JP2011135933A - 網膜機能計測装置 - Google Patents

網膜機能計測装置 Download PDF

Info

Publication number
JP2011135933A
JP2011135933A JP2009296234A JP2009296234A JP2011135933A JP 2011135933 A JP2011135933 A JP 2011135933A JP 2009296234 A JP2009296234 A JP 2009296234A JP 2009296234 A JP2009296234 A JP 2009296234A JP 2011135933 A JP2011135933 A JP 2011135933A
Authority
JP
Japan
Prior art keywords
fundus
image
light
signal intensity
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009296234A
Other languages
English (en)
Other versions
JP5416577B2 (ja
Inventor
Koichi Ito
晃一 伊藤
Junpei Nishiyama
潤平 西山
Toshibumi Sumiya
俊文 角谷
Tsuguo Kusushiro
紹生 楠城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2009296234A priority Critical patent/JP5416577B2/ja
Publication of JP2011135933A publication Critical patent/JP2011135933A/ja
Application granted granted Critical
Publication of JP5416577B2 publication Critical patent/JP5416577B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

【課題】 人眼の網膜内因性信号を好適に検出する。
【解決手段】 光干渉光学系と、光干渉光学系によって取得されたスペクトル情報を周波数解析して被検眼眼底の断層画像を取得する画像取得部と、被検眼眼底に刺激光を照射する刺激光照射手段と、を備え、眼底断層像の輝度変化を求めることにより被検眼の網膜機能を計測する網膜機能計測装置において、深さ方向における感度の違いによる信号強度の変化を補正するための第1の補正テーブルを持つ補正テーブルを記憶するメモリと、輝度変化を求める際、各眼底断層像間の深さ方向での位置ずれを画像処理により補正すると共に、第1の補正テーブルを用いて前記眼底反射光の各深さ位置での信号強度を補正する補正手段と、を備える。
【選択図】 図11

Description

本発明は、眼底を撮影して網膜の機能を計測する装置に関する。
刺激光による網膜刺激前後の眼底断層像をOCT(Optical Coherence Tomography)光学系で取得し、これらの断層画像を演算処理して網膜の内因性信号を抽出し、網膜機能を計測する装置が知られている(特許文献1参照)。この場合、光スキャナによって眼底上で測定光が横断方向に走査され、各横断位置における信号強度分布に基づいて被検眼眼底の断層像が得られる。
また、OCTとしては、眼底で反射した測定光束と参照光束との合成により得られる干渉光のスペクトル情報を受光素子により検出し、スペクトル情報を周波数解析して深さ方向における眼底反射光の信号強度分布を取得するOCTが知られている。このようなOCTとしては、スペクトルメータを用いるスペクトラル・ドメイン・OCT(Spectral Domain OCT)、波長可変光源を用いるスウィプト・ソース・OCT(Swept source OCT)が挙げられる。
特開2007−202952号公報
ところで、覚醒下では、被検眼の眼球運動が生じるため、深さ方向における断層画像の位置が変化する可能性がある。また、上記のようなSD−OCTやSS−OCTの場合、深さ方向における感度特性が変化する。したがって、画像処理により断層画像間の位置ずれ補正を行っても、深さ方向での感度の違いによって内因性信号が埋没してしまう可能性がある。
本発明は、上記問題点を鑑み、人眼の網膜内因性信号を好適に検出できる網膜機能計測装置を提供することを技術課題とする。
上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。
(1)光源と、該光源から出射された光束を測定光束と参照光束に分けるビームスプリッタと、被検眼眼底上で横断方向に前記測定光束を走査させるための光スキャナと、を有し、眼底で反射した測定光束と参照光束との合成により得られる干渉光のスペクトル情報を受光素子により検出する干渉光学系と、
前記干渉光学系によって取得されたスペクトル情報を周波数解析して深さ方向における眼底反射光の信号強度分布を取得し、各横断位置における該信号強度分布に基づいて被検眼眼底の断層画像を取得する画像取得部と、
被検眼眼底に刺激光を照射する刺激光照射手段と、
前記干渉光学系、前記画像取得部、及び前記刺激光照射手段を用いて、被検眼眼底のある走査範囲を走査し、網膜刺激前後の眼底断層像を取得する撮影制御手段と、
前記撮影制御手段によって取得された眼底断層像の輝度変化を求めることにより被検眼の網膜機能を計測する網膜機能計測装置において、
深さ方向における感度の違いによる信号強度の変化を補正するための第1の補正テーブルを持つ補正テーブルを記憶する記憶手段と、
前記輝度変化を求める際、前記撮影制御手段によって取得された各眼底断層像間の深さ方向での位置ずれを画像処理により補正すると共に、前記第1の補正テーブルを用いて前記眼底反射光の各深さ位置での信号強度を補正する補正手段と、
を備えることを特徴とする網膜機能計測装置。
(2) (1)の網膜機能計測装置において、
前記補正テーブルは、さらに、フォーカス状態の違いによる信号強度の変化を補正するための第2の補正テーブルを含み、
前記補正手段は、前記第2の補正テーブルを含む前記補正テーブルを用いて前記眼底反射光の各深さ位置での信号強度を補正することを特徴とする。
(3) (2)の網膜機能計測装置において、
前記補正テーブルは、さらに、前記光スキャナによる画角位置の違いによる信号強度の変化を補正するための第3の補正テーブルを含み、
前記補正手段は、前記第3の補正テーブルを含む前記補正テーブルを用いて前記眼底反射光の各画角位置での信号強度を補正することを特徴とする。
本発明によれば、人眼の網膜内因性信号を好適に検出できる。
本発明の実施形態を図面に基づいて説明する。図1は本実施形態に係る網膜機能計測装置の光学系を示す概略構成図である。
図1において、本装置の光学系は、被検者眼Eの網膜領域を照明する観察照明光学系10と、観察照明光学系10によって照明された網膜領域からの反射光を受光して眼底画像を得るための受光光学系(眼底観察光学系)20と、被検者眼の網膜領域に可視刺激光を照射して網膜を刺激するための刺激光照射光学系30と、被検者眼を固視させるための固視光学系40と、眼Eの網膜領域における断層画像を撮影するための干渉光学系(OCT光学系)200と、に大別される。
観察照明光学系10は、ハロゲンランプ等の観察光源11、例えば波長800nm〜900nmの赤外光を透過する赤外フィルタ12、集光レンズ13、赤外光を反射し可視光を透過する特性を持つダイクロイックミラー14、リング状の開口を有するリングスリット15、投光レンズ16、孔あきミラー17、対物レンズ18を含む。なお、リングスリット15及び孔あきミラー17は、被検者眼Eの瞳孔と略共役な位置に配置されている。観察光源11から発せられた観察用照明光は、赤外フィルタ12により赤外光束とされ、集光レンズ13にて集光されたのち、ダイクロイックミラー14により反射されてリングスリット15を照明する。リングスリット15を透過した光は、投光レンズ16を介して孔あきミラー17に達する。孔あきミラー17のミラー部分で反射された光の大部分は、ダイクロイックミラー60及び対物レンズ18を介して、被検者眼Eの瞳孔付近で一旦収束された後、拡散されて被検者眼Eの網膜の所定領域を連続的に照明する。
刺激光照射光学系30は、網膜領域に刺激を与えるための可視フラッシュ光を発光する刺激用光源31(例えば、フラッシュランプ、可視LED、等)、集光レンズ33、観察照明光学系10と光路を共用するリングスリット15〜対物レンズ18までの光学系を含む。刺激用光源は、可視フラッシュ光を単発またはフリッカー状に照射可能である。ここで、刺激用光源で発光した可視フラッシュ光は、集光レンズ33、ダイクロイックミラー14を介して、観察用照明光と同様の光路を経て被検者眼Eの網膜領域に照射される。
受光光学系20は、対物レンズ18、光軸方向に移動可能なフォーカシングレンズ21、結像レンズ22、二次元受光素子23(例えば、二次元CCDセンサ)を含む。フォーカシングレンズ21は、駆動機構50の駆動により光軸方向に移動する。観察光源11によって照明された網膜領域からの反射光は、対物レンズ18、ダイクロイックミラー60を介して孔あきミラー17の前で一旦集光されたのち、孔あきミラー17の開口を通過する。そして、孔あきミラー17の開口(ホール部)を通過した反射光は、フォーカシングレンズ21を介して、結像レンズ22によって集光された後、二次元受光素子23上に結像される。受光光学系20は、被検眼眼底で反射した光束を二次元撮像素子により受光して被検眼の眼底正面画像を撮影する眼底カメラ光学系を形成する。
固視光学系40は、可視光を発光する固視光源41、ピンホール(または固視用チャート)42、可視光を反射し赤外光を透過する特性を有するダイクロイックミラー29を持ち、ダイクロイックミラー29〜対物レンズ18までの光路を受光光学系20と共用する。ピンホール42は、被検者眼Eの網膜の観察点(撮影点)と略共役な位置に配置される。固視光源41を発した光は、ピンホール42を通り、ダイクロイックミラー29にて反射された後、網膜からの反射光とは逆方向の光路を経て(結像レンズ22〜対物レンズ18)被検者眼の網膜上で結像する。
ダイクロイックミラー60は、受光光学系20の光路とOCT光学系200の光路を分割する光分割部材として用いられ、OCT光学系200に用いられる測定光源27から発せられる測定光(例えば、λ=1000〜1100nm)を反射し、他の光を透過する特性を有する。すなわち、干渉光学系200と受光光学系20は、断層画像の取得に用いる測定光(第1の光束)と、眼底正面画像の取得に用いる照明光(第2の光束)と、が互いに異なる波長帯域となるように形成されている。これにより、測定光と照明光の干渉が回避され、網膜断層像と眼底正面像をそれぞれ好適に計測できる。なお、ダイクロイックミラー60について、波長800nm〜900nmの赤外光を透過する特性(赤外フィルタ12の代わり)と可視光を透過する特性とを持たせるようにしてもよい。また、干渉光学系200と受光光学系20とが同じ波長帯域を用いる場合もありうる。この場合、ダイクロイックミラー60の代わりにハーフミラーを用いればよい。
次に、ダイクロイックミラー60の反射側に設けられたOCT光学系200の構成について説明する。干渉光学系200は、光源から出射された光束を測定光束と参照光束に分け、測定光束を被検眼眼底に導き,参照光束を参照光学系に導いた後、眼底で反射した測定光束と参照光束との合成により得られる干渉光を受光素子に受光させる。
27はOCT光学系200の測定光及び参照光として用いられる低コヒーレントな光を発するOCT光源であり、例えばSLD光源等が用いられる。OCT光源27には、例えば、中心波長1050nmで50nmの帯域を持つ光源が用いられる。26は光分割部材と光結合部材としての役割を兼用するファイバーカップラー(ビームスプリッタ)である。OCT光源27から発せられた光は、導光路としての光ファイバ67を介して、ファイバーカップラー26によって参照光と測定光とに分割される。測定光は光ファイバ64を介して被検眼Eへと向かい、参照光は光ファイバ65を介して参照ミラー28へと向かう。
測定光を被検眼Eへ向けて出射する光路には、測定光を出射する光ファイバ64、被検眼の屈折誤差に合わせて光軸方向に移動可能なフォーカシングレンズ63、走査駆動機構51の駆動により眼底上でXY方向に測定光を走査させることが可能な2つのガルバノミラーの組み合せからなる走査部62と、リレーレンズ61が配置されている。ダイクロイックミラー60及び対物レンズ18は、OCT光学系200からのOCT測定光を被検眼眼底へと導光する導光光学系としての役割を有する。なお、本実施形態の走査部62では、2つのガルバノミラーによって測定光の反射角度を任意に調整することにより、眼底上に走査させる測定光の走査方向を任意に設定できるような構成となっている。よって、被検眼眼底の任意の領域の断層画像を得ることが可能となる。なお、光ファイバ64の端部は、被検眼眼底と共役となるように配置される。また、走査部62の2つのガルバノミラーは、被検眼瞳孔と略共役な位置に配置される。
上記ガルバノミラー及び走査駆動機構51は、干渉光学系200の光路中に配置され,被検眼眼底上で横断方向(XY方向)に測定光束を走査させるために測定光束の進行方向を変える光スキャナ(光走査部)として用いられる。光スキャナには、ミラーの他、光の進行(偏向)方向を変化させる音響光学素子(AOM)等が用いられる。
光ファイバ64から出射した測定光は、フォーカシングレンズ63を介して、走査部62に達し、2つのガルバノミラーの駆動により反射方向が変えられる。そして、走査部62で反射された測定光は、リレーレンズ61を介して、ダイクロイックミラー60で反射された後、対物レンズ18を介して、被検眼眼底に集光される。
そして、眼底で反射した測定光は、対物レンズ18を介して、ダイクロイックミラー60で反射し、OCT光学系200に向かい、リレーレンズ61、走査部62の2つのガルバノミラー、フォーカシングレンズ63を介して、光ファイバ64の端部に入射する。光ファイバ63に入射した測定光は、ファイバーカップラー26、光ファイバ66を介して、光ファイバ66の端部に達する。
一方、参照光を参照ミラー28に向けて出射する光路には、参照光を出射する光ファイバ65、コリメータレンズ25、参照ミラー28が配置されている。参照ミラー28は、参照光の光路長を変化させるべく、参照ミラー駆動機構52により光軸方向に移動可能な構成となっている。なお、上記参照光学系は、上記反射型に限るものではなく、透過型の光学系であってもよい。
光ファイバー65の端部から出射した参照光は、コリメータレンズ25で平行光束とされ、参照ミラー28で反射された後、コリメータレンズ25により集光されて光ファイバ65の端部に入射する。光ファイバー65に入射した参照光は、ファイバーカップラー26に達する。
そして、光源27から発せられた光によって前述のように生成される参照光と被検眼眼底に照射された測定光による眼底反射光は、ファイバーカップラー26にて合成され干渉光とされた後、光ファイバ66の端部から出射される。800は周波数毎の干渉信号を得るために干渉光を周波数成分に分光する分光光学系800(スペクトロメータ部)であり、コリメータレンズ80、グレーティングミラー(回折格子)81、集光レンズ82、受光素子83にて構成されている。受光素子83は、OCT光源の波長帯域に感度を有する一次元素子(ラインセンサ)を用いている。
ここで、光ファイバ66の端部から出射された干渉光は、コリメータレンズ80にて平行光とされた後、グレーティング81にて周波数成分に分光される。そして、周波数成分に分光された干渉光は、集光レンズ82を介して、受光素子83の受光面に集光する。これにより、受光素子83上で干渉縞のスペクトル情報が記録される。そして、そのスペクトル情報が制御部70へと入力され、フーリエ変換を用いて解析することで、被験者眼の深さ方向における情報(Aスキャン信号)が計測可能となる。ここで、制御部70は、走査部62により測定光を眼底上で所定の横断方向に走査することにより断層画像を取得できる。すなわち、XY方向に走査することにより、XY平面におけるZ方向の断層画像を取得できる(なお、本実施形態においては、このように測定光を眼底に対して1次元走査し、断層画像を得る方式をBスキャンとする)。なお、取得された断層画像は、制御部70に接続されたメモリ72に記憶される。さらに、測定光をXY方向に2次元的に走査することにより、被検眼眼底の3次元画像を取得することも可能である。なお、本実施形態におけるOCT画像の取得は、走査部62に設けられた2つのガルバノミラーによって行われる。なお、上記説明においては、SD−OCTを例に挙げたが、これに限るものではなく、もちろん、SS―OCT(swept source OCT)、TD−OCT(Time domain OCT)でも良い。
制御部70は装置全体の制御を行う。制御部70には、観察光源11、刺激用光源31、固視光源41、フォーカス駆動機構50、撮像素子23、走査駆動機構51、参照ミラー駆動機構52、フォーカシングレンズ63を光軸方向に移動させるための第1駆動機構63a、受光素子83、メモリ(記憶部)72、コントロール部74が接続されている。なお、制御部70は、被検者眼眼底の画像形成や網膜機能を画像化するための画像処理部としての機能も有する。75はモニタであり、制御部70により表示制御される。メモリ72は種々の情報を記憶しておくためのものである。コントロール部74は各種入力操作を行うためのものである。例えば、コントロール部74には、マウスが接続される。
ここで、制御部70は、受光素子83から出力される受光信号に基づいて画像処理により眼底断層像を形成させると共に、撮像素子23から出力される撮像信号に基づいて画像処理により眼底正面像を形成させる(図2参照)。また、断層画像の取得と眼底正面像の取得は、同時並行で行われる。なお、撮像素子23のフレームレートは、断層画像を取得する際のフレームレートに合わせて設定される。例えば、30fps〜50fpsに設定される。
また、制御部70は、干渉光学系200、ガルバノミラー及び走査駆動機構51、刺激光照射光学系30を制御し、被検眼眼底のある走査範囲を連続的に走査し、受光素子83からの信号に基づいて網膜刺激前後の眼底断層像を所定時間連続的に取得する。
<走査位置の設定>
まず、検者は、図示無きジョイスティックを用いて、モニタ75上に正面像Gfが表示されるようにアライメントを行う。次に、検者は、正面像Gf上に電子的に表示されたスキャンラインSLを移動させ、測定光の走査位置を設定する(図2(a)参照)。なお、測定光の走査位置とガルバノミラーの駆動位置は、予め対応付けがなされている。
図3は、断層画像の計測、眼球追尾の流れの具体例を示す図である。図4は、テンプレートマッチングについて説明する図である。
<テンプレートマッチングのための準備>
検者は、モニタ75上の正面像Gfを見て、矩形のグラフィックを移動させ、パターンマッチングが可能な特徴的領域(例えば、乳頭、血管)を少なくとも1つ以上選択する(図4(a)参照)。なお、初期設定として、制御部70は、正面像に含まれる乳頭部を画像処理により自動検出し、乳頭部近傍の画像領域が自動的に特徴的部位として設定されるようにしてもよい。
<画像取得開始とテンプレート画像の登録>
そして、撮影開始のトリガ信号が発せられると、制御部70は、設定された走査位置情報(スキャンラインSL参照)に基づいてガルバノミラーを駆動させ、受光素子83からの受光信号に基づいて断層画像を取得し、メモリ72に記憶する。
また、制御部70は、撮像素子23から出力された計測開始時の1画像(第1の正面像)を基準画像として登録すると共に、特徴的領域として選択された少なくとも1つ以上の画像領域をテンプレート画像(B1〜B4)として登録する(図4(a)参照)。この場合、画像B1〜B4の中心座標(図中の小円参照)が算出され、各中心座標を中心とする所定の画像領域がテンプレートとなる。そして、撮像素子23からの出力画像に対するテンプレートマッチングに用いられる。
このとき、制御部70は、テンプレートマッチングを行う際の検索範囲として、画像B1〜B4の中心座標を中心に検索領域S1〜S4を設定する。なお、検索領域S1〜S4は、画像B1〜B4より広い範囲を持ち1フレーム分の画像取得中における固視微動による眼の平均的な移動範囲と同程度(又はこれ以上)の大きさに設定される。
<テンプレートマッチング>
その後、制御部70は、前述の各テンプレート画像(B1〜B4)を用いて随時取得される計測画像に対してテンプレートマッチングを行い、計測画像におけるテンプレート画像の座標位置に基づいて走査位置のずれを検出する。
より具体的には、制御部70は、最初のフレームの断層画像が取得されると、さらに、ガルバノミラーを駆動させ次のフレームの断層画像(第2の断層画像)の取得を開始する。また、次のフレームの計測画像(第2の眼底正面像)が取得されると、決定されたテンプレート画像と計測画像においてテンプレートマッチング(基準画像、計測画像間の相互相関解析による評価)を行う(図4(b)参照)。なお、テンプレートマッチングにおける評価関数は、類似度を示すSSD(Sum of Squared Difference)や相違度を示すSAD(Sum of Absolute Difference)などを評価関数として用いてもよい。
制御部70は、その計測画像データにおいて前述の検索領域S1〜S4(図4(a)参照)内で画像B1〜B4を水平/垂直/回転移動させ、相関値が最大となる箇所を検出する。そして、制御部70は、各テンプレート画像B1〜B4に関して、相関値が最大となる箇所を中心座標位置として得る(図4(b)参照)。そして、制御部70は、基準画像と計測画像において、画像B1〜B4の中心座標位置の移動情報(例えば、移動方向、移動量)をそれぞれ算出し、この平均を眼球移動情報ΔPとして得る。
<次の走査位置の設定>
次に、制御部70は、上記のようにして検出された位置ずれ検出信号(眼球移動情報ΔP)に基づいて次のフレームの断層画像(第3の断層画像)を取得する際の測定光の走査位置を予め設定しておく。より具体的には、制御部70は、算出された眼球移動情報ΔPに基づき、基準画像に対し設定された走査の始点と終点(スキャンラインSL参照)を補正する。この場合、基準画像における走査の始点と終点のそれぞれに移動情報ΔPを加えた走査位置が補正位置として設定される。
また、基準画像での検索領域S1〜S4に移動情報ΔPを加えた領域が次のフレームの検索領域として再設定される。この場合、計測画像における各画像B1〜B4の中心座標位置に基づいて検索領域S1〜S4を補正し、次のフレームの検索領域として再設定してもよい。
<補正された走査位置情報を用いた断層画像の取得>
そして、次のフレームの断層画像(第3の断層画像)を取得する場合、上記のように補正された走査位置情報に基づいてガルバノミラーを駆動して断層画像を得る。この場合、上記のように補正された始点位置に基づいてガルバノミラー駆動信号が出力され、網膜に対する測定光の走査が開始する。そして、眼底上に設定されたある走査範囲を測定光が走査し、補正された終点位置にて測定光の走査が終了する。そして、断層画像をメモリ72に記憶する。これにより、被検眼の微動による眼底上における走査位置のずれが補正される。
<リアルタイム追跡>
また、制御部70は、さらに、次のフレームの計測画像(第3の眼底正面像)が取得されると、再設定された各検索領域S1〜S4内で第3の眼底正面像に対するテンプレートマッチングを行い、前述と同様に、眼球移動情報ΔPを得る。そして、その眼球移動情報ΔPに基づき、さらに次のフレームの断層画像(第4の断層画像)を取得する際の走査の始点と終点を補正する。その後、制御部70は、補正された走査位置に基づいてガルバノミラーを駆動して第4の断層画像を得る。そして、メモリ72に断層画像を記憶する。
上記のように、制御部70は、画像処理によるテンプレートマッチング、スキャンラインの決定を逐次行うことにより、測定光の眼球追尾(トラッキング)を行う。すなわち、制御部70は、所定のフレームレートにて撮像素子23からの出力信号に基づいて眼底正面画像を随時取得し、随時取得される計測画像と基準画像とを比較して眼球移動情報ΔP(走査位置のずれ情報)を検出する。そして、検出された眼球移動情報ΔPに基づいて測定光の走査位置を随時補正し、補正された走査位置に基づいて断層画像を得る(アクティブトラッキング)。また、随時取得される正面像における各テンプレート画像B1〜B4の座標位置に基づいてテンプレートマッチングを行う際の検索領域を随時更新する。
なお、上記アクティブトラッキングのとき、制御部70は、光源31を制御し、予め設定された条件(例えば、単発のフラッシュ光、フリッカ状の光、等)にて被検眼に刺激光を照射し、眼Eの網膜を刺激する。これにより、網膜を構成する細胞が刺激され、これに基づく神経細胞の活動が起こる。
<内因性信号の抽出>
上記のようにして所定時間内における断層画像の連続取得が完了したら、そして、制御部70は、メモリ72に記憶された断層画像の明るさ(輝度)の変化を各画素に求める。明るさの変化は、差分や比などを求めることによって得られる。このように断層画像の輝度値の変化を算出することで、内因性信号が抽出される。そして、制御部70は、明るさの変化情報を各画素に対応させてモニタ75に表示する。
例えば、制御部70は、網膜刺激前の所定時間内(例えば、2秒)に取得された複数枚の断層画像を加算平均させた加算平均画像と、網膜刺激後の所定時間内(例えば、刺激後8秒間)に取得された複数枚の断層画像を加算平均させた加算平均画像と、の明るさの変化情報を求めるようにしてもよい。なお、刺激前と刺激後の断層画像の枚数が同じの場合には、加算平均画像ではなく、加算画像でもよい。
また、制御部70は、経時的に取得される断層画像におけるある部位での輝度値の時間変化を算出し、算出結果を表示するようにしてもよい(例えば、グラフ、表、等)。時間変化を求める輝度値としては、例えば、視細胞層などある網膜層に対応する各輝度値の平均値、網膜上の微小領域における輝度値、などが挙げられる。
以上示したように、高速で運動する眼球を動画像処理によりリアルタイムで捉え、瞬時にガルバノミラーにフィードバックさせることにより、眼球運動が生じた場合でも、常に同一部位の断層画像を計測できる。
これにより、眼底の同一部位における断層画像を所定時間連続的に計測できるため、深さ方向における網膜の内因性信号を好適に検出できる。
以下に、眼球回旋を考慮して走査位置のずれを検出する算出手法について説明する。第1の手法としては、制御部70は、図5(a)に示すように、スキャンラインSL上の始点と終点を中心に各テンプレート画像B1、B2を設定し、各検索領域S1〜S2を設定する。
ここで、図5(b)に示すように、眼球が回旋した場合、走査の始点を含む眼底部位と走査の終点を含む眼底部位は、眼Eの回旋軸を中心に回転される。そこで、制御部70は、スキャンラインSL上に設定された各テンプレート画像B1、B2を用いて、撮像素子23から出力される次のフレームの計測画像に対しテンプレートマッチングを行い、各テンプレート画像について相関値が最大となる中心座標位置を算出する。これにより、走査位置のずれが検出される。
ここで、撮像素子23から次のフレームの計測画像が取得されると、制御部70は、計測画像における各テンプレート画像B1、B2の中心座標位置を次の走査の始点・終点に設定し、その後、補正された走査位置データに基づいてガルバノミラーを駆動して断層画像を得る。また、上記と同様に検索領域を再設定する。
上記のようにして、制御部70は、走査の始点を含む眼底部位と走査の終点を含む眼底部位の位置情報を計測画像毎に随時検出することにより走査位置のずれを検出する。そして、その位置ずれ情報に基づいて測定光の走査位置を随時補正する。この場合、基準画像と計測画像における走査位置のずれを算出し、これに基づいて走査位置を補正してもよい。
以上示したように、上記のようにスキャンラインSL上における任意の点を含むテンプレート画像を用いて計測画像に対してテンプレートマッチングを行うことにより、測定光の走査位置と走査される眼底部位が関連付けられる。よって、スムーズなアクティブトラッキングが可能となる。また、眼Eの回旋軸を基準とする回転角度を求めることなく、眼球回旋による走査位置のずれを補正できる。
さらに、スキャンラインSL上の始点・終点を含む画像領域をテンプレート画像に設定することにより、回旋による走査位置のずれを精度良く検出できる。
なお、始点・終点に限らず、スキャンラインSL上の少なくとも1点を中心に各点に対する画像領域をテンプレート画像として設定してもよい。また、3つ以上の点に基づきテンプレート画像をそれぞれ設定してもよい。
なお、スキャンラインSL上の始点・終点以外の位置にてテンプレート画像を設定した場合、そのテンプレートマッチングによって算出される各テンプレート画像の中心座標を通る直線を次のスキャンラインとして設定すればよい。
次に、図6を用いて第2の手法について説明する。この場合、制御部70は、眼底正面画像に対して予め設定されたスキャンラインSL上の少なくとも1点(例えば、始点)を中心とする画像領域をテンプレート画像として設定する。また、制御部70は、パターンマッチングが可能な特徴的部位であってスキャンラインSLから離れた2点E、Fを中心にテンプレート画像B2、B3を設定する(図6(a)参照)。さらに、各検索領域S1〜S3を設定する。なお、点E及び点Fの設定位置について、これらを結ぶ線分EFとスキャンラインSLとが交差するように形成されるのが好ましい。
また、制御部70は、テンプレートB2の中心座標EとテンプレートB3の中心座標Fとを結ぶ線分EFと,スキャンラインSLとの交点Gを算出し、特徴点E、Fに対する交点Gの位置情報(例えば、線分CE・EDの距離、線分CE・EDの比など)をメモリ75に記憶しておく。
そして、制御部70は、各テンプレート画像B1〜B3を用いて、撮像素子23から出力される次のフレームの計測画像に対しテンプレートマッチングを行い、各テンプレート画像について相関値が最大となる中心座標位置を算出する。
ここで、次のフレームの計測画像が取得されると、制御部70は、計測画像における画像B1の中心座標位置Cを次の走査の始点位置として設定する(図6(b)参照)。
また、制御部70は、計測画像における画像B2、B3の中心座標位置E、Fと計測画像における交点Hを用いて、次の走査の終点位置を算出する。ここで、計測画像において画像B2、B3に対応する中心座標位置E、Fは、計測画像における特徴点E、Fの位置を表すものである。そして、計測画像において第1の正面像(基準画像)の交点Gに対応する交点位置Hを求める場合、基準画像における線分EG・GFの関係(距離・比率)と、計測画像における線分EH・HFの関係が同じになる点を、計測画像の線分EF上から算出し、交点Hの位置として設定する。
そして、次の走査の終点位置Dを求める場合、基準画像における線分CG・GDの関係と、計測画像における線分CH・HDの関係とが同じになる点を、計測画像の線分CHの延長線上から算出し、終点位置Dとして設定する。
そして、制御部70は、上記のようにして次の走査の始点・終点が設定されると、補正された走査位置データに基づいてガルバノミラーを駆動して断層画像を得る。また、上記と同様に検索領域を再設定する。
すなわち、制御部70は、眼底正面画像に対して予め設定されたスキャンラインSLから離れた少なくとも2つ以上の画像領域をテンプレート画像B2、B3として設定すると共に、そのテンプレート画像B2、B3とスキャンラインSLとの位置関係を予めメモリ75に記憶する。そして、制御部70は、メモリ75に記憶されたテンプレート画像B2、B3及びスキャンラインSLの位置関係と計測画像におけるテンプレート画像の座標位置とに基づいて走査位置のずれを検出する。これにより、走査の始点又は終点付近に特徴的なパターンが存在しなくても、眼球回旋による走査位置のずれを検出できる。
なお、上記構成において、走査の終点付近と始点付近の両方に特徴的パターンが存在しない場合、上記特徴点EFを結ぶ線分EFとスキャンラインSLとの交点Gに加えて、スキャンラインSLに対する線分EFの角度を予め記憶しておく。
そして、制御部70は、基準画像における線分EF上の交点Gの位置とスキャンラインSLに対する線分EFの角度と、計測画像における線分EF上の交点Hの位置とスキャンラインSLに対する線分EFの角度とが同じ関係となるように、計測画像における走査の始点と終点を設定すればよい。
なお、上記説明においては、3つのテンプレート画像によるテンプレートマッチングにより走査位置を補正するものとしたが、4つ以上のテンプレート画像を用いるようにしてもよい(ただし、マッチングに要する時間が多く掛かる)。例えば、スキャンラインの始点、終点、スキャンラインから離れた2つの特徴点、の各点を中心とする画像が考えられる。この場合、各点を図7に示すような同心円状に配置したテンプレートより決定しても良い。
なお、上記説明においては、スキャンラインSLの任意の点を中心に各点に対応する画像領域をテンプレート画像として設定したが、これに限るものではなく、スキャンラインSLの任意の点を含む各点に対応する画像領域をテンプレート画像として設定するものであればよい。
なお、上記説明においては、被検眼の眼球運動による走査位置のずれを検出するための構成として、赤外光にて眼底全体を同時に照明する照明光学系と、眼底全体を同時に撮像する撮像光学系と、を持つ光学系を用いた。このため、位置ずれ検出に用いる眼底正面画像の眼球運動によるずれが少なくなる。よって、位置ずれを精度よく検出できる。
なお、走査位置のずれを検出するための構成は、上記構成に限るものではなく、被検眼眼底と略共役な位置に配置された共焦点開口を介して被検眼眼底で反射した光束を受光して被検眼眼底の共焦点正面画像を撮像する共焦点光学系(SLO光学系)を用いるようにしてもよい。
なお、前述のように、位置ずれ検出用の受光光学系が被検眼眼底の正面画像を撮像する構成の場合、その観察範囲が狭い方が位置ずれ検出のスピードを高速化でき、位置ずれ補正(トラッキング)を高速化できる。例えば、眼底の乳頭部位に合わせた撮影画角を持つ光学系とするようなことが考えられる。
さらに、被検眼眼底の位置ずれを検出する構成としては、上記構成に限るものではなく、干渉光学系200の測定光とは異なる第2の光束を被検眼眼底に照射し、被検眼眼底で反射した第2の光束を第2の受光素子に受光させる受光光学系を有し、眼底断層像を取得しながら同時に、第2の受光素子からの受光信号に基づいて眼底上における走査位置のずれを検出する構成であればよい。例えば、一対のミラーを利用して眼底上で円を描くように検出光束を走査し、その眼底反射光を受光素子により受光して、位置ずれ信号を得るものであってもよい(米国特許5943115号参照)。
また、上記説明においては、出力される検出信号に基づいて走査部62の2つのガルバノミラーの駆動を制御し、走査位置のずれが補正されるように眼底上における測定光の走査位置を随時補正するものとしたが、これに限るものではない。すなわち、走査部62の2つのガルバノミラーとは別に、干渉光学系200の光路中に新たな瞳孔共役位置を形成させ、その位置に走査位置補正用の第2の光スキャナを設置するようにしてもよい。
なお、上記構成において、被検眼眼底の正面画像を撮像する撮像光学系によれば、断層画像を取得しながら同時に、網膜刺激前後の所定時間内における正面画像が連続的に得られる。よって、制御部70は、メモリ72に記憶された正面画像の断層画像の明るさ(輝度)の変化を各画素に求め、正面画像を用いて内因性信号を抽出してもよい。これにより、深さ方向における網膜の内因性信号と平面方向における網膜の内因性信号を同時に検出できる。なお、平面方向の内因性信号検出は、網膜機能に関する眼底マップが提供でき、診断に有用な情報となる。
以下に、断層画像撮影時における撮影条件の違いによる輝度変化の補正手法について説明する。図8は輝度補正に用いるデータを得る際に使用する模型眼を示す図である。模型眼の構造は、眼球の屈折力を再現するためのレンズ系Le、瞳を模した開口絞りDa、眼底面を模した曲面を持つガラスすり面Fp(もしくは均一に散乱できる特性を有する素材)から構成される。なお、すり面Fpの曲率半径をレンズ系の焦点距離に一致させておく。このような配置により、画角位置(走査位置)の変化に関わらず光源から眼底面までの光路長が一定となるため、後述する画角位置毎の信号強度についてのデータ取得が容易となる。
また、模型眼には、レンズ系Leに対する眼底面Fpの距離をマイクロメータにより微小に可変できる機構Mcが設けられる。さらに、干渉光学系内において、測定光と参照光との光路差を微小に可変できる機能(駆動機構52若しくはマイクロメータ)が設けられる。
さらに、干渉信号を計算する過程で使用する各種補正パラメータは、予めこの計測システム全体で最適化されたものに設定しておくのが好ましい。補正パラメータとしては、例えば、測定光路と参照光路間の分散量の違いをソフトウェアで補正する(Dispersion compensation)ためのパラメータ、受光素子の各画素に受光される光の波長のずれをソフトウェアで最適化する(incorrect-mapping)ためのパラメータ、等が挙げられる。
そして、模型眼を用いた計測データの取得に際し、上記眼底撮影装置を用いて模型眼眼底の断層画像を得る。図9は模型眼眼底の断層画像の具体例を示す図である。図10は深さ方向における信号強度分布を示す図である。ここで、断層画像でのある走査位置Spにおける深さ方向の干渉信号(Aスキャン信号)から信号強度における最大値Lmaxをプロットする。なお、以下のデータ取得は、例えば、装置のキャリブレーションの際に行うことができる。
<深さ方向での感度特性の違いによる信号強度変化計測及び計測データを用いた補正>
図11(a)は、深さ方向における干渉信号の感度特性の変化について示す図である。この場合、例えば、参照ミラー28を光軸方向に移動させることにより測定光と参照光の光路差を所定のステップで変化させていき、各位置での最大値Lmaxをプロットしていく。この場合、光路差を変化させる際の1ステップの光路長が干渉光学系200に由来した深さ方向における画像分解能に一致するように予め計算により求めておくとよい。分解能は、受光素子が受光する干渉光の波長帯域、受光素子の画素数、等によって求めることができる。
これにより、眼底撮影装置における深さ方向での感度特性の違いによる信号強度の変化を示す第1の計測データ(第1の補正テーブル)が求められ、記憶部72に記憶される。
図11(a)に示すように、フーリエドメインOCT(SD−OCT,SS−OCT)を原理とする干渉光学系により得られる深さ方向における干渉信号は、測定光と参照光との光路長が一致する深度位置(参照ミラー28の配置位置に対応する深度位置)での感度が最も高く、この深度位置から離れるにしたがって感度が低下していく。このため、被検眼の移動による深さ方向における撮影位置のずれを画像処理により補正した上で、網膜機能計測のために各画像間の信号強度(輝度)の変化を求める場合、前述のような深さ方向での感度の違いによって内因性信号が埋没してしまう可能性がある。
そこで、制御部70は、取得された第1の計測データを深さ方向における感度の違いによる信号強度の変化を補正するための第1の補正テーブルとして利用する。そして、制御部70は、断層画像の輝度変化を求める際、各眼底断層像間の深さ方向での位置ずれを画像処理により補正すると共に、第1の補正テーブルを用いて前記眼底反射光の各深さ位置での信号強度を補正する。
その具体例を以下に示す。まず、制御部70は、各断層画像における特徴的部位(例えば、網膜色素上皮のピーク位置)の深さ位置を画像処理により検出し、深さ方向のずれが補正されるように基準画像(例えば、刺激前画像)に対して計測画像(例えば、刺激後画像)を画像処理により深さ方向に移動させる。
次に、制御部70は、前述の位置ずれ補正における計測画像の移動量と第1の計測データとを用いて対象画像に対する輝度補正を行う。例えば、図11(b)に示すように、ずれ補正前の計測画像においてある深さ位置D1で信号強度はS1である。そして、位置ずれの補正量がΔDとすれば、深さ位置D1に対応する干渉信号は、深さ位置D1に補正量ΔDを加えた深さ位置D2(D2=D1+ΔD)に移動したことになる(図11(c)参照)。第1計測データにおいて、深さ位置D1での信号強度がM1であり、深さ位置D2での信号強度がM2である。よって、感度特性の違いによる信号強度の変化率M2/M1に信号強度S1をかけることにより、補正後の断層画像における深さ位置D2での信号強度S2を補正する(S2=S1×(M2/M1))。
上記のようにして深さ方向における感度の違いによる信号強度の差分が補正されるように、制御部70は、計測画像における各深さ位置での信号強度を補正する。この場合、断層画像全体での補正を行うべく、横断方向における走査位置毎のAスキャン信号についてそれぞれ補正を行う必要がある。
このようにすれば、網膜機能計測のために断層画像間で比較する場合、位置ずれによる深さ方向における感度の違いによる信号強度の差分が補正されるため、網膜の内因性信号を精度良く検出できる。なお、3つ以上の断層画像を用いて信号強度の変化情報を求める際には、上記と同様に、基準画像に対する各断層画像の位置ずれ補正量と第1計測データを基にそれぞれ輝度補正を行えばよい。なお、基準画像は、複数の断層画像から任意に選択可能であり、もちろん最初に取得された画像に限るものではない。
なお、上記説明においては、第1計測データと断層画像間の位置ずれ補正量を用いて断層画像の輝度を補正した。ただし、各断層画像において、ある基準深さでの感度を基準として各深さ位置での感度の違いによる信号強度の差分が補正されるように、第1計測データを用いて各深さ位置における信号強度を補正するようにしてもよい。例えば、基準深さ位置D0での信号強度がM0であり、ある深さ位置Dでの信号強度がMdとする場合、感度特性の違いによる信号強度の変化率Md/M0に補正前の信号強度Saをかけることにより、断層画像における深さ位置Dでの補正後の信号強度Sbを得る(Sb=Sa×(Md/M0))。
<デフォーカス時の信号強度減衰の計測及び計測データを用いた補正>
図12(a)は、フォーカス状態の違いによる信号強度の変化について示す図である。この場合、マイクロメータを用いてレンズ系Leに対する眼底面Fpの距離を変化させていき、各位置での最大値Lmaxをプロットしていく。なお、プロットの際、眼底面の深さ位置が変化するため、測定光と参照光との光路差が変化する。したがって、前述の第1測定データを用いた輝度補正をベースにプロットを行う必要がある。
これにより、眼底撮影装置におけるフォーカス状態の違いによる信号強度の変化を示す第2の計測データが求められ、記憶部72に記憶される。
図12(a)に示すように、撮影部位に対するフォーカスが合っている位置での信号強度が最も高く、この合焦位置から離れるにしたがって信号強度が低下していく。
このため、網膜機能計測のために各画像間の信号強度の変化を求める場合、前述のようなフォーカス状態の違いによる信号強度の変動によって内因性信号が埋没してしまう可能性がある。
そこで、制御部70は、取得された第2の計測データをフォーカス状態の違いによる信号強度の変化を補正するための第2の補正テーブルとし、前述の第1の補正テーブルと共に利用する。そして、制御部70は、断層画像の輝度変化を求める際、各眼底断層像間の深さ方向での位置ずれを画像処理により補正すると共に、第1の補正テーブル及び第2の補正テーブルを用いて眼底反射光の各深さ位置での信号強度を補正する。
その具体例を以下に示す。なお、以下の輝度補正は、通常、上記第1計測データを用いた輝度補正と組み合わせて行うが、説明を簡略化するため、上記第2計測データを用いた輝度補正に絞って説明する。
まず、制御部70は、各断層画像における特徴的部位(例えば、網膜色素上皮のピーク位置)の深さ位置を画像処理により検出し、深さ方向のずれが補正されるように基準画像(例えば、刺激前画像)に対して計測画像(例えば、刺激後画像)を画像処理により深さ方向に移動させる。
次に、制御部70は、前述の位置ずれ補正における計測画像の移動量と第2の計測データとを用いて対象画像に対する輝度補正を行う。例えば、図12(b)に示すように、ずれ補正前の計測画像においてあるフォーカス位置F1で信号強度はS3である。そして、位置ずれの補正量がΔDとすれば、フォーカス位置F1に対応する干渉信号は、フォーカス位置F1に補正量ΔFを加えたフォーカス位置F2(F2=F1+ΔF)に移動したことになる(図12(c)参照)。第2計測データにおいて、フォーカス位置F1での信号強度がM3であり、フォーカス位置F2での信号強度がM4である。よって、フォーカス位置の違いによる信号強度の変化率M4/M3に信号強度S3をかけることにより、補正後の断層画像におけるフォーカス位置F2での信号強度S4を補正する(S4=S3×(M4/M3))。なお、上記説明において、フォーカス位置の変化は、深さ位置の変化として考えればよい。
上記のようにしてフォーカス位置の違いによる信号強度の差分が補正されるように、制御部70は、計測画像における各深さ位置での信号強度を補正する。この場合、断層画像全体での補正を行うべく、横断方向における走査位置毎のAスキャン信号についてそれぞれ補正を行う必要がある。
このようにすれば、網膜機能計測のために断層画像間で比較する場合、位置ずれによる深さ方向におけるフォーカス位置の違いによる信号強度の差分が補正されるため、網膜の内因性信号を精度良く検出できる。なお、このような補正は、上記第1計測データを用いた輝度補正と並行して行うのが好ましい。
<画角位置毎の信号強度変化計測及び計測データを用いた補正>
図13(a)は、画角位置の違いによる信号強度の変化について示す図であり、ある深さ位置での走査方向における干渉信号の輝度の変化を示している。
この場合、取得された模型眼の断層画像において、ある深さ位置Dpでの走査方向(横断方向)における信号強度をプロットしていく(図9参照)。これにより、眼底撮影装置における各画角位置での信号強度の変化を示す第3の計測データが求められ、記憶部72に記憶される。
図13(a)に示すように、画角0度(走査中心)位置での信号強度が最も高く、この位置から離れるにしたがって信号強度が低下していく。これは、測定光が通過する眼内での透過率が画角位置毎に異なることに起因する。また、眼底中心と眼底周辺での測定光の反射の違いによって信号強度が低下する可能性もありうる。
このため、眼球トラッキングにより測定光の画角位置が変化させながら各断層画像を取得した上で、網膜機能計測のために各画像間の輝度の変化を求める場合、前述のような画角位置での信号強度の違いによって内因性信号が埋没してしまう可能性がある。なお、同じ眼底部位(例えば、乳頭部)について異なる走査位置で撮影したときの各画像間の輝度変化を求める場合においても、同様な問題が生じうる。
そこで、制御部70は、取得された第3の計測データを光スキャナによる画角位置の違いによる信号強度の変化を補正するための第3の補正テーブルとし、前述の第1の補正テーブル及び第2の補正テーブルと共に利用する。そして、制御部70は、第3の補正テーブルを用いて眼底反射光の各画角位置での信号強度を補正する。
例えば、各断層画像の取得の際に測定光の画角位置(走査位置)を記憶しておけば、各断層画像において横断方向の輝度補正をすることもできる。また、さらには、眼底断層画像に基づく内因性信号の解析において、画像中心と周辺部の相対的な輝度を比較検討する際の補正データとして利用することも可能である。
その具体例を以下に示す。まず、制御部70は、前述のように眼球トラッキングにより測定光の走査位置を補正しながら、同一の眼底部位が連続的に撮影する。そして、各断層画像取得の際の測定光の画角位置(走査位置)をメモリ72に記憶しておく。
次に、制御部70は、前述の眼球トラッキングにおける画角位置の移動量と第3の計測データとを用いて計測画像に対する輝度補正を行う。例えば、図13(b)に示すように、ずれ補正前の計測画像においてある画角位置G1で信号強度はS5である。そして、画角位置の補正量がΔGとすれば、画角位置G1に対応する干渉信号は、画角位置G1に補正量ΔGを加えた画角位置G2(G2=G1+ΔG)に移動したことになる(図13(c)参照)。第3計測データにおいて、画角位置G1での信号強度がM5であり、画角位置G2での信号強度がM6である。よって、画角位置の違いによる信号強度の変化率M6/M5に信号強度S5をかけることにより、補正後の断層画像における画角位置G2での信号強度S6を補正する(S6=S5×(M6/M5))。
上記のようにして画角位置の違いによる信号強度の差分が補正されるように、制御部70は、計測画像における各画角位置での信号強度を補正する。この場合、断層画像全体での補正を行うべく、深さ方向における深さ位置毎の信号強度についてそれぞれ補正を行う必要がある。
このようにすれば、網膜機能計測のために断層画像間で比較する場合、位置ずれによる画角位置の違いによる信号強度の差分が補正されるため、網膜の内因性信号を精度良く検出できる。なお、上記手法は、横断方向への移動による位置ずれを画像処理により補正する場合においても適用可能である(眼球トラッキングとの併用も可能)。また、このような補正は、上記第1計測データ及び第2計測データを用いた輝度補正と平行して行うのが好ましい。
なお、上記説明において、第1計測データ、第2計測データ、及び第3計測データを一つの統合した統合計測データ(補正テーブル)とし、これを用いて輝度補正を行うようにしてもよい。また、上記説明においては、被検眼の深さ方向及び横断方向への移動による位置ずれを補正するものとしたが、被検眼が回旋した場合、画像処理により検出される回旋量に基づいて輝度補正を行う。
本実施形態に係る網膜機能計測装置の光学系を示す概略構成図である。 本光学系によって取得された正面画像と断層画像の具体例を示す図である。 断層画像の計測、眼球追尾の流れの具体例を示す図である。 テンプレートマッチングについて説明する図である。 眼球回旋を考慮して走査位置のずれを検出する第1の手法について説明する図である。 眼球回旋を考慮して走査位置のずれを検出する第2の手法について説明する図である。 同心円状にテンプレートを設けた場合の図である。 輝度補正に用いるデータを得る際に使用する模型眼を示す図である。 模型眼眼底の断層画像の具体例を示す図である。 深さ方向における信号強度分布を示す図である。 深さ方向での感度の違いによる信号強度の変化を補正する場合について説明する図である。 フォーカス状態の違いによる信号強度の変化を補正する場合について説明する図である。 画角位置の違いによる信号強度の変化を補正する場合について説明する図である。
20 受光光学系
30 刺激光照射光学系
62 走査部
70 制御部
200 干渉光学系

Claims (3)

  1. 光源と、該光源から出射された光束を測定光束と参照光束に分けるビームスプリッタと、被検眼眼底上で横断方向に前記測定光束を走査させるための光スキャナと、を有し、眼底で反射した測定光束と参照光束との合成により得られる干渉光のスペクトル情報を受光素子により検出する干渉光学系と、
    前記干渉光学系によって取得されたスペクトル情報を周波数解析して深さ方向における眼底反射光の信号強度分布を取得し、各横断位置における該信号強度分布に基づいて被検眼眼底の断層画像を取得する画像取得部と、
    被検眼眼底に刺激光を照射する刺激光照射手段と、
    前記干渉光学系、前記画像取得部、及び前記刺激光照射手段を用いて、被検眼眼底のある走査範囲を走査し、網膜刺激前後の眼底断層像を取得する撮影制御手段と、
    前記撮影制御手段によって取得された眼底断層像の輝度変化を求めることにより被検眼の網膜機能を計測する網膜機能計測装置において、
    深さ方向における感度の違いによる信号強度の変化を補正するための第1の補正テーブルを持つ補正テーブルを記憶する記憶手段と、
    前記輝度変化を求める際、前記撮影制御手段によって取得された各眼底断層像間の深さ方向での位置ずれを画像処理により補正すると共に、前記第1の補正テーブルを用いて前記眼底反射光の各深さ位置での信号強度を補正する補正手段と、
    を備えることを特徴とする網膜機能計測装置。
  2. 請求項1の網膜機能計測装置において、
    前記補正テーブルは、さらに、フォーカス状態の違いによる信号強度の変化を補正するための第2の補正テーブルを含み、
    前記補正手段は、前記第2の補正テーブルを含む前記補正テーブルを用いて前記眼底反射光の各深さ位置での信号強度を補正することを特徴とする網膜機能計測装置。
  3. 請求項2の網膜機能計測装置において、
    前記補正テーブルは、さらに、前記光スキャナによる画角位置の違いによる信号強度の変化を補正するための第3の補正テーブルを含み、
    前記補正手段は、前記第3の補正テーブルを含む前記補正テーブルを用いて前記眼底反射光の各画角位置での信号強度を補正することを特徴とする網膜機能計測装置。
JP2009296234A 2009-12-25 2009-12-25 網膜機能計測装置 Expired - Fee Related JP5416577B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009296234A JP5416577B2 (ja) 2009-12-25 2009-12-25 網膜機能計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009296234A JP5416577B2 (ja) 2009-12-25 2009-12-25 網膜機能計測装置

Publications (2)

Publication Number Publication Date
JP2011135933A true JP2011135933A (ja) 2011-07-14
JP5416577B2 JP5416577B2 (ja) 2014-02-12

Family

ID=44348009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009296234A Expired - Fee Related JP5416577B2 (ja) 2009-12-25 2009-12-25 網膜機能計測装置

Country Status (1)

Country Link
JP (1) JP5416577B2 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206519A (ja) * 2010-03-12 2011-10-20 Canon Inc 眼科装置及びその制御方法
JP2012187229A (ja) * 2011-03-10 2012-10-04 Canon Inc 撮像装置及び撮像方法
JP2013034658A (ja) * 2011-08-08 2013-02-21 Nidek Co Ltd 眼底撮影装置
JP2013075035A (ja) * 2011-09-30 2013-04-25 Canon Inc 光断層像撮像方法、光断層像撮像装置およびプログラム
JP2013144236A (ja) * 2013-04-26 2013-07-25 Canon Inc 眼科装置及び眼科方法
JP2013248258A (ja) * 2012-06-01 2013-12-12 Canon Inc 眼科装置
JP2014147503A (ja) * 2013-01-31 2014-08-21 Canon Inc 光干渉断層撮像装置およびその制御方法
US8827453B2 (en) 2010-04-30 2014-09-09 Canon Kabushiki Kaisha Ophthalmologic apparatus and ophthalmologic observation method
JP2015500067A (ja) * 2011-12-28 2015-01-05 ウェイブライト ゲーエムベーハー 光干渉断層撮影のための方法及び装置
JP2015029834A (ja) * 2013-08-06 2015-02-16 株式会社ニデック 眼科撮影装置及び眼科画像処理プログラム
WO2015029675A1 (ja) * 2013-08-28 2015-03-05 株式会社トプコン 眼科装置
US8998412B2 (en) 2010-03-12 2015-04-07 Canon Kabushiki Kaisha Ophthalmologic apparatus and control method for the same
JP2015120090A (ja) * 2015-04-02 2015-07-02 キヤノン株式会社 眼科装置、眼科装置の作動方法、及びプログラム
JP2017104535A (ja) * 2015-12-02 2017-06-15 株式会社ニデック 眼科情報処理装置、および眼科情報処理プログラムに関する。
EP3375349A1 (en) 2017-03-17 2018-09-19 C/o Canon Kabushiki Kaisha Information processing apparatus, image generation method, and computer-readable medium
WO2019003804A1 (ja) * 2017-06-26 2019-01-03 株式会社トプコン 眼科装置、及びその制御方法
JP2019058745A (ja) * 2018-12-20 2019-04-18 株式会社ニコン 眼底像形成装置
JP2020022796A (ja) * 2019-10-23 2020-02-13 株式会社トプコン 眼科装置
JP2021181019A (ja) * 2018-05-23 2021-11-25 株式会社ニコン 眼科装置
CN114847867A (zh) * 2022-05-06 2022-08-05 山东探微医疗技术有限公司 一种可见光oct人眼对焦和成像装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9192295B1 (en) * 2014-06-11 2015-11-24 L&R Medical Inc. Focusing algorithm in OCT-only systems

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258853A (ja) * 2000-03-23 2001-09-25 Konan Medical Inc 眼底組織撮影装置
JP2006212153A (ja) * 2005-02-02 2006-08-17 Nidek Co Ltd 眼科撮影装置
JP2007130403A (ja) * 2005-10-12 2007-05-31 Topcon Corp 光画像計測装置、光画像計測プログラム、眼底観察装置及び眼底観察プログラム
JP2007202952A (ja) * 2006-02-06 2007-08-16 Nidek Co Ltd 網膜機能計測装置
JP2008275529A (ja) * 2007-05-02 2008-11-13 Fujifilm Corp 断層画像処理方法および装置ならびにプログラム
JP2009160190A (ja) * 2007-12-29 2009-07-23 Nidek Co Ltd 眼科撮影装置
JP2009291252A (ja) * 2008-06-02 2009-12-17 Nidek Co Ltd 眼底撮影装置
JP2010210268A (ja) * 2009-03-06 2010-09-24 Canon Inc 光干渉断層撮像方法および装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258853A (ja) * 2000-03-23 2001-09-25 Konan Medical Inc 眼底組織撮影装置
JP2006212153A (ja) * 2005-02-02 2006-08-17 Nidek Co Ltd 眼科撮影装置
JP2007130403A (ja) * 2005-10-12 2007-05-31 Topcon Corp 光画像計測装置、光画像計測プログラム、眼底観察装置及び眼底観察プログラム
JP2007202952A (ja) * 2006-02-06 2007-08-16 Nidek Co Ltd 網膜機能計測装置
JP2008275529A (ja) * 2007-05-02 2008-11-13 Fujifilm Corp 断層画像処理方法および装置ならびにプログラム
JP2009160190A (ja) * 2007-12-29 2009-07-23 Nidek Co Ltd 眼科撮影装置
JP2009291252A (ja) * 2008-06-02 2009-12-17 Nidek Co Ltd 眼底撮影装置
JP2010210268A (ja) * 2009-03-06 2010-09-24 Canon Inc 光干渉断層撮像方法および装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206519A (ja) * 2010-03-12 2011-10-20 Canon Inc 眼科装置及びその制御方法
US9468374B2 (en) 2010-03-12 2016-10-18 Canon Kabushiki Kaisha Ophthalmologic apparatus and control method for the same
US8998412B2 (en) 2010-03-12 2015-04-07 Canon Kabushiki Kaisha Ophthalmologic apparatus and control method for the same
US8827453B2 (en) 2010-04-30 2014-09-09 Canon Kabushiki Kaisha Ophthalmologic apparatus and ophthalmologic observation method
JP2012187229A (ja) * 2011-03-10 2012-10-04 Canon Inc 撮像装置及び撮像方法
JP2013034658A (ja) * 2011-08-08 2013-02-21 Nidek Co Ltd 眼底撮影装置
JP2013075035A (ja) * 2011-09-30 2013-04-25 Canon Inc 光断層像撮像方法、光断層像撮像装置およびプログラム
JP2015500067A (ja) * 2011-12-28 2015-01-05 ウェイブライト ゲーエムベーハー 光干渉断層撮影のための方法及び装置
JP2013248258A (ja) * 2012-06-01 2013-12-12 Canon Inc 眼科装置
JP2014147503A (ja) * 2013-01-31 2014-08-21 Canon Inc 光干渉断層撮像装置およびその制御方法
US9730581B2 (en) 2013-01-31 2017-08-15 Canon Kabushiki Kaisha Optical coherence tomographic imaging apparatus and method for controlling the same
JP2013144236A (ja) * 2013-04-26 2013-07-25 Canon Inc 眼科装置及び眼科方法
JP2015029834A (ja) * 2013-08-06 2015-02-16 株式会社ニデック 眼科撮影装置及び眼科画像処理プログラム
WO2015029675A1 (ja) * 2013-08-28 2015-03-05 株式会社トプコン 眼科装置
US9498116B2 (en) 2013-08-28 2016-11-22 Kabushiki Kaisha Topcon Ophthalmologic apparatus
JP2015043898A (ja) * 2013-08-28 2015-03-12 株式会社トプコン 眼科装置
JP2015120090A (ja) * 2015-04-02 2015-07-02 キヤノン株式会社 眼科装置、眼科装置の作動方法、及びプログラム
JP2017104535A (ja) * 2015-12-02 2017-06-15 株式会社ニデック 眼科情報処理装置、および眼科情報処理プログラムに関する。
EP3375349A1 (en) 2017-03-17 2018-09-19 C/o Canon Kabushiki Kaisha Information processing apparatus, image generation method, and computer-readable medium
US10888220B2 (en) 2017-03-17 2021-01-12 Canon Kabushiki Kaisha Information processing apparatus, image generation method, and computer-readable medium, with acquisition of correction coefficient by performing arithmetic operation on first and second parameters
WO2019003804A1 (ja) * 2017-06-26 2019-01-03 株式会社トプコン 眼科装置、及びその制御方法
JP2019005254A (ja) * 2017-06-26 2019-01-17 株式会社トプコン 眼科装置、及びその制御方法
US11213202B2 (en) 2017-06-26 2022-01-04 Topcon Corporation Ophthalmologic apparatus and method for controlling the same
JP2021181019A (ja) * 2018-05-23 2021-11-25 株式会社ニコン 眼科装置
JP7255646B2 (ja) 2018-05-23 2023-04-11 株式会社ニコン 眼科装置
JP2019058745A (ja) * 2018-12-20 2019-04-18 株式会社ニコン 眼底像形成装置
JP2020022796A (ja) * 2019-10-23 2020-02-13 株式会社トプコン 眼科装置
CN114847867A (zh) * 2022-05-06 2022-08-05 山东探微医疗技术有限公司 一种可见光oct人眼对焦和成像装置及方法
CN114847867B (zh) * 2022-05-06 2024-02-13 山东探微医疗技术有限公司 一种可见光oct人眼对焦和成像装置及方法

Also Published As

Publication number Publication date
JP5416577B2 (ja) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5416577B2 (ja) 網膜機能計測装置
JP5079240B2 (ja) 網膜機能計測装置
JP4819478B2 (ja) 眼科撮影装置
JP5735790B2 (ja) 眼科撮影装置
JP6062688B2 (ja) 眼科装置、眼科装置の制御方法、およびプログラム
JP5570195B2 (ja) Oct装置
JP6367563B2 (ja) 眼科装置
US20120002164A1 (en) Fundus photographing apparatus
US20160106312A1 (en) Data processing method and oct apparatus
JP2013153793A (ja) 光干渉断層撮像装置、光干渉断層撮像装置の制御方法、およびプログラム
JP4949504B2 (ja) 眼科撮影装置
JP2012161382A (ja) 眼科装置
JP7186587B2 (ja) 眼科装置
JP5242716B2 (ja) 眼底画像処理装置
JP2022176282A (ja) 眼科装置、及びその制御方法
JP2018186930A (ja) 眼科撮影装置
JP2018051391A (ja) 眼科装置
JP5587014B2 (ja) 眼科装置
JP5319010B2 (ja) 眼科撮影装置
JP6274728B2 (ja) 光干渉断層撮像装置およびその制御方法
JP6779674B2 (ja) Oct装置
JP5255711B2 (ja) 眼科撮影装置
JP5649679B2 (ja) 光干渉断層撮像装置、光干渉断層撮像装置の制御方法、およびプログラム
JP5421412B2 (ja) 眼科撮影装置
JP5306554B2 (ja) 眼科撮影装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131115

R150 Certificate of patent or registration of utility model

Ref document number: 5416577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees