JP2008275529A - 断層画像処理方法および装置ならびにプログラム - Google Patents

断層画像処理方法および装置ならびにプログラム Download PDF

Info

Publication number
JP2008275529A
JP2008275529A JP2007121473A JP2007121473A JP2008275529A JP 2008275529 A JP2008275529 A JP 2008275529A JP 2007121473 A JP2007121473 A JP 2007121473A JP 2007121473 A JP2007121473 A JP 2007121473A JP 2008275529 A JP2008275529 A JP 2008275529A
Authority
JP
Japan
Prior art keywords
tomographic
light
sheath
signal level
tomographic information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007121473A
Other languages
English (en)
Inventor
Sadataka Akahori
貞登 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007121473A priority Critical patent/JP2008275529A/ja
Publication of JP2008275529A publication Critical patent/JP2008275529A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】光トモグラフィー計測により得られる断層画像の分解能の劣化を防止する。
【解決手段】測定光L1の走査ライン毎に干渉信号ISが取得され、この干渉信号ISを用いて測定対象Sの各深さ位置zにおける断層情報r(z)が取得される。その後、各走査ラインの断層情報r(z)の中からシース位置の信号レベルSLが検出され、シース位置の信号レベルSLが設定信号レベルSTになるような補正条件により断層情報r(z)が補正される。
【選択図】図4

Description

本発明は、OCT(Optical Coherence Tomography)計測により断層画像を生成する断層画像処理方法および装置ならびにプログラムに関するものである。
従来、生体組織の光断層画像を取得する際に、OCT計測を利用した光断層画像取得装置を用いることが提案されている。たとえば眼底や前眼部、皮膚の断層画像を取得する場合の他に、光プローブを用いる動脈血管壁の観察、内視鏡の鉗子チャンネルから光プローブを挿入する消化器管の観察など、様々な部位に応用されている。この光断層画像取得装置では、光源から射出された低コヒーレント光を測定光と参照光とに分割した後、該測定光が測定対象に照射されたときの測定対象からの反射光、もしくは後方散乱光と参照光とを合波し、該反射光と参照光との干渉光の強度に基づいて光断層画像を取得する。以下、測定対象からの反射光、後方散乱光をまとめて反射光と標記する。
上記のOCT計測には、大きくわけてTD−OCT(Time domain OCT)計測とFD(Fourier Domain)−OCT計測の2種類がある。TD−OCT(Time domain OCT)計測は、参照光の光路長を変更しながら干渉光強度を測定することにより、測定対象の深さ方向の位置(以下、深さ位置という)に対応した反射光強度分布を取得する方法である。
一方、FD(Fourier Domain)−OCT計測は、参照光と信号光の光路長は変えることなく、光のスペクトル成分毎に干渉光強度を測定し、ここで得られたスペクトル干渉強度信号を計算機にてフーリエ変換に代表される周波数解析を行うことで、深さ位置に対応した反射光強度分布を取得する方法である。TD―OCTに存在する機械的な走査が不要となることで、高速な測定が可能となる手法として、近年注目されている。FD(Fourier Domain)−OCT計測を行う装置構成で代表的なものとしては、SD−OCT(Spectral Domain OCT)装置とSS−OCT(Swept source OCT)の2種類が挙げられる(たとえば特許文献1、非特許文献1参照)。
上述したOCT計測により血管や食道など管状の測定対象の断面を観察するとき、特許文献1、2に示すように光プローブを測定対象内に挿入し、光プローブから射出された測定光が測定対象に回転走査しながら照射されることにより円環状の断層画像が取得される。ここで、光プローブは測定光を測定対象まで導波する光ファイバと、光ファイバから射出される測定光を測定対象に照射する照射光学系と、光ファイバおよび光学系を被覆するシースとを備えており、照射光学系とシースとの間には回転運動をなめらかに行うための空隙が形成されている。そして、光ファイバおよび光学系はシースに対し一体的に回転することにより、測定光が測定対象に対し回転走査しながら照射されるようになっている。
特許第3104984号 特開2004−113390号公報 Yoshiaki Yasuno, Violeta Dimitrova Madjarova and Shuichi Makita, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," OPTICS EXPRESS 2005 Vol. 13, No. 26.
ここで、測定光が測定対象に走査しながら照射されるとき、いずれの走査ラインにおいても略同一の条件により測定光が照射されるのが理想である。しかし、光源ユニットの出力変動や測定対象の揺れ等により各走査ライン間において測定条件がそれぞれ異なる場合がある。すると、走査ライン毎に各断層情報間に輝度やコントラストのぶれが生じ、断層画像の画質が劣化するという問題がある。
そこで、本発明は、OCT計測において断層画像の画質を向上させることができる断層画像処理方法および装置ならびにプログラムを提供することを目的とするものである。
本発明の断層画像処理方法は、光を射出し、射出した光を測定光と参照光とに分割し、分割した測定光をシースに被覆された光ファイバを有する光プローブ内に入射し、光プローブ内を導波した測定光がシースを透過し測定対象に走査しながら照射されたときの測定対象からの反射光と参照光とを合波し、反射光と参照光とが合波したときの干渉光を干渉信号として検出し、検出した干渉信号を用いて断層画像を生成する断層画像処理方法において、測定光の走査ライン毎に検出される干渉信号を取得し、取得した干渉信号毎に測定対象の各深さ位置における断層情報を取得し、取得した各走査ラインの断層情報の中からシース位置の信号レベルを検出し、検出したシース位置の信号レベルが設定信号レベルになるように断層情報の信号レベルを補正することを特徴とするものである。
本発明の断層画像処理装置は、光を射出し、射出した光を測定光と参照光とに分割し、分割した測定光をシースに被覆された光ファイバを有する光プローブ内に入射し、光プローブ内を導波した測定光がシースを透過し測定対象に走査しながら照射されたときの測定対象からの反射光と参照光とを合波し、反射光と参照光とが合波したときの干渉光を干渉信号として検出し、検出した干渉信号を用いて断層画像を生成する断層画像処理装置において、測定光の走査ライン毎に検出される複数の干渉信号を取得する干渉信号取得手段と、干渉信号取得手段により取得された干渉信号毎に測定対象の各深さ位置における断層情報を取得する断層情報取得手段と、断層情報取得手段により取得された各走査ラインの断層情報の中からシース位置の信号レベルを検出するシース検出手段と、シース検出手段により検出されたシース位置の信号レベルが設定信号レベルになるような補正条件により断層情報の信号レベルを補正する断層情報補正手段とを備えたことを特徴とするものである。
本発明の断層画像処理プログラムは、光を射出し、射出した光を測定光と参照光とに分割し、分割した測定光が測定対象に走査新柄照射されたときの測定対象からの反射光と参照光とを合波し、反射光と参照光とが合波したときの干渉光を干渉信号として検出したとき、コンピュータに、測定光の走査ライン毎に検出される複数の干渉信号を取得し、取得した干渉信号毎に測定対象の各深さ位置における断層情報を取得し、取得した各走査ラインの断層情報の中からシース位置の信号レベルを検出し、検出したシース位置の信号レベルが設定信号レベルになるような補正条件により断層情報を補正することを実行させることを特徴とするものである。
ここで、反射光とは、測定対象からの反射光および後方散乱光を意味する。
なお、シース検出手段は、シース位置の信号レベルを検出するものであればその手法は問わず、たとえば予めシース位置までの深さ位置を記憶しておき、記憶されている深さ位置の断層情報からシース位置の信号レベルを検出するようにしてもよいし、各走査ラインの断層情報の極大点の信号レベルをシース位置の信号レベルとして検出してもよい。
さらに、シース検出手段は、各走査ライン毎に検出されるシースの断層情報自体をシース像の信号レベルとしてもよいし、所定の走査ラインのシース位置の信号レベルを所定の走査ラインに隣接した複数の走査ライン分のシース位置の断層情報を用いて算出するものであってもよい。さらには所定の走査ラインのシース像の信号レベルを1枚もしくは複数枚の断層画像を構成する複数の走査ライン分のシース位置の断層情報を用いて算出するものであってもよい。
また、断層画像処理装置は、各走査ラインの断層情報の背景レベルを検出する背景レベル検出手段をさらに備えたものであってもよい。このとき、断層情報補正手段が、シース検出手段により検出されたシース位置の信号レベルが設定信号レベルになるとともに、背景レベル検出手段により検出された背景レベルが予め設定された設定背景レベルになるような補正条件により断層情報を補正するものであってもよい。
このとき、背景レベル検出手段は各走査ラインの断層情報の背景レベルを検出するものであればその手法は問わず、たとえば最も深い位置から取得した断層情報の信号レベルを背景レベルとして検出するようにしてもよい。あるいは、背景レベル検出手段は、所定の走査ラインの背景レベルを所定の走査ラインに隣接した複数の走査ライン分の背景レベルを用いて算出するものであってもよいし、さらには所定の走査ラインの背景レベルを1枚もしくは複数枚の断層画像を構成する複数の走査ライン分の背景レベルを用いて算出するものであってもよい。
さらに、断層情報補正手段は、シース位置の信号レベルが設定信号レベルになるように断層情報の信号レベルを補正するものであればその手法は問わず、たとえばシース位置の信号レベルと設定信号レベルとの差分を走査ラインの断層情報に加算するような補正を行うようにしてもよい。
なお、断層情報補正手段は、検出したシース位置の信号レベルが設定信号レベルになるような補正条件により断層情報を補正するものであれば、断層情報を補正した後に断層画像を生成しても良いし断層画像を生成した後に断層情報を補正するようにしても良い。
また、断層画像処理装置は、測定対象の深さ位置に対する信号レベルの減衰率を示す信号レベル減衰特性と測定対象の深さ位置に対する背景レベルの減衰率を示す減衰特性背景レベル減衰特性とを記憶した減衰データテーブルと、減衰データテーブルに記憶された信号レベル減衰特性および背景レベル減衰特性を用いて、断層情報の信号レベルを調整する信号レベル調整手段をさらに備えていてもよい。
なお、光は所定の波長帯域内において波長を掃引しながら周期的に射出されたものであって、いわゆるSS−OCT計測により断層画像を取得するものであってもよいし、所定の波長帯域からなる低コヒーレンス光を射出するものであって、いわゆるSD−OCT計測により断層画像を取得するものであっても良い。
本発明の断層画像処理方法および装置ならびにプログラムによれば、光を射出し、射出した光を測定光と参照光とに分割し、分割した測定光をシースに被覆された光ファイバを有する光プローブ内に入射し、光プローブ内を導波した測定光がシースを透過し測定対象に照射されたときの測定対象からの反射光と参照光とを合波し、反射光と参照光とが合波したときの干渉光を干渉信号として検出し、検出した干渉信号を用いて断層画像を生成する断層画像処理方法において、干渉信号からそれぞれ測定対象の各深さ位置における断層情報を取得し、取得した各走査ラインの断層情報の中からシース位置の信号レベルを検出し、検出したシース位置の信号レベルが設定信号レベルになるように断層情報を補正することにより、シースは走査方向に対し略同一の反射率を有していることを利用し、シース位置の信号レベルを基準として各走査ラインの断層情報を補正することになるため、各走査ライン間における輝度やコントラストのばらつきを軽減し、断層画像の画質の向上を図ることができる。
なお、シース検出手段が、所定の走査ラインのシース位置の信号レベルを所定の走査ラインに隣接した複数の走査ライン分のシース位置の断層情報を用いて算出するとき、シース位置の信号レベルの検出誤差によるシース位置の信号レベルのずれを最小限に抑えることができる。
特に、シース検出手段が、所定の走査ラインのシース位置の信号レベルを1枚もしくは複数枚の断層画像を構成する複数の走査ライン分のシース位置の断層情報を用いて算出するものであるとき、複数の断層画像間での輝度やコントラストのばらつきを軽減することができる。
また、各走査ラインの断層情報の背景レベルを検出する背景レベル検出手段をさらに備え、このとき、断層情報補正手段が、シース検出手段により検出されたシース位置の信号レベルが設定信号レベルになるとともに、背景レベル検出手段により検出された背景レベルが予め設定された設定背景レベルになるような補正条件により断層情報を補正するとき、走査ライン毎に背景レベルがそれぞれ異なることを考慮した補正を行うことができるため、走査ライン間における背景レベルのずれによる画質の劣化を最小限に抑えることができる。
さらに、背景レベル検出手段が、所定の走査ラインの背景レベルを所定の走査ラインに隣接した複数の走査ライン分の背景レベルを用いて算出するものであるとき、背景レベル検出の誤差による各走査ライン間の背景レベルのずれを最小限に抑えることができる。
特に、背景レベル検出手段が、所定の走査ラインの背景レベルを1枚もしくは複数枚の断層画像を構成する複数の走査ライン分の背景レベルを用いて算出するものであれば、複数の断層画像間での輝度やコントラストのばらつきを軽減することができる。
さらに、断層情報補正手段が、シース位置の信号レベルと設定信号レベルとの差分を断層情報に加算する補正を行うものであるとき、シース位置の信号レベルを基準とした各断層情報の信号レベルの補正を行うことができるため、各走査ライン間における輝度やコントラストのばらつきを軽減し、断層画像の画質の向上を図ることができる。
また、測定対象の深さ位置に対する信号レベルの減衰率を示す信号レベル減衰特性と測定対象の深さ位置に対する背景レベルの減衰率を示す減衰特性背景レベル減衰特性とを記憶した減衰データテーブルと、減衰データテーブルに記憶された信号レベル減衰特性および背景レベル減衰特性とを用いて、断層情報の信号レベルを調整する信号レベル調整手段をさらに備えたものであるとき、断層情報の各深さ位置が深くなればなるほど信号レベルおよび背景レベルが減衰していくことを考慮した断層情報の調整を行うことができるため、断層画像の深さ方向に対する定量的な断層画像を生成することができる。
以下、図面を参照して本発明の断層画像処理装置の実施の形態を詳細に説明する。図1は本発明の断層画像処理装置を用いた光断層画像化システムの好ましい実施の形態を示す模式図である。光断層画像化システム1は、たとえば体腔内の生体組織や細胞等の測定対象の断層画像PをSS−OCT(Spectral Domain OCT)計測により取得するものであって、光Lを射出する光源ユニット310と、光源ユニット310から射出された光Lを測定光L1と参照光L2とに分割する光分割手段3と、光分割手段により分割された測定光L1が測定対象Sの各深さ位置において反射したときの反射光(後方散乱光)と参照光L2とを合波する合波手段4と、合波手段4により合波された反射光L3と参照光L2との干渉光L4を干渉信号ISとして検出する干渉信号検出手段40と、干渉信号検出手段40により検出された干渉信号ISから断層画像を生成する断層画像処理装置50とを備えている。
光源ユニット310は、所定の波長帯域Δλ内を一定の周期Tで波長掃引させながらレーザ光Lを射出するものである。具体的には光源ユニット310は、半導体光増幅器(半導体利得媒質)311と光ファイバFB10とを有しており、光ファイバFB10が半導体光増幅器311の両端に接続された構造を有している。半導体光増幅器311は駆動電流の注入により微弱な放出光を光ファイバFB10の一端側に射出するとともに、光ファイバFB10の他端側から入射された光を増幅する機能を有している。そして、半導体光増幅器311に駆動電流が供給されたとき、半導体光増幅器311および光ファイバFB10により形成される光共振器によりパルス状のレーザ光Lが光ファイバFB1へ射出されるようになっている。
さらに、光ファイバFB10には光分岐器312が結合されており、光ファイバFB10内を導波する光の一部が光分岐器312から光ファイバFB11側へ射出されるようになっている。光ファイバFB11から射出した光はコリメータレンズ313、回折格子素子314、光学系315を介して回転多面鏡(ポリゴンミラー)316において反射される。そして反射された光は光学系315、回折格子素子314、コリメータレンズ313を介して再び光ファイバFB11に入射される。
ここで、この回転多面鏡316は矢印R1方向に回転するものであって、各反射面の角度が光学系315の光軸に対して変化するようになっている。これにより、回折格子素子314において分光された光のうち、特定の周波数域の光だけが再び光ファイバFB11に戻るようになる。この光ファイバFB11に戻る光の波長は光学系315の光軸と反射面との角度によって決まる。そして光ファイバFB11に入射した特定の波長の光が光分岐器312から光ファイバFB10に入射され、結果として特定の波長のレーザ光Lが光ファイバFB1側に射出されるようになっている。
したがって、回転多面鏡316が矢印R1方向に等速で回転したとき、再び光ファイバFB11に入射される光の波長λは、時間の経過に伴って一定の周期で変化することになる。こうして光源ユニット310からは、図2に示すように、一定の周期で波長掃引されたレーザ光Lが光ファイバFB1側に射出される。
光分割手段3は、たとえば2×2の光カプラから構成されており、光源ユニット310から光ファイバFB1を介して導波した光Lを測定光L1と参照光L2に分割する。光分割手段3は、2本の光ファイバFB2、FB3にそれぞれ光学的に接続されており、測定光L1は光ファイバFB2により導波され、参照光L2は光ファイバFB3により導波される。なお、本実施形態における光分割手段3は、合波手段4としても機能するものである。
光ファイバFB2には光プローブ30が光学的に接続されており、測定光L1は光ファイバFB2から光プローブ30へ導波される。図3は図1の光プローブ30の先端部分の一例を示す模式図である。光プローブ30は、たとえば鉗子口から鉗子チャンネルを介して体腔内に挿入されるものであって、光学コネクタ30Aにより光ファイバFB2に対し着脱可能に取り付けられている。シース31、光ファイバFB20、光学レンズ32等を有している。シース31は可撓性を有する筒状の部材からなっており、測定光L1および反射光L3が透過する材料からなっている。なお、シース31は先端がキャップにより閉塞された構造を有している。
光ファイバFB20は測定光L1を測定対象Sまで導波するとともに、測定光L1が測定対象Sに照射されたときの測定対象Sからの反射光(後方散乱光)L3を光ファイバFB2まで導波するものであってシース31内に収容されている。この光ファイバFB20は光学コネクタ30Aによりシース31に対し矢印θ方向に回転する。
光学レンズ32は、光ファイバFB20から射出した測定光L1を測定対象Sに対し集光するものであり、測定対象Sからの反射光L3を集光し光ファイバFB20に入射する。光学レンズ32は光ファイバFB20の光出射端部に固定されており、光ファイバFB20が矢印θ方向に回転したとき、光学レンズ32も一体的に矢印R1方向に回転する。よって、光プローブ30は、測定対象Sに対し光学レンズ32から射出される測定光L1を矢印θ方向に対し走査しながら照射することになる。
一方、光ファイバFB3における参照光L2の射出側には光路長調整手段20が配置されている。光路長調整手段20は、測定対象Sに対する測定開始位置を調整するために、参照光L2の光路長を変えるものであって、コリメータレンズ21および反射ミラー22を有している。そして、光ファイバFB3から射出した参照光L2はコリメータレンズ21を透過した後、反射ミラー22により反射され、再びコリメータレンズ21を介して光ファイバFB3に入射される。
ここで、反射ミラー22は可動ステージ23上に配置されており、可動ステージ23はミラー駆動手段24により矢印A方向に移動可能に設けられている。そして可動ステージ23が矢印A方向に移動することにより、参照光L2の光路長が変更するよう構成されている。
合波手段4は、2×2の光カプラからなり、光路長調整手段20により光路長の変更が施された参照光L2と測定対象Sからの反射光L3とを合波するとともに2分し、光ファイバFB1、FB4を介して干渉信号検出手段40側に射出するように構成されている。
干渉信号検出手段40は、たとえばフォトダイオード等からなっており、合波手段4により合波された反射光L3と参照光L2との干渉光L4を検出し干渉信号ISとして出力するものである。なお本例の装置は、干渉光L4を合波手段4(光ファイバカプラ)4で二分した干渉光L4をそれぞれ光検出器40aと40bに導き、バランス検波を行う機構を有している。
次に、上述した光断層画像化システム1の動作例について説明する。まず、可動ステージ23が矢印A方向に移動することにより、測定可能領域内に測定対象Sが位置するように光路長の調整が行われる。その後、光源ユニット310から光Lが射出され、光Lは光分割手段3により測定光L1と参照光L2とに分割される。測定光L1は光プローブ30により体腔内に導波され測定対象Sに照射される。そして、測定対象Sからの反射光L3が反射ミラー22において反射した参照光L2と合波手段4により合波され、反射光L3と参照光L2との干渉光L4が干渉信号ISとして干渉信号検出手段40により検出される。
そして、光プローブ30内の光ファイバを矢印θ方向に回転させることにより、測定対象Sに対して測定光L1を1次元方向に走査させれば、この走査方向θに沿った各部分において測定対象Sの深さ方向(測定光L1の光軸方向z)の情報が得られるので、この走査方向θの断層面について複数の干渉信号ISが取得される。断層画像処理装置50において、この複数の干渉信号ISから断層画像Pが取得されることになる。なお、測定対象Sに対して測定光L1を、上記走査方向に対して直交する第2の方向(光プローブ30の長手方向)に走査させることにより、この第2の方向を含む断層面についての断層画像Pをさらに取得することも可能である。
図4は本発明の断層画像処理装置の好ましい実施の形態を示すブロック図であり、図4を参照して断層画像処理装置50について説明する。なお、図4のような断層画像処理装置50の構成は、補助記憶装置に読み込まれた断層画像処理プログラムをコンピュータ(たとえばパーソナルコンピュータ等)上で実行することにより実現される。このとき、この断層画像処理プログラムは、CD−ROM等の情報記憶媒体に記憶され、もしくはインターネット等のネットワークを介して配布され、コンピュータにインストールされることになる。
断層画像処理装置50は、干渉信号取得手段51、断層情報取得手段52、シース検出手段53、断層情報補正手段54、断層画像生成手段55、画像出力手段56を有している。干渉信号取得手段51は干渉信号検出手段40において検出された干渉信号ISを取得するものである。なお、干渉信号検出手段40においては、光のスペクトル強度の影響を受けた状態で干渉信号ISが検出されることになる。よって、干渉信号取得手段51は、前処理として光Lのスペクトル形状の影響の除去を行うようにしてもよい。さらに、さらに、干渉信号ISは時間軸(波長軸)に対する干渉強度として取得される。一方、後述する断層情報取得手段52において波数k軸において等間隔になるような干渉信号ISが必要となる。よって、干渉信号取得手段51は光源ユニット310の時間−波長掃引特性を予め計測しておき、干渉信号を波数k軸において等間隔になるように変換するような前処理を行うようにしてもよい。この信号変換手法の詳細はUS5956355号明細書に開示されている。
断層情報取得手段52は、測定対象Sの各深さ位置における断層情報r(z)を取得するものである。ここで、断層情報取得手段52は、たとえばフーリエ変換処理、最大エントロピー法(MEM)、Yule−Walker法等の公知のスペクトル解析技術を用いて、深さ方向zの断層情報(反射率)を取得する。さらに、断層情報取得手段52は、図5に示すように、干渉信号検出手段40において1ライン分の干渉信号ISが検出される度に、1ライン分の断層情報r(z)を取得していく。なお、断層情報取得手段52は、断層情報r(z)を対数変換する機能を有しており、対数変換化された断層情報r(z)を出力するようになっている。
シース検出手段53は、断層情報取得手段52により取得された各走査ライン毎の断層情報r(z)においてシース31から反射したシース位置の信号レベルSLを検出するものである。ここで、光プローブ30から測定対象Sに測定光L1が照射されたとき、図6に示すようにシース31の内面31aおよび外面31bの断層情報r(z)は測定対象Sの断層情報に比べて極めて大きい信号レベルとなる。そこで、シース検出手段53は、1ライン分の断層情報におけるシース位置の断層情報r(z)をシース位置の信号レベルSLとして検出する(r(z)=SL)。
なお、シース位置としてシース内面31aからの反射とシース外面31bからの反射とが得られるが、どちらか一方のみをシース位置として検出しても良いしいずれか一方をシース位置として検出するようにしてもよい。あるいは、分解能やシース31の厚さ等によっては1つのピークになる場合もあるため、この場合には1つのピークをシース位置として検出するようにしてもよい。また、シース検出手段53はシース位置の検出を行う前に、断層情報について平滑化を行うことにより細かい変動を抑制した後、シース位置の検出を行うようにしても良い。もしくは、シース位置近傍の複数の信号レベルの平均値、重みつき平均値等をシース位置の信号レベルSLとして検出するようにしてもよい。
断層情報補正手段54はシース検出手段53により検出されたシース位置の信号レベルSLが設定信号レベルSTになるような補正条件で断層情報r(z)を補正するものである。具体的には断層情報補正手段54は補正後の断層情報をr(z)、断層情報をr(z)、設定信号レベルをSTとしたとき、各走査ライン毎に下記式(1)のような補正条件に従い補正を行う。
(z)=r(z)−SL+ST ・・・(1)
つまり、式(1)はシース位置の信号レベルSL(=r (z))と設定信号レベルSTとの差分を断層情報r(z)に加算し補正後の断層情報r(z)を算出することを意味している。断層情報補正手段54は、各走査ライン毎に取得される断層情報r(z)に対しそれぞれ式(1)による補正を行う。
断層画像生成手段55は、補正後の断層情報r(z)を用いて断層画像Pを生成するものである。つまり、光プローブ30により測定光L1が測定対象Sに対し走査されながら照射されたとき、断層画像生成手段55は逐次取得される補正後の各断層情報r(z)を記憶していく。その後、断層画像生成手段55は、記憶していた複数ライン分の断層情報r(z)を用いて1枚の断層画像Pを生成する(図5参照)。たとえば、光源ユニット310の波長掃引周波数が20kHzであり、光プローブ30が20Hzで測定光L1を矢印θ方向に走査されるとき、断層画像生成手段55は、1024ライン分の断層情報r(z)を用いて1枚の断層画像Pを生成する。そして、画像出力手段56は、断層画像生成手段55により生成された断層画像Pを図1の表示装置60に表示することになる。
このように、シース位置の信号レベルSLが設定信号レベルSTになるような補正条件により断層情報r(z)を補正することにより、走査ライン間における輝度やコントラストのばらつきを軽減し、画質の向上を図ることができる。すなわち、光断層画像化システム1において測定光L1を回転走査させたとき、いずれの走査ラインにおいても同一の測定条件下における測定が行われることが理想である。しかし、実際には光源ユニット310の出力変動や測定対象Sのブレ等が生じ、走査ライン間において測定条件が変化してしまう場合がある。その結果、断層画像Pにおいて走査ライン間の輝度やコントラストのぶれとなって表れる。これに対し、断層画像全体の統計量(信号レベルの最大値、最小値、平均値もしくはヒストグラム等)を所定の目標値に変換する画像処理を行ったとき、本来低コントラストであるべき断層情報を高コントラストに補正する場合があり、断層画像Pと測定対象Sの本来の断層情報とが異なってしまう(再現性が悪い)。
一方、シース位置の信号レベルSLが設定信号レベルSTになるような補正条件を用いて断層情報r(z)の補正を行うことにより、所定の走査ラインにおいて測定条件が変化した場合であっても、断層画像P内の走査ライン間における輝度やコントラストのぶれの発生を低減することができる。さらに、反射率が走査方向において略一定のシース31から得られたシース位置の信号レベルSLが設定信号レベルSTになるような補正を行うものであるため、過度の補正が行われるのを防止することができ、測定対象Sの断層構造の再現性を高く維持することができる。
図7は本発明の断層画像処理方法の好ましい実施形態を示すフローチャートであり、図1から図7を参照して断層画像処理方法について説明する。まず、干渉信号取得手段51において走査ライン毎に干渉信号ISが取得され(ステップST1)、断層情報取得手段52において干渉信号ISを用いて測定対象Sの各深さ位置における断層情報r(z)が取得される(ステップST2)。その後、シース検出手段53において、走査ライン毎に取得された断層情報の中からシース位置およびシース位置の信号レベルSL(=r(z))が検出される(ステップST3)。そして、断層情報補正手段54によりシース位置の信号レベルSLが設定信号レベルSTになるような上記式(1)の補正条件により走査ライン毎の断層情報r(z)が補正され(ステップST4)、補正後の断層情報r(z)を用いて断層画像Pが生成・表示される(ステップST5、ST6)。
このように、シース位置の信号レベルSLが設定信号レベルSTになるような補正条件により断層情報r(z)を補正することにより、走査ライン間における輝度やコントラストのばらつきを軽減し、画質の向上を図ることができる。
図8は本発明の断層画像処理装置の第2の実施形態を示すブロック図であり、図8を参照して断層画像処理装置150について説明する。なお、図8の断層画像処理装置150において図4の断層画像処理装置50と同一の構成を有する部位には同一の符号を付してその説明を省略する。図8の断層画像処理装置150が図4の断層画像処理装置50と異なる点は、シース検出手段153が複数の走査ライン分のシース位置の断層情報r(z)を用いてシース位置の信号レベルSLを検出する点である。
具体的には、走査ライン毎に取得した断層情報r(z)の中からそれぞれシース位置の断層情報r(z)を検出する断層情報検出手段153aと、断層情報検出手段153aにより検出された複数ライン分のシース位置の断層情報r(z)を用いてシース位置の信号レベルSLを算出するレベル算出手段153bとを有している。レベル算出手段153bは、所定の走査ラインのシース位置の信号レベルSLを検出するとき、この所定の走査ラインよりも前に取得された複数の走査ライン、もしくは所定の走査ラインの前後に取得された複数の走査ラインからそれぞれ検出された複数のシース位置の断層情報r(z)の平均値を所定の走査ラインのシース位置の信号レベルSLとして検出する。断層情報補正手段54はシース検出手段153により検出されたシース位置の信号レベルSLが設定信号レベルSTになるような補正条件(上記式(1))により所定の走査ラインの断層情報を補正する。これにより、各走査ライン毎の個々のシース位置の信号レベル検出における誤差の影響を最小限に抑え、シース位置の信号レベルSLの検出の安定性を向上させることができる。
なお、シース検出手段153は、断層画像1枚分の複数の走査ラインからそれぞれ検出された複数のシース位置の断層情報r(z)を用いてシース位置の信号レベルSLを算出するようにしても良い。このとき、1枚の断層画像P全体に対し1つのシース位置の信号レベルSLが設定され、断層画像Pを構成するいずれの走査ラインにおいてもシース位置の信号レベルSLと設定信号レベルSTとの差分は同一になるため、断層画像P単位で補正が行われることを意味する。
さらには、測定光L1の回転走査を繰り返すことにより複数の断層画像Pを取得したとき、所定の断層画像Pよりも前に取得された複数の断層画像Pのシース位置の断層情報r(z)、もしくは所定の断層画像Pの前後に取得された複数の断層画像Pのシース位置の断層情報r(z)の平均値を所定の断層画像Pにおけるシース位置の信号レベルSLとして算出するようにしても良い。これにより、断層画像P間での輝度・コントラストのばらつきを軽減することができる。
図9は本発明の断層画像処理装置の第3の実施形態を示すブロック図であり、図9を参照して断層画像処理装置250について説明する。なお、図9の断層画像処理装置250において図4の断層画像処理装置50と同一の構成を有する部位には同一の符号を付してその説明を省略する。図9の断層画像処理装置250が図4の断層画像処理装置50と異なる点は、補正の前処理として断層情報r(z)の信号レベルの調整を行う断層情報調整手段251が設けられている点である。
断層情報調整手段251は、減衰データテーブル251a、信号レベル調整手段251bを備えている。減衰データテーブル251aには、測定対象Sの深さ位置に対する信号レベルの減衰率を示すピーク減衰特性P(z)と測定対象Sの深さ位置に対する背景レベルの減衰率を示す背景レベル減衰特性B(z)とが記憶されている。図10はミラーの配置位置を測定光L1の光軸方向zに沿ってミラーの位置をずらしたときの信号レベル変化を示したものである(非特許文献1の図3参照)。図10において、同一の反射率を有する物体であっても存在する位置が深くなればなるほどシース位置の信号レベルは減衰し、深さ位置zが深くなればなるほど背景レベルは減衰することがわかる。そこで、減衰データテーブル251aはミラーの信号レベルの各深さ位置zにおける減衰率をピーク減衰特性P(z)として記憶し、背景レベルの各深さ位置zにおける減衰率を背景レベル減衰特性B(z)として記憶している。
信号レベル調整手段251bは、減衰データテーブル251aに記憶された各種減衰特性を用いた下記式(2)のように用いて断層情報r(z)を調整し、調整後の断層情報r(z)を生成する。
rC(z) = r(z) / (P(z) - B(z)) + B(z) ・・・(2)
式(2)は測定対象Sの深さ位置zが深くなり、ピーク減衰特性P(z)と背景レベル減衰特性B(z)との差が小さくなるほど、調整後の断層情報r(z)が大きくなるように調整されることを示している。これにより、同一の物体が異なる深さ位置zに配置されている場合、同じ信号レベルの断層情報として出力されるように調整することができ、断層情報の深さ方向に対する定量性を向上させることができる。そして、断層情報調整手段251が断層情報を調整した後、断層情報補正手段54が断層情報の補正を行うようになっている。このとき上記式(1)における断層情報r(z)が調整後の断層情報r(z)に置き換えられる。
なお、断層情報補正手段54が断層情報を補正した後に断層情報調整手段251が補正後の断層情報r(z)を調整するようにしてもよい。このとき、式(2)における断層情報r(z)が補正後の断層情報r(z)に置き換えられる。
図11は本発明の断層画像処理装置の第4の実施形態を示すブロック図であり、図11を参照して断層画像処理装置350について説明する。なお、図11の断層画像処理装置250において図4の断層画像処理装置50および図0の断層画像処理装置250と同一の構成を有する部位には同一の符号を付してその説明を省略する。図11の断層画像処理装置350が図4の断層画像処理装置50と異なる点は背景レベル検出手段351を備えている点である。
背景レベル検出手段351は、各走査ラインの断層情報r(z)における背景レベルr(z)を検出するものであって、たとえば走査ライン毎に取得された断層情報r(z)のうち最も深い位置zにおける信号レベルr(z)を背景レベルBLとして検出する。このとき、断層情報補正手段354は、シース検出手段53により検出されたシース位置の信号レベルSLが設定信号レベルSTになるとともに、背景レベル検出手段351により検出された背景レベルBLが予め設定された設定背景レベルBTになるような補正条件により断層情報r(z)を補正するようになっている。具体的には、断層情報補正手段54は下記式(3)に示す補正を行う。
r(z) = (r(z) - SL ) / (BL - SL )・(BT - ST)+ST ・・・(3)
このように、シース位置の信号レベルSLが設定信号レベルSTになるとともに、背景レベルBLが設定背景レベルBTになるような補正条件を用いて断層情報r(z)を補正することにより、走査ライン間の背景レベルBLのずれを考慮した断層情報r(z)の補正を行うことができる。
なお、この背景レベルBLについても、上述したシース位置の信号レベルの場合と同様、所定の走査ラインの背景レベルBLを検出するとき、この所定の走査ラインよりも前に取得された複数の走査ライン、もしくは所定の走査ラインの前後に取得された複数の走査ラインからそれぞれ検出された複数の背景レベルr(z)の平均値を所定の走査ラインの背景レベルBLとして検出してもよい。これにより、各走査ライン毎の個々の背景レベル検出における誤差の影響を最小限に抑え、背景レベルBLの検出の安定性を向上させることができる。
また、断層画像1枚分の複数の走査ラインからそれぞれ検出された背景レベルr(z)の平均値を背景レベルBLとして用いるようにしても良い。このとき、1枚の断層画像P全体に対し1つの背景レベルBLが設定されることになる。さらには、測定光L1の回転走査を繰り返すことにより複数の断層画像Pを取得したとき、所定の断層画像よりも前に取得された複数の断層画像Pの背景レベルBL、もしくは所定の断層画像の前後に取得された複数の断層画像Pの背景レベルBLの平均値を所定の断層画像Pにおける背景レベルBLとして算出するようにしても良い。
上記各実施の形態によれば、光Lを射出し、射出した光Lを測定光L1と参照光L2とに分割し、分割した測定光L1をシース31に被覆された光ファイバFB20を有する光プローブ30内に入射し、光プローブ30内を導波した測定光L1がシース31を透過し測定対象Sに照射されたときの測定対象Sからの反射光L3と参照光L2とを合波し、反射光L3と参照光L2とが合波したときの干渉光L4を干渉信号ISとして検出し、検出した干渉信号ISを用いて断層画像Pを生成するとき、干渉信号ISからそれぞれ測定対象Sの各深さ位置における断層情報r(z)を取得し、取得した各断層情報r(z)に含まれるシース位置およびシース位置の信号レベルSLを検出し、検出したシース位置の信号レベルSLが設定信号レベルSTになるように断層情報r(z)を補正することにより、シース31は走査方向に対し略同一の反射率を有していることを利用し、シース位置の信号レベルSLを基準として各走査ラインの断層情報r(z)を補正することになるため、各走査ライン間における輝度やコントラストのばらつきを軽減し、断層画像Pの画質の向上を図ることができる。
特に、断層情報補正手段54が、シース位置の信号レベルSLと設定信号レベルSTとの差分を断層情報に加算する補正を行うものであるとき、シース位置の信号レベルSLを基準とした各断層情報の信号レベルの補正を行うことができるため、各走査ライン間における輝度やコントラストのばらつきを軽減し、断層画像の画質の向上を図ることができる。
また、図8に示すように、シース検出手段153が所定の走査ラインのシース位置の信号レベルSLを所定の走査ラインに隣接した複数の走査ライン分のシース位置の断層情報r(z)を用いて算出するとき、シース位置の信号レベルSLの検出に誤差が生じた場合であっても誤差による影響を最小限に抑えることができる。
特に、シース検出手段153が所定の走査ラインのシース位置の信号レベルSLを1枚もしくは複数枚の断層画像Pを構成する複数の走査ライン分のシース位置の断層情報r(z)を用いて算出するものであるとき、複数の断層画像P間での輝度やコントラストのばらつきを軽減することができる。
また、図10に示すように、測定対象Sの深さ位置zに対する信号レベルの減衰率を示す信号レベル減衰特性と測定対象Sの深さ位置zに対する背景レベルr(z)の減衰率を示す減衰特性背景レベル減衰特性とを記憶した減衰データテーブル253aと、減衰データテーブル253aに記憶された信号レベル減衰特性および背景レベル減衰特性とを用いて、断層情報r(z)の信号レベルを調整する信号レベル調整手段253bをさらに備えたものであるとき、断層情報r(z)の各深さ位置が深くなればなるほど信号レベルおよび背景レベルが減衰していくことを考慮した断層情報r(z)の調整を行うことができるため、断層画像Pの深さ方向に対する定量的な断層画像Pを生成することができる。
さらに、図11に示すように、各走査ラインの断層情報r(z)毎に背景レベルr(z)を検出する背景レベル検出手段351をさら備え、断層情報補正手段354が、シース検出手段53により検出されたシース位置の信号レベルSLが設定信号レベルSTになるとともに、背景レベル検出手段351により検出された背景レベルBLが予め設定された設定背景レベルBTになるような補正条件により断層情報r(z)を補正するとき、走査ライン毎に背景レベルBLがそれぞれ異なることを考慮してシース位置の信号レベルSLの検出を行うことができるため、走査ライン間における背景レベルBLのずれによる画質の劣化を最小限に抑えることができる。
このとき、背景レベル検出手段351が、所定の走査ラインの背景レベルBLを所定の走査ラインに隣接した複数の走査ライン分の背景レベルr(z)を用いて算出するものであるとき、背景レベルr(z)の検出に誤差が生じた場合であっても誤差による影響を最小限に抑えることができる。
特に、背景レベル検出手段351が、所定の走査ラインの背景レベルBLを1枚もしくは複数枚の断層画像Pを構成する複数の走査ライン分の背景レベルr(z)を用いて算出するものであれば、複数の断層画像P間での輝度やコントラストのばらつきを軽減することができる。
本発明の実施形態は、上記実施の形態に限定されない。たとえば、図4の断層画像生成手段55において、画像化手段は補正後の断層情報r(z)の信号レベルに対してカラーテーブルを適用し、擬色画像からなる断層画像を生成するようにしても良い。
また、図4の断層情報補正手段54に設定レベルSTが予め設定されている場合について例示しているが、キーボードやマウス等の入力手段からの入力により、設定レベルST設定をもしくは調整できるようにしてもよい。
さらに、図1において断層画像処理装置50〜350をいわゆるSS−OCT計測に適用した場合について例示しているが、図12に示すようなSD−OCT計測を用いた光断層画像化システムについても同様に適用することができる。なお、図12においては、光源ユニット110は、広帯域な低コヒーレンス光を射出するものであり、干渉信号検出手段140において、干渉光L4がレンズ41介して回折格子素子42に入射され、回折格子素子41において各波長帯域毎に分光された後、レンズ43を介して複数の光検出素子(フォトダイオード等)が配列された光検出部44によって干渉信号ISとして検出されることになる。この場合であっても、シース位置の信号レベルSLが設定信号レベルSTになるような補正条件により断層情報r(z)を補正することにより、走査ライン間における輝度やコントラストのばらつきを軽減し、画質の向上を図ることができる。
さらには、TD−OCT計測を用いて光断層画像化システムにも上述した断層画像処理装置50〜350にも適用することができる。この場合、反射ミラー22が矢印A方向に移動することにより、断層情報取得手段53が各深さ位置zにおける断層情報r(z)を取得することになる。
また、図3の光プローブ30において、測定光L1を回転走査させる場合について例示しているが、たとえば矢印θ方向に揺動走査する場合や光プローブ30の長手方向に走査する場合等の回転走査でない場合であっても、光プローブ30が先端光学系を覆うシース31を備えた構成であれば、同様にシース像を信号補正の目安として用いることができる。
本発明の断層画像処理装置が適用された光断層画像化システムの一例を示す概略構成図 図3の光源ユニットから射出される光の波長が掃引される様子を示すグラフ 図1の光断層画像化システムに使用される光プローブの一例を示す模式図 本発明の断層画像処理装置の好ましい実施形態を示すブロック図 図4の干渉信号取得手段において各走査ライン毎に干渉信号が取得される様子を示す模式図 図4の断層情報取得手段において取得される1走査ライン分の断層情報の一例を示すグラフ 本発明の断層画像処理方法の好ましい実施形態を示すフローチャート 本発明の断層画像処理装置の第2の実施形態を示すブロック図 本発明の断層画像処理装置の第3の実施形態を示すブロック図 図9の信号調整手段における減衰データテーブルに記憶された信号レベル減衰特性および背景レベル減衰特性を示すグラフ 本発明の断層画像処理装置の第4の実施形態を示すブロック図 本発明の断層画像処理装置が適用される光断層画像化システムの別の実施形態を示す模式図
符号の説明
1 光断層画像化システム
310 光源ユニット
30 光プローブ
31 シース
31a シース内面
31b シース外面
40 干渉信号検出手段
50、150、250、350 断層画像処理装置
51 干渉信号取得手段
52 断層情報取得手段
53 シース検出手段
54 断層情報補正手段
55 断層画像生成手段
56 画像出力手段
60 表示装置
153a 断層情報検出手段
153b レベル算出手段
251 断層情報調整手段
251a 減衰データテーブル
251b 信号レベル調整手段
IS 干渉信号
L 光
L1 測定光
L2 参照光
L3 反射光
L4 干渉光
P 断層画像
r(z) 断層情報
(z) 補正後の断層情報
r(z) シース位置の断層情報
S 測定対象
SL シース位置の信号レベル
ST 設定信号レベル

Claims (10)

  1. 光を射出し、射出した光を測定光と参照光とに分割し、分割した前記測定光をシースに被覆された光ファイバを有する光プローブ内に入射し、該光プローブ内を導波した前記測定光が前記シースを透過し前記測定対象に走査しながら照射されたときの該測定対象からの反射光と前記参照光とを合波し、前記反射光と前記参照光とが合波したときの干渉光を干渉信号として検出し、検出した前記干渉信号を用いて断層画像を生成する断層画像処理方法において、
    前記測定光の走査ライン毎に検出される前記干渉信号を取得し、
    取得した前記干渉信号毎に前記測定対象の各深さ位置における断層情報を取得し、
    取得した前記各走査ラインの前記断層情報の中からシース位置の信号レベルを検出し、
    検出した前記シース位置の信号レベルが設定信号レベルになるような補正条件により前記断層情報を補正する
    ことを特徴とする断層画像処理方法。
  2. 光を射出し、射出した光を測定光と参照光とに分割し、分割した前記測定光をシースに被覆された光ファイバを有する光プローブ内に入射し、該光プローブ内を導波した前記測定光が前記シースを透過し該測定対象に走査しながら照射されたときの該測定対象からの反射光と前記参照光とを合波し、前記反射光と前記参照光とが合波したときの干渉光を干渉信号として検出し、検出した前記干渉信号を用いて断層画像を生成する断層画像処理装置において、
    前記測定光の走査ライン毎に検出される前記干渉信号を取得する干渉信号取得手段と、
    該干渉信号取得手段により取得された前記干渉信号毎に前記測定対象の各深さ位置における断層情報を取得する断層情報取得手段と、
    該断層情報取得手段により取得された前記各走査ラインの前記断層情報の中からシース位置の信号レベルを検出するシース検出手段と、
    該シース検出手段により検出された前記シース位置の信号レベルが設定信号レベルになるような補正条件により前記断層情報を補正する断層情報補正手段と
    を備えたことを特徴とする断層画像処理装置。
  3. 前記シース検出手段が、所定の前記走査ラインの前記シース像の信号レベルを該所定の走査ラインに隣接した複数の前記走査ライン分のシース位置の断層情報を用いて算出するものであることを特徴とする請求項2記載の断層画像処理装置。
  4. 前記シース検出手段が、所定の前記走査ラインの前記シース像の信号レベルを1枚もしくは複数枚の前記断層画像を形成する前記複数の走査ライン分の前記シース位置の断層情報を用いて算出するものであることを特徴とする請求項3記載の断層画像処理装置。
  5. 前記各走査ラインの断層情報の背景レベルを検出する背景レベル検出手段をさらに備え、
    前記断層情報補正手段が、前記シース検出手段により検出された前記シース位置の信号レベルが設定信号レベルになるとともに、前記背景レベル検出手段により検出された前記背景レベルが予め設定された設定背景レベルになるような補正条件により前記断層情報を補正するものであることを特徴とする請求項2から4のいずれか1項記載の断層画像処理装置。
  6. 前記背景レベル検出手段が、所定の前記走査ラインの前記背景レベルを該所定の走査ラインに隣接した複数の前記走査ライン分の前記背景レベルを用いて算出するものであることを特徴とする請求項5記載の断層画像処理装置。
  7. 前記背景レベル検出手段が、所定の前記走査ラインの前記背景レベルを1枚もしくは複数枚の前記断層画像を構成する前記複数の走査ライン分の前記背景レベルを用いて算出するものであることを特徴とする請求項6記載の断層画像処理装置。
  8. 前記断層情報補正手段が、前記シース像の信号レベルと前記設定信号レベルとの差分を前記断層情報に加算する補正を行うものであることを特徴とする請求項2から7のいずれか1項記載の断層画像処理装置。
  9. 前記測定対象の深さ位置に対する信号レベルの減衰率を示す信号レベル減衰特性と前記測定対象の深さ位置に対する背景レベルの減衰率を示す減衰特性背景レベル減衰特性とを記憶した減衰データテーブルと、該減衰データテーブルに記憶された前記信号レベル減衰特性および前記背景レベル減衰特性とを用いて、前記断層情報の信号レベルを調整する信号レベル調整手段をさらに備えたことを特徴とする請求項2から8のいずれか1項記載の断層画像処理装置。
  10. 光を射出し、射出した光を測定光と参照光とに分割し、分割した前記測定光をシースに被覆された光ファイバを有する光プローブ内に入射し、該光プローブ内を導波した前記測定光が前記シースを透過し前記測定対象に走査しながら照射されたときの該測定対象からの反射光と前記参照光とを合波し、前記反射光と前記参照光とが合波したときの干渉光を干渉信号として検出し、検出した前記干渉信号を用いて断層画像を生成する断層画像処理プログラムにおいて、
    コンピュータに、
    前記測定光の走査ライン毎に検出される前記干渉信号を取得し、
    取得した前記干渉信号毎に前記測定対象の各深さ位置における断層情報を取得し、
    取得した前記各走査ラインの前記断層情報の中からシース像の信号レベルを検出し、
    検出したシース像の信号レベルが設定信号レベルになるような補正条件により前記断層情報を補正する
    ことを実行させるための断層画像処理プログラム。
JP2007121473A 2007-05-02 2007-05-02 断層画像処理方法および装置ならびにプログラム Withdrawn JP2008275529A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007121473A JP2008275529A (ja) 2007-05-02 2007-05-02 断層画像処理方法および装置ならびにプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007121473A JP2008275529A (ja) 2007-05-02 2007-05-02 断層画像処理方法および装置ならびにプログラム

Publications (1)

Publication Number Publication Date
JP2008275529A true JP2008275529A (ja) 2008-11-13

Family

ID=40053646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007121473A Withdrawn JP2008275529A (ja) 2007-05-02 2007-05-02 断層画像処理方法および装置ならびにプログラム

Country Status (1)

Country Link
JP (1) JP2008275529A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167030A (ja) * 2009-01-21 2010-08-05 Fujifilm Corp 光立体構造像観察装置、その立体構造情報処理方法及び光立体構造像観察装置を備えた内視鏡システム
JP2010210267A (ja) * 2009-03-06 2010-09-24 Canon Inc 光干渉断層撮像方法および装置
JP2010276368A (ja) * 2009-05-26 2010-12-09 Mitsubishi Electric Corp 差分吸収ライダ装置
JP2011135933A (ja) * 2009-12-25 2011-07-14 Nidek Co Ltd 網膜機能計測装置
JP2013531262A (ja) * 2010-07-21 2013-08-01 ディオプシス、インコーポレーテッド 色反射率離散化分析を用いて光コヒーレンストモグラフィー(oct)の結果を分析する方法およびシステム
JP2015158517A (ja) * 2015-06-08 2015-09-03 キヤノン株式会社 光干渉断層撮像装置、光干渉断層撮像方法、およびプログラム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167030A (ja) * 2009-01-21 2010-08-05 Fujifilm Corp 光立体構造像観察装置、その立体構造情報処理方法及び光立体構造像観察装置を備えた内視鏡システム
JP2010210267A (ja) * 2009-03-06 2010-09-24 Canon Inc 光干渉断層撮像方法および装置
US8818063B2 (en) 2009-03-06 2014-08-26 Canon Kabushiki Kaisha Optical coherence tomography method and optical coherence tomography apparatus
JP2010276368A (ja) * 2009-05-26 2010-12-09 Mitsubishi Electric Corp 差分吸収ライダ装置
JP2011135933A (ja) * 2009-12-25 2011-07-14 Nidek Co Ltd 網膜機能計測装置
JP2013531262A (ja) * 2010-07-21 2013-08-01 ディオプシス、インコーポレーテッド 色反射率離散化分析を用いて光コヒーレンストモグラフィー(oct)の結果を分析する方法およびシステム
JP2015158517A (ja) * 2015-06-08 2015-09-03 キヤノン株式会社 光干渉断層撮像装置、光干渉断層撮像方法、およびプログラム

Similar Documents

Publication Publication Date Title
JP4986296B2 (ja) 光断層画像化システム
JP2008253492A (ja) 断層画像処理方法および装置ならびにプログラム
JP5406427B2 (ja) 断層画像処理方法、装置およびプログラムならびにこれを用いた光断層画像化システム
JP5069585B2 (ja) 光プローブを用いた光断層画像化装置
JP4895277B2 (ja) 光断層画像化装置
US7511822B2 (en) Optical tomographic imaging apparatus
JP2007135947A (ja) 光プローブおよび光断層画像化装置
JP2007275193A (ja) 光プローブおよび光断層画像化装置
JP2007101268A (ja) 光断層画像化装置
JP2008128709A (ja) 光断層画像化装置
JP2007101263A (ja) 光断層画像化装置
JP5373485B2 (ja) Oct装置及びその干渉信号レベル制御方法
JP4818959B2 (ja) 断層画像処理方法および装置ならびにプログラム
JP2007267927A (ja) 光断層画像化方法および装置
JP2010014514A (ja) 光断層画像化装置及び光断層画像化装置における干渉信号の処理方法
JP2008275529A (ja) 断層画像処理方法および装置ならびにプログラム
JP5037215B2 (ja) 補償テーブル生成方法、装置、プログラムおよびこれを用いた断層画像処理装置
JP2008253493A (ja) 断層画像処理方法および装置ならびにプログラム
JP2008089349A (ja) 光断層画像化装置
JP2007101264A (ja) 光断層画像化装置
JP2008151734A (ja) 光断層画像化方法、装置およびプログラムならびに光断層画像化システム
JP2009074854A (ja) 光断層画像取得方法及び光断層画像化装置
JP2008128707A (ja) 断層画像処理方法、装置およびプログラムならびにこれを用いた光断層画像化システム
JP5616626B2 (ja) 光断層画像化装置及びその作動方法
JP2007101265A (ja) 光断層画像化装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706