信号光用LD
3、3a、 3b、 3c・・・伝送用量−七−ト光フ
ァイバ4.4a・・・誘電体多層膜くクー
5、5a、 5b+ 5c”’光検出器6 6a 6
b、 6c、 6d−レンズ7・・・[!r添加単一モ
ード光ファイバ8・・・Er添加石英系先導波路
9・・・光方向性結合器をEr添加石英系光導波路で構
成したSi基板
10・・・マツハツエンダ−型光合分波回路により石英
系導波路を形成したSi基板FIG. 1 is a diagram showing the configuration of an optical amplification circuit according to Embodiment 1 of the present invention, FIG. 2 is a diagram showing the configuration of an optical amplification circuit according to Embodiment 2 of the present invention, and FIG. 3 is a diagram illustrating the configuration of an optical amplification circuit according to Embodiment 2 of the present invention. 4 is a diagram showing the configuration of an optical amplifier using a conventional Er-doped optical fiber. FIG. 5 is a diagram showing the configuration of an optical amplifier using a conventional Er-doped optical fiber. FIG. 3 is a diagram showing the dependence of amplification factor on waveguide length (calculation results). 1, Di, Ib, lc-for pump light 1.1]2
...LD for signal light 3, 3a, 3b, 3c...Transmission capacity - 7-t optical fiber 4.4a...Dielectric multilayer film 5, 5a, 5b+5c'' Photodetector 6 6a 6
b, 6c, 6d-lens 7... [! R-doped single mode optical fiber 8...Er-doped silica-based leading waveguide 9...Si substrate 10 in which the optical directional coupler is constructed of an Er-doped silica-based optical waveguide...Matsuhatsu Ender-type optical multiplexing/demultiplexing circuit Si substrate with quartz waveguide formed
Claims (1)
いクラッド層からなるガラス光導波路が平面基板上に作
製された光増幅用光回路において、希土類元素Ndまた
はErを添加した光導波路を少なくとも一部に有し、か
つ2波以上の光を合分波する光回路を2個以上有するこ
とを特徴とする光増幅用光回路。1. In an optical amplification circuit in which a glass optical waveguide consisting of a core part that propagates light and a cladding layer with a low refractive index around the core part is fabricated on a flat substrate, an optical guide doped with rare earth elements Nd or Er is used. 1. An optical circuit for optical amplification, characterized in that it has a wave path in at least a portion thereof, and has two or more optical circuits for multiplexing and demultiplexing two or more waves of light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20693789A JPH0371115A (en) | 1989-08-11 | 1989-08-11 | Optical circuit for light amplification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20693789A JPH0371115A (en) | 1989-08-11 | 1989-08-11 | Optical circuit for light amplification |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0371115A true JPH0371115A (en) | 1991-03-26 |
Family
ID=16531510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20693789A Pending JPH0371115A (en) | 1989-08-11 | 1989-08-11 | Optical circuit for light amplification |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0371115A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04346603A (en) * | 1991-05-23 | 1992-12-02 | Sumitomo Electric Ind Ltd | Production of high-accuracy aluminum alloy parts |
EP0701308A1 (en) * | 1994-08-27 | 1996-03-13 | Robert Bosch Gmbh | Circuit device for an amplifying fibre |
EP0743721A1 (en) * | 1995-05-17 | 1996-11-20 | Alcatel SEL Aktiengesellschaft | Optical amplifier |
KR100245756B1 (en) * | 1995-11-29 | 2000-04-01 | 정몽규 | Engine oil cooling apparatus |
WO2001067561A3 (en) * | 2000-03-03 | 2002-01-31 | Molecular Optoelectronics Corp | Optical waveguide amplifier |
US6438304B1 (en) | 1998-07-23 | 2002-08-20 | Molecular Optoelectronics Corporation | Optical waveguide with dissimilar core and cladding materials, and light emitting device employing the same |
FR2822304A1 (en) * | 2001-03-16 | 2002-09-20 | Teem Photonics | Optical amplifier for telecommunications includes multiplexer combining pump signal with signal prior to amplification |
WO2002103419A2 (en) * | 2000-11-27 | 2002-12-27 | Photon-X, Inc. | Compact optical fiber amplifier module |
US6511571B2 (en) | 1998-07-23 | 2003-01-28 | Molecular Optoelectronics Corporation | Method for fabricating an optical waveguide |
US7164822B2 (en) | 2002-07-18 | 2007-01-16 | Oki Electric Industry Co., Ltd. | Variable optical gain control device |
WO2008108422A1 (en) * | 2007-03-07 | 2008-09-12 | Nec Corporation | Optical waveguide module |
-
1989
- 1989-08-11 JP JP20693789A patent/JPH0371115A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04346603A (en) * | 1991-05-23 | 1992-12-02 | Sumitomo Electric Ind Ltd | Production of high-accuracy aluminum alloy parts |
EP0701308A1 (en) * | 1994-08-27 | 1996-03-13 | Robert Bosch Gmbh | Circuit device for an amplifying fibre |
EP0743721A1 (en) * | 1995-05-17 | 1996-11-20 | Alcatel SEL Aktiengesellschaft | Optical amplifier |
US5726796A (en) * | 1995-05-17 | 1998-03-10 | Alcatel N.V. | Optical amplifier |
KR100245756B1 (en) * | 1995-11-29 | 2000-04-01 | 정몽규 | Engine oil cooling apparatus |
US6511571B2 (en) | 1998-07-23 | 2003-01-28 | Molecular Optoelectronics Corporation | Method for fabricating an optical waveguide |
US6438304B1 (en) | 1998-07-23 | 2002-08-20 | Molecular Optoelectronics Corporation | Optical waveguide with dissimilar core and cladding materials, and light emitting device employing the same |
WO2001067561A3 (en) * | 2000-03-03 | 2002-01-31 | Molecular Optoelectronics Corp | Optical waveguide amplifier |
US6574393B2 (en) | 2000-11-27 | 2003-06-03 | Photon-X, Inc. | Compact optical fiber amplifier module |
WO2002103419A2 (en) * | 2000-11-27 | 2002-12-27 | Photon-X, Inc. | Compact optical fiber amplifier module |
WO2002103419A3 (en) * | 2000-11-27 | 2003-03-20 | Photon X Inc | Compact optical fiber amplifier module |
US6978063B2 (en) | 2000-11-27 | 2005-12-20 | Photon-X, Llc | Compact optical fiber amplifier module |
WO2002075864A3 (en) * | 2001-03-16 | 2002-12-12 | Teem Photonics | Optical amplification structure with an integrated optical system and amplification housing integrating one such structure |
FR2822304A1 (en) * | 2001-03-16 | 2002-09-20 | Teem Photonics | Optical amplifier for telecommunications includes multiplexer combining pump signal with signal prior to amplification |
US7164822B2 (en) | 2002-07-18 | 2007-01-16 | Oki Electric Industry Co., Ltd. | Variable optical gain control device |
WO2008108422A1 (en) * | 2007-03-07 | 2008-09-12 | Nec Corporation | Optical waveguide module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3214910B2 (en) | Manufacturing method of planar waveguide optical amplifier | |
JPH0373934A (en) | Optical amplifier | |
JP4100797B2 (en) | Optical amplifier | |
JP2001066650A (en) | Article having fiber raman device | |
US6384961B2 (en) | Compact optical amplifier with integrated optical waveguide and pump source | |
JPH10284777A (en) | Optical fiber laser | |
US5128801A (en) | Integrated optical signal amplifier | |
JPH0371115A (en) | Optical circuit for light amplification | |
JP3181663B2 (en) | 1.3μm band optical amplifier | |
WO2002093704A1 (en) | Optical fiber and system containing same | |
US20050152412A1 (en) | Raman laser with improved output power and lower sensitivity to the output coupler reflectivity | |
JP2693662B2 (en) | Optical amplifier | |
JP2955780B2 (en) | Optical fiber amplifier | |
JPH07211980A (en) | Optical fiber amplifier | |
JPH01196189A (en) | Tunable optical fiber raman laser | |
US6532107B2 (en) | Optical amplifier, light source module and optical system | |
US6643058B2 (en) | Pumping method and unit for optical amplifiers | |
JP2994577B2 (en) | Optical amplifier | |
CA2469832A1 (en) | Optical amplifier with multiple wavelength pump | |
JP2788538B2 (en) | Optical amplifier | |
JPH0311322A (en) | Two-way optical amplifying transmission circuit | |
EP1220383A1 (en) | Optical pumping method and unit for optical amplifiers | |
JPS61107324A (en) | Optical fiber and optical amplifying method | |
JP2834528B2 (en) | Optical fiber amplifier parts | |
JPH0372329A (en) | Optical amplifier |