JP5037215B2 - 補償テーブル生成方法、装置、プログラムおよびこれを用いた断層画像処理装置 - Google Patents

補償テーブル生成方法、装置、プログラムおよびこれを用いた断層画像処理装置 Download PDF

Info

Publication number
JP5037215B2
JP5037215B2 JP2007121472A JP2007121472A JP5037215B2 JP 5037215 B2 JP5037215 B2 JP 5037215B2 JP 2007121472 A JP2007121472 A JP 2007121472A JP 2007121472 A JP2007121472 A JP 2007121472A JP 5037215 B2 JP5037215 B2 JP 5037215B2
Authority
JP
Japan
Prior art keywords
light
interference signal
signal
interference
compensation table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007121472A
Other languages
English (en)
Other versions
JP2008275528A5 (ja
JP2008275528A (ja
Inventor
賢祐 寺川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007121472A priority Critical patent/JP5037215B2/ja
Priority to US12/114,152 priority patent/US7970578B2/en
Publication of JP2008275528A publication Critical patent/JP2008275528A/ja
Publication of JP2008275528A5 publication Critical patent/JP2008275528A5/ja
Application granted granted Critical
Publication of JP5037215B2 publication Critical patent/JP5037215B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、OCT(Optical Coherence Tomography)計測により光断層画像を生成するときに用いられる補償テーブルの生成方法、装置、プログラムおよびこれを用いた断層画像処理装置に関するものである。
従来、生体組織の光断層画像を取得する際に、OCT計測を利用した光断層画像取得装置を用いることが提案されている。たとえば眼底や前眼部、皮膚の断層画像を取得する場合の他に、光プローブを用いる動脈血管壁の観察、内視鏡の鉗子チャンネルから光プローブを挿入する消化器管の観察など、様々な部位に応用されている。この光断層画像取得装置では、光源から射出された低コヒーレント光を測定光と参照光とに分割した後、該測定光が測定対象に照射されたときの測定対象からの反射光、もしくは後方散乱光と参照光とを合波し、該反射光と参照光との干渉光の強度に基づいて光断層画像を取得する。以下、測定対象からの反射光、後方散乱光をまとめて反射光と標記する。
上記のOCT計測には、大きくわけてTD−OCT(Time domain OCT)計測とFD(Fourier Domain)−OCT計測の2種類がある。TD−OCT(Time domain OCT)計測は、参照光の光路長を変更しながら干渉光強度を測定することにより、測定対象の深さ方向の位置(以下、深さ位置という)に対応した反射光強度分布を取得する方法である。
一方、FD(Fourier Domain)−OCT計測は、参照光と信号光の光路長は変えることなく、光のスペクトル成分毎に干渉光強度を測定し、ここで得られたスペクトル干渉強度信号を計算機にてフーリエ変換に代表される周波数解析を行うことで、深さ位置に対応した反射光強度分布を取得する方法である。TD―OCTに存在する機械的な走査が不要となることで、高速な測定が可能となる手法として、近年注目されている。FD(Fourier Domain)−OCT計測を行う装置構成で代表的なものとしては、SD−OCT(Spectral Domain OCT)装置とSS−OCT(Swept source OCT)の2種類が挙げられる(たとえば特許文献1、非特許文献1参照)。
米国第5956355号明細書 Yoshiaki Yasuno, Violeta Dimitrova Madjarova and Shuichi Makita, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," OPTICS EXPRESS 2005 Vol. 13, No. 26.
ここで、FD−OCT計測において、検出される干渉信号は波長に対する干渉強度からなるのに対し、干渉信号から断層情報を取得するための周波数解析においては波数に対する干渉強度からなる干渉信号が必要となる。そこで、非特許文献1においては、ミラーを試料としたときに取得される干渉信号から光の波長掃引特性を算出し、算出した波長掃引特性に基づいて波長毎の干渉強度として得られる干渉信号を波数毎の干渉強度からなる干渉信号に変換している。また、特許文献1においては、予め光源の時間に対する波長掃引特性の情報を取得しておき、干渉信号が観測されたタイミングと波長掃引特性とに基づいて波数に対する干渉信号に変換し、さらに干渉強度を波数kについて等間隔になるように信号変換している。
しかし、特許文献1および非特許文献1のように予め光の波長掃引特性を計測し、変換テーブルを作成するには手間が掛かってしまうという問題がある。よって、より簡便に変換テーブルを作成できることが望まれている。
そこで、本発明は、OCT計測により取得された干渉信号のデータ変換に用いられる補償テーブルを簡便に作成することができる補償テーブル生成方法、装置、プログラムおよびこれを用いた断層画像処理装置を提供することを目的とするものである。
本発明の補償テーブル生成方法は、光を射出し、射出した光を測定光と参照光とに分割し、分割した測定光が測定対象に照射されたときの測定対象からの反射光と参照光とを合波し、反射光と参照光とが合波したときの干渉光を干渉信号としてサンプリングし、サンプリングした干渉信号を補償するための補償テーブルを生成する補償テーブル生成方法であって、測定光の光軸方向に反射体が配置されているときにサンプリングされた干渉信号を反射体干渉信号として取得し、取得した前記反射体干渉信号を下記式(1)により変換されるサンプリング空間において再サンプリングすることにより評価用出力信号を算出し、算出した評価用出力信号を用いて下記式(1)のN次多項式として設定された補償テーブルのモデル係数を最適化することを特徴とするものである。
Figure 0005037215
本発明の補償テーブル生成装置は、光を射出し、射出した光を測定光と参照光とに分割し、分割した測定光が測定対象に照射されたときの測定対象からの反射光と参照光とを合波し、反射光と参照光とが合波したときの干渉光を干渉信号としてサンプリングし、サンプリングした干渉信号を補償ための補償テーブルを生成する補償テーブル生成装置であって、測定光の光軸方向に反射体が配置されているときにサンプリングされた干渉信号を反射体干渉信号として取得する干渉信号取得手段と、干渉信号取得手段において取得された反射体干渉信号を下記式(1)により変換されるサンプリング空間において再サンプリングすることにより評価用出力信号を算出する評価信号算出手段と、評価信号算出手段により算出された評価用出力信号を用いて、上記式(1)のN次多項式として設定された補償テーブルのモデル係数を最適化する最適化手段とを備えたことを特徴とするものである。
本発明の補償テーブル生成プログラムは、光を射出し、射出した光を測定光と参照光とに分割し、分割した測定光が測定対象に照射されたときの測定対象からの反射光と参照光とを合波し、反射光と参照光とが合波したときの干渉光を干渉信号としてサンプリングし、サンプリングした干渉信号を補償するための補償テーブルを生成する補償テーブル生成プログラムであって、コンピュータに、測定光の光軸方向に反射体が配置されているときにサンプリングされた干渉信号を反射体干渉信号として取得し、取得した前記反射体干渉信号を下記式(1)により変換されるサンプリング空間において再サンプリングすることにより評価用出力信号を算出し、算出した評価用出力信号を用いて上記式(1)のN次多項式として設定された補償テーブルのモデル係数を最適化することを実行させることを特徴とするものである。
本発明の断層画像処理装置は、光を射出し、射出した光を測定光と参照光とに分割し、分割した測定光が測定対象に照射されたときの測定対象からの反射光と参照光とを合波し、反射光と参照光とが合波したときの干渉光を干渉信号としてサンプリングし、サンプリングした干渉信号を用いて測定対象の断層情報を取得し断層画像を生成する断層画像処理装置において、干渉信号を取得する干渉信号取得手段と、干渉信号取得手段において取得される干渉信号のうち、測定光の光軸方向に反射体が配置されているときにサンプリングされた反射体干渉信号を下記式(1)により変換されるサンプリング空間において再サンプリングすることにより評価用出力信号を算出する評価信号算出手段と、評価信号算出手段により算出された評価用出力信号を用いて上記式(1)のN次多項式として設定された補償テーブルのモデル係数を最適化する最適化手段と、最適化手段により最適化された補償テーブルを用いて、干渉信号取得手段において取得された干渉信号を補償する信号補償手段と、信号補償手段により補償された干渉信号を測定対象の断層情報を取得する断層情報取得手段と、断層情報取得手段により取得された断層情報を用いて断層画像を生成する断層画像生成手段とを備えたことを特徴とするものである。
ここで、反射光とは、測定対象からの反射光および後方散乱光を意味する。
また、反射体とは反射率の極めて高い試料を意味し、たとえば測定光がシースに被覆された光ファイバを有する光プローブ内を導波しシースを透過して測定対象に照射される場合のシースやミラー等を用いることができる。
信号取得手段は、測定光の光軸方向に反射体が配置されているときにサンプリングされた干渉信号を反射体干渉信号として取得するものであればよく、サンプリング空間が干渉光の波長である反射干渉信号を取得するものであってもよい。このとき、評価信号算出手段は、反射体干渉信号を式(1)により変換されるサンプリング空間において再サンプリングすることにより、サンプリング空間が干渉光の波数である評価用出力信号を算出するものであってもよい。
あるいは、信号取得手段は、波長毎の干渉強度を示す反射体干渉信号を波数毎の干渉強度を示す反射体干渉信号に変換する機能を有するもものであってもよい。このとき、評価信号算出手段は、信号取得手段により取得された波数に対する干渉強度を示す反射体干渉信号を前記式(1)により変換されるサンプリング空間において再サンプリングすることにより評価用出力信号を算出するようにしてもよい。すなわち、反射体干渉信号および評価用出力信号のサンプリング空間はともに干渉光の波数になる。
なお、上記式(1)におけるモデル係数Cの初期値は、適当な値を代入したものであってもよいし、すでに存在する補償テーブルから取得するようにしてもよい。
また、反射体干渉信号は測定光の光軸方向に反射体が配置された状態でサンプリングされたものであれば良いが、反射体のみが配置されたときに取得されたものであることが好ましい。
また、上記式(1)のうち、次元数Nおよび設定ノルムMはどのような値に設定されていても良いが、スペクトルがスパースな信号であることから1以上2未満に設定されていることが望ましい。
さらに、最適化手段は、モデル係数の最適化を行うものであればどのような手法により最適化を行うものであってもよく、たとえばシンプレックス法によりモデル係数の最適化を行うものであってもよいし、パウエル法によりモデル係数の最適化を行うものであってもよい。具体的には最適化手段が、評価信号取得手段において取得された評価用出力信号のスペクトルを算出するスペクトル算出手段と、スペクトル算出手段において算出されたスペクトルを用いて、下記式(2)により補償テーブルに対する評価値を算出する評価値算出手段と、評価値算出手段により算出された評価値が小さくなるようにモデル係数を更新する係数更新手段とを有するものであってもよい。
Figure 0005037215
また、干渉信号解析手段は、干渉信号から各深さ位置における断層情報を取得するものであればその方法は問わず、たとえばフーリエ変換処理、最大エントロピー法、Yule−Walker法等のスペクトル解析により断層情報を取得するようにしてもよい。
なお、光は所定の波長帯域内において波長を掃引しながら周期的に射出されたものであって、いわゆるSS−OCT計測により断層画像を取得するものであってもよいし、所定の波長帯域からなる低コヒーレンス光を射出するものであって、いわゆるSD−OCT計測により断層画像を取得するものであっても良い。
本発明の補償テーブル生成方法、装置およびプログラムならびにこれを用いた断層画像処理装置によれば、光を射出し、射出した光を測定光と参照光とに分割し、分割した測定光が測定対象に照射されたときの測定対象からの反射光と参照光とを合波し、反射光と参照光とが合波したときの干渉光を干渉信号としてサンプリングし、サンプリングした干渉信号を補償するための補償テーブルを生成する際、測定光の光軸方向に反射体が配置されているときにサンプリングされた干渉信号を反射体干渉信号として取得し、取得した前記反射体干渉信号から上記式(1)を用いて再サンプリングを行ったときの反射干渉信号を評価用出力信号として算出し、算出したした評価用出力信号を用いて上記式(1)のN次多項式として設定された補償テーブルのモデル係数を最適化することにより、従来のように、補償テーブルを生成するために予め光源ユニットの波長掃引特性を計測する必要がなく、反射体からの反射体干渉信号とそれ以外の干渉信号とはスパースな信号になることを利用し、簡便に補償テーブルの生成を行うことができる。
なお、最適化手段が、評価信号取得手段において取得された評価用出力信号のスペクトルを算出するスペクトル算出手段と、スペクトル算出手段において算出されたスペクトルを用いて、上記式(2)により補償テーブルに対する評価値を算出する評価値算出手段と、評価値算出手段により算出された評価値が小さくなるようにモデル係数を更新する係数更新手段とを有するとき、補償テーブルの作成を自動的に効率よく行うことができる。
また、干渉信号取得手段が、波長毎の干渉強度としてサンプリングされた反射体干渉信号を波数毎の干渉強度を示す反射体干渉信号に変換する機能を有し、最適化手段が信号取得手段により変換された反射体干渉信号を用いて補償テーブルのモデル係数を最適化するものであるとき、既に波数毎の干渉強度からなる干渉信号への変換を微調整することができ、画質の向上を図ることができる。
さらに、測定光がシースに被覆された光ファイバを有する光プローブ内を導波し、シースを透過して測定対象に照射されるものであって反射体がシースである場合、反射体干渉信号を得るために測定光の光軸方向にミラー等の反射体を別途設ける必要がなく、より簡便に補償テーブルを作成することができる。
以下、図面を参照して本発明の断層画像処理装置の実施の形態を詳細に説明する。図1は本発明の断層画像処理装置を用いた光断層画像化システムの好ましい実施の形態を示す模式図である。光断層画像化システム1は、たとえば体腔内の生体組織や細胞等の測定対象の断層画像PをSS−OCT(Spectral Domain OCT)計測により取得するものであって、光Lを射出する光源ユニット310と、光源ユニット310から射出された光Lを測定光L1と参照光L2とに分割する光分割手段3と、光分割手段により分割された測定光L1が測定対象Sの各深さ位置において反射したときの反射光(後方散乱光)と参照光L2とを合波する合波手段4と、合波手段4により合波された反射光L3と参照光L2との干渉光L4を干渉信号ISとしてサンプリングする干渉光検出手段40と、干渉光検出手段40によりサンプリングされた干渉信号ISから断層画像を生成する断層画像処理装置50とを備えている。
光源ユニット310は、図2(A)に示すような波長帯域Δλ内において波長を一定の周期Tで掃引させながらレーザ光Lを射出するものである。具体的には光源ユニット310は、半導体光増幅器(半導体利得媒質)311と光ファイバFB10とを有しており、光ファイバFB10が半導体光増幅器311の両端に接続された構造を有している。半導体光増幅器311は駆動電流の注入により微弱な放出光を光ファイバFB10の一端側に射出するとともに、光ファイバFB10の他端側から入射された光を増幅する機能を有している。そして、半導体光増幅器311に駆動電流が供給されたとき、半導体光増幅器311および光ファイバFB10により形成される光共振器によりパルス状のレーザ光Lが光ファイバFB1へ射出されるようになっている。
さらに、光ファイバFB10には光分岐器312が結合されており、光ファイバFB10内を導波する光の一部が光分岐器312から光ファイバFB11側へ射出されるようになっている。光ファイバFB11から射出した光はコリメータレンズ313、回折格子素子314、光学系315を介して回転多面鏡(ポリゴンミラー)316において反射される。そして反射された光は光学系315、回折格子素子314、コリメータレンズ313を介して再び光ファイバFB11に入射される。
ここで、この回転多面鏡316は矢印R1方向に回転するものであって、各反射面の角度が光学系315の光軸に対して変化するようになっている。これにより、回折格子素子314において分光された光のうち、特定の波長の光だけが再び光ファイバFB11に戻るようになる。この光ファイバFB11に戻る光の波長は光学系315の光軸と反射面との角度によって決まる。そして光ファイバFB11に入射した特定の波長の光が光分岐器312から光ファイバFB10に入射され、結果として特定の波長のレーザ光Lが光ファイバFB1側に射出されるようになっている。
したがって、回転多面鏡316が矢印R1方向に等速で回転したとき、再び光ファイバFB11に入射される光の波長λは、時間の経過に伴って一定の周期で変化することになる。こうして光源ユニット310からは、図2(A)に示すような一定の周期Tで波長掃引され図2(B)に示すようなスペクトル強度を有するレーザ光Lが光ファイバFB1側に射出される。
光分割手段3は、たとえば2×2の光カプラから構成されており、光源ユニット310から光ファイバFB1を介して導波した光Lを測定光L1と参照光L2に分割する。光分割手段3は、2本の光ファイバFB2、FB3にそれぞれ光学的に接続されており、測定光L1は光ファイバFB2により導波され、参照光L2は光ファイバFB3により導波される。なお、本実施形態における光分割手段3は、合波手段4としても機能するものである。
光ファイバFB2には光プローブ30が光学的に接続されており、測定光L1は光ファイバFB2から光プローブ30へ導波される。図3は図1の光プローブ30の先端部分の一例を示す模式図である。光プローブ30は、たとえば鉗子口から鉗子チャンネルを介して体腔内に挿入されるものであって、光学コネクタ30Aにより光ファイバFB2に対し着脱可能に取り付けられている。シース31、光ファイバFB20、光学レンズ32等を有している。シース31は可撓性を有する筒状の部材からなっており、測定光L1および反射光L3が透過する材料からなっている。なお、シース31は先端がキャップにより閉塞された構造を有している。
光ファイバFB20は測定光L1を測定対象Sまで導波するとともに、測定光L1が測定対象Sに照射されたときの測定対象Sからの反射光(後方散乱光)L3を光ファイバFB2まで導波するものであってシース31内に収容されている。この光ファイバFB20は光学コネクタ30Aによりシース31に対し矢印θ方向に回転する。
光学レンズ32は、光ファイバFB20から射出した測定光L1を測定対象Sに対し集光するものであり、測定対象Sからの反射光L3を集光し光ファイバFB20に入射する。光学レンズ32は光ファイバFB20の光出射端部に固定されており、光ファイバFB20が矢印θ方向に回転したとき、光学レンズ32も一体的に矢印R1方向に回転する。よって、光プローブ30は、測定対象Sに対し光学レンズ32から射出される測定光L1を矢印θ方向に対し走査しながら照射することになる。
一方、図1の光ファイバFB3における参照光L2の射出側には光路長調整手段20が配置されている。光路長調整手段20は、測定対象Sに対する測定開始位置を調整するために、参照光L2の光路長を変えるものであって、コリメータレンズ21および反射ミラー22を有している。そして、光ファイバFB3から射出した参照光L2はコリメータレンズ21を透過した後、反射ミラー22により反射され、再びコリメータレンズ21を介して光ファイバFB3に入射される。
ここで、反射ミラー22は可動ステージ23上に配置されており、可動ステージ23はミラー駆動手段24により矢印A方向に移動可能に設けられている。そして可動ステージ23が矢印A方向に移動することにより、参照光L2の光路長が変更するよう構成されている。
合波手段4は、2×2の光カプラからなり、光路長調整手段20により光路長の変更が施された参照光L2と測定対象Sからの反射光L3とを合波するとともに2分し、光ファイバFB1、FB4を介して干渉光検出手段40側に射出するように構成されている。
干渉光検出手段40は、たとえばフォトダイオード等からなっており、合波手段4により合波された反射光L3と参照光L2との干渉光L4をサンプリングし干渉信号ISとして出力するものである。なお本例の装置は、干渉光L4を合波手段4(光ファイバカプラ)4で二分した干渉光L4をそれぞれ光検出器40aと40bに導き、バランス検波を行う機構を有している。
次に、上述した光断層画像化システム1の動作例について説明する。まず、可動ステージ23が矢印A方向に移動することにより、測定可能領域内に測定対象Sが位置するように光路長の調整が行われる。その後、光源ユニット310から光Lが射出され、光Lは光分割手段3により測定光L1と参照光L2とに分割される。測定光L1は光プローブ30により体腔内に導波され測定対象Sに照射される。そして、測定対象Sからの反射光L3が反射ミラー22において反射した参照光L2と合波手段4により合波され、反射光L3と参照光L2との干渉光L4が干渉信号ISとして干渉光検出手段40によりサンプリングされる。
そして、光プローブ30内の光ファイバを矢印θ方向に回転させることにより、測定対象Sに対して測定光L1を矢印θ方向に走査させる。すると、この走査方向θに沿った各部分において測定対象Sの深さ方向(測定光L1の光軸方向z)の情報が得られる。よって、断層画像処理装置50において、この複数の干渉信号ISから断層画像Pが取得されることになる。なお、測定対象Sに対して測定光L1を、上記走査方向に対して直交する第2の方向(光プローブ30の長手方向)に走査させることにより、この第2の方向を含む断層面についての断層画像Pをさらに取得することも可能である。
図4は本発明の断層画像処理装置の好ましい実施の形態を示すブロック図であり、図4を参照して断層画像処理装置50について説明する。なお、図4のような断層画像処理装置50の構成は、補助記憶装置に読み込まれた断層画像処理プログラムをコンピュータ(たとえばパーソナルコンピュータ等)上で実行することにより実現される。このとき、この断層画像処理プログラムは、CD−ROM等の情報記憶媒体に記憶され、もしくはインターネット等のネットワークを介して配布され、コンピュータにインストールされることになる。
断層画像処理装置50は、干渉信号取得手段51、信号補償手段52、断層情報取得手段53、断層画像生成手段54、画像出力手段55を有している。干渉信号取得手段51は干渉光検出手段40においてサンプリングされた干渉信号ISを取得するものである。なお、干渉光検出手段40においては、光のスペクトル強度の影響を受けた状態で干渉信号ISがサンプリングされることになる。そこで、干渉信号取得手段51は干渉信号ISへの前処理として光Lのスペクトル強度の影響の除去を行うようにしてもよい。
図3の信号補償手段52は、下記式(1)に示す補償テーブルを用いて干渉信号ISを補償し、補償後の干渉信号IS10を出力するものである。なお、信号補償手段52は図5に示すように干渉光検出手段40において波長毎(時間経過毎)の干渉強度として取得された干渉信号ISを補償(補間)し、波数k(=2π/λ)軸において等間隔になるような補償後の干渉信号IS10を生成する機能を有している。
Figure 0005037215
すなわち、干渉光検出手段40はサンプリング空間が時間変化(波長λ変化)であるときの干渉強度を干渉信号ISとしてサンプリングする。一方、信号補償手段52はこの干渉信号ISをサンプリング空間が波数k(2π/λ)であるときの干渉強度に再サンプリングして補償後の干渉信号IS10を生成する。補償テーブルRTは、上述したサンプリング空間の変換を行うときに、波長におけるサンプリング空間xが波数における再サンプリング空間yのいずれの再サンプリング点に該当するかを示すものである。
なお、サンプリング点xは整数であるが、式(1)により導出される再サンプリング点yは必ずしも整数になるとは限らない。このとき、信号補償手段52は、導出された小数点となった再サンプリング点yにおける干渉強度を用いて、整数の再サンプリング点yにおける干渉強度を補間し、補償後の干渉信号IS10を生成する。なお、この信号変換手法の詳細は米国第5956355号明細書に開示されている。
断層情報取得手段53は、補償後の干渉信号IS10を用いて測定対象Sの各深さ位置における断層情報r(z)を取得するものである。ここで、断層情報取得手段53は、たとえばフーリエ変換処理、最大エントロピー法(MEM)、Yule−Walker法等の公知のスペクトル解析技術を用いて、深さ方向zの断層情報(反射率)を取得する。さらに、断層情報取得手段53は、干渉光検出手段40において波長掃引1周期分の干渉信号ISがサンプリングされる度に、1ライン分の断層情報r(z)を取得していく。
断層画像生成手段54は、断層情報取得手段53により逐次取得された複数ライン分の断層情報から1枚の断層画像を生成するものである。具体的には、断層画像生成手段54は、図1の光源ユニット310における波長掃引1周期分の干渉信号ISから得られた断層情報r(z)を1ライン分の断層情報r(z)として記憶してゆく。さらに、光プローブ30により測定光L1が測定対象Sに対し走査されながら照射されたときに、断層画像生成手段54は逐次取得される複数の断層情報r(z)を記憶していく。その後、断層画像生成手段54は、記憶していた複数ライン分の断層情報r(z)を用いて断層画像Pを生成する。そして、画像出力手段55は、断層画像生成手段54により生成された断層画像Pを図1の表示装置60に表示することになる。
ここで、信号補償手段52において用いられる補償テーブルRTは図4に示す補償テーブル生成装置70により生成されたものである。なお、図4の補償テーブル生成装置70の構成は、補助記憶装置に読み込まれた補償テーブル生成プログラムをコンピュータ(たとえばパーソナルコンピュータ等)上で実行することにより実現される。このとき、この補償テーブル生成プログラムは、CD−ROM等の情報記憶媒体に記憶され、もしくはインターネット等のネットワークを介して配布され、コンピュータにインストールされることになる。
補償テーブル生成装置70は、干渉信号取得手段51、評価信号取得手段71、最適化手段72を有している。干渉信号取得手段51は、上述のような測定対象Sからの反射光L3と参照光L2との干渉光L4をサンプリングしたときの干渉信号ISを取得する場合に限らず、測定光L1の光軸方向(図3の矢印z方向)に反射体(シース31)が配置されている状態で得られる干渉信号を反射体干渉信号RISとして取得する機能を有している。たとえば干渉信号取得手段51は、たとえば光プローブ30を体腔内に挿入せず測定対象Sからの反射光L3が発生しない状態で、光プローブ30から測定光L1を射出したときにサンプリングされる干渉信号を反射体干渉信号RISとして取得する。
評価信号取得手段71は、反射体干渉信号RISから下記式(1)を用いて再サンプリングを行ったときの反射干渉信号を評価用出力信号RIS10として算出するするものであって、上述した信号補償手段52と同様の機能を有している。
なお、評価信号取得手段71は、上記式(1)における次元数Nおよびモデル係数Cの適当な初期値を有しており、この次元数Nおよびモデル係数Cの初期値は、波数k=2π/λであることを考慮し決定される。たとえば次元数N=4に設定されている場合、初期の補償テーブルRTは下記式(1’)のようになり、式(1)におけるモデル係数C(i=1、2、3)の初期値は予め適当な値に設定される。
Figure 0005037215
そして、評価信号取得手段71は式(1’)のサンプリング点xにおける干渉強度から、再サンプリング点yにおける干渉強度を取得することにより、評価用出力信号RIS10を取得する。
最適化手段72は、干渉信号取得手段51において取得された反射体干渉信号RISを用いて上記式(1)で示される補償テーブルRTのモデル係数Cを最適化するものである。ここで、最適化手段72は、simplex法やパウエル法等によりモデル係数Cの最適化を行うものであって、スペクトル算出手段71a、評価値算出手段71b、係数更新手段71cを有している。
スペクトル算出手段71aは、評価信号取得手段71において取得された評価用出力信号RIS10のスペクトルY(t)を算出するものである。このときスペクトル算出手段71aはたとえばフーリエ変換や最大エントロピー法等の公知の各種スペクトル推定手法を用いて、評価用出力信号RIS10からスペクトルY(t)を算出する。
評価値算出手段71bは、スペクトル算出手段71aより算出されたスペクトルY(t)を用いて補償テーブルRTに対する評価値E(C)を下記式(2)により算出するものである。
Figure 0005037215
なお、モデル係数Ciを用いた補償テーブルRTより評価用出力信号RIS10が算出され、この評価用出力信号RIS10をフーリエ変換することによりY(t)が求まる。したがって、式(2)の評価値E(C)はモデル係数Ciの関数となる。
そして、係数更新手段71cは、評価値算出手段71bにより算出された評価値E(C)が小さくなるようにモデル係数Cを更新する。なお、最適化手段72において、評価用出力信号RIS10の取得、評価値E(C)およびモデル係数Cの更新が設定回数kだけ繰り返し行うように設定されている。
ここで、評価用出力信号RIS10から取得される断層情報(反射率)は、図6に示すようにシース31の内面31aおよび外面31bにおいて大きい値となって表れ、シース像以外の断層情報(反射率)は極めて小さい値となる。つまり、反射体の断層情報r(z)(シース像)とそれ以外の断層情報r(z)とはスパースな信号(疎な信号)となる。
評価用出力信号RIS10のスペクトルY(t)がスパースな信号であるとき、式(2)において設定ノルムMが1以上2未満(たとえば設定ノルムM=1)に設定されたときの評価値E(C)は小さくなり、また小さければ小さいほどスペクトルY(t)はよりスパースな信号であることを意味する。
しかし、実際に反射体干渉信号RISから得られる断層情報r(z)は、光源ユニット310の波長掃引特性、測定対象Sの分散特性・吸収特性、光断層画像化システム1に用いられる各種光学部品の波長依存特性等の影響により、スパース性が失われている場合がある。スパース性を失った断層情報r(z)から断層画像Pを作成したとき、分解能の劣化等の画質の劣化を生じさせる。
一方、上述した最適化手段72においては、この反射体干渉信号RISから得られる断層情報r(z)がスパースな信号として出力されるようにモデル係数Cの最適化が行われる。これは補償テーブルRTが波長掃引特性等の影響を補償することができるように最適化されたことを意味する。よって、最適化された補償テーブルRTを用いて干渉信号ISを補償することにより、画質の劣化を防止することができることになる。
図7は本発明の補償テーブル生成方法の好ましい実施形態を示すフローチャートであり、図7を参照して補償テーブル生成方法について説明する。なお、以下には補償テーブルRTが未だ作成されていない場合について例示し、最適化手段72において、式(1’)のように4次の多項式(N=4)として予め設定された初期モデル係数C〜Cが設定されているものとする(ステップST1〜ステップST4)。
まず、干渉信号取得手段51において干渉信号ISが取得されたとき、最適化手段72において、干渉信号ISが初期の補償テーブルRT(式(1’))により補償され、評価用出力信号RIS10が取得される次に、スペクトル算出手段71aにおいて、評価用出力信号RIS10のスペクトルY(t)が算出され評価値算出手段71bによりスペクトルY(t)の評価値E(C)が算出される(ステップST5)。そして、係数更新手段71cにより、評価値E(C)が小さくなるようにモデル係数Cが更新される(ステップST6)。この作業が設定ループ回数kだけ繰り返される(ステップST3〜ST7)。
このように、反射体干渉信号RISを用いて補償テーブルRTを生成することにより、予め光源ユニット310の波長掃引特性を測定せずに簡便に補償テーブルRTを生成することができる。すなわち、従来、光源ユニット310の波長掃引特性に合わせて、予め光源ユニット310における時間に対する波長変化を計測しておく必要がある。一方、図4の補償テーブル生成装置70においては、反射体(シース)のある光プローブ30を用いてOCT計測により取得した断層情報はスパースな信号になるという性質を利用し、光源ユニットの波長掃引特性を計測しなくても式(1)、(2)を用いて補償テーブルRTを簡便に作成することができる。特に反射体としてシース31を用いた場合、反射体干渉信号RISを得るために測定光L1の光軸方向zにミラー等の反射体を別途設ける必要がなく、より簡便に補償テーブルRTを作成することができる。
また、実際に得られた反射体干渉信号RISを用いて補償テーブルRTの作成を行うものであるため、波長掃引特性のみならず測定対象Sの分散特性・吸収特性、光断層画像化システム1に用いられる各種光学部品の波長依存特性等の影響を考慮した補償テーブルRTを作成することができる。
図8は本発明の断層画像処理装置150の別の実施形態を示すブロック図である。なお、図8の断層画像処理装置150において図4の断層画像処理装置50と同一の部位には同一の符号を付してその説明を省略する。図8の断層画像処理装置150が、図1の断層画像処理装置50と異なる点は、干渉信号取得手段151が取得された干渉信号を波数毎の干渉強度を示す干渉信号に変換する機能を有することである。
信号取得手段151は、光源ユニット310の時間−波長掃引特性を予め計測しておき、これを変換テーブルTTとして用いて、干渉光検出手段40において時間軸(波長軸)に対してサンプリングされた干渉強度として取得される干渉信号ISを波数k軸において等間隔になるように再サンプリングを行った干渉信号IS100(反射干渉信号RIS100)を出力するものである。なお、この信号変換手法の詳細はUS5956355号明細書に開示されている。
信号補償手段152は信号取得手段151により変換された干渉信号IS100を補償するようになっている。言い換えれば、信号補償手段152は信号取得手段151における変換テーブルTTに基づく変換結果を微調整するように機能する。そして、信号補償手段152において用いられる補償テーブルRTは、補償テーブル生成装置170において信号取得手段151により信号変換された反射体干渉信号RIS100を用いて補償テーブルRTを生成することになる。なお、補償テーブルRTの最適化は上記アルゴリズム(図7参照)を適用することができる。この場合であっても、簡便に補償テーブルRTの生成を行うことができるとともに、より最適化された補償後の干渉信号IS10を取得することができる。
上記各実施の形態によれば、干渉信号ISを補償するための補償テーブルRTを生成する際、測定光L1の光軸方向zに反射体31が配置されているときにサンプリングされた干渉信号を反射体干渉信号RISとして取得し、取得した反射体干渉信号RISを用いて上記式(1)のN次多項式として設定された補償テーブルRTのモデル係数Cを最適化することにより、従来のように、補償テーブルRTを生成するために予め光源ユニット310の波長掃引特性を計測する必要がなく、反射体31からの信号成分とそれ以外の信号成分とはスパースな信号になることを利用し、簡便に補償テーブルRTの生成を行うことができる。
また、図4に示すように、最適化手段72が、補償テーブルRTを用いて反射体干渉信号RISを補償した評価用出力信号RIS10を算出する評価信号取得手段71と、評価信号取得手段71において取得された評価用出力信号RIS10のスペクトルY(t)を算出するスペクトル算出手段71aと、スペクトル算出手段71aにおいて算出されたスペクトルY(t)を用いて、上記式(2)により補償テーブルに対する評価値E(C)を算出する評価値算出手段71bと、評価値算出手段71bにより算出された評価値E(C)が小さくなるようにモデル係数Cを更新する係数更新手段71cとを有するとき、補償テーブルRTの作成を自動的に効率よく行うことができる。
また、図8に示すように、干渉信号取得手段51が波長毎の干渉強度を示す反射体干渉信号RIS100を、波数毎の干渉強度を示す反射体干渉信号RISに変換する機能を有し、最適化手段72が信号取得手段151により変換された反射体干渉信号RIS100を用いて補償テーブルRTのモデル係数Cを最適化するものであるとき、既に波数毎の干渉強度へ変換された干渉信号IS100を微調整することができ、画質の向上を図ることができる。
さらに、測定光L1がシース31に被覆された光ファイバFB20を有する光プローブ30内を導波し、シース31を透過して測定対象Sに照射されるものであって反射体がシース31である場合、反射体干渉信号RISを得るために測定光L1の光軸方向zにミラー等の反射体を別途設ける必要がなく、より簡便に補償テーブルRTを作成することができる。
本発明の実施の形態は、上記実施の形態に限定されない。たとえば、反射体としてシース31を用いた場合について例示しているが、測定光L1の光軸方向zにミラーを配置し、ミラーによる反射体断層情報と他の部分の断層情報とがスパースな信号になることを利用して上述のように補償テーブルRTを作成するようにしても良い。
また、反射体干渉信号RISは測定光L1の光軸方向z上にシース31のみが配置された状態で取得された場合について例示しているが、光プローブ30を体腔内に挿入しOCT計測を行ったときに得られた干渉信号を反射体干渉信号RISとしてもよい。つまり、シース31は通常の生体組織等の測定対象Sでは存在しない程の強い反射率を有するため、たとえば体腔内に挿入した状態においても、干渉信号ISに含まれる反射体(シース)31での信号成分とそれ以外の測定対象Sでの信号成分とはスパースな関係が成立する。
さらに、図4の最適化手段72において、モデル係数Cを予め初期値が設定した式(1)のような形で補償テーブルRTが与えられている場合について例示しているが、既にたとえばルックアップテーブル等の式(1)とは異なる形で記憶されている場合、このルックアップテーブルのデータ列から式(1)におけるモデル係数Cの初期値を決定するようにしてもよい。
また、上記実施の形態において断層画像処理装置50をいわゆるSS−OCT計測に適用した場合について例示しているが、図9に示すようなSD−OCT計測を用いた光断層画像化システムについても同様に適用することができる。なお、図9においては、光源ユニット110は、広帯域な低コヒーレンス光を射出するものであり、干渉光検出手段140において、干渉光L4がレンズ41介して回折格子素子42に入射され、回折格子素子171において各波長帯域毎に分光された後、レンズ43を介して複数の光検出素子(フォトダイオード等)が配列された光検出部44によって干渉信号ISとして検出されることになる。この場合であっても、測定対象Sの分散特性・吸収特性、光断層画像化システム1に用いられる各種光学部品の波長依存特性等の影響を考慮した補償テーブルRTを簡便に作成することができる。
本発明の補償テーブル生成装置が適用される光断層画像化システムの好ましい実施の形態を示す概略構成図 図1の光源ユニットから射出される光の波長が掃引される様子を示すグラフ 図1の光断層画像化システムに使用される光プローブの一例を示す模式図 本発明の断層画像処理装置の好ましい実施形態を示すブロック図 図1の信号補償手段において干渉信号が変換される様子を示す模式図 図4のスペクトル算出手段において算出された反射干渉信号のスペクトルの一例を示すグラフ 本発明の補償テーブル生成方法の好ましい実施形態を示すフローチャート 本発明の断層画像処理装置の別の実施形態を示すブロック図 本発明の断層画像処理装置が適用される光断層画像化システムの別の一例を示す模式図
符号の説明
1 光断層画像化システム
3 光分割手段
4 合波手段
110、310 光源ユニット
30 光プローブ
30A 光学コネクタ
31 シース(反射体)
40 干渉光検出手段
50、150 断層画像処理装置
51、151 干渉信号取得手段
52、152 信号補償手段
53 断層情報取得手段
54 断層画像生成手段
55 画像出力手段
60 表示装置
70、170 補償テーブル生成装置
71 評価信号取得手段
72 最適化手段
71a スペクトル算出手段
71b 評価値算出手段
71c 係数更新手段
モデル係数
E(C) 評価値
FB20 光ファイバ
IS 干渉信号
IS10 補償後の干渉信号
L 光
L1 測定光
L2 参照光
L3 反射光
L4 干渉光
M 設定ノルム
P 断層画像
r(z) 断層情報
RIS 反射体干渉信号
RIS10 評価用出力信号
RT 補償テーブル
S 測定対象
Y(t) スペクトル
z 光軸方向

Claims (10)

  1. 光を射出し、射出した光を測定光と参照光とに分割し、分割した前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波し、前記反射光と前記参照光とが合波したときの干渉光を干渉信号としてサンプリングし、サンプリングした前記干渉信号を補償するための補償テーブルを生成する補償テーブル生成方法であって、
    前記測定光の光軸方向に反射体が配置されているときにサンプリングされた干渉信号を反射体干渉信号として取得し、
    取得した前記反射体干渉信号を下記式(1)により変換されるサンプリング空間において再サンプリングすることにより評価用出力信号を算出し、
    算出した前記評価用出力信号を用いて下記式(1)のN次多項式として設定された補償テーブルのモデル係数を最適化する
    ことを特徴とする補償テーブル生成方法。
    Figure 0005037215
  2. 光を射出し、射出した光を測定光と参照光とに分割し、分割した前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波し、前記反射光と前記参照光とが合波したときの干渉光を干渉信号としてサンプリングし、サンプリングした前記干渉信号を補償するための補償テーブルを生成する補償テーブル生成装置であって、
    前記測定光の光軸方向に反射体が配置されているときにサンプリングされた干渉信号を反射体干渉信号として取得する干渉信号取得手段と、
    前記干渉信号取得手段において取得された前記反射体干渉信号を下記式(1)により変換されるサンプリング空間において再サンプリングすることにより評価用出力信号を算出する評価信号算出手段と、
    該評価信号算出手段により算出された前記評価用出力信号を用いて、下記式(1)のN次多項式として設定された補償テーブルのモデル係数を最適化する最適化手段と
    を備えたことを特徴とする補償テーブル生成装置。
    Figure 0005037215
  3. 前記最適化手段が、
    該評価信号算出手段において取得された前記評価用出力信号のスペクトルを算出するスペクトル算出手段と、
    該スペクトル算出手段において算出されたスペクトルを用いて、下記式(2)により前記補償テーブルに対する評価値を算出する評価値算出手段と、
    該評価値算出手段により算出された前記評価値が小さくなるように前記モデル係数を更新する係数更新手段と
    を有するものであることを特徴とする請求項2記載の補償テーブル生成装置。
    Figure 0005037215
  4. 前記設定ノルムが1以上2未満であることを特徴とする請求項3記載の補償テーブル生成装置。
  5. 前記最適化手段が、シンプレックス法により前記モデル係数の最適化を行うものであることを特徴とする請求項2から4のいずれか1項に記載の補償テーブル生成装置。
  6. 前記信号取得手段が、サンプリング空間が前記干渉光の波長である前記反射体干渉信号を取得するものであり、
    前記評価信号算出手段が、前記反射体干渉信号を前記式(1)により変換されるサンプリング空間において再サンプリングすることにより、サンプリング空間が前記干渉光の波数である評価用出力信号を算出するものであることを特徴とする請求項2から5のいずれか1項記載の補償テーブル生成装置。
  7. 前記信号取得手段が、前記干渉光の波長に対する干渉強度を示す前記反射体干渉信号を波数に対する干渉強度を示す前記反射体干渉信号に変換する機能を有し、
    前記評価信号算出手段が、該信号取得手段により取得された波数に対する干渉強度を示す前記反射体干渉信号を前記式(1)により変換されるサンプリング空間において再サンプリングすることにより評価用出力信号を算出するものであることを特徴とする請求項2から5のいずれか1項記載の補償テーブル生成装置。
  8. 前記測定光がシースに被覆された光ファイバを有する光プローブ内を導波し該シースを透過して前記測定対象に照射されるものであり、前記反射体がシースであることを特徴とする請求項2から7のいずれか1項記載の補償テーブル生成装置。
  9. 光を射出し、射出した光を測定光と参照光とに分割し、分割した前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波し、前記反射光と前記参照光とが合波したときの干渉光を干渉信号としてサンプリングした際に、コンピュータに、サンプリングした前記干渉信号を補償するための補償テーブルを生成することを実行させるための補償テーブル生成プログラムであって、
    前記測定光の光軸方向に反射体が配置されているときにサンプリングされた干渉信号を反射体干渉信号として取得し、
    取得した前記反射体干渉信号を下記式(1)により変換されるサンプリング空間において再サンプリングすることにより評価用出力信号を算出し、
    算出した前記評価用出力信号を用いて下記式(1)のN次多項式として設定された補償テーブルのモデル係数を最適化する
    ことを実行させるための補償テーブル生成プログラム。
    Figure 0005037215
  10. 光を射出し、射出した光を測定光と参照光とに分割し、前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波し、前記反射光と前記参照光とが合波したときの干渉光を干渉信号としてサンプリングし、サンプリングした前記干渉信号を用いて前記測定対象の断層情報を取得し断層画像を生成する断層画像処理装置において、
    前記干渉信号を取得する干渉信号取得手段と、
    前記干渉信号取得手段において取得される干渉信号のうち、前記測定光の光軸方向に反射体が配置されているときにサンプリングされた反射体干渉信号を下記式(1)により変換されるサンプリング空間において再サンプリングすることにより評価用出力信号を算出する評価信号算出手段と、
    該評価信号算出手段により算出された前記評価用出力信号を用いて、下記式(1)のN次多項式として設定された補償テーブルの設定しモデル係数を最適化する最適化手段と、
    該最適化手段により最適化された前記補償テーブルを用いて、前記干渉信号取得手段において取得された前記干渉信号を補償する信号補償手段と、
    該信号補償手段により補償された前記干渉信号を用いて前記測定対象の断層情報を取得する断層情報取得手段と、
    該断層情報取得手段により取得された前記断層情報を用いて断層画像を生成する断層画像生成手段と
    を備えたことを特徴とする断層画像処理装置。
    Figure 0005037215
JP2007121472A 2007-05-02 2007-05-02 補償テーブル生成方法、装置、プログラムおよびこれを用いた断層画像処理装置 Active JP5037215B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007121472A JP5037215B2 (ja) 2007-05-02 2007-05-02 補償テーブル生成方法、装置、プログラムおよびこれを用いた断層画像処理装置
US12/114,152 US7970578B2 (en) 2007-05-02 2008-05-02 Compensation table generation method, apparatus and computer program product, and tomography image processing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007121472A JP5037215B2 (ja) 2007-05-02 2007-05-02 補償テーブル生成方法、装置、プログラムおよびこれを用いた断層画像処理装置

Publications (3)

Publication Number Publication Date
JP2008275528A JP2008275528A (ja) 2008-11-13
JP2008275528A5 JP2008275528A5 (ja) 2010-04-08
JP5037215B2 true JP5037215B2 (ja) 2012-09-26

Family

ID=40053645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007121472A Active JP5037215B2 (ja) 2007-05-02 2007-05-02 補償テーブル生成方法、装置、プログラムおよびこれを用いた断層画像処理装置

Country Status (2)

Country Link
US (1) US7970578B2 (ja)
JP (1) JP5037215B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8441648B2 (en) 2008-02-07 2013-05-14 Fujifilm Corporation Calibration jig for optical tomographic imaging apparatus and method for generating a calibration conversion table
JP5984693B2 (ja) * 2012-01-31 2016-09-06 キヤノン株式会社 光干渉断層撮像装置及び光干渉断層撮像方法
EP2839785B1 (en) * 2012-04-10 2016-11-30 Advanced Telecommunications Research Institute International Object observation device and object observation method
JP6168652B2 (ja) * 2013-05-22 2017-07-26 日本電信電話株式会社 データ処理装置およびリサンプリング方法
JP6303618B2 (ja) * 2014-03-06 2018-04-04 株式会社リコー 光検出装置及びこの光検出装置を用いた計測装置
CN116818717B (zh) * 2023-08-28 2023-11-07 泉州装备制造研究所 谱域光学相干层析成像中波长校准误差的补偿方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956355A (en) * 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
JP3095970B2 (ja) * 1995-02-06 2000-10-10 日本分光株式会社 デコンボリューション処理方法及び装置
JP4296070B2 (ja) * 2003-10-01 2009-07-15 浜松ホトニクス株式会社 位相特性測定装置
JP2005283155A (ja) * 2004-03-26 2005-10-13 Shimizu Kimiya 光干渉断層像撮像法における分散補正装置
DE102004039681B4 (de) * 2004-08-16 2006-06-01 Siemens Ag Tomographiegerät und Verfahren für ein Tomographiegerät
JP4512822B2 (ja) * 2004-10-20 2010-07-28 国立大学法人 筑波大学 線集光型フーリエドメイン干渉形状計測装置
JP4804820B2 (ja) * 2005-07-15 2011-11-02 サンテック株式会社 光断層画像表示システム
PL1937137T3 (pl) * 2005-09-29 2022-11-21 General Hospital Corporation Sposób oraz aparatura dla obrazowania optycznego za pośrednictwem kodowania spektralnego
JP4378533B2 (ja) * 2005-10-04 2009-12-09 国立大学法人 筑波大学 光コヒーレンストモグラフィーの構成機器の較正方法

Also Published As

Publication number Publication date
US7970578B2 (en) 2011-06-28
US20090244546A1 (en) 2009-10-01
JP2008275528A (ja) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5406427B2 (ja) 断層画像処理方法、装置およびプログラムならびにこれを用いた光断層画像化システム
JP4895277B2 (ja) 光断層画像化装置
JP4986296B2 (ja) 光断層画像化システム
JP5591798B2 (ja) サンプル測定用のss−oct干渉法
US7511822B2 (en) Optical tomographic imaging apparatus
JP2008253492A (ja) 断層画像処理方法および装置ならびにプログラム
JP5679686B2 (ja) 光干渉断層撮像装置
JP2007101249A (ja) 光断層画像化方法および装置
JP2009201969A (ja) Oct用光プローブおよび光断層画像化装置
JP4907279B2 (ja) 光断層画像化装置
US8564787B2 (en) OCT apparatus and interference signal level control method for the same
JP2007275193A (ja) 光プローブおよび光断層画像化装置
JP5037215B2 (ja) 補償テーブル生成方法、装置、プログラムおよびこれを用いた断層画像処理装置
JP2008128709A (ja) 光断層画像化装置
JP2007101263A (ja) 光断層画像化装置
JP2007267927A (ja) 光断層画像化方法および装置
JP5303804B2 (ja) 光断層画像化装置の較正用の変換テーブルの作成方法
JP2010014514A (ja) 光断層画像化装置及び光断層画像化装置における干渉信号の処理方法
JP2007101267A (ja) 光断層画像化装置
JP2008089349A (ja) 光断層画像化装置
JP2008275529A (ja) 断層画像処理方法および装置ならびにプログラム
JP2008253493A (ja) 断層画像処理方法および装置ならびにプログラム
JP2008151734A (ja) 光断層画像化方法、装置およびプログラムならびに光断層画像化システム
JP5616626B2 (ja) 光断層画像化装置及びその作動方法
JP2008128707A (ja) 断層画像処理方法、装置およびプログラムならびにこれを用いた光断層画像化システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

RD15 Notification of revocation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7435

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250